MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES

Abstract
Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
Description
FIELD OF THE INVENTION

The present application relates to targeting complexes for delivering molecular payloads (e.g., oligonucleotides) to cells and uses thereof, particularly uses relating to treatment of disease.


REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (D082470066W000-SEQ-COB.xml; Size: 1,203,807 bytes; and Date of Creation: Jul. 7, 2022) are herein incorporated by reference in their entirety.


BACKGROUND OF INVENTION

Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the gene encoding dystrophin. Dystrophinopathies include Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy. The DMD gene (“DMD”), which encodes dystrophin, is a large gene, containing 79 exons and about 2.6 million total base pairs. Numerous mutations in DMD, including exonic frameshift, deletion, substitution, and duplicative mutations, are able to diminish the expression of functional dystrophin, leading to dystrophinopathies. Several agents that target exons of human DMD have been approved by the U.S. Food and Drug Administration (FDA), including casimersen, viltolarsen, golodirsen, and eteplirsen. Of these, eteplirsen targets exon 51.


SUMMARY OF INVENTION

According to some aspects, the disclosure provides complexes that target muscle cells for purposes of delivering molecular payloads to those cells, as well as molecular payloads that can be used therein. In some embodiments, complexes provided herein are particularly useful for delivering molecular payloads that increase or restore expression or activity of functional dystrophin protein. In some embodiments, complexes comprise oligonucleotide based molecular payloads that promote expression of functional dystrophin protein through an in-frame exon skipping mechanism or suppression of stop codons, such as by facilitating skipping of DMD exon 51. In some embodiments, molecular payloads provided herein are useful for facilitating exon skipping in a DMD sequence, such as skipping of DMD exon 51. Accordingly, in some embodiments, complexes provided herein comprise muscle-targeting agents (e.g., muscle targeting antibodies) that specifically bind to receptors on the surface of muscle cells for purposes of delivering molecular payloads to the muscle cells. In some embodiments, the complexes are taken up into the cells via a receptor mediated internalization, following which the molecular payload may be released to perform a function inside the cells. For example, complexes engineered to deliver oligonucleotides may release the oligonucleotides such that the oligonucleotides can promote expression of functional dystrophin protein (e.g., through an exon skipping mechanism, such as by facilitating skipping of DMD exon 51) in the muscle cells. In some embodiments, the oligonucleotides are released by endosomal cleavage of covalent linkers connecting oligonucleotides and muscle-targeting agents of the complexes. Complexes and molecular payloads provided herein can be used for treating subjects having a mutated DMD gene, such as a mutated DMD gene that is amenable to exon 51 skipping.


According to some aspects, complexes comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 51 in a DMD pre-mRNA are provided herein, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 160-383.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
    • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
    • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
    • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
    • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
    • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
    • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
    • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.


In some embodiments, the anti-TfR1 antibody is a Fab fragment.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
    • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
    • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
    • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
    • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.


In some embodiments, the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.


In some embodiments, the splicing feature is an exonic splicing enhancer (ESE) in exon 51 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 860-894.


In some embodiments, the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 50 and intron 50, in intron 50, across the junction of intron 50 and exon 51, across the junction of exon 51 and intron 51, in intron 51, or across the junction of intron 51 and exon 52 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 855-859 and 895-898.


In some embodiments, the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-383 or comprises a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


In some embodiments, the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the anti-TfR1 antibody is covalently linked to the oligonucleotide via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.


In some embodiments, the anti-TfR1 antibody is covalently linked to the oligonucleotide via conjugation to a lysine residue or a cysteine residue of the antibody.


According to some aspects, oligonucleotides that target DMD are provided herein, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-383, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-383.


In some embodiments, the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 384-831, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


According to some aspects, methods of delivering an oligonucleotide to a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein.


According to some aspects, methods of promoting the expression or activity of a dystrophin protein in a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.


In some embodiments, the subject has a DMD gene that is amenable to skipping of exon 51.


In some embodiments, the DMD protein is a truncated DMD protein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows data illustrating that conjugates containing anti-TfR1 Fab (3M12 VH4/Vκ3) conjugated to a DMD exon-skipping oligonucleotide resulted in enhanced exon skipping compared to the naked DMD exon skipping oligo in Duchenne muscular dystrophy patient myotubes.





DETAILED DESCRIPTION OF INVENTION

Aspects of the disclosure relate to a recognition that while certain molecular payloads (e.g., oligonucleotides, peptides, small molecules) can have beneficial effects in muscle cells, it has proven challenging to effectively target such cells. Accordingly, as described herein, the present disclosure provides complexes comprising muscle-targeting agents covalently linked to molecular payloads in order to overcome such challenges. In some embodiments, the complexes are particularly useful for delivering molecular payloads that modulate (e.g., promote) the expression or activity of dystrophin protein (e.g., a truncated dystrophin protein) or DMD (e.g., a mutated DMD allele). In some embodiments, complexes provided herein may comprise oligonucleotides that promote expression and activity of dystrophin protein or DMD, such as by facilitating in-frame exon skipping and/or suppression of premature stop codons. For example, complexes may comprise oligonucleotides that induce skipping of exon(s) of DMD RNA (e.g., pre-mRNA), such as oligonucleotides that induce skipping of exon 51. In some embodiments, synthetic nucleic acid payloads (e.g., DNA or RNA payloads) may be used that express one or more proteins that promote normal expression and activity of dystrophin protein or DMD.


Duchenne muscular dystrophy is an X-linked muscular disorder caused by one or more mutations in the DMD gene located on Xp21. Dystrophin protein typically forms the dystrophin-associated glycoprotein complex (DGC) at the sarcolemma, which links the muscle sarcomeric structure to the extracellular matrix and protects the sarcolemma from contraction-induced injury. In patients with Duchenne muscular dystrophy, the dystrophin protein is generally absent and muscle fibers typically become damaged due to mechanical overextension. Mutations in the DMD gene are associated with two types of muscular dystrophy, Duchenne muscular dystrophy and Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Becker muscular dystrophy is a clinically milder form of Duchenne muscular dystrophy, and is characterized by features similar to Duchenne muscular dystrophy. In some embodiments, exon skipping induced by oligonucleotides (e.g., delivered using complexes provided herein) can be used to restore the reading frame of a mutated DMD allele resulting in production of a truncated dystrophin protein that is sufficiently functional to improve muscle function. In some embodiments, such exon skipping converts a Duchenne muscular dystrophy phenotype into a milder Becker muscular dystrophy phenotype.


Further aspects of the disclosure, including a description of defined terms, are provided below.


I. Definitions





    • Administering: As used herein, the terms “administering” or “administration” means to provide a complex to a subject in a manner that is physiologically and/or (e.g., and) pharmacologically useful (e.g., to treat a condition in the subject).

    • Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).

    • Antibody: As used herein, the term “antibody” refers to a polypeptide that includes at least one immunoglobulin variable domain or at least one antigenic determinant, e.g., paratope that specifically binds to an antigen. In some embodiments, an antibody is a full-length antibody. In some embodiments, an antibody is a chimeric antibody. In some embodiments, an antibody is a humanized antibody. However, in some embodiments, an antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, a Fv fragment or a scFv fragment. In some embodiments, an antibody is a nanobody derived from a camelid antibody or a nanobody derived from shark antibody. In some embodiments, an antibody is a diabody. In some embodiments, an antibody comprises a framework having a human germline sequence. In another embodiment, an antibody comprises a heavy chain constant domain selected from the group consisting of IgG, IgG1, IgG2, IgG2A, IgG2B, IgG2C, IgG3, IgG4, IgA1, IgA2, IgD, IgM, and IgE constant domains. In some embodiments, an antibody comprises a heavy (H) chain variable region (abbreviated herein as VH), and/or (e.g., and) a light (L) chain variable region (abbreviated herein as VL). In some embodiments, an antibody comprises a constant domain, e.g., an Fc region. An immunoglobulin constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences and their functional variations are known. With respect to the heavy chain, in some embodiments, the heavy chain of an antibody described herein can be an alpha (α), delta (Δ), epsilon (ε), gamma (γ) or mu (μ) heavy chain. In some embodiments, the heavy chain of an antibody described herein can comprise a human alpha (α), delta (Δ), epsilon (ε), gamma (γ) or mu (μ) heavy chain. In a particular embodiment, an antibody described herein comprises a human gamma 1 CH1, CH2, and/or (e.g., and) CH3 domain. In some embodiments, the amino acid sequence of the VH domain comprises the amino acid sequence of a human gamma (γ) heavy chain constant region, such as any known in the art. Non-limiting examples of human constant region sequences have been described in the art, e.g., see U.S. Pat. No. 5,693,780 and Kabat E A et al., (1991) supra. In some embodiments, the VH domain comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or at least 99% identical to any of the variable chain constant regions provided herein. In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecule are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, an antibody is a construct that comprises a polypeptide comprising one or more antigen binding fragments of the disclosure linked to a linker polypeptide or an immunoglobulin constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Examples of linker polypeptides have been reported (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444−6448; Poljak, R. J., et al. (1994) Structure 2:1121−1123). Still further, an antibody may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, S. M., et al. (1995) Human Antibodies and Hybridomas 6:93−101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, S. M., et al. (1994) Mol. Immunol. 31:1047−1058).

    • Branch point: As used herein, the term “branch point” or “branch site” refers to a nucleic acid sequence motif within an intron of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A branch point is typically located 18 to 40 nucleotides from the 3′ end of an intron, and contains an adenine but is otherwise relatively unrestricted in sequence. Common sequence motifs for branch points are YNYYRAY, YTRAC, and YNYTRAY, where Y is a pyrimidine, N is any nucleotide, R is any purine, and A is adenine. During splicing, the pre-mRNA is cleaved at the 5′ end of the intron, which then attaches to the branch point region downstream through transesterification bonding between guanines and adenines from the 5′ end and the branch point, respectively, to form a looped lariat structure.

    • CDR: As used herein, the term “CDR” refers to the complementarity determining region within antibody variable sequences. A typical antibody molecule comprises a heavy chain variable region (VH) and a light chain variable region (VL), which are usually involved in antigen binding. The VH and VL regions can be further subdivided into regions of hypervariability, also known as “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, which are known as “framework regions” (“FR”). Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The extent of the framework region and CDRs can be precisely identified using methodology known in the art, for example, by the Kabat definition, the IMGT definition, the Chothia definition, the AbM definition, and/or (e.g., and) the contact definition, all of which are well known in the art. See, e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; IMGT®, the international ImMunoGeneTics information system® www.imgt.org, Lefranc, M.-P. et al., Nucleic Acids Res., 27:209-212 (1999); Ruiz, M. et al., Nucleic Acids Res., 28:219-221 (2000); Lefranc, M.-P., Nucleic Acids Res., 29:207-209 (2001); Lefranc, M.-P., Nucleic Acids Res., 31:307-310 (2003); Lefranc, M.-P. et al., In Silico Biol., 5, 0006 (2004) [Epub], 5:45-60 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 33:D593−597 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 37:D1006−1012 (2009); Lefranc, M.-P. et al., Nucleic Acids Res., 43:D413-422 (2015); Chothia et al., (1989) Nature 342:877; Chothia, C. et al. (1987) J. Mol. Biol. 196:901−917, Al-lazikani et al (1997) J. Molec. Biol. 273:927−948; and Almagro, J. Mol. Recognit. 17:132-143 (2004). See also bioinf.org.uk/abs. As used herein, a CDR may refer to the CDR defined by any method known in the art. Two antibodies having the same CDR means that the two antibodies have the same amino acid sequence of that CDR as determined by the same method, for example, the IMGT definition.





There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” as used herein refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Sub-portions of CDRs may be designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (FASEB J. 9:133−139 (1995)) and MacCallum (J Mol Biol 262(5):732-45 (1996)). Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems. Examples of CDR definition systems are provided in Table 1.









TABLE 1







CDR Definitions











IMGT1
Kabat2
Chothia3
















CDR-H1
27-38
31-35
26-32



CDR-H2
56-65
50-65
53-55



CDR-H3
105-116/117
 95-102
 96-101



CDR-L1
27-38
24-34
26-32



CDR-L2
56-65
50-56
50-52



CDR-L3
105-116/117
89-97
91-96








1IMGT ®, the international ImMunoGeneTics information system ®, imgt.org, Lefranc, M.-P. et al., Nucleic Acids Res., 27: 209-212 (1999)





2Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242





3Chothia et al., J. Mol. Biol. 196: 901-917 (1987))









    • CDR-grafted antibody: The term “CDR-grafted antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species but in which the sequences of one or more of the CDR regions of VH and/or (e.g., and) VL are replaced with CDR sequences of another species, such as antibodies having murine heavy and light chain variable regions in which one or more of the murine CDRs (e.g., CDR3) has been replaced with human CDR sequences.

    • Chimeric antibody: The term “chimeric antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species and constant region sequences from another species, such as antibodies having murine heavy and light chain variable regions linked to human constant regions.

    • Complementary: As used herein, the term “complementary” refers to the capacity for precise pairing between two nucleosides or two sets of nucleosides. In particular, complementary is a term that characterizes an extent of hydrogen bond pairing that brings about binding between two nucleosides or two sets of nucleosides. For example, if a base at one position of an oligonucleotide is capable of hydrogen bonding with a base at the corresponding position of a target nucleic acid (e.g., an mRNA), then the bases are considered to be complementary to each other at that position. Base pairings may include both canonical Watson-Crick base pairing and non-Watson-Crick base pairing (e.g., Wobble base pairing and Hoogsteen base pairing). For example, in some embodiments, for complementary base pairings, adenosine-type bases (A) are complementary to thymidine-type bases (T) or uracil-type bases (U), that cytosine-type bases (C) are complementary to guanosine-type bases (G), and that universal bases such as 3-nitropyrrole or 5-nitroindole can hybridize to and are considered complementary to any A, C, U, or T. Inosine (I) has also been considered in the art to be a universal base and is considered complementary to any A, C, U or T.

    • Conservative amino acid substitution: As used herein, a “conservative amino acid substitution” refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g. Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Fourth Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012, or Current Protocols in Molecular Biology, F. M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D.

    • Covalently linked: As used herein, the term “covalently linked” refers to a characteristic of two or more molecules being linked together via at least one covalent bond. In some embodiments, two molecules can be covalently linked together by a single bond, e.g., a disulfide bond or disulfide bridge, that serves as a linker between the molecules. However, in some embodiments, two or more molecules can be covalently linked together via a molecule that serves as a linker that joins the two or more molecules together through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker.

    • Cross-reactive: As used herein and in the context of a targeting agent (e.g., antibody), the term “cross-reactive,” refers to a property of the agent being capable of specifically binding to more than one antigen of a similar type or class (e.g., antigens of multiple homologs, paralogs, or orthologs) with similar affinity or avidity. For example, in some embodiments, an antibody that is cross-reactive against human and non-human primate antigens of a similar type or class (e.g., a human transferrin receptor and non-human primate transferrin receptor) is capable of binding to the human antigen and non-human primate antigens with a similar affinity or avidity. In some embodiments, an antibody is cross-reactive against a human antigen and a rodent antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a rodent antigen and a non-human primate antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a human antigen, a non-human primate antigen, and a rodent antigen of a similar type or class.

    • DMD: As used herein, the term “DMD” refers to a gene that encodes dystrophin protein, a key component of the dystrophin-glycoprotein complex, which bridges the inner cytoskeleton and the extracellular matrix in muscle cells, particularly muscle fibers. Deletions, duplications, and point mutations in DMD may cause dystrophinopathies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, or cardiomyopathy. Alternative promoter usage and alternative splicing result in numerous distinct transcript variants and protein isoforms for this gene. In some embodiments, a dystrophin gene (DMD or DMD gene) may be a human (Gene ID: 1756), non-human primate (e.g., Gene ID: 465559), or rodent gene (e.g., Gene ID: 13405; Gene ID: 24907). In addition, multiple human transcript variants (e.g., as annotated under GenBank RefSeq Accession Numbers: NM_000109.3, NM_004006.2, NM_004009.3, NM_004010.3 and NM_004011.3) have been characterized that encode different protein isoforms.

    • DMD allele: As used herein, the term “DMD allele” refers to any one of alternative forms (e.g., wild-type or mutant forms) of a DMD gene. In some embodiments, a DMD allele may encode for dystrophin that retains its normal and typical functions. In some embodiments, a DMD allele may comprise one or more mutations that results in muscular dystrophy. Common mutations that lead to Duchenne muscular dystrophy involve frameshift, deletion, substitution, and duplicative mutations of one or more of 79 exons present in a dystrophin allele, e.g., exon 8, exon 23, exon 41, exon 44, exon 45, exon 50, exon 51, exon 52, exon 53, or exon 55. Further examples of DMD mutations are disclosed, for example, in Flanigan K M, et al., Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 December; 30 (12):1657−66, the contents of which are incorporated herein by reference in its entirety.

    • Dystrophinopathy: As used herein, the term “dystrophinopathy” refers to a muscle disease results from one or more mutated DMD alleles. Dystrophinopathies include a spectrum of conditions (ranging from mild to severe) that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). In some embodiments, at one end of the spectrum, dystrophinopathy is phenotypically associated with an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, at the other end of the spectrum, dystrophinopathy is phenotypically associated with progressive muscle diseases that are generally classified as Duchenne or Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected. Symptoms of Duchenne muscular dystrophy include muscle loss or degeneration, diminished muscle function, pseudohypertrophy of the tongue and calf muscles, higher risk of neurological abnormalities, and a shortened lifespan. Duchenne muscular dystrophy is associated with Online Mendelian Inheritance in Man (OMIM) Entry #310200. Becker muscular dystrophy is associated with OMIM Entry #300376. Dilated cardiomyopathy is associated with OMIM Entry X #302045.

    • Exonic splicing enhancer (ESE): As used herein, the term “exonic splicing enhancer” or “ESE” refers to a nucleic acid sequence motif within an exon of a gene, pre-mRNA, or mRNA that directs or enhances splicing of pre-mRNA into mRNA, e.g., as described in Blencowe et al., Trends Biochem Sci 25, 106−10. (2000), incorporated herein by reference. ESEs can be referred to as splicing features. ESEs may direct or enhance splicing, for example, to remove one or more introns and/or one or more exons from a gene transcript. ESE motifs are typically 6−8 nucleobases in length. SR proteins (e.g., proteins encoded by the gene SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF8, SRSF9, SRSF10, SRSF11, SRSF12, TRA2A or TRA2B) bind to ESEs through their RNA recognition motif region to facilitate splicing. ESE motifs can be identified through a number of methods, including those described in Cartegni et al., Nucleic Acids Research, 2003, Vol. 31, No. 13, 3568-3571, incorporated herein by reference.

    • Framework: As used herein, the term “framework” or “framework sequence” refers to the remaining sequences of a variable region minus the CDRs. Because the exact definition of a CDR sequence can be determined by different systems, the meaning of a framework sequence is subject to correspondingly different interpretations. The six CDRs (CDR-L1, CDR-L2, and CDR-L3 of light chain and CDR-H1, CDR-H2, and CDR-H3 of heavy chain) also divide the framework regions on the light chain and the heavy chain into four sub-regions (FR1, FR2, FR3 and FR4) on each chain, in which CDR1 is positioned between FR1 and FR2, CDR2 between FR2 and FR3, and CDR3 between FR3 and FR4. Without specifying the particular sub-regions as FR1, FR2, FR3 or FR4, a framework region, as referred by others, represents the combined FRs within the variable region of a single, naturally occurring immunoglobulin chain. As used herein, a FR represents one of the four sub-regions, and FRs represents two or more of the four sub-regions constituting a framework region. Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment, the acceptor sequences known in the art may be used in the antibodies disclosed herein.

    • Human antibody: The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

    • Humanized antibody: The term “humanized antibody” refers to antibodies which comprise heavy and light chain variable region sequences from a non-human species (e.g., a mouse) but in which at least a portion of the VH and/or (e.g., and) VL sequence has been altered to be more “human-like”, i.e., more similar to human germline variable sequences. One type of humanized antibody is a CDR-grafted antibody, in which human CDR sequences are introduced into non-human VH and VL sequences to replace the corresponding non-human CDR sequences. In one embodiment, humanized anti-TfR1 antibodies and antigen binding portions are provided. Such antibodies may be generated by obtaining murine anti-TfR1 monoclonal antibodies using traditional hybridoma technology followed by humanization using in vitro genetic engineering, such as those disclosed in Kasaian et al PCT publication No. WO 2005/123126 A2.

    • Internalizing cell surface receptor: As used herein, the term, “internalizing cell surface receptor” refers to a cell surface receptor that is internalized by cells, e.g., upon external stimulation, e.g., ligand binding to the receptor. In some embodiments, an internalizing cell surface receptor is internalized by endocytosis. In some embodiments, an internalizing cell surface receptor is internalized by clathrin-mediated endocytosis. However, in some embodiments, an internalizing cell surface receptor is internalized by a clathrin-independent pathway, such as, for example, phagocytosis, macropinocytosis, caveolae- and raft-mediated uptake or constitutive clathrin-independent endocytosis. In some embodiments, the internalizing cell surface receptor comprises an intracellular domain, a transmembrane domain, and/or (e.g., and) an extracellular domain, which may optionally further comprise a ligand-binding domain. In some embodiments, a cell surface receptor becomes internalized by a cell after ligand binding. In some embodiments, a ligand may be a muscle-targeting agent or a muscle-targeting antibody. In some embodiments, an internalizing cell surface receptor is a transferrin receptor.

    • Isolated antibody: An “isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds transferrin receptor is substantially free of antibodies that specifically bind antigens other than transferrin receptor). An isolated antibody that specifically binds transferrin receptor complex may, however, have cross-reactivity to other antigens, such as transferrin receptor molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or (e.g., and) chemicals.

    • Kabat numbering: The terms “Kabat numbering”, “Kabat definitions and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382−391 and, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.

    • Molecular payload: As used herein, the term “molecular payload” refers to a molecule or species that functions to modulate a biological outcome. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, the molecular payload is a small molecule, a protein, a peptide, a nucleic acid, or an oligonucleotide. In some embodiments, the molecular payload functions to modulate the transcription of a DNA sequence, to modulate the expression of a protein, or to modulate the activity of a protein. In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a target gene.

    • Muscle-targeting agent: As used herein, the term, “muscle-targeting agent,” refers to a molecule that specifically binds to an antigen expressed on muscle cells. The antigen in or on muscle cells may be a membrane protein, for example an integral membrane protein or a peripheral membrane protein. Typically, a muscle-targeting agent specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting agent (and any associated molecular payload) into the muscle cells. In some embodiments, a muscle-targeting agent specifically binds to an internalizing, cell surface receptor on muscles and is capable of being internalized into muscle cells through receptor mediated internalization. In some embodiments, the muscle-targeting agent is a small molecule, a protein, a peptide, a nucleic acid (e.g., an aptamer), or an antibody. In some embodiments, the muscle-targeting agent is linked to a molecular payload.

    • Muscle-targeting antibody: As used herein, the term, “muscle-targeting antibody,” refers to a muscle-targeting agent that is an antibody that specifically binds to an antigen found in or on muscle cells. In some embodiments, a muscle-targeting antibody specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting antibody (and any associated molecular payment) into the muscle cells. In some embodiments, the muscle-targeting antibody specifically binds to an internalizing, cell surface receptor present on muscle cells. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds to a transferrin receptor.

    • Oligonucleotide: As used herein, the term “oligonucleotide” refers to an oligomeric nucleic acid compound of up to 200 nucleotides in length. Examples of oligonucleotides include, but are not limited to, RNAi oligonucleotides (e.g., siRNAs, shRNAs), microRNAs, gapmers, mixmers, phosphorodiamidate morpholinos, peptide nucleic acids, aptamers, guide nucleic acids (e.g., Cas9 guide RNAs), etc. Oligonucleotides may be single-stranded or double-stranded. In some embodiments, an oligonucleotide may comprise one or more modified nucleosides (e.g., 2′-O-methyl sugar modifications, purine or pyrimidine modifications). In some embodiments, an oligonucleotide may comprise one or more modified internucleoside linkages. In some embodiments, an oligonucleotide may comprise one or more phosphorothioate linkages, which may be in the Rp or Sp stereochemical conformation.

    • Recombinant antibody: The term “recombinant human antibody”, as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described in more details in this disclosure), antibodies isolated from a recombinant, combinatorial human antibody library (Hoogenboom H. R., (1997) TIB Tech. 15:62−70; Azzazy H., and Highsmith W. E., (2002) Clin. Biochem. 35:425-445; Gavilondo J. V., and Larrick J. W. (2002) BioTechniques 29:128-145; Hoogenboom H., and Chames P. (2000) Immunology Today 21:371-378), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor, L. D., et al. (1992) Nucl. Acids Res. 20:6287−6295; Kellermann S-A., and Green L. L. (2002) Current Opinion in Biotechnology 13:593−597; Little M. et al (2000) Immunology Today 21:364-370) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo. One embodiment of the disclosure provides fully human antibodies capable of binding human transferrin receptor which can be generated using techniques well known in the art, such as, but not limited to, using human Ig phage libraries such as those disclosed in Jermutus et al., PCT publication No. WO 2005/007699 A2.

    • Region of complementarity: As used herein, the term “region of complementarity” refers to a nucleotide sequence, e.g., of an oligonucleotide, that is sufficiently complementary to a cognate nucleotide sequence, e.g., of a target nucleic acid, such that the two nucleotide sequences are capable of annealing to one another under physiological conditions (e.g., in a cell). In some embodiments, a region of complementarity is fully complementary to a cognate nucleotide sequence of target nucleic acid. However, in some embodiments, a region of complementarity is partially complementary to a cognate nucleotide sequence of target nucleic acid (e.g., at least 80%, 90%, 95% or 99% complementarity). In some embodiments, a region of complementarity contains 1, 2, 3, or 4 mismatches compared with a cognate nucleotide sequence of a target nucleic acid.

    • Specifically binds: As used herein, the term “specifically binds” refers to the ability of a molecule to bind to a binding partner with a degree of affinity or avidity that enables the molecule to be used to distinguish the binding partner from an appropriate control in a binding assay or other binding context. With respect to an antibody, the term, “specifically binds”, refers to the ability of the antibody to bind to a specific antigen with a degree of affinity or avidity, compared with an appropriate reference antigen or antigens, that enables the antibody to be used to distinguish the specific antigen from others, e.g., to an extent that permits preferential targeting to certain cells, e.g., muscle cells, through binding to the antigen, as described herein. In some embodiments, an antibody specifically binds to a target if the antibody has a KD for binding the target of at least about 10-4 M, 10-5 M, 10-6 M, 10-7 M, 10-8 M, 10-9 M, 10-10 M, 10-11 M, 10-12 M, 10-13 M, or less. In some embodiments, an antibody specifically binds to the transferrin receptor, e.g., an epitope of the apical domain of transferrin receptor.

    • Splice acceptor site: As used herein, the term “splice acceptor site” or “splice acceptor” refers to a nucleic acid sequence motif at the 3′ end of an intron or across an intron/exon junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice acceptor site includes a terminal AG sequence at the 3′ end of an intron, which is typically preceded (5′-ward) by a region high in pyrimidines (C/U). Upstream from the splice acceptor site is the branch point. Formation of a lariat loop intermediate structure by a transesterification reaction between the branch point and the splice donor site releases a 3′-OH of the 5′ exon, which subsequently reacts with the first nucleotide of the 3′ exon, thereby joining the exons and releasing the intron lariat. The AG sequence at the 3′ end of the intron in the splice acceptor site is known to be critical for proper splicing, as changing one of these nucleotides results in inhibition of splicing. Rarely, alternative splice acceptor sites have an AC at the 3′ end of the intron, instead of the more common AG. A common splice acceptor site motif has a sequence of or similar to [Y-rich region]-NCAGG or YXNYAGG, in which Y represents a pyrimidine, N represents any nucleotide, and x is a number from 4 to 20. The cut site follows the AG, which represent the 3′-terminal nucleotides of the excised intron.

    • Splice donor site: As used herein, the term “splice donor site” or “splice donor” refers to a nucleic acid sequence motif at the 5′ end of an intron or across an exon/intron junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice donor site includes a terminal GU sequence at the 5′ end of the intron, within a larger and fairly unconstrained sequence. During splicing, the 2′-OH of a nucleotide within the branch point initiates a transesterification reaction via a nucleophilic attack on the 5′ G of the intron within the splice donor site. The G is thereby cleaved from the pre-mRNA and bonds instead to the branch point nucleotide, forming a loop lariat structure. The 3′ nucleotide of the upstream exon subsequently binds the splice acceptor site, joining the exons and excising the intron. A typical splice donor site has a sequence of or similar to GGGURAGU or AGGURNG, in which R represents a purine and N represents any nucleotide. The cut site precedes the first GU (i.e., GG/GURAGU or AG/GURNG), which represent the 5′-terminal nucleotides of the excised intron.

    • Subject: As used herein, the term “subject” refers to a mammal. In some embodiments, a subject is non-human primate, or rodent. In some embodiments, a subject is a human. In some embodiments, a subject is a patient, e.g., a human patient that has or is suspected of having a disease. In some embodiments, the subject is a human patient who has or is suspected of having a disease resulting from a mutated DMD gene sequence, e.g., a mutation in an exon of a DMD gene sequence. In some embodiments, a subject has a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, a subject is a patient that has a mutation of the DMD gene that is amenable to exon 51 skipping.

    • Transferrin receptor: As used herein, the term, “transferrin receptor” (also known as TFRC, CD71, p90, or TFR1) refers to an internalizing cell surface receptor that binds transferrin to facilitate iron uptake by endocytosis. In some embodiments, a transferrin receptor may be of human (NCBI Gene ID 7037), non-human primate (e.g., NCBI Gene ID 711568 or NCBI Gene ID 102136007), or rodent (e.g., NCBI Gene ID 22042) origin. In addition, multiple human transcript variants have been characterized that encoded different isoforms of the receptor (e.g., as annotated under GenBank RefSeq Accession Numbers: NP_001121620.1, NP_003225.2, NP_001300894.1, and NP_001300895.1).

    • 2′-modified nucleoside: As used herein, the terms “2′-modified nucleoside” and “2′-modified ribonucleoside” are used interchangeably and refer to a nucleoside having a sugar moiety modified at the 2′ position. In some embodiments, the 2′-modified nucleoside is a 2′-4′ bicyclic nucleoside, where the 2′ and 4′ positions of the sugar are bridged (e.g., via a methylene, an ethylene, or a (S)-constrained ethyl bridge). In some embodiments, the 2′-modified nucleoside is a non-bicyclic 2′-modified nucleoside, e.g., where the 2′ position of the sugar moiety is substituted. Non-limiting examples of 2′-modified nucleosides include: 2′-deoxy, 2′-fluoro (2′-F), 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′-MOE), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-O-dimethylaminoethyloxyethyl (2′-O-DMAEOE), 2′-O-N-methylacetamido (2′-O-NMA), locked nucleic acid (LNA, methylene-bridged nucleic acid), ethylene-bridged nucleic acid (ENA), and (S)-constrained ethyl-bridged nucleic acid (cEt). In some embodiments, the 2′-modified nucleosides described herein are high-affinity modified nucleosides and oligonucleotides comprising the 2′-modified nucleosides have increased affinity to a target sequences, relative to an unmodified oligonucleotide. Examples of structures of 2′-modified nucleosides are provided below:







embedded image


These examples are shown with phosphate groups, but any internucleoside linkages are contemplated between 2′-modified nucleosides.


II. Complexes

Provided herein are complexes that comprise a targeting agent, e.g. an antibody, covalently linked to a molecular payload. In some embodiments, a complex comprises a muscle-targeting antibody covalently linked to an oligonucleotide. A complex may comprise an antibody that specifically binds a single antigenic site or that binds to at least two antigenic sites that may exist on the same or different antigens.


A complex may be used to modulate the activity or function of at least one gene, protein, and/or (e.g., and) nucleic acid. In some embodiments, the molecular payload present within a complex is responsible for the modulation of a gene, protein, and/or (e.g., and) nucleic acids. A molecular payload may be a small molecule, protein, nucleic acid, oligonucleotide, or any molecular entity capable of modulating the activity or function of a gene, protein, and/or (e.g., and) nucleic acid in a cell.


In some embodiments, a complex comprises a muscle-targeting agent, e.g., an anti-transferrin receptor antibody, covalently linked to a molecular payload, e.g., an antisense oligonucleotide that targets DMD to promote exon skipping, e.g., in a transcript encoded from a mutated DMD allele. In some embodiments, the complex targets a DMD pre-mRNA to promote skipping of exon 51 in the DMD pre-mRNA.


A. Muscle-Targeting Agents

Some aspects of the disclosure provide muscle-targeting agents, e.g., for delivering a molecular payload to a muscle cell. In some embodiments, such muscle-targeting agents are capable of binding to a muscle cell, e.g., via specifically binding to an antigen on the muscle cell, and delivering an associated molecular payload to the muscle cell. In some embodiments, the molecular payload is bound (e.g., covalently bound) to the muscle targeting agent and is internalized into the muscle cell upon binding of the muscle targeting agent to an antigen on the muscle cell, e.g., via endocytosis. It should be appreciated that various types of muscle-targeting agents may be used in accordance with the disclosure. It should also be appreciated that any muscle targets (e.g., muscle surface proteins) can be targeted by any type of muscle-targeting agent described herein. For example, the muscle-targeting agent may comprise, or consist of, a nucleic acid (e.g., DNA or RNA), a peptide (e.g., an antibody), a lipid (e.g., a microvesicle), or a sugar moiety (e.g., a polysaccharide). The muscle-targeting agent may comprise, or consist of, a small molecule. Exemplary muscle-targeting agents are described in further detail herein, however, it should be appreciated that the exemplary muscle-targeting agents provided herein are not meant to be limiting.


Some aspects of the disclosure provide muscle-targeting agents that specifically bind to an antigen on muscle, such as skeletal muscle, smooth muscle, or cardiac muscle. In some embodiments, any of the muscle-targeting agents provided herein bind to (e.g., specifically bind to) an antigen on a skeletal muscle cell, a smooth muscle cell, and/or (e.g., and) a cardiac muscle cell.


By interacting with muscle-specific cell surface recognition elements (e.g., cell membrane proteins), both tissue localization and selective uptake into muscle cells can be achieved. In some embodiments, molecules that are substrates for muscle uptake transporters are useful for delivering a molecular payload into muscle tissue. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. As another example molecular payloads conjugated to transferrin or anti-TfR1 antibodies can be taken up by muscle cells via binding to transferrin receptor, which may then be endocytosed, e.g., via clathrin-mediated endocytosis.


The use of muscle-targeting agents may be useful for concentrating a molecular payload (e.g., oligonucleotide) in muscle while reducing toxicity associated with effects in other tissues. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells as compared to another cell type within a subject. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells (e.g., skeletal, smooth, or cardiac muscle cells) in an amount that is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times greater than an amount in non-muscle cells (e.g., liver, neuronal, blood, or fat cells). In some embodiments, a toxicity of the molecular payload in a subject is reduced by at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, or 95% when it is delivered to the subject when bound to the muscle-targeting agent.


In some embodiments, to achieve muscle selectivity, a muscle recognition element (e.g., a muscle cell antigen) may be required. As one example, a muscle-targeting agent may be a small molecule that is a substrate for a muscle-specific uptake transporter. As another example, a muscle-targeting agent may be an antibody that enters a muscle cell via transporter-mediated endocytosis. As another example, a muscle targeting agent may be a ligand that binds to cell surface receptor on a muscle cell. It should be appreciated that while transporter-based approaches provide a direct path for cellular entry, receptor-based targeting may involve stimulated endocytosis to reach the desired site of action.


i. Muscle-Targeting Antibodies


In some embodiments, the muscle-targeting agent is an antibody. Generally, the high specificity of antibodies for their target antigen provides the potential for selectively targeting muscle cells (e.g., skeletal, smooth, and/or (e.g., and) cardiac muscle cells). This specificity may also limit off-target toxicity. Examples of antibodies that are capable of targeting a surface antigen of muscle cells have been reported and are within the scope of the disclosure. For example, antibodies that target the surface of muscle cells are described in Arahata K., et al. “Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide” Nature 1988; 333: 861−3; Song K. S., et al. “Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins” J Biol Chem 1996; 271: 15160-5; and Weisbart R. H. et al., “Cell type specific targeted intracellular delivery into muscle of a monoclonal antibody that binds myosin IIb” Mol Immunol. 2003 Mar. 39(13):78309; the entire contents of each of which are incorporated herein by reference.


a. Anti-Transferrin Receptor (TfR) Antibodies


Some aspects of the disclosure are based on the recognition that agents binding to transferrin receptor, e.g., anti-transferrin-receptor antibodies, are capable of targeting muscle cell. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Accordingly, aspects of the disclosure provide binding proteins (e.g., antibodies) that bind to transferrin receptor. In some embodiments, binding proteins that bind to transferrin receptor are internalized, along with any bound molecular payload, into a muscle cell. As used herein, an antibody that binds to a transferrin receptor may be referred to interchangeably as an, transferrin receptor antibody, an anti-transferrin receptor antibody, or an anti-TfR1 antibody. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


It should be appreciated that anti-TfR1 antibodies may be produced, synthesized, and/or (e.g., and) derivatized using several known methodologies, e.g. library design using phage display. Exemplary methodologies have been characterized in the art and are incorporated by reference (Diez, P. et al. “High-throughput phage-display screening in array format”, Enzyme and microbial technology, 2015, 79, 34−41.; Christoph M. H. and Stanley, J. R. “Antibody Phage Display: Technique and Applications” J Invest Dermatol. 2014, 134:2.; Engleman, Edgar (Ed.) “Human Hybridomas and Monoclonal Antibodies.” 1985, Springer.). In other embodiments, an anti-TfR1 antibody has been previously characterized or disclosed. Antibodies that specifically bind to transferrin receptor are known in the art (see, e.g. U.S. Pat. No. 4,364,934, filed Dec. 4, 1979, “Monoclonal antibody to a human early thymocyte antigen and methods for preparing same”; U.S. Pat. No. 8,409,573, filed Jun. 14, 2006, “Anti-CD71 monoclonal antibodies and uses thereof for treating malignant tumor cells”; U.S. Pat. No. 9,708,406, filed May 20, 2014, “Anti-transferrin receptor antibodies and methods of use”; U.S. Pat. No. 9,611,323, filed Dec. 19, 2014, “Low affinity blood brain barrier receptor antibodies and uses therefor”; WO 2015/098989, filed Dec. 24, 2014, “Novel anti-Transferrin receptor antibody that passes through blood-brain barrier”; Schneider C. et al. “Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9.” J Biol Chem. 1982, 257:14, 8516-8522.; Lee et al. “Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse” 2000, J Pharmacol. Exp. Ther., 292: 1048-1052.).


In some embodiments, the anti-TfR1 antibody described herein binds to transferrin receptor with high specificity and affinity. In some embodiments, the anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor.


In some embodiments, the anti-TfR1 antibodies described herein (e.g., Anti-TfR clone 8 in Table 2 below) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 214-241 and/or amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues in amino acids 214-241 and amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising one or more of residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105.


In some embodiments, the anti-TfR1 antibody described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 258-291 and/or amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies (e.g., 3M12 in Table 2 below and its variants) described herein bind an epitope comprising residues in amino acids amino acids 258-291 and amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising one or more of residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105.


An example human transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_003225.2 (transferrin receptor protein 1 isoform 1, Homo sapiens) is as follows:









(SEQ ID NO: 105)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENAD





NNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTEC





ERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLL





NENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSA





QNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFED





LYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAE





LSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAE





KLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGV





IKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDG





FQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLG





TSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDN





AAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVAR





AAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGL





SLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFL





SPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQL





ALATWTIQGAANALSGDVWDIDNEF.






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001244232.1(transferrin receptor protein 1, Macaca mulatta) is as follows:









(SEQ ID NO: 106)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEEENTDN





NTKPNGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCKGVEPKTECER





LAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKLDTTDFTSTIKLLNEN





LYVPREAGSQKDENLALYIENQFREFKLSKVWRDQHFVKIQVKDSAQNSV





IIVDKNGGLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLDSPV





NGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVKADLSFFGH





AHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGNME





GDCPSDWKTDSTCKMVTSENKSVKLTVSNVLKETKILNIFGVIKGFVEPD





HYVVVGAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDGFQPSRSIIF





ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASP





LLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDNAAFPFLAYSGI





PAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNKVARAAAEVAGQFVIK





LTHDTELNLDYERYNSQLLLFLRDLNQYRADVKEMGLSLQWLYSARGDFF





RATSRLTTDFRNAEKRDKFVMKKLNDRVMRVEYYFLSPYVSPKESPFRHV





FWGSGSHTLSALLESLKLRRQNNSAFNETLFRNQLALATWTIQGAANALS





GDVWDIDNEF






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence XP_005545315.1 (transferrin receptor protein 1, Macaca fascicularis) is as follows:









(SEQ ID NO: 107)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEEENTDN





NTKANGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCKGVEPKTECER





LAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKLDTTDFTSTIKLLNEN





LYVPREAGSQKDENLALYIENQFREFKLSKVWRDQHFVKIQVKDSAQNSV





IIVDKNGGLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLDSPV





NGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVKADLSFFGH





AHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGNME





GDCPSDWKTDSTCKMVTSENKSVKLTVSNVLKETKILNIFGVIKGFVEPD





HYVVVGAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDGFQPSRSIIF





ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASP





LLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDNAAFPFLAYSGI





PAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNKVARAAAEVAGQFVIK





LTHDTELNLDYERYNSQLLLFLRDLNQYRADVKEMGLSLOWLYSARGDFF





RATSRLTTDFRNAEKRDKFVMKKLNDRVMRVEYYFLSPYVSPKESPFRHV





FWGSGSHTLSALLESLKLRRQNNSAFNETLFRNQLALATWTIQGAANALS





GDVWDIDNEF.






An example mouse transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001344227.1 (transferrin receptor protein 1, Mus musculus) is as follows:









(SEQ ID NO: 108)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAADEEENADN





NMKASVRKPKRFNGRLCFAAIALVIFFLIGFMSGYLGYCKRVEQKEECVK





LAETEETDKSETMETEDVPTSSRLYWADLKTLLSEKLNSIEFADTIKQLS





QNTYTPREAGSQKDESLAYYIENQFHEFKFSKVWRDEHYVKIQVKSSIGQ





NMVTIVQSNGNLDPVESPEGYVAFSKPTEVSGKLVHANFGTKKDFEELSY





SVNGSLVIVRAGEITFAEKVANAQSFNAIGVLIYMDKNKFPVVEADLALF





GHAHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGK





MEGSCPARWNIDSSCKLELSQNQNVKLIVKNVLKERRILNIFGVIKGYEE





PDRYVVVGAQRDALGAGVAAKSSVGTGLLLKLAQVFSDMISKDGFRPSRS





IIFASWTAGDFGAVGATEWLEGYLSSLHLKAFTYINLDKVVLGTSNFKVS





ASPLLYTLMGKIMQDVKHPVDGKSLYRDSNWISKVEKLSFDNAAYPFLAY





SGIPAVSFCFCEDADYPYLGTRLDTYEALTQKVPQLNQMVRTAAEVAGQL





IIKLTHDVELNLDYEMYNSKLLSFMKDLNQFKTDIRDMGLSLQWLYSARG





DYFRATSRLTTDFHNAEKTNRFVMREINDRIMKVEYHFLSPYVSPRESPF





RHIFWGSGSHTLSALVENLKLRQKNITAFNETLFRNQLALATWTIQGVAN





ALSGDIWNIDNEF






In some embodiments, an anti-TfR1 antibody binds to an amino acid segment of the receptor as follows: FVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFE DLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLG TGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCR MVTSESKNVKLTVSNVLKE (SEQ ID NO: 109) and does not inhibit the binding interactions between transferrin receptors and transferrin and/or (e.g., and) human hemochromatosis protein (also known as HFE). In some embodiments, the anti-TfR1 antibody described herein does not bind an epitope in SEQ ID NO: 109.


Appropriate methodologies may be used to obtain and/or (e.g., and) produce antibodies, antibody fragments, or antigen-binding agents, e.g., through the use of recombinant DNA protocols. In some embodiments, an antibody may also be produced through the generation of hybridomas (see, e.g., Kohler, G and Milstein, C. “Continuous cultures of fused cells secreting antibody of predefined specificity” Nature, 1975, 256: 495-497). The antigen-of-interest may be used as the immunogen in any form or entity, e.g., recombinant or a naturally occurring form or entity. Hybridomas are screened using standard methods, e.g. ELISA screening, to find at least one hybridoma that produces an antibody that targets a particular antigen. Antibodies may also be produced through screening of protein expression libraries that express antibodies, e.g., phage display libraries. Phage display library design may also be used, in some embodiments, (see, e.g. U.S. Pat. No. 5,223,409, filed Mar. 1, 1991, “Directed evolution of novel binding proteins”; WO 1992/18619, filed Apr. 10, 1992, “Heterodimeric receptor libraries using phagemids”; WO 1991/17271, filed May 1, 1991, “Recombinant library screening methods”; WO 1992/20791, filed May 15, 1992, “Methods for producing members of specific binding pairs”; WO 1992/15679, filed Feb. 28, 1992, and “Improved epitope displaying phage”). In some embodiments, an antigen-of-interest may be used to immunize a non-human animal, e.g., a rodent or a goat. In some embodiments, an antibody is then obtained from the non-human animal, and may be optionally modified using a number of methodologies, e.g., using recombinant DNA techniques. Additional examples of antibody production and methodologies are known in the art (see, e.g. Harlow et al. “Antibodies: A Laboratory Manual”, Cold Spring Harbor Laboratory, 1988.).


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O- glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VL domain and/or (e.g., and) a VH domain of any one of the anti-TfR1 antibodies selected from any one of Tables 2-7, and comprises a constant region comprising the amino acid sequences of the constant regions of an IgG, IgE, IgM, IgD, IgA or IgY immunoglobulin molecule, any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule. Non-limiting examples of human constant regions are described in the art, e.g., see Kabat E A et al., (1991) supra.


In some embodiments, agents binding to transferrin receptor, e.g., anti-TfR1 antibodies, are capable of targeting muscle cell and/or (e.g., and) mediate the transportation of an agent across the blood brain barrier. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


Provided herein, in some aspects, are humanized antibodies that bind to transferrin receptor with high specificity and affinity. In some embodiments, the humanized anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor. In some embodiments, the humanized anti-TfR1 antibodies described herein binds to TfR1 but does not bind to TfR2.


In some embodiments, an anti-TFR1 antibody specifically binds a TfR1 (e.g., a human or non-human primate TfR1) with binding affinity (e.g., as indicated by Kd) of at least about 10−4 M, 10−5 M, 10−6 M, 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less. In some embodiments, the anti-TfR1 antibodies described herein bind to TfR1 with a KD of sub-nanomolar range. In some embodiments, the anti-TfR1 antibodies described herein selectively bind to transferrin receptor 1 (TfR1) but do not bind to transferrin receptor 2 (TfR2). In some embodiments, the anti-TfR1 antibodies described herein bind to human TfR1 and cyno TfR1 (e.g., with a Kd of 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less), but do not bind to a mouse TfR1. The affinity and binding kinetics of the anti-TfR1 antibody can be tested using any suitable method including but not limited to biosensor technology (e.g., OCTET or BIACORE). In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit transferrin binding to the TfR1. In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit HFE-beta-2-microglobulin binding to the TfR1.


Non-limiting examples of anti-TfR1 antibodies are provided in Table 2.









TABLE 2







Examples of Anti-TfR1 Antibodies












No.





Ab
system
IMGT
Kabat
Chothia





3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)



H1
1)








CDR-
IDPENGDT (SEQ ID NO:
WIDPENGDTEYASKFQD
ENG (SEQ ID NO: 13)



H2
2)
(SEQ ID NO: 8)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPENGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 17)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSN




LASGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK




(SEQ ID NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54T*
H1
1)








CDR-
IDPETGDT (SEQ ID NO:
WIDPETGDTEYASKFQD
ETG (SEQ ID NO: 21)



H2
19)
(SEQ ID NO: 20)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS(SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPETGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 22)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSN




LASGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK




(SEQ ID NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54S*
H1
1)








CDR-
IDPESGDT (SEQ ID NO:
WIDPESGDTEYASKFQD
ESG (SEQ ID NO: 25)



H2
23)
(SEQ ID NO: 24)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPESGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 26)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSN




LASGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK




(SEQ ID NO: 18)














3-M12
CDR-
GYSITSGYY (SEQ ID
SGYYWN (SEQ ID NO: 33)
GYSITSGY (SEQ ID NO:



H1
NO: 27)

38)






CDR-
ITFDGAN (SEQ ID NO:
YITFDGANNYNPSLKN (SEQ
FDG (SEQ ID NO: 39)



H2
28)
ID NO: 34)







CDR-
TRSSYDYDVLDY (SEQ
SSYDYDVLDY (SEQ ID NO:
SYDYDVLD (SEQ ID NO:



H3
ID NO: 29)
35)
40)






CDR-
QDISNF (SEQ ID NO: 30)
RASQDISNFLN (SEQ ID NO:
SQDISNF (SEQ ID NO: 41)



L1

36)







CDR-
YTS (SEQ ID NO: 31)
YTSRLHS (SEQ ID NO: 37)
YTS (SEQ ID NO: 31)



L2









CDR-
QQGHTLPYT (SEQ ID
QQGHTLPYT (SEQ ID NO: 32)
GHTLPY (SEQ ID NO: 42)



L3
NO: 32)















VH
DVQLQESGPGLVKPSQSLSLTCSVTGYSITSGYYWNWIRQFPGNKLEWMGYITFDGAN




NYNPSLKNRISITRDTSKNQFFLKLTSVTTEDTATYYCTRSSYDYDVLDYWGQGTTLT




VSS (SEQ ID NO: 43)






VL
DIQMTQTTSSLSASLGDRVTISCRASQDISNFLNWYQQRPDGTVKLLIYYTSRLHSGV




PSRFSGSGSGTDFSLTVSNLEQEDIATYFCQQGHTLPYTFGGGTKLEIK (SEQ ID




NO: 44)














5-H12
CDR-
GYSFTDYC (SEQ ID NO:
DYCIN (SEQ ID NO: 51)
GYSFTDY (SEQ ID NO: 56)



H1
45)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYCINWVNQRPGQGLEWIGWIYPGSGNT




RYSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 61)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNL




ESGIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ




ID NO: 62)














5-H12
CDR
GYSFTDYY (SEQ ID
DYYIN (SEQ ID NO: 64)
GYSFTDY (SEQ ID NO: 56)


C33Y*
H1
NO: 63)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYYINWVNQRPGQGLEWIGWIYPGSGNT




RYSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 65)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNL




ESGIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ




ID NO: 62)














5-H12
CDR-
GYSFTDYD (SEQ ID
DYDIN (SEQ ID NO: 67)
GYSFTDY (SEQ ID NO: 56)


C33D*
H1
NO: 66)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYDINWVNQRPGQGLEWIGWIYPGSGNT




RYSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 68)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNL




ESGIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ




ID NO: 62)














Anti-
CDR-
GYSFTSYW (SEQ ID
SYWIG (SEQ ID NO: 144)
GYSFTSY (SEQ ID NO:


TfR
H1
NO: 138)

149)


clone 8










CDR-
IYPGDSDT (SEQ ID NO:
IIYPGDSDTRYSPSFQGQ
GDS (SEQ ID NO: 150)



H2
139)
(SEQ ID NO: 145)







CDR-
ARFPYDSSGYYSFDY
FPYDSSGYYSFDY (SEQ ID
PYDSSGYYSFD (SEQ ID



H3
(SEQ ID NO: 140)
NO: 146)
NO: 151)






CDR-
QSISSY (SEQ ID NO:
RASQSISSYLN (SEQ ID NO:
SQSISSY (SEQ ID NO: 152)



L1
141)
147)







CDR-
AAS (SEQ ID NO: 142)
AASSLQS (SEQ ID NO: 148)
AAS (SEQ ID NO: 142)



L2









CDR-
QQSYSTPLT (SEQ ID
QQSYSTPLT (SEQ ID NO:
SYSTPL (SEQ ID NO: 153)



L3
NO: 143)
143)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations






In some embodiments, the anti-TfR1 antibody of the present disclosure is a humanized variant of any one of the anti-TfR1 antibodies provided in Table 2. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 in any one of the anti-TfR1 antibodies provided in Table 2, and comprises a humanized heavy chain variable region and/or (e.g., and) a humanized light chain variable region.


Examples of amino acid sequences of anti-TfR1 antibodies described herein are provided in Table 3.









