Nitride protective coatings on aerospace components and methods for making the same

Information

  • Patent Grant
  • 11519066
  • Patent Number
    11,519,066
  • Date Filed
    Monday, July 6, 2020
    3 years ago
  • Date Issued
    Tuesday, December 6, 2022
    a year ago
Abstract
Embodiments of the present disclosure generally relate to protective coatings on various substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component and depositing a boron nitride layer on or over the aluminum oxide layer during a vapor deposition process. In some examples, the method includes depositing a metal-containing catalytic layer on the aluminum oxide layer before depositing the boron nitride layer. The boron nitride layer can include hexagonal boron nitride (hBN).
Description
BACKGROUND
Field

Embodiments of the present disclosure generally relate to deposition processes, and in particular to vapor deposition processes for depositing films on various types of substrates including aerospace components.


Description of the Related Art

Turbine engines typically have components which corrode or degrade over time due to being exposed to hot gases and/or reactive chemicals (e.g., acids, bases, or salts). Such turbine components are often protected by a thermal and/or chemical barrier coating. The current coatings used on airfoils exposed to the hot gases of combustion in gas turbine engines for both environmental protection and as bond coats in thermal barrier coating (TBC) systems include both diffusion aluminides and various metal alloy coatings. These coatings are applied over substrate materials, typically nickel-based superalloys, to provide protection against oxidation and corrosion attack. These coatings are formed on the substrate in a number of different ways. For example, a nickel aluminide layer may be grown as an outer coat on a nickel base superalloy by simply exposing the substrate to an aluminum rich environment at elevated temperatures. The aluminum diffuses into the substrate and combines with the nickel to form an outer surface of the nickel-aluminum alloy.


However, as the increased demands for engine performance elevate the engine operating temperatures and/or the engine life requirements, improvements in the performance of coatings when used as environmental coatings or as bond coatings are needed over and above the capabilities of these existing coatings. Because of these demands, a coating that can be used for environmental protection or as a bond coat capable of withstanding higher operating temperatures or operating for a longer period of time before requiring removal for repair, or both, is desired. These known coating materials and deposition techniques have several shortcomings. Most metal alloy coatings deposited by low pressure plasma spray, plasma vapor deposition (PVD), electron beam PVD (EBPVD), cathodic arc, or similar sputtering techniques are line of sight coatings, meaning that interiors of components are not able to be coated. Platinum electroplating of exteriors typically forms a reasonably uniform coating, however, electroplating the interior of a component has proven to be challenging. The resulting electroplating coatings are often too thin to be protective or too thick that there are other adverse mechanical effects, such as high weight gain or fatigue life debit. Similarly, aluminide coatings suffer from non-uniformity on interior passages of components. Aluminide coatings are brittle, which can lead to reduced life when exposed to fatigue.


In addition, most of these coatings are on the order of greater than 10 micrometers in thickness, which can cause component weight to increase, making design of the disks and other support structures more challenging. Many of these coatings also require high temperature (e.g., greater than 500° C.) steps to deposit or promote enough interdiffusion of the coating into the alloy to achieve adhesion. It is desired by many to have coatings that (1) protect metals from oxidation and corrosion, (2) are capable of high film thickness and composition uniformity on arbitrary geometries, (3) have high adhesion to the metal, (4) are sufficiently thin to not materially increase weight or reduce fatigue life outside of current design practices for bare metal, and/or (5) are deposited at sufficiently low temperature (e.g., 500° C. or less) to not cause microstructural changes to the metal.


Fretting and galling are two major issues that, when combined with the possibility of oxidation and/or hot corrosion, make existing coating technologies unsuitable for mixed mode attack by hot corrosion, oxidation, galling, fretting and/or combinations thereof. Galling is adhesive wear that is caused by microscopic transfer of material between metallic surfaces, during transverse motion, such as sliding. Galling occurs frequently whenever metal surfaces are in contact, sliding against each other, especially with poor lubrication. Fretting refers to wear and sometimes corrosion damage at the asperities of contact surfaces. The contact movement of fretting causes mechanical wear and material transfer at the surface, often followed by oxidation of both the metallic debris and the freshly exposed metallic surfaces. Fretting also includes a mix of rubbing wear, plus corrosive attack.


In a turbine, there is a desire to reduce oxidation and corrosion while also avoiding fretting/galling as a source of initial material removal or cracking that can later cause accelerated corrosion or oxidation, as well as stress-corrosion cracking (SCC), strain-accelerated grain boundary oxidation (SAGBO), and strain-accelerated gamma prime oxidation (SAGPO). One mechanism to reduce fretting is to use a low friction coefficient coating on either a turbine disk attachment for an airfoil, on an airfoil root/dovetail, or both.


