No other patents related.
This patent is not federally sponsored.
Not applicable.
Vapor's and gases are largely treated as fluid's. Unlike liquids, the behavior of gases is only fluid-like at large aggregate scales. At scales near the size of air molecules, a vapor, gaseous state or air are all clouds of particles separated by vacuum. Nano scale structures, such as carbon nanotubes are at the right size to create shapes which will interact differently with the cloud of particles than would the same shape at larger scales. Such nano-shape based devices can act as both filters and pumps. While such static shapes apparently are incapable of doing work (true in a sense), the work can be done by the random motion of the particle cloud.
Disclosed are a class of nano-shapes which, if made on a large scale, such as sheets of material, take the random motion of air or other gaseous state materials to perform as filter's or pumps. Because a pump will change the air pressure on each side of the surface, they will also create a net force in one direction, in the same manner an airplane wing does. The shape will create this air pressure difference without any net velocity (wind direction) within the particle cloud, unlike an airplane wing, which must be in motion. This air pressure difference can provide a motive force, such as a sail, in any direction; create a lifting force, such as a wing, helicopter rotor, or lighter than air balloon. The device can move air in to a higher region of pressure, which can use the heat energy in the air, via the pressure difference, to work as a heat engine powered directly by the heat in the air. An example would be a turbine driven electric generator. The fuel source is the sun, the atmosphere acting as an energy collector, one that holds the energy for use 24 hours a day.
#A Nanotubes passage
#B Solid portion of sheet
#D Region on this side increases chances of molecules entering and passing through the nanotubes in upward direction. Some collisions will deflect into tube.
#C Region in which decreases chances molecules will pass downward through nanotubes.
Some collisions from solid sheet will send molecules on trajectories which will collide with molecules on a heading to enter tube, deflecting them. No collisions with solid sheet can directly enter tube.
The device disclosed is a sheet of material or planer material with nano-tube perforations passing completely through material. The nano-surface of the low pressure sheet is shaped to increase likelihood molecules will pass into nanotubes, the nano surface of the high pressure side of the sheet is shaped to reduce the likelihood molecules will enter the nanotubes from that side of the sheet.
Depending on the relative size of molecules in the gaseous state on each side of the nano-filter-pump sheet, molecules of different sizes can have different probability of passing through. In the limiting case, molecules larger than the nanotubes openings will be unable to pass through. Smaller molecules will pass through easily. This effect can be used as a passive gas molecule sorter or filter.
The nano-shape of the surface of the filter sheet will allow some migration of small molecules in the reverse direction, but the migration will continue until equilibrium is reached, which the density of the transferable molecules on the high pressure side times the probability of random nanotubes transfer is equal to the density of the transferable molecules on the low pressure side of the sheet times the probability of transfer. For example, if the probability of random transfer from high pressure one side is 1%, and probability of transfer from the low pressure side is 20%, equilibrium is reached when the density of the high pressure side is 20 times the density of the low pressure side.
The shape can also be used to create motive force.
Even a small probability difference, 1% vs. 1.1% acting in atmosphere will create a large force, given a large area. The densities will reach equilibrium when the density on one side is 1.1 times the density on the other. At 1 atmosphere of pressure, that means 10% of 15 pounds per square inch (PSI) or 1.5 PSI net force. For this case, a 10″ by 10″, 100 square inch area of nano-filter-pump material would produce 150 pounds of force, enough to lift a small person.
1) The size of the nanotubes openings on either side of sheet can be manipulated by making the tube into a funnel shape instead of a cylinder. So the probability of transfer is relative to the size of each opening. 2:1 funnel shape creates approximately double probability of transfer in the direction of the funnel. See
2) The material may be modified on one side to create lower pressure by forming a funnel shaped entrance to the nanotubes (including cylindrical shaped nano-tubes). Although all molecules striking the wider funnel of the material will not pass through, some percentage of them will be able to bounce singly or multiple times directly into the nanotube's opening. If the inverse shape is on the other side of the sheet, no molecules colliding with the material on the opposite side can traverse (bounce) directly into the nanotube's opposite side. See FIG. 31 area D.
The method 3 in prior paragraph is the same effect an airplane wing uses, but on a larger scale. The leading edge creates an air wave front that will knock some air molecules up and away from the wing, as the wing passes under. This reduces the number of molecules hitting the upper surface of the wing, creating lift by reducing force on the wing's top.
The device is dependent on being able to create repeating structures near the size of nitrogen (N2), Oxygen (O2), Carbon dioxide (CO2) and water vapor (H2O). These molecules range from 200 pico-meters to 400 pico-meters, or 0.2 nanometers to 0.4 nano-meters.
Spacing of air molecules in atmosphere is likely to be an important design measurement as well. Nitrogen is the highest percentage component of air. Liquid nitrogen is about 600 times denser than gaseous Nitrogen (N2) at standard temperature and pressure (STP). Taking the cube root, spacing of air molecules in every direction is between 8 and 10 molecule sizes. So molecule spacing is between 1600 pico-meters or 1.6 nano-meters, and 4000 pico-meters or 4 nano-meters.
Carbon nano tubes are reported from very small, diameter 2 nano-meters, to several orders of magnitude larger. 2 nano-meters is in the ideal range for this device. If possible, a funnel shaped opening from 2 nanometers down to ½ or ¼ of a nanometer would be ideal.
However, a simple tube of constant diameter will work fine, if the opposite surfaces of the material are made to increase and decrease, respectively, the probability of molecules transferring through the nanotubes.
Strength of the material should minimally be able to handle double the atmospheric pressure, the limit of its own effect, plus significantly more if it is subject to additional forces, especially explosive forces. 30 pounds supported by 1 square inch would break most thin material sheets we are familiar with, plastic wrapping or paper for example. The material may need to be reinforced with fibers or a net of strong materials, silk, steel, nylon as examples. Rip stop nylon would be an ideal model to prevent sheeting holes from propagating to rip entire sheet and catastrophic failure. If properly engineered, repair can consist of plugging punctures.
There are an outstanding array of applications:
As direct motive force, “sails” which apply direct force in the direction pointed, would move ships, wheeled vehicles, airplanes.
Direct drive fans, similar to turbine blades, could move electric generators, power conveyors or machines.
Direct lift would make feasible airplanes, helicopters, even cars, which fly without moving wings or blades.
All applications would be virtually silent, making a wind noise at most.
Direct compression of air can be stored, or be used to power heat engines (which are powered by the heat of the air).
All these applications are possible with no external fuel, using the heat energy from the sun, stored in the air.