TABLE 3







Variable Regions of Anti-TfR1 Antibodies








Antibody
Variable Region Amino Acid Sequence**





3A4
VH:


VH3
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP


(N54T*)/

ETGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDY



Vκ4
WGQGTLVTVSS (SEQ ID NO: 69)






VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLI



YRMSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGG



TKVEIK (SEQ ID NO: 70)





3A4
VH:


VH3
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP


(N54S*)/

ESGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDY



Vκ4
WGQGTLVTVSS (SEQ ID NO: 71)






VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLI



YRMSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGG



TKVEIK (SEQ ID NO: 70)





3A4
VH:


VH3/Vκ4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ENGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDY




WGQGTLVTVSS (SEQ ID NO: 72)






VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLI



YRMSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGG



TKVEIK (SEQ ID NO: 70)





3M12
VH:


VH3/Vκ2
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYIT




FDGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVL





DYWGQGTTVTVSS (SEQ ID NO: 73)







VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSR




LHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEI




K (SEQ ID NO: 74)





3M12
VH:


VH3/Vκ3
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYIT




FDGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVL





DYWGQGTTVTVSS (SEQ ID NO: 73)







VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSR




LHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEI




K (SEQ ID NO: 75)





3M12
VH


VH4/Vκ2
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYIT




FDGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVL





DYWGQGTTVTVSS (SEQ ID NO: 76)







VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSR




LHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEI




K (SEQ ID NO: 74)





3M12
VH:


VH4/Vκ3
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYIT




FDGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVL





DYWGQGTTVTVSS (SEQ ID NO: 76)







VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSR




LHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEI




K (SEQ ID NO: 75)





5H12
VH:


VH5
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP


(C33Y*)/

GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHG



Vκ3

MDYWGQGTLVTVSS (SEQ ID NO: 77)







VL:



DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIF




RASNLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGT




KLEIK (SEQ ID NO: 78)





5H12
VH:


VH5
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYP


(C33D*)/

GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHG



Vκ4

MDYWGQGTLVTVSS (SEQ ID NO: 79)







VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIF




RASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGT




KLEIK (SEQ ID NO: 80)





5H12
VH:


VH5
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP


(C33Y*)/

GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHG



Vκ4

MDYWGQGTLVTVSS (SEQ ID NO: 77)







VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIF




RASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGT




KLEIK (SEQ ID NO: 80)





Anti-TfR
VH:


clone 8
QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYP




GDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGY





YSFDYWGQGTLVTVSS (SEQ ID NO: 154)







VL:



DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASS




LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEI




K (SEQ ID NO: 155)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 154 and a VL comprising the amino acid sequence of SEQ ID NO: 155.


In some embodiments, the anti-TfR1 antibody described herein is a full-length IgG, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprise a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can be of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or IgG4. An example of a human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the heavy chain of any of the anti-TfR1 antibodies described herein comprises a mutant human IgG1 constant region. For example, the introduction of LALA mutations (a mutant derived from mAb b12 that has been mutated to replace the lower hinge residues Leu234 Leu235 with Ala234 and Ala235) in the CH2 domain of human IgG1 is known to reduce Fcγ receptor binding (Bruhns, P., et al. (2009) and Xu, D. et al. (2000)). The mutant human IgG1 constant region is provided below (mutations bonded and underlined):









(SEQ ID NO: 82)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK





SFNRGEC






Other antibody heavy and light chain constant regions are well known in the art, e.g., those provided in the IMGT database (www.imgt.org) or at www.vbase2.org/vbstat.php, both of which are incorporated by reference herein.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 81. In some embodiments, the anti-TfR1 antibody described herein comprises heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 82.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of IgG heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 4 below.









TABLE 4







Heavy chain and light chain sequences of


examples of anti-TfR1 IgGs








Antibody
IgG Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with wild type human IgG1 constant


VH3
region)


(N54T*)/

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE



Vκ4


TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED



PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS



NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL



HNHYTQKSLSLSPGK (SEQ ID NO: 84)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant


VH3
region)


(N54S*)/

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE



Vκ4


SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED



PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS



NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL



HNHYTQKSLSLSPGK (SEQ ID NO: 86)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant


VH3/Vκ4
region)




EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED



PEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS



NKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL



HNHYTQKSLSLSPGK (SEQ ID NO: 87)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3M12
Heavy Chain (with wild type human IgG1 constant


VH3/Vκ2
region)




QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK (SEQ ID NO: 88)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant


VH3/Vκ3
region)




QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK (SEQ ID NO: 88)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 90)





3M12
Heavy Chain (with wild type human IgG1 constant


VH4/Vκ2
region)




QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK (SEQ ID NO: 91)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant


VH4/Vκ3
region)




QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK (SEQ ID NO: 91)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 90)





5H12
Heavy Chain (with wild type human IgG1 constant


VH5
region)


(C33Y*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYPG



Vκ3


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS



HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH



EALHNHYTQKSLSLSPGK (SEQ ID NO: 92)






Light Chain (with kappa light chain constant



region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 93)





5H12
Heavy Chain (with wild type human IgG1 constant


VH5
region)


(C33D*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYPG



Vκ4


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS



HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH



EALHNHYTQKSLSLSPGK (SEQ ID NO: 94)






Light Chain (with kappa light chain constant



region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 95)





5H12
Heavy Chain (with wild type human IgG1 constant


VH5
region)


(C33Y*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYPG



Vκ4


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS



HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH



EALHNHYTQKSLSLSPGK (SEQ ID NO: 92)






Light Chain (with kappa light chain constant



region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 95)





Anti-TfR
VH:


clone 8

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYS







FDYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV



DKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD



VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV



MHEALHNHYTQKSLSLSPGK (SEQ ID NO: 156)






VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSL






QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded;


VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95 and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 86 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 94 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, Fab′ fragment, or F(ab′)2 fragment of an intact antibody (full-length antibody). Antigen binding fragment of an intact antibody (full-length antibody) can be prepared via routine methods (e.g., recombinantly or by digesting the heavy chain constant region of a full-length IgG using an enzyme such as papain). For example, F(ab′)2 fragments can be produced by pepsin or papain digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab′)2 fragments. In some embodiments, a heavy chain constant region in a Fab fragment of the anti-TfR1 antibody described herein comprises the amino acid sequence of:









(SEQ ID NO: 96)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHT






In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 96.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of Fab heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 5 below.









TABLE 5







Heavy chain and light chain sequences of


examples of anti-TfR1 Fabs








Antibody
Fab Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with partial human IgG1 constant


VH3
region)


(N54T*)/

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE



Vκ4


TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHT (SEQ ID NO: 97)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant


VH3
region)


(N54S*)/

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE



Vκ4


SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHT (SEQ ID NO: 98)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant


VH3/Vκ4
region)




EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYWG






QGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA




LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHT (SEQ ID NO: 99)






Light Chain (with kappa light chain constant



region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIY






RMSNLASGVPDRESGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK






VEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG




NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 85)





3M12
Heavy Chain (with partial human IgG1 constant


VH3/Vκ2
region)




QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHT (SEQ ID NO: 100)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant


VH3/Vκ3
region)




QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHT (SEQ ID NO: 100)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 90)





3M12
Heavy Chain (with partial human IgG1 constant


VH4/Vκ2
region)




QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHT (SEQ ID NO: 101)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant


VH4/Vκ3
region)




QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITF






DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY






WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS




GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK



VEPKSCDKTHT (SEQ ID NO: 101)






Light Chain (with kappa light chain constant



region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRL






HSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 90)





5H12
Heavy Chain (with partial human IgG1 constant


VH5
region)


(C33Y*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYPG



Vκ3


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHT (SEQ ID NO: 102)






Light Chain (with kappa light chain constant



region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 93)





5H12
Heavy Chain (with partial human IgG1 constant


VH5
region)


(C33D*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYPG



Vκ4


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHT (SEQ ID NO: 103)






Light Chain (with kappa light chain constant



region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 95)





5H12
Heavy Chain (with partial human IgG1 constant


VH5
region)


(C33Y*)/

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYPG



Vκ4


SGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGMD







YWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHT (SEQ ID NO: 102)






Light Chain (with kappa light chain constant



region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR






ASNLESGVPDRESGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL






EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN




SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 95)





Anti-TfR
VH:


clone 8

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG



Version 1


DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYS







FDYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV



DKKVEPKSCDKTHTCP (SEQ ID NO: 158)






VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSL






QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 157)





Anti-TfR
VH:


clone 8

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG



Version 2


DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYS







FDYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV



DKKVEPKSCDKTHT (SEQ ID NO: 159)






VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSL






QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded;


VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 98 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the an-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


Other known anti-TfR1 antibodies


Any other appropriate anti-TfR1 antibodies known in the art may be used as the muscle-targeting agent in the complexes disclosed herein. Examples of known anti-TfR1 antibodies, including associated references and binding epitopes, are listed in Table 6. In some embodiments, the and-TfR1 antibody comprises the complementarity determining regions (CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3) of any of the anti-TfR1 antibodies provided herein, e.g., anti-TfR1 antibodies listed in Table 6.









TABLE 6





List of anti-TfR1 antibody clones, including associated


references and binding epitope information.

















Antibody Clone




Name
Reference(s)
Epitope/Notes





OKT9
U.S. Pat. No. 4,364,934, filed Dec. 4, 1979,
Apical domain of TfR1



entitled “MONOCLONAL ANTIBODY TO
(residues 305-366 of



A HUMAN EARLY THYMOCYTE
human TfR1 sequence



ANTIGEN AND METHODS FOR
XM_052730.3, available



PREPARING SAME”
in GenBank)



Schneider C. et al. “Structural features of the



cell surface receptor for transferrin that is



recognized by the monoclonal antibody



OKT9.” J Biol Chem. 1982, 257: 14, 8516-8522.


(From JCR)
WO 2015/098989, filed Dec. 24, 2014,
Apical domain (residues


Clone M11
“Novel anti-Transferrin receptor antibody
230-244 and 326-347 of


Clone M23
that passes through blood-brain barrier”
TfR1) and protease-like


Clone M27
U.S. Pat. No. 9,994,641, filed
domain (residues 461-


Clone B84
Dec. 24, 2014, “Novel anti-Transferrin
473)



receptor antibody that passes through



blood-brain barrier”


(From
WO 2016/081643, filed May 26, 2016,
Apical domain and non-


Genentech)
entitled “ANTI-TRANSFERRIN
apical regions


7A4, 8A2, 15D2,
RECEPTOR ANTIBODIES AND


10D11, 7B10,
METHODS OF USE”


15G11, 16G5,
U.S. Pat. No. 9,708,406, filed


13C3, 16G4,
May 20, 2014, “Anti-transferrin receptor


16F6, 7G7, 4C2,
antibodies and methods of use”


1B12, and 13D4


(From Armagen)
Lee et al. “Targeting Rat Anti-Mouse


8D3
Transferrin Receptor Monoclonal Antibodies



through Blood-Brain Barrier in Mouse”



2000, J Pharmacol. Exp. Ther., 292: 1048-1052.



US Patent App. 2010/077498, filed



Sep. 11, 2008, entitled “COMPOSITIONS AND



METHODS FOR BLOOD-BRAIN



BARRIER DELIVERY IN THE MOUSE”


OX26
Haobam, B. et al. 2014. Rab17-



mediated recycling endosomes contribute to



autophagosome formation in response to



Group A Streptococcus invasion. Cellular



microbiology. 16: 1806-21.


DF1513
Ortiz-Zapater E et al. Trafficking of



the human transferrin receptor in plant cells:



effects of tyrphostin A23 and brefeldin A.



Plant J 48: 757-70 (2006).


1A1B2, 66IG10,
Commercially available anti-
Novus Biologicals


MEM-189,
transferrin receptor antibodies.
8100 Southpark Way,


JF0956, 29806,

A-8 Littleton CO


1A1B2,

80120


TFRC/1818,


1E6, 66Ig10,


TFRC/1059,


Q1/71, 23D10,


13E4,


TFRC/1149, ER-


MP21,


YTA74.4, BU54,


2B6, RI7 217


(From INSERM)
US Patent App. 2011/0311544A1,
Does not compete with


BA120g
filed Jun. 15, 2005, entitled “ANTI-CD71
OKT9



MONOCLONAL ANTIBODIES AND



USES THEREOF FOR TREATING



MALIGNANT TUMOR CELLS”


LUCA31
U.S. Pat. No. 7,572,895, filed
“LUCA31 epitope”



Jun. 7, 2004, entitled “TRANSFERRIN



RECEPTOR ANTIBODIES”


(Salk Institute)
Trowbridge, I. S. et al. “Anti-transferrin


B3/25
receptor monoclonal antibody and toxin-


T58/30
antibody conjugates affect growth of



human tumour cells.” Nature, 1981,



volume 294, pages 171-173


R17 217.1.3,
Commercially available anti-
BioXcell


5E9C11,
transferrin receptor antibodies.
10 Technology Dr.,


OKT9 (BE0023

Suite 2B


clone)

West Lebanon, NH




03784-1671 USA


BK19.9, B3/25,
Gatter, K. C. et al. “Transferrin receptors


T56/14 and
in human tissues: their distribution and


T58/1
possible clinical relevance.” J Clin



Pathol. 1983 May; 36(5): 539-45.












Anti-TfR1 antibody







CDRH1 (SEQ ID NO: 952)



CDRH2 (SEQ ID NO: 953)



CDRH3 (SEQ ID NO: 954)



CDRL1 (SEQ ID NO: 955)



CDRL2 (SEQ ID NO: 956)



CDRL3 (SEQ ID NO: 957)



VH (SEQ ID NO: 958)



VL (SEQ ID NO: 959)











Additional Anti-TfR1 antibody SEQ ID NOs














VH/VL
CDR1
CDR2
CDR3







VH1
967
960
961
954



VH2
968
960
962
954



VH3
969
960
963
954



VH4
970
960
962
954



VL1
971
955
956
115



VL2
972
955
956
115



VL3
973
955
964
957



VL4
974
965
966
957










In some embodiments, anti-TfR1 antibodies of the present disclosure include one or more of the CDR-H (e.g., CDR-H1, CDR-H2, and CDR-H3) amino acid sequences from any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6.


In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes a heavy chain variable domain and/or (e.g., and) a light chain variable domain of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes the heavy chain variable and light chain variable pairs of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


Aspects of the disclosure provide anti-TfR1 antibodies having a heavy chain variable (VH) and/or (e.g., and) a light chain variable (VL) domain amino acid sequence homologous to any of those described herein. In some embodiments, the anti-TfR1 antibody comprises a heavy chain variable sequence or a light chain variable sequence that is at least 75% (e.g., 80%, 85%, 90%, 95%, 98%, or 99%) identical to the heavy chain variable sequence and/or any light chain variable sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, the homologous heavy chain variable and/or (e.g., and) a light chain variable amino acid sequences do not vary within any of the CDR sequences provided herein. For example, in some embodiments, the degree of sequence variation (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) may occur within a heavy chain variable and/or (e.g., and) a light chain variable sequence excluding any ofthe CDR sequences provided herein. In some embodiments, any of the anti-TfR1 antibodies provided herein comprise a heavy chain variable sequence and a light chain variable sequence that comprises a framework sequence that is at least 75%, 80%, 85%, 90%, 95%, 98%, or 99% identical to the framework sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


An example of a transferrin receptor antibody that may be used in accordance with the present disclosure is described in International Application Publication WO 2016/081643, incorporated herein by reference. The amino acid sequences of this antibody are provided in Table 7.









TABLE 7







Heavy chain and light chain CDRs of


an example of a known anti-TfR1 antibody










Sequence Type
Kabat
Chothia
Contact





CDR-H1
SYWMH (SEQ ID
GYTFTSY (SEQ ID NO:
TSYWMH (SEQ ID NO:



NO: 110)
116)
118)





CDR-H2
EINPTNGRTNYIE
NPTNGR (SEQ ID NO:
WIGEINPTNGRTN (SEQ ID



KFKS (SEQ ID
117)
NO: 119)



NO: 111)







CDR-H3
GTRAYHY (SEQ
GTRAYHY (SEQ ID NO:
ARGTRA (SEQ ID NO:



ID NO: 112)
112)
120)





CDR-L1
RASDNLYSNLA
RASDNLYSNLA (SEQ ID
YSNLAWY (SEQ ID NO:



(SEQ ID NO:
NO: 113)
121)



113)







CDR-L2
DATNLAD (SEQ
DATNLAD (SEQ ID NO:
LLVYDATNLA (SEQ ID NO:



ID NO: 114)
114)
122)





CDR-L3
QHFWGTPLT
QHFWGTPLT (SEQ ID
QHFWGTPL (SEQ ID NO:



(SEQ ID NO:
NO: 115)
123)



115)













Murine VH
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP



TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSS (SEQ ID NO: 124)





Murine VL
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPQLLVYDATN



LADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLEL



K (SEQ ID NO: 125)





Humanized VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEINP



TNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHYW



GQGTMVTVSS (SEQ ID NO: 128)





Humanized VL
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLAWYQQKPGKSPKLLVYDATN



LADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVEI



K (SEQ ID NO: 129)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


full-length IgG1
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV



SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGF



YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC



SVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 132)





LC of chimeric
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPQLLVYDATN


full-length IgG1
LADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLEL



KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNS



QESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG



EC (SEQ ID NO: 133)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEINP


full-length IgG1
TNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHYW



GQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV



SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGF



YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC



SVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 134)





LC of fully human
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLA WYQQKPGKSPKLLVYDAT


full-length IgG1
NLADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVE



IKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGN



SQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR



GEC (SEQ ID NO: 135)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


Fab
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCP (SEQ ID NO: 136)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEINP


Fab
TNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHYW



GQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK



KVEPKSCDKTHTCP (SEQ ID NO: 137)









In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, and a CDR-H3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-L1, CDR-L2, and CDR-L3 shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3, which contains no more than 3 amino acid variations (e.g., no more than 3, 2, or 1 amino acid variation) as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 containing one amino acid variation as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system). In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1 and a CDR-L2 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7, and comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system).


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises heavy chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the heavy chain CDRs as shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises light chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the light chain CDRs as shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 124. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 125.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VH as set forth in SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL containing no more than 15 amino acid variations (e.g., no more than 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VL as set forth in SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure is a full-length IgG1 antibody, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprises a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or IgG4. An example of human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK





SFNRGEC.






In some embodiments, the anti-TfR1 antibody described herein is a chimeric antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 132. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133.


In some embodiments, the anti-TfR1 antibody described herein is a fully human antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 134. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


In some embodiments, the anti-TfR1 antibody is an antigen binding fragment (Fab) of an intact antibody (full-length antibody). In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 136. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133. In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 137. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


The anti-TfR1 antibodies described herein can be in any antibody form, including, but not limited to, intact (i.e., full-length) antibodies, antigen-binding fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain antibodies, bi-specific antibodies, or nanobodies. In some embodiments, the anti-TfR1 antibody described herein is an scFv. In some embodiments, the anti-TfR1 antibody described herein is an scFv-Fab (e.g., scFv fused to a portion of a constant region). In some embodiments, the anti-TfR1 antibody described herein is an scFv fused to a constant region (e.g., human IgG1 constant region as set forth in SEQ ID NO: 81).


In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of an anti-TfR1 antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-TfR1 antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall'Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-TfR1 antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. See, e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (see, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of an anti-TfR1 antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fc receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O- glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, any one of the anti-TfR1 antibodies described herein may comprise a signal peptide in the heavy and/or (e.g., and) light chain sequence (e.g., a N-terminal signal peptide). In some embodiments, the anti-TfR1 antibody described herein comprises any one of the VH and VL sequences, any one of the IgG heavy chain and light chain sequences, or any one of the F(ab′) heavy chain and light chain sequences described herein, and further comprises a signal peptide (e.g., a N-terminal signal peptide). In some embodiments, the signal peptide comprises the amino acid sequence of MGWSCIILFLVATATGVHS (SEQ ID NO: 104).


In some embodiments, an antibody provided herein may have one or more post-translational modifications. In some embodiments, N-terminal cyclization, also called pyroglutamate formation (pyro-Glu), may occur in the antibody at N-terminal Glutamate (Glu) and/or Glutamine (Gln) residues during production. As such, it should be appreciated that an antibody specified as having a sequence comprising an N-terminal glutamate or glutamine residue encompasses antibodies that have undergone pyroglutamate formation resulting from a post-translational modification. In some embodiments, pyroglutamate formation occurs in a heavy chain sequence. In some embodiments, pyroglutamate formation occurs in a light chain sequence.


b. Other Muscle-Targeting Antibodies


In some embodiments, the muscle-targeting antibody is an antibody that specifically binds hemojuvelin, caveolin-3, Duchenne muscular dystrophy peptide, myosin IIb or CD63. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a myogenic precursor protein. Exemplary myogenic precursor proteins include, without limitation, ABCG2, M-Cadherin/Cadherin-15, Caveolin-1, CD34, FoxKl, Integrin alpha 7, Integrin alpha 7 beta 1, MYF-5, MyoD, Myogenin, NCAM-1/CD56, Pax3, Pax7, and Pax9. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a skeletal muscle protein. Exemplary skeletal muscle proteins include, without limitation, alpha-Sarcoglycan, beta-Sarcoglycan, Calpain Inhibitors, Creatine Kinase MM/CKMM, eIF5A, Enolase 2/Neuron-specific Enolase, epsilon-Sarcoglycan, FABP3/H-FABP, GDF-8/Myostatin, GDF-11/GDF-8, Integrin alpha 7, Integrin alpha 7 beta 1, Integrin beta 1/CD29, MCAM/CD146, MyoD, Myogenin, Myosin Light Chain Kinase Inhibitors, NCAM-1/CD56, and Troponin I. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a smooth muscle protein. Exemplary smooth muscle proteins include, without limitation, alpha-Smooth Muscle Actin, VE-Cadherin, Caldesmon/CALD1, Calponin 1, Desmin, Histamine H2 R, Motilin R/GPR38, Transgelin/TAGLN, and Vimentin. However, it should be appreciated that antibodies to additional targets are within the scope of this disclosure and the exemplary lists of targets provided herein are not meant to be limiting.


c. Antibody Features/Alterations


In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-transferrin receptor antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall'Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-transferrin receptor antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. See, e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (see, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of a muscle-targeting antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fcγ receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


As provided herein, antibodies of this disclosure may optionally comprise constant regions or parts thereof. For example, a VL domain may be attached at its C-terminal end to a light chain constant domain like Cκ or Cλ. Similarly, a VH domain or portion thereof may be attached to all or part of a heavy chain like IgA, IgD, IgE, IgG, and IgM, and any isotype subclass. Antibodies may include suitable constant regions (see, for example, Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md. (1991)). Therefore, antibodies within the scope of this may disclosure include VH and VL domains, or an antigen binding portion thereof, combined with any suitable constant regions.


ii. Muscle-Targeting Peptides


Some aspects of the disclosure provide muscle-targeting peptides as muscle-targeting agents. Short peptide sequences (e.g., peptide sequences of 5-20 amino acids in length) that bind to specific cell types have been described. For example, cell-targeting peptides have been described in Vines e., et al., A. “Cell-penetrating and cell-targeting peptides in drug delivery” Biochim Biophys Acta 2008, 1786: 126-38; Jarver P., et al., “In vivo biodistribution and efficacy of peptide mediated delivery” Trends Pharmacol Sci 2010; 31: 528-35; Samoylova T. I., et al., “Elucidation of muscle-binding peptides by phage display screening” Muscle Nerve 1999; 22: 460-6; U.S. Pat. No. 6,329,501, issued on Dec. 11, 2001, entitled “METHODS AND COMPOSITIONS FOR TARGETING COMPOUNDS TO MUSCLE”; and Samoylov A.M., et al., “Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor.” Biomol Eng 2002; 18: 269-72; the entire contents of each of which are incorporated herein by reference. By designing peptides to interact with specific cell surface antigens (e.g., receptors), selectivity for a desired tissue, e.g., muscle, can be achieved. Skeletal muscle-targeting has been investigated and a range of molecular payloads are able to be delivered. These approaches may have high selectivity for muscle tissue without many of the practical disadvantages of a large antibody or viral particle. Accordingly, in some embodiments, the muscle-targeting agent is a muscle-targeting peptide that is from 4 to 50 amino acids in length. In some embodiments, the muscle-targeting peptide is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids in length. Muscle-targeting peptides can be generated using any of several methods, such as phage display.


In some embodiments, a muscle-targeting peptide may bind to an internalizing cell surface receptor that is overexpressed or relatively highly expressed in muscle cells, e.g. a transferrin receptor, compared with certain other cells. In some embodiments, a muscle-targeting peptide may target, e.g., bind to, a transferrin receptor. In some embodiments, a peptide that targets a transferrin receptor may comprise a segment of a naturally occurring ligand, e.g., transferrin. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 6,743,893, filed Nov. 30, 2000, “RECEPTOR-MEDIATED UPTAKE OF PEPTIDES THAT BIND THE HUMAN TRANSFERRIN RECEPTOR”. In some embodiments, a peptide that targets a transferrin receptor is as described in Kawamoto, M. et al, “A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells.” BMC Cancer. 2011 Aug. 18; 11:359. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 8,399,653, filed May 20, 2011, “TRANSFERRIN/TRANSFERRIN RECEPTOR-MEDIATED SIRNA DELIVERY”.


As discussed above, examples of muscle targeting peptides have been reported. For example, muscle-specific peptides were identified using phage display library presenting surface heptapeptides. As one example a peptide having the amino acid sequence ASSLNIA (SEQ ID NO: 943) bound to C2C12 murine myotubes in vitro, and bound to mouse muscle tissue in vivo. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence ASSLNIA (SEQ ID NO: 943). This peptide displayed improved specificity for binding to heart and skeletal muscle tissue after intravenous injection in mice with reduced binding to liver, kidney, and brain. Additional muscle-specific peptides have been identified using phage display. For example, a 12 amino acid peptide was identified by phage display library for muscle targeting in the context of treatment for Duchenne muscular dystrophy. See, Yoshida D., et al., “Targeting of salicylate to skin and muscle following topical injections in rats.” Int J Pharm 2002; 231: 177-84; the entire contents of which are hereby incorporated by reference. Here, a 12 amino acid peptide having the sequence SKTFNTHPQSTP (SEQ ID NO: 944) was identified and this muscle-targeting peptide showed improved binding to C2C12 cells relative to the ASSLNIA (SEQ ID NO: 943) peptide.


An additional method for identifying peptides selective for muscle (e.g., skeletal muscle) over other cell types includes in vitro selection, which has been described in Ghosh D., et al., “Selection of muscle-binding peptides from context-specific peptide-presenting phage libraries for adenoviral vector targeting” J Virol 2005; 79: 13667-72; the entire contents of which are incorporated herein by reference. By pre-incubating a random 12-mer peptide phage display library with a mixture of non-muscle cell types, non-specific cell binders were selected out. Following rounds of selection the 12 amino acid peptide TARGEHKEEELI (SEQ ID NO: 945) appeared most frequently. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence TARGEHKEEELI (SEQ ID NO: 945).


A muscle-targeting agent may an amino acid-containing molecule or peptide. A muscle-targeting peptide may correspond to a sequence of a protein that preferentially binds to a protein receptor found in muscle cells. In some embodiments, a muscle-targeting peptide contains a high propensity of hydrophobic amino acids, e.g. valine, such that the peptide preferentially targets muscle cells. In some embodiments, a muscle-targeting peptide has not been previously characterized or disclosed. These peptides may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. phage displayed peptide libraries, one-bead one-compound peptide libraries, or positional scanning synthetic peptide combinatorial libraries. Exemplary methodologies have been characterized in the art and are incorporated by reference (Gray, B. P. and Brown, K. C. “Combinatorial Peptide Libraries: Mining for Cell-Binding Peptides” Chem Rev. 2014, 114:2, 1020-1081.; Samoylova, T. I. and Smith, B. F. “Elucidation of muscle-binding peptides by phage display screening.” Muscle Nerve, 1999, 22:4. 460-6.). In some embodiments, a muscle-targeting peptide has been previously disclosed (see, e.g. Writer M. J. et al. “Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.” J. Drug Targeting. 2004; 12:185; Cai, D. “BDNF-mediated enhancement of inflammation and injury in the aging heart.” Physiol Genomics. 2006, 24:3, 191-7.; Zhang, L. “Molecular profiling of heart endothelial cells.” Circulation, 2005, 112:11, 1601-11.; McGuire, M. J. et al. “In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo.” J Mol Biol. 2004, 342:1, 171-82.). Exemplary muscle-targeting peptides comprise an amino acid sequence of the following group: CQAQGQLVC (SEQ ID NO: 946), CSERSMNFC (SEQ ID NO: 947), CPKTRRVPC (SEQ ID NO: 948), WLSEAGPVVTVRALRGTGSW (SEQ ID NO: 949), ASSLNIA (SEQ ID NO: 943), CMQHSMRVC (SEQ ID NO: 950), and DDTRHWG (SEQ ID NO: 951). In some embodiments, a muscle-targeting peptide may comprise about 2-25 amino acids, about 2-20 amino acids, about 2-15 amino acids, about 2-10 amino acids, or about 2-5 amino acids. Muscle-targeting peptides may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include 3-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a muscle-targeting peptide may be linear; in other embodiments, a muscle-targeting peptide may be cyclic, e.g. bicyclic (see, e.g. Silvana, M. G. et al. Mol. Therapy, 2018, 26:1, 132-147.).


iii. Muscle-Targeting Receptor Ligands


A muscle-targeting agent may be a ligand, e.g. a ligand that binds to a receptor protein. A muscle-targeting ligand may be a protein, e.g. transferrin, which binds to an internalizing cell surface receptor expressed by a muscle cell. Accordingly, in some embodiments, the muscle-targeting agent is transferrin, or a derivative thereof that binds to a transferrin receptor. A muscle-targeting ligand may alternatively be a small molecule, e.g. a lipophilic small molecule that preferentially targets muscle cells relative to other cell types. Exemplary lipophilic small molecules that may target muscle cells include compounds comprising cholesterol, cholesteryl, stearic acid, palmitic acid, oleic acid, oleyl, linolene, linoleic acid, myristic acid, sterols, dihydrotestosterone, testosterone derivatives, glycerine, alkyl chains, trityl groups, and alkoxy acids.


iv. Muscle-Targeting Aptamers


A muscle-targeting agent may be an aptamer, e.g. an RNA aptamer, which preferentially targets muscle cells relative to other cell types. In some embodiments, a muscle-targeting aptamer has not been previously characterized or disclosed. These aptamers may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. Systematic Evolution of Ligands by Exponential Enrichment. Exemplary methodologies have been characterized in the art and are incorporated by reference (Yan, A. C. and Levy, M. “Aptamers and aptamer targeted delivery” RNA biology, 2009, 6:3, 316-20.; Germer, K. et al. “RNA aptamers and their therapeutic and diagnostic applications.” Int. J. Biochem. Mol. Biol. 2013; 4: 27-40.). In some embodiments, a muscle-targeting aptamer has been previously disclosed (see, e.g. Phillippou, S. et al. “Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers.” Mol Ther Nucleic Acids. 2018, 10:199-214.; Thiel, W. H. et al. “Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.” Mol Ther. 2016, 24:4, 779-87.). Exemplary muscle-targeting aptamers include the A01B RNA aptamer and RNA Apt 14. In some embodiments, an aptamer is a nucleic acid-based aptamer, an oligonucleotide aptamer or a peptide aptamer. In some embodiments, an aptamer may be about 5-15 kDa, about 5-10 kDa, about 10-15 kDa, about 1-5 Da, about 1-3 kDa, or smaller.


v. Other Muscle-Targeting Agents


One strategy for targeting a muscle cell (e.g., a skeletal muscle cell) is to use a substrate of a muscle transporter protein, such as a transporter protein expressed on the sarcolemma. In some embodiments, the muscle-targeting agent is a substrate of an influx transporter that is specific to muscle tissue. In some embodiments, the influx transporter is specific to skeletal muscle tissue. Two main classes of transporters are expressed on the skeletal muscle sarcolemma, (1) the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, which facilitate efflux from skeletal muscle tissue and (2) the solute carrier (SLC) superfamily, which can facilitate the influx of substrates into skeletal muscle. In some embodiments, the muscle-targeting agent is a substrate that binds to an ABC superfamily or an SLC superfamily of transporters. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a naturally-occurring substrate. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a non-naturally occurring substrate, for example, a synthetic derivative thereof that binds to the ABC or SLC superfamily of transporters.


In some embodiments, the muscle-targeting agent is any muscle targeting agent described herein (e.g., antibodies, nucleic acids, small molecules, peptides, aptamers, lipids, sugar moieties) that target SLC superfamily of transporters. In some embodiments, the muscle-targeting agent is a substrate of an SLC superfamily of transporters. SLC transporters are either equilibrative or use proton or sodium ion gradients created across the membrane to drive transport of substrates. Exemplary SLC transporters that have high skeletal muscle expression include, without limitation, the SATT transporter (ASCT1; SLC1A4), GLUT4 transporter (SLC2A4), GLUT7 transporter (GLUT7; SLC2A7), ATRC2 transporter (CAT-2; SLC7A2), LAT3 transporter (KIAA0245; SLC7A6), PHT1 transporter (PTR4; SLC15A4), OATP-J transporter (OATP5A1; SLC21A15), OCT3 transporter (EMT; SLC22A3), OCTN2 transporter (FLJ46769; SLC22A5), ENT transporters (ENT1; SLC29A1 and ENT2; SLC29A2), PAT2 transporter (SLC36A2), and SAT2 transporter (KIAA1382; SLC38A2). These transporters can facilitate the influx of substrates into skeletal muscle, providing opportunities for muscle targeting.


In some embodiments, the muscle-targeting agent is a substrate of an equilibrative nucleoside transporter 2 (ENT2) transporter. Relative to other transporters, ENT2 has one of the highest mRNA expressions in skeletal muscle. While human ENT2 (hENT2) is expressed in most body organs such as brain, heart, placenta, thymus, pancreas, prostate, and kidney, it is especially abundant in skeletal muscle. Human ENT2 facilitates the uptake of its substrates depending on their concentration gradient. ENT2 plays a role in maintaining nucleoside homeostasis by transporting a wide range of purine and pyrimidine nucleobases. The hENT2 transporter has a low affinity for all nucleosides (adenosine, guanosine, uridine, thymidine, and cytidine) except for inosine. Accordingly, in some embodiments, the muscle-targeting agent is an ENT2 substrate. Exemplary ENT2 substrates include, without limitation, inosine, 2′,3′-dideoxyinosine, and calofarabine. In some embodiments, any of the muscle-targeting agents provided herein are associated with a molecular payload (e.g., oligonucleotide payload). In some embodiments, the muscle-targeting agent is covalently linked to the molecular payload. In some embodiments, the muscle-targeting agent is non-covalently linked to the molecular payload.


In some embodiments, the muscle-targeting agent is a substrate of an organic cation/carnitine transporter (OCTN2), which is a sodium ion-dependent, high affinity carnitine transporter. In some embodiments, the muscle-targeting agent is carnitine, mildronate, acetylcarnitine, or any derivative thereof that binds to OCTN2. In some embodiments, the carnitine, mildronate, acetylcarnitine, or derivative thereof is covalently linked to the molecular payload (e.g., oligonucleotide payload).


A muscle-targeting agent may be a protein that is protein that exists in at least one soluble form that targets muscle cells. In some embodiments, a muscle-targeting protein may be hemojuvelin (also known as repulsive guidance molecule C or hemochromatosis type 2 protein), a protein involved in iron overload and homeostasis. In some embodiments, hemojuvelin may be full length or a fragment, or a mutant with at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or at least 99% sequence identity to a functional hemojuvelin protein. In some embodiments, a hemojuvelin mutant may be a soluble fragment, may lack a N-terminal signaling, and/or (e.g., and) lack a C-terminal anchoring domain. In some embodiments, hemojuvelin may be annotated under GenBank RefSeq Accession Numbers NM_001316767.1, NM_145277.4, NM_202004.3, NM_213652.3, or NM_213653.3. It should be appreciated that a hemojuvelin may be of human, non-human primate, or rodent origin.


B. Molecular Payloads

Some aspects of the disclosure provide molecular payloads, e.g., for modulating a biological outcome, e.g., the transcription of a DNA sequence, the splicing and processing of a RNA sequence, the expression of a protein, or the activity of a protein. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, such molecular payloads are capable of targeting to a muscle cell, e.g., via specifically binding to a nucleic acid or protein in the muscle cell following delivery to the muscle cell by an associated muscle-targeting agent. It should be appreciated that various types of molecular payloads may be used in accordance with the disclosure. For example, the molecular payload may comprise, or consist of, an oligonucleotide (e.g., antisense oligonucleotide), a peptide (e.g., a peptide that binds a nucleic acid or protein associated with disease in a muscle cell), a protein (e.g., a protein that binds a nucleic acid or protein associated with disease in a muscle cell), or a small molecule (e.g., a small molecule that modulates the function of a nucleic acid or protein associated with disease in a muscle cell). In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a mutated DMD allele. Exemplary molecular payloads are described in further detail herein, however, it should be appreciated that the exemplary molecular payloads provided herein are not meant to be limiting.


i. Oligonucleotides


Aspects of the disclosure relate to oligonucleotides configured to modulate (e.g., increase) expression of dystrophin, e.g., from a DMD allele. In some embodiments, oligonucleotides provided herein are configured to alter splicing of DMD pre-mRNA to promote expression of dystrophin protein (e.g., a functional truncated dystrophin protein). In some embodiments, oligonucleotides provided herein are configured to promote skipping of one or more exons in DMD, e.g., in a mutated DMD allele, in order to restore the reading frame. In some embodiments, the oligonucleotides allow for functional dystrophin protein expression (e.g., as described in Kinali M, Arechevala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009; 8(10):918−928 and Watanabe N, Nagata T, Satou Y, et al. NS-065/NCNP-01: an antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2018; 13:442-449). In some embodiments, oligonucleotides provided are configured to promote skipping of exon 51 to produce a shorter but functional version of dystrophin (e.g., containing an in-frame deletion). In some embodiments, oligonucleotides are provided that promote exon 51 skipping (e.g., which may be relevant in a substantial number of patients, including, for example, patients amenable to exon 51 skipping, such as those having deletions in DMD exons 3-50, 4-50, 5-50, 6-50, 9-50, 10-50, 11-50, 13-50, 14-50, 15-50, 16-50, 17-50, 19-50, 21-50, 23-50, 24-50, 25-50, 26-50, 27-50, 28-50, 29-50, 30-50, 31-50, 32-50, 33-50, 34-50, 35-50, 36-50, 37-50, 38-50, 39-50, 40-50, 41-50, 42-50, 43-50, 45-50, 47-50, 48-50, 49-50, 50, 52, 52-58, 52-61, 52-63, 52-64, 52-66, 52-76, or 52-77).


Table 8 provides non-limiting examples of sequences of oligonucleotides that are useful for targeting DMD, e.g., for exon skipping, and for target sequences within DMD. In some embodiments, an oligonucleotide may comprise any antisense sequence provided in Table 8 or a sequence complementary to a target sequence provided in Table 8.









TABLE 8







Oligonucleotide sequences for targeting DMD.