Oxide coatings may unintentionally make fretting or galling worse by breaking off and acting as abrasive particles. Similarly, native grown oxide scale may not be adequately lubricious and may similarly break off and act as abrasive particles. Intermetallic coatings like NiAl and Pt-modified NiAl and NiCrAlY bond coats are brittle and thus, if fractured, can unintentionally accelerate fretting and galling wear. Current general practice is to not coat airfoil roots to avoid unintended consequences of the coating making airfoil roots more likely to fail. Sacrificial copper-nickel-indium alloy coatings have been used on turbine hubs for fretting reduction, but these coatings are not designed for oxidation and corrosion protection.


Therefore, improved protective coatings and methods for depositing the protective coatings are needed.


SUMMARY

Embodiments of the present disclosure generally relate to protective coatings on substrates including aerospace components and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component and depositing a boron nitride layer over the aluminum oxide layer during a vapor deposition process. The boron nitride layer can be or include hexagonal boron nitride (hBN).


In some embodiments, a method of forming a protective coating on an aerospace component includes forming an aluminum oxide layer on a surface of the aerospace component, depositing a metal-containing catalytic layer on the aluminum oxide layer, and depositing a boron nitride layer on the metal-containing catalytic layer during a vapor deposition process. The aerospace component contains a nickel-containing superalloy. The metal-containing catalytic layer contains one or more metals, such as nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof.


In other embodiments, an aerospace component having a protective coating is provided and includes an aluminum oxide layer disposed on a surface of the aerospace component and a boron nitride layer disposed on or over the aluminum oxide layer, where the aerospace component contains a superalloy having at least nickel and aluminum.


In some embodiments, an aerospace component having a protective coating is provided and includes an aluminum oxide layer disposed on a surface of the aerospace component, a metal-containing catalytic layer disposed on the aluminum oxide layer, and a boron nitride layer disposed on the metal-containing catalytic layer. The metal-containing catalytic layer contains one or more metals, such as nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.



FIGS. 1A-1E are schematic views of protective coatings being formed on a substrate at different stages of fabrication processes, according to one or more embodiments described and discussed herein.



FIGS. 2A and 2B are schematic views of an aerospace component containing one or more protective coatings, according to one or more embodiments described and discussed herein.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the Figures. It is contemplated that elements and features of one or more embodiments may be beneficially incorporated in other embodiments.


DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to protective coatings, such as an aluminum oxide layer and a boron nitride layer, disposed an aerospace component or other substrate and methods for depositing the protective coatings. The protective coating reduces or prohibits oxidation and/or corrosion of the underlying surface of the aerospace component. The protective coating can also have anti-coking properties by reducing or prohibiting the build-up of coke on the protective coating. The protective coatings can be deposited or otherwise formed on interior surfaces and/or exterior surfaces of the aerospace components or other substrates.


Exemplary aerospace components can be or include one or more of turbine blades, turbine vanes, support members, frames, ribs, fins, pin fins, fuel nozzles, combustor liners, combustor shields, heat exchangers, fuel lines, fuel valves, internal cooling channels, or any combination thereof, or any other aerospace component or part that can benefit from having protective coating deposited thereon. The protective coating can also deposited or otherwise formed on a substrate containing one or more types of metals, a nanostructured device, one or more surfaces or components within a processing chamber, one or more surfaces or components of a tool, or the like. Substrates may contain one or more superalloys, nickel aluminum alloys, nickel alloys, aluminum alloys, and other metal alloys. In one or more examples, the superalloy is a nickel-containing superalloy, such as a superalloy having at least nickel and aluminum.



FIGS. 1A-1E are schematic views of a workpiece 100 being processed and illustrate protective coatings 130, 132 being formed on a substrate 102, such as an aerospace component, at different stages of fabrication processes, according to one or more embodiments described and discussed herein. The method includes forming an aluminum oxide layer 110 on a surface 104 of the aerospace component and depositing a boron nitride layer 120 on or over the aluminum oxide layer 110 during a vapor deposition process. In some embodiments, the protective coating 130 contains the aluminum oxide layer 110 and the boron nitride layer 120 disposed thereon, as depicted in FIG. 1C. In other embodiments, prior to depositing the boron nitride layer 120, a metal-containing catalytic layer 112 is formed or deposited on the aluminum oxide layer 110, and thereafter, the boron nitride layer 120 is formed or deposited on the metal-containing catalytic layer 112. As such, the protective coating 132 contains the metal-containing catalytic layer 112 disposed on the aluminum oxide layer 110 and the boron nitride layer 120 disposed on the metal-containing catalytic layer 112, as depicted in FIG. 1E.


