A nanowire is an extremely thin wire having a diameter of around a few tens of nanometers (1 nm=10−9 meters) or less and is generally fabricated from a semiconductor material. Devices made with nanowires may be used in miniature electronic components for use in integrated electronics, detectors and sensors. For example, nanowire devices may be used for the analysis and identification of biological, chemical and environmental conditions. Fields expected to benefit from this technology include water purification, sanitation, agriculture, alternative energy, computers, communication and medicine, to name a few.
Prior methods for the fabrication of nanowires include the scattered random growth on a substrate, which prevented the orderly assembly of an array of such nanowires. In another method, trenches are formed in a silicon layer and a catalyst is deposited on the walls of the trenches. When the trench structure is placed in an appropriate atmosphere, silicon nanowires start growing toward an opposite wall of the trench. A problem with this approach is that the catalyst is not uniformly deposited on the trench wall surface resulting in the growth of several nanowires from various catalyst particles of different sizes.
The disclosure presents a method of making nanowire devices that are fabricated in orderly arrays and have well-defined nanowire growth.
One aspect is a method of making a nanowire comprising providing a semiconductor substrate having a layer arrangement on a first surface thereof; etching the layer arrangement to form at least one pillar having a plurality of sidewalls; depositing a thin film of a catalyst on at least one of the sidewalls; annealing the thin film to form, from the thin film, a globular catalyst particle on the sidewall; and flowing a gas over the catalyst particle, the gas containing a material to form the nanowire.
The step of flowing may include continuously flowing the gas over the catalyst particle to grow the nanowire from the surface of the sidewall on which the catalyst particle is located until the nanowire attains a predetermined length.
The step of etching may include etching the layer arrangement to form a square pillar having four sidewalls. The method may further comprise growing nanowires on opposite sidewalls of the pillar. A plurality of nanowires may be formed on a plurality of pillars wherein the nominal diameters of the plurality of nanowires are equal.
In one embodiment, the step of providing a semiconductor substrate having a layer arrangement on a first surface thereof may include providing a semiconductor substrate comprising silicon with a layer arrangement comprising a single layer of silicon dioxide.
In another embodiment, the step of providing a semiconductor substrate having a layer arrangement on a first surface thereof may include providing a layer arrangement comprising a first layer of an insulator and a second layer of a semiconductor.
Another aspect is an apparatus comprising a semiconductor substrate; at least one pillar disposed on the semiconductor substrate, the at least one pillar having a plurality of sidewalls; and a nanowire extending from one of the sidewalls. In one embodiment, the pillar is a square pillar having four sidewalls. The apparatus may further comprise a second nanowire extending from an opposite one of the sidewalls.
In one embodiment, the apparatus comprises a plurality of pillars and a respective plurality of nanowires. The nominal diameters of the plurality of nanowires may be equal.
The disclosure will be better understood, and further features and advantages thereof will become more apparent from the following description, taken in conjunction with the accompanying drawings.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
Nanowires made of silicon are most compatible with conventional integrated circuits. Accordingly the present invention will be described, by way of example, with respect to devices made of silicon, although it is to be understood that other semiconductor materials are equally applicable.
The process starts with a structure as illustrated in
As illustrated in
V=1/12πD3,
where V is the volume and D is the diameter of the catalyst particle. The value V is also the volume of gold on the sidewall 16:
V=t*h*w,
where t is the thickness of the applied gold, h is the height of the sidewall and w is the width of the sidewall.
Thus, by controlling the amount of gold applied, the diameter of the catalyst particle may be determined. The silicon nanowire to be grown has an associated electronic band gap, which is tunable by controlling the diameter of the nanowire. The diameter of the nanowire in turn, is controllable by the diameter of the catalyst particle. Therefore, by controlled application of the gold catalyst, the band gap of the nanowire may be selected. Thus, the potential exists for fabricating an array of uniform nanowires with energy scales tailored to a specific application.
The structure of
Thereafter, and as illustrated in
In one embodiment, each half of the nanowire device can form a FET (field effect transistor) with contact 24′ connected to the source of the FET, contact 26 connected to the drain, and contact 28 (
In
There has been described a method of growing nanowires from a known volume of catalyst seeding material so that diameters of the nanowires are nominally identical. Because semi-conducting band gap depends only on the diameter of the nanowire, the electronic structure is uniform within the array of nanowires. Further, the diameter becomes a tunable parameter in the fabrication so that an end user may tailor the nanowire energy scale to suit a particular application.
Numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
The invention described herein was made by an employee of the United States Government and may be manufactured and used by or for the Government for Governmental purposes without the payment of any royalties thereon or therefor.