SEQ
Target
SEQ
Antisense
SEQ
Antisense



ID
sequence
ID
Sequence
ID
Sequence
Target


NO
(5′ to 3′)
NO
(5′ to 3′)
NO
(5′ to 3′)
Site





160
GUAAGUAUACUGG
384
GAAUGGGAUCCAG
608
GAATGGGATCCAG
Intron 50



AUCCCAUUC

UAUACUUAC

TATACTTAC






161
GUAAGUAUACUGG
385
AGAAUGGGAUCCA
609
AGAATGGGATCCA
Intron 50



AUCCCAUUCU

GUAUACUUAC

GTATACTTAC






162
GUAAGUAUACUGG
386
GAGAAUGGGAUCC
610
GAGAATGGGATCC
Intron 50



AUCCCAUUCUC

AGUAUACUUAC

AGTATACTTAC






163
GUAAGUAUACUGG
387
AGAGAAUGGGAUC
611
AGAGAATGGGATC
Intron 50



AUCCCAUUCUCU

CAGUAUACUUAC

CAGTATACTTAC






164
UAAGUAUACUGGA
388
GAGAAUGGGAUCC
612
GAGAATGGGATCC
Intron 50



UCCCAUUCUC

AGUAUACUUA

AGTATACTTA






165
AAGUAUACUGGAU
389
GAGAAUGGGAUCC
613
GAGAATGGGATCC
Intron 50



CCCAUUCUC

AGUAUACUU

AGTATACTT






166
AGUAUACUGGAUC
390
GAGAAUGGGAUCC
614
GAGAATGGGATCC
Intron 50



CCAUUCUC

AGUAUACU

AGTATACT






167
GUAUACUGGAUCC
391
CCAAAGAGAAUGG
615
CCAAAGAGAATGG
Intron 50



CAUUCUCUUUGG

GAUCCAGUAUAC

GATCCAGTATAC






168
UACUGGAUCCCAU
392
GAGCCAAAGAGAA
616
GAGCCAAAGAGAA
Intron 50



UCUCUUUGGCUC

UGGGAUCCAGUA

TGGGATCCAGTA






169
ACUGGAUCCCAUU
393
GAGCCAAAGAGAA
617
GAGCCAAAGAGAA
Intron 50



CUCUUUGGCUC

UGGGAUCCAGU

TGGGATCCAGT






170
UGUGGUUACUAAG
394
AUGGCAGUUUCCU
618
ATGGCAGTTTCCT
Exon 51



GAAACUGCCAU

UAGUAACCACA

TAGTAACCACA






171
UGUGGUUACUAAG
395
GAUGGCAGUUUCC
619
GATGGCAGTTTCC
Exon 51



GAAACUGCCAUC

UUAGUAACCACA

TTAGTAACCACA






172
GUGGUUACUAAGG
396
AUGGCAGUUUCCU
620
ATGGCAGTTTCCT
Exon 51



AAACUGCCAU

UAGUAACCAC

TAGTAACCAC






173
GUGGUUACUAAGG
397
GAUGGCAGUUUCC
621
GATGGCAGTTTCC
Exon 51



AAACUGCCAUC

UUAGUAACCAC

TTAGTAACCAC






174
GUGGUUACUAAGG
398
AGAUGGCAGUUUC
622
AGATGGCAGTTTC
Exon 51



AAACUGCCAUCU

CUUAGUAACCAC

CTTAGTAACCAC






175
UGGUUACUAAGGA
399
GAUGGCAGUUUCC
623
GATGGCAGTTTCC
Exon 51



AACUGCCAUC

UUAGUAACCA

TTAGTAACCA






176
GGUUACUAAGGAA
400
GAUGGCAGUUUCC
624
GATGGCAGTTTCC
Exon 51



ACUGCCAUC

UUAGUAACC

TTAGTAACC






177
GAAACUGCCAUCU
401
UUCUAGUUUGGAG
625
TTCTAGTTTGGAG
Exon 51



CCAAACUAGAA

AUGGCAGUUUC

ATGGCAGTTTC






178
AAACUGCCAUCUC
402
CUAGUUUGGAGAU
626
CTAGTTTGGAGAT
Exon 51



CAAACUAG

GGCAGUUU

GGCAGTTT






179
AAACUGCCAUCUC
403
UCUAGUUUGGAGA
627
TCTAGTTTGGAGA
Exon 51



CAAACUAGA

UGGCAGUUU

TGGCAGTTT






180
AAACUGCCAUCUC
404
UUCUAGUUUGGAG
628
TTCTAGTTTGGAG
Exon 51



CAAACUAGAA

AUGGCAGUUU

ATGGCAGTTT






181
AACUGCCAUCUCC
405
CUAGUUUGGAGAU
629
CTAGTTTGGAGAT
Exon 51



AAACUAG

GGCAGUU

GGCAGTT






182
AACUGCCAUCUCC
406
UCUAGUUUGGAGA
630
TCTAGTTTGGAGA
Exon 51



AAACUAGA

UGGCAGUU

TGGCAGTT






183
AACUGCCAUCUCC
407
UUCUAGUUUGGAG
631
TTCTAGTTTGGAG
Exon 51



AAACUAGAA

AUGGCAGUU

ATGGCAGTT






184
ACUGCCAUCUCCA
408
UCUAGUUUGGAGA
632
TCTAGTTTGGAGA
Exon 51



AACUAGA

UGGCAGU

TGGCAGT






185
ACUGCCAUCUCCA
409
UUCUAGUUUGGAG
633
TTCTAGTTTGGAG
Exon 51



AACUAGAA

AUGGCAGU

ATGGCAGT






186
UCUCCAAACUAGA
410
GAUGGCAUUUCUA
634
GATGGCATTTCTA
Exon 51



AAUGCCAUC

GUUUGGAGA

GTTTGGAGA






187
CUCCAAACUAGAA
411
GAUGGCAUUUCUA
635
GATGGCATTTCTA
Exon 51



AUGCCAUC

GUUUGGAG

GTTTGGAG






188
UCCAAACUAGAAA
412
GAUGGCAUUUCUA
636
GATGGCATTTCTA
Exon 51



UGCCAUC

GUUUGGA

GTTTGGA






189
GAUUUCAACCGGG
413
UCUGUCCAAGCCC
637
TCTGTCCAAGCCC
Exon 51



CUUGGACAGA

GGUUGAAAUC

GGTTGAAATC






190
GAUUUCAACCGGG
414
UUCUGUCCAAGCC
638
TTCTGTCCAAGCC
Exon 51



CUUGGACAGAA

CGGUUGAAAUC

CGGTTGAAATC






191
AUUUCAACCGGGC
415
UCUGUCCAAGCCC
639
TCTGTCCAAGCCC
Exon 51



UUGGACAGA

GGUUGAAAU

GGTTGAAAT






192
AUUUCAACCGGGC
416
AGUUCUGUCCAAG
640
AGTTCTGTCCAAG
Exon 51



UUGGACAGAACU

CCCGGUUGAAAU

CCCGGTTGAAAT






193
UUCAACCGGGCUU
417
AGUUCUGUCCAAG
641
AGTTCTGTCCAAG
Exon 51



GGACAGAACU

CCCGGUUGAA

CCCGGTTGAA






194
UCAACCGGGCUUG
418
UUCUGUCCAAGCC
642
TTCTGTCCAAGCC
Exon 51



GACAGAA

CGGUUGA

CGGTTGA






195
UCAACCGGGCUUG
419
AGUUCUGUCCAAG
643
AGTTCTGTCCAAG
Exon 51



GACAGAACU

CCCGGUUGA

CCCGGTTGA






196
UCAACCGGGCUUG
420
GUAAGUUCUGUCC
644
GTAAGTTCTGTCC
Exon 51



GACAGAACUUAC

AAGCCCGGUUGA

AAGCCCGGTTGA






197
CAACCGGGCUUGG
421
AGUUCUGUCCAAG
645
AGTTCTGTCCAAG
Exon 51



ACAGAACU

CCCGGUUG

CCCGGTTG






198
CAACCGGGCUUGG
422
GUAAGUUCUGUCC
646
GTAAGTTCTGTCC
Exon 51



ACAGAACUUAC

AAGCCCGGUUG

AAGCCCGGTTG






199
CAACCGGGCUUGG
423
GGUAAGUUCUGUC
647
GGTAAGTTCTGTC
Exon 51



ACAGAACUUACC

CAAGCCCGGUUG

CAAGCCCGGTTG






200
AUGAUCAUCAAGC
424
UACCUUCUGCUUG
648
TACCTTCTGCTTG
Exon 51/intron 51



AGAAGGUA

AUGAUCAU

ATGATCAT
junction





201
AUGAUCAUCAAGC
425
CAUACCUUCUGCU
649
CATACCTTCTGCT
Exon 51/intron 51



AGAAGGUAUG

UGAUGAUCAU

TGATGATCAT
junction





202
AUGAUCAUCAAGC
426
UCAUACCUUCUGC
650
TCATACCTTCTGC
Exon 51/intron 51



AGAAGGUAUGA

UUGAUGAUCAU

TTGATGATCAT
junction





203
AUGAUCAUCAAGC
427
CUCAUACCUUCUG
651
CTCATACCTTCTG
Exon 51/intron 51



AGAAGGUAUGAG

CUUGAUGAUCAU

CTTGATGATCAT
junction





204
UGAUCAUCAAGCA
428
UACCUUCUGCUUG
652
TACCTTCTGCTTG
Exon 51/intron 51



GAAGGUA

AUGAUCA

ATGATCA
junction





205
UGAUCAUCAAGCA
429
CAUACCUUCUGCU
653
CATACCTTCTGCT
Exon 51/intron 51



GAAGGUAUG

UGAUGAUCA

TGATGATCA
junction





206
UGAUCAUCAAGCA
430
UCAUACCUUCUGC
654
TCATACCTTCTGC
Exon 51/intron 51



GAAGGUAUGA

UUGAUGAUCA

TTGATGATCA
junction





207
UGAUCAUCAAGCA
431
CUCAUACCUUCUG
655
CTCATACCTTCTG
Exon 51/intron 51



GAAGGUAUGAG

CUUGAUGAUCA

CTTGATGATCA
junction





208
UGAUCAUCAAGCA
432
UCUCAUACCUUCU
656
TCTCATACCTTCT
Exon 51/intron 51



GAAGGUAUGAGA

GCUUGAUGAUCA

GCTTGATGATCA
junction





209
GAUCAUCAAGCAG
433
CAUACCUUCUGCU
657
CATACCTTCTGCT
Exon 51/intron 51



AAGGUAUG

UGAUGAUC

TGATGATC
junction





210
GAUCAUCAAGCAG
434
UCAUACCUUCUGC
658
TCATACCTTCTGC
Exon 51/intron 51



AAGGUAUGA

UUGAUGAUC

TTGATGATC
junction





211
GAUCAUCAAGCAG
435
CUCAUACCUUCUG
659
CTCATACCTTCTG
Exon 51/intron 51



AAGGUAUGAG

CUUGAUGAUC

CTTGATGATC
junction





212
GAUCAUCAAGCAG
436
UCUCAUACCUUCU
660
TCTCATACCTTCT
Exon 51/intron 51



AAGGUAUGAGA

GCUUGAUGAUC

GCTTGATGATC
junction





213
GAUCAUCAAGCAG
437
UUCUCAUACCUUC
661
TTCTCATACCTTC
Exon 51/intron 51



AAGGUAUGAGAA

UGCUUGAUGAUC

TGCTTGATGATC
junction





214
AUCAUCAAGCAGA
438
CAUACCUUCUGCU
662
CATACCTTCTGCT
Exon 51/intron 51



AGGUAUG

UGAUGAU

TGATGAT
junction





215
AUCAUCAAGCAGA
439
UCAUACCUUCUGC
663
TCATACCTTCTGC
Exon 51/intron 51



AGGUAUGA

UUGAUGAU

TTGATGAT
junction





216
AUCAUCAAGCAGA
440
CUCAUACCUUCUG
664
CTCATACCTTCTG
Exon 51/intron 51



AGGUAUGAG

CUUGAUGAU

CTTGATGAT
junction





217
AUCAUCAAGCAGA
441
UCUCAUACCUUCU
665
TCTCATACCTTCT
Exon 51/intron 51



AGGUAUGAGA

GCUUGAUGAU

GCTTGATGAT
junction





218
AUCAUCAAGCAGA
442
UUCUCAUACCUUC
666
TTCTCATACCTTC
Exon 51/intron 51



AGGUAUGAGAA

UGCUUGAUGAU

TGCTTGATGAT
junction





219
AUCAUCAAGCAGA
443
UUUCUCAUACCUU
667
TTTCTCATACCTT
Exon 51/intron 51



AGGUAUGAGAAA

CUGCUUGAUGAU

CTGCTTGATGAT
junction





220
UCAUCAAGCAGAA
444
UCAUACCUUCUGC
668
TCATACCTTCTGC
Exon 51/intron 51



GGUAUGA

UUGAUGA

TTGATGA
junction





221
UCAUCAAGCAGAA
445
CUCAUACCUUCUG
669
CTCATACCTTCTG
Exon 51/intron 51



GGUAUGAG

CUUGAUGA

CTTGATGA
junction





222
UCAUCAAGCAGAA
446
UCUCAUACCUUCU
670
TCTCATACCTTCT
Exon 51/intron 51



GGUAUGAGA

GCUUGAUGA

GCTTGATGA
junction





223
UCAUCAAGCAGAA
447
UUCUCAUACCUUC
671
TTCTCATACCTTC
Exon 51/intron 51



GGUAUGAGAA

UGCUUGAUGA

TGCTTGATGA
junction





224
UCAUCAAGCAGAA
448
UUUCUCAUACCUU
672
TTTCTCATACCTT
Exon 51/intron 51



GGUAUGAGAAA

CUGCUUGAUGA

CTGCTTGATGA
junction





225
UCAUCAAGCAGAA
449
UUUUCUCAUACCU
673
TTTTCTCATACCT
Exon 51/intron 51



GGUAUGAGAAAA

UCUGCUUGAUGA

TCTGCTTGATGA
junction





226
CAUCAAGCAGAAG
450
CUCAUACCUUCUG
674
CTCATACCTTCTG
Exon 51/intron 51



GUAUGAG

CUUGAUG

CTTGATG
junction





227
CAUCAAGCAGAAG
451
UCUCAUACCUUCU
675
TCTCATACCTTCT
Exon 51/intron 51



GUAUGAGA

GCUUGAUG

GCTTGATG
junction





228
CAUCAAGCAGAAG
452
UUCUCAUACCUUC
676
TTCTCATACCTTC
Exon 51/intron 51



GUAUGAGAA

UGCUUGAUG

TGCTTGATG
junction





229
CAUCAAGCAGAAG
453
UUUCUCAUACCUU
677
TTTCTCATACCTT
Exon 51/intron 51



GUAUGAGAAA

CUGCUUGAUG

CTGCTTGATG
junction





230
CAUCAAGCAGAAG
454
UUUUCUCAUACCU
678
TTTTCTCATACCT
Exon 51/intron 51



GUAUGAGAAAA

UCUGCUUGAUG

TCTGCTTGATG
junction





231
CAUCAAGCAGAAG
455
UUUUUCUCAUACC
679
TTTTTCTCATACC
Exon 51/intron 51



GUAUGAGAAAAA

UUCUGCUUGAUG

TTCTGCTTGATG
junction





232
AUCAAGCAGAAGG
456
UCUCAUACCUUCU
680
TCTCATACCTTCT
Exon 51/intron 51



UAUGAGA

GCUUGAU

GCTTGAT
junction





233
AUCAAGCAGAAGG
457
UUCUCAUACCUUC
681
TTCTCATACCTTC
Exon 51/intron 51



UAUGAGAA

UGCUUGAU

TGCTTGAT
junction





234
AUCAAGCAGAAGG
458
UUUCUCAUACCUU
682
TTTCTCATACCTT
Exon 51/intron 51



UAUGAGAAA

CUGCUUGAU

CTGCTTGAT
junction





235
AUCAAGCAGAAGG
459
UUUUCUCAUACCU
683
TTTTCTCATACCT
Exon 51/intron 51



UAUGAGAAAA

UCUGCUUGAU

TCTGCTTGAT
junction





236
AUCAAGCAGAAGG
460
UUUUUCUCAUACC
684
TTTTTCTCATACC
Exon 51/intron 51



UAUGAGAAAAA

UUCUGCUUGAU

TTCTGCTTGAT
junction





237
AUCAAGCAGAAGG
461
UUUUUUCUCAUAC
685
TTTTTTCTCATAC
Exon 51/intron 51



UAUGAGAAAAAA

CUUCUGCUUGAU

CTTCTGCTTGAT
junction





238
UCAAGCAGAAGGU
462
UUCUCAUACCUUC
686
TTCTCATACCTTC
Exon 51/intron 51



AUGAGAA

UGCUUGA

TGCTTGA
junction





239
UCAAGCAGAAGGU
463
UUUCUCAUACCUU
687
TTTCTCATACCTT
Exon 51/intron 51



AUGAGAAA

CUGCUUGA

CTGCTTGA
junction





240
UCAAGCAGAAGGU
464
UUUUCUCAUACCU
688
TTTTCTCATACCT
Exon 51/intron 51



AUGAGAAAA

UCUGCUUGA

TCTGCTTGA
junction





241
UCAAGCAGAAGGU
465
UUUUUCUCAUACC
689
TTTTTCTCATACC
Exon 51/intron 51



AUGAGAAAAA

UUCUGCUUGA

TTCTGCTTGA
junction





242
UCAAGCAGAAGGU
466
UUUUUUCUCAUAC
690
TTTTTTCTCATAC
Exon 51/intron 51



AUGAGAAAAAA

CUUCUGCUUGA

CTTCTGCTTGA
junction





243
UCAAGCAGAAGGU
467
AUUUUUUCUCAUA
691
ATTTTTTCTCATA
Exon 51/intron 51



AUGAGAAAAAAU

CCUUCUGCUUGA

CCTTCTGCTTGA
junction





244
CAAGCAGAAGGUA
468
UUUCUCAUACCUU
692
TTTCTCATACCTT
Exon 51/intron 51



UGAGAAA

CUGCUUG

CTGCTTG
junction





245
CAAGCAGAAGGUA
469
UUUUCUCAUACCU
693
TTTTCTCATACCT
Exon 51/intron 51



UGAGAAAA

UCUGCUUG

TCTGCTTG
junction





246
CAAGCAGAAGGUA
470
UUUUUCUCAUACC
694
TTTTTCTCATACC
Exon 51/intron 51



UGAGAAAAA

UUCUGCUUG

TTCTGCTTG
junction





247
CAAGCAGAAGGUA
471
UUUUUUCUCAUAC
695
TTTTTTCTCATAC
Exon 51/intron 51



UGAGAAAAAA

CUUCUGCUUG

CTTCTGCTTG
junction





248
CAAGCAGAAGGUA
472
AUUUUUUCUCAUA
696
ATTTTTTCTCATA
Exon 51/intron 51



UGAGAAAAAAU

CCUUCUGCUUG

CCTTCTGCTTG
junction





249
AAGCAGAAGGUAU
473
UUUUCUCAUACCU
697
TTTTCTCATACCT
Exon 51/intron 51



GAGAAAA

UCUGCUU

TCTGCTT
junction





250
AAGCAGAAGGUAU
474
UUUUUCUCAUACC
698
TTTTTCTCATACC
Exon 51/intron 51



GAGAAAAA

UUCUGCUU

TTCTGCTT
junction





251
AAGCAGAAGGUAU
475
UUUUUUCUCAUAC
699
TTTTTTCTCATAC
Exon 51/intron 51



GAGAAAAAA

CUUCUGCUU

CTTCTGCTT
junction





252
AAGCAGAAGGUAU
476
AUUUUUUCUCAUA
700
ATTTTTTCTCATA
Exon 51/intron 51



GAGAAAAAAU

CCUUCUGCUU

CCTTCTGCTT
junction





253
AGCAGAAGGUAUG
477
UUUUUCUCAUACC
701
TTTTTCTCATACC
Exon 51/intron 51



AGAAAAA

UUCUGCU

TTCTGCT
junction





254
AGCAGAAGGUAUG
478
UUUUUUCUCAUAC
702
TTTTTTCTCATAC
Exon 51/intron 51



AGAAAAAA

CUUCUGCU

CTTCTGCT
junction





255
AGCAGAAGGUAUG
479
AUUUUUUCUCAUA
703
ATTTTTTCTCATA
Exon 51/intron 51



AGAAAAAAU

CCUUCUGCU

CCTTCTGCT
junction





256
GCAGAAGGUAUGA
480
UUUUUUCUCAUAC
704
TTTTTTCTCATAC
Exon 51/intron 51



GAAAAAA

CUUCUGC

CTTCTGC
junction





257
GCAGAAGGUAUGA
481
AUUUUUUCUCAUA
705
ATTTTTTCTCATA
Exon 51/intron 51



GAAAAAAU

CCUUCUGC

CCTTCTGC
junction





258
CAGAAGGUAUGAG
482
AUUUUUUCUCAUA
706
ATTTTTTCTCATA
Exon 51/intron 51



AAAAAAU

CCUUCUG

CCTTCTG
junction





259
AAAUGAUAAAAGU
483
ACUUCUGCCAACU
707
ACTTCTGCCAACT
Intron 51



UGGCAGAAGU

UUUAUCAUUU

TTTATCATTT






260
UCACUUUACUCUC
484
AUGGUCUAGGAGA
708
ATGGTCTAGGAGA
Intron 51



CUAGACCAU

GUAAAGUGA

GTAAAGTGA






261
UCACUUUACUCUC
485
AAUGGUCUAGGAG
709
AATGGTCTAGGAG
Intron 51



CUAGACCAUU

AGUAAAGUGA

AGTAAAGTGA






262
UCACUUUACUCUC
486
AAAUGGUCUAGGA
710
AAATGGTCTAGGA
Intron 51



CUAGACCAUUU

GAGUAAAGUGA

GAGTAAAGTGA






263
CACUUUACUCUCC
487
GGAAAUGGUCUAG
711
GGAAATGGTCTAG
Intron 51



UAGACCAUUUCC

GAGAGUAAAGUG

GAGAGTAAAGTG






264
ACUUUACUCUCCU
488
GGAAAUGGUCUAG
712
GGAAATGGTCTAG
Intron 51



AGACCAUUUCC

GAGAGUAAAGU

GAGAGTAAAGT






265
CUUUACUCUCCUA
489
UGGGAAAUGGUCU
713
TGGGAAATGGTCT
Intron 51



GACCAUUUCCCA

AGGAGAGUAAAG

AGGAGAGTAAAG






266
UUACUCUCCUAGA
490
UGGGAAAUGGUCU
714
TGGGAAATGGTCT
Intron 51



CCAUUUCCCA

AGGAGAGUAA

AGGAGAGTAA






267
UUACUCUCCUAGA
491
GUGGGAAAUGGUC
715
GTGGGAAATGGTC
Intron 51



CCAUUUCCCAC

UAGGAGAGUAA

TAGGAGAGTAA






268
UUACUCUCCUAGA
492
GGUGGGAAAUGGU
716
GGTGGGAAATGGT
Intron 51



CCAUUUCCCACC

CUAGGAGAGUAA

CTAGGAGAGTAA






269
UACUCUCCUAGAC
493
UGGGAAAUGGUCU
717
TGGGAAATGGTCT
Intron 51



CAUUUCCCA

AGGAGAGUA

AGGAGAGTA






270
UACUCUCCUAGAC
494
GUGGGAAAUGGUC
718
GTGGGAAATGGTC
Intron 51



CAUUUCCCAC

UAGGAGAGUA

TAGGAGAGTA






271
UACUCUCCUAGAC
495
GGUGGGAAAUGGU
719
GGTGGGAAATGGT
Intron 51



CAUUUCCCACC

CUAGGAGAGUA

CTAGGAGAGTA






272
UACUCUCCUAGAC
496
UGGUGGGAAAUGG
720
TGGTGGGAAATGG
Intron 51



CAUUUCCCACCA

UCUAGGAGAGUA

TCTAGGAGAGTA






273
ACUCUCCUAGACC
497
UGGGAAAUGGUCU
721
TGGGAAATGGTCT
Intron 51



AUUUCCCA

AGGAGAGU

AGGAGAGT






274
ACUCUCCUAGACC
498
GUGGGAAAUGGUC
722
GTGGGAAATGGTC
Intron 51



AUUUCCCAC

UAGGAGAGU

TAGGAGAGT






275
ACUCUCCUAGACC
499
GGUGGGAAAUGGU
723
GGTGGGAAATGGT
Intron 51



AUUUCCCACC

CUAGGAGAGU

CTAGGAGAGT






276
ACUCUCCUAGACC
500
UGGUGGGAAAUGG
724
TGGTGGGAAATGG
Intron 51



AUUUCCCACCA

UCUAGGAGAGU

TCTAGGAGAGT






277
ACUCUCCUAGACC
501
CUGGUGGGAAAUG
725
CTGGTGGGAAATG
Intron 51



AUUUCCCACCAG

GUCUAGGAGAGU

GTCTAGGAGAGT






278
CUCUCCUAGACCA
502
UGGGAAAUGGUCU
726
TGGGAAATGGTCT
Intron 51



UUUCCCA

AGGAGAG

AGGAGAG






279
CUCUCCUAGACCA
503
GUGGGAAAUGGUC
727
GTGGGAAATGGTC
Intron 51



UUUCCCAC

UAGGAGAG

TAGGAGAG






280
CUCUCCUAGACCA
504
GGUGGGAAAUGGU
728
GGTGGGAAATGGT
Intron 51



UUUCCCACC

CUAGGAGAG

CTAGGAGAG






281
CUCUCCUAGACCA
505
UGGUGGGAAAUGG
729
TGGTGGGAAATGG
Intron 51



UUUCCCACCA

UCUAGGAGAG

TCTAGGAGAG






282
CUCUCCUAGACCA
506
CUGGUGGGAAAUG
730
CTGGTGGGAAATG
Intron 51



UUUCCCACCAG

GUCUAGGAGAG

GTCTAGGAGAG






283
UCUCCUAGACCAU
507
GUGGGAAAUGGUC
731
GTGGGAAATGGTC
Intron 51



UUCCCAC

UAGGAGA

TAGGAGA






284
UCUCCUAGACCAU
508
GGUGGGAAAUGGU
732
GGTGGGAAATGGT
Intron 51



UUCCCACC

CUAGGAGA

CTAGGAGA






285
UCUCCUAGACCAU
509
UGGUGGGAAAUGG
733
TGGTGGGAAATGG
Intron 51



UUCCCACCA

UCUAGGAGA

TCTAGGAGA






286
UCUCCUAGACCAU
510
CUGGUGGGAAAUG
734
CTGGTGGGAAATG
Intron 51



UUCCCACCAG

GUCUAGGAGA

GTCTAGGAGA






287
UCUCCUAGACCAU
511
AACUGGUGGGAAA
735
AACTGGTGGGAAA
Intron 51



UUCCCACCAGUU

UGGUCUAGGAGA

TGGTCTAGGAGA






288
CUCCUAGACCAUU
512
GGUGGGAAAUGGU
736
GGTGGGAAATGGT
Intron 51



UCCCACC

CUAGGAG

CTAGGAG






289
CUCCUAGACCAUU
513
UGGUGGGAAAUGG
737
TGGTGGGAAATGG
Intron 51



UCCCACCA

UCUAGGAG

TCTAGGAG






290
CUCCUAGACCAUU
514
CUGGUGGGAAAUG
738
CTGGTGGGAAATG
Intron 51



UCCCACCAG

GUCUAGGAG

GTCTAGGAG






291
CUCCUAGACCAUU
515
AACUGGUGGGAAA
739
AACTGGTGGGAAA
Intron 51



UCCCACCAGUU

UGGUCUAGGAG

TGGTCTAGGAG






292
UCCUAGACCAUUU
516
UGGUGGGAAAUGG
740
TGGTGGGAAATGG
Intron 51



CCCACCA

UCUAGGA

TCTAGGA






293
UCCUAGACCAUUU
517
CUGGUGGGAAAUG
741
CTGGTGGGAAATG
Intron 51



CCCACCAG

GUCUAGGA

GTCTAGGA






294
UCCUAGACCAUUU
518
AACUGGUGGGAAA
742
AACTGGTGGGAAA
Intron 51



CCCACCAGUU

UGGUCUAGGA

TGGTCTAGGA






295
UCCUAGACCAUUU
519
AGAACUGGUGGGA
743
AGAACTGGTGGGA
Intron 51



CCCACCAGUUCU

AAUGGUCUAGGA

AATGGTCTAGGA






296
CCUAGACCAUUUC
520
CUGGUGGGAAAUG
744
CTGGTGGGAAATG
Intron 51



CCACCAG

GUCUAGG

GTCTAGG






297
CCUAGACCAUUUC
521
AACUGGUGGGAAA
745
AACTGGTGGGAAA
Intron 51



CCACCAGUU

UGGUCUAGG

TGGTCTAGG






298
CCUAGACCAUUUC
522
AGAACUGGUGGGA
746
AGAACTGGTGGGA
Intron 51



CCACCAGUUCU

AAUGGUCUAGG

AATGGTCTAGG






299
CCUAGACCAUUUC
523
AAGAACUGGUGGG
747
AAGAACTGGTGGG
Intron 51



CCACCAGUUCUU

AAAUGGUCUAGG

AAATGGTCTAGG






300
CUAGACCAUUUCC
524
AACUGGUGGGAAA
748
AACTGGTGGGAAA
Intron 51



CACCAGUU

UGGUCUAG

TGGTCTAG






301
CUAGACCAUUUCC
525
AGAACUGGUGGGA
749
AGAACTGGTGGGA
Intron 51



CACCAGUUCU

AAUGGUCUAG

AATGGTCTAG






302
CUAGACCAUUUCC
526
AAGAACUGGUGGG
750
AAGAACTGGTGGG
Intron 51



CACCAGUUCUU

AAAUGGUCUAG

AAATGGTCTAG






303
UAGACCAUUUCCC
527
AACUGGUGGGAAA
751
AACTGGTGGGAAA
Intron 51



ACCAGUU

UGGUCUA

TGGTCTA






304
UAGACCAUUUCCC
528
AGAACUGGUGGGA
752
AGAACTGGTGGGA
Intron 51



ACCAGUUCU

AAUGGUCUA

AATGGTCTA






305
UAGACCAUUUCCC
529
AAGAACUGGUGGG
753
AAGAACTGGTGGG
Intron 51



ACCAGUUCUU

AAAUGGUCUA

AAATGGTCTA






306
UAGACCAUUUCCC
530
CUAAGAACUGGUG
754
CTAAGAACTGGTG
Intron 51



ACCAGUUCUUAG

GGAAAUGGUCUA

GGAAATGGTCTA






307
AGACCAUUUCCCA
531
AGAACUGGUGGGA
755
AGAACTGGTGGGA
Intron 51



CCAGUUCU

AAUGGUCU

AATGGTCT






308
AGACCAUUUCCCA
532
AAGAACUGGUGGG
756
AAGAACTGGTGGG
Intron 51



CCAGUUCUU

AAAUGGUCU

AAATGGTCT






309
AGACCAUUUCCCA
533
CUAAGAACUGGUG
757
CTAAGAACTGGTG
Intron 51



CCAGUUCUUAG

GGAAAUGGUCU

GGAAATGGTCT






310
AGACCAUUUCCCA
534
CCUAAGAACUGGU
758
CCTAAGAACTGGT
Intron 51



CCAGUUCUUAGG

GGGAAAUGGUCU

GGGAAATGGTCT






311
GACCAUUUCCCAC
535
AGAACUGGUGGGA
759
AGAACTGGTGGGA
Intron 51



CAGUUCU

AAUGGUC

AATGGTC






312
GACCAUUUCCCAC
536
AAGAACUGGUGGG
760
AAGAACTGGTGGG
Intron 51



CAGUUCUU

AAAUGGUC

AAATGGTC






313
GACCAUUUCCCAC
537
CUAAGAACUGGUG
761
CTAAGAACTGGTG
Intron 51



CAGUUCUUAG

GGAAAUGGUC

GGAAATGGTC






314
GACCAUUUCCCAC
538
CCUAAGAACUGGU
762
CCTAAGAACTGGT
Intron 51



CAGUUCUUAGG

GGGAAAUGGUC

GGGAAATGGTC






315
GACCAUUUCCCAC
539
GCCUAAGAACUGG
763
GCCTAAGAACTGG
Intron 51



CAGUUCUUAGGC

UGGGAAAUGGUC

TGGGAAATGGTC






316
ACCAUUUCCCACC
540
GCCUAAGAACUGG
764
GCCTAAGAACTGG
Intron 51



AGUUCUUAGGC

UGGGAAAUGGU

TGGGAAATGGT






317
ACCAUUUCCCACC
541
UGCCUAAGAACUG
765
TGCCTAAGAACTG
Intron 51



AGUUCUUAGGCA

GUGGGAAAUGGU

GTGGGAAATGGT






318
CCAUUUCCCACCA
542
GCCUAAGAACUGG
766
GCCTAAGAACTGG
Intron 51



GUUCUUAGGC

UGGGAAAUGG

TGGGAAATGG






319
CCAUUUCCCACCA
543
UGCCUAAGAACUG
767
TGCCTAAGAACTG
Intron 51



GUUCUUAGGCA

GUGGGAAAUGG

GTGGGAAATGG






320
CCAUUUCCCACCA
544
UUGCCUAAGAACU
768
TTGCCTAAGAACT
Intron 51



GUUCUUAGGCAA

GGUGGGAAAUGG

GGTGGGAAATGG






321
CAUUUCCCACCAG
545
UGCCUAAGAACUG
769
TGCCTAAGAACTG
Intron 51



UUCUUAGGCA

GUGGGAAAUG

GTGGGAAATG






322
CAUUUCCCACCAG
546
UUGCCUAAGAACU
770
TTGCCTAAGAACT
Intron 51



UUCUUAGGCAA

GGUGGGAAAUG

GGTGGGAAATG






323
AGUGUUUUGGCUG
547
GUGAGACCAGCCA
771
GTGAGACCAGCCA
Intron 51



GUCUCAC

AAACACU

AAACACT






324
AGUGUUUUGGCUG
548
UGUGAGACCAGCC
772
TGTGAGACCAGCC
Intron 51



GUCUCACA

AAAACACU

AAAACACT






325
AGUGUUUUGGCUG
549
UUGUGAGACCAGC
773
TTGTGAGACCAGC
Intron 51



GUCUCACAA

CAAAACACU

CAAAACACT






326
AGUGUUUUGGCUG
550
AUUGUGAGACCAG
774
ATTGTGAGACCAG
Intron 51



GUCUCACAAU

CCAAAACACU

CCAAAACACT






327
GUGUUUUGGCUGG
551
AUUGUGAGACCAG
775
ATTGTGAGACCAG
Intron 51



UCUCACAAU

CCAAAACAC

CCAAAACAC






328
GUUUUGGCUGGUC
552
GUACAAUUGUGAG
776
GTACAATTGTGAG
Intron 51



UCACAAUUGUAC

ACCAGCCAAAAC

ACCAGCCAAAAC






329
UUUGGCUGGUCUC
553
GUACAAUUGUGAG
777
GTACAATTGTGAG
Intron 51



ACAAUUGUAC

ACCAGCCAAA

ACCAGCCAAA






330
UUGGCUGGUCUCA
554
GUACAAUUGUGAG
778
GTACAATTGTGAG
Intron 51



CAAUUGUAC

ACCAGCCAA

ACCAGCCAA






331
UUGGCUGGUCUCA
555
AGUACAAUUGUGA
779
AGTACAATTGTGA
Intron 51



CAAUUGUACU

GACCAGCCAA

GACCAGCCAA






332
UGGCUGGUCUCAC
556
GUACAAUUGUGAG
780
GTACAATTGTGAG
Intron 51



AAUUGUAC

ACCAGCCA

ACCAGCCA






333
UGGCUGGUCUCAC
557
AGUACAAUUGUGA
781
AGTACAATTGTGA
Intron 51



AAUUGUACU

GACCAGCCA

GACCAGCCA






334
UGGCUGGUCUCAC
558
AAGUACAAUUGUG
782
AAGTACAATTGTG
Intron 51



AAUUGUACUU

AGACCAGCCA

AGACCAGCCA






335
UGGCUGGUCUCAC
559
AAAGUACAAUUGU
783
AAAGTACAATTGT
Intron 51



AAUUGUACUUU

GAGACCAGCCA

GAGACCAGCCA






336
GGCUGGUCUCACA
560
GUACAAUUGUGAG
784
GTACAATTGTGAG
Intron 51



AUUGUAC

ACCAGCC

ACCAGCC






337
GGCUGGUCUCACA
561
AGUACAAUUGUGA
785
AGTACAATTGTGA
Intron 51



AUUGUACU

GACCAGCC

GACCAGCC






338
GGCUGGUCUCACA
562
AAGUACAAUUGUG
786
AAGTACAATTGTG
Intron 51



AUUGUACUU

AGACCAGCC

AGACCAGCC






339
GGCUGGUCUCACA
563
AAAGUACAAUUGU
787
AAAGTACAATTGT
Intron 51



AUUGUACUUU

GAGACCAGCC

GAGACCAGCC






340
GGCUGGUCUCACA
564
GUAAAGUACAAUU
788
GTAAAGTACAATT
Intron 51



AUUGUACUUUAC

GUGAGACCAGCC

GTGAGACCAGCC






341
GCUGGUCUCACAA
565
GUAAAGUACAAUU
789
GTAAAGTACAATT
Intron 51



UUGUACUUUAC

GUGAGACCAGC

GTGAGACCAGC






342
GCUGGUCUCACAA
566
AGUAAAGUACAAU
790
AGTAAAGTACAAT
Intron 51



UUGUACUUUACU

UGUGAGACCAGC

TGTGAGACCAGC






343
UGUAAAAGGAAUA
567
UCAGCGUUGUGUA
791
TCAGCGTTGTGTA
Intron 51



CACAACGCUGA

UUCCUUUUACA

TTCCTTTTACA






344
UGUAAAAGGAAUA
568
UUCAGCGUUGUGU
792
TTCAGCGTTGTGT
Intron 51



CACAACGCUGAA

AUUCCUUUUACA

ATTCCTTTTACA






345
GUAAAAGGAAUAC
569
UCAGCGUUGUGUA
793
TCAGCGTTGTGTA
Intron 51



ACAACGCUGA

UUCCUUUUAC

TTCCTTTTAC






346
GUAAAAGGAAUAC
570
UUCAGCGUUGUGU
794
TTCAGCGTTGTGT
Intron 51



ACAACGCUGAA

AUUCCUUUUAC

ATTCCTTTTAC






347
GUAAAAGGAAUAC
571
CUUCAGCGUUGUG
795
CTTCAGCGTTGTG
Intron 51



ACAACGCUGAAG

UAUUCCUUUUAC

TATTCCTTTTAC






348
UAAAAGGAAUACA
572
UCAGCGUUGUGUA
796
TCAGCGTTGTGTA
Intron 51



CAACGCUGA

UUCCUUUUA

TTCCTTTTA






349
UAAAAGGAAUACA
573
UUCAGCGUUGUGU
797
TTCAGCGTTGTGT
Intron 51



CAACGCUGAA

AUUCCUUUUA

ATTCCTTTTA






350
UAAAAGGAAUACA
574
CUUCAGCGUUGUG
798
CTTCAGCGTTGTG
Intron 51



CAACGCUGAAG

UAUUCCUUUUA

TATTCCTTTTA






351
UAAAAGGAAUACA
575
UCUUCAGCGUUGU
799
TCTTCAGCGTTGT
Intron 51



CAACGCUGAAGA

GUAUUCCUUUUA

GTATTCCTTTTA






352
AAAAGGAAUACAC
576
UCAGCGUUGUGUA
800
TCAGCGTTGTGTA
Intron 51



AACGCUGA

UUCCUUUU

TTCCTTTT






353
AAAAGGAAUACAC
577
UUCAGCGUUGUGU
801
TTCAGCGTTGTGT
Intron 51



AACGCUGAA

AUUCCUUUU

ATTCCTTTT






354
AAAAGGAAUACAC
578
CUUCAGCGUUGUG
802
CTTCAGCGTTGTG
Intron 51



AACGCUGAAG

UAUUCCUUUU

TATTCCTTTT






355
AAAAGGAAUACAC
579
UCUUCAGCGUUGU
803
TCTTCAGCGTTGT
Intron 51



AACGCUGAAGA

GUAUUCCUUUU

GTATTCCTTTT






356
AAAAGGAAUACAC
580
UUCUUCAGCGUUG
804
TTCTTCAGCGTTG
Intron 51



AACGCUGAAGAA

UGUAUUCCUUUU

TGTATTCCTTTT






357
AAAGGAAUACACA
581
UCAGCGUUGUGUA
805
TCAGCGTTGTGTA
Intron 51



ACGCUGA

UUCCUUU

TTCCTTT






358
AAAGGAAUACACA
582
UUCAGCGUUGUGU
806
TTCAGCGTTGTGT
Intron 51



ACGCUGAA

AUUCCUUU

ATTCCTTT






359
AAAGGAAUACACA
583
CUUCAGCGUUGUG
807
CTTCAGCGTTGTG
Intron 51



ACGCUGAAG

UAUUCCUUU

TATTCCTTT






360
AAAGGAAUACACA
584
UCUUCAGCGUUGU
808
TCTTCAGCGTTGT
Intron 51



ACGCUGAAGA

GUAUUCCUUU

GTATTCCTTT






361
AAAGGAAUACACA
585
UUCUUCAGCGUUG
809
TTCTTCAGCGTTG
Intron 51



ACGCUGAAGAA

UGUAUUCCUUU

TGTATTCCTTT






362
AAAGGAAUACACA
586
GUUCUUCAGCGUU
810
GTTCTTCAGCGTT
Intron 51



ACGCUGAAGAAC

GUGUAUUCCUUU

GTGTATTCCTTT






363
AAGGAAUACACAA
587
UUCAGCGUUGUGU
811
TTCAGCGTTGTGT
Intron 51



CGCUGAA

AUUCCUU

ATTCCTT






364
AAGGAAUACACAA
588
CUUCAGCGUUGUG
812
CTTCAGCGTTGTG
Intron 51



CGCUGAAG

UAUUCCUU

TATTCCTT






365
AAGGAAUACACAA
589
UCUUCAGCGUUGU
813
TCTTCAGCGTTGT
Intron 51



CGCUGAAGA

GUAUUCCUU

GTATTCCTT






366
AAGGAAUACACAA
590
UUCUUCAGCGUUG
814
TTCTTCAGCGTTG
Intron 51



CGCUGAAGAA

UGUAUUCCUU

TGTATTCCTT






367
AAGGAAUACACAA
591
GUUCUUCAGCGUU
815
GTTCTTCAGCGTT
Intron 51



CGCUGAAGAAC

GUGUAUUCCUU

GTGTATTCCTT






368
AGGAAUACACAAC
592
CUUCAGCGUUGUG
816
CTTCAGCGTTGTG
Intron 51



GCUGAAG

UAUUCCU

TATTCCT






369
AGGAAUACACAAC
593
UCUUCAGCGUUGU
817
TCTTCAGCGTTGT
Intron 51



GCUGAAGA

GUAUUCCU

GTATTCCT






370
AGGAAUACACAAC
594
UUCUUCAGCGUUG
818
TTCTTCAGCGTTG
Intron 51



GCUGAAGAA

UGUAUUCCU

TGTATTCCT






371
AGGAAUACACAAC
595
GUUCUUCAGCGUU
819
GTTCTTCAGCGTT
Intron 51



GCUGAAGAAC

GUGUAUUCCU

GTGTATTCCT






372
GGAAUACACAACG
596
UCUUCAGCGUUGU
820
TCTTCAGCGTTGT
Intron 51



CUGAAGA

GUAUUCC

GTATTCC






373
GGAAUACACAACG
597
UUCUUCAGCGUUG
821
TTCTTCAGCGTTG
Intron 51



CUGAAGAA

UGUAUUCC

TGTATTCC






374
GGAAUACACAACG
598
GUUCUUCAGCGUU
822
GTTCTTCAGCGTT
Intron 51



CUGAAGAAC

GUGUAUUCC

GTGTATTCC






375
GGAAUACACAACG
599
GGGUUCUUCAGCG
823
GGGTTCTTCAGCG
Intron 51



CUGAAGAACCC

UUGUGUAUUCC

TTGTGTATTCC






376
GGAAUACACAACG
600
AGGGUUCUUCAGC
824
AGGGTTCTTCAGC
Intron 51



CUGAAGAACCCU

GUUGUGUAUUCC

GTTGTGTATTCC






377
GAAUACACAACGC
601
GUUCUUCAGCGUU
825
GTTCTTCAGCGTT
Intron 51



UGAAGAAC

GUGUAUUC

GTGTATTC






378
GAAUACACAACGC
602
GGGUUCUUCAGCG
826
GGGTTCTTCAGCG
Intron 51



UGAAGAACCC

UUGUGUAUUC

TTGTGTATTC






379
GAAUACACAACGC
603
AGGGUUCUUCAGC
827
AGGGTTCTTCAGC
Intron 51



UGAAGAACCCU

GUUGUGUAUUC

GTTGTGTATTC






380
AAUACACAACGCU
604
GGGUUCUUCAGCG
828
GGGTTCTTCAGCG
Intron 51



GAAGAACCC

UUGUGUAUU

TTGTGTATT






381
AUACACAACGCUG
605
GGGUUCUUCAGCG
829
GGGTTCTTCAGCG
Intron 51



AAGAACCC

UUGUGUAU

TTGTGTAT






382
UACACAACGCUGA
606
GGGUUCUUCAGCG
830
GGGTTCTTCAGCG
Intron 51



AGAACCC

UUGUGUA

TTGTGTA






383
ACACAACGCUGAA
607
AUCAGGGUUCUUC
831
ATCAGGGTTCTTC
Intron 51



GAACCCUGAU

AGCGUUGUGU

AGCGTTGTGT






Each thymine base (T) in any one of the oligonucleotides and/or target sequences provided in Table 8 may



independently and optionally be replaced with a uracil base (U), and/or each U may independently and optionally


be replaced with a T. Target sequences listed in Table 8 contain U's, but binding of a DMD-targeting


oligonucleotide to RNA and/or DNA is contemplated.






In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an exon of a DMD RNA (e.g., SEQ ID NO: 131, 838, or 854). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an intron of a DMD RNA (e.g., SEQ ID NO: 834 or 846). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a portion of a DMD sequence (e.g., a sequence provided by any one of SEQ ID NOs: 832, 844, 833, 845, 835, 836, 847-852, 837, 853, 839-843). Examples of DMD sequences are provided below. Each of the DMD sequences provided below include thymine nucleotides (T's), but it should be understood that each sequence can represent a DNA sequence or an RNA sequence in which any or all of the T's would be replaced with uracil nucleotides (U's).



Homo sapiens dystrophin (DMD), transcript variant Dp427m, mRNA (NCBI Reference Sequence: NM_004006.2)









(SEQ ID NO: 130)