Between FIGS. 1A and 1B, the workpiece 100 is shown being further processed and the aluminum oxide layer 110 can be formed or otherwise deposited on the surface 104 of the aerospace component or substrate 102 by one of several processes. In one embodiment, aluminum oxide layer 110 is formed on the surface 104 of the aerospace component or substrate 102 by a thermal process which diffuses aluminum to the surface 104 of the aerospace component or substrate 102 and the aluminum is oxidized to produce aluminum oxide. For example, if the aerospace component or substrate 102 contains a nickel-containing superalloy having aluminum therein, the aluminum oxide layer 110 can be formed by heating the aerospace component or substrate 102 during the thermal process. The thermal process includes heating the aerospace component or substrate 102 to a temperature of about 700° C. to about 1,200° C. for about 1 hour to about 20 hours.


Aluminum atoms diffuse from throughout the nickel-containing superalloy to the surface 104 of the aerospace component or substrate 102. The aluminum atoms form a layer of metallic aluminum which is simultaneously or subsequently oxidized to produce the aluminum oxide layer 110. One or more oxidizing agents can be exposed to the aluminum to form aluminum oxide. Exemplary oxidizing agents can be or include water (e.g., steam), oxygen (O2), atomic oxygen, ozone, nitrous oxide, one or more inorganic peroxides (e.g., hydrogen peroxide or calcium peroxide), one or more organic peroxides, one or more alcohols, plasma thereof, or any combination thereof.


In other embodiments, the aluminum oxide layer 110 is formed on the surface 104 of the aerospace component or substrate 102 by a vapor deposition process. The vapor deposition process can be or include one or more processes selected from atomic layer deposition (ALD), plasma-enhanced ALD (PE-ALD), chemical vapor deposition (CVD), plasma-enhanced CVD (PE-CVD), physical vapor deposition (PVD), combinations thereof, or the like. For example, the aerospace component or substrate 102 may be exposed to an aluminum precursor and an oxidizing agent sequentially during an ALD process or simultaneously during a CVD process.


The aluminum precursor can be or include one or more of aluminum alkyl compounds, one or more of aluminum alkoxy compounds, one or more of aluminum acetylacetonate compounds, substitutes thereof, complexes thereof, abducts thereof, salts thereof, or any combination thereof. Exemplary aluminum precursors can be or include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum, tributoxyaluminum, aluminum acetylacetonate (Al(acac)3, also known as, tris(2,4-pentanediono) aluminum), aluminum hexafluoroacetylacetonate (Al(hfac)3), trisdipivaloylmethanatoaluminum (DPM3Al; (C11H19O2)3Al), isomers thereof, complexes thereof, abducts thereof, salts thereof, or any combination thereof. The oxidizing agent can be or include any one or more of the oxidizing agents described and discussed herein.


The aluminum oxide layer 110 has a thickness of about 1 nm, about 2 nm, about 5 nm, about 10 nm, about 20 nm, about 50 nm, or about 100 nm to about 200 nm, about 300 nm, about 500 nm, about 800 nm, about 1,000 nm, about 1,200 nm, about 1,500 nm, about 2,000 nm, or greater. For example, the aluminum oxide layer 110 has a thickness of about 1 nm to about 1,500 nm, about 2 nm to about 1,000 nm, about 5 nm to about 500 nm, or about 10 nm to about 200 nm.


Between FIGS. 1B and 1C, the workpiece 100 is shown being further processed and the boron nitride layer 120 is deposited or otherwise formed on the aluminum oxide layer 110 to produce the protective coating 130. Between FIGS. 1B, 1D, and 1E, the workpiece 100 is shown being further processed and the metal-containing catalytic layer 112 is deposited or otherwise formed on the aluminum oxide layer 110 (FIGS. 1B and 1D) and the boron nitride layer 120 is deposited or otherwise formed on the metal-containing catalytic layer 112 (FIGS. 1D and 1E) to produce the protective coating 132. The metal-containing catalytic layer 112 helps increase the rate and/or reduce the temperature while depositing the boron nitride layer 120. Specifically, by having the metal-containing catalytic layer 112, a lower process temperature can be used during the deposition of the boron nitride layer 120 and/or the deposition rate of depositing the boron nitride layer 120 is increased as opposed to not having the metal-containing catalytic layer 112 and depositing directly on the aluminum oxide layer 110.