TCCTGGCATCAGTTACTGTGTTGACTCACTCAGTGTTGGGATCACTCAC





TTTCCCCCTACAGGACTCAGATCTGGGAGGCAATTACCTTCGGAGAAAA





ACGAATAGGAAAAACTGAAGTGTTACTTTTTTTAAAGCTGCTGAAGTTT





GTTGGTTTCTCATTGTTTTTAAGCCTACTGGAGCAATAAAGTTTGAAGA





ACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATATACACTTTTCAAAA





TGCTTTGGTGGGAAGAAGTAGAGGACTGTTATGAAAGAGAAGATGTTCA





AAAGAAAACATTCACAAAATGGGTAAATGCACAATTTTCTAAGTTTGGG





AAGCAGCATATTGAGAACCTCTTCAGTGACCTACAGGATGGGAGGCGCC





TCCTAGACCTCCTCGAAGGCCTGACAGGGCAAAAACTGCCAAAAGAAAA





AGGATCCACAAGAGTTCATGCCCTGAACAATGTCAACAAGGCACTGCGG





GTTTTGCAGAACAATAATGTTGATTTAGTGAATATTGGAAGTACTGACA





TCGTAGATGGAAATCATAAACTGACTCTTGGTTTGATTTGGAATATAAT





CCTCCACTGGCAGGTCAAAAATGTAATGAAAAATATCATGGCTGGATTG





CAACAAACCAACAGTGAAAAGATTCTCCTGAGCTGGGTCCGACAATCAA





CTCGTAATTATCCACAGGTTAATGTAATCAACTTCACCACCAGCTGGTC





TGATGGCCTGGCTTTGAATGCTCTCATCCATAGTCATAGGCCAGACCTA





TTTGACTGGAATAGTGTGGTTTGCCAGCAGTCAGCCACACAACGACTGG





AACATGCATTCAACATCGCCAGATATCAATTAGGCATAGAGAAACTACT





CGATCCTGAAGATGTTGATACCACCTATCCAGATAAGAAGTCCATCTTA





ATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGAGCATTG





AAGCCATCCAGGAAGTGGAAATGTTGCCAAGGCCACCTAAAGTGACTAA





AGAAGAACATTTTCAGTTACATCATCAAATGCACTATTCTCAACAGATC





ACGGTCAGTCTAGCACAGGGATATGAGAGAACTTCTTCCCCTAAGCCTC





GATTCAAGAGCTATGCCTACACACAGGCTGCTTATGTCACCACCTCTGA





CCCTACACGGAGCCCATTTCCTTCACAGCATTTGGAAGCTCCTGAAGAC





AAGTCATTTGGCAGTTCATTGATGGAGAGTGAAGTAAACCTGGACCGTT





ATCAAACAGCTTTAGAAGAAGTATTATCGTGGCTTCTTTCTGCTGAGGA





CACATTGCAAGCACAAGGAGAGATTTCTAATGATGTGGAAGTGGTGAAA





GACCAGTTTCATACTCATGAGGGGTACATGATGGATTTGACAGCCCATC





AGGGCCGGGTTGGTAATATTCTACAATTGGGAAGTAAGCTGATTGGAAC





AGGAAAATTATCAGAAGATGAAGAAACTGAAGTACAAGAGCAGATGAAT





CTCCTAAATTCAAGATGGGAATGCCTCAGGGTAGCTAGCATGGAAAAAC





AAAGCAATTTACATAGAGTTTTAATGGATCTCCAGAATCAGAAACTGAA





AGAGTTGAATGACTGGCTAACAAAAACAGAAGAAAGAACAAGGAAAATG





GAGGAAGAGCCTCTTGGACCTGATCTTGAAGACCTAAAACGCCAAGTAC





AACAACATAAGGTGCTTCAAGAAGATCTAGAACAAGAACAAGTCAGGGT





CAATTCTCTCACTCACATGGTGGTGGTAGTTGATGAATCTAGTGGAGAT





CACGCAACTGCTGCTTTGGAAGAACAACTTAAGGTATTGGGAGATCGAT





GGGCAAACATCTGTAGATGGACAGAAGACCGCTGGGTTCTTTTACAAGA





CATCCTTCTCAAATGGCAACGTCTTACTGAAGAACAGTGCCTTTTTAGT





GCATGGCTTTCAGAAAAAGAAGATGCAGTGAACAAGATTCACACAACTG





GCTTTAAAGATCAAAATGAAATGTTATCAAGTCTTCAAAAACTGGCCGT





TTTAAAAGCGGATCTAGAAAAGAAAAAGCAATCCATGGGCAAACTGTAT





TCACTCAAACAAGATCTTCTTTCAACACTGAAGAATAAGTCAGTGACCC





AGAAGACGGAAGCATGGCTGGATAACTTTGCCCGGTGTTGGGATAATTT





AGTCCAAAAACTTGAAAAGAGTACAGCACAGATTTCACAGGCTGTCACC





ACCACTCAGCCATCACTAACACAGACAACTGTAATGGAAACAGTAACTA





CGGTGACCACAAGGGAACAGATCCTGGTAAAGCATGCTCAAGAGGAACT





TCCACCACCACCTCCCCAAAAGAAGAGGCAGATTACTGTGGATTCTGAA





ATTAGGAAAAGGTTGGATGTTGATATAACTGAACTTCACAGCTGGATTA





CTCGCTCAGAAGCTGTGTTGCAGAGTCCTGAATTTGCAATCTTTCGGAA





GGAAGGCAACTTCTCAGACTTAAAAGAAAAAGTCAATGCCATAGAGCGA





GAAAAAGCTGAGAAGTTCAGAAAACTGCAAGATGCCAGCAGATCAGCTC





AGGCCCTGGTGGAACAGATGGTGAATGAGGGTGTTAATGCAGATAGCAT





CAAACAAGCCTCAGAACAACTGAACAGCCGGTGGATCGAATTCTGCCAG





TTGCTAAGTGAGAGACTTAACTGGCTGGAGTATCAGAACAACATCATCG





CTTTCTATAATCAGCTACAACAATTGGAGCAGATGACAACTACTGCTGA





AAACTGGTTGAAAATCCAACCCACCACCCCATCAGAGCCAACAGCAATT





AAAAGTCAGTTAAAAATTTGTAAGGATGAAGTCAACCGGCTATCAGGTC





TTCAACCTCAAATTGAACGATTAAAAATTCAAAGCATAGCCCTGAAAGA





GAAAGGACAAGGACCCATGTTCCTGGATGCAGACTTTGTGGCCTTTACA





AATCATTTTAAGCAAGTCTTTTCTGATGTGCAGGCCAGAGAGAAAGAGC





TACAGACAATTTTTGACACTTTGCCACCAATGCGCTATCAGGAGACCAT





GAGTGCCATCAGGACATGGGTCCAGCAGTCAGAAACCAAACTCTCCATA





CCTCAACTTAGTGTCACCGACTATGAAATCATGGAGCAGAGACTCGGGG





AATTGCAGGCTTTACAAAGTTCTCTGCAAGAGCAACAAAGTGGCCTATA





CTATCTCAGCACCACTGTGAAAGAGATGTCGAAGAAAGCGCCCTCTGAA





ATTAGCCGGAAATATCAATCAGAATTTGAAGAAATTGAGGGACGCTGGA





AGAAGCTCTCCTCCCAGCTGGTTGAGCATTGTCAAAAGCTAGAGGAGCA





AATGAATAAACTCCGAAAAATTCAGAATCACATACAAACCCTGAAGAAA





TGGATGGCTGAAGTTGATGTTTTTCTGAAGGAGGAATGGCCTGCCCTTG





GGGATTCAGAAATTCTAAAAAAGCAGCTGAAACAGTGCAGACTTTTAGT





CAGTGATATTCAGACAATTCAGCCCAGTCTAAACAGTGTCAATGAAGGT





GGGCAGAAGATAAAGAATGAAGCAGAGCCAGAGTTTGCTTCGAGACTTG





AGACAGAACTCAAAGAACTTAACACTCAGTGGGATCACATGTGCCAACA





GGTCTATGCCAGAAAGGAGGCCTTGAAGGGAGGTTTGGAGAAAACTGTA





AGCCTCCAGAAAGATCTATCAGAGATGCACGAATGGATGACACAAGCTG





AAGAAGAGTATCTTGAGAGAGATTTTGAATATAAAACTCCAGATGAATT





ACAGAAAGCAGTTGAAGAGATGAAGAGAGCTAAAGAAGAGGCCCAACAA





AAAGAAGCGAAAGTGAAACTCCTTACTGAGTCTGTAAATAGTGTCATAG





CTCAAGCTCCACCTGTAGCACAAGAGGCCTTAAAAAAGGAACTTGAAAC





TCTAACCACCAACTACCAGTGGCTCTGCACTAGGCTGAATGGGAAATGC





AAGACTTTGGAAGAAGTTTGGGCATGTTGGCATGAGTTATTGTCATACT





TGGAGAAAGCAAACAAGTGGCTAAATGAAGTAGAATTTAAACTTAAAAC





CACTGAAAACATTCCTGGCGGAGCTGAGGAAATCTCTGAGGTGCTAGAT





TCACTTGAAAATTTGATGCGACATTCAGAGGATAACCCAAATCAGATTC





GCATATTGGCACAGACCCTAACAGATGGCGGAGTCATGGATGAGCTAAT





CAATGAGGAACTTGAGACATTTAATTCTCGTTGGAGGGAACTACATGAA





GAGGCTGTAAGGAGGCAAAAGTTGCTTGAACAGAGCATCCAGTCTGCCC





AGGAGACTGAAAAATCCTTACACTTAATCCAGGAGTCCCTCACATTCAT





TGACAAGCAGTTGGCAGCTTATATTGCAGACAAGGTGGACGCAGCTCAA





ATGCCTCAGGAAGCCCAGAAAATCCAATCTGATTTGACAAGTCATGAGA





TCAGTTTAGAAGAAATGAAGAAACATAATCAGGGGAAGGAGGCTGCCCA





AAGAGTCCTGTCTCAGATTGATGTTGCACAGAAAAAATTACAAGATGTC





TCCATGAAGTTTCGATTATTCCAGAAACCAGCCAATTTTGAGCAGCGTC





TACAAGAAAGTAAGATGATTTTAGATGAAGTGAAGATGCACTTGCCTGC





ATTGGAAACAAAGAGTGTGGAACAGGAAGTAGTACAGTCACAGCTAAAT





CATTGTGTGAACTTGTATAAAAGTCTGAGTGAAGTGAAGTCTGAAGTGG





AAATGGTGATAAAGACTGGACGTCAGATTGTACAGAAAAAGCAGACGGA





AAATCCCAAAGAACTTGATGAAAGAGTAACAGCTTTGAAATTGCATTAT





AATGAGCTGGGAGCAAAGGTAACAGAAAGAAAGCAACAGTTGGAGAAAT





GCTTGAAATTGTCCCGTAAGATGCGAAAGGAAATGAATGTCTTGACAGA





ATGGCTGGCAGCTACAGATATGGAATTGACAAAGAGATCAGCAGTTGAA





GGAATGCCTAGTAATTTGGATTCTGAAGTTGCCTGGGGAAAGGCTACTC





AAAAAGAGATTGAGAAACAGAAGGTGCACCTGAAGAGTATCACAGAGGT





AGGAGAGGCCTTGAAAACAGTTTTGGGCAAGAAGGAGACGTTGGTGGAA





GATAAACTCAGTCTTCTGAATAGTAACTGGATAGCTGTCACCTCCCGAG





CAGAAGAGTGGTTAAATCTTTTGTTGGAATACCAGAAACACATGGAAAC





TTTTGACCAGAATGTGGACCACATCACAAAGTGGATCATTCAGGCTGAC





ACACTTTTGGATGAATCAGAGAAAAAGAAACCCCAGCAAAAAGAAGACG





TGCTTAAGCGTTTAAAGGCAGAACTGAATGACATACGCCCAAAGGTGGA





CTCTACACGTGACCAAGCAGCAAACTTGATGGCAAACCGCGGTGACCAC





TGCAGGAAATTAGTAGAGCCCCAAATCTCAGAGCTCAACCATCGATTTG





CAGCCATTTCACACAGAATTAAGACTGGAAAGGCCTCCATTCCTTTGAA





GGAATTGGAGCAGTTTAACTCAGATATACAAAAATTGCTTGAACCACTG





GAGGCTGAAATTCAGCAGGGGGTGAATCTGAAAGAGGAAGACTTCAATA





AAGATATGAATGAAGACAATGAGGGTACTGTAAAAGAATTGTTGCAAAG





AGGAGACAACTTACAACAAAGAATCACAGATGAGAGAAAGCGAGAGGAA





ATAAAGATAAAACAGCAGCTGTTACAGACAAAACATAATGCTCTCAAGG





ATTTGAGGTCTCAAAGAAGAAAAAAGGCTCTAGAAATTTCTCATCAGTG





GTATCAGTACAAGAGGCAGGCTGATGATCTCCTGAAATGCTTGGATGAC





ATTGAAAAAAAATTAGCCAGCCTACCTGAGCCCAGAGATGAAAGGAAAA





TAAAGGAAATTGATCGGGAATTGCAGAAGAAGAAAGAGGAGCTGAATGC





AGTGCGTAGGCAAGCTGAGGGCTTGTCTGAGGATGGGGCCGCAATGGCA





GTGGAGCCAACTCAGATCCAGCTCAGCAAGCGCTGGCGGGAAATTGAGA





GCAAATTTGCTCAGTTTCGAAGACTCAACTTTGCACAAATTCACACTGT





CCGTGAAGAAACGATGATGGTGATGACTGAAGACATGCCTTTGGAAATT





TCTTATGTGCCTTCTACTTATTTGACTGAAATCACTCATGTCTCACAAG





CCCTATTAGAAGTGGAACAACTTCTCAATGCTCCTGACCTCTGTGCTAA





GGACTTTGAAGATCTCTTTAAGCAAGAGGAGTCTCTGAAGAATATAAAA





GATAGTCTACAACAAAGCTCAGGTCGGATTGACATTATTCATAGCAAGA





AGACAGCAGCATTGCAAAGTGCAACGCCTGTGGAAAGGGTGAAGCTACA





GGAAGCTCTCTCCCAGCTTGATTTCCAATGGGAAAAAGTTAACAAAATG





TACAAGGACCGACAAGGGCGATTTGACAGATCTGTTGAGAAATGGCGGC





GTTTTCATTATGATATAAAGATATTTAATCAGTGGCTAACAGAAGCTGA





ACAGTTTCTCAGAAAGACACAAATTCCTGAGAATTGGGAACATGCTAAA





TACAAATGGTATCTTAAGGAACTCCAGGATGGCATTGGGCAGCGGCAAA





CTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATAATTCAGCAATC





CTCAAAAACAGATGCCAGTATTCTACAGGAAAAATTGGGAAGCCTGAAT





CTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCAGACAGAAAAAAGAGGC





TAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTAAATGA





ATTTGTTTTATGGTTGGAGGAAGCAGATAACATTGCTAGTATCCCACTT





GAACCTGGAAAAGAGCAGCAACTAAAAGAAAAGCTTGAGCAAGTCAAGT





TACTGGTGGAAGAGTTGCCCCTGCGCCAGGGAATTCTCAAACAATTAAA





TGAAACTGGAGGACCCGTGCTTGTAAGTGCTCCCATAAGCCCAGAAGAG





CAAGATAAACTTGAAAATAAGCTCAAGCAGACAAATCTCCAGTGGATAA





AGGTTTCCAGAGCTTTACCTGAGAAACAAGGAGAAATTGAAGCTCAAAT





AAAAGACCTTGGGCAGCTTGAAAAAAAGCTTGAAGACCTTGAAGAGCAG





TTAAATCATCTGCTGCTGTGGTTATCTCCTATTAGGAATCAGTTGGAAA





TTTATAACCAACCAAACCAAGAAGGACCATTTGACGTTCAGGAAACTGA





AATAGCAGTTCAAGCTAAACAACCGGATGTGGAAGAGATTTTGTCTAAA





GGGCAGCATTTGTACAAGGAAAAACCAGCCACTCAGCCAGTGAAGAGGA





AGTTAGAAGATCTGAGCTCTGAGTGGAAGGCGGTAAACCGTTTACTTCA





AGAGCTGAGGGCAAAGCAGCCTGACCTAGCTCCTGGACTGACCACTATT





GGAGCCTCTCCTACTCAGACTGTTACTCTGGTGACACAACCTGTGGTTA





CTAAGGAAACTGCCATCTCCAAACTAGAAATGCCATCTTCCTTGATGTT





GGAGGTACCTGCTCTGGCAGATTTCAACCGGGCTTGGACAGAACTTACC





GACTGGCTTTCTCTGCTTGATCAAGTTATAAAATCACAGAGGGTGATGG





TGGGTGACCTTGAGGATATCAACGAGATGATCATCAAGCAGAAGGCAAC





AATGCAGGATTTGGAACAGAGGCGTCCCCAGTTGGAAGAACTCATTACC





GCTGCCCAAAATTTGAAAAACAAGACCAGCAATCAAGAGGCTAGAACAA





TCATTACGGATCGAATTGAAAGAATTCAGAATCAGTGGGATGAAGTACA





AGAACACCTTCAGAACCGGAGGCAACAGTTGAATGAAATGTTAAAGGAT





TCAACACAATGGCTGGAAGCTAAGGAAGAAGCTGAGCAGGTCTTAGGAC





AGGCCAGAGCCAAGCTTGAGTCATGGAAGGAGGGTCCCTATACAGTAGA





TGCAATCCAAAAGAAAATCACAGAAACCAAGCAGTTGGCCAAAGACCTC





CGCCAGTGGCAGACAAATGTAGATGTGGCAAATGACTTGGCCCTGAAAC





TTCTCCGGGATTATTCTGCAGATGATACCAGAAAAGTCCACATGATAAC





AGAGAATATCAATGCCTCTTGGAGAAGCATTCATAAAAGGGTGAGTGAG





CGAGAGGCTGCTTTGGAAGAAACTCATAGATTACTGCAACAGTTCCCCC





TGGACCTGGAAAAGTTTCTTGCCTGGCTTACAGAAGCTGAAACAACTGC





CAATGTCCTACAGGATGCTACCCGTAAGGAAAGGCTCCTAGAAGACTCC





AAGGGAGTAAAAGAGCTGATGAAACAATGGCAAGACCTCCAAGGTGAAA





TTGAAGCTCACACAGATGTTTATCACAACCTGGATGAAAACAGCCAAAA





AATCCTGAGATCCCTGGAAGGTTCCGATGATGCAGTCCTGTTACAAAGA





CGTTTGGATAACATGAACTTCAAGTGGAGTGAACTTCGGAAAAAGTCTC





TCAACATTAGGTCCCATTTGGAAGCCAGTTCTGACCAGTGGAAGCGTCT





GCACCTTTCTCTGCAGGAACTTCTGGTGTGGCTACAGCTGAAAGATGAT





GAATTAAGCCGGCAGGCACCTATTGGAGGCGACTTTCCAGCAGTTCAGA





AGCAGAACGATGTACATAGGGCCTTCAAGAGGGAATTGAAAACTAAAGA





ACCTGTAATCATGAGTACTCTTGAGACTGTACGAATATTTCTGACAGAG





CAGCCTTTGGAAGGACTAGAGAAACTCTACCAGGAGCCCAGAGAGCTGC





CTCCTGAGGAGAGAGCCCAGAATGTCACTCGGCTTCTACGAAAGCAGGC





TGAGGAGGTCAATACTGAGTGGGAAAAATTGAACCTGCACTCCGCTGAC





TGGCAGAGAAAAATAGATGAGACCCTTGAAAGACTCCAGGAACTTCAAG





AGGCCACGGATGAGCTGGACCTCAAGCTGCGCCAAGCTGAGGTGATCAA





GGGATCCTGGCAGCCCGTGGGCGATCTCCTCATTGACTCTCTCCAAGAT





CACCTCGAGAAAGTCAAGGCACTTCGAGGAGAAATTGCGCCTCTGAAAG





AGAACGTGAGCCACGTCAATGACCTTGCTCGCCAGCTTACCACTTTGGG





CATTCAGCTCTCACCGTATAACCTCAGCACTCTGGAAGACCTGAACACC





AGATGGAAGCTTCTGCAGGTGGCCGTCGAGGACCGAGTCAGGCAGCTGC





ATGAAGCCCACAGGGACTTTGGTCCAGCATCTCAGCACTTTCTTTCCAC





GTCTGTCCAGGGTCCCTGGGAGAGAGCCATCTCGCCAAACAAAGTGCCC





TACTATATCAACCACGAGACTCAAACAACTTGCTGGGACCATCCCAAAA





TGACAGAGCTCTACCAGTCTTTAGCTGACCTGAATAATGTCAGATTCTC





AGCTTATAGGACTGCCATGAAACTCCGAAGACTGCAGAAGGCCCTTTGC





TTGGATCTCTTGAGCCTGTCAGCTGCATGTGATGCCTTGGACCAGCACA





ACCTCAAGCAAAATGACCAGCCCATGGATATCCTGCAGATTATTAATTG





TTTGACCACTATTTATGACCGCCTGGAGCAAGAGCACAACAATTTGGTC





AACGTCCCTCTCTGCGTGGATATGTGTCTGAACTGGCTGCTGAATGTTT





ATGATACGGGACGAACAGGGAGGATCCGTGTCCTGTCTTTTAAAACTGG





CATCATTTCCCTGTGTAAAGCACATTTGGAAGACAAGTACAGATACCTT





TTCAAGCAAGTGGCAAGTTCAACAGGATTTTGTGACCAGCGCAGGCTGG





GCCTCCTTCTGCATGATTCTATCCAAATTCCAAGACAGTTGGGTGAAGT





TGCATCCTTTGGGGGCAGTAACATTGAGCCAAGTGTCCGGAGCTGCTTC





CAATTTGCTAATAATAAGCCAGAGATCGAAGCGGCCCTCTTCCTAGACT





GGATGAGACTGGAACCCCAGTCCATGGTGTGGCTGCCCGTCCTGCACAG





AGTGGCTGCTGCAGAAACTGCCAAGCATCAGGCCAAATGTAACATCTGC





AAAGAGTGTCCAATCATTGGATTCAGGTACAGGAGTCTAAAGCACTTTA





ATTATGACATCTGCCAAAGCTGCTTTTTTTCTGGTCGAGTTGCAAAAGG





CCATAAAATGCACTATCCCATGGTGGAATATTGCACTCCGACTACATCA





GGAGAAGATGTTCGAGACTTTGCCAAGGTACTAAAAAACAAATTTCGAA





CCAAAAGGTATTTTGCGAAGCATCCCCGAATGGGCTACCTGCCAGTGCA





GACTGTCTTAGAGGGGGACAACATGGAAACTCCCGTTACTCTGATCAAC





TTCTGGCCAGTAGATTCTGCGCCTGCCTCGTCCCCTCAGCTTTCACACG





ATGATACTCATTCACGCATTGAACATTATGCTAGCAGGCTAGCAGAAAT





GGAAAACAGCAATGGATCTTATCTAAATGATAGCATCTCTCCTAATGAG





AGCATAGATGATGAACATTTGTTAATCCAGCATTACTGCCAAAGTTTGA





ACCAGGACTCCCCCCTGAGCCAGCCTCGTAGTCCTGCCCAGATCTTGAT





TTCCTTAGAGAGTGAGGAAAGAGGGGAGCTAGAGAGAATCCTAGCAGAT





CTTGAGGAAGAAAACAGGAATCTGCAAGCAGAATATGACCGTCTAAAGC





AGCAGCACGAACATAAAGGCCTGTCCCCACTGCCGTCCCCTCCTGAAAT





GATGCCCACCTCTCCCCAGAGTCCCCGGGATGCTGAGCTCATTGCTGAG





GCCAAGCTACTGCGTCAACACAAAGGCCGCCTGGAAGCCAGGATGCAAA





TCCTGGAAGACCACAATAAACAGCTGGAGTCACAGTTACACAGGCTAAG





GCAGCTGCTGGAGCAACCCCAGGCAGAGGCCAAAGTGAATGGCACAACG





GTGTCCTCTCCTTCTACCTCTCTACAGAGGTCCGACAGCAGTCAGCCTA





TGCTGCTCCGAGTGGTTGGCAGTCAAACTTCGGACTCCATGGGTGAGGA





AGATCTTCTCAGTCCTCCCCAGGACACAAGCACAGGGTTAGAGGAGGTG





ATGGAGCAACTCAACAACTCCTTCCCTAGTTCAAGAGGAAGAAATACCC





CTGGAAAGCCAATGAGAGAGGACACAATGTAGGAAGTCTTTTCCA





CATGGCAGATGATTTGGGCAGAGCGATGGAGTCCTTAGTATCAGTCATG





ACAGATGAAGAAGGAGCAGAATAAATGTTTTACAACTCCTGATTCCCGC





ATGGTTTTTATAATATTCATACAACAAAGAGGATTAGACAGTAAGAGTT





TACAAGAAATAAATCTATATTTTTGTGAAGGGTAGTGGTATTATACTGT





AGATTTCAGTAGTTTCTAAGTCTGTTATTGTTTTGTTAACAATGGCAGG





TTTTACACGTCTATGCAATTGTACAAAAAAGTTATAAGAAAACTACATG





TAAAATCTTGATAGCTAAATAACTTGCCATTTCTTTATATGGAACGCAT





TTTGGGTTGTTTAAAAATTTATAACAGTTATAAAGAAAGATTGTAAACT





AAAGTGTGCTTTATAAAAAAAAGTTGTTTATAAAAACCCCTAAAAACAA





AACAAACACACACACACACACATACACACACACACACAAAACTTTGAGG





CAGCGCATTGTTTTGCATCCTTTTGGCGTGATATCCATATGAAATTCAT





GGCTTTTTCTTTTTTTGCATATTAAAGATAAGACTTCCTCTACCACCAC





ACCAAATGACTACTACACACTGCTCATTTGAGAACTGTCAGCTGAGTGG





GGCAGGCTTGAGTTTTCATTTCATATATCTATATGTCTATAAGTATATA





AATACTATAGTTATATAGATAAAGAGATACGAATTTCTATAGACTGACT





TTTTCCATTTTTTAAATGTTCATGTCACATCCTAATAGAAAGAAATTAC





TTCTAGTCAGTCATCCAGGCTTACCTGCTTGGTCTAGAATGGATTTTTC





CCGGAGCCGGAAGCCAGGAGGAAACTACACCACACTAAAACATTGTCTA





CAGCTCCAGATGTTTCTCATTTTAAACAACTTTCCACTGACAACGAAAG





TAAAGTAAAGTATTGGATTTTTTTAAAGGGAACATGTGAATGAATACAC





AGGACTTATTATATCAGAGTGAGTAATCGGTTGGTTGGTTGATTGATTG





ATTGATTGATACATTCAGCTTCCTGCTGCTAGCAATGCCACGATTTAGA





TTTAATGATGCTTCAGTGGAAATCAATCAGAAGGTATTCTGACCTTGTG





AACATCAGAAGGTATTTTTTAACTCCCAAGCAGTAGCAGGACGATGATA





GGGCTGGAGGGCTATGGATTCCCAGCCCATCCCTGTGAAGGAGTAGGCC





ACTCTTTAAGTGAAGGATTGGATGATTGTTCATAATACATAAAGTTCTC





TGTAATTACAACTAAATTATTATGCCCTCTTCTCACAGTCAAAAGGAAC





TGGGTGGTTTGGTTTTTGTTGCTTTTTTAGATTTATTGTCCCATGTGGG





ATGAGTTTTTAAATGCCACAAGACATAATTTAAAATAAATAAACTTTGG





GAAAAGGTGTAAAACAGTAGCCCCATCACATTTGTGATACTGACAGGTA





TCAACCCAGAAGCCCATGAACTGTGTTTCCATCCTTTGCATTTCTCTGC





GAGTAGTTCCACACAGGTTTGTAAGTAAGTAAGAAAGAAGGCAAATTGA





TTCAAATGTTACAAAAAAACCCTTCTTGGTGGATTAGACAGGTTAAATA





TATAAACAAACAAACAAAAATTGCTCAAAAAAGAGGAGAAAAGCTCAAG





AGGAAAAGCTAAGGACTGGTAGGAAAAAGCTTTACTCTTTCATGCCATT





TTATTTCTTTTTGATTTTTAAATCATTCATTCAATAGATACCACCGTGT





GACCTATAATTTTGCAAATCTGTTACCTCTGACATCAAGTGTAATTAGC





TTTTGGAGAGTGGGCTGACATCAAGTGTAATTAGCTTTTGGAGAGTGGG





TTTTGTCCATTATTAATAATTAATTAATTAACATCAAACACGGCTTCTC





ATGCTATTTCTACCTCACTTTGGTTTTGGGGTGTTCCTGATAATTGTGC





ACACCTGAGTTCACAGCTTCACCACTTGTCCATTGCGTTATTTTCTTTT





TCCTTTATAATTCTTTCTTTTTCCTTCATAATTTTCAAAAGAAAACCCA





AAGCTCTAAGGTAACAAATTACCAAATTACATGAAGATTTGGTTTTTGT





CTTGCATTTTTTTCCTTTATGTGACGCTGGACCTTTTCTTTACCCAAGG





ATTTTTAAAACTCAGATTTAAAACAAGGGGTTACTTTACATCCTACTAA





GAAGTTTAAGTAAGTAAGTTTCATTCTAAAATCAGAGGTAAATAGAGTG





CATAAATAATTTTGTTTTAATCTTTTTGTTTTTCTTTTAGACACATTAG





CTCTGGAGTGAGTCTGTCATAATATTTGAACAAAAATTGAGAGCTTTAT





TGCTGCATTTTAAGCATAATTAATTTGGACATTATTTCGTGTTGTGTTC





TTTATAACCACCAAGTATTAAACTGTAAATCATAATGTAACTGAAGCAT





AAACATCACATGGCATGTTTTGTCATTGTTTTCAGGTACTGAGTTCTTA





CTTGAGTATCATAATATATTGTGTTTTAACACCAACACTGTAACATTTA





CGAATTATTTTTTTAAACTTCAGTTTTACTGCATTTTCACAACATATCA





GACTTCACCAAATATATGCCTTACTATTGTATTATAGTACTGCTTTACT





GTGTATCTCAATAAAGCACGCAGTTATGTTAC







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 50 (nucleotide positions 7445-7553 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1524527-1524635 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 131)


AGGAAGTTAGAAGATCTGAGCTCTGAGTGGAAGGCGGTAAACCGTTTAC





TTCAAGAGCTGAGGGCAAAGCAGCCTGACCTAGCTCCTGGACTGACCAC





TATTGGAGCCT







Homo sapiens dystrophin (DMD) exon 50/intron 50 junction (nucleotide positions 1524606-1524665 of NCBI Reference Sequence: NG_012232.1) TAGCTCCTGGACTGACCACTATTGGAGCCTGTAAGTATACTGGATCCCATTCTCTTTGGC (SEQ ID NO: 832)









(SEQ ID NO: 832)


TAGCTCCTGGACTGACCACTATTGGAGCCTGTAAGTATACTGGATCCCA





TTCTCTTTGGC







Homo sapiens dystrophin (DMD) exon 50/intron 50 junction target sequence 1 (nucleotide positions 1524626-1524677 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 833)


ATTGGAGCCTGTAAGTATACTGGATCCCATTCTCTTTGGCTCTAGCTAT





TTG







Homo sapiens dystrophin (DMD), intron 50 (nucleotide positions 1524636-1570417 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 834)


GTAAGTATACTGGATCCCATTCTCTTTGGCTCTAGCTATTTGTTCAAAA





GTGCAACTATGAAGTGATGACTGGGTGAGAGAGAAAATTTGTTTCAATT





CTAAAGATAGAGATAAACCTTTGTGTTATTGACTGTGCAAAAAGTCTTA





GAGTACATTCCTTGGAAATTGACTCTGATTCAAAGTGTTGCATGACAAC





GGGATATGGGGAGTGTTCTCTGGAGATACACCCACAAGGAAGAGAAGAG





CACAAGGGAGATTGTGGGAGAGTCTGAAATGTGATTTGTCTGCAGCAGA





GGCCTAAGCCAGTCTCGCAGGAGCCCTACATCTGGGCTGGCTGTGCAGA





GCTGTCCTGAATTGCAGGCAGTGGGCCTGGCCCTTGTATTCCTGATCCA





GCCAGCCATTGGCCAGGGGCTGGCTGCTGCCTGAGAGTGGAAGGACAAC





TTGGACAAGTTTTCTGAGGCCGAAGGCAATTCTTAGTAAGGAACACCAT





TAACAACCAATATTCCTAGCATCCAGGGATGTGTGCATTGTTCCTGAAG





AGGGACAAGTATGTCTACAAAAATCACAGAAACCACAGAAACACACACA





GTCCTACTAGCACCTCTCCCTGTCCCATTTGCAAACAATTTAAGAGCTC





TCCCATTTTTAGTTCAAGAAAAAGAAAAATGGATTGGGAGGACCACAAG





CTGACTTGGGGGAGGAATATTTCCTCATTTAGCTGTAGTTTTAACTTTT





GTTTTCACTGCATATTTTCAGTCTATTTTATTTTCTTTCCTCTTCAGTT





GTTGATAGAAGGTATTCATAAATTCTCATGGCAATGTTAATGCTGGCTT





TGACTCTCAGGGGAAAGAGGCCAGAAAACTTCTTTGCTGTACCATTCCA





TAATTAGGCAGAACTAAAAACATCTTTGGGTGTTGTTTTTTGTTTTTGT





TTTTTTTTTTGCCTTGTCTGCTTTTCAAAGATCAAATGATTGAAGCATT





AAAGCATGGTGACTGGTTCTTCAGGTAAAGTTGATTTTTATTTTATGTC





AAGTAGAAAAATACTGAACTGGAAGAATCACAGCTGGGGTAGCACAATC





ATAATTCATTAGAAGGCATAAATAGTGCTTGGATTAAAAGAAGCCCTAC





AATCTGGGGACAGTGCATCTCATGTGCCCTCTGGGATTACTCGGCAGTC





ATCAGAGTTAGATTTAACGACTTTGGAGACTTAAGCATTATGGTTTTTT





TTTTTTGTCAATCTGGGACACTGAAATTGCTGTATCAGGGTTATACTCA





ACTGTGTCAGGTTTATTTGTTTTTATGAGCTGTAATTTTTGGTTCCCTC





AGCGCATATGCATAGTTTGTTCCTATGTTATCATTTATTGGTGTCTGTT





TTCTGGCTGTCTCTGGTAGGTTCAGCCTCAGACTCTGTAACTCCATGAA





GAGATTATGTTCCAATGATGTTTTATAAGTTTGTTAAACTCTGAACTCA





TGAGTTTATGTCCCATATAAGCCACGTTACACATGGTAGGAAGGCTCCA





AAACCAGGGCGCCGAAATCCATTTAACGTGTAACTTACCTAAATGTAAC





AATGTTTATAAGAAAAATACATTGGAAGTTCCAGTTTTGACTTCCAGCA





ACATATATAATTCATCCACTTTATTTATTAACTTCCATGTGTTGAGCAT





CATACTGGTGCTGCGAGTACAGCATAGAATAAAAGTCTCTCCTTTCATA





AAACATATATTGTAATTGAAAGAGAAAGACAATAAACTAATGAAGAAAA





TATATACTGTCTCAATAATTATAAGTGCTGTAGAGTGTAGTCTACAGAT





TGATGTCAATGGGTATTTGTTAGACACACAGAATCTGAGGCCCCTATCC





TAGACCCACTGAATCACAATCTGCATTTTAATAGAATCCCCAGGTGAAT





CCTGTGCACACTGACATTTGAGAAACACCATTACAGAGAACAACTAAGC





AGGGAGATGGGATGAGGGTATTATTGTCTATAGTGTGGTCAGGGAAGCT





TGTCTGTTAAGAGAACATCAGAAAACTGATGTAAGTGAGGAAGTGAGCC





TGGTGTATTTCTGGGAAAATTATTCCAGGCAGGGAGAGAAAAGACTGAG





CAACGATACTGAAGTAGGAACAAGATGACGGAATATTAAGGAGATCAGT





GAGACTAGAGGAGTGGGTCAGGGGAAGTGTGATGGAAGCCATGAGAGAT





ACTCATCTTTCATAGCACTGCCCTACTTCCTTCTCCCCAACATGAGGGT





CTCATCACCCCCCACCACTCTTGTCTTCTCCTATGTCCTCCACATTGCT





GCCAGTATGGAGAGTCTGGGAATGCCCTCAGCTCAAAGCTGTTTGGTGA





TAGCTGGCAGAGTTGTGGTAGTAGCTAAAAAAGAATTAAGGGAAAGAGG





AATTTTCTCAAAAGCAGGTGCTTTTCATCCTCTTTAGCAAACCGAAACA





GATCTGAGCATTAAGTCAAGATGTTAAATACACAAATGTTGAATGAAAA





AAAAAACAAAAGGTAGTCATTTAAATTCAGAGCTGCTTTTATTAAAATA





AGATTTTCTTTTTTCTTTACTGTGGTAGTTCAAATATCAGAATAAAGAA





TTGTTTCTATTCCCGACTTCCTGACTTGCAGGAAGTTAATCAGAAATAA





ATGCAATATAAAAAAAGAAAATCTAATTTGTATTATGCTTCTTGTATAT





GTTTATTATTTCATGTACTGTATTACAATGTAATAGAATTTATAATTCA





TTATAGCAGATTGTTTCCATTGCATTCCTACTATTAAATATGTAGAAGC





TACACATATACTTGTAGCTTTAACATATATGTCTTTATCCTCAAAATAA





CTGCAAAGAACATATAGATAATTTTTAAAGATTAAGGAGCCTGAGGTTT





AGAGGGGAGATAGCTAGATTAAGGCCACACAGCTAGAAAGCAAGCAAGC





AAGGGTTTCAGTCCACATGTCAAGCTCCACAGCCTGTGTTTTGTTTTGT





GGCTGTGCTTTACACTATCTCTCTGTCCAAGAACCTAATGGAAAATTAC





AGATACAGATGCAGCTGGCCAGCAGTTAATATAATTTAACTCAATCTTA





AATTTATCTGGAGTAAAAGTGATACAAGTTTCCGTGTTTTTTCTTTTCT





TTCTTTCTTTTTTCTTTGTGTGTGTGTGTGTGTGTGTGTGTGTGACAGA





ATCTTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGTGCGATCTCGGTTTA





CTACAACCTCTGCCTTTCAGGTTCAAGCGATTCTCCTGCCTCAGCCTCC





CAAGTAGCTGGGATACAGGTGCGCACCACCATGCCCAGCTAATTTTTGT





AGTTTTAGTAAAGACGGGGTTGCTCCATGTTGATCAGGCTGGTCTTAAA





CTCCTGACCTCAAGTGATCCGCCTGCCTCAGCCTCTCAAAGTGCTGGGA





TTACAGGCATGAGCCACCTTGACTGGCCTGTTTCTGTGTTTTTTCTACT





TAAGAAGTAGAAAAAATTGGTTCACTCTATTTGAATTTCTTAGAACCAT





AGAAATCCAAACTTGGAATAATTATTGCAATTATTATCTAGTTGAGTAT





TCTTCTTTTATAGATGTAGAAGCTGAGGCCTAAAGTTGCTTGTTTTGTT





TTATGAACACTAAACCAAACTACCTTGTGGCTGCTTACTTAAATTATAA





ATTATAATGGGGTGGCCTTGCCTGAGCTGTATAAATTGTTTTAATTATC





AGGACAAATCAACATACTGGAAAAAAAAAGCAAAACTTGCAATTGTTGT





TGCTTAGACACCTGTCCATATCAGTTTCTATTGTTGCATAGAAGCACCC





CAAAACTTAACAGTTCAAAACGAGTGATTTATTGCTCATAATTCTGTGT





GTCTGAAGTTTGCTCTGTGATTAGCTGGATAGTTATTCTGATGGTCTTG





CTTGGTGTTACTTATGTGGATGCAGTTATCTAGCAAGTGAACAGGAGCT





AGATGGTCTAAAATGCACTCTCTCAGATATCTGACAGCTGGCTGTTGGT





TGCAGAACCTTGATTCTTCATAAGGCCACTCATCATCCTGTAGGCTAGA





TTAGGCTTCATTACATGGTATTCTCAGGGCAGTTTTCCAAGAGAGGGCG





GGTGGAAGCTACAAGACCTTCTGATGCCTAGGCTTTGAAACGTGTAGGT





TACTTCTGCTAAGTTATATTGGTCAAAGCACCTCAAAAGATCAGCCCAG





ATTCAAGAGATGAGGAAATTACTTCATCTCGTGAAAGGAGGAGATGCCA





CATCGCATATCAAAGGGGTATGCATATTGGGGATAGAAGGTTTTATTGT





CACCGTATTTATACACAAATCACTACATTGGGGAAAAGGAGGGAAACTG





GAGATCAAAAGTGTTGGTCTTAATCCAACTTAATTCTCAAAAATTACCA





TGCGTTAGAACCACCCAGTTCTTCGCAAAGTATAGATTACTGGGCTTCA





ACCCCAGAGTTTCTGATTTACTAGCTCTGGGGTGAGACCTGCATCTCTC





TCTCTCTCTTTTTTTTTGAGACTGAGTCTTGCTCTGTCACCCAGGCTGG





AGTGCAGTGGTGCAATCTCGGCTCACAGCAACCTCTGCCTCCTGGGTTG





AAGCGGTTCTCCTGCCTCAGCCTCCTGAGTAGCTAGGATTATAGGCACC





CGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACAGGGTTTC





ACCATGTTGGTCAGGCTGGTCTCGAACTCCTGACCTCAGGTGATCCACC





TGCCTCAGCCTCCCATAGTGCTGGGATTACAGGCGTGAGCCACTGTGCC





CAGCCAAGACTTGCATCTCTGAAAAGTTCCTAGGTTATGCTGATGCTGG





CCTATGCTTTGAGAACTACTACCACAGACATACAGTGAGTGGGGAAGAA





TAAATTCATCCCTTCTGCTGTGTGCAGCAAGGAGTGGGATTCCAATGAG





ATCCAGTGCTGTGAATGCTAAAGGGAAATCCATCTTATTTTAGCACCTC





TACTCCCCATCTCCCCACCCCGAGGATGTTATAGCTTAGAAGTTCAAGG





AGATGGACAACACACTAAACCAGGCAGTATTTGCCCTGCAGAGCTGTTC





AGTGTTCCTGGATGAGACCTCTGAGAAGAAAAGCCATAAGTTCCTCTAG





AGACTTTCACAATCATTTAGGTAGACAGGACTTTGCATGGGTCTGAAGG





CTTGCATGGCAGATGGAGGCAAAGAGCCAGCAAATCTGGTTGTAAATGT





CAATGTGAATCCTTTCTTATCCACAAGCTGCTGGGCCTGAGAACATTAA





TGTTCTACAATACCCGATTTAGCATTTTTGAAAGAAATTGCATATAGAC





ATGCTTAATGTGAAGACTCCAAATCAGGATATTTGATTCAAATGTCTCT





TGGTAATAACTATGGAATGAATAACCCATTGTATATGGACATATAGAAG





AGCCAGTTAACAGAGTTTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTT





TTTTGAGACGGAGTCTCACTCTGTCGCCCAGGCTGGAGTGCAGTGGCGC





GATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCT





GCCTCAGCCTCCCCCGTAGCTGGGACTACAGGCGCCCGCCACCACGCCC





GGCTAATTTTTTTGTGTTTTTTAGTAGAGACGGGGTTTCACTGTGTTAG





CCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTT





CCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCCAGAGTT





TTCTAGTTGATTAAACACTGGTAAAATCATCTCTTCCTGTAATTAAGTT





TGGAGAGAGCAAGTCTCAAGTGTAATTAGGAAAGCACAGTATTGGAGGT





CAAGAAGCCTAAATTCTGATATCTCAGTTGTGCTACCAACTATATAAGG





GATCAACAGACTGTTTCTGCAAAGGACCGATACTAGATATTTTCTGCTT





TATGGGTCATGTGGTCAACTCTGTCATTGTATACTAAAAGCCACAGACA





ATACCTAAATAAAGGGACATGGCTGTGCTCCAGTGACACTTTATTTACA





GAAACGAGGCAGGTAAGATAGATTTGACCCTTAGTGGGCTACCCATTTC





CCCTTAGCACTCAGCCTTCCTATAAACCATGAAGCGTCTAACTACAAGT





ACCTGTGAGTCTTCCTGAGTCCTTTCTCTGCCTGTAGGAGTAGCTCTCC





CACTTGCAGAGCAGGCTGGAAGCTGGGGAGGAGATTATCTCTGGAATAG





CACTTAACCAATGGACAAAAGCTGGGGGATAAAGGTGTTGGTCTTCATA





GTTTTCATACTGCTATGAAGAAATACCCGAGACTGGATAATTTATACAG





GAAAAAGAAGTTTAATGGACTCACAGTTCCACATGGCTGGAGAGGCCTC





ACAATCATGGCAGAAGGCGAAGGAAGAGCAGAGGCACTTCTTACATGAC





AGCAGGCAAGAGAGCATGTGCAGGGAAACTGCTCTTTATAAAACCATCA





GATCTCATGAGACTTATTCACTATCAGGAGAACAGCACAGGAAAACCCC





ACCCCCATGATTCAGTTACCTCCCACATGGTCCCTCCCACAACACGTGG





GGATTATTGGAGTTACAATTCAAGATGAGATTTGGGTGAGAACACAGCC





AAACCATATCAATAAATATCCCACCTTCTTCTCCCCTTGGGTAGGACAC





CTCCAATGCATGTTCCACACTAAAAATCTCCAGTGAATTGGGCAGTTGA





CCACAATGATAAGCATACTTATTAGCATGCCTCGTATAGGCTTCCTTCC





GATGTGTAGGCTTTCTTCCCATTTTGGCAGAATCTGGACCCAACCCCAC





ATCTCCTGAGTTTGATTTCAGTCCTCTTCAGTATTCTCATATATCTCAA





CTTTGTTCCCTGCTGAGATACAACTGACAGATATATATGTATCTTCAGC





TCTGCAGCTCTATCTTCTCTTCTACCATGGCTTTCTGGGATCAGCTCCC





AATTGAATTATTTGTATTTAAATCCTTGTCTCAGGGTCTACTTCTGAGC





AAACCTAAATTAATACAAGTCTTAGAATTAGTGCCACAGTTATACCTTT





TGAGTAAGTTATGTTGCAATTCCCATTTTATAGATGAGATAACCAAGGG





TCAGAAAGGTTAAATAATTTGTCCAAGGTTACAGAGCTAGTCAGTGACA





GAGTGGGTATTCAAAAATAAGTCTCTATGATTCCAGAGCTTATGCTATT





AATCAGTGCACCATGTATCAAGCAGTGATTTAGTTATCTTCATTTGAAT





TTTTTGAAGTCTCTATTTAAATTGAATATCAAATCCTCACATATAAGGT





TATTTATACCTTTTTATTTGTTTTATTTATTTATTTATTTTTGCTTAAC





TTTTTTTTATTATACTTTAAGTTTTAGGGTACATGTGCACAATGTGCAG





GTCTGTTACATATATATACATGTGCCATGTTGGTGTGCTGCACCCATTA





ACTCGTCATTGAACATTAGGTATATCTCCTAATGCTATCCCTCCCCCCT





CCCCCCACCCCACAGCAGGCCCCAGTGTGTGATGTTCCCCTTCCTGTGA





CCATGTGTTCTCATTGTTCAATTCCCACCTGTGAGTGAGAATATGCGGT





GTTTGGTTTTTTGTCCTTGCGATAGTTTGCTGAGAATGATGGTTTACAG





CTTCATCCATATCCCTACAAAGGACATGAACTCATCATTTTTTATGGCT





GCATAGTATTCCATGGTGATTTATACATTTTAATTTGAACTTCACTCAC





CTCTACAAAGTTAAATAAAGCATTCCATTTCCATTTCAATAATACTTTA





AATATCTAGGCAGTTAAAGCATGAGGTTACTTGGCACTTAAATGTACTC





TTGTCATACTACTTTTGTTGGCTTAAATTGCAAAAAAAAAAAATGGTTA





ATTTATTGTGACAATACCCTACATTTATCTGCAGTGATCATTTTTTTTG





TGAAAATGGCCTTCGTTTATCTGCAGCAAAGGAAAAAGAGGATGGCAAT





TAGTTCTTGCATTCTTATTCCTCTCTTGGGTCCTGATCCTTCTCATTAA





TAGAAACATGGCAGGGGAGGGGTATATAACCCACACCCTTTCCTGTTGT





GGTTATGTTTCCACTGTTGATTCTGCTTCAGGTGAACCTTTAGGATTAG





GCAAATAAATTTCCGTGAGGCCAAATCTTTTTCTTCCTCATTAACAGAT





GATTTCTCTGCTAAAAACACTTACGACATGGCTATACTATTGCCGGTTT





TATAGTTACAGGCTCTAAACCTTGAAAACTTCCTCAAAGTCTAATACGT





CAGGAGCAAGCTTTTGTACAAAAAATGTGAAGACCCTTAATCAGTTCCA





ATAACAAAATAAATCCATTTTAAACCCTATCCCAAGATACTGCAAGGCC





TTGGAGCAGCTGGAGAGACTCCTTAACTCTTGACATTAATTAATTAATT





TAAAAATTCATATTTGTATGTATCAGTGAGGTAAGAGTGCTTGAAATAT





AATGAGATGTGTCACACTGTAGAAAGGGGAGTGACAACAGAAAGCCCTG





GCTGGTGAGGCCCCAGCACTTCTCACACTCATCAGAAGGAAGTCTTTCC





ATGAAGGCAGTAGGGGGTCCCTGGTCCCAGGCCAGGTCCTTCAACAATG





CTCACTGGTTAACAGGAAAGGCACTACAGTGGCATCATTGTTAACATCC





AAGACAGTGATAGAATGTGAAACTTCTACTGTTTAGTATTTAGTATTCA





GCATTTAGATGTTAATTATCCATTTTGTGATGAAGTTCCCTTTCTTCTC





CCTCTCTTAACCTTTTGGTAGTTTTATTGCATGGTTACCATTTCCAGTT





AGGGTTGTGCTTTGGGGTCTGAACTGATGAAGGAAGAGAAACTCTAGTT





CATCATTTCTAGGAAAAAGAGAAGGCTAACATCAATTCTGATGATTAGA





GATTTTTTGATTACCTATGTCCTGCATTTTAACAGAAATAAAATGTTAA





TTACAGTAAACTTACTTTAACCTTCTTATGCTATTTAACACTCTTCAAG





AAAGGACTTTTGCTTGAAATCACTACAGAGTATACCATAATCTTGACTG





TCATACTCTGACCAAGAAACCAGAACTATTTAGGCATATTTATGAGAGT





AAGTACCCTACCGCTCAAAATGGAAGGCTTCAACATGTATTCCTAATAT





TTCCTAAAACTTCACTGAATAGTTTTAAAATTGAATATAACTTTACCTT





CAGAGAGAAACAAGATTTCGAAAGGAAATTGTAGCAGTTTTGTACTTCA





ATTGTCGATTTTAAGATTGTGGTCTGAAAAGTATTTGAACAGTCATTCT





TTCTTTTCCACTATCTCAGGAAAGGCTCTCATTCTATTAGAAGCAATCT





TAGAAGCGTAACTGCCAACTCTCTTCTTAAAAAGTGAAGAGCAGATGGA





GTTCTACCAATCTGCTATACTTGACAGTTTTTCAACTACCTAACCTAAG





TTCCAGTTACTGTCTAAATTATTTTTATTCGAATAGGAAAAATACATTT





ATGCTTACTGTACATTTCGACAGTGTTCATTCTTTGAGGTCTGTTATTT





AATCTCCTTCCCACTTTTCTTTTCTATCTTAAATCAGATGAGTCCCCAT





GGTCTGGCAACAAAACAGCTGTTTCTCAAATTTTTAACGTCTCTGTGGC





CCTCCTCCTACCCTTCCAAGTGTTTTCCATACTATTTTTCTGTTGTGGG





CTTCAGAATTGGATGCTGTTCCATAATTACTGGTCTTCCCATGACTCTG





TCACATCATAAAGTCTATATATACCCTTTTCCTACGTTTACATGCCAAA





TACCAGGTGTGTCTAGCTTTAATTCAATGACTAGCATATGGTAGGTATT





GCACTAATATTTTTTGGTCAAGTGAACATATATTTTACAGATAGATCAA





ATACATCAACCTTCCCATGTAATAATAATAATACCAAGAAGATTAAATG





ATCGCGTGCTTGACCAGCTGTTTAGTGGCAGAATCTGGACCCAACCCCA





CATCTCCTGAGTTTAATTTCAGTGCTCTTCAGCATTCTTATATATCTCA





ACTTTGTTCCCTGCTGAGACACAGCTGACAGATATATATATATATCTTC





ACAATCTCAGTAGTAAGCCCTATTTTTTTAAGATTACAGTGCTGATCAA





AGAGGGATATTCTATGGCATTGATGCAAATCTTCCAGGCCAGATATAAC





CCCTATCTCCTTAAACCCTCATTCTTGACTGTGTCTTGAAATCAAATTT





GAGAACCTCTGCTTTACATGCTACCTTCCTCTTAAAATTCATAAGGTTT





ATTCCTTCTCTCATCTTCAGTATTTTTATGAAAATATGTTTTACTCTTA





TTTCCAAAGTGCTTGCCAGCCCATGCTGAGTTCATTAGACAAACAATCT





AGGTATCCTAATATTTAGGTAAAATTGCTAGCAGCACTAACTATACCAG





TACCCACTTAAATTGCAATATAAACCTACAATAGGAAAAAAAAAGTCAA





AATTATACTACTTTCAATTCCTACTTCTGGAATAATTATCACACCTTCA





AAAAAACTCATAATTGTTCTCCAATATTAAAAACCAGGAACTAAATTAC





ATCACTATATATATATAGCTATATAGACATATAACTGTATATAGTTTAT





ATATATATTACATGTCACTATATATGGTTATATATACAGATAGCTATAT





CTCTATATAGTTTTTATATAGGAAACTATATATATAAACTCATATATAT





TTATATATAAACTCATATATATATAAACTCATATATATTTATATATAAA





CTCATATATATTTATATATAAACTCATATATATATAAGAGATTTTATAT





GTATATATGAGAGACAATATTGAAATAAAACAAACTAGCCAATCTCCAA





TGTCCCTTCATTTTCCCAGGACTCTTCTTTATTCTCAAAGAAATGTATG





AATACACAATATAAATAAATGTTCTATAATGTTCATTATGGATTATAAT





AGTTTTCTTGTCATACTGAAGTGAATGGGAATTGTTTCTTCGATTATTA





GCATACTTTTCATAACTATGTGATTTGGTGATAGGCACTTTTGCTTACT





AAGTTCAGCATGATCAAAACAGAACTCCTATTATTTTTATTGTTGATTC





TTATTTCTTTAAGGTAAAATATGCCCTTTTCCTTTGAACCTGCACACTG





TTTAACAAATAAGCACATAACTCAGGATTGAATTGTACACTTCGATTTG





AGCTTTTTTTTCAAGGTCAGGACCCAGTTTCACAAGAAGTTTTATTTTT





TCCAATACAACTGACATCCACTCCCACCAGCTGAAAGACAAGAAAAACT





TGTCTAATAAAGCTTTCAGATTCAATTTGCTGCCTGCATACAGCTTGAG





GAATCTCTGGAGGTCACTCACAGCATGTGTTGCAACCCCAACAGGGAGA





AGTAATGAAAAGATTCTAGTTAAAAAGCTGACACTGCCCCTTCCAACCT





CTTTGAATGTGAATATAATAAGCCAGTTTACAGACGCAAATCTCTATGA





TTCTGGGGATTTCCATCTTGATCTCTGACTCCAAGGAACATTTGAATGC





ATGGATTTGTATCCATTATCTGGGTGAATAAATGCTTCATATTGAAAAA





AGGGGTGCTTTAACAACATAAGTCTGATGTAAATCAGGCAAAACAACAT





TGTCACTTCATGTTTAACTCTCCTGGAGGGTCTCTAAGGTCTCACAGTT





TGGTTCTATTCCAGTAATATATAGGCCTATCATAGCCATTTTCAAAAAT





AATACCTGCTTTCATTTCGATTATTCCCCCTAGCTTTTGCATTGACCCG





AACATACCTAATATTTATCTTAGGGCTAACACGCATTAATGCCTTGCTC





TGTACCAGGCATTTTGCCAAGTATTCTTTGTGCATTTTTCTGTTTAATC





TTACAGCAGCCTTATGAAATAGGTACTACATTATTATTATTTTTCACCA





TGAGAGGAAATGAAAGCCTAGAGAGAATGGTTATCCAAAAACACCCAGC





TACTAAGTGGGCACAGCATGGCCTTGAACCTGAGTCTTTATAAAGTTCA





TGCCTGTCTTTTACCTTTATGTTAAACATACTGAATCTTGGTCATGCAG





TCTATGAATGAAGACTCCATATACTCTAGGACCAATTCTACCATATTGT





GCATGCTTTTGTACATATTTTCCAAATGAAATTAAACAACAATACTCTC





TCTTCCCCTTTCTTTTCCGTTTTGCATGACATCTAAATCTTTTATTAAA





TCTCCGTGGGTGGAATTGGGCCTTAAGTAGTAGTACCTTTGAAGCTTAA





TACTATAACCTCAGAGTTACGGAAGTGGTTTCAATATGAAGAAATATAT





ACGTTCTTTTCTTTTCTTTTCTTTTCTTTTTTTGGCTCCTCTAGAATAG





AAGGCAATCAGGAGAGAAAAAGACATTAAGATGATAGGCTTGATTCTCC





CACAGTGTTACTACTTAGCTTTATTTATTCTCCCACATCTGTAACTGTC





AATTCAAGGTCAAAAAGCCAGTACAGCAGCAGAATTACAAAAAGTAGAT





CTGGAAAATCTATAGGGTACCATAGTCCAGCACCCTGCTGCAAGTCAAA





ATCAATTAAATAAATATGTTTAAACAGCACTTCATTTAATCTTAAGGGC





ACCACGACTCCCTTGGAAAATTCTTTTTTGTGTTCAGACCTGATTCTCT





GAAAGTATTTTCTAGTGTTTTCTTTGTTCGGTGGCTGTGGTGAATAAGT





GGACCCAATTGCCTACAGCATGAAATCGTAGAAATGAATATGGGCTGGA





ACTTCAATCAATCACACAAACCAGAAACATAGAGTTCATCACCTCTTCT





GGAAAGCGTCCCCTTCGGCCGTCAAAAGGGTAGAGTTTCCTCCAACATA





TGTTCATACTTCCCTTTGCCTCCCATCTGCAATTTCAACCAGTCTGTTG





CTCTCGCCCTTTTTAGGCTTCACATACCGGATTTCTTCTTAGGAGCTCA





CTTGAAAAAAGGGTTGTATGCTTTAAAAATACTAAAAGTCACTGGACTA





GATGATAATAAAATTTCTGTAAAATAAAAAGGGAGTTAACAGAGGTGTT





ACCACTTATCATAATGGATATTGTTGACCTTTCCTCTAGCCAGTGTCCC





ACTTAAGCATGCTTCTTGGCTGGAATTTATTTTTCTCATCTGGATAAAT





CTGAAGCATTATAGTAAAACCCAGTGTGAGCAAGGCCATGGATGCAAGT





GGATTGAGATGAATGAGTGGATAGACCTGCGTGGGCAGAAATAATGAGG





TCAGCAATAAGCCATACCAAGGGATGCACACTCAAGGAATAAATTGGAG





GTAGCAGAATAACTGAACAAATGATACATTTGATCAGACTGTCACATGA





ATATCAACTGAAACAAGTTATGACTGTAGTTAGTGAACCCTAGAGTGAA





GAAAACAAAATATTGAAATCCATCTGATCAAAAAATAATAAAATTGTTT





ACATGTATATATTATCTAAAATTTCCCTTAAGAATGAAGATTATAAATT





CCCGCAGTTGAGGAAACTGAATAAGAGGAGAATCAGGACAGAATCTTTT





CTCTTCGTATTCCTAGTCCATTTTTCTTCTAACTACAGTAGTGAGAACA





AGAATTTATTCACCAAATCATAATACATTGCAATTAGGGGATGCCATTT





GAATCTTGGAAGACACGATTTGAGGCAAATAAAAAATCCATATTTATAA





AGTCAATTATTGGTTTATATAATTTACTGTTTCAGCGGGAGGTATAGGT





TAGTAATGTAAGTCACTTCAAGAAGGTTTTGGTCGAAGTTTTGCCAATT





TTTTCTGTAAAAAGCCAGATAGTAAATATTTTGGGTTTTACAAGCCAGA





AGATCTTTGTTGAAGTTACTCAACTCTGCTAATGAGGTGCAAAGCAGCC





ATAGGCAGTTTGTAAATGCATAAGTGTGGCTGTGTTCCAATAAAAGTGT





GTTTGCAAGAACAGGCAGTTGGTTGGATTTGGCCCACAAGCCGTAGTTC





ACTGACCCCTGTTTTAGATAAATACTAGTCAATAGATTCCTTGTAGCTA





ATAAAGGGAATATAGATTGTTTAATGTGTTTCCCTAATCTTCTTAAGGC





TTCCTCCAGGGGAAAAAATATTTCTTATCATCAGCAGTGTTATTAATGC





TTACTCAGAACAAAGAATACCACTTACTTAGCATAGAATGGACATTTAT





AAAGCCACTCATGGAAAGAATAAAGAGATGTGAAATACCTGGTACAACT





CTTAAGAGTGTTCCACTATCATTTGAAAAAATGATGAGTAGTAGTTATA





TAAAAGGACTCGAGCCTAAAACATTTGTTCTCACTTTGGATAACGTTTT





CCTATCTCAGCATCAAAAAATACAAAGAAAGGGGATAACTAGGTCTTAG





ATTTTCTAAATTCTCATGACTATAAGTCCCATATATTTAGATATTGAAG





TACCCTTAAATATACCTAAGTAGAAGTAATAATTTCGATATTATGGGAA





ATCTAATTACTGCTCATAGTTCTCGAGATTAAAATGTTATACACCACAT





CTCAGCTTTCTTTGAAACTTGAAATGGCATACTTGTACAAAGGTAGAAT





GGTCTCCCAAAGCAGCGTCATAGATTAGCAGAAAAGAGCTATGATAATG





CCACTTCAACTGACTATCATTTAAATAATGAATTAGTTAGGAAGAGTTA





AATTATATAGTTACAGGCAGCAGGAGATGTCACCATCAGGGGGATAAGA





AGCCATTTTCCAGTACACTATTTGACTTAACTGGTGCAGTTCCTTCTTT





AACTGTAGGTTACTCATTTGTATCCTTAATTTATCAATATACTAATCTG





ACAAATAATTTATTAAGGATTACTGTGTGCCCTCCTGTGTGTTAGATTC





TAGGGATACAATATGGATCAAGATAAGCGTGATTCCTAGACTCCTAGAA





AGTAAGAAAACTAAATAACTGTACGTGACAAATACTAGGATGTAGAATA





CTAGGGAAGAATCAGGAAGAATCACCTCACCCAGTCTGGAGTATTGCAA





CAGAGCGATGTCAGAGGAAAAATTCTGGAAAAAAAAAAAAAAAAGGAAA





TTTGAAGATGAGACTTGAAGGATAAGTAGGTGTACCTAGGCAAACAAGT





AGGGGAGAGTGTTCCAGGCAAGAGAAACAAGTAACAGTTGGAGGCAAAA





TGGAGCCTAGCACGTTTTAAAAATATCAGTATGGCTGAAGCACTGAGTT





GGGGTTGGGAATGGGTGAGGAGCGATGTGTCAGGGAGGACATTCCAGAT





GATGCTGGAAATGCATGCATGTTCGCAAACTGCATTTTAAGACATGTTA





GAGAAATCAAACACATTTTATTTGAAGGGTAATTGAAAGCCACTGAAGC





ATTGTAGAGAGACTAGTGACATGAGCATATTTGGGTTTTAGAGGGATTA





CTCTGGCTGAAGAATAGGTAACTGATTGGATAAGAGCAACTTTGGAGGC





TATTCCAGTGGTTCAGGTGATAGATAATAATGACCTAAACTAAAGAAGT





AATAAAGGGAATGGAGACAAAGTAGACAGATTCAAGTGATACTTGGCAC





GTGGAAACAACAGGCCCTGGTAACTGATTGGACATAAAATGGAGAGATA





CAGAGAACGCGAATAGAACACCCAGGCATTTGGCTTGATAAACCGAGTA





GACCGTGGTAGAAATTACTAAACTATGGAGTATTTTAGGGTTCAGGGGA





ACTGTGAGTTCAATTTTAGACATCTAGTTTTGCAAGGCCACTGAGGTAA





CTGAGCATATGAGTCAGGAGAGAAGTTTAGGCTAAAAATATGGATGCCA





GAGTTAACCAGCGTTATGATAAAACAAAGCTGAAGTCTCGAGGGTAAGA





ACACCTAAACATCTAGGCTGGAGAAGGCAGCAGGTAAAAAGTAAAAGGA





GAGGCCAGGCACGGTGGCTCACGCCTGTAATCCCAACACTTTGGGGGGC





CGAGGTGGGTGGATCACCTGAGGTCGGGAGTTTGAGACCAGCCTGACCA





ACATGGAGAAACCGTGTCTCTACTAAAAATACAAAATCAGCCAGGCATG





GTGGCGCATGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAA





TCGCTTGAACCCAGGAGGTGGAGGTTGCGGTGAGCCAAGATTGTGCCAT





TGCGCTCCAGCCTGGGCAACAAGAGTGAAACTCCGTCTCAAAAAATAAA





AAGAAAGAGAGAGAGAGAGAGAGAGAGAGAAACAGAGAAAGAGAGAGAG





GAAGACAAAGAAAGGAAGGAAGGGAGGGAGGGAGGGAGGGAGGGAGGGA





AAGAAAAGAAAAGGAGAAAAATTCAGGAGAATGGTTACTTCCAGGGAGA





TGGAGGCGATTGTGCTGTGGGGAACACAAGGGTGGGGTCAAGGTATTAG





CAGTATTCTATTTCTTGATTGGGGTTGTATTTACATAAAGTGTTGCTTT





ATAATTATTCTTCACACTTTATGTGTACGTTCTATGTAATCATCTATAG





ATAAGACAGATTTCACTGTAAAAGAAAATAAAAGCTTCCAAAAGATTAT





CATCACAATTGTAACAGATTCCCCTGGTGCCTGGAGTCACACGCCATTT





TCCTGCACTGCAGTTGCAGCTGCAGTGGACAGCCCTGTGTGAGTTCAGA





CTTGCCTTTAGCTGACAGCATCCCATGTCAAGGGAATGGCTCCCATTTT





TCTACTTTCTATCTAAGGGACTTCTCTGACATCCCAGGAGCCCACAGAT





TTTGTGAGCTTTCTCACCCTTGAAGTTTTAGTGAGTGAGCAACCTTCAA





CCAATGGAGATGGGAGCCCATGGATATATTTTTAACCACTATTCCTTCC





GGGGGCAAGGGGAATTCTCTGTGATTCTCAGGAACATACAAAAGTTCTG





TCAAAATACAGTCCCCATGGTCCATAAGCATTACCTTGATGATAATACA





TTTGATTGGCATTTCCTCCCCCTCTGTCTCACTCTTTTGGTTTTTCATT





CTTGCTTCCTAGGGATCAGCTTCCAAATGAGCTATCTGTACCCAAGTCC





TCATCCAGGCCCTGTTTTCAGGGGACCCAAAGACAACAATAAGAAAAAT





GGAACTGAAAGAGGAGAAGACTTTAAGGCATGAAAAAAGTTCCTCTGTA





TTCCATACTGCATATTTAACTGCCTACTCAACAGTTCCACTTAGATGTC





TCAAAAATAATCTCATGATCTTTTACTGCTATGAAATGCATGACCTTCC





CCTGATATATTCCTTTCTTCAGGTTTTGTAGCACCACTTAGCTATCCAG





TAACAAAATCTTGGGGGTCATTCTTAAAACCTTCCCACCTCACCCCTGC





TGGACATCCACCACTAAGTTCAGTTGATTTTTTTGCTCCTAAATATTTC





TTGGTTCAGCTTTCATTTTTAGATTTATCCTGCATACCCCTGTACAATC





TCATCATCTCTTTCCTGGACTGTTACAGTAGTCTTATATTAGGATGATC





ATAGTCTTGATTTGCCTAGAGAAAACATGCTTTATGTCATTGCCTCAGA





GTGACTAATAGTCCCACCTTTCACTTGTAACACTATGCAGGTTATTGGG





TTAAATAATACTGTCATCCAAACCTAATCTCTCCTCATTCATTTCTTCT





CTCCTATGCATCTTAGCTGTGTGAAAATTCAAAATATAAATTTGATGAC





AGACAGAACTCTGTTTAAAATGCTCCAGTACCTTACCATTTATCTCAAA





ATAAAAATTTCAAAAAAAGAAATGATATCCCACAGGATCTTGTATAGTG





TGACCCTTTCCATTTCATCATCCTTATACCAGATACTGTGAACTACTTA





CTCTCTTATCTCCACATTGACCTCCCTCCTAGTTTTGTTTTGCTTATGA





AAGTGCTTATTTTCTGTTTTTTAAAGCCATTGCACATATTGGTCTCTCT





GATTGAGACACTATCCTTTTGAATTTTTGACCTCATACCTACTCACTTT





TCAGGTCTCAGCTCAAATGTTATACTCAGGAAAGACGCTCCTTACCTCC





CAAACTAGGTTAGTGTAAATGGCACTATTTATACTCCTCTTCCAGAGCA





CACACCAAATCTTATATTTATTTGTGGGACAATTTGAATTCATGTTGTT





CCCCCTACTCAATTGTGAGCTTCTTGAGGACATACTCTGCCTCCTCCTT





ACCTAGCTTTATTGAAGTATAATTGAGAAATAAAAACTGTATGTATTCA





AGGTATACAACATGATGATTTTATATGACTATATTGTGAGATGATTACC





ACAATCAAATTAATTAATACATCTAGCACAAGAAATAGTTACTATTGTG





TGTGTGTTGGGGGGGGGGGATGAGGACACTTAAGATCCAGTCTTGTAGC





AAATTTCAAGTAAACAGTAAAGTATTATTAACTATAGTAACCATAATGT





ACATTAGATCCCCAGACATCTTATAACTGAAAGTTTGTGCCCTTTGACC





AATGATATGGTTTGGCTGTGTCCCCACCCAAATCTCACCTTGAATTGTA





ATCCCTGTAATTCCCATGTGTTGTGGGAGGGACCCAGGGGGAAGTAATT





GAATCATGGGTTTGTTTCCCCCCATGCTGTTGTCGTGATAGTGAATGAG





TTCTCATGAGATCTGATGGTTTTATAAGCATCTGGCATTTCCCTTGCTG





GCACTCATTCTCTCTCCTATCACCCTGTGAAAAGGTGCCTTCCTCCATG





ATTGTAAGTTTCCGGAGGCCTCTGAAGCCATGCGGAACTGTGAGTCTAT





TAAACCTCTTTTCTTTATAAATTACCCGGTCTTGGGTATTTCTTCATAG





CAGCATGAGAACGGACTAATACAGTAAATTGGTACTGCAGAGAGTGGGG





TATTGCTGTAAATATACCTGAAAATGTGGAAGTGACTTGGAACTGGGTA





AGAGGCACAGGTTGGAACAGTTTGGAGGGCTAGAAGATGACAGGAAAAT





GTGGGAAAATTTGAAACTTCCTAGAGACTTGTTGAATGGTTTTGACCAA





AATGCCGATGGTGATGTGGACGATGAAGTCCAGGCTGAGGTGGTCTCAG





ATGGAGATTAGGAACTTCTTGGGAACTGGAGCAAAGGACACTGTTGCTA





AGCTTTAGCAAAGAGACTGGCAGCATTTTCCCCTGGCCTAGAGATCTGT





GGAAATTTGAACTTGAGAGAGATGATCTGAAATTGGAACTTTGTTTTAA





AGGGAAGCAGAGCATCAAAGTTTGGAAAATCTGCAGCCTAACAATGTGA





TAGAAAAGAAAAACCCATTTTCTGAGAAATACAAGCTGGCTGCAGAACT





TTGCTTAAGTAAAGGAGCCAAATGTTAAGCGCCAAGACAATGGGGAAGA





TGTCTCCAGGGCATGTCAGAGGTCTTAATGGCAGCCCCTCCCATCACAA





GCCCAGAGGCCTAAAAGGAAAACATGGTTTCACGGGCCAGGCACAGGGC





CGTGCTGCTTTGTGGAGTCTCAGGACTTCGTGCCCTGCATACCAGCTGT





GGCTCAAAGAAGCCAAAGTACAGCTCAGGCTGTTGCTTCAGAGGGTGCA





GGCCTTAGTGGCTTACATGTGGTGTTGGGCCTGGGGTTGGACAGAAGTC





AAGAATTGAGGTTTGCAACCTCTGCCTAGAATTCAGAGGATGTATGGAA





AAGCCTAGGTGTCCAGGCAGAAGTTTGCTGCAGGGGCAGGGCCCTCATG





GAAAACCTCTCTGCTGGGACAGTGCAGAAGGAAAATGTGGGGTCGGAGC





TCCACACAGAGTCCCCACTGGGGCACTGCCTAGTGGAGCTGTGAGAAGA





GGACCACCATCATCCAAACCCCAGAATAGTCAGAAATGCTGATAGTTTG





AACCATGCATCTAGAAAAGCTGCAGATACTCAGTGCTAGCCATGATAGC





AGCTGGGAGGGGGCTGTACCCTGCAAAGCCACAAGGGCAGAGCTGCCCA





AGGCCATGGGAGCCCACCTCTTGCATCAGCATGACCTGGATGTGAGACA





TGTAGTCAAAGGAGATCATTTGGGCAGTTCAAAGTGTAATGACTGCCCT





ATTGGATTTAAGACTTGCATGTGGCCTGTAACCCCTTTATTTTGGCCAA





TTTCTCCCATTCGGAACAGGTGTATTTACCCAATGCCTGTACCCCCCAT





TGTATCCTGGAAGTAACTAACTTGTTTTGGATTTTCAGGCTCATAGGCG





GATGGGACTTGCTTTGCCTTAGATGAAACTTTGGACTTGGACTTTTGGG





TTAATGTTGGAATGAGTTAAGACTTTGGGTGACTGTTGGGAAGGCATTA





TTGTGTTTTGAAATGTGATGACATGAGATTTGGGAGGGGCCAGGAGCAG





AATGATATGTTTTGGCTGTGTCCCCACCCAAATCTCACCTTGAATTGTA





ATCTCCAAAATCCCCAGGTGTCATGGGAGGGACCCAGTGAGAGGTAATT





GAATCATGGAGGCAGTTTCCCCCATGCTATTCTCATGATAGTGGGTGAT





TTCACATGAGATCTGATGGTTTTATAAGTGTCTGGCGTTTCCCCTGCTG





GCACTCATTCTCCCTCCTGCCACCCTGTGAAGAGGTGCCTTCTGCCATG





ATTGTAAGTTTCCTGAGGCCTCCCCAGCCATGCAGAATGGTGAATCAAT





TAAAACTGTTTTCTTCATAAATTACCCAGTCTCGGGTATTTCTTCATAG





CAGCATGAGAACAGACTAATACAACCAACATCCCCTCTTGTCGATTTTC





ATTGAATCCCCATTACCTGGGAATGAATGAGGAAGGCAGAAATAGAAAT





CAGCGTATTGTTCAATATAGAAATCCTGAAGTTACACAAGATAATTACG





AGCAAGACTCAGTACAGAGAAGGAACCCTTGAGCTGGGGATCAGAGTCT





TCTGGAAACAAGGAGTACCAAAGGGGAGTGAAAAAGAGAAGTGGAGAAT





GAGTAGTAGCAGTAAAAGAGGAAGTATGTAAAGAAATGGAAATAAAGAT





GAAATAAACTGTCATCTTGTTCCAGAGACAAAGCTAGCTAGGGGAGCTA





AGGAAATTTAGAGGGATAAAAAGTCTCATCCAAACCTTCATAATGAGCT





AAGGGCTAGTTTTTCATAGACCCTAGCCCAACTTGCAACCCTCTCACTC





TCTTACTTTTTTCCTGGCTCTGTTTTGCTTTACTGCCTTTCATATAATC





TAAAATGATGTTAAATGTATATTTCCTGTCTCTTTTCTATATCACAATA





TAAATTCCATGAGGCCATTGCCTGTGCCACATTTACCACTGTACTCCCA





GTGCCTAGAATGGTGCCCAGATCAAGTAGACTCCCAGAGTGTCTGTTGT





CAAATGATTCTCAGTCCAGTGATGTTTGCACTACATGGTGCTGCCACTT





TTTTTTTTTTTTTTACTTCATTCCATTTGGAATTTGGATCATTTTGCCA





ACTTTAGGGTTTATTCCTCTTTATTTCCCCTGTGTTTGCTGAATATCTG





ACTATCTATTTTTCTCAGCTCTCTTCTCCTCACACTTTGCCTCCAACTT





CCTCTCTGCTACAAATTATACTTAGCACAAGACTGGAGCCACTTTTCAT





TGATTTTGATGTCAGTGCTTGAGTGACAACTCCATGTGGAGAACTTTCA





ACCTCCTGCTGTCTCGTTGTTTGCTTTGAAAAAAAAAAATACTCATCTT





CTTCCTGAACCCACTGGGTAAATTTATGCTCACAAAAAAGACAAAACTT





CTAGAACAAAAACTGTATGAGCTTCAAAAGTATTAGTTTTCCCTTGATT





TTGAGACTCAAAAGTACCATAGAAATTTTAAAAGGGGGATGAAGTAATT





TTGTCATTCAACCCGATATATTTTACAATTTGAATGTCAGAACCATGAA





ATGTCTTTTCAGTGTACTATCATCCTCACTATTTCCACCTATAAAAGAA





AAGCAAAAATATTGTTTGAGAACAAAAAAATATTGCAGTAGCGGAAAAA





TTCACTTTAAGTCTTTTTTTGGAGGTTGCCACATCACGCCTGTCTTCAG





CTCCTCTCACTGAAGATTCTTTGTTTTCTTGAAACCAGTTGGTCACTTC





CAATTCTTACCACCTATAAATCTTCCTGGTTCTTTATATTTCACTTTAT





ATGTCCCTTATCTCCTCTGATTTTTGTTCCAGTCTTTCATTTTTTACAT





TCTTTGTCATCCTATATGTCAGAAAGAATCTGCCACTCCAAATTCCTTA





ATATATTTATCTACCAGTGTTTATTTGCCTGTCACATGTACTCTTCAGT





AATCCATTGACTTGAAAACTTTCTACTCTGTCTTTCTTACTATAGTTTG





CTTCTTGAGTTCAAATTATTAATATATTAGGTCAAGTAATTCTATTTTT





ATGCACATTTTACCTAACATTCTTGGTAAATATAATTGTTTTTTAAATT





GCATCACATGGTGAGTATTAATTTAAGACGTAATTAGTATTAATCTACT





GGACAAGATTTTATTTATTAACTGTTTTGCCCTTTGCTAGGGTTCTGTA





ATCTCACCCTCAGTGCCTTTAAATAGTCTTACCCAAGGATCACCTATCC





CTCTTCAATTTAAATTCTCTATTGTGTTAGTTTCTGAGATTGCACATTC





TCTGGTTTGGTTTGGTTTTTCAGTGATCTCTGTGGTCACTTCCAACCAT





TTCTACTTAGTTTACTTTTTTCCCTGTTAGCCCTCTTCAGTGTTAATAT





CACCTGGAAGTTAACCCATTCCTAGTCTGCATTGCTCTATGGCCAGCAT





CTTGGCTGATTGGCCATCACCTATCCTGTACTTATTGTCAATTTTTTTA





AATTTTTTATTGTGGCAAACAGCACATAACGGAAAATTTACCATCTGTC





TTTGTTCATGTATGTTGCTATAAAGGAATGCCAGAGACTGGGCAATTTA





TAAAGAATGGAAGGTTTATTTGGCTCATGGTTCTGCAGGCTGTACAAAA





AAGCATGGCACCACTACCAACTTCTCATGAGGGCCTCAGGCTTCTTCCA





TTCATGGTGAAGGGCAAAGGGGAGCTGGTGTGTAGAGATCACATGGTTA





GAGAGCATAAACAAGAGAGAGAGGGGAAGTGCCAGGCTGTTATTTGGCA





ACTAGCTCTTGCAGAACCTAACAGAATGAGCAGTCACTCAACCTGCCCC





CAGGAAGGGCATTAAGCCATTCAAGAAGGATCCACCCCCATGACCCCAC





ACTTCCCGTTAAGCCCCACCTCCAATATTGAGGATCAAATTTCAACATG





AGATTTGGAGGGGACAACATCTGAACTATAGCATTATCTTAATTCAAAT





AATTTTACTACCAATTCCATTTATTAGAGAATCTAAGATTAAGACTACT





GAAACTATGCCAATGATTATCTCTAGTTCAGGCTTCTCTCTTCAATTCC





AAACTCATATTTTCACCTGCTGACAAGCTACCACGTAGATGTTCCACAG





GTATTTCTAACTCAGGATATGTAAAATTGATGTTATCATTATTTTCTGA





AAATCTATTCCTCTTACTATATTCCCTATTTTTGTGAATGACACAATCT





AATGGACTGGCCATGTTAAAAATCAGGAAGTTTTTCTGGCACTTTCTTT





ATTCCTTAATATTAAGCCCCACGATAAATTACCAATCCTTTCGATCTTG





TTAAGACAAATAAGCTTGAAATTTCTTATCTCTTATTTAGCACTGCAAT





TTTGTTTTCTCATTCATTCAGATAGCATCTTCTACAAAACCTCTTCACT





AGTTTTTCTGTCTCTCAGCTCATCTTGTACACTGCAAATCCATTAAAAC





TACACTTTTTAACATGCCAATCATAATGTATTAGTAAAGGTTGTATAAT





AGTTCTCTTTCTCTTCTAGGATAAAAGCTAAATTTTTCAGCTTGGTACA





CAAGGCCGTTCATGGATTTGGTACCTACTAGTCTATCTAGGGTATTTCC





TACATCTTCCCTCCTCTCTCTTGAAAAATCAAGTAATACTAAACTATTT





GTAACTCCCTAATCACCAATTGCTGCCTTTATACTTTAACATATATTCT





TCCTTTTGCTAGAAATACATTTGTCATAATAGGCTCTTTGGTAAACTTA





CCATTACATTCTCAGTTTATAATATTATTTGTGTAAGTACCTTTTTTCC





TACTTAGTCCTCCAGGGGAATGCATGTGCTTCTCTCTCCATATTATCAT





TTTAAAATTTACTCCTATTTCAGCAAGTATCATAATATTTTACTGAGAT





TAATTGTTGGCATATTTATGTTACCCTGGTGACATATTTAATAGTTAAG





ATGCTTTGGGCTGCAAGAAAGAGAATGCACTTTCAAAGTGGCTTCAAAA





ATAAGAATAATTCAACTCACATAACTGGAAGTTCAGAGGTTAAAGCTGG





CTCCAGATGAAGTACAAGCAGAGCTCTGTCACTCTTTCTCTATGACTTT





CTTTGTCCTGATTTTTTTCTCTGCGTCAGCTTTGACCTCCTCACTAGTT





GCCCTCCAGGTTCCAAGATGACTGCCAGCAACAAATGGGTAACATAATT





TCTTGTTACAGTGAGAGACATAAACACTTACCTCACAGATTCAGAGATT





TCACCCTCAGATAAGAACAATCAAAATTTTAATTGTGTATCTACTGTAT





CATTAGTATATGTATTAGGTATTCATATATATCTACTATTGTACTAAAG





ATGATTCAGAATGGTTTCATAAGCTGGTTGATTTAAACTTTTCTTCCTG





AACCAAGAGGATGAGATTATCTTGACTGGCTTAGAATCGAAGATTTAGG





TGAATCTAAATCCATCTCCAGAACTGAGGATGGATTCCGTAGAAACTTG





AAGACAATTGGAATTCTCCTAGAAAGCAGAATTTCAGAGTGGGTGTAGG





GATATCTTTGAATGGAAGTTGTTTAAGCCACCAACAATATTCACTCCAT





TGGGGTGACACTGGGCCCAAAGGTACCCAGTTAATATTTGTTCAACGAA





CCTATAGGAAGACAATATTATCTGCAAGCTATTTATAAACTAAATGACA





ACGAGAAGTATTTTTAGAAAAGTTAATCATATACAATTTAGTCATTCAC





ATTGGGAGGCTCTTCCTAAATTTCGTTTCTGATCCTTATCTTGATCTTT





GACGCAATCATATCTTGGCCTCCATCTAAAAGCCAGTAGAAGCCTCTGG





CCATTTTTTAAACAATTGGTTTAACAACATTAATTGGAATCTATATAGC





TCAACTTAAAAAAAAAAAAAAGAGGAACTAGCTTATCATAATACAATAT





TGTCAAGGCAAGTGATACTTCCATGCAGCTATTCAGCATTTGGTGTATT





CTTGGTTTCTGCAGACCTAATAAAAAGAGATTATCTCAGCGTCCTCTAG





GTTTAATTTTAAAAAACAAGAAACCATGAACAATGAAAATGATTTCAAA





ACATCTTCACTCACATCTAAAATATGAAATAGCTAGATCAGAGGTTCTT





AATAATTTAATCGGTGAAGCATAACTGAAGGATTTAGAAAAAGTGCCTA





AACTATTAAAAGATTCTTCAGCTGCTGCTTAATGTTGATATCAAGTTAT





TTTTTACACTGGCAAACAGCTAAGCCATTCCCTGGTCACATCCACTTTT





CAGCATTTAGCGCTCCTCTCAATCATCCCGATCACAGCCCCAGGAATGT





TTCATGGCATCTCCGCAATAATAGTATATTACTATTGGGTCCTGAATTT





TGAGGTAGTTTATCTTTCAGAAAGGATATGAATAGAGCAATAAGTCCAA





GTAGAGTGGGCTTTATTAATGATGCCCAAGATTTTAGACGTATACTATA





ATCTTCAATCAATTTTAACACCACTTCCCTTACCCTAGTTTTAGTCTAA





ACCAGTCCAACTGTGCTGTAGTCTCAGATAATACAATGTTAGATTTTTT





TTTTCAAGATATAGAATTGTCGGGAAAACTTGTATGTAACCTATACCAA





TCTAAATTTCTTAGCATTTAACTCTAAAGAGTAAAGCTTTTAGCACTTC





CTGTGTAATACAAGGGCAAGTGCTGATTTCTCTGAATATAATTTTCCTT





TGTTAGCACATATGTTCACTGTTTAATAAAAATAAGAATGCTTCAATTA





TCTCCTTTTGTCAAGGGCCTGAGAAATAAAGAAATATACAGAGGGTCCC





AATCTAAAAATGTTTTGATTTACAATGGTTCGGCTTAGGATATTTTTAT





TTTACAATGGTGTGAAAGTAATATGCACTCAGTAGAAATCATACTTCAA





GTACTCATACAACTGTTCTGCTTTTCATGTTCAATACAGTATTCAATAA





ATTACATGAGATGTTCAACACCTTTAATAAAATAGGCTTTGTGTTAGAT





GATTTTGCCCAACTGTAGGCTAATGTAAGTGTTCTGACCATGTTGAAGG





TAGGCTAGGCTAAGCAATGATGTTCAGTAGGTTAGGTTTATTAAATGCA





TTTTTCAATTTATGATGTTTTCAACTTATGATGGGTTTTTCAATTTATG





ATGTTTTCAACGTATGATGGGTTTATCAGGAAATAATCCCATTGTACGT





TGAGGAGCACCTGTATCAATATAGGCATTTACACAACTCTCGTACTGAT





AGCGGCAGGAGGCAGAGAAGCTCTAGGCAGAAAAGGGATGGTCCCCAGC





GAAAACCCCACCCTCAAGCCAAAAAGCCTGAAACCGCAGCTCAAAGTGG





GAACTTATATCCCAGTTTTCCTGCTCGAATGTTGCCTTTTTCTAAACCA





CCCATGGCCCCACCCCACCCCATCCTGTGCCTATAAAAACCCCAGACTC





AGCTGGTAGACAGGACTACAGCTGGACATCAGAGAGAAGCAGCTTGACT





TCAGAGGGACAACTTGATGGCATAACTTTAGAGAAGAATCCGGCTGGAC





TTCAGGGGAAGATTACTTGCCACCCCCATCCCCTTTTCAGCTCCCCTTC





CCACTGAGAGCCACTTTCATCGGCAGTACAATCCCTCACATTTACAATC





CTTCAATTTGTTCATGTGACCTCATTTTCCCTAGATGCTGGACAAGAGC





TCAGGAGCCACAAGTGTGAATACAAAAGGCCCTTTGCCCTTGCTGGTGG





AGGGCAGCTGCCTCCTGTGAAAAGACAAATGGCCCACTGAGCTGTTAAC





GCCTAAGCTGTCCGTGGATGGCAGAGCTAACAGAGCACTGTAACACACC





CTCTGGGGCTTCAGGGGTCGCAGACGCCTCCACCTAGATGCTGCTCCAG





TGCTCATGCACTCCAGTTCCCACCTCGTTTGCTTGCACACTCCCTCCAG





TGAGGAGTTGAGAGCAGTGGGCTAAGTAAATAAGGCACCCCTGTTGCGA





GTTCCACAAAGGGGTCAGGGAAATATCCTGCTTCGTTACTAAGTAGGTA





TAAACCCTTTACTAAGTTAGTAATTATTCAGTAATAATACTTAAATGAA





AGCTATTCTGTTAGACTAAATTCAGATTATCAAAGACACGACAGAAAAC





AGCTTTCTCATTCATGAACCTATTATTTCCTTTTGTAAAATATGTTAAA





TGAAAATACAGCCGTCATGCTAATTTCTAATGGTAGAACATATTTTGAA





AACTCCTTTATGTTTGGAAGATTTTGCTTTAGTGCAGATAATCAGAATG





ATGTGATATACTAAGAAATAATTTTTAAAATGAGATGTGACATTTCTCA





TAATCTAAATAAGAAATGGCAAAACATTGTCCTAAGCTAAATAACTCAT





ATGAAGTGATAAAATATTGCTTTCTAAAGGTCCATGATATGTAGTGATT





TCTAATGTGTTTAATAGCATTGATCCTATTGGGTAATTGGGTGGTTCTA





ACATGTAAGGAAGGCCTCCAGTACTAATTTCATGTACTGGGAAACTACT





GGGCAGGGATGAATCCCTTAACTCCTAAGTAAGACTATCAGATCATATA





AATCTGCTTTTTGATTTGCAAAGACTCTTAGGCATACCTCTTGAGAATA





TTAAACATCTACTAAATTATATGTAAAGCATTTCAGTCTAAGATTTACA





ATGCTCAAAGGAGAAAGATTTTAAAGTTCAGCATTGGAATTTCCATAAT





TTCCTTCCAATTGTAGAATTTTACAATTGAGATAGCAAATAATAATATA





AATAAATATGTAAGACTGAAATCAACATAGGAGTTTGGAAAGAAGACTG





TATGGGTTAACTAGAGTTGTCAACAAAGACTTCACAGAAGATTGTGATC





GTAGACATTAGTAAGGAATAAAATGGGTGCAAAAAAAAGTCTAAGAAAC





AACAAGGATAAATTTATTTTGTAAAGAGTGAAAGCATATTGGGTATTAC





ATAAAGAGACTGGCTAGTTTGACACAATGTGTACTTTTGGGGTAAGCAG





TGGGAAATCACTTTCTGTAAGTAAAGTGGAAGAGAATTCAGGTATTGGA





TATGGTCATATAGGATTTTTCAACCTTTGTTTTGCCCCCATCCCTATCC





TACCAGTATCATCACAGATGTTGGCAATATTCACTCACTTGCCTGAAGA





TAGATATTCATGTCAGGGGCTACAGATATGTAAAGGTGAATGAAGTTAA





ATAGCAAAATTCAAGCACACTAGTTCTGACTGTGCACCCTCTCTCACTC





AGAAAAGCACTTTGGAATGCGAGAGTACTCTTATATTGACAACCTTTAG





TTGGTTCTAATTTATAAAAAAATATAAAAATATTTAGACAATTTGGATA





TTTTATATCTATGCCACAACCCATTGTCAAATGATTGAGATATCATTGT





TTGGCAACAATGAAACTGAAATCAACTCTAAGAGTAAAGAGTACGACTT





TTAAAGATATTTGGTTAAGAGTAATGTTGCAAGGCAGAGACCAACATTA





TAGAAGTTCTCAACCTGTGTGCTGGATATAGCTAAAATTTCCCAGGACC





ATTGAAAGAAATTCTCAAATCCACAACCACCTCAAGTGTTGTCTGTGAA





TCAAAGGAGTGATGCATTACCCACAAACATGTAGTAGACATTTTTTAAG





TGATGTAGATGCTACTGCAATTAATAAATGCAAAATTATATTACAATAT





TACTGAATTCAGAATAAGTTGATTTTGTCACTATTTTTCTCAATCTACG





CATGCTAGATATAAAGTTATTATATAGAGACGTAACATTTTTAATATTT





CAGAAGCATGCTCATGATATTGTAAACCAGGCACTGTTAAAAGATCACT





GGATTGGGAATTAATAAACCTGGGATCTAGTCCTCATTTGATCTCTTGT





TGGCTATGGTTTGGGGGTTTTGGGCAAACTATTCAACCTTTTCTGCCTT





GGTTTAATTGATAAATGATGGTGTTTTCCCAGATAAATCCCTTCCCAAC





TTAATATTACCAGATGTAGCATCTATGGTTTAGAATGTACAGTATAAAT





TAACCTTCCTGAAGATCTTCACAAGTTACTATAACCTATATTTTCATGG





CACTGAAAACTAAGTTTTTGATAGCTTACGTTTTTATAAATAATTTACT





TACTCATTTTTATCATAATAATAAATCTGATTCACTAATCACCAAAATA





TCATTTTTGAAAATAGATGCATGAAAGGATCCGAACTTGTTATGGTTTT





ATCTGTTCAAGTCACCTAATTTTGGTAGCCACAGGCCCCCATTGTCAAT





AGGGGAAGATTATCCATTTTAGCAATACAGTCTCTGATAACTTCAGCCC





ATATGCCCTTCAATTCCACTTTTACGTCAGATTGAATGGGAATGTGAGG





CCCCCAGTAGTAAACTAACCCTACTTTCTCTTTGGAAATTGGTCTTTCT





ACCTAGCTCTTTGCCTCTGTTCACGTTCTTGTATTCCACAGAAAATATA





TACATTAGGTGTTAAAATCACAATGATTAACAATTTTTAAGTAGAAATA





GTTATTAAGTATAGCATAATCATGCCTTTGAATTAGTACAAAAGTAGGA





AACAGAGCTTTAGTGACTTTTTTCATTCTTTCCACCATTTACAGGGCAA





AAATGAAGAATTTTACCAATTCAAAACTATGCACATGTATAGTTTCCAC





CAGTATTTAGTAGTTATGTTTCTCAAGATGTATAATTCCTTTCCTTTCT





GTTTTCTGTAGTTTGATAAACCCTAGATAGGAGTTAATGTTGTTTCAGT





TAGGTTTATTATTTCTTTTATGTGGTTTAATTTCATGCAATAAGCTAGA





GATTTTGTAACATAACTTGATAAAAATTTTCTCCCTTCGTATCTTTTTG





TTTTAAAATAATGGATTAATATAGATTGTAATTTTACAGTAGAGGAAAT





ACATTTTACTTTTAGTTCTTATCTAGATATCTTAGGAAAAAAGAAACAT





CATTTTTAAGGATTATTATTTTTCTACTAATGAAAAAAATAGCATGATT





TTCCATTCTGGACTTTGTAATTAACTTTACCTTGGAATAATTGAATCTT





AAATATAACTTCATTGAAAATTTTATTTTCAAGTAACATTTTAAAATGC





AAAATTTGTGTGATCTCTACTAAAAAGAACTCTCACATCCCAATGTGCT





TATAGCTACAATAATTGGTTAAAAGAGACAAATTATAAAGAAGATATAG





GTTGTGACATTGAAATTACAAAATGTGGATTAGGGAAGTAAGCGTGTAG





AGTTTTGTATGCAATCAAAGTTAAGTTATTACCAGCTTAAAAAACCCTT





ACGTAAGATGTAAAGAAAAGCAAAAACCTATAGTAGCAAAAGCAAAAAC





CTATAGTAGATATACAAAAGGTAAAAAGTAAGGAATCAAAGTATACTAC





TGAGCAAAACAGTCAAACCATAAAAGAAGACAACAAAAAAAGGCATATA





GAACAAAGGATCTACAAAACAATTAGAAAACAACTTTTTAAATGGCAGT





AGTAAATTCCTACCTATCAATATTTACTTTGAATGTAAATGGATTAAAT





TCACCAGTCTAAAGATAGAGTGGCCAAATGGATTAAAACAACAAGACTC





AACTACATGCTGCCCATAAGAGACTCACGTCATCTTTTAGGACACATGT





TGACTGAAATAGAAGAGATAGAAAAAGATATTTTGGTTTCCATGCAAAT





GGAAACCAAAAGAGAATGGGGATAGCCATACTTCTATTAGACAAAATAG





GCTTTAAAAATCAAAAACTAAAAAGACACAAAGAAGGTCATTAAATAAT





GATAAAAGGATCAATTCATCAAGAAGGTATAACAATTGTAAATATATAT





GCACCCAACATTGGAGTACCTAAATATATAAAGCAAATATAAAGTGATA





AAAAGAAAGAGACAAACTACAGTACAATAATAGTAGGGGACTTCTACCC





CAAATTCAACAATAGACAGAAAATCCACATTAAAAAATCAATAAGAATG





CATTGGACTTTATGCTTTAGATCAAATAGACCTAGCAGACATATACAGT





ACATCTCATCTAACAGCAGGAGAATATACATTCTTATCAAGTGCACAAG





AAACAATTCTTCAGGGTAGATCATATGTTAGGCCACAAAATGAGTCCTA





ACAAATTTAACAAGATTGAAAGCATGTATTTTATGTAAAACAACGCCAT





CATGGAAAAAGTACTAGTGTAAACAAGGTTTAAATATGATTTACTGATT





GTTTAAAAAGGAATTATCTTAGCCCTGATCTGATGGGATTTCCCCTTTG





TAAGCAGCAAAAATAAGTTCATAATGAAGCAACTGTAATAATACAGCTT





CACAGATCTTTCTGAATAAACAGAGTTGGATATGTTTCTACTTCAGAAA





CCATTTACTGTGGGCTCACAGCTTTTCCATACACTCTTTACACTCTTAA





TTTTAAACCCATTCATCAAAAGGATTAAGACAATGAGATTCAAGTCCAA





GACAATAGGAAGTATGTGCATCAAAACTGTCATGCTAATGCTCTGAGGA





ACATTGTTATTTCAATAGCATAATTTAAAACCACTGAAACCATGTTTTA





TTTATGATTACCTTTCATACGTTCAAAAAGAATTTGAGATGGTTTGGCA





GGGATGTCTTAAAGAAACAAACACCAAATTTTTATTTGTTGTGCTTCTA





ACAAGCAATTTTTCCTACGTAAGTGTTACCTGTTTTCTCCCCTTGATTT





TGATCTCTTTTGTATGGTTGGTAGTTGTCGCACTTCTGGGCATAGTATG





GTTTTCTACAAGTTAAATAAAAACATAAATTGATTTTGATGTAGCTAGT





TCCACTATTTCAGTTAGTGTGTTTTCCATACCTGCAATTCATAACATGT





TTACTGACCCAGAACGTTAAAACTCAAGTTTAGTTCAATACAGTCACTT





CAAACCAACTTAAGATAGCAGTTACATTTCCAAGGTCATTATGAAGACG





GAGTTCAAGACTTCAGCAGTTGAATTTGTCAAGCTCATGGGTCTTTTAG





TTACAGGAAGTGTGCATATTTCACATAAGAAACAGCAACTCTGATGATA





CATTGAAACTCAAATATACCCAAGGAGTGTAAAACTACTTTATAAGCCC





TTAAACAATAAATATGCCAACAATCCTCTGCATACTTTTTGTCATTTTT





TAGAGCATTCAATTGAATTATATAACATGTGATACCAATAAATAATTAA





CTTTTTATTTATTTATTTAGAGAATGATTCTTGCTTTGTCTCCCAGGCT





GGAGTGCAATGGCATGATCTCAGCTCACTGCAACCTCCACCTCTTAGTT





TCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGCCA





TGCACCACCACGCCTGGCTAATTTTGTACTTTTAGTAGAGACAGGGTTT





CACCATAATGATCAGGCTGGCCTTGAACTCCGGACCTCAGGTGTTCTAC





CACCTCAGCCTCCCAAAGTGCTGGTATTACAGGCATGAGCCACAGCGCC





TGGCTTATAATTAACTTTAAAAAATATTCTACTATCGAATGCCTGAAAA





AATCATATTACTTCTATGTATTAAAAACAAACTATTACGTAAATAGACC





AGAGATACGGTGTCAGAGATGAGATTCCTTGGCAACAGTCTCTGAGACA





AAAAGTTGCACACAGAAAGTATTTTGAGAAGTATTGTTGCTATTTATAA





GGAAGTGAAGGAGGCAGTATTGGGCAGAGAGAAAAGCTCATCCACACTG





CAGTTGCTACTGAGGCTTCAGCCCATGTGACAGGGACACTGGAGCTGGG





ATGGTCTTTCAGAGTTCTACCAAATTGAGGCAAATGGGCGAGACTTTTG





TATCTTTGCACTAGCCAAGAGCAGGCACCAGGGAGAAATGCAGCTGTGA





TCCTTTTGTAGATATTATTATTCTGGAGTCAATGCAACCACACCACAAA





TACTAGGAATAATATTGGTAGTGTGGGTGCATCGACTCCAGAAGAGGAT





CTTGATGAAGCATTACAGTATCCACTACAGAGAGGCACTGGCATATTCT





GCTTACCCCACAAATATTGCAATGAGGATGCAAGTAGGAGTAGTGAGGA





CATAAAATAAATCGATTATTTTCCACTGGGCCTTAATATATCAGAACCA





TTGGAATTTACAGGATGATATTTATTATAGTACTCAAAAAAATCTCTTT





TAAATCTCCTTAACTCAGAAGGGAATTTTAAAAAGTCCACAATTCACCT





GGTCTATGAATTCCCTTTTAAAATAAAATGTGGTTTAATCAAATTTACA





AGAAAAAAACAAACAACCCCATCAAAAAGTGGGGGAAGGATATAAACAG





ACTCTTCTCAAAAGAAGACATTTATGTGGCCAAAAGACACATGAAAAAA





AGCTCATCATCACTGGTCATTAGAGAAATGCAAATCAAAACCGCAATGA





GATACCATCTCACATCAGTTAGAAAGGCGATCATTAAAAAGTCAGGAAA





CAACAGATGCTGGAGAGGATGTGGAGAAATAGGAACGCTTTTACACTGT





TGGTGGGAGTGTGAATTACTTCAACCATTGTGGAAGACCGTGTGGCGAT





TCCTCAAGGATCTACAACCAGAAATACCATTTAACTCAGCCATCCCATT





ACTGGGTATATACCCAAAGGATTATAAATCATTCTACTGTAAAGACACA





TGCACACGTACGTTTGTTGCAGCACTGTTTACAATAGCAAAGACTTGGA





ACCAACCCAAATGTCCATCAATAATAGACTGGATACAGAAAATGTGGCA





CATATACACCATAGAATACTATGCAGCCATAAAAAAGGATGCGTTCGTG





TCCTTTGTAAGGACATGGATGAAGCTGGAAACCATCATTCTCAGCAAAC





TAACACAGGAACAGAAAACCAAACACCGCATGTTCTCACTCATAAGTGG





GAGTTGAACGATGAGAACACATGGAGATGGGGGAGGGGAACATCACACA





CCAGTTGGGGGATTGGGGGGCAGAGGGAGGGATAACGTTAGGAGAAATA





CCTAATGTAGATGAAGGGTTGATGGGTACAGCAAACCACCATGGCACGT





GTATACCTACGTAGCAAACCTGTACATTCTGCACATGTATCCCAGAACT





TAAAGTATAATTTAAAAAATGTGGTTGAAAAACAAAACCCACATAATAC





AAACTTTGCCAGCTTAACTGTTTTATGTGTACAAACCAGTAGTGTTAAC





TATACATACATTGTTATTCAACAGATCTCTAGAATGTTTTCATCTCTCA





AATCCGAAACTCCAAACCCACTGAAGAGCTCCCATTGCTCCCTGTACCC





CAGCACTGGCAATATGACCACTCTACTTTCTGTCTCTAAAGAGTTTAAC





TACTTTAGATACATCATATAAAAGGAAGCATGCAGTATTTGTCATTTTA





TGACTGGCTTATTTCACTTAGCATAATGTCTTCAAGGTACACCCATGTT





GTAGCATAGGAAAGGATTTCCTTCTTTTTTTGTGGCCGAGTAATAATAT





TCCGTTGTGTCCTATACCACATTTTTTAATCCGTTTATCAATCAATGGA





CATTTTAGTTACTTCAATTTTTGGCTATTGTGAATTATGCCGCAGTTAA





TATGAGTGTGCAAATATCTCTTTAAGATCCTGTTTTTAATTCTTTTGGA





TATACAGATGCTCATTGATTTACACTGGGATTACATCCCAATCAGCCCA





TCATAAGTTGAAAATATCATGTCAAAAATTAATTTAATATGCCTAAGCT





ACCAAACATCATTGCTTAGTCTAGCATACTTTAAATGTTATCAGAACAT





GTAGATTACAGTACATCTGGGCAAAATCATCTTGCAACACAGTACATAG





TAGAGTATCAATTATTTATCCTCATGATAAATATCATGCTGCAACCCAA





TATGTCAGAAGAGAGTATCATACTGCATATTTACTAGCCCTAGAAAAGA





TCAAAATTCAAAATTTGAAGTATGGTTTCTTAATGAATGCATATCGCTT





TCACACCATTGTAAAGTCCAAAAATTACAAGTTAGACCTTAGTAAGTTG





GGGACTAACCGTACACCCAGAAATGGGATTGCTGGATTATATGATAATT





CTATTTTTATTTTTTGAGGACTGGATTATATGATAATTCTATTTTTATG





TTTTGAGGAACTTCCATACGGTTTTCCATAGTGGCTACACCTTTTCACA





TTCCCACCAACAATGCAGAAGTGTTTCAGTTTCTCCACATCCTTGCCAG





CACATGTTATTTTCTGTTTATGATCGTGGTCATCCTCATGGTTGTGAGG





TAATATCTCATTGTGGTTTTCGTTCTTCATTTGCATTTCCCCGATGATT





GACGATGTTGAGTATGTTTTCAGATGCTTGTTGGCTGTGTATATATTTT





CTTTGGAGAAATGTCTATTTAAATCCTTGCCCATTTTAAAATCAGGTTA





ATTGTTTTTGGTGAATTCCTTATTAATTACTCACCTCAGAGCCTTTCTT





CTTAAAATACAGATTTCTCAGAACCTTTCATCTAATTTACTAAATGTTG





ATCTTGAAGAAGTATTTTAATTTATCTGAATTTAGTTTCCCGTTCTATA





AATTGATAGTAATCATGTTTTCCCTATCCACACCAGAGTGGTATGATGA





GGAACCAATGCAGAAAATGACTAAAAAGGCATTTTTATGCTGTCCAGAT





CTTGTGCAAATATATTATAATTGATTTGAACCAAAAGAATCTACATTTT





AAGACTATTTAATATTGTCGCATTTACATTGCACTAATGGTTCCTCTTT





TTTCTCACTGATGAAGTTCTAGATTGAAACTCTGAGGAAACTGTAAATC





ACAGTTACATAACTCTGTTATATTAATTTATATAACTTCTCTGTCTCTC





TCTAAATATATATATTTAGACTATATATACATATGCATATATATATTTA





GAGAGAGAACGAGATTACACTTAAGGACTCTGCTTAGTACATTGCAACT





TGCACCTCATTCTAATTGTGAAAACAACAACAAATTTTGATTGAGACCC





TGTTATTTTTCAGACCTTTGGTCTTGTGAGGAAGGAAAAGATGATTCTG





ATACTTATCTCAAATAGCTTATCATCTCCTCTGGTGGATGAGGCTTGTG





AGGGCCTGACACATGGTAGAGGATCTTATTCATTATATAACAACTTTCA





AAACACATCACTAATTATTTTTCTGCTTAAGGTGAAAACGTAGCTCTCC





CAAACAAATAAGAGATTTAGACTGAATTCTGTAGAAAACACTGCTTACC





TCATTTTGCTTAGTTTTCACTGCAGAGTCTTGTCTCTAACATTCAGGTA





GGAGGAACTCTATTTTAAAAAATTGAATAAACAAACCCAAATCAGAATA





AATTATTTAATTCAGGAGTTTTTTAAGGTGCTCAGAATTTTGGTAGAAT





AGCAGTGTATTTTCTGTAATAAGAACTACACAATGTTCTCTAGCTGGTT





ATACTCAAATGGTTATATGGATTTTATTCTGATATCAGTTTTGCAATTG





ATGACCACCCTTCATCAATAGCGTGGTCTTTATTATGGTTTCATCTGGC





TTTTTCTTCCCTTGTCTTCTGCACTGGGCTGCCTACTTCTTGGCTCTTA





TTATTACATACTCTACTTTTTTCATATACAAAGGTCTTAGTGCATTAAT





AGTGAGTTTCTGCTAAAAGTGTTACTTTCTTCAAATATCCTGTCAAATG





CTGGCTGCCTGATTTATTGACCTCATAGAGTGACTATGTGAATCTTCCA





TTCTCTGTGGAATTCCATTCCACATTTTAACTTAAAGACTCCGTCTTTT





CCAGCTGTGTTCTCTCTGCTGGATAAGCATTTTTCTTTTAATTTCTGTG





GTAATGGGAAGGGAATTTTAAATCCTGTTTTGCGTACAAGTGTTTAACA





GGTAAAAATGGATGCTGTGTCAGCTATCTATTGCTGTGTAACAAGCTAC





CCCAAATGTAGAGACTTAAAATAAGAATCATTTTTTTTTTTTAGCTCAT





GATTCTTGATTCTGCTTGGGGCTTGGTTCATCGAGGCGATTCTTTTGCT





AGACTCAGCTGTGCTCATTCATGCACTCGTGGTCAGCTGGTAGTTGATG





ACCACATGTGGCATTCATATGTCTGGTATAACTTTTTGGTTATAAGTTG





AGACGGTGTGGGTGACAGGATCACTTGCCTGTAATTATTCATCAGGCTA





GCATAGTTCCATAGCGGTGGAAGAGTTCCAAGCATAGCCCAACACCCAA





GCATTGTTAAGCCTCTGCTTATGTCATGTTTGCTGATACCTCATTAGCC





GAAACAAGTGACTTGACCAATCCATATTCAAGGAGTGGAGAAACAGACT





ATGGCTCTTAATGGGAGAATCTGGAATATCTCTTGACAAAAGTGTAGAT





GCAAGAGGAGAATCTGTGGACATTTACTCTCCAGCAGAGATGTTGTCAT





TTTTGTCACTAAGACAGTTCCTGTGTAATATTATTTATTATTCCTTGGC





AGCCATAAGTTTGTGGTTTACTTATGGATACTTCAGTGCCTGCCCAATA





TCATGTTGGAAAGAGAAGCCCTTAACAATTTCTCTTAATTTCTACTTCT





GAGGAATGAGAAAAAAAAAATTGGATAGGCATAAATGATTTCCAGCACA





AATTCTAAGCAGCTATTTGAGAGGTGGGTGGGTAGGGAGAGATGGAAAA





TCCTTTTAATTGAGACATGCTCAACCATAAGCAATTTTTCTTTCCTCAG





GAGACATTTGGTAATGTCAGGAGACATTTTTGGTTGTACATCTAGGAGG





GAGCTCTGGCCAGAGATACTGACAAGCAATTCTGATCCTACAATGCACA





GGACAGCCACTCACGACAAAAAATTATCTGGGACAAAAATGTCAATAGT





GCTGAGATTGAGAAACCCTGCTTTTCACTGAGCGCATGTAGATGAATTC





ATATAATGTTAGTTATAGAAGGGCACTTAGATGATGCCAACTAAAACAG





GAAAAGGCAATGATTATTTCTCTATTCAAGTTAGTGAAGGAAGGATATG





TTTAAAGTCAGGTTGGAGATATTTCTCAAGGGTAATATTTAAGTTGTGA





GTGGATGCCAGATGCGCTTGATTGTTACAATCCATATTTTTATAGCTAT





ATCAAATGATCTTCTCTCCCAAATTAAAATGGATATTAGATATATTTCA





TGGATACCATATATTATAAGCTATAGCTCTTAGAAGTATTTGAGTGATT





AATAATTCTTGCATATTGAATGAGACATGTAAGAAAGATACCTGATGTC





CTATGATTCTTAGAAATATGTGCAGTGGTTAAGCACATTGTCTTGGAAA





CATCACTTGTTAATGTGAGATCCTGAACAAGTTTCGTTACCTTGGTAAA





AGGGGGATGATAACATCTACCCTGAAGATGGTTTGGTAAAGGTGAAATA





AAAGAGGGTTTATGAAGAACCTTGCCTAGCACATAAGAATCACTGAGTA





AATGATGGGGGTGATGGCAGTGTTGGTGGCAATTATCTTACTTGTAAGT





AGTAGCAAATATTTATTTGGATTATATTTTTAATAGCAAGAAAGAATCT





ATTAAAATGTAAGCAAATAGCACCATTAAGCTTTAAAAATCCATAGCTC





CCAAACTTAACATTTTTTTTTCTTAAATCCAGAAATACAAATGGTTATC





ATGAATCCTTGAGTTCCAGTACTCCGGCCTTGCCTATGTAGAGTACAAG





CATTTATTTTTCTAAAATGAGAATTATTGATGTTAGGTGTGTCATATAT





TTTATTTACTCTTTAGAGTGACAGAAAAGAAAGCAGACAAAAATAAGTG





TTTATGTGTTCATAGTGTTTGTTTCTAATTTTCCAACTTGTATGTGCAG





ACTGTAAATATTTAGAGGGAAGACATGAAATTCTTCCTTACCTACACAA





TAGATTGTCTTTCTTAGAATCTAGACATGATTTCAAATTTTCTTCAGAA





GTTCTCTTGAATTCTTACGGAATTCATTAATCCAAATGCCATCCTTTCA





AATATTCAAAAAGAAAATATTCTCCAATGTTGCTTACATGGAGGAGAGT





TATTTTATCTACTAGTGAGATGGAAGTCGCTAACAATCTTTCTTATACC





CCATAGTATTAAATAGTAATGCAATTTGATCACATATAACATTGCTCTC





CTGTTGACATGGAATGATAAGGAGGAAGGGAATATCTAACAGCACTTTT





TAGATATTCTCTCATAGAATTGTTAATGTGAGCCCAATAACTTATTTTG





TAAGTTGAGTGATTTTTCAAATATAAAAGTGAAGCAAACAAAAAAAGTT





ACCCACATTCATTCAACAAAGCTAGAAATAGAGTATGTGCTTCTTGCTT





TCTTATCAACCAAAGGAGACCTGTGAATTACAGGAAAACCATGTGTGAA





TACTTCAAAGGAAATATGCCAAACACATTGTGTGTGTGTTTTAAAAGAT





TTAGTAGCTCCTTTAAAGCTCTAAGTAAAGCTGTTAGTCTGACTAATCA





TGTACCCCTGAAACCAATTAAATTTTCAGACTAGAGAAGTGTTCTTCAA





ACACTTGAAAAAAATAAGAGTTCCTTCCTAAAGCCAACACCTTTTAATT





AACAAAATACTCAGAGCAAAGCTGTGGTTTGCAATAGTATATTACACCT





ACTGTTATTCATGCTACCATTCTGGTGTGCCAAACTCAATTCATTTCAA





CTATTTTGAGCTTGATTTTCTGTCTGCTTAACTATGGAGGGAAAACCAC





AATTTTAGTAGAGTCATTTTAATTTTCTAATGAATGCATGAGAAAGGTA





TTATGCTACATAGTATGTCCTCAGACTATTCAGATGCCCTCTCTCTCTC





TTGCTCTGTCTCTGTCTGTCTCTCTTTACACACACACACACACACACAC





ACACACACACAATGTGTGTATCTATCTGTCTACCTAGATATACAGTTTA





ATTTTGTACATTGTAATACATCTGGTTCTGGCATAAGGTGATTGAGCAA





AAAACAAACAAACAAAACCCACCCAAATCTGTTACTGGAGGAACCTTTA





ATAGCATAACATCAGAAAGACTATTTTCAGTAAGGACCCTAGGCAGGAA





AAGACAATTCCTCCAATGGACTTGAGAAGAATACCCTTAGTCTCTGAGG





TGGTTAGAGAGGCTGAGATCTGAACCAGCTAATACCAGAGCCAGCTTCT





TGTAACCCAAGATAGGGGCATAAGAAACGGGGTGAATGCCCAGGCATGA





ACAGACTTGGGGTTAAGATTAAATAGGGTACACGGGAAAGGATTTCCGC





CAGCTGGAGGGGAAGCCATTTCCCATGCTCCTTAGGGATGACAACAGGA





GACCCAGCCCAGAACATCATTGAAAATTCTATGTAATAATTTATATATC





CTAACTCTTTACCCGTTCGTTCTAGATTATGGATTCAGGCACTCTTAGC





AAAACAAATCCTCTTTCAGTCTTTTAAAATATTGACTTAACAGGAAATA





TCCTTGGCACAACAATACGACCCTGCCTGACCCTTAGAACTGTGAACAG





GTTGCTCAGACTGTACAAAACCACTAACAAATCTGACCAGCCTACACTT





CACTGAAAAAGGTGATTTGCATATATTTCTAGTACTATGACATGGTGGA





AAAGAAAGAACCGCATATGTGTTAGATAAAGGTAAACGCATCTGAAAGT





GCAGTAAGAATCAATGTGATATATACAATAAAATAAGATAAATAGGCCG





GGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCA





GGCAGATCACGAGGTCAGGAGATCGAGACCATCCTGGCCAACATGGTGA





AACCCCGTCTCCACTAAAGTACAAAAAATTAGTTGGGCATGGTGGCAAA





TGCCTGTAGTCCCAGATACTCAGGAGGCTGAGGCAGGGGAATCGCTTGA





ACCCGCGAGGCAGAGATTGCAGTGAGCTGAGATCACGCCACTGCACTCC





AGCCTGGCAACAGAGCAACACTCTGTCTCAAAAAAAAAAAAAAAAAAAA





AAAATTTCAGGACTTCAAAACTTCTGTCCTTTGAAACACTTTGATTAAA





AAATGAAAAAAATATATACATGCCTGAATCCAGAGGCAAGTCTTTTTAG





AAAACATAAAATATTTTAAGTAATGTTTTTCTGAACAGAAATGGCTCTA





ATGTGAGAGGTCGATGAAGATTAGCCTCTTGCTTCTTTATGTTTTAAAG





TATATTCCTTGAGACCCAAAGTTTCTGACTTTAGAATCCAACTCTCAAC





TACTATCAGCTATCCTCTAGACACTTTCAAAATCCTCCAAAACCTAATA





GTGGTGCAAGATTTTGTCCTTCCTAGTGATAACTAGATTTAAGTAAGAA





AACGTTAAAGACTAAAAAGTGTTTAGGACCCACAAGAAAGGTGTAATTC





TGTTCCTCATGGAGATATTTTAGTTACACACTTCTTATTCTGGTCCTCC





CCAAAACACAGAAATCTAGAGTTGACATTTAAAGAGAAAATGAGATTTT





TGTCTGGAAACAGGAGAGAAAAAGTTTTCAAGAAGTATAGAAAGCGTAT





GAAAGGACACAGGTTTGAAATGGCCTGTGCTCATGAGAGAATGCACAAT





AGACATGGGTGTGGAGGAGCCTGGAAAGAATGGAGAGAGGTAAGTCTGG





AGGGTCAAATCTGGTTCAGAGTACAGAGCATAAAATCCCATACGAATGT





AGAACATGAGGAGCCAATAACCATTGTGTGAGAAATGCAGGAAAAAGAG





GAAGAAAAAAATCCACATAGTGTACTTACAGTCAGAACAATCCTAGGAG





GTGACTTACATGTATGATGTCATAAAATCCGTAACACAATTCCATTAGA





TTGGTACTGTTTTCATAGTTACACAGGTGAAAACTTTTGAGGGTCAAGA





TGTTCATTGTAGCAGGCATAGTATAATTCCTTACCTCAAGATGCCTCCA





ATGTCAGTGAACATTACTTTTCCAAGATTGTCTATTTAGGAAAAAGTAA





GGCCAGTTGTCTATGAAGGAAGTACTATTATAATCGCCACTTTACAGAG





GAGTAAATGGAGATTCAGAGAGGTTAAGTCATCTGACTATAGTTACACA





GCTAAAAAAAAAAAAAATTATAGAGCAAGGATTCAAATACAACAATCTG





GTCCTAGAAAGCCTAAATATTCTACACCCTGCTTTCTGATTCAGAGCTA





TTTCCTGCTTTTCTCCCTTCGATAGGAAAAAAAATGTATGTGTGTGGGG





TTGGGGGCAAATAAATTGACTGGCTGTATTTTCTCTCTTTAATATTTGA





TCTTTCATTGTCTGCTCCAAGCAGTGGGTCTTCCTCCATTATCTTCTCG





TGAAAATAGCTAAAATCACCTAACTAGTAAAAACCTAGGCATGTTTTGT





GTTCTAGCCTCCATTCTTCCATTCTAATGGGTGGCTGTTAAATTTTAGT





ACTCATTGTATGTAGAAGACCTCTAAGTTCACTAAAGAGCTTACTGCAC





ATTGACTTTTCTTTAGATTCAAAGGGAATCAATTGAGCACCTCCTATAC





TCCAGGACATGTGCAAGATGCAAGAGATAGAGCAGTGAGAAAGTCTGAT





AAGGTTTCCCCTCCCTTTCCCAGCAGTGTACAGATAGATGTTCTTCAGG





TGGTGCATGCTGGAGAAGAGAAGACCAGAAATACTGGCCTGACGGGTCT





ATAGATGAGATTATCTGCCCATGACTGGCGCAGGGATGGCCGCATTGCT





AGACCTCTCCATCATCCTCTGAATATGCTTCAGCTAATTTATCATCCCA





ATGGCATATTTAGTCATCATGAACCATTCTCTCTTTTTGAGTCTCAGGC





CCTGGCCTTGCTTTTCAATAGACTTCCAATAGATTCCTTCCTCCTTCCT





TCCCTTACTGCCTGGCTTCCTGACTTCCTTCCTTCCTGCCTTCCTGCCT





TGTCTTGCCTTGCTTTTCAATAGATTCCCTCCCTCCCTCCCTCCCTCCT





TCCTCCCTCCCTCCCTCCCTGACTTTCTTCTTTCCTTCTTCCTTTCTGT





CTTTTTCCAAACGTGCTTTTCAGGAAACAGTGGTCTGCTTGTTGAAGTC





TGATAATTCTCTAGTTCCTCATCCTTCACTTTATTGAAATTTAGTGTGA





CATGATCATTTCCACCTCATTAGGTACTTCTTTCATGGTCAGAAGTAAG





TCTGGAGAAAAAAAAAAAATCTCTTGTCTCTGCTCTTATTTGAGGGTCA





AATTTTCAATAAGTCACTTTTTAAAAAAGCATTTTCTGACACTTCCCAT





AAGCTTGAAATCCTCCTAAATTGCTGTATATTGCCTCAGTATACCTTGT





GTATCTATTTTAGGAACACTCCATCCACATTTGCCAGTCAGCCTGGTGT





TCTGCAGTTAGTTCCTACAGTGATATTTTAATTTAGCTCTCTTTTCATC





CTCACACATGCATCCTCTCTGGATATTTAGCTCCTTTCCTGGAATCCCT





TTTAAGATTTCTAGATCTTTTTGCTTCCATGATTTCTTCTCCTGGACTG





TGACACAAAATGCTATTTCTTCTTTACATTACATTTAATTCTTTCTAGA





AAGAGCCTCAGAGTAGTCAGATAGCTTTGAGAAACAAAACTTTTTCTTT





ATTGCCTCACTGTTACTGCCTTTCAATCATTGTTTCGTGACACAAATTT





TTTTATTCTCTCTGACAATTAAAACACTATTTTTTTCTGTCTGCATTGA





TCAAAATTAGTTCCTTCATTCATAGAAAACTCTTGGTGTCCCTGAGAAG





CTTGAGAGACAAGAAACATTCTTCCATTCTACTCATCTTCTTCTCTAAT





GAGGAGACAACCTTAAAAGCACAGTTACATAGCCATAAAAATTAATGAT





TGGCTACCTCAGAATGAAAATTCAATGTCTCATTTTTTTTTAATATTCT





TAGAATCGTTCACTGGTTGTCCAGTGTGAGTCTCCTGTTGAGATGTCTT





TTGCAGCTTTCCTTGAAACCTTTCATTCCAAACTACATAGTCCAATAAT





TTTGCCACCAATCTTCTGGTTATATTATGCTCTTGAGTCTGTTGTCTAT





AAACTTGATTAGGCATTCCTTCCCCTCACCACTCACCTCTGATAACCCA





GCTGTGTGTTGGTATTTAGTATCAATTCACACCAGCAAGTTCAGCCCTC





TTCAATCAATATAGGGCCACACACGGACTTTTGACTGACTACTCCCCAA





GTATTTCACATTTTGGGGCCTTATCTCCAGTTTCTCACCACAGTTGTTC





ATCACTGTGTTTCTTACTAGCCAGGCGTTTATAAAAACAGTAATACCTA





ACACTATTGATCACCTACTATAGTGTCAGGCGCTGTAATAATATTATTG





TGATGATGATGATTATGCTGCTCTTTCTGGCATTGTCATACGTGTATTG





CTTGTACTACTCACTGAATCTACACAACTGCCCTTATGACATTTACCCT





GTTATTATTCCTCTTTTAAGGTAAATACATGAAAAATGCTTCCCACTTT





GCCTTGCTTACTGCTTATTGCTAGTACTGAACAAATGTTAGAACTGAAA





CTTAGAGAGGTTATGTGGCTTTACCAAGGTCCCAGAGTTCCTAGGGCAG





AGAACAGGATTGTCTACCAGACATTTTAATTCTAGTACTATGCATCTTA





ACCATTACCATAGGCTGACTTACTCTACAGTGTCCAACACTATTCATAT





TAAGATTTATTTAATGACTTTGAAACAGTATTTCATGTCTAAATAGAAA





AACTACTAACTCGCATTTTTAAGAAAATATTGTATCTTGGTTTTTCTTC





ACTGCTGGCCAGTTTACTAACAATCTGAAATAAAAAGAAAAAAATATGA





TAAACTGCTCCCAGTATAAAATACAGAGCTAAGACAAGAACGTTTCATT





GGCTTTGATTTCCCTAGGGTCCAGCTTCAAATTAATTTACTTCCTATTC





AAGGGAATTTTAAATCAGAAAGAAGATCTTATCCCATCTTGTTTTGCCT





TTGTTTTTTCTTGAATAAAAAAAAAATAAGTAAAATTTATTTCCCTGGC





AAGGTCTGAAAACTTTTGTTTTCTTTACCACTTCCACAATGTATATGAT





TGTTACTGAGAAGGCTTATTTAACTTAAGTTACTTGTCCAGGCATGAGA





ATGAGCAAAATCGTTTTTTAAAAAATTGTTAAATGTATATTAATGAAAA





GGTTGAATCTTTTCATTTTCTACCATGTATTGCTAAACAAAGTATCCAC





ATTGTTAGAAAAAGATATATAATGTCATGAATAAGAGTTTGGCTCAAAT





TGTTACTCTTCAATTAAATTTGACTTATTGTTATTGAAATTGGCTCTTT





AGCTTGTGTTTCTAATTTTTCTTTTTCTTCTTTTTTCCTTTTTGCAAAA





ACCCAAAATATTTTAG







Homo sapiens dystrophin (DMD), intron 50 target sequence 1 (nucleotide positions 1524636-1524685 of NCBI Reference Sequence: NG_012232.1) GTAAGTATACTGGATCCCATTCTCTTTGGCTCTAGCTATTTGTTCAAAAG (SEQ ID NO: 835)