The metal-containing catalytic layer 112 contains one or more metals, one or more metal oxides, or combinations thereof which have catalytic properties for the deposition of the boron nitride layer 120. The metal-containing catalytic layer 112 can be or include nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof. The metal-containing catalytic layer 112 is deposited by one or more deposition processes, such as ALD, PE-ALD, CVD, PE-ALD, PVD, electroless deposition, or combinations thereof. The metal-containing catalytic layer 112 can be deposited or otherwise formed by exposing the workpiece 100 including the aluminum oxide layer 110 to one or more metal precursors which includes the metal desired to be deposited. In one or more examples, the aerospace component or substrate 102 may be exposed to the metal precursor and a reducing agent (e.g., hydrogen (H2), hydrogen plasma, diborane, or ammonia) sequentially during an ALD process or simultaneously during a CVD process to form the metal-containing catalytic layer 112. In other examples, the metal precursor can be thermal decomposed without a reducing agent to produce the metal-containing catalytic layer 112.


In some examples, the aerospace component or substrate 102 includes a nickel-containing superalloy, and each of the metal-containing catalytic layer 112 and the nickel-containing superalloy includes one, two, three, or more of the same metals. For example, the aerospace component or substrate 102 and the metal-containing catalytic layer 112 can both contain chromium, cobalt, and/or iron. In some embodiments, it may be advantageous to match the metal contained in the metal-containing catalytic layer 112 with one or more metals contained in the aerospace component or substrate 102 so that if the metal contained in the metal-containing catalytic layer 112 diffuses into the aerospace component or substrate 102, the same type of metal is already contained within the aerospace component or substrate 102 versus being a different or foreign type of metal which may contaminate the aerospace component or substrate 102.


The metal-containing catalytic layer 112 can be a single layer disposed continuously or discontinuously across the surface of the aluminum oxide layer 110. The metal-containing catalytic layer 112 has a thickness of about 0.1 nm, about 0.2 nm, about 0.3 nm, about 0.4 nm, or about 0.5 nm to about 0.6 nm, about 0.8 nm, about 1 nm, about 1.2 nm, about 1.5 nm, about 1.8 nm, about 2 nm, about 3 nm, or about 5 nm. For example, the metal-containing catalytic layer 112 has a thickness of about 0.1 nm to about 5 nm, about 0.1 nm to about 2 nm, about 0.1 nm to about 1.5 nm, about 0.1 nm to about 1 nm, about 0.1 nm to about 0.5 nm, about 0.3 nm to about 5 nm, about 0.3 nm to about 2 nm, about 0.3 nm to about 1.5 nm, about 0.3 nm to about 1 nm, about 0.3 nm to about 0.5 nm, about 0.5 nm to about 5 nm, about 0.5 nm to about 2 nm, about 0.5 nm to about 1.5 nm, about 0.5 nm to about 1 nm, or about 0.5 nm to about 0.8 nm.


The boron nitride layer 120 may contain any form of boron nitride and mixtures thereof. For example, the boron nitride layer 120 may contain hexagonal boron nitride (hBN). The boron nitride layer 120 is deposited or otherwise formed by one of several deposition processes. The boron nitride layer 120 can be deposited by ALD, PE-ALD, CVD, PE-CVD, or combinations thereof. In some embodiments, one or more boron precursors and one or more nitrogen precursors can be reacted to form the boron nitride layer 120. In other embodiments, a single precursor, such as a boron-nitrogen precursor, containing boron and nitrogen can be used to form the boron nitride layer 120. Exemplary boron precursors can be or include diborane, triborane, tetraborane, decaborane, trimethylborane, triethylborane, trifluoroborane, trichloroborane, adducts thereof, or any combination thereof. Exemplary nitrogen precursors can be or include ammonia, hydrazine, atomic nitrogen, nitrogen plasma, or any combination thereof. Exemplary boron-nitrogen precursors can be or include ammonia borane, borazine, trichloroborazine, adducts thereof, or any combination thereof. Exemplary carrier gases and/or purge gases can independently be or include one or more of nitrogen (N2), argon, helium, neon, hydrogen (H2), or any combination thereof.