(SEQ ID NO: 835)


GTAAGTATACTGGATCCCATTCTCTTTGGCTCTAGCTATTTGTTCAAAA





G







Homo sapiens dystrophin (DMD), intron 50 target sequence 2 (nucleotide positions 1570168-1570417 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 836)


CGTTTTTTAAAAAATTGTTAAATGTATATTAATGAAAAGGTTGAATCTT





TTCATTTTCTACCATGTATTGCTAAACAAAGTATCCACATTGTTAGAAA





AAGATATATAATGTCATGAATAAGAGTTTGGCTCAAATTGTTACTCTTC





AATTAAATTTGACTTATTGTTATTGAAATTGGCTCTTTAGCTTGTGTTT





CTAATTTTTCTTTTTCTTCTTTTTTCCTTTTTGCAAAAACCCAAAATAT





TTTAG







Homo sapiens dystrophin (DMD) intron 50/exon 51 junction (nucleotide positions 1570388-1570447 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 837)


TCCTTTTTGCAAAAACCCAAAATATTTTAGCTCCTACTCAGACTGTTAC





TCTGGTGACAC







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 51 (nucleotide positions 7554-7786 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1570418-1570650 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 838)


CTCCTACTCAGACTGTTACTCTGGTGACACAACCTGTGGTTACTAAGGA





AACTGCCATCTCCAAACTAGAAATGCCATCTTCCTTGATGTTGGAGGTA





CCTGCTCTGGCAGATTTCAACCGGGCTTGGACAGAACTTACCGACTGGC





TTTCTCTGCTTGATCAAGTTATAAAATCACAGAGGGTGATGGTGGGTGA





CCTTGAGGATATCAACGAGATGATCATCAAGCAGAAG







Homo sapiens dystrophin (DMD), exon 51 target sequence 1 (nucleotide positions 1570442-1570487 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 839)



TGACACAACCTGTGGTTACTAAGGAAACTGCCATCTCCAAACTAGA







Homo sapiens dystrophin (DMD), exon 51 target sequence 2 (nucleotide positions 1570455-1570498 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 840)



GGTTACTAAGGAAACTGCCATCTCCAAACTAGAAATGCCATCTT







Homo sapiens dystrophin (DMD), exon 51 target sequence 3 (nucleotide positions 1570465-1570506 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 841)











GAAACTGCCATCTCCAAACTAGAAATGCCATCTTCCTTGATG







Homo sapiens dystrophin (DMD), exon 51 target sequence 4 (nucleotide positions 1570442-1570506 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 842)


TGACACAACCTGTGGTTACTAAGGAAACTGCCATCTCCAAACTAGAAATG





CCATCTTCCTTGATG







Homo sapiens dystrophin (DMD), exon 51 target sequence 5 (nucleotide positions 1570518-1570567 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 843)


TGCTCTGGCAGATTTCAACCGGGCTTGGACAGAACTTACCGACTGGCTTT







Homo sapiens dystrophin (DMD) exon 51/intron 51 junction (nucleotide positions 1570621-1570680 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 844)


GATATCAACGAGATGATCATCAAGCAGAAGGTATGAGAAAAAATGATAAA


AGTTGGCAGA







Homo sapiens dystrophin (DMD) exon 51/intron 51 junction target 1 (nucleotide positions 1570623-1570674 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 845)


TATCAACGAGATGATCATCAAGCAGAAGGTATGAGAAAAAATGATAAAAG


TT







Homo sapiens dystrophin (DMD), intron 51 (nucleotide positions 1570651-1614861 of NCBI Reference Sequence: NG_012232.1)










(SEQ ID NO: 846)



GTATGAGAAAAAATGATAAAAGTTGGCAGAAGTTTTTCTTTAAAATGAAGATTTTCCACCAATCACTTTA






CTCTCCTAGACCATTTCCCACCAGTTCTTAGGCAACTGTTTCTCTCTCAGCAAACACATTACTCTCACTA





TTCAGCCTAAGTATAATCAAGGATATAAATTAATGCAAATAACAAAAGTAGCCATACATTAAAAAGGAAA





TATACAAAAAAAAAAAAAAAAAAAAGCAGAAACCTTACAAGAATAGTIGTCTCAGTTAAATTTACTAAAC





AACCTGGTATTTTAAAAATCTATTTTATACCAAATAAGTCACTCAACTGAGCTATTTACATTTAAACTGT





TTGTTTTGGCACTACGCAGCCCAACATATTGCAGAATCAAATATAATAGTCTGGGAATTGATTATTATCC





ACTCTTCTAAGTIGTCTGTGCCAATTTGCCTTCTCCAATGATAAGGATAATTGAAAGAGAGCTATAACTT





AAAAAGAGAAAAGTAACAAAACATAAGATATTTAAAATTACCCTAGATCTTAAAGTTGGCATTTATGCAA





TGCCATGTTCAAATGAACATGTTTTTAATACAAATAGTGCATTTTTCAGCCTCAGTGTAATCCATTTGGT





AAAATTATGACATCAACTAGAAACATTAGAATACATTGATGTAAATATGGTTTACCTAGCTAGATCAAAT





ATACTATATATCTTTTATATTTGTGAATGATTAAGAAAAATAATGTTGGAATTGTTATACATTAAAGTTT





TTTCACTTGTAACAGCTTTCAAGCCTTTCTAAAGAAATACAAAGTTGTGCTGAAGGTATTTAGGTATTAA





AGTACTACCTTTTGAAAAAACAAGAAGTGAGGCAGACAGAGTAAGGGGAATTTCTTTGTAAAATAAACTT





CACCAATTCCATAGGAATAAAAGTAATTTGATAGTAAACAACCTGCATTTAAAGGCCTTGAGCTTGAATA





CAGAAGACCTGAATTCAGTGCCATTTGCAAATGATGATTGTGGTCAAGCCATCTCTGGATCTTCGTTTCC





TATTCTGAGTACAGAGCATACAGAGTACACATTCACATTCACAATATAGTTATGGATATGGATGTATATA





AATATATGTAAATACTACATATATGTACCTAAAATTTGTTTTACTTCTGCTTTAAAAAAAGTAATTATAG





CCACATTTTTCAGAAAAAGTAACTGAGGCTCATAGATGTCAAATTCCCAGTAAGTAGCAGAACAAGGATT





CAAATCCAAGTCCATTTGATTCCTAAGCTTGTGTTATTACTTGCTACTGCAGAGAGTATACGTAGCAAGT





AATATATGTACTGCAAGCAATACATACTATTGCTGCGGTAATAACTGTAACTGCAGTTACTATTTAGTGA





TTTGTATGTAGATGTAGATGTAGTCTATGTCAGACACTATGCTGAGCATTTTATGGTTGCTATGTACTGA





TACATACAGAAACAAGAGGTACGTTCTTTTACAATACCATATTGAGTTATATAATACTCCCAGGACTTTT





ATTTACCAAAGGAAACAATATTTTATAATGTTTAAAGCCCAGGTTTTGAAGTTACATTGTCTGGGTTCAA





AGCTTGGCTCCCAAGCTGTGTGACCTTGAGTAAGTTATTCTGCCTACCTGAGCCCAAGTTTATCTAGCTA





TAAAATGGGGATAGTTGTACTATCTGCCTTGCAGTTTGTCATCAGGATTAAGTTGGTTGGTACATGAAAA





ATGCTTCCCACTTTGCCTTGCTTACTGCTTACTGCTAGTATTGAACAAATGTTAGTAATTATATTTGGTT





CCACCACGAACTCTAGAAATCTAACCAATGATGGCATTTGTATTATGCAAACTGTATATCACATCATAAT





ATTATATGGAAATGAGAGCTTGTTTCCGCTTCTGTAGCCTAGTCTACCATTGACATAGCTTCCTGCAGAA





GTTACCAGATAATAGATTGGGAGAGAAAGTCCACACTTCCTTGTGACGGGTTTGTGAGTCCAGCATTTAG





GGAAGCCATTGATGTGCTCAGTAGTCTCCAGAGTTCTCTAAATAAATGTGTCCTTTTCAGAAAGGACTAC





TGATTTGATGCCCCCTCACAGAGATCGTCTTTAAATATAGGTCAAAAACTAATGTAGAGGGCCAGGTGCA





ATGTTTCACGCCTGCACTCCCAGCGCTTTGGGAGGCTGAGGCAGGTGGATCACTTGAGGTCAGGAGTTTG





AGACCAGCCTGGTCAACATGGCCAAACCCCATCTCTACTGAAAATAAAAAAATTAGCTGGTGTGGTGGCC





CATGCCTATAATCCCAGCTACTAGGGAGGCTGAGGCAGGAGAATCACTTGAATCCTGGACCAGAGGTTCC





ATTGAGCTGAGATCACACCATTGCACTCCAGACTGAGTGACAGAGTGAGACTCCATCTCAGAAAAAAAAA





AATTTAGGGGGAAAAATCAAAAGCCATTTCTGAGACACAAAAATACAGGATTTATAAATTATATATGGTA





TATATAAAAATATTTTTAAAATAGTATATATAGCATATTATATATAATGATATGTAATGTTCATATATTA





CATATTTATAAAAAAATCTAATCTCCCTTCTCTTGCTTGCTGAATAGGGGGATGCTTTGCCTGCCTCTTC





CTCTTATATTAAAAAATAATTCTTAAAGACATTGTCAGTTCTTGGCTTTTATAGCCTCAATCACCAAATT





GTCGGTAAAATGGCCCTAAATAATCATTAAACAAATGTGTGTGAGAGGGGAAATAAGAAGGATAAGTAAG





TATGGGGAGGATTTTGTTATAATTTCAGGAAATCAATATCAATTTTATGTAAAGTTTTAAATAAAGCAAT





CCCAACTTTAATGTTTGATGTGTGAAAAATTAGGCAAAATTCCAAAAGGGCTTTATAAACTGAAAAAAAC





TTTACTAACACCTATCCATTTTTATTATTTTAACCAACTTCTATTGAGCTGCCACTAAGTACCTGGGAAA





CATAAAGTTGTACAACATAGAATGTGCAGGTAAAAGAGGTTGAAGGAAGAAAATAATAACACTATGATAG





AGATAAATTTTAGGATAATAGCTAACACATATGATATGCCAGTCATTGATCTAAGTACTTCACGTGAATT





CTTTAATGCTTACAACATTACTGTGAGGTAGATAGAGAGGCACAGTAAGGATAATAACCTGCCTGAGATC





GAGGAAGAAAGACAATGATGAGATGTGAACTCAGGCAGTTTGGTTCCAGAGTCCTCTCCCTTAAACCTCA





TAGTTTTCAACTTCTCTGATATTGTGTGGGTGATGCTGTTGGGGCTTTCTTCAGGGAAAACTAAGCCAGG





AGAGAGAATGGATGCTAGTGAGATATTCCTGAAGAAGGAAAAACTTAAGCCAGGCATTAAAGAATGAGTT





GGAATTACCTAGCTAGATAAAACGAGAAGGGCAATCCAGGCAGAGGGAACAGACTGTGCTTTTCACTGAG





GTGGAAAAAAAACAGAGTATATCAGAGGAATTGTGATTCCATATGGCTGAAGTTAAGGGTATATGATGAG





GAAGAAATTGATGAGGTTGAATAGAGAGGACTGGGGCTAAATAATGGGAATCCTTTGTTGCCAGACTGAG





GAATTTTGATGATGGCCTACAGGCAGTGGCAACTCTGAAAGGATTGTAAACAGGAAAATAAAATCATCAC





ATATAGTTTAGTTGCCTATCAATTAGAGCTCTCTGGATGCAAGCAACAGAAATCATTCTCTGATTAAATC





AGGCAGAAAGTAAATGTGCTGTAATTAGCACAAAGGCATTGGAACAAAACTTACAAAAGGAAAAAGAATC





TGAGCATGCCTTTCTGGGCATGTGGCTAGCAAGAAGTATTCCAGTCTGTTTGTGATACTCTCTTTTCTCC





ATCCTGTGTGTAACTCTGTTCAAATTTTAAAGTCTTAAAAGAGAGTCCAGTTCACCTTGTTTGGGTCACA





TGTTAATACATGAGCTAGAAGGGAGCAGAAAACTTTGATTTAAATCCCTCTCCTCCCAAAGTCTCAAAAT





TAGGGAAAGGCAATTCTCCTGAATAGAAACTGGGTTCTATTGACAATAGAAGAAGGAAATGATTCTGACC





AACCACTAAACAATAATTGTCCACTGAACTCAGTCAAGAACATGTAGAATAAGTTGGAGGATAGAGCAAA





TAAAGGAGATTTGTAGGAGGTAATTATTATGATCTAAAGCAAGCTTGTTCAACTCATGGCCTGTGAGCCA





CATGCGTCCCAGGATGGCTTTGAATGTGGCCCAACACAAATTTGTAAACTTTCTTAAAACATGAGATACT





TTTTGTGACTTTTTTTTGCTCATCAGCTATCATTAGTGTTAGTGTATTTTATGTGTGGCCCAGGACAATT





CTTCTTCCAGTGTGGCCCAGGGAAGCCAAAAGATTGGATACAGCTGATCTAAAGCAACAGGTTCATCTAC





TCAACTTCACAACGTGTAGACCTGAAATAAAGACCATTCATATACCAATACCTGAAATATAAATTTGTTT





GACCATGACACGTACAGTAATTGGTTCTCAATAAATGTGGATAGCTTGATGGATAATGTGAATGCAATGT





GATAAGGAAACTTCATATTCAACAAAGACTGGAATGTGAGGATTATAATTCCAAAGCACCAGAAGATAGA





TAAGATAATGCAATGAGACATTTTATGACTCAAGGCAAAGTTAGTTATGAGATTCAGACCAAACCTTAGA





CGTGCAGTAATTGAAATATTTGCCACAGAAGGGGTATAAGGACATGACATTCAAGTAAGCTAACCTTTCA





CTAGCTTTAGACTTTGAACTCAGAAAACATATTTGGTGAAAAGCTTATGGTCCCCTTTAGTATGTATTGC





TTGATTAAAGTATTATTTTAGAAAATGGTGAGCTGCTTCCATTTTGAAATAAAAATAATTTTTACTAAGT





GAATTATATTCAGTGAAAAAAATGGAAGCTACAATTACAACTTTAATTTTTTTAAGTTTTAAGAATACAG





CCATTTAAAAAAATTAAGCAAATCTGCTTCATTTTAGACAGTAGAAAATATACCATTATCTTTTAGAAGA





ATAGAGATGTGAAATATGCAAATTAAGCCTTTAGAAGTAAAGCACACATGAAGTTCAAAGTTTAATTTCT





AGAATTGTGAATCAATAGCAGTGGATGATTTGTACTTTATAGCTTAGTGTCGGAGAAATCTGATTAAAAA





ATGCTTTTTCTGTTTCATCACATAAACATAAGTAAAATTGCTCTGAAACAACAATATTTGACAAGAATTA





GCAGTTTTCTTTTTTGACATAATCTATCAAATGAAGGGAAAAATATGTCCTGGGTTTTGCTTTGAGAGTG





ATTACTAAATCTGACCCTTAAGGAAAGGAAGGAGAGAACAAAGAAGGGAGGAAAGAAAGGGAAGGAAGGA





GGAGGAAAGGGAAAAAAAGAAGGAAGAGAGGAAGGAAAGCAGGAAAAAGGGGAAGGAGAGAGAAAAGACA





AAAGAAAGGTAGCAAGGAAAGAAAAAAAGACAAGAAAGGAATATTAAAGAGGACAAAAGAGGAGTGAGGA





AAGGAGGAAATGGAAGAGGGATGGTGGGAGACAGGAGGGAGAAAGGTGGAGGGGGAAATATGAAGAGAGG





TTCCCAGCAGTGGAGACTAGTGTTGCTATCAACAAATAGAATTTAGATGGCCATATGATATTATTTTTCA





TAATACTGGTGTCTGATTGCCTGTGCTGAGTTAATTGTAGTCTTTTTTTTCAATTCCGTTTGGCCAGGTG





TTCAGGATAATTCACCACAAAATCTCAACCACTGCACTTGTATTGAATAAAGAATTGAGTTGGCAAAGGC





ATTTTATCCTCCAGTAAGACCTTTCCAGATTGGGGTTGAGACAAATTGGCCAATCTGGACAAGATGATAA





TAGCATTGTTCAAGATTAATTTTTAACCACACATTGCACTGTTACCTGGGAGATTTCATTATCTAAAAAT





TGAATGAGCAGTTTTAGTGGGTATAGTGTATATTTAAATGGGACATAATTACTTGAATGAGTTTAATTTT





TGTTGTTGTTGTTAAGGTCAAAGTACTTAAAAATTATGATTTTTTAAAACTCTGTCTATACACAAAAAGC





ATTTGAATTAGCTACAGAATAATTCTGATTATAACTTTTGGTGAATAGATTCAGTCAAAATCTGATTACT





AAACAACTTGTGTAGTATAGCCCTGGAAGAATTGATGGGACAATGTGTGGGTAAAGTGGCATTGGCTATT





TAAACTAAAAGCAATACAAAACAGAATGTTTCTTGGTTTTATTCTGTTGTCACAAACCCAGCAGAAAGTG





GCTATTACAATAGTTTCCCTTATTCAACAAATGAGAGAAGTTATAGACAATTTAGTTAATTGATCTAAAG





TCACTTAGTAAATGTAATTGTCCTAACATAAACCCAGACCCCCAGACCTCTTGGGAATAGATAATGTTTC





TTACTTCTTTTCTATTTCCTCAGCCACCCCCCTCAACTTCTTACACATCTCATTTCTCCATCCAAATTAT





AACAAAACAAAGCAAACATGGTTTATTTCCATGGGCATCAAATGGATTTCACGAGGTTGGGTGACAGTCA





TCTTAGGGTGAGGAGATTGATTATTCTGTTTTTCTCTTTCATCGATCAACAATCCAGCCCTTCTCATCTC





ATCATTTCATTTCTGCACAAACTTGTTTAAGAAATACCAATTAAGAAATTAATTAAGAAATTAATGTTGT





AATCTGTTTGGCTGAAGATATTTACAAATTTTGTGCTTTAATTATCTTCCAACAAATGTACATGTCTCTG





GTAGACAGCTTGCGACCATCTGGATGACTGATCCATATTTATATAATTTTCTTTCTTTACCTAATGAGAC





CAAATCCACTATTATCTTCAACGAAGGATGTAAAGATATGTCAGTGTCAGTAATGTGACTTATTTTATAT





TCTCTGGTCATAACAAAAATAAACCGCCCCTTAAATAAAAAGGTCATAGAGTTGCAAACACACACACACA





CACACACACACACACAAAATCATATTTTCTAAGTCTCCTAATTACCTTTTTATGGAAAATGATACCATAT





GCTTTTTTCTTAAAGAAACTACATAAACTTATAAACTATACTAAACTACACATTTCAAAGTCTATGAATG





GAAATGTGTATCTTATTATATTTTAATTCAATTCACTGTAAACTTTTCTGTCAAAATCTTATCAAGCAAA





ACTGATCCAGGATATTTACATGAATTCTGATGGAAGTCACTGTACTGTGTTTTCCATAAAATACCAGTGG





GATTCTGATAAGGAAGTTTATGTTTGCCATTGTGTTTAAATAGAGAATTCTGGGCCGGGCATGGTAGCTC





ACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGTGTATCACCTGAGGTCAGGAGTTTGAGACCAG





CCTGACCAACATGGAGAAACCCCGTCTCTACTAAAAATACAAAATTAGCCGGGCGTGGTGGCGCATGCCT





GTAGCCCCAGCTACTCCTGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGATGTTGCAGTGAG





CCGAGATCACACCATTGCACTCCAGCCTGGGCAACAAGAGCGAAACTCCGTCTCAAATAAATAAATAATT





AGAGAATTCTATTTACAAATTTCCTTTCTTGGATCTAGTTAGGGCTCCTTTATATGGAGTGATTTTTATT





GTTTTCATAGAAATACGTAGAATCTGGGTCTTCTCTAACTTTCTTACAGGAAAGCAATGTAATAAGGTTT





TTTTTTAATTTTCTGAAAGTTATATAATGTTATTGTTCCCTAAAGTTTAGGACCTGCCTTTTAGGCTTTC





CATTTCACCATAACTTTTGGTCCTTAAAGTCTGTAATTGAAGTTACAGTGTGTTATGATGTAAATTTTTC





TTATTATTACCTTTAATGTTAGGGTAATGTTAACTAATGTTAATGTTAGGTATATGGTTGTTTTTTTCAT





TCCTTCGTTCAACAAATTGTCTTTGAAACCCATGTTACAAAGCACTCTAGAGTCAGGTTGAAGACTATTA





AGAAAGGAGAATAGAAAGAGACACTAGAGTAATAATTTGGATTTAAATTTGATTTCCTTGTGTATGATAG





TGAATAAGTGTGAATAAGATGAGGCAGTGATCACACATCACTATTAGTAAAAGTGTTTCTGTACCTGTAT





CCACACTTTTATGTATATGGTTACTTATGTTAAAGTGATACATATTATATAAAATTAACGTATACATTAA





GTAGATATTTTAATAGTCTGTAATTAAATACTACTAGTATTTTCTTTCCTCCTTCAAGTGCTTACTTTTG





ATACCTCGAGTTACAGTGTCATAAAGATTCTTTAGAAATATATTGACTGTCTTTTAAGAGCTTTTGATAC





AATACTGAGTTTACATTCATCTGTTATTTATTGAACACTTGCTGGTGAAAGGCATCAGTGTTATCTGCTC





TTAGGGAACAAAAATTAAAAAGGGATAGGCCCTAATTTTAGAGTGTATCCTCTATAAGAAAAACATAAAA





GATAGGGCAGTCATGGCCACAAAAGAAAAAAGTGTTATGGTGGTTTCAATCATATATGTATTAGAATGAA





TAAATCAACTGATCAATTGTGATTTCTTATTCTAAATATGTGCCTGCCTTTTTCATATAGATGAAAATTA





AGCTATGTTTATCTTTCCAGGGATCTTGTTGATTTTTATTCAATAACTTGGGAGTGAAAGTTGATTTTTG





CATATGTTTTAATGTTTTTAAATTTCATAAATGAATTGATCAGTAATTTCCAAGGTAGTAATGGCTGCAT





TGTTTTTGAAAAAAAAAAAGCAACAGGATTTGATTGTGCTTTTATGATTTTTAAAGAATTCATTAAAAAT





AATGCCACGGTTTCTAAAATGATTTGAGTCAATTTCTTATTCGATTTATAAAAATAACTTTGAATACAAT





TTTAGTAATTCACAAATGCTTTCAGTTCCCTTACCTTTATATTTTATATTCTGTGTAAACAAGTGACATA





ATATTTAAGAATTATATATCTCCTATGATTTATTCAAGAAAAGAATATATACTGTATTATTTATTTCAAG





AACAGAAATGCTTTGATTTAACTGTCATCTTCTCTCTTCAATTATGGAAGCAAAATAAACTGTAATGACC





AATGTAACCCCTCCCCCATATCAAGTTAATCTATGTTCAACTCCAGAATTATTTTTGAACACTCAAACTA





GAAATTAAAAAAAATTAAATCCATGAAGACGATTTTTGCCAAAAGCATATAGATAAATTGAGTTGATTCT





ATACTTAAGAAAGTGGAGAGGAGAGAGTAATTTGGAGAGAGTAATTTACTCTTAATCCCATATTTTTTCC





CTAAATGTGAAAGAAGTAGATTGTAGTGAGAGGGAAAATAACCTGTAGCAACTTCATTGAGGCTAAGCTT





TCTGTCATGTTATATTATACGAAAGTAATGAAATGCTTCCACAGATAGAATCAGAAGTCCCCTCTGAGAA





ATTCTACATAAAAATTAGCCTGCCACTTTACCACACTTACTCAAGTTTGATTTTTTTAAGTTATGTAATA





GATGTTAGGCACTAGAAGAGGACATTTACTGGGGGCAAAGATCAGTAGTTGGAAAGAATGCAAGCAGGCA





AGAAGCTATATATAATGAGATTTTACAGTACAATTGTTTTCTAAATGAAAATGAGGACGGGTCCAGACAC





AATGGCTCACACTTGTAATATCAGTGCCAGGATGGAGGATCCCTTGAGGCCAGAAGTTCAAGAGCAACCT





GGGCAACAGAGTGAGACTTCATCTCTACAAAAAAATGAAATAAAAAGTTAGCTGGCTGTGATGGTGTGGG





CTTGTAGCCTTAGCTACTCAGGAGGCTGAGGTGACATGATCTCTTGGGCCCAGGAGTTCGAGGCTGCAGT





GAGCTATGATAGCGCCACTGGATTCCAACCTGGGCAATGGAACAAAACTCCATTTCTAAAAAAGAATAAA





ATATAAAACTAAAATAATAAATAAATAAAAATGAGGATATATTTTATTTTAACATTTGGAAACTTTGTAG





GTGAGGACCATGCAAACATTCAAGGTGTGAGTTCTGACCAAATCCAATTATTAACCATACCAATGACTTA





AGGTTTCTTCACACTCCTTAAAGTTGATTAATATAATGATTATATAGTTGACTGGTATGTCACAGCTTGA





AGCCITTGAGATTTATTCCTGCCTTTTCTGTAAAGGTTGTTTTGTTAATTCCAGTATGTACTGGTCGTTT





TTGTTTTGTTTTGTTTTTGTTTTTGTTTTGTTTTTTTGAGATGGAGTCTCGCACTGTTGCCCGGGCTGGA





GTGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCACCTAGGTTCAAGCGATTCTCCTGCTTCAGCC





TCCTGAGTAGCTGGGATTACAGGCACTCACCACCACACCCGGCTAATTTTTTTTATTTTTAGTAGAGATG





GGGTTTCACTATGGTGGCCAGGCTGGTCTCAAATACCTGACCTCATGATCCACCTGCCTTGGCCTCCCAA





AGTGCGGGGATTACAGGCGTGAGCCACCGTGCCCGGCTGCCAATATGTATTGGTCTTTTTCATCAATGAT





TCAGTCCAAAATCATTTTGTCCITTAACTATATATTTTCTTGTAAAGCTGCTTCTGTTGTCTTGAACTTT





TCTTTTCAAATGTATGTTGTCATTTGACTTTTTAGATTGTTATTTTCTGGTCCTCGAAATAAATTTAAAT





TTCCTGTAAAGGAAGGTGTAATATTCTATTTGACATAGCCGCTAAAGATGTACTAGGTGCTTTATAAATA





TTGTTGATTTACTTTATCTTCACAGATTACTAGTTTTACTTAGTATTTGGAATATGACAACATTTTATAG





AGCTATATTCATATATATGTTTATCTTAACTGTTAAATGCAATATGATTCATGTCTTGTTTTGGTCAATG





ATGAATGAAAGTCTCCTGAGAATTAAATTTACTGCATCGATGCAAAAACAATCATAATTTTAGACACTCT





AAGAATTTTAGAAATTAAAGGATTTTTTTTTTCCAGTTTACTCTGTTAAGATTGTGTTTAGCTATGCGTG





ACAGCATTCTCACTACAGTGGCTTATCCAGATAGTTTCTTTTTCTCATAGAGCAAGACTTCCAGAATTAT





GTGTTCCAGGGTCAGTGCAGCACCTCCAAAACCGTATGTCCCAACTTTTTCCTCCAACCCCAGTCATCTC





CAACATGAGACTTTCTTTTTGTTTTGTTTTGTTGTTTTTGTTTTTGTTTTTGTTTTGAGATGGAGTCTCT





GTCGCCAGGCTGGAGTGCAGTGGCGCGATCTCGACTCACTGCAACCTCTGACTCCCTGGTTCAAGGGATT





CTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACGGGAACGCACCACCACGCCCAGCTAATTTTTGTATT





TTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGATGGTCTCGATCTCCTGACCTCATGATCTGCCTGC





CTCAGCCTCCCAAAGTGGTGGGATTACAGGCGTGAGCCACCGTGCCCAGCAAGACTTTTTTTCCTGTGGT





CTCAACATGGCTACTCTGCCTCCAGGCACTATGTCTGTACTTTAAAATGGAAGAAGGGAAAATGGGGAAA





GTAAAAGCATATTCCAGCTGTGTCAGCTCCTGTTTGTAAGGAAAACCAGTGCTTTTCTGGCAGCCCCACA





CAGAAGAGTTTCTACTTGAACAGTGCATTAACCAGAAATGTGTCACGTGACCATTCCTAACTTCTAAGGA





TCTTGGGAGGATTGAGTGTTTTAACTGAATAGGTGTGTTTCTTTCTTCATAATTCAAAATGTGAAAATTG





GTAACTTAGTTATAAAACCTTGCTAGTCTGAACAGAATTTGGATTTTTTTAGCTAAGAAGGAAAGAAAGG





GTATCGGATAGGCAGCTGGCTATGCTAGCCAAGATACTCTTAATAATGCACATTTTTCTTCTTTGGACAT





AAGCAGTTTTAACTTAGCTAAATATGATGTGATTGTTTTCCTGTCTTCTTAGTTCTGTTTAAATTTGTTT





CAGAAATCAAGGAAATAAAATGGAGAAAAAACTCTATTATTCATGTCTATCTTTCTGCCTCTGAATATTT





TTATGTTGGAGAAAGAGAAAGCAGTAACTTTCATAATAGCTTACATAGTCTGACAAATTCTAAACATGTC





CGTTAGCATCAATATACGTGGTATTAGGTCATCAGTTTTTATATTCTGAATTATTAAGACCCAAATAAAC





CCACTGAGTTCAAGAGAAAGTATACACTGAGCAATAAAAACATTACCAGTTCTAGCAATGATAATCAAAC





AAGAAAACAAGTAATATAGTCTGTTTAGAATAACATGTTTTAAAGATCAAGTTTTTCTTCCTTACCAATG





TTGCCTTTCTTGTAACACTTTTTTTTCCTTCTTGAGATAGGCTTTCCTATCTTTTGTCACAAACCCCAAT





ATTTACATGGCCATTCGTAGTCTATTCATAGCAGCACCACCCCATGGCCCAAACTTGTAGATATTGCCCT





CCTTCTATGGTTGTTCTAATAAGAATAACCACTCTTGTCTCTCATAATCTCAGCTGTTTTGTGCCGTTAA





AATGGAAAATAATGAGTATTAAGATACTAACTAGGGGCCAGGCGCGGTGGCTCACGCCTGTAATCCCAGC





ACTTTGGGAGGATGAGGCGGGCGGATCACGAGGTCAGAAGATTGAGACCATCCTGGCTAACACGGTGAAA





CCACGTCTCTACTAAAAATACAAAAAATTAGCCAGGCGTGGTGGTGGGTGCCTGTGGTCCCAGCTACTCG





GGAGGCTACTGCACTCCAGCCTGGGCGACAGAGCAAGACTCCATCTCAAAAAAAAAAAAAAAAAAAATAC





TAACTAGGTTTCAGTCATATGAGATGAATAAGTCCTACAAATCTGTACAGCCTAGGGCTTGTAGTTAACA





ATGTTTTATATTTAAAACTTTGCTAAGAGAGTAAATCTTTTTTTACCTGTTATTATCGTACATGCAAAAA





TAATAGTAAATAAGGAAGGTAAGAGAAAAATTTTGGAGGTGATGCATAGGTTTATGGCATAGATTCTGGA





CATGATTTCACAGGGGTATACAGTCATGCATTGCTCAACAACAGATATACATTCGGAGAAATGCATGGTT





AGCTGATTGATCTTGTTGTGCAAACATCATACAGTGTACTTACACAAACCTAGATGGTACATCCTACTAT





ACATCTAGGTTGTATGGTATAGCCTATTGCTCCTAGGCTATAAACCAGTACAGCATGTGACTGTACTGAA





TACTTCAGGCAATTGGAACACGATGGCAAGTATTTGTGTATCTAATCACATCTAAACATAGAAAAGTTAC





AGAAAAATATTATAATCTTATAGGACCACTGTCCTACATGTATACAGACTGTGCACATGATAGTGGTCCA





TTGATCAAAATGTCCTTATGCAGCACATAACTGTAATTATCTCGAAACTCATCAAGCTGTGTTCATTAAA





TGTGTATAGCTTTTTATGTCAATAAAGTGGTTAAGAAATCAATAAAGTGGTTAAAAAATATTTTGACTAG





GAAATATACTATCATTTCTAGTTGATAAAAGATCTCAACATTTCCAAAATTGTCCTACAGAAAACCAGGT





TCATCAGGTGTTCATACATGATCCTCATGAAAAGGTCAAATAAGCTGAAAAACATGCATAGACGTTGCCT





ATCCTAGCAATCTATGATGTACATCTCCATAGTAAGGTCACTGAAAAGTCTTTTAGGAATGTTAGTATTG





TTAGCTCAGTATTTCTCAGTGATTTCTCCATGGAAACCATTIGTGTAGAGCATCTTGAGGAGCACAGCTG





AGAGAACATTATCTTAGITGGATGTGTATGTCCCTCTGAGTCACTTGATTTCTCTACATATGCTTTTACC





AAATTAATCTTTTAGAAATCTTTTCTCTTCGCACTATGTCTATAATTTGTGAAGTTGTTACCAGGATAAC





ATTTGTGCCTCTCACCATGATGTACCTACCAGGGTCCAAGCAGCCATTCCTTCTCTAGAGCAACTGTCTG





AGGGAAAGAATTTAACACAGCATTCTACGAAATCATTTTATTTATAAAAATAGATTACTGCTTTACATAT





AGTAATTTATATTTAGAATATTGATTAATTATTAAAATCTGCATGAGAGCTTTAAAGAGTAGTACATAAT





ATATAGCAGTTTGTACTCAAACTGTCTTCTAAAAAGGATTCACTTTTTGTTTGTATTCTATTGTCCTATT





CGTTGATAGTGTTACGTAAGTAATTATAAAACTTAAAATCTGGAAAGAGAATGTGGACTCAGAATGCCAT





CTCTTTTGTTATTTCAAATGGATTAGAAATGAACATACATATTCATTTTCTTTCATTACACATCCAGAGA





AATAGAATGGATTTTATAAATATGTAAAAGCAAGGATTTTGATCACTGATAAAAAGGGAAGGTTTGGTCA





CTACCTTATTTCATTCCTTTTTTCTTATCCTTTTTTTTTTTTTTGTCAATTATTTGATGACATCTCTGAA





CATCACCTTTTATTCATGACAAGAATTGGGTATCATGGTAAAGAACACTGTTAATATAATTCAGTTACTT





CACCCCCTCCTGAAATATAGAGAAGCTTTAAGACTATGTGAATATTTTTTTCTGGTTTTCTTGTATTTGT





AGAAATAGCATGAGCTTTGTTTAAAGTCAGGCATCTAAAACCTTGCCCTGTATGTTATTGACAACCTGCA





CAAATTTTAGGATCTATTCTATTACAGTTTGTTCAACTGTAAAACTAGGATAGCAAACTCTATGTCATAT





TTTCGTTATCAGAATTTAAAAAGCATGTTTTAAGATCTTAGTAAATAATAAATCTCTACTCTGTAGTTGA





ATTTGTTCTATATTCTTTAAGAAATTCCCTTTGATGGTTATGCCAACCTCTGTATTACTTTTCTTCACAC





TTTAACTTTGCGCTGAAATCATAGTAGTATTTTACGTTATCAGTCAAAATAACAGTCATCCTTAAAACAA





ATATGAATTTTAGATGATTAAATAGATTTGTATGGAGGTTCTTCTTGCTAATCATAGCAGTTATCCTTGG





TGAAAAATGATAGACACTTGAAAAAACCAATTAATCATGATGGCTATTTTTGCATCATAAATAAAGCTTT





CAAATTTGAGAGGGAATCAAAAGGGCAATGGTAGTATAGTGTCTCAAAGCCCCTTTCCAATTGATGGTAC





AAATTTAAAAAGAGAGAGAGAGAGAGAAACATGTTTCACTGTAATTGTTTTCTAAGAGCTTCCAAAAAAG





CGTATTTTCTTAATAGATTCAAATTTTTCAGTTGGATTGAAAGGGAAGTCTTGGAGTGTAGTGAGGAGGG





CACCTTCTGTTGAGAGGTGTTCAGACGACAGAGTGTGCCCAAGGCCAAAGATGAGATGGTTTTGCGAAAG





TCAGTGGCCACAAACAGGTGTGTTTGACCCCTGAGAGATATGCAGGAAGTCTACCCCACTTTAATTCTTC





CAAATATTCTTTACCTTAATTCCCAAGTACTTGATAAAGGAGCAATGGGGAGAAAATATGCACACTATTA





TGGAAAAGTTTTGACCTACACTTTGGAGAGTTTTAGATTAAGAGCATTCTAGAAATCAGTCCCAAATGCC





TAGGGTTTACTTACTTAAAGATAATATCATAGTTTGGGTGACTGGGAAGCATACCCTGAGATTGAGGTGA





GCATGCAGTATGTCTATTTAGGAGTGTTCTTGGGGTCAACGTGTAGGGGCAGAGGGAGAAGTTGAGCTCT





GACGCAGTCTTAGTAAGGGCCTCAGCTGACCGTTCAGGGAGTTCTTAAGCTGGAATGACCCTTCAGAAGT





GCTAGGAAACGAAGAAAGGGGACTGGATCTTTATAACCCCGTGTCAAGTCATGCACTGGATGTGGGCTAC





TCCAGGAAGGCAACGAACTTTAGCAAGATGATTCTCTTTAGCCACGGGAATTTCCATAAGGGGGCTGCTA





TGGTCTGAATGTTTTTGTCCCTCCAAAATGTGTATGTTGAAACCTAACACTCAAGGTGATGGTATTAGAA





GGTGGGGGTTTGGGGGGGTGATTAGGTCATGCGGGCTCTGCCTTCAGAAACAGGATCAGTGCCCTTATAA





AAGCGGCTCCAGAAAGCTTCCTTGCCCTCCCACCATGTAAGGACACACCGAAGATGCCATTTAACAGGAG





TGGGCCCTCACCAGACAATGAATCTGCTGATGTCTTGATCTTGGAATTCCCAGCCTCCAGAACTATAAGC





AATAAATTCTGTTGTTTATAAATTACCCAGTCTAAGGTATTTAGCTATAGCGGCCCAGACTAAGACAAGG





GCTGACAGCTGAAGGCTGTCTACCAGCAGCACTCCTAGCAGCTGGGGAACTAAGTCCTTCATTTCCAAAG





GGGAATCTAGGCAGCATATTTACAGCTTTTCACTACAGATAAGCTCATTATTTCAAATAGGGACTAGCAG





GAAAAAATTAAATTGCCCAAAATTTAGTGGGATGCTGAAATAGATTGTGGTGTGTAAATTGGAGTATAGT





GAGGAGAGCACCTTCAAACCAGTATGTACTACATGATATTGTTTTTGTTGCAATATTTATTATATACCCA





AACACACATATATTACTTTTAGAAACACACACCACATATATATCTATGAATATTTTATATACACATAGGG





AAGGATTGTTGATGTTATTTATGCTATTTTAAAGATCGATGTTTTCATATAATTATGTATTGGTTATATA





TTATTTCTTGATATAAGGTAAAAAAAAAAAGCAAAACAAACTTTAAGTGATCACTATGAAAAGAATCCCA





ATGCTGCACATTTAGGTTTATCCAACTCTTCCCATTAAAATATTAAATAGTAGAAATAATTGTGAATAAG





AAAGAGCAGATTTTGAAAAATGGAAAGAAATGCTTAAAGACATAGCATTGTTGCCCAACCATCATTATTT





AAACATACAGTGTTTGGCTTTGACCAAATTGCCTTCAAACACTTCCTTTTGGCCCAAAATGTTAGGTCAT





ATATACTACCATAAAATTCATGATGCTTACCATGCATTAATTTCTAGTATATACCAGGCATTGTGCTATG





CATATCATATTCAATATTTCTAATCCTCTCAAAAGTGGTACAAGCTAACTGGCGTTTTTCTTGTTTTGAA





AGGGAGAAACTCAGAGAGGTTAAGTGACTTGCCCAAGGCAATGCCATTGATAAGTGCCAGATTCTATCAC





AGGTTTATTGGCAACAAACCATATGTGCGCGTGCATGCGCGTGTGTGTGTGTGTGTGTGTGTGTGTACAC





ATACACGAATAACATATATGGTATAAATACGTGGAAACATAATAAACTGCATTGAGCTGCGTTTATAATT





AGTATTTAGGACATGTTTGGCAAATAAAAACAGTGGAGATTGAAATGGATTTGCTTAGGAAAAATGATAC





ATTAAAATAGGCTTTATTATGAGTCTTCAACTATTCTGTGAAAATAGATACCCAGGGAAGAAATAATAGA





GAATATGAATCTTGAGCAGGCAACTGAGAACTTGTCGAAGAGCCAAGATAAAAATGTCAGAGAGGAGAAT





ATTTTGGCAGCTCAGATGAGCCCCCAGAGGGTGGGAGGCAATGATCTCACCGCAGTCTCGTATCTGAACC





CCAGGTTTTTGCATCTCCATAAAGTAATTTCTTACACCCCTCAATAATGATCGGGCTTACTCTCAATCTC





TCGCTCTCTCTCTGTGTCTCTCTCACGCACACAAACATGCAGAACATTTCTTGCACATGCATAACTCATA





AGACGATTATGTAAATACCAGCCTTTTTATTTCATAACTAAATTACAAGGCCTGGTTATTGTTTGGACTG





TGAAAAAATAATTATGTGAATAGGTGCCTCAAGATGAAAGACAAGGCAAGATTGTGAAATTATTCATATG





ATAGTAATAGTATGCAAAAAATAACACAATCTTTAAAGATCTTTAACGACCTAGTTATAAAACCATGCTT





TATAACAAATATAACCATGAGGAAATAAAAAGAAAAATGTAATAATATACTCCAAGAATAAAGTCAAATG





TATTGTTGAATGTAAGGAGTTGGTTACACTTCCTTATAGTGGAGGTTATTTTAAAATTTGTGGCTTACGT





GGTGTTATGAATTGCCCTAGATCAACACTATTATGCAAGGCCAACTATTAGGTTATTTTTGGTAGATAAC





CACAGCAAAACTTTAGTATAATAGGTAAAGGTTAGCTACACTCCCATACCCTCACTCTCAGGTGTTGTCA





TACTCCGTATAAAAGGTTCAATCAAGGGAGACATGAGAATATTCCAGAATCTAGAGGCAGGATGCAGTTA





ACCTTAGAGAAGGCATCAGACAACTAGAATCTTCGGATTCAATGTGGAAACAAAGCATAGTTTAGGCATT





AAATCTTGGGCACCATTCCAAAGAATACAGGTTCCATAACTTACTATATTTTTATACCTAGCAAGCTAGA





GATGAGGAATTGCTCTCAAATATTTTAACCAAAGCATGTATCTTAAGTAACACTAATCTCATAAGTGAAA





ACTCATTTCTAATATTCATTTTGCTCATTAGCAAGGCCTCTAGTGTTGACTGTGATAAAAAATAGTTCAA





ATGCTGGTAGAACCCACCCCAGGAGACTGGCCTTTCTGATTAAATTCTAACTCTATCCCCACGTGAATTC





CTGACTTAAGTAACTGAGTTCCTGCACATCAGAATATAAGTATATTATAGATATAAAAACATATGTAATT





AATAAATATTTTAAGTGAGACACTTCTTTCATCTTTATGGCTTAACTATATCAGACATTTGATTATTTTT





AGCGGTCTAACTACAAAACAAAACACAAAGCCCACAACTAAAAATTTCTTTGTATATATTGCAAAGAGGC





AACCATTTGGTGTCAATTCAATCATGAGTGAAATGCTATTATACGAGTACATCTCCCTGGCTTGTATGGG





GGTAATAGGGCATGGAATTTACAGATTCACAATAACTGAGATATTCACAATAACAAAGATATCAATATGT





AGCTTTTCCCATAACTTTGTGTAATGAAATCCTCAGTTTGTGCTGTGTAAAAAGCTTATTGTTTACTTCT





CATGAAAATCATCTTAGTTTTTATCTTTATTTAATAGTCTGTAATTTGGGGGTAATACATTCGTTTTGTT





GATACTATGTGAAGTGGCAAGCAGAAAATTCTAACAGGAATAGATAAGCAAGTATCCTATAAATCAGAGT





CAGTGTCTCTCTCTCTCTCTTTTAATGAGTCAGTCTGTCTCTCTCTCTTTTTCCCTGCCTGGCTATCTAT





CTGTATTTTTCAGTTTTGCTTTGCAAATAAGAGAATTGTGTGTTGTAAACCAACCAACTTACCATTAATT





TTCTCTGAATTCAAAAGCAATTACAAGCGGACTCTTGAGTTTGTGCTGCCTGGTTGTCTGCATATAGGCC





AGATGTCTAGAATAGGATCTTTATTTACTATTTTTACCCTCCTAATTTCATGGTAACTCCAAGGTAGATG





ATATTTGTAATCGTACACTACTTGTCAGAAATCTTTCTAATAACACTGCTATTTTATAAAAATAAACATT





AATTCAGTATAAAATTTTATTTTAAATTGTTAATTCAAGCAAATCAGTGAGGTAACTTTTACACTGCCGA





GCGTACGTGTGTGTGGATTAGTACAGCCATGCCATAGACTTCACTTGTAATCTTTTCTTTATATTTTTTA





TACACCTGAAATGTTCATCATTGTGCTGTAGAAAACAATCTCATTGTGTTTTTAAAAGCTAGAGTGGGTA





TTGAGAAGGGGAAGAGGATCATAGAAAAAGTTGGTTAACATGCTACTTAACACTTCAAATCTTTACTCGA





TGTCATCATCAGCAACATTTTAAATTTATGCTTCTACTAGTTTGCAGTTCTTTTCCTTTGATTATTCTTA





TGATACAAGCCTTTCCACACAAAATTTATGTACAGGAATTGTGTAGAATTTTTCTTTGGAAAATATGGTG





ATTTATTACAATTTGGGCAACATCATCATTTTAAAAATTCAGAATTTGATTTTTCTCAGAATCATCAGAA





AGAATAAAGCATATATATGGTTCATGTCAGGAGAATTAGAACATGAGAATTAATATATCTCTGATCTTTT





AAAATATTTTCATGTTTGTGAATCAGCAGATTTTTCCTAGTTTGAGATTTAAAAAATCTAGATATAATTA





AAATCTCACTGATGTTTCACCATCAGATGATTTTATATTTGTATTTTCTTCCACTTCATAACTTGTATAG





AGAAGAATAGAAGAAAGAAAAAGGGAGGATTGATAATCTTTCTCTCTCAGTTCTTATAGCACTTCATTTT





TTAAACTTATTACTTCCTTCTGCCTGCTTTGTTTGTCTACATGTTTGTATTTCATGATTTCTTAGAAATC





CATCTACTGCCATTCTGAAGGTCATTTACCTGAAAATGATAGAAAGCAGCATATATTCAAACAACTGCAG





AGTAATTGTCTATATCAGTTATCATTGTTCATTACTTTTCTGTTTTAGGATTGAGGGGCTGCCTCGCCAC





CTCCCTCACACCCCCAGCATATTATCACAAAGCCTACTGATTCATTCACATCCCTGGGCTGAATTTGCCA





CCCACTGTGTGTTCCTGTTGTTTTGTGTATGGAAGTGAAAAGATTTAATTTGATGTTGTTGAAAAGACAC





AGAGGCTAACTTTCAATTTTCATATGTAGTTCTTCCCTCTCCCTCTGCACCACCTCCTTTACTTGTTGAG





AAAATTGCCCTCTCCATGGTAACAATAGAAGAAGCTTTCAGATTTTAGTAGTAGTTGTTGCAGAGAAAAG





AATTCAAAAAGTAGATGAAGTTTAAAAATGAAAAAGAGAGAGGAAGACAGCTGGGAAGAAGGCTTAATGT





TTATGAGTGGGTGTGGAGGGGAAGAACTAAGTTGAATGAACAAAGCTGAGCTAAGGGGAAGATGGTTTTT





CTGCATCCCAGAAGGCAATACCCTAGCCTTTCCTGCAGCCTTCACTCCCCAAAAGATAAGAGCTTTATCT





GAAATTCTTATAGGATTCATTCCTGAAGAGCAGCTTGTCACCAAACAGAAACACTGTGATTTCCTCAGGG





AGTCACAGITTATTATTATTTTTTTAATGTAACGCTTTTGTGAACTCCAGTTTCCACCTCAATTCAAATG





GTCTTTTGGTTACAGGGTGAAAGAGACCCAACAATACACCTTTCCCACTTCCGGAGGCCTTTGGTTAAAC





CATGTCTGCCACAAGGACACAGGAGCCTGGTATGACTGGTTGTTTTTTGTTTGCTTTTTTGCCTCCTGTG





CTTTCTAGATTGTGAGATACTGTAACTCTTGTCGATGACACATAGTACCGAACCCACCCGAAGAAGTATG





TCAGTATGTCACATTGTGACAAACAGCTTCTCATGCTAAGTAAATGCAGAACCATTGTGAAAGGTTTAAT





AATGCCCACTCCTCCCCCGCCAAAGATGTCCATATCCTAATCCCAGGAACCTGTGAATATGTTACCTTAC





ATGGCAAAAGGCTTTGTATTAACAGATGTGGTTAAGTTAAAAATCTTGACACGGAGAGATAGCCTGGGTT





ACCCCAGTGCGCCCAATGTAATCACAAGAGTCCTCCTAAGAGAGAAGGAGGTGATGATACAAGCAGAGTA





AAAGAGAGATTGGAAGATGCTACACTACTGGCATTGAAGATGAAGGACAGGGCCAAGAGCCAAGAAATGC





AGGCAGGCTCTAAAAGCTGGAAAAGGCATGGAAAAGAATCCTCCCCTACATCCCTTAGAGGGAATGCAAG





CTCTGCCAACACATTGTTTCTAGCTTGTGAGACCCATTTTTTGGACTTTGGACCTCCAAAATTGTAAGAT





AATAAATTTGGGTTGTTTTAAGCCATTAAGTCTGTAATCATTTGTTACAACAGCCACAGGCAGCTAATAC





AGCCATGAACATTTAGTAATGACTAACTTTGCACAATTTTAATACAAGCTTCTTATTAAGGTTTATTTTT





TCTTAATTACAAGGAATAAAAGTGGGGTCTGGGGGCAATGTCATGGTCCACTCCGTTTTAGCCATATGAA





TTTGTATTTCCAGCATTAGAACAAAAGGTGACAAATCTGAATGTATTTGTGTGAAATAATAATAAAGCAG





AACAAAAAGGGAAAAGTGTCCAGCTGGAAATGAAGTTAGAGAAAGATGAGGAGAAGCAAGCCAATTGTGT





AGTTTTCCCTTCTGCTTTTTAAAATCATGATTTGTTTAACCCACTGAATTCTATTTTAGAAACAGGACTG





CAAGGAAGTGTTGATGGATTTGGTGGCATGAGAACCAGAGTCACAGAGGCAGGAAAGTAAGGAATAAGTG





TTAGAATAGGAAGCAGAGTTGCTTGGGAAGAGACCTTATGACATGTGGACAGGGCTAGACTTAGGAGTCA





GAAAGACCTGAGTTCAAATGCTATCCTTTAGTATAGTTTGAAGTCAGGTAGCGTGATGCCTCCAGCTTTG





TTCTTTTGGCTTAGGATTGACTTGGCGATGCGGGCTCTTTTTTGGTTCCATATGAACTTTAAAGTAGTTT





TTTCCAATTCTGTGAAGAAAGTCATTGGTAGCTTGATGGGGATGGCATTGAATCTGTAAATTACCTTGGG





CAGTATGGCCATTTACACGATATTGATTCTTCCTACCCATGAGCACGGAATGTTCTTCCATTTGTTTGTG





TCCTCTTTTATTTCCTTGAGCAGTGGTTTGTAGTTCTCCTTGAAGAGGTCCTTCACATCGCTTGTAAGTT





GGATTCCTAGGTATTTTATTCTCTTTGAAGCAATTGTGAATGGGAGTTCACTCATGATTTGGCTCTCTGT





TTGTCTGTCGTTGGTGTATAAGAATGCTTGTGATTTTTGTACATTGATTTTGTATCCTGAGACTTTGCTG





AAGTTGCTTATCAGCTTAAGGAGATTTTGGGCTGAGACAATGGGGTTTTCTAGATATACAATCATGTCGT





CTGCAAACAGGGACAATTTGACTTCCTCTTCTCCTAATTGAATACCCTTTATTTCCTTCTCCTGCCTGAT





TGCCCTGGCCAGAACTTCCAACACTATGTTGAATAGGAGTGGTGAGAGAGGGCATCCCTGTCTTGTGCCA





GTTTTCAAAGGGAATGCTTCTATAGTACAAGGCTACAGTAACCAAAACAGCATGGTACTGGTACCAAAAC





AGACATATAGATCAATGGAACAGAACAGAGCCCTCAGAAGTAACGCCGCATATCTACCACTATCTGATCT





TTGACAAACCTGAGAAAAACAAGCAATGGGGAAAGGATTCCCTATTTAATAAATGGTGCTGGGAAAACTG





GCTAGCCATATGTAGAAAGCTGAAACTGGATCCCTTCCTTACACCTTATACAAAAATCAATTCAAGATGG





ATTAAAGACTTAAACGTTAGACCTAAAACCATAAAAACCCTAGAAGAAAACCTAGGCATTACCATTCAGG





ACATAGGCATGGGCAAGGACTTCATGTCTAAAACACCAAAAGCAAGGGCAACAAAAGCCAAAATTGACAA





ATGGGATCTAACTAAACTAAAGAGCTTCTGCACAGCAAAAGAAACTACCATCAGAGTGAACAGGCAACCT





ACAACATGGGAGAAAATTTTCGCAACCTGCTTATCTGACAAAGAGCTAATATCCAGAATCTACAATGAAC





TCCAACAAATTTACAAGAAAAAAACAAACAACCCCATCCAAAAGTGGGCGAAGGACATGAACAGACACTT





CTCAAAAGAAGACATTTATGCAGCCAAAAGACACATGAAAAAATGCTCACCATCACTGGCCATCAGAGAA





ATGCAAATCAAAACCACAATGAGATACCATCTCACACCAGTTAGAATGGCAATCATTAAAAAGTCAGGAA





ACAACAGGTGCTGGAGAGGATGTGGAGAAATAGGAACACTCTTACACTGTTGGTGGGACTGTAAACTAGT





TCAACCATTGTGGAAGTCAGTGTGGCGATTCCTCAGGGATCTAGAACTAGAAATACCATTTGACCCAGCC





ATCCCATTACTGGGTATATACCCAAAGGACTATAAATCATGCTGCTATAAAGACACATGCACATGTATGT





TTATTGAGGCACTATTTACAATAGCAAAGACTTGGAACCAACCCAAATGTCCAACAATGATAGACTGGAT





TAAGAAAATGTGGCACATATACACCATGGAATACTATGCAGCCATAAAAAAGGATGAGTTCATGTCCTTT





GTAGGGACATGGATGAAATTGGAAATCATCATTCTCAGTAAACTATTGCAAGAACAAAAAACCAAACACC





GCATATTCTCATTCATAGGTGGGAATTGAACAATGAGAACACATGGACACAGGAAGGGGAACATCACACT





CTGGGGACTGTTGTGGGGTGGGGGGAGGGGGGAGGGATGGCATTGGGAGATATACCTAATGCTAGATGAC





GGGTTAGTGGGTGCAGCGTGCCAGCATGGCACATGTATACATATGTAACTAACCTGCACATTGTGCACAT





GTACCCTAAAACTTAAAGTATAATAATAATAATAATAATAAAATCTCAAAATAATTAAAAAAAGAAACAA





ACAAATGCTATCCTGATCCTAACTGGCTGGCTGTCTTTGGGGAAGTTGGTAATCTTTTCTGTGCTTATTT





CCTCATGTGTAAAAAAATGAATATAGTACCCAGCTAGGTAGAGTTGTTGTTGGGATTAAATGATGACTAT





AAAGCATCTAGCCCAGCTTCGGCTACATTATAGCTGCTTACGAAATTGTAGTTACGATGTAAAAGAGAAA





AACACTGGAAAAGGAGGATATGGGCCATTTTATTCCACCTTCACCACCTTTTAGCTTGGTGACCTTGGGC





AAATTATGCTTCATTCCGTGCTTCATTTTCCTTGTCTATAAAAGGGTGTAAGTACAGAACCATTGAGGGG





TGGTCATTATTAACCTACCTCAAATGGTGTCTGTAAGTTAATATATATTGTGCTTTTCCTATGTACAATA





TCTAGCACATAATTACAAATCAAATCCATCCCATGTGCAATATCTAGCACATAGGAAAAGCACAATAACT





AGTTATTACTCTTGTTGTAGTAATTGCTACGCTGTAGGAGTTTGAATTGTAAGGCAGTGGAGAGTCACTG





ACCTTTACGAGAAAGTGTAGCAGAACATTTGAGTAGATAGTAATGGGGAATATTACATAAATGGATAGAT





ATTAGGGGCAGATATTACTATTAAAATATTACAGCATGGATATTTATTAAGGCCAAACTGGTTAATTAGT





TGCATCTCTCAGGTTCCTAATGTTGCTTAATTTTTTAACCTCCCATTTTGTGCTGCCCTTTGTACGAATA





TTTAATGCTCCCAACACCTCTTCAGTAGCACATGTACTGIGAGTTTGTTTTGTTATTACTTGTGTGTATT





AGCATTCCTTTGTGAACCAAAAGCATGGAATTAGCTGTTGCCTCTAGGCTACCTAGTTTTGTAGTTTGGA





TTGAAGCCTTCACCTCAGTAACACCTATTCTGTCTACTATCTTACAGAAAACTTGTAAAATTAAGACAGA





TCATTAATATAGCAGAAAGAGACAAAGGGCAGAGAACATTGAGATACTGGATATTGGAACCACCCAATAG





TGTTGATTTATTTATGATTATCAGTTTTTGTCTCTGCCTAGCCTCATGCCACTAAAGTCTCTGAGGCAAC





AAAGAATAAGCAATTTTGCTCACCTTATACAAATAAAACACAGAAAAAGGAATCACTAGAGAAATGGTAC





TGCAGCCTTTCTGCAGGGATTACTGCTTATTTTTAAATTACTTAAAAGGTATTGAAATTATTGTTCATAA





TGAGAAACCTGCCTAATAAAACAGAAAATTAAACTTAACACTTCCCTATAATGTAAACAGCTCGGTTAGG





AACACAACATTACAGAAACCACTTAAGAATTGATTGTACTTGTTCTTGGAGCAGAACTAGAAGCTCACCG





TTTAGAAGCTGTGCACATTTCCCTATCAAACAGTACATAAAGTTTCCATATTCCTCAGAATCGGCTTCAT





TTGTGCCATGTGTTTGCTTGGAACTATGCCACAGAAAGCAGTTCTCCCCCTCAAGCTGGGCTCCTTTCAT





GCCGCAGTGCAAGTGTGTGATATACTGGCACCATGTGCTAATGTAGACCCATTTTTATATGATAAGAATT





AGTACGGCCTAGGGAATAGACAAGTATGTCTAAAATCCTCCCCATAGAATATGTCCCTTCCTTTAAAAGC





TGTCATACTGTAAGTTCCAGCTGAGTTAAAGGCCACTGTGCTCCTATAGGGAAATATATTCTATTGTAAT





TTTTACGTTCTCCAATAACAGTCTGTTCTTTGTTTACTGAAGAGAGCTTTCATGTCATAAAATGGTGTTT





TTTGACAGAGAAGCAGAATCATTGTTTTATTATAGAAATTTGCTCTTACAACAGCAAAAATAAATAGCTC





ATCTCTTAAGCTCCTGATCAATGTCTAACACCTCCTACCCCCAGCAACACTTCACTGCAAGTATATTAAC





ACTCTATAATAGCAATTCCACTCACCTACCAAGAAATGATCTTCACAAATGATTTACAGCTAAACCAGAG





CTTAAACACATAGCACCCAATCAAGGGCAGATTTTTATCTTTTTCCCAGTCATATAAGTTCTGAGAAGAA





ATAGATTAATGTTGATCTCCCAGACAACTGCTGAGAAAATGTACAAAGGATGTTGTTTATTTTGAAGAAT





GAGACCTAGTTGTTAAGCACTTTTTCCCCTTATATGTACGTCCAAAGGTAACCATTACACCATTTTGATG





CAAATTTAGGATATATATTTATTCATACCTCTCTTCTCCATTCGGATGTTGTCTGTGTGAGTGCTCACAG





ACACATGCACACATACACACATGCACTCCTGTTTCACACTTATTTGTAAAACTCACAAGGATTTCCAAGC





CATTAATATAGCATTGTTTAAGGTGAACACATGGTTGTTCACCATCCATATGTATCTTCACTTTGTAGCA





CTCAGAATTTGGCAAAATCAGAAGGCTGAAACCTCATGGATTAAATATATTCTATATAACATATGTCTTA





ATTGCTGTTACTGTAAAGAAACCTGGACTAGCCATATTTGACTAATTTCTACCTAAGGTATTTGAATTCT





TATAAATAGATTCATTGCTTTAATCACACAAGAGTGGTTTATATGAATGTAATTATCTCCACTTTATAGC





TGAATAAACTGAGCCTGATTCTATCCCTATATGGGAAACATGAATTGAACAGCTGTGCCAATTATTTTGA





TAATTCAAATTTCACATCTACCATGTGAAGACAGCAGAAGAGGGTTAGGGGGCTTGAATTATTCTGATTA





ACTGTGTTCATGAGTGTAATCGCCTCTAGATAATCACTCATTTCTTCACTTCACTTCCCATCTACAGGTA





GTATCAGCGAATGGTAACATCTCTTGCTTTGCCTCAGTTTATTGATGGCTGCCGTTAGAAATAAAAAGCA





TGGTTTTGTTTCAGTACTTAAATGAATAATATCTTCAAAATGTTTTTAAAACGTGAAAAGGTTGAATGCA





TTTTTAACAAATGTTTTGTTAGCTTTGACTTTTATTTTTGAACAGATGAGCACAATACCCCAGTACTCCT





TTCCTAGAAATAGGAGTACTACCTGAAGACTTATTTCCCAAAGAAAAATATCAGGTCTAGTGCAGCAATA





CGTATTAAGGGCATTGAAAAGTTATATTCACAAAATGTGACATCATAACATATGTTAATACTTCTTATCA





CTGATAATAATCCTTGAAGTTGTATTTCCAGAGAGATCTCAATTTCTTCTCACACTCTGAAAGTCTCTGT





TTATCCTTTAGAGTAGGAATGTAAGAATTTAACAAAACATTCTGAATGTTTACCTTTTTTCTAAACTGAA





ACTACAATCCCTTTTTACCCCTATATAGTAAAATATAATATTACAAGTAGAATCAGCAAATTTGTTTAAT





AATTCTTTGGGACAGTTTTTACAAGCAATGGGGTTGAATTTATGTTCCTTGTGTGCAGTGGAGTTATTAT





ATTCTTCTTAAAAAGATGCATGAAGGTAAATTAGAAATGTTTTACATGTTTTCATGACAGGACATTTAAT





CAAAGAGGAGATACAAGAGGCTTTTCTTGGGTTACTGCAATTTAATTTTCCATTTCTTTCTTGGAAGGGA





CATTGGATGCAGTTGTACGAGGTTAATATTTCTAACATGCCACTTTTATTGTGGCATTCTTCTGCTCTCA





AACCTCTGATGATTTCCCATGGCCTTCAACATGATGTCCTTATTTGGGCATCTAGTGTTCTGAGCCCTCA





CATTCTGGCCCCAGCTTCCCTTCTCAACTTGATCACAGCCATCGTAATTCTGCTAACTAATTACACAGCT





GCCCTTCCCACTCTTTCTCAACCACTCTGCTGTATTCTGACTTCTACACTTTAGTTTTAAAGCTACTCCT





TGTCCTGAAATTCCTTCTCCCATTAGGTCATTATTAATTGAGTTCATCCTCTAAGTTACAGTTCATGTTG





CTGTTCCTCTATGGCACCTTCCCTGAACCTGGTCCCATATAAAATCCCATCTCTCAGAATCCCATTAGGG





TAGGATATGTGGTCTGTAGACTATTACGTTTGTCATTTACATATTGTCTTCTATTATTGGGTAACTGCGT





GTGCGAGCATGCATGGGCTGGCCTGAAGGTCACCTCCCCAACTGCATTGAAAGTTCATCACAAGTTCAAT





TATTTCACTAGAGAGTCTCTTTCATGTCATCCATGAGGCACATTCCCTACTGTGATGTGTTATGCATACA





ATTATTTCAATAAATATTTTCTAGCTCTTTGATTGACCAAAGCTTAATTACCTGTCAACTCTAGCCTCTT





GTATCTGGAATTTCTACAGTCTTTGGATAGTATCTTTAGGATGCAAAATTAGGAGGAGTATGTACCAGGC





AAACTATTACAAATAATGCCCTCAAATAGTTACATTTCACTATTCATGTCTTGTAATTTATCTTCTGCTT





TGGTATTTTAGTACACTTATGATTCAATTTGCTGTATAGATTCCTCTGAATAGGGACAAGAGAATTCGTC





TTGATAAGTGGAAGTTCGAAGGATTCCAAAATGATGTTATTCAAGGTAGAACAAGAAATTAATACTGAAA





AAATTGAGGAGTAATAATCCCCAAATATGTACATGCGTATCTCGTTTTATTGGGTTTCACTTTATTGCAC





TTTGCAGATATTTCACTTTTTGTAAATTGAAAGTTTGTGGCAAGGCTGCATTGAGCAAGTCCGTCGGGCA





CAATTTTTCCAACAGCATGTGCTCGCTTTACGTCTCTGTGTCACGTTTTGGTAATTTGCTCAATATTTCA





AACATTATTATTATTATTATATTTGTTATGATCTGTGATCAGTGACCTTTGATGTTACTATTGTAATTGT





TTTGAGATGTCATGAACTGCACTCATATGAGATGGCAAACTTTGTGGGGTGCAGTGGCTCACACCTGTAA





TCCTAACACTTTGGGAGGCCAAGGCAGGAGGATCGTGTTAGCCCAGAAGTTTGAGACCAGTCTGGGAAAC





AAAGTGAGACCCTGTCTTTAAAATATATATGTAGAAAAATTAACTGGGCATGGTGGCACATGGCTGTAAG





GAGCCCTGCCAGCTGCATGGGAGGCTGACACAGGAGGATCACTTGAGCCCAGGAGGTCAAGGCGGCAGTA





AGCCATGTTCACTCCAGTGCCCTCCAGCCAGAATGACAGAGCAAGACCCTGTGTGGAAAAAAAAAAAAAG





ACAAACATTTTTTCAACTTTGATTTTAGATTCAGGGAGTACATGTGTAGGTTTATTACCTTGATATATTA





CATGATGCCGAGGTTTGGAGTACAAATGATACTGTCACCCAGGTACTGAGCATAGTAACCGATAGTTAGT





TTTTCAACCCTTGTTTCCCTCCCTCCCCACTCTAGTAGTCCTCCGTTTCTATTGTTGCCATCATTATGTC





CATGACAACGCACTGTTTAGCTCCACATGAGAACACGTGGTATTTGGTATTGTGTTTCTGCATTAATTCA





CTTAGAATAATGGCCTCCAGCTGCATCCATGTTGCTGCAAAGGACATGATTTTGTTCTTTTTTATGGCTG





CATAGTATTCCATGGTGTATATGCACCGTATTTTCTTTCTCCAGTCTGCCACTGATGGGCACCTAGGCTG





ACTTCATACCTTTGCTATTGTGAATAGTGCTGAAATGAGGATGAGAATACATGTGGTTTTTTAGTAAAGC





AATTTGTTTTATTTGGGCTATATGCCCAGTAATGGGATCACTAGGTTGAACGATAGTTGTGTTTTAAGTC





CTTTGAGAAATCTTCAAACTGTTTCACTGTGGCTGAACTAATTTGCATTCCCAGCAACAGTGTATCAGAG





TTCCCTCTTCTCTACAGCGTCAGCAGCATCTGTCATTTTTTTGACTTTTTAATAATAGCCAGTATGAATG





GTGTGAGACGGTATCTCGTTGTGGTTTTGATTTGCATTTCTCTGATGTTGAGTGATGTGGAGCATTTTTT





CATGTTTGTTGGCCACTTGTATGTCTTCTTTTGAGTAGTGTCTGTTTATGTCTTTTGCCCATTTTTTTTG





ATGGGGTTATTTGTTTTTGACTTGTTGAATTGTTTAAGTTCCCTATAGATTCTGAATATTAGACCTTTGT





CAGATGCATAGTTTGCAAATATATTCTCTTATTCTGTAGACTGTCTGTTTACTCTGTTGATAAATTCTTT





CACTGTGAAGAGCTCTTTAGTTTAATTAAGTTCCACTTGTCAATTTTTGGTTTTGTTATAATTGCTTTTG





AGGACTTAGTTATAAATTCTTTCCCAAGTCTGATGTCCAGAGTGGTGTTTCCTAGGCTTTCTTATAGGAT





TCTTATAATTTGAGATCTAATGTTTAAACCTTTATTCCATCTTGAGTTAATTTTTGTATATGGTGTAAGG





AGGGGGTCCAGTTGCATTCTTCTGCATATGGCTAACCAGCCATCCCAGCATCATGTCTTAAATACAGAGT





CCTTTTCCCATTACTTATTTTCATAAGATGGCAAACTTAATCAATCAATGTTTTGTGTGTTCTGGCTACT





CCACTGATCAGCCATTCCCTCATCTCTCTTCCTCTCCTTGGGCCTCCCTATTCCCTGAGACACAACAATA





TTGAAATTATGCCAGTCAGTAACCCTACAATGTCCTCTAAGTGTTCATGGGAAAAAAAAGAGTCACATGT





TTGTCACTTTAAATCAAAAGTCAGAAATGATTAAGATTGGTGAGGAAGGCATGTCAAAAGCCAAGACAGG





CTGAAAGCCAGACCTCTTGTGCCAGTTGGCCAAGTIGTGAATGCAAAGGAAACGTTCTTGAAGAAAATTA





AAAGTGCTACTCTGTTGAACACAGGAATAAGAAAGTGGAACGGCCTTATTTTTAATATGGAGAATGTCTT





AGTGGTCTGGATAGAGGATCAAAACAGCCACACCATTATCTTAAGCAAAAGGCTAATCTAAAGCAAAGGA





CTAATTCTCTGCAATTCTGTGAATGCCGAGAGAGGTGAGGAAGCTGCAGCAGAAAAGTTGGAAGCTAGCA





GAAGTATGTTCATGAGCCTTAATGAATAAGCCCTCTCTATAACATAAAAGTGCAAGGCAGAGCAACAAGT





GCTGATGGAGAAGCTGCAGCAAACTATCCAGAAGATCAAACTAACATCTAAGTTAATAAAGGTGGCAATA





CTAAACAACACATTTTCAATATAGACGAAACAGCCTTCTATTGGAAAAGGATGCCATCTAGGACTTTCAT





AGCTAGAGAGAAGTCAATGCCTGGCTTCAAAAGTTCAAAGGACAGGCTGACTGTCTTGTGAGGGGCTAAT





GCAACTGGTGACTTTCAGTTGAAGCCAGTGCTCGTTTACCATTCCAAAAATCCTAGGGCCCTTCAGGTTA





TGCTAGATCTAGTCTGCCTATGCTCTGTAAATCAAACAACAAAGACTAGATGACTGCACATCTCTTTACA





GCATGGTTTGATGAACATTTTGAGCCCTCTGTTGAGACCTACTTCTCAAAAAAATGTGTCTTTCAAAATA





TTACTGCTCTTTGACAATGTCCCTGGTCACCCAAGAGCCCTGAGGAATATGTCCAAAGAGAATGATTTTA





TTTTCATACCTGCTAACACAACATCCATTCTGCAGTCCTTGGATCAAGAAGTCACTTCAACTTTCAAGTC





TTATTACTTAAATCATACATTTCATAAAGGTATAGCTGCTATATTGTGGTGAGTCCACTGATGGATCTGG





ATAAAGTAAACTGAAAACGGAAAGTCCTCACCATTCCAGATGCCATGAAGAAAATTCATGATTGAGGGGA





GGAGGTCAAAATATCAACATTATCAGGAGTTTGGAAGTAGTTAATTCCAACACTCATCAATGACTTTGAG





GGTCCAAGACTTCAGTAGAAGAAGTCACTGCAGATGTGGTAGAAATAGCATGAGAACCAGAATGAGAAGT





GGAGTCAGAAGGTGTGACTGAATAGCTGTAATCTCAAGGTAAAACTTCAGCGGATCCAGAGTTGCTGCTT





ATGGATGAGCAAAGATTGTGGTTTCATGAGATGCACTCTACTCTTGGTGATGATGCTGTGAACATTGTTG





AAATGACAACAAAGGATTTAGAATATTCCATAAACTTAGTTGATAAATTAGCATCAGGGTTTGAGAAGAT





TGACTCAAATTTTGAAAGAAGTTCTACTGAGTAAAATGCTATCAAACAGCATCACATGCTACAAAGAAAT





CATTGGCTATAAAGGAGAGCCAATCGATGCAGCAAACTTCGTTGTTGTCTTATTTTAAGAAATTGCTACA





GCCATCCCGACCTTCAGCAACCGCCACCCTGATCAATCAGCAGCCATCCTCACTGAGGCAAGAGCCTGTA





CCAGCAAAAAGATTATGACTCCCTGCAGGCTCAGATGATTGTTACCATTTTTTTTAGGAGTAATGTATTT





TCAAATTAAGGTATGTACATTTTTTAGATACAATGCTATTGCACACTTGACAGATGATAGTAGAGTGTAA





ACATAACATTTAATGCACTGGGGAACCAAAAATATTCGTGTGCCTCATTTTATTGTGATATTTACTTTAT





TGCAGCAGTCTGGAACCAAACACACAATATTCCAAGGCAGTCCTATATATTGTTTCATGTCTCTCTTTCT





TCTAAAATGTGTGTAGGAGAAAAAATTATATCACTTATGTTACTGGGCCATAATATCAAAAGCCTGCGAA





TCTGATGCACATGATAAAAACTGGTCTTAAACCTGTCTTGATTATCCTTTGTTAATATGCCAAATTTATA





GAACAATAGAGTTTCAAGAAATGTGAACAATGTAGAATAACTAAAAGATCTAACGTTGAATAGCTAAAAT





TATCAACGCCCTTTATATCACTTTAGAAATGCGTTTGCAAATCATTATCAACAAATTGTAGCATAAAATT





CTTTTTTTTTCTTGACTTTGAAATTGTATTTCAAGATCCGCAATTTACACCACATTATTTACTTACTGGC





TTGTGAAAGTGAAAGGCATTTTCATTTTTGGATGTTAAGGGTTTTAGTAAATGACAAGTAAATCAATCCT





TTAAGTTCCGTGTGGTATAATAGCTTGGAAAGGACCATCTTAATCTTTTTTTCAACACAGGGAGATAATT





TATTTTAAAAATAACACACTAATAGTAGATTAATATTATTACCATTTCAAAGAAGTCACCAAATTTGGTA





GGCTTAAGAGGTTTTTTTTTTTTTTTTGAGATTACTATGCTCTTTTTTTATTTTATTTATTTTATATTTA





TTTATTTATTTTTTAGTTTTTTAATTTTACTTTAAGTTCTGGGATACATGTGCAGAACGTGCAGGTTTGT





TACCTAGGTATACATGTATCATGGTGGTTTGCTATACTCATCAACCCAACATCCAGGTTTTAAGCCCCCA





ATGCATTAGGTATTTGTCCTAATGCTCTCTGTCCCCTTGCCCCTCACCCCTTGACAGGCCCCGGTGTGTG





ATGTTCCCCTCCCTGTGTCCATGTGTTCTCATTGTTCAATTCCCACTTACGAGTGAGAACATGCAGTGCT





AGGCTTAAGAGTTTTTTTAACTCCCCAAAATATCAACAAATTGAAACATTACTACAAAGAAATAGAGAAA





TAAATTTCACTGACTGTCTTATTGTTTTTTAAGTTTGAATAGCTAATAATGATTTCTTAAACAGCTATCA





TATTTTTTATTTTTAAAGCTAGCCAAATGATCAGTGATTTTTATAATACTGATAAATACTGCTTAGAAAA





GGAACATGTGTTCTAGCAATTTCCACACATTTCTGATTCTAATTACTTGTTTCTTTTTGTTTTATTTTTA





TATTTTTAAGTTTTGTGAGTACCTAGCAGGTGTATATATTTATTTGGTACTTGAGATGTTTTGATACAGG





CATGCAATGTGTAGTAAGCACATCATGTAAAATGGGGTATTCAACCCCTCAAGCATTTATTCTTTATGTT





CCAAACAATCCAATTATACTCTTTTAATTAATGTAAAATGTACAATTAAATCATTATTGGTTATAGTCCC





CCTGTTGTGCTATCAAATAGTAGGTCTTACTCATTCTTTCTAACTAATTTTTTGTACCCAGTAACTATAC





CTACACCACCCCCACCTCCCCACGACCCTTCCCATCCTCAGGTAACCATCCTTCTACTCTCTATGTCCAT





GAGTTCAATTGTTTTGAATTTTAAATCCCACAAATAAGTGAGAACATGCAATGTTTGTCTTTCTGTGTCT





GATTTATTTCACCTAGCATACTGACCTCCATTTCCAACAATGTTGTTGCAGATGACAGAATCTCATTCTT





TTTTGTGGCTGAGTAGTATTCCATTGTGCATAGGTACCACATGTTCTTTGTCCATTCATCTACTGATGGA





CACTTAGGTTGCTTCCAAATCTTGGCTATTGTGAATAGCGCTGCAATAAACATGGGAGTGCAGATATCTC





TTCAATATACTGATTTATTTTCTTTTGGGTATATACCCAGCAGCGGGAATGCTATATTATATGGTAGCTC





TATTTTTAGTTTTTTGAGGAACCTCCAAACGGTTCTCCATAGTGGTTGTGCTAATTTACATTTCCACCAA





CAGTATACAAGGGTTCCTTTTTCTTCACATACTTGTCAACATTGGTTATTGCCTGTCTTTTGGATATAAG





CCATTTTAACGGGAGTGAGGTAATATGTCATTGTAATTTTGATTTTCATTTCTCTGGTTATCAATGATTC





AGTGATGTTGAGCACCTTTTCATATGCTTGTTTGCCATTTGTATGTATTCTTGATCTGCCACAAGTCTCT





AATTACTTGTTTCTTGTACCACTGITTCCCTTCATTGTAGTCAGTGATTTGGTCAATCAACACTTTTTAC





GTATGGGTATCTGTTAACTGTATTTCTAGGAATGGACCAAGAATTGAGAAATTTATCCCAACCAGAAAGA





ACAAAATCTATGGAGGCACAGGATTACTGAAAGCTTTGCTCCTATAGCCTCAGTTTTTTTCTGCAAGTTC





GCTGCTTCCCAGTTGTCCTTGTGATAAAATTCAAAACCTCAAACTGATTTTTAAAAAGCCAACTATATAC





TGCTTCTACTATGTCTACCTAAACTTATTTGCCATTATTTGTAAAGAATTCCAGGCTCTAACCAGCCCAT





TTGAGGCTTTATTTTACGTTCATGCCTTTGTTCATGTCTGTCTTTCCCTTATAATGCTCTTCTCATTCTC





TAGCCAAATCTGCCAAAGTTCAGCTGTAGTGCCATACTTGATATGAAGTCTTTGCTGAGAATTCCCATAT





GTGGTCATTTCCTTCACTGATTTGTTTCAATAGTTGTTGCCATTATTATTATTTTTTTTATACTGTTGCT





GGATACTTTCGCAGATCCAATCTCTAACCTGTTGTTCTACCCTAGGAGGTTGACCAATATGGCAGTAGCA





TTGGGCTTGCTTGTCTATTGGCTTGGTCCTTGTGTTGGGAGGCATCAGCAGATCAATGGATGAGAGGAGA





GTGAGTCGAGGGATGGCTAGGTTCCTTTACTCACAGCCCCAGCTCCTGTCAAGAGGTCTTGTCCCTGCAG





CCACTTCTCAGATTCTACTAACTATACCCTCCCCTTAGCCTTTCAGGCCTTGAGGAGGAAAGCCTCCTCA





TCCCACTTTGAATGAACTATTTATTGCAAGAACCATGACTGATTCAGAATATAATCTGTCCTTGAATGAA





ATAGTTAATTTCCCCTTTTGTATTCTCGTTTCATATCCCTGTCCCTTTATCCATTCCTATATTATATCAT





ACTATCATATAGCTACCTTATATTATACTATGACATGAGTACCTTGTAAGTATATCATGCTATATTATAG





TTCTTAAGTGTGTGGGCTTTGGGGCCAACTTACCTATGTTAGAAGTTCTGCCACTTATTACCATGTGATC





CTAGACAAATTGTTTAACTTCTTTTTCATTCATTTTCTTTACTAGTAAAATAGGGGCAATATTAGTACCC





ACCTCACAGAGTAATATGATAATTACATTGACTGATAGTTTTTATTTAAAACTTTTATTGTTCTTACTAT





GAAATGGGAAATGTTCTAAACACCTTACAAATATTAACTCTATTAATTCTCATAATGAATCTGAGAGGTA





GAGACTCAGTATCTCCATTTCACAGTGCTGGAAATGATACAGACAGCATTTAAGTAACATACTGAAAATA





GTAAACCGAATAGGTGGCAGCCAGTATGCAAATTGGGAAAGCCTGACTCCAGAGTTCATTCTTTTAACTA





GTATGCTGTGATAGACTCTTTTGGCATATGGTATGCACTCAATAAACAACTATTGTTGTTGTCGTTAGCA





TTACTTCCCATTGTATTATTACACAAAAAATAATTGTTTATGAGTATTTGTTTGCTAGATTATAAGTTCC





TTGAAAAAAGAAGACAAGTTTTATTTGTCTATGTGTACTAGCTGAGTGCTTGGCAAATAGTTGCAGTTTA





GTAAATGTTTCTAAAACAAATTATTAGTTGTTTCTTATGTATTTCCCAAGTCTATCCTAGCCTTGGAAAC





AGCTAACACTTAGCTAAACCTAGAAATGTCATTTGAGATTTCAGCAGCCATCATTGTTGCTGAAGCCACA





GGTTCTCCTTTTTATCTCCAATTTCTTCCTCAGATGATTCACCACTTTCTTTGTCGTTTCCCTACTTCAT





TTTTCCTATAGTGACTTTTGTTCTCCAATAACCATTGATAGTGATGACAGTCCCACCTTGGAACCACTTC





TAACTGTCCTGTTCAGCTTTTCCTGAGGCCAGATTTCCCCCAAAATACATTTTTTAGCTTCATAACTGCT





CCTTCCAGAAATTTGAAACGCATTCTCAGGAATTAAGCAAGAGGCATTTGATTGACGTCATTTAATTTGT





GTTTAAATGTGTTCTTCCCATCAACGATTAACCAGTGCTTCAGCCAAGATACATAACTTTTATTCTCCAC





TAACCTTAGGGTTGAGGTCACAATCAGGTACGTAATCTGTAGAGCCCAGTGAAAAATGAAAACGCAGGGC





CCTTGGTTAAAAAAAAATTAAGAATTTCAAGATGGCAACAGTAGAGCATGAAACCAAGTATGAATCCCTT





CTAATGCAGATCCTTGTGTAACTAACTGCACAAGTTATACGTTCAAGAAGCTGGTCCTGGTTGAGGTCTT





TGTCTACCTAGGGCACTTCTCACTCAGAGAGGTGGAATAATCTTAACTTTCTGTCTTCCGTCATCTGAAA





ACTTGCCCCAAAGTTCCTTTTGCCATCTCTTGCAGCAAACCTAGTGGTTGTTATCTGTTAAGGATTCCTG





GTGGCTTGCTTTAGTTTCCTACAGTTCTTGAGCTGCATGTGTTGAATGGAACTCCACCATTACCATGTAA





CACATCTGAATACTCTTATTTTCCTCCAGTTAAATTCTGCGCTCCTTGGAAATAATGGTCATGCACCCTA





CCTTAGTGATTTCTAAATAGAGGTAGTATGTAAAAATACATATTTACTTGAATTGCATCTTAAGAGGCCA





GCCCATGGGAGGCATGAAGAAACCTATGTTACTAATTAATATTCAATAATTGACAGTTACACATTCAGGT





AGTAGTGTCATGGAACCATCACGTTACATGGAACTGAAGAGCTGATGAGAGGTTTAGGGTCTAGGAGGAC





AAAAGTGAGTGTATTAGTCAGGGCCTGAGGTTATATGTACCCAGACAGGATAAAATGGGACAATATTTTA





TTAGTGGAAATATCTATGTGAAAGAAAAGAAGGAGGAAGCCAAGGAAGGTGCAAGAGATGTTAGATCAAG





ATGCAATTCTGACTCTGCAAGGAAGAGAGAGGGAGAGAAGGCTAGGCAGAAGCATCCCAGTGTGCGGTCT





AGTGGAAGGAAATTTTGGCAAAGCTGTTGGGAAGTCATTGAGGCAGAGCCAGGCAAAGAAGTCCCATGTC





TCCCAAGGAAGGCTCTCTGCCTTAGTATTCCCACCACACCCAATCATTGGGTGAGGAGAAGTCTGTGAGA





AGCTTGGCTTTGGTGCAGTGCAATCATGGATTTCAAAATGCAGTAACAGGAGTCCTCAGTCAGTTAAGAC





CCAATAATAGAAGGCCTGCATATTCTCATGGTGGCCACTTGGGTATGAGGAGCAGTGGTGTTTAAAACTG





TTTTGTATAATTTAAATAAAGAAAAGCTGAGGACTACTTAAGCTTGATTCCTTCAGAAGACAGTCTTTGG





CCTTTATATTTCATGTGATATCTTTGCCATATGCTCTGATAACTCTCCATGTTTCCCCTACCATAATACC





TCAGGTTGTTGCAATTGCTTTTTTATTGCCTGTCATCACTACTCGTTTGTTTTCTCTTTGAGAACAGGAA





TTATTTTCTCCTTCACTGCTACAGCCCCTGCACCTAGCTCAATGAGTGACACAACAGAAGCACTTAAAAA





ATTGCTATAACTCAAATTTGGGGGATATTCTACAAAATACCTGGCCTCTGTTGGTCAAAACTGTAAGTGT





TATAAAGTTCAAAGAAAGGCAAATAACTATTTCAACTTAAAAAAGACTAAGGAGATACGACAACTAAAAG





CAATGCGTGAGTCTGGACCAGACCAGGAAATAAAAATATAGCTATAAAGTTCATTAATGGGGTAATTGTC





ATACTCTGAATATAGAGTATGGATAAGATTATGGTACTAAAGCCACGCTAAATTTCCTGACTTTGAAACT





GAGCTGAGGTTATTTAAGAGAATGTCTTTGCTATTAAGAAATAAAACCTAAAGTATTTAAGGGTAAAGGG





GCATGATATCTGCAAATTATTCTCAAATGATTCAGAAAAAAAATATATATATATAAAACATTACATATAC





AGTTATATATCTATACACACAGAGAGAATGATAAAATGATAAATAATTAAAAATAATGTGGCAAAATGTT





AACAAATGGTGAATCCGGGCAAGGGTTACCTGGGAGTTCTTTATCTTGCAAATATTCTGCAAGCTTGAAA





TTATATAAAAATAAAATGCATCTTATAAAGTATTTATTCAGTGAATAAAGAACAAAAAAGGCTAACTGCA





GTTGGAAGATATTTATGAAGTTGGTTATGAAGATTCTTAAGAAGTTACCGATGGAGGTGCTAGTAGAACA





TTCAAAAAAGAAGTAGGGAAGGTTGACCAAGTAGGAAAATATCAATATCCAAGCCAGTATAAAATGGAAA





TGAGAAGTGAGGAAGTAAGTGGAAGACAATGAGGATGGTTTTCGATTTGGCCACTCTATTTGGAGAGGCA





GCCGAATGCAAGAATAGAAGCCAGAAGAAGATGCTCAGTGAGATGGTTGAAAGCTAGATAGATTACAGCA





TCCTCACCAGTAAAACCCTTTCGGTAACTAGAAAGGCTACAATTTAGTACCTTCCTGACTTCTATGCTTA





TTTTCTTCAATACATAAAATGGTTCCGTAAACTCTTTTACCTTCTGAATTCITTATATTAATTTTTTGAA





GTTGTAAATAAAATAGCATCAGTTCTACATTGTTACATTTCAGCTTAATTCATATTCATTTACTGAAAAT





GGGAACATTTGAAAAATCATCATGGGCATTTATGCTATGTAGATTGTTGATTTTTATAGAAAAATATAAA





AATATGACCAGTTTGATTTTCAAAGTCTTTTCTTAGACATGTAAATACTAAGCATTCAACTCAACATATA





GAGTTTTTATTTGAGTATTATTTAGGTGGAATTCTATTTTAATGAATACAATAAAAAATTGTAATTTTGT





CTAAAAGCCTAAAATGCCCTAGTTATAATATGTATGATTTCACTGTTTAACTTCCTATTTCATAGGGTTG





CTATTTATAACCACTTCACTCAACTCTGGGGGGACTTAGTGAGATTAAAGACTTCTGATTCACTTTGTAT





TTGAAGAATTTTTTTTCCTCCATCTTTGCTCAGCTAGTGGAATCCATGATGAATTCTCATCTCCAAGGGG





TAAGCAGTTTTTAGTAAAGCCCAGTAGCTGACTTATGACTCCTTAGAAATAGCATTGATTCCTTCCTTCT





CCTGTGTTTTGTTTCCTCTAGAATGATAGAATCCATGTAGACACGATCCATTATCATGCTTAGGTACTGG





TAAGCATGTAATGATTTTAGTTTTGTTCGCTTTAAGTTATTTGTGTCACAAATATCTGGGATCATATCAG





AGAAATAAATAAGCACAATTAGCATTCTACTTGTTTGTTATGACTAAAGCTAGGTTGAGGAAACAGAAAA





GGACCAGAGGTCATATGAGGATGAAGATAATACTAGGAACAGCATGTTTGGGAGAGTAACATCTGGTAGG





GGTAGCAGATTGGGGGCAGAGAACAGAATTTTATAGATGGATATTTTGGAGGCAAGTAGTTTGAGTAATG





ATTAGATCTAAGGTGTTTTCTCATCTGTGGGTGGCTCGAAGGAATAGAGGTGAAGGTCAGTTTATTTGAG





AAGTTCTGGAATTATAAAACTAAGTTGAAGTCAAAGAAAGTATAGTAGCAAATAAATAGAATACCCTTAA





AAGGAAACCAAATGAAAAATAATCGTTACTCTCACCATATGCTTGTGTTCTTATTAGCAAGAAATTCTTT





TAACCACTGTTTTTATAATATCTTAATGAAAAAATACTGAAGCGTATGCCATATTAAATCCCTCTCTTTA





TTTCTAGAAAGGGAATCAAAGGAGAAAATTCCCATTCTGCTATACTAAAAGACCACTAAGTAAAGAGCCT





ATTAGTGTATGATAAATCCCATAGCAATATACATTATCATTTTACAGCTTCTTTGTTGAAATGAATGTTT





GTATGTGTTGACCATAGAGTGGGATAAAAAGTTGAAATTTTGTTTTGAAATATTTTAGAAATGCATAGTT





GTACTGCAGTTGTGAACCTCCTTAGATTTTTAAGGAGGCTGCTTCAAAGGATCTCATTAATAATCTTCTC





AGGTGCTTACAAAGCATGTGTCTGTCAGCAGAATTAGAGAATCACCCAACTAGAGAACAGGTTTCACAAT





ACCCTGAGACCTATTTTGTTCATTAGAGAGGAAAATGGCTTGTTTTGAGTCTAAGTTGACATGCTTGCTA





ATTTCAGCAATAAAAGCTGTTCATTGTGGTCAGGTTTAATTTAGAGCCTGGTAAGGTTCAGATTAAAGTT





GATCAACTTACTTTTACAACATACTTCTTAAATGAACTTTGAAATCTTAAAAGAAGGAAAAAAGTATAGC





AAACAGTGAATAATGTATCTAAAACTGAGAAGCAAAAAAAATCTGGTTATGTGAGAGTGAATTAAAAGAA





GAACAACCCAATAAAGATAATCTTTGTTATATAAAAATTTCCAAGTATCGAAAAGCACGATTTTTCATGT





GAGTTACACACTATACCGAATATATTTGTCCACTGCCACATGCATAGTCCCTAGAATAGTGCCTAGTGCT





GAAAAATATTTATTAAAATGAATGGATGAGTAAATGAATTTATGTATTTTGCCAGCCCTGTGTATTTAAA





GTTCTCTGTTAACTTTGAGGTGAAAATTTGACTTCATCTGAGGTTTCTGGGTAAGTCCGTTTTAAAAATT





CTATTGAACATATTCAAACATTTTAGGGTAGGCAATTCCAAAGCAACCTTTCAGCTTCCCATGTCACAGA





TGACCAGAGTTTCACATTCTAACACTGGAAAACATCTTATTTCATAAAATCTACCTGCTACTATATGGIT





CCTACTTTAAAATTTGTTCAGTACTCTCCAGCTGACTTATGCCACTTACTTCAATAGCTGTCTTTGGCAA





TTTGTTCCATATTTCAAACACTCTGTTGTGTAAAGAAACCATAAAAGTTAGAAACCTGAAAATTGGATTT





TTTTTCTGAGCAATCACAGCTTACAAATGTGGAAAATTTGTTAAAAGTTAGCCCCTCCAATTTTTCAATA





CAGAGAGGAGAAAGTGCCTAAAGTAGATGTACAATGTTTGGAAAAGTTTTTTGCATTATTTTACTATTAC





CAAAAGCAATTGAGTTTAAATCACAAAGCCTGTCTCCCTACCTCTTCACAGAAGAAACACTACAGAATGA





TCAAAATTTGGCCTTTCCAAAACCAAAATTCGTTAGAAAATCAGCAGGAGTCAAAGTACAGAGTAAATAA





CTAAGTTTCATATAAGTTTCAGATACATTACTATCTACCACTTTCATCTCTTCATCTTCATTGGCCTCAT





GTGGTAGAACATCATATTTAAAATTATACAAACTTGCTGGCTTGTTTACTAGTGTGGTTATTATAAGAAA





AAAATGAGAAAATATAGATAAAACATCTGTCACATATTGCTTATAAACTAACAGTAAATATTACTTGTAT





TTTCCCCAATTAAAATAAAATTTACTGAGTTTTAGAACCAGAGCTAGTCAGATGCCTTTTTTTCATAAAT





TTCTTCATAAATACCTCTGAGATTGTGGTCCTTAAATCTAGAGAGACTAAGATGACAGAGAAAATAGACA





CTGAAGAAAGGGAAGAATATCTTAATGATTTACATTACTACCTATAAATTAAAAATTGTTAACTTTATTA





TATTTGTATTTTTATTTAAAATAGTGCTATATTAAAGTCATTTATAATACAGGGGAATAGGAATACTAAC





CTGTAATCTGATGCTCTCCAAACTTGCCTAAATCATAAAAGTTAATTAGATAATTTATTTAAAATGCAAG





ATTTGCAGCCCTTTCCACTACATATTCATTAGTTCTGGAGGGAGGCAAAAAGGTTTGGTGATTCTTACGG





ACAGGCAGCTTAGGAGAAAAGCTGATTTAGCTCGTCTACTTCACCTTTTCATTTGACAGGTGAGAAATCT





CAGGGGTACAATGAAGTTAAATAAGTAATATCTCTTAAATCGGTTCTGTGCTTTTTCTGTTTTTAAAATA





AATATACCTTAATTTTGACGTCACACAGAATGATATTATAAGTATAAATAGTTATCTATCTTTTAAATAC





ATTGTCGTAATTCAGAATAACATTTCTTACTCAAGGCATTCAGACAGTGGTTTAAGTAATCCGAGGTACT





CCGGAATGTCTCCATTTGAGCCTTTAAATGAAGAAAATCTATAGTCAAGATTTTCATTTGAAATATTTTT





GATATCTAAGAATGAAACATATTTCCTGTTAAATTGTTTTCTATAAACCCTTATACAGTAACATCTTTTT





TATTTCTAAAAGTGTTTTGGCTGGTCTCACAATTGTACTTTACTTTGTATTATGTAAAAGGAATACACAA





CGCTGAAGAACCCTGATACTAAGGGATATTTGTTCTTACAG







Homo sapiens dystrophin (DMD), intron 51 target sequence 1 (nucleotide positions 1570651-1570700 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 847)


GTATGAGAAAAAATGATAAAAGTTGGCAGAAGTTTTTCTTTAAAATGAAG







Homo sapiens dystrophin (DMD), intron 51 target sequence 2 (nucleotide positions 1570651-1570693 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 848)









GTATGAGAAAAAATGATAAAAGTTGGCAGAAGTTTTTCTTTAA







Homo sapiens dystrophin (DMD), intron 51 target sequence 3 (nucleotide positions 1570703-1570765 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 849)


TTTCCACCAATCACTTTACTCTCCTAGACCATTTCCCACCAGTTCTTAGG





CAACTGTTTCTCT







Homo sapiens dystrophin (DMD), intron 51 target sequence 4 (nucleotide positions 1614751-1614804 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 850)


TATTTCTAAAAGTGTTTTGGCTGGTCTCACAATTGTACTTTACTTTGTAT





TATG







Homo sapiens dystrophin (DMD), intron 51 target sequence 5 (nucleotide positions 1614793-1614847 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 851)


CTTTGTATTATGTAAAAGGAATACACAACGCTGAAGAACCCTGATACTAA





GGGAT







Homo sapiens dystrophin (DMD), intron 51 target sequence 6 (nucleotide positions 1614612-1614861 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 852)


CGGAATGTCTCCATTTGAGCCTTTAAATGAAGAAAATCTATAGTCAAGAT





TTTCATTTGAAATATTTTTGATATCTAAGAATGAAACATATTTCCTGTTA





AATTGTTTTCTATAAACCCTTATACAGTAACATCTTTTTTATTTCTAAAA





GTGTTTTGGCTGGTCTCACAATTGTACTTTACTTTGTATTATGTAAAAGG





AATACACAACGCTGAAGAACCCTGATACTAAGGGATATTTGTTCTTACAG







Homo sapiens dystrophin (DMD) intron 51/exon 52 junction (nucleotide positions 1614832-1614891 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 853)


CCTGATACTAAGGGATATTTGTTCTTACAGGCAACAATGCAGGATTTGGA





ACAGAGGCGT







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 52 (nucleotide positions 7787−7904 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1614862-1614979 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 854)


GCAACAATGCAGGATTTGGAACAGAGGCGTCCCCAGTTGGAAGAACTCAT





TACCGCTGCCCAAAATTTGAAAAACAAGACCAGCAATCAAGAGGCTAGAA





CAATCATTACGGATCGAA






In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splicing feature in a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splicing feature in a DMD sequence is an exonic splicing enhancer (ESE), a branch point, a splice donor site, or a splice acceptor site in a DMD sequence. In some embodiments, an ESE is in exon 51 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a branch point is in intron 50 or intron 51 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice donor site is across the junction of exon 50 and intron 50, in intron 50, across the junction of exon 51 and intron 51, or in intron 51 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice acceptor site is in intron 50, across the junction of intron 50 and exon 51, in intron 51, or across the junction of intron 51 and exon 52 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, the oligonucleotide useful for targeting DMD promotes skipping of exon 51, such as by targeting a splicing feature (e.g., an ESE, a branch point, a splice donor site, or a splice acceptor site) in a DMD sequence (e.g., a DMD pre-mRNA). Examples of ESEs, branch points, splice donor sites, and splice acceptor sites are provided in Table 9.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an exonic splicing enhancer (ESE) in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an ESE in DMD exon 51 (e.g., an ESE listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of a DMD transcript (e.g., one or more full or partial ESEs listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of DMD exon 51. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs as set forth in SEQ ID NOs: 860-894. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 860-894. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE antisense sequence as set forth in any one of SEQ ID NOs: 904-938.


In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) of DMD exon 51. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) as set forth in SEQ ID NOs: 860-894. In some embodiments, the oligonucleotide comprises at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESE antisense sequences (e.g., antisense sequences of 2, 3, 4, or more adjacent ESEs) as set forth in SEQ ID NOs: 904-938.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 860-894. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 860-894. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 860-894. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 860-894.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in DMD intron 50 or intron 51 (e.g., a branch point listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) comprises a region of complementarity to a target sequence comprising a full or partial branch point of a DMD transcript (e.g., a full or partial branch point listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point of DMD intron 50 or intron 51. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point antisense sequence as set forth in any one of SEQ ID NOs: 900-902, 940, and 941.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 856-858, 896, and 897.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site across the junction of exon 50 and intron 50, in intron 50, across the junction of exon 51 and intron 51, or in intron 51 (e.g., a splice donor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) comprises a region of complementarity to a target sequence comprising a full or partial splice donor site of a DMD transcript (e.g., a full or partial splice donor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site across the junction of exon 50 and intron 50, in intron 50, across the junction of exon 51 and intron 51, or in intron 51 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site as set forth in SEQ ID NO: 855 or 895. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 855 or 895. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site antisense sequence as set forth in SEQ ID NO: 899 or 939.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 855 or 895. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 855 or 895. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 855 or 895. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 855 or 895.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in intron 50, across the junction of intron 50 and exon 51, in intron 51, or across the junction of intron 51 and exon 52 (e.g., a splice acceptor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site of a DMD transcript (e.g., a full or partial splice acceptor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site in intron 50, across the junction of intron 50 and exon 51, in intron 51, or across the junction of intron 51 and exon 52 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site as set forth in SEQ ID NO: 859 or 898. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, or 9) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 859 or 898. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, 8, or 9) consecutive nucleotides of a splice acceptor site antisense sequence as set forth in SEQ ID NO: 903 or 942.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, or 9) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 859 or 898. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, or 9) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 859 or 898. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 51) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 859 or 898. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, or 9) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 859 or 898.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a junction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intron junctions provided by SEQ ID NOs: 832, 833, 837, 844, 845, and 853). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a junction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intron junctions provided by SEQ ID NOs: 832, 833, 837, 844, 845, and 853). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 832, 833, 837, 844, 845, and 853.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 833, 835-837, 845, 847-853, and 839-843). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 833, 835-837, 845, 847-853, and 839-843). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 833, 835-837, 845, 847-853, and 839-843.









TABLE 9







Example target sequence motifs














SEQ

SEQ
Motif


Location

ID
Motif
ID
Antisense


in DMD
Type
NO:
Sequence
NO:
Sequence





Across
Splice
855
CTGTAAG
899
CTTACAG


exon 50/
Donor






intron 50







junction










Intron 50
Branch
856
TATTAAT
900
ATTAATA



Point









Intron 50
Branch
857
TTGAC
901
GTCAA



Point









Intron 50
Branch
858
TTCTAAT
902
ATTAGAA



Point









Across
Splice
859
TATTTTAGC
903
GCTAAAATA


intron 50/
Acceptor






exon 51







junction










Exon 51
ESE
860
CTACTCA
904
TGAGTAG





Exon 51
ESE
861
CAGACTG
905
CAGTCTG





Exon 51
ESE
862
GACTGTTA
906
TAACAGTC





Exon 51
ESE
863
TTACTCT
907
AGAGTAA





Exon 51
ESE
864
ACTCTGG
908
CCAGAGT





Exon 51
ESE
865
CTCTGGT
909
ACCAGAG





Exon 51
ESE
866
TGACACA
910
TGTGTCA





Exon 51
ESE
867
GACACAA
911
TTGTGTC





Exon 51
ESE
868
ACACAAC
912
GTTGTGT





Exon 51
ESE
869
AACCTGTG
913
CACAGGTT





Exon 51
ESE
870
CCTGTGG
914
CCACAGG





Exon 51
ESE
871
CTGTGGT
915
ACCACAG





Exon 51
ESE
872
GGTTACTA
916
TAGTAACC





Exon 51
ESE
873
TTACTAA
917
TTAGTAA





Exon 51
ESE
874
CTAAGGA
918
TCCTTAG





Exon 51
ESE
875
CTGCCAT
919
ATGGCAG





Exon 51
ESE
876
CAAACTA
920
TAGTTTG





Exon 51
ESE
877
TGGAGGT
921
ACCTCCA





Exon 51
ESE
878
GGTACCTG
922
CAGGTACC





Exon 51
ESE
879
GATTTCAA
923
TTGAAATC





Exon 51
ESE
880
TTTCAAC
924
GTTGAAA





Exon 51
ESE
881
TCAACCG
925
CGGTTGA





Exon 51
ESE
882
CAACCGG
926
CCGGTTG





Exon 51
ESE
883
GGACAGAA
927
TTCTGTCC





Exon 51
ESE
884
CCGACTG
928
CAGTCGG





Exon 51
ESE
885
CGACTGG
929
CCAGTCG





Exon 51
ESE
886
TTTCTCTG
930
CAGAGAAA





Exon 51
ESE
887
TCTCTGC
931
GCAGAGA





Exon 51
ESE
888
TCACAGA
932
TCTGTGA





Exon 51
ESE
889
CACAGA
933
TCTGTG





Exon 51
ESE
890
ACAGAGG
934
CCTCTGT





Exon 51
ESE
891
CAGAGGG
935
CCCTCTG





Exon 51
ESE
892
CTTGAGG
936
CCTCAAG





Exon 51
ESE
893
TGAGGA
937
TCCTCA





Exon 51
ESE
894
GAGATGA
938
TCATCTC





Across
Splice
895
AGGTATG
939
CATACCT


exon 51/
Donor






intron 51







junction










Intron 51
Branch
896
TTTTGAT
940
ATCAAAA



Point









Intron 51
Branch
897
CCCTGAT
941
ATCAGGG



Point









Across
Splice
898
TCTTACAGG
942
CCTGTAAGA


intron 51/
Acceptor






exon 52







junction










Across
Splice
855
CTGTAAG
899
CTTACAG


exon 50/
Donor






intron 50







junction






Each thymine base (T) in any one of the sequences provided in Table 9 may independently and optionally be replaced with a uracil base (U). Motif sequences and antisense sequences listed in Table 9 contain T's, but binding of a motif sequence in RNA and/or DNA is contemplated.







In some embodiments, any one of the oligonucleotides useful for targeting DMD (e.g., for exon skipping) is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the oligonucleotide may have region of complementarity to a mutant DMD allele, for example, a DMD allele with at least one mutation in any of exons 1-79 of DMD in humans that leads to a frameshift and improper RNA splicing/processing.


In some embodiments, any one of the oligonucleotides can be in salt form, e.g., as sodium, potassium, or magnesium salts.


In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any one of the oligonucleotides described herein is conjugated to an amine group, optionally via a spacer. In some embodiments, the spacer comprises an aliphatic moiety. In some embodiments, the spacer comprises a polyethylene glycol moiety. In some embodiments, a phosphodiester linkage is present between the spacer and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any of the oligonucleotides described herein is conjugated to a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof; each RA is independently hydrogen or substituted or unsubstituted alkyl. In certain embodiments, the spacer is a substituted or unsubstituted alkylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)-, or —C(═O)N(RA)2, or a combination thereof.


In some embodiments, the 5′ or 3′ nucleoside of any one of the oligonucleotides described herein is conjugated to a compound of the formula —NH2—(CH2)n—, wherein n is an integer from 1 to 12. In some embodiments, n is 6, 7, 8, 9, 10, 11, or 12. In some embodiments, a phosphodiester linkage is present between the compound of the formula NH2—(CH2)n— and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, a compound of the formula NH2—(CH2)6— is conjugated to the oligonucleotide via a reaction between 6-amino-1-hexanol (NH2—(CH2)6—OH) and the 5′ phosphate of the oligonucleotide.


In some embodiments, the oligonucleotide is conjugated to a targeting agent, e.g., a muscle targeting agent such as an anti-TfR1 antibody, e.g., via the amine group.


a. Oligonucleotide Size/Sequence


Oligonucleotides may be of a variety of different lengths, e.g., depending on the format. In some embodiments, an oligonucleotide is 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, the oligonucleotide is 8 to 50 nucleotides in length, 8 to 40 nucleotides in length, 8 to 30 nucleotides in length, 10 to 15 nucleotides in length, 10 to 20 nucleotides in length, 15 to 25 nucleotides in length, 21 to 23 nucleotides in lengths, 20 to 25 nucleotides in length, etc.


In some embodiments, a nucleic acid sequence of an oligonucleotide for purposes of the present disclosure is “complementary” to a target nucleic acid when it is specifically hybridizable to the target nucleic acid. In some embodiments, an oligonucleotide hybridizing to a target nucleic acid (e.g., an mRNA or pre-mRNA molecule) results in modulation of activity or expression of the target (e.g., decreased mRNA translation, altered pre-mRNA splicing, exon skipping, target mRNA degradation, etc.). In some embodiments, a nucleic acid sequence of an oligonucleotide has a sufficient degree of complementarity to its target nucleic acid such that it does not hybridize non-target sequences under conditions in which avoidance of non-specific binding is desired, e.g., under physiological conditions. Thus, in some embodiments, an oligonucleotide may be at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% complementary to the consecutive nucleotides of a target nucleic acid. In some embodiments a complementary nucleotide sequence need not be 100% complementary to that of its target to be specifically hybridizable or specific for a target nucleic acid. In certain embodiments, oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, activity relating to the target is reduced by such mismatch, but activity relating to a non-target is reduced by a greater amount (i.e., selectivity for the target nucleic acid is increased and off-target effects are decreased).


In some embodiments, an oligonucleotide comprises region of complementarity to a target nucleic acid that is in the range of 8 to 15, 8 to 30, 8 to 40, or 10 to 50, or 5 to 50, 15 to 20, 20 to 25, or 5 to 40 nucleotides in length. In some embodiments, a region of complementarity of an oligonucleotide to a target nucleic acid is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some embodiments, the region of complementarity is complementary with at least 8 consecutive nucleotides of a target nucleic acid. In some embodiments, an oligonucleotide may contain 1, 2 or 3 base mismatches compared to the portion of the consecutive nucleotides of target nucleic acid. In some embodiments the oligonucleotide may have up to 3 mismatches over 15 bases, or up to 2 mismatches over 10 bases.


In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides described herein (e.g., the oligonucleotides listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides provided by SEQ ID NO: 384-831. In some embodiments, such target sequence is 100% complementary to an oligonucleotide listed in Table 8. In some embodiments, such target sequence is 100% complementary to an oligonucleotide provided by SEQ ID NO: 384-831. In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence provided herein (e.g., a target sequence listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to any one of SEQ ID NO: 160-383.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-383). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-383). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 160-383.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of a DMD-targeting sequence provided herein (e.g., an antisense sequence listed in Table 8). In some embodiments, the oligonucleotide comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of any one of SEQ ID NOs: 384-831. In some embodiments, the oligonucleotide comprises the sequence of any one of SEQ ID NOs: 384-831.


In some embodiments, it should be appreciated that methylation of the nucleobase uracil at the C5 position forms thymine. Thus, in some embodiments, a nucleotide or nucleoside having a C5 methylated uracil (or 5-methyl-uracil) may be equivalently identified as a thymine nucleotide or nucleoside.


In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided herein (e.g., the oligonucleotides listed in Table 8) may independently and optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides provided herein may independently and optionally be T's. In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided by SEQ ID NOs: 608-831 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-383 may optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides may optionally be T's. In some embodiments, any one or more of the uracil bases (U's) in any one of the oligonucleotides provided by SEQ ID NOs: 384-607 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-383 may optionally be thymine bases (T's), and/or any one or more of the T's in the oligonucleotides may optionally be U's.


b. Oligonucleotide Modifications:


The oligonucleotides described herein may be modified, e.g., comprise a modified sugar moiety, a modified internucleoside linkage, a modified nucleotide or nucleoside and/or (e.g., and) combinations thereof. In addition, in some embodiments, oligonucleotides may exhibit one or more of the following properties: do not mediate alternative splicing; are not immune stimulatory; are nuclease resistant; have improved cell uptake compared to unmodified oligonucleotides; are not toxic to cells or mammals; have improved endosomal exit internally in a cell; minimizes TLR stimulation; or avoid pattern recognition receptors. Any of the modified chemistries or formats of oligonucleotides described herein can be combined with each other. For example, one, two, three, four, five, or more different types of modifications can be included within the same oligonucleotide.


In some embodiments, certain nucleotide or nucleoside modifications may be used that make an oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligodeoxynucleotide or oligoribonucleotide molecules; these modified oligonucleotides survive intact for a longer time than unmodified oligonucleotides. Specific examples of modified oligonucleotides include those comprising modified backbones, for example, modified internucleoside linkages such as phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Accordingly, oligonucleotides of the disclosure can be stabilized against nucleolytic degradation such as by the incorporation of a modification, e.g., a nucleotide or nucleoside modification.


In some embodiments, an oligonucleotide may be of up to 50 or up to 100 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30, 2 to 40, 2 to 45, or more nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 30 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 15 nucleotides in length in which 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 2 to 11, 2 to 12, 2 to 13, 2 to 14 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. Optionally, the oligonucleotides may have every nucleotide or nucleoside except 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides/nucleosides modified. Oligonucleotide modifications are described further herein.


c. Modified Nucleosides


In some embodiments, the oligonucleotide described herein comprises at least one nucleoside modified at the 2′ position of the sugar. In some embodiments, an oligonucleotide comprises at least one 2′-modified nucleoside. In some embodiments, all of the nucleosides in the oligonucleotide are 2′-modified nucleosides.


In some embodiments, the oligonucleotide described herein comprises one or more non-bicyclic 2′-modified nucleosides, e.g., 2′-deoxy, 2′-fluoro (2′-F), 2′—O-methyl (2′—O—Me), 2′—O-methoxyethyl (2′-MOE), 2′—O-aminopropyl (2′—O-AP), 2′—O-dimethylaminoethyl (2′—O-DMAOE), 2′—O-dimethylaminopropyl (2′—O-DMAP), 2′—O-dimethylaminoethyloxyethyl (2′—O-DMAEOE), or 2′—O-N-methylacetamido (2′—O-NMA) modified nucleoside.


In some embodiments, the oligonucleotide described herein comprises one or more 2′-4′ bicyclic nucleosides in which the ribose ring comprises a bridge moiety connecting two atoms in the ring, e.g., connecting the 2′—O atom to the 4′-C atom via a methylene (LNA) bridge, an ethylene (ENA) bridge, or a (S)-constrained ethyl (cEt) bridge. Examples of LNAs are described in International Patent Application Publication WO/2008/043753, published on Apr. 17, 2008, and entitled “RNA Antagonist Compounds For The Modulation Of PCSK9”, the contents of which are incorporated herein by reference in its entirety. Examples of ENAs are provided in International Patent Publication No. WO 2005/042777, published on May 12, 2005, and entitled “APP/ENA Antisense”; Morita et al., Nucleic Acid Res., Suppl 1:241-242, 2001; Surono et al., Hum. Gene Ther., 15:749-757, 2004; Koizumi, Curr. Opin. Mol. Ther., 8:144-149, 2006 and Horie et al., Nucleic Acids Symp. Ser (Oxf), 49:171-172, 2005; the disclosures of which are incorporated herein by reference in their entireties. Examples of cEt are provided in U.S. Pat. Nos. 7,101,993; 7,399,845 and 7,569,686, each of which is herein incorporated by reference in its entirety.


In some embodiments, the oligonucleotide comprises a modified nucleoside disclosed in one of the following United States Patent or Patent Application Publications: U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,741,457, issued on Jun. 22, 2010, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 8,022,193, issued on Sep. 20, 2011, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,569,686, issued on Aug. 4, 2009, and entitled “Compounds And Methods For Synthesis Of Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,335,765, issued on Feb. 26, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,314,923, issued on Jan. 1, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,816,333, issued on Oct. 19, 2010, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same” and US Publication Number 2011/0009471 now U.S. Pat. No. 8,957,201, issued on Feb. 17, 2015, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same”, the entire contents of each of which are incorporated herein by reference for all purposes.


In some embodiments, the oligonucleotide comprises at least one modified nucleoside that results in an increase in Tm of the oligonucleotide in a range of 1° C., 2° C., 3° C., 4° C., or 5° C. compared with an oligonucleotide that does not have the at least one modified nucleoside. The oligonucleotide may have a plurality of modified nucleosides that result in a total increase in Tm of the oligonucleotide in a range of 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C. or more compared with an oligonucleotide that does not have the modified nucleoside.


The oligonucleotide may comprise a mix of nucleosides of different kinds. For example, an oligonucleotide may comprise a mix of 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise a mix of deoxyribonucleosides or ribonucleosides and 2′—O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-fluoro modified nucleosides and 2′—O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′—O-Me modified nucleosides. An oligonucleotide may comprise a mix of non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′—O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


The oligonucleotide may comprise alternating nucleosides of different kinds. For example, an oligonucleotide may comprise alternating 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise alternating deoxyribonucleosides or ribonucleosides and 2′—O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-fluoro modified nucleosides and 2′—O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′—O-Me modified nucleosides. An oligonucleotide may comprise alternating non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′—O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


In some embodiments, an oligonucleotide described herein comprises a 5′-vinylphosphonate modification, one or more abasic residues, and/or one or more inverted abasic residues.


d. Internucleoside Linkages/Backbones


In some embodiments, oligonucleotide may contain a phosphorothioate or other modified internucleoside linkage. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between at least two nucleosides. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between all nucleosides. For example, in some embodiments, oligonucleotides comprise modified internucleoside linkages at the first, second, and/or (e.g., and) third internucleoside linkage at the 5′ or 3′ end of the nucleotide sequence.


Phosphorus-containing linkages that may be used include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3′alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′; see U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455, 233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563, 253; 5,571,799; 5,587,361; and 5,625,050.


In some embodiments, oligonucleotides may have heteroatom backbones, such as methylene(methylimino) or MMI backbones; amide backbones (see De Mesmaeker et al. Ace. Chem. Res. 1995, 28:366-374); morpholino backbones (see Summerton and Weller, U.S. Pat. No. 5,034,506); or peptide nucleic acid (PNA) backbones (wherein the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone, see Nielsen et al., Science 1991, 254, 1497).


e. Stereospecific Oligonucleotides


In some embodiments, internucleotidic phosphorus atoms of oligonucleotides are chiral, and the properties of the oligonucleotides by adjusted based on the configuration of the chiral phosphorus atoms. In some embodiments, appropriate methods may be used to synthesize P-chiral oligonucleotide analogs in a stereocontrolled manner (e.g., as described in Oka N, Wada T, Stereocontrolled synthesis of oligonucleotide analogs containing chiral internucleotidic phosphorus atoms. Chem Soc Rev. 2011 December; 40(12):5829-43.) In some embodiments, phosphorothioate containing oligonucleotides comprise nucleoside units that are joined together by either substantially all Sp or substantially all Rp phosphorothioate intersugar linkages are provided. In some embodiments, such phosphorothioate oligonucleotides having substantially chirally pure intersugar linkages are prepared by enzymatic or chemical synthesis, as described, for example, in U.S. Pat. No. 5,587,261, issued on Dec. 12, 1996, the contents of which are incorporated herein by reference in their entirety. In some embodiments, chirally controlled oligonucleotides provide selective cleavage patterns of a target nucleic acid. For example, in some embodiments, a chirally controlled oligonucleotide provides single site cleavage within a complementary sequence of a nucleic acid, as described, for example, in US Patent Application Publication 20170037399 Al, published on Feb. 2, 2017, entitled “CHIRAL DESIGN”, the contents of which are incorporated herein by reference in their entirety.


f. Morpholinos


In some embodiments, the oligonucleotide may be a morpholino-based compounds. Morpholino-based oligomeric compounds are described in Dwaine A. Braasch and David R. Corey, Biochemistry, 2002, 41(14), 4503-4510); Genesis, volume 30, issue 3, 2001; Heasman, J., Dev. Biol., 2002, 243, 209-214; Nasevicius et al., Nat. Genet., 2000, 26, 216-220; Lacerra et al., Proc. Natl. Acad. Sci., 2000, 97, 9591-9596; and U.S. Pat. No. 5,034,506, issued Jul. 23, 1991. In some embodiments, the morpholino-based oligomeric compound is a phosphorodiamidate morpholino oligomer (PMO) (e.g., as described in Iverson, Curr. Opin. Mol. Ther., 3:235-238, 2001; and Wang et al., J. Gene Med., 12:354-364, 2010; the disclosures of which are incorporated herein by reference in their entireties).


g. Peptide Nucleic Acids (PNAs)


In some embodiments, both a sugar and an internucleoside linkage (the backbone) of the nucleotide units of an oligonucleotide are replaced with novel groups. In some embodiments, the base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, for example, an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative publication that report the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.


h. Mixmers


In some embodiments, an oligonucleotide described herein may be a mixmer or comprise a mixmer sequence pattern. In general, mixmers are oligonucleotides that comprise both naturally and non-naturally occurring nucleosides or comprise two different types of non-naturally occurring nucleosides typically in an alternating pattern. Mixmers generally have higher binding affinity than unmodified oligonucleotides and may be used to specifically bind a target molecule, e.g., to block a binding site on the target molecule. Generally, mixmers do not recruit an RNase to the target molecule and thus do not promote cleavage of the target molecule. Such oligonucleotides that are incapable of recruiting RNase H have been described, for example, see WO2007/112754 or WO2007/112753.


In some embodiments, the mixmer comprises or consists of a repeating pattern of nucleoside analogues and naturally occurring nucleosides, or one type of nucleoside analogue and a second type of nucleoside analogue. However, a mixmer need not comprise a repeating pattern and may instead comprise any arrangement of modified nucleoside s and naturally occurring nucleoside s or any arrangement of one type of modified nucleoside and a second type of modified nucleoside. The repeating pattern, may, for instance be every second or every third nucleoside is a modified nucleoside, such as LNA, and the remaining nucleoside s are naturally occurring nucleosides, such as DNA, or are a 2′ substituted nucleoside analogue such as 2′-MOE or 2′ fluoro analogues, or any other modified nucleoside described herein. It is recognized that the repeating pattern of modified nucleoside, such as LNA units, may be combined with modified nucleoside at fixed positions—e.g. at the 5′ or 3′ termini.


In some embodiments, a mixmer does not comprise a region of more than 5, more than 4, more than 3, or more than 2 consecutive naturally occurring nucleosides, such as DNA nucleosides. In some embodiments, the mixmer comprises at least a region consisting of at least two consecutive modified nucleosides, such as at least two consecutive LNAs. In some embodiments, the mixmer comprises at least a region consisting of at least three consecutive modified nucleoside units, such as at least three consecutive LNAs.


In some embodiments, the mixmer does not comprise a region of more than 7, more than 6, more than 5, more than 4, more than 3, or more than 2 consecutive nucleoside analogues, such as LNAs. In some embodiments, LNA units may be replaced with other nucleoside analogues, such as those referred to herein.


Mixmers may be designed to comprise a mixture of affinity enhancing modified nucleosides, such as in non-limiting example LNA nucleosides and 2′—O-Me nucleosides. In some embodiments, a mixmer comprises modified internucleoside linkages (e.g., phosphorothioate internucleoside linkages or other linkages) between at least two, at least three, at least four, at least five or more nucleosides.


A mixmer may be produced using any suitable method. Representative U.S. patents, U.S. patent publications, and PCT publications that teach the preparation of mixmers include U.S. patent publication Nos. US20060128646, US20090209748, US20090298916, US20110077288, and US20120322851, and U.S. Pat. No. 7,687,617.


In some embodiments, a mixmer comprises one or more morpholino nucleosides. For example, in some embodiments, a mixmer may comprise morpholino nucleosides mixed (e.g., in an alternating manner) with one or more other nucleosides (e.g., DNA, RNA nucleosides) or modified nucleosides (e.g., LNA, 2′—O-Me nucleosides).


In some embodiments, mixmers are useful for splice correcting or exon skipping, for example, as reported in Touznik A., et al., LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts Scientific Reports, volume 7, Article number: 3672 (2017), Chen S. et al., Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′—O-Methyl Mixmer Antisense Oligonucleotide, Molecules 2016, 21, 1582, the contents of each which are incorporated herein by reference.


i. Multimers


In some embodiments, molecular payloads may comprise multimers (e.g., concatemers) of 2 or more oligonucleotides connected by a linker. In this way, in some embodiments, the oligonucleotide loading of a complex can be increased beyond the available linking sites on a targeting agent (e.g., available thiol sites on an antibody) or otherwise tuned to achieve a particular payload loading content. Oligonucleotides in a multimer can be the same or different (e.g., targeting different genes or different sites on the same gene or products thereof).


In some embodiments, multimers comprise 2 or more oligonucleotides linked together by a cleavable linker. However, in some embodiments, multimers comprise 2 or more oligonucleotides linked together by a non-cleavable linker. In some embodiments, a multimer comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more oligonucleotides linked together. In some embodiments, a multimer comprises 2 to 5, 2 to 10 or 4 to 20 oligonucleotides linked together.


In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end (in a linear arrangement). In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end via an oligonucleotide based linker (e.g., poly-dT linker, an abasic linker). In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 3′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 5′ end of another oligonucleotide. Still, in some embodiments, multimers can comprise a branched structure comprising multiple oligonucleotides linked together by a branching linker.


Further examples of multimers that may be used in the complexes provided herein are disclosed, for example, in US Patent Application Number 2015/0315588 A1, entitled Methods of delivering multiple targeting oligonucleotides to a cell using cleavable linkers, which was published on Nov. 5, 2015; US Patent Application Number 2015/0247141 A1, entitled Multimeric Oligonucleotide Compounds, which was published on Sep. 3, 2015, US Patent Application Number US 2011/0158937 A1, entitled Immunostimulatory Oligonucleotide Multimers, which was published on Jun. 30, 2011; and U.S. Pat. No. 5,693,773, entitled Triplex-Forming Antisense Oligonucleotides Having Abasic Linkers Targeting Nucleic Acids Comprising Mixed Sequences Of Purines And Pyrimidines, which issued on Dec. 2, 1997, the contents of each of which are incorporated herein by reference in their entireties.


C. Linkers

Complexes described herein generally comprise a linker that covalently links any one of the anti-TfR1 antibodies described herein to a molecular payload. A linker comprises at least one covalent bond. In some embodiments, a linker may be a single bond, e.g., a disulfide bond or disulfide bridge, that covalently links an anti-TfR1 antibody to a molecular payload. However, in some embodiments, a linker may covalently link any one of the anti-TfR1 antibodies described herein to a molecular payload through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker. A linker is typically stable in vitro and in vivo, and may be stable in certain cellular environments. Additionally, typically a linker does not negatively impact the functional properties of either the anti-TfR1 antibody or the molecular payload. Examples and methods of synthesis of linkers are known in the art (see, e.g. Kline, T. et al. “Methods to Make Homogenous Antibody Drug Conjugates.” Pharmaceutical Research, 2015, 32:11, 3480-3493.; Jain, N. et al. “Current ADC Linker Chemistry” Pharm Res. 2015, 32:11, 3526-3540.; McCombs, J. R. and Owen, S. C. “Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry” AAPS J. 2015, 17:2, 339-351.).


A linker typically will contain two different reactive species that allow for attachment to both the anti-TfR1 antibody and a molecular payload. In some embodiments, the two different reactive species may be a nucleophile and/or an electrophile. In some embodiments, a linker contains two different electrophiles or nucleophiles that are specific for two different nucleophiles or electrophiles. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody via conjugation to a lysine residue or a cysteine residue of the anti-TfR1 antibody. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody via a maleimide-containing linker, wherein optionally the maleimide-containing linker comprises a maleimidocaproyl or maleimidomethyl cyclohexane-1-carboxylate group. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody or thiol functionalized molecular payload via a 3-arylpropionitrile functional group. In some embodiments, a linker is covalently linked to a lysine residue of an anti-TfR1 antibody. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) a molecular payload, independently, via an amide bond, a carbamate bond, a hydrazide, a triazole, a thioether, and/or a disulfide bond.


i. Cleavable Linkers


A cleavable linker may be a protease-sensitive linker, a pH-sensitive linker, or a glutathione-sensitive linker. These linkers are typically cleavable only intracellularly and are preferably stable in extracellular environments, e.g., extracellular to a muscle cell.


Protease-sensitive linkers are cleavable by protease enzymatic activity. These linkers typically comprise peptide sequences and may be 2-10 amino acids, about 2-5 amino acids, about 5-10 amino acids, about 10 amino acids, about 5 amino acids, about 3 amino acids, or about 2 amino acids in length. In some embodiments, a peptide sequence may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include j-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a protease-sensitive linker comprises a valine-citrulline or alanine-citrulline sequence. In some embodiments, a protease-sensitive linker can be cleaved by a lysosomal protease, e.g. cathepsin B, and/or (e.g., and) an endosomal protease.


A pH-sensitive linker is a covalent linkage that readily degrades in high or low pH environments. In some embodiments, a pH-sensitive linker may be cleaved at a pH in a range of 4 to 6. In some embodiments, a pH-sensitive linker comprises a hydrazone or cyclic acetal. In some embodiments, a pH-sensitive linker is cleaved within an endosome or a lysosome.


In some embodiments, a glutathione-sensitive linker comprises a disulfide moiety. In some embodiments, a glutathione-sensitive linker is cleaved by a disulfide exchange reaction with a glutathione species inside a cell. In some embodiments, the disulfide moiety further comprises at least one amino acid, e.g., a cysteine residue.


In some embodiments, a linker comprises a valine-citrulline sequence (e.g., as described in U.S. Pat. No. 6,214,345, incorporated herein by reference). In some embodiments, before conjugation, a linker comprises a structure of:




embedded image


In some embodiments, after conjugation, a linker comprises a structure of:




embedded image


In some embodiments, before conjugation, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


ii. Non-cleavable Linkers


In some embodiments, non-cleavable linkers may be used. Generally, a non-cleavable linker cannot be readily degraded in a cellular or physiological environment. In some embodiments, a non-cleavable linker comprises an optionally substituted alkyl group, wherein the substitutions may include halogens, hydroxyl groups, oxygen species, and other common substitutions. In some embodiments, a linker may comprise an optionally substituted alkyl, an optionally substituted alkylene, an optionally substituted arylene, a heteroarylene, a peptide sequence comprising at least one non-natural amino acid, a truncated glycan, a sugar or sugars that cannot be enzymatically degraded, an azide, an alkyne-azide, a peptide sequence comprising a LPXT sequence, a thioether, a biotin, a biphenyl, repeating units of polyethylene glycol or equivalent compounds, acid esters, acid amides, sulfamides, and/or an alkoxy-amine linker. In some embodiments, sortase-mediated ligation can be utilized to covalently link an anti-TfR1 antibody comprising a LPXT sequence to a molecular payload comprising a (G)n sequence (see, e.g. Proft T. Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilization. Biotechnol Lett. 2010, 32(1):1-10.).


In some embodiments, a linker may comprise a substituted alkylene, an optionally substituted alkenylene, an optionally substituted alkynylene, an optionally substituted cycloalkylene, an optionally substituted cycloalkenylene, an optionally substituted arylene, an optionally substituted heteroarylene further comprising at least one heteroatom selected from N, O, and S; an optionally substituted heterocyclylene further comprising at least one heteroatom selected from N, O, and S, an imino, an optionally substituted nitrogen species, an optionally substituted oxygen species O, an optionally substituted sulfur species, or a poly(alkylene oxide), e.g. polyethylene oxide or polypropylene oxide. In some embodiments, a linker may be a non-cleavable N-gamma-maleimidobutyryl-oxysuccinimide ester (GMBS) linker.


iii. Linker Conjugation


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload via a phosphate, thioether, ether, carbon-carbon, carbamate, or amide bond. In some embodiments, a linker is covalently linked to an oligonucleotide through a phosphate or phosphorothioate group, e.g. a terminal phosphate of an oligonucleotide backbone. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody, through a lysine or cysteine residue present on the anti-TfR1 antibody.


In some embodiments, a linker, or a portion thereof is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments, an alkyne may be a cyclic alkyne, e.g., a cyclooctyne. In some embodiments, an alkyne may be bicyclononyne (also known as bicyclo[6.1.0]nonyne or BCN) or substituted bicyclononyne. In some embodiments, a cyclooctyne is as described in International Patent Application Publication WO2011136645, published on Nov. 3, 2011, entitled, “Fused Cyclooctyne Compounds And Their Use In Metal-free Click Reactions”. In some embodiments, an azide may be a sugar or carbohydrate molecule that comprises an azide. In some embodiments, an azide may be 6-azido-6-deoxygalactose or 6-azido-N-acetylgalactosamine. In some embodiments, a sugar or carbohydrate molecule that comprises an azide is as described in International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A β(1,4)-N-Acetylgalactosaminyltransferase”. In some embodiments, a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker is as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”; or International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A β(1,4)-N-Acetylgalactosaminyltransferase”.


In some embodiments, a linker comprises a spacer, e.g., a polyethylene glycol spacer or an acyl/carbomoyl sulfamide spacer, e.g., a HydraSpace™ spacer. In some embodiments, a spacer is as described in Verkade, J. M. M. et al., “A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody- Drug Conjugates”, Antibodies, 2018, 7, 12.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by the Diels-Alder reaction between a dienophile and a diene/hetero-diene, wherein the dienophile or the diene/hetero-diene may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by other pericyclic reactions such as an ene reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by an amide, thioamide, or sulfonamide bond reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a condensation reaction to form an oxime, hydrazone, or semicarbazide group existing between the linker and the anti-TfR1 antibody and/or (e.g., and) molecular payload.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a conjugate addition reaction between a nucleophile, e.g. an amine or a hydroxyl group, and an electrophile, e.g. a carboxylic acid, carbonate, or an aldehyde. In some embodiments, a nucleophile may exist on a linker and an electrophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may exist on a linker and a nucleophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may be an azide, pentafluorophenyl, a silicon centers, a carbonyl, a carboxylic acid, an anhydride, an isocyanate, a thioisocyanate, a succinimidyl ester, a sulfosuccinimidyl ester, a maleimide, an alkyl halide, an alkyl pseudohalide, an epoxide, an episulfide, an aziridine, an aryl, an activated phosphorus center, and/or an activated sulfur center. In some embodiments, a nucleophile may be an optionally substituted alkene, an optionally substituted alkyne, an optionally substituted aryl, an optionally substituted heterocyclyl, a hydroxyl group, an amino group, an alkylamino group, an anilido group, and/or a thiol group.


In some embodiments, a linker comprises a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety or a BCN moiety for click chemistry). In some embodiments, a linker comprising a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety for click chemistry) comprises a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, a linker comprising the structure of Formula (A) is covalently linked (e.g., optionally via additional chemical moieties) to a molecular payload (e.g., an oligonucleotide). In some embodiments, a linker comprising the structure of Formula (A) is covalently linked to an oligonucleotide, e.g., through a nucleophilic substitution with amine-L1-oligonucleotides forming a carbamate bond, yielding a compound comprising a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, the compound of Formula (B) is further covalently linked via a triazole to additional moieties, wherein the triazole is formed by a click reaction between the azide of Formula (A) or Formula (B) and an alkyne provided on a bicyclononyne. In some embodiments, a compound comprising a bicyclononyne comprises a structure of:




embedded image


wherein m is any number from 0-10. In some embodiments, m is 4.


In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (C), forming a compound comprising a structure of:




embedded image


wherein n is any number from 0-10, and wherein m is any number from 0-10. In some embodiments, n is 3 and m is 4.


In some embodiments, the compound of structure (D) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a complex comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the compound of Formula (C) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a compound comprising a structure of:




embedded image


wherein m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (F) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a complex comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the azide of the compound of structure (A) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a compound comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. In some embodiments, an oligonucleotide is covalently linked to a compound comprising a structure of formula (G), thereby forming a complex comprising a structure of formula (E). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (G) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, in formulae (B), (D), (E), and (I), Li is a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)-, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof, wherein each RA is independently hydrogen or substituted or unsubstituted alkyl. In some embodiments, L1 is




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is:




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is




embedded image


In some embodiments, L1 is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments, L1 is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, L1 is optional (e.g., need not be present).


In some embodiments, any one of the complexes described herein has a structure of:




embedded image


wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (J) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, any one of the complexes described herein has a structure of:




embedded image


wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4).


In some embodiments, the oligonucleotide is modified to comprise an amine group at the 5′ end, the 3′ end, or internally (e.g., as an amine functionalized nucleobase), prior to linking to a compound, e.g., a compound of formula (A) or formula (G).


Although linker conjugation is described in the context of anti-TfR1 antibodies and oligonucleotide molecular payloads, it should be understood that use of such linker conjugation on other muscle-targeting agents, such as other muscle-targeting antibodies, and/or on other molecular payloads is contemplated.


D. Examples of Antibody-Molecular Payload Complexes

Further provided herein are non-limiting examples of complexes comprising any one the anti-TfR1 antibodies described herein covalently linked to any of the molecular payloads (e.g., an oligonucleotide) described herein. In some embodiments, the anti-TfR1 antibody (e.g., any one of the anti-TfR1 antibodies provided in Tables 2-7) is covalently linked to a molecular payload (e.g., an oligonucleotide such as the oligonucleotides provided in Table 8) via a linker. Any of the linkers described herein may be used. In some embodiments, if the molecular payload is an oligonucleotide, the linker is linked to the 5′ end of the oligonucleotide, the 3′ end of the oligonucleotide, or to an internal site of the oligonucleotide. In some embodiments, the linker is linked to the anti-TfR1 antibody via a thiol-reactive linkage (e.g., via a cysteine in the anti-TfR1 antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


An example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image


wherein the linker is linked to the antibody via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


Another example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image


wherein n is a number between 0-10, wherein m is a number between 0-10, wherein the linker is linked to the antibody via an amine group (e.g., on a lysine residue), and/or (e.g., and) wherein the linker is linked to the oligonucleotide (e.g., at the 5′ end, 3′ end, or internally). In some embodiments, the linker is linked to the antibody via a lysine, the linker is linked to the oligonucleotide at the 5′ end, n is 3, and m is 4. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


It should be appreciated that antibodies can be linked to molecular payloads with different stoichiometries, a property that may be referred to as a drug to antibody ratios (DAR) with the “drug” being the molecular payload. In some embodiments, one molecular payload is linked to an antibody (DAR=1). In some embodiments, two molecular payloads are linked to an antibody (DAR=2). In some embodiments, three molecular payloads are linked to an antibody (DAR=3). In some embodiments, four molecular payloads are linked to an antibody (DAR=4). In some embodiments, a mixture of different complexes, each having a different DAR, is provided. In some embodiments, an average DAR of complexes in such a mixture may be in a range of 1 to 3, 1 to 4, 1 to 5 or more. An average DAR of complexes in a mixture need not be an integer value. DAR may be increased by conjugating molecular payloads to different sites on an antibody and/or (e.g., and) by conjugating multimers to one or more sites on antibody. For example, a DAR of 2 may be achieved by conjugating a single molecular payload to two different sites on an antibody or by conjugating a dimer molecular payload to a single site of an antibody.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to a molecular payload. In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to molecular payload via a linker (e.g., a linker comprising a valine-citrulline sequence). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 69, SEQ ID NO: 71, or SEQ ID NO: 72, and a VL comprising the amino acid sequence of SEQ ID NO: 70. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 75. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77, and a VL comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 or SEQ ID NO: 79, and a VL comprising the amino acid sequence of SEQ ID NO: 80. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 154, and a VL comprising the amino acid sequence of SEQ ID NO: 155. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84, SEQ ID NO: 86 or SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 or SEQ ID NO: 94, and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92, and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156, and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97, SEQ ID NO: 98, or SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 or SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 or SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383).


In any of the example complexes described herein, in some embodiments, the anti-TfR1 antibody is covalently linked to the molecular payload via a linker comprising a structure of:




embedded image


wherein n is 3, m is 4.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a VH and VL of any one of the antibodies listed in Table 3, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a heavy chain and light chain of any one of the antibodies listed in Table 4, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 Fab covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 384-831, or complementary to any one of SEQ ID NO: 160-383) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 Fab comprises a heavy chain and light chain of any one of the antibodies listed in Table 5, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, in any one of the examples of complexes described herein, L1 is:




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is:




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, Li is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments, Li is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, Li is optional (e.g., need not be present).


III. Formulations

Complexes provided herein may be formulated in any suitable manner. Generally, complexes provided herein are formulated in a manner suitable for pharmaceutical use. For example, complexes can be delivered to a subject using a formulation that minimizes degradation, facilitates delivery and/or (e.g., and) uptake, or provides another beneficial property to the complexes in the formulation. In some embodiments, provided herein are compositions comprising complexes and pharmaceutically acceptable carriers. Such compositions can be suitably formulated such that when administered to a subject, either into the immediate environment of a target cell or systemically, a sufficient amount of the complexes enter target muscle cells. In some embodiments, complexes are formulated in buffer solutions such as phosphate-buffered saline solutions, liposomes, micellar structures, and capsids.


It should be appreciated that, in some embodiments, compositions may include separately one or more components of complexes provided herein (e.g., muscle-targeting agents, linkers, molecular payloads, or precursor molecules of any one of them).


In some embodiments, complexes are formulated in water or in an aqueous solution (e.g., water with pH adjustments). In some embodiments, complexes are formulated in basic buffered aqueous solutions (e.g., PBS). In some embodiments, formulations as disclosed herein comprise an excipient. In some embodiments, an excipient confers to a composition improved stability, improved absorption, improved solubility and/or (e.g., and) therapeutic enhancement of the active ingredient. In some embodiments, an excipient is a buffering agent (e.g., sodium citrate, sodium phosphate, a tris base, or sodium hydroxide) or a vehicle (e.g., a buffered solution, petrolatum, dimethyl sulfoxide, or mineral oil).


In some embodiments, a complex or component thereof (e.g., oligonucleotide or antibody) is lyophilized for extending its shelf-life and then made into a solution before use (e.g., administration to a subject). Accordingly, an excipient in a composition comprising a complex, or component thereof, described herein may be a lyoprotectant (e.g., mannitol, lactose, polyethylene glycol, or polyvinyl pyrolidone), or a collapse temperature modifier (e.g., dextran, ficoll, or gelatin).


In some embodiments, a pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, administration. Typically, the route of administration is intravenous or subcutaneous.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. In some embodiments, formulations include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. Sterile injectable solutions can be prepared by incorporating the complexes in a required amount in a selected solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.


In some embodiments, a composition may contain at least about 0.1% of the complex, or component thereof, or more, although the percentage of the active ingredient(s) may be between about 1% and about 80% or more of the weight or volume of the total composition. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.


IV. Methods of Use/Treatment

Complexes comprising a muscle-targeting agent covalently linked to a molecular payload as described herein are effective in treating a subject having a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, complexes comprise a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates exon skipping of a pre-mRNA expressed from a mutated DMD allele.


In some embodiments, a subject may be a human subject, a non-human primate subject, a rodent subject, or any suitable mammalian subject. In some embodiments, a subject may have Duchenne muscular dystrophy or other dystrophinopathy. In some embodiments, a subject has a mutated DMD allele, which may optionally comprise at least one mutation in a DMD exon that causes a frameshift mutation and leads to improper RNA splicing/processing. In some embodiments, a subject is suffering from symptoms of a severe dystrophinopathy, e.g. muscle atrophy or muscle loss. In some embodiments, a subject has an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, a subject has a progressive muscle disease, such as Duchenne or Becker muscular dystrophy or DMD-associated dilated cardiomyopathy (DCM). In some embodiments, a subject is not suffering from symptoms of a dystrophinopathy.


In some embodiments, a subject has a mutation in a DMD gene that is amenable to exon 51 skipping. In some embodiments, a complex comprising a muscle-targeting agent covalently linked to a molecular payload as described herein is effective in treating a subject having a mutation in a DMD gene that is amenable to exon 51 skipping. In some embodiments, a complex comprises a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates skipping of exon 51 of a pre-mRNA, such as in a pre-mRNA encoded from a mutated DMD gene (e.g., a mutated DMD gene that is amenable to exon 51 skipping).


An aspect of the disclosure includes methods involving administering to a subject an effective amount of a complex as described herein. In some embodiments, an effective amount of a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload can be administered to a subject in need of treatment. In some embodiments, a pharmaceutical composition comprising a complex as described herein may be administered by a suitable route, which may include intravenous administration, e.g., as a bolus or by continuous infusion over a period of time. In some embodiments, administration may be performed by intramuscular, intraperitoneal, intracerebrospinal, subcutaneous, intra-articular, intrasynovial, or intrathecal routes. In some embodiments, a pharmaceutical composition may be in solid form, aqueous form, or a liquid form. In some embodiments, an aqueous or liquid form may be nebulized or lyophilized. In some embodiments, a nebulized or lyophilized form may be reconstituted with an aqueous or liquid solution.


Compositions for intravenous administration may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like). For intravenous injection, water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused. Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients. Intramuscular preparations, e.g., a sterile formulation of a suitable soluble salt form of the antibody, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered via site-specific or local delivery techniques. Examples of these techniques include implantable depot sources of the complex, local delivery catheters, site specific carriers, direct injection, or direct application.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered at an effective concentration that confers therapeutic effect on a subject. Effective amounts vary, as recognized by those skilled in the art, depending on the severity of the disease, unique characteristics of the subject being treated, e.g., age, physical conditions, health, or weight, the duration of the treatment, the nature of any concurrent therapies, the route of administration and related factors. These related factors are known to those in the art and may be addressed with no more than routine experimentation. In some embodiments, an effective concentration is the maximum dose that is considered to be safe for the patient. In some embodiments, an effective concentration will be the lowest possible concentration that provides maximum efficacy.


Empirical considerations, e.g., the half-life of the complex in a subject, generally will contribute to determination of the concentration of pharmaceutical composition that is used for treatment. The frequency of administration may be empirically determined and adjusted to maximize the efficacy of the treatment.


The efficacy of treatment may be assessed using any suitable methods. In some embodiments, the efficacy of treatment may be assessed by evaluation of observation of symptoms associated with a dystrophinopathy, e.g., muscle atrophy or muscle weakness, through measures of a subject's self-reported outcomes, e.g., mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, or by quality-of-life indicators, e.g., lifespan.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload described herein is administered to a subject at an effective concentration sufficient to modulate activity or expression of a target gene by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% relative to a control, e.g. baseline level of gene expression prior to treatment.


Additional Embodiments





    • 1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to a molecular payload configured for inducing skipping of exon 51 in a DMD pre-mRNA, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.

    • 2. The complex of embodiment 1, wherein the anti-TfR1 antibody comprises:
      • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
      • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
      • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
      • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
      • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
      • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
      • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.

    • 3. The complex of embodiment 1 or embodiment 2, wherein the anti-TfR1 antibody comprises:
      • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
      • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
      • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
      • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
      • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
      • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
      • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
      • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
      • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
      • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.

    • 4. The complex of any one of embodiments 1 to 3, wherein the anti-TfR1 antibody comprises:
      • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
      • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
      • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
      • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
      • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
      • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
      • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
      • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
      • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
      • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.

    • 5. The complex of any one of embodiments 1 to 4, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.

    • 6. The complex of embodiment 5, wherein the anti-TfR1 antibody is a Fab fragment.

    • 7. The complex of embodiment 6, wherein the anti-TfR1 antibody comprises:
      • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
      • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
      • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
      • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
      • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
      • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
      • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
      • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
      • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
      • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.

    • 8. The complex of embodiment 6 or embodiment 7, wherein the anti-TfR1 antibody comprises:
      • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
      • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
      • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
      • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
      • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
      • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
      • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
      • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
      • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
      • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.

    • 9. The complex of any one of embodiments 1 to 8, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.

    • 10. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide.

    • 11. The complex of embodiment 10, wherein the oligonucleotide promotes antisense-mediated exon skipping in the DMD pre-RNA.

    • 12. The complex of embodiment 10 or 11, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.

    • 13. The complex of embodiment 12, wherein the splicing feature is an exonic splicing enhancer (ESE) of the DMD pre-mRNA.

    • 14. The complex of embodiment 13, wherein the splicing feature is in exon 51 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 860-894.

    • 15. The complex of embodiment 12, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site.

    • 16. The complex of embodiment 15, wherein the splicing feature is across the junction of exon 50 and intron 50, in intron 50, across the junction of intron 50 and exon 51, across the junction of exon 51 and intron 51, in intron 51, or across the junction of intron 51 and exon 52 of the DMD pre-mRNA, optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 855-8595 and 895-898.

    • 17. The complex of any one of embodiments 12 to 16, wherein the region of complementarity comprises at least 4 consecutive nucleosides complementary to the splicing feature.

    • 18. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide comprising a sequence complementary to any one of SEQ ID NOs: 160-383 or comprising a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.

    • 19. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises at least one modified internucleoside linkage.

    • 20. The complex of embodiment 19, wherein the at least one modified internucleoside linkage is a phosphorothioate linkage.

    • 21. The complex of any one of embodiments 10 to 20, wherein the oligonucleotide comprises one or more modified nucleosides.

    • 22. The complex of embodiment 21, wherein the one or more modified nucleosides are 2′-modified nucleosides.

    • 23. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).

    • 24. The complex of any one of embodiments 1 to 23, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via a cleavable linker.

    • 25. The complex of embodiment 24, wherein the cleavable linker comprises a valine-citrulline sequence.

    • 26. The complex of any one of embodiments 1 to 25, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via conjugation to a lysine residue or a cysteine residue of the antibody.

    • 27. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 51 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-383.

    • 28. The complex of embodiment 27, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.

    • 29. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 51 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.

    • 30. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-383.

    • 31. The oligonucleotide of embodiment 30, wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-383.

    • 32. The oligonucleotide of embodiment 30 or 31, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 384-831, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.

    • 33. A method of delivering a molecular payload to a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26.

    • 34. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29.

    • 35. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26 in an amount effective for promoting internalization of the molecular payload to the cell, optionally wherein the cell is a muscle cell.

    • 36. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.

    • 37. The method of embodiment 35 or 36, wherein the cell is in vitro.

    • 38. The method of embodiment 35 or 36, wherein the cell is in a subject.

    • 39. The method of embodiment 38, wherein the subject is a human.

    • 40. The method of embodiment 39, wherein the subject has a DMD gene that is amenable to skipping of exon 51.

    • 41. The method of any one of embodiments 35 to 40, wherein the dystrophin protein is a truncated dystrophin protein.

    • 42. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.

    • 43. A method of promoting skipping of exon 51 of a DMD pre-mRNA transcript in a cell, the method comprising contacting the cell with an effective amount of the complex of any one of embodiments 1 to 29.

    • 44. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.





EXAMPLES
Example 1. Exon-Skipping Activity of Anti-TfR1 Antibody Conjugates in Duchenne Muscular Dystrophy Patient Myotubes

In this study, the exon-skipping activities of anti-TfR1 antibody conjugates comprising an anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to a DMD exon 51-skipping antisense oligonucleotide (ASO) were evaluated. The DMD exon 51-skipping ASO is a phosphorodiamidate morpholino oligomer (PMO) of 30 nucleotides in length and targets an ESE in DMD exon 51 having the sequence TGGAGGT (SEQ ID NO: 877). Immortalized human myoblasts bearing an exon 52 deletion in the DMD gene were thawed and seeded at a density of 1e6 cell/flask in Promocell Skeletal Cell Growth Media (with 5% FBS and lx Pen-Strep) and allowed to grow to confluency. Once confluent, cells were trypsinized and pelleted via centrifugation and resuspended in fresh Promocell Skeletal Cell Growth Media. The cell number was counted and cells were seeded into Matrigel-coated 96-well plates at a density of 50,000 cells/well. Cells were allowed to recover for 24 hours. Cells were induced to differentiate into myotubes by aspirating the growth media and replacing with differentiation media with no serum. Cells were then treated with the DMD exon 51-skipping oligonucleotide (not covalently linked to an antibody—“naked”) at 10 μM ASO or the anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to the DMD exon 51-skipping oligonucleotide at 10 μM ASO equivalent. Cells were incubated with test articles for ten days then total RNA was harvested from the 96 well plates. cDNA synthesis was performed on 75 ng of total RNA, and mutation specific PCRs were performed to evaluate the degree of exon 51 skipping in the cells. Mutation-specific PCR products were run on a 4% agarose gel and visualized using SYBR gold. Densitometry was used to calculate the relative amounts of the skipped and unskipped amplicon and exon skipping was determined as a ratio of the Exon 51 skipped amplicon divided by the total amount of amplicon present:







%


Exon


Skipping

=



Skipped


Amplicon


(


Skipped


Amplicon

+

Unskipped


Amplicon


)


*
1

0


0
.






The results demonstrate that the conjugate resulted in enhanced exon skipping compared to the naked DMD exon 51-skipping oligonucleotide in patient myotubes (FIG. 1). This indicates that anti-TfR1 Fab 3M12 VH4/Vκ3 enabled cellular internalization of the conjugate into muscle cells resulting in activity of the exon 51-skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/Vκ3) can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 51 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.


Example 2. Exon Skipping Activity of Anti-TfR1 Fab-ASO Conjugate In Vivo in Cynomolgus Monkeys

Anti-TfR1 Fab 3M12 VH4/Vκ3 was covalently linked to the DMD exon 51-skipping antisense oligonucleotide (ASO) that was used in Example 1. The exon skipping activity of the conjugate was tested in vivo in healthy non-human primates. Naïve male cynomolgus monkeys (n=4-5 per group) were administered two doses of vehicle, 30 mg/kg naked ASO (i.e., not covalently linked to an antibody), or 122 mg/kg anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to the DMD exon 51-skipping oligonucleotide (30 mg/kg ASO equivalent) via intravenous infusion on days 1 and 8. Animals were sacrificed and tissues harvested either 2 weeks or 4 weeks after the first dose was administered. Total RNA was collected from tissue samples using a Promega Maxwell® RSC instrument and cDNA synthesis was performed using qScript cDNA SuperMix. Assessment of exon 51 skipping was performed using end-point PCR.


Capillary electrophoresis of the PCR products was used to assess exon skipping, and % exon 51 skipping was calculated using the following formula:







%


Exon


Skipping

=



Molarity


of


Skipped


Band



Molarity


of


Skipped


Band

+

Molarity


of


Unskipped


Band



*
1

0


0
.






Calculated exon 51 skipping results are shown in Table 10.









TABLE 10







Exon 51 skipping of DMD mRNA in cynomolgus monkey









Time










2 weeks
4 weeks














Naked

Naked



Group
Vehicle
ASOa
Conjugate
ASOa
Conjugate





Conjugate doseb
0
n/a
122
n/a
122


ASO Dosec
0
30
 30
30
 30


Quadriceps d
0.00
1.216
4.906
0.840
1.708



(0.00)
(1.083)
(3.131)
(1.169)
(1.395)


Diaphragm d
0.00
1.891
7.315
0.717
9.225



(0.00)
(2.911)
(1.532)
(1.315)
(4.696)


Heart d
0.00
0.043
3.42
0.00
4.525



(0.00)
(0.096)
(1.192)
(0.00)
(1.400)


Biceps d
0.00
0.607
3.129
1.214
4.863



(0.00)
(0.615)
(0.912)
(1.441)
(3.881)


Tibialis anterior d
0.00
0.699
1.042
0.384
0.816



(0.00)
(0.997)
(0.685)
(0.615)
(0.915)


Gastrocnemius d
0.00
0.388
2.424
0.00
5.393



(0.00)
(0.573)
(2.329)
(0.00)
(2.695)






aASO = antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




cASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO dose.




d Exon skipping values are mean % exon 51 skipping with standard deviations (n = 5) in parentheses.







Tissue ASO accumulation was also quantified using a hybridization ELISA with a probe complementary to the ASO sequence. A standard curve was generated and ASO levels (in ng/g) were derived from a linear regression of the standard curve. The ASO was distributed to all tissues evaluated at a higher level following the administration of the anti-TfR1 Fab VH4/VK3-ASO conjugate as compared to the administration of naked ASO. Intravenous administration of naked ASO resulted in levels of ASO that were close to background levels in all tissues evaluated at 2 and 4 weeks after the first does was administered. Administration of anti-TfR1 Fab VH4/VK3-ASO conjugate resulted in distribution of ASO through the tissues evaluated with a rank order of heart>diaphragm>bicep>quadriceps>gastrocnemius>tibialis anterior 2 weeks after first dosing. The duration of tissue concentration was also assessed. Concentrations of the ASO in quadriceps, bicep and diaphragm decreased by less than 50% over the time period evaluated (2 to 4 weeks), while levels of ASO in the heart, tibialis anterior, and gastrocnemius remained virtually unchanged (Table 11). This indicates that anti-TfR1 Fab 3M12 VH4/VK3 enabled cellular internalization of the conjugate into muscle cells in vivo, resulting in activity of the exon skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/VK3) in vivo can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 51 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.









TABLE 11







Tissue distribution of DMD exon 51


skipping ASO in cynomolgus monkeys









Time










2 weeks
4 weeks














Naked

Naked



Group
Vehicle
ASOa
Conjugate
ASOa
Conjugate





Conjugate
0
n/a
122
n/a
122


Doseb


ASO Dosec
0
30
 30
30
 30


Quadriceps d
0
696.8
2436
197
682



(59.05)
(868.15)
(954.0)
(134)
(281)


Diaphragm d

580.02
6750
60
3131



(144.3)
(360.11)
(2256)
(120)
(1618)


Heart d
0
1449
27138
943
30410



(396.03)
(1337)
(6315)
(1803)
(9247)


Biceps d
0
615.63
2840
130
1326



(69.58)
(335.17)
(980.31)
(80)
(623)


Tibialis
0
564.71
1591
169
1087


anterior d
(76.31)
(327.88)
(253.50)
(110)
(514)


Gastroc-
0
705.47
2096
170
1265


nemius d
(41.15)
(863.75)
(474.04)
(69)
(272)






aASO = Antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




c ASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate dose.




d ASO values are mean concentrations of ASO in tissue as ng/g with standard deviations (n = 5) in parentheses.







EQUIVALENTS AND TERMINOLOGY

The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of”, and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure. Thus, it should be understood that although the present disclosure has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure.


In addition, where features or aspects of the disclosure are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


It should be appreciated that, in some embodiments, sequences presented in the sequence listing may be referred to in describing the structure of an oligonucleotide or other nucleic acid. In such embodiments, the actual oligonucleotide or other nucleic acid may have one or more alternative nucleotides or nucleosides (e.g., an RNA counterpart of a DNA nucleoside or a DNA counterpart of an RNA nucleoside) and/or (e.g., and) one or more modified nucleotides/nucleosides and/or (e.g., and) one or more modified internucleoside linkages and/or (e.g., and) one or more other modification compared with the specified sequence while retaining essentially same or similar complementary properties as the specified sequence.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Embodiments of this invention are described herein. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.


The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 51 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 160-383.
  • 2-4. (canceled)
  • 5. The complex of claim 1, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.
  • 6. The complex of claim 5, wherein the anti-TfR1 antibody is a Fab fragment.
  • 7-8. (canceled)
  • 9. The complex of claim 1, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.
  • 10. The complex of claim 1, wherein the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.
  • 11. The complex of claim 10, wherein the splicing feature is an exonic splicing enhancer (ESE) in exon 51 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 860-894.
  • 12. The complex of claim 10, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 50 and intron 50, in intron 50, across the junction of intron 50 and exon 51, across the junction of exon 51 and intron 51, in intron 51, or across the junction of intron 51 and exon 52 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 855-859 and 895-898.
  • 13. The complex of claim 1, wherein the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-383 or comprises a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 14. The complex of claim 1, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).
  • 15. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.
  • 16. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via conjugation to a lysine residue or a cysteine residue of the antibody.
  • 17. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-383, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-383.
  • 18. The oligonucleotide of claim 17, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 384-831, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 384-831, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 19. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of claim 1.
  • 20. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of claim 1 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 63/220,030, entitled “MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES”, filed on Jul. 9, 2021, the contents of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/073534 7/8/2022 WO
Provisional Applications (1)
Number Date Country
63220030 Jul 2021 US