The temperature used to deposit the boron nitride layer 120 may depend if the underlying layer is the aluminum oxide layer 110 or the metal-containing catalytic layer 112. Typically, the temperature may be lower if the underlying layer is the metal-containing catalytic layer 112 than if the underlying layer is the aluminum oxide layer 110. In one or more embodiments, the aerospace component or substrate 102 is maintained at a temperature of about 500° C., about 600° C., about 700° C., about 800° C., about 850° C., about 900° C., about 950° C. or about 1,000° C. to about 1,050° C., about 1,200° C., about 1,300° C., about 1,400° C., about 1,450° C., about 1,500° C., or greater while depositing the boron nitride layer 120. For example, the aerospace component or substrate 102 is maintained at a temperature of about 500° C. to about 1,500° C., about 700° C. to about 1,500° C., about 800° C. to about 1,500° C., about 900° C. to about 1,500° C., about 1,000° C. to about 1,500° C., about 1,100° C. to about 1,500° C., about 1,200° C. to about 1,500° C., about 1,300° C. to about 1,500° C., about 700° C. to about 1,200° C., about 800° C. to about 1,200° C., about 900° C. to about 1,200° C., about 1,000° C. to about 1,200° C., or about 1,100° C. to about 1,200° C. while depositing the boron nitride layer 120.


The boron nitride layer 120 has a thickness of about 5 nm, about 10 nm, about 20 nm, about 25 nm, about 50 nm, or about 100 nm to about 120 nm, about 150 nm, about 200 nm, about 250 nm, about 300 nm, about 400 nm, about 500 nm, about 800 nm, or about 1,000 nm. For example, the boron nitride layer 120 has a thickness of about 5 nm to about 500 nm, about 25 nm to about 500 nm, about 50 nm to about 500 nm, about 100 nm to about 500 nm, about 5 nm to about 300 nm, about 25 nm to about 300 nm, about 50 nm to about 300 nm, about 100 nm to about 300 nm, about 5 nm to about 200 nm, about 25 nm to about 200 nm, about 50 nm to about 200 nm, or about 100 nm to about 200 nm.


Deposition Processes


In one or more embodiment, the workpiece 100 including the aerospace component or substrate 102 can be exposed to a first precursor (e.g., aluminum precursor) and a second precursor (e.g., oxidizing agent) to form the aluminum oxide layer 110 on the substrate 102 by a vapor deposition process. In other embodiment, the workpiece 100 including the aerospace component or substrate 102 can be exposed to a first precursor (e.g., boron precursor) and a second precursor (e.g., nitrogen precursor) to form the boron nitride layer 120 on the aluminum oxide layer 110 or the metal-containing catalytic layer 112 by a vapor deposition process. The vapor deposition process can be a thermal ALD process, a PE-ALD process, a thermal CVD process, a PE-CVD process, or any combination thereof.


In one or more embodiments, the vapor deposition process is an ALD process and the method includes sequentially exposing the workpiece 100 including the aerospace component or substrate 102, to the first precursor and the second precursor to form the product layer. Each cycle of the ALD process includes exposing the surface of the workpiece 100 to the first precursor, conducting a pump-purge, exposing the workpiece 100 to the second precursor, and conducting a pump-purge to form the product layer. The order of the first precursor and the second precursor can be reversed, such that the ALD cycle includes exposing the surface of the workpiece 100 to the second precursor, conducting a pump-purge, exposing the workpiece 100 to the first precursor, and conducting a pump-purge to form the product layer.


In some examples, during each ALD cycle, the workpiece 100 is exposed to the first precursor for about 0.1 seconds to about 10 seconds, the second precursor for about 0.1 seconds to about 10 seconds, and the pump-purge for about 0.5 seconds to about 30 seconds. In other examples, during each ALD cycle, the workpiece 100, 200, 300 is exposed to the first precursor for about 0.5 seconds to about 3 seconds, the second precursor for about 0.5 seconds to about 3 seconds, and the pump-purge for about 1 second to about 10 seconds.


Each ALD cycle is repeated from 2, 3, 4, 5, 6, 8, about 10, about 12, or about 15 times to about 18, about 20, about 25, about 30, about 40, about 50, about 65, about 80, about 100, about 120, about 150, about 200, about 250, about 300, about 350, about 400, about 500, about 800, about 1,000, or more times to form the product layer. For example, each ALD cycle is repeated from 2 times to about 1,000 times, 2 times to about 800 times, 2 times to about 500 times, 2 times to about 300 times, 2 times to about 250 times, 2 times to about 200 times, 2 times to about 150 times, 2 times to about 120 times, 2 times to about 100 times, 2 times to about 80 times, 2 times to about 50 times, 2 times to about 30 times, 2 times to about 20 times, 2 times to about 15 times, 2 times to about 10 times, 2 times to 5 times, about 8 times to about 1,000 times, about 8 times to about 800 times, about 8 times to about 500 times, about 8 times to about 300 times, about 8 times to about 250 times, about 8 times to about 200 times, about 8 times to about 150 times, about 8 times to about 120 times, about 8 times to about 100 times, about 8 times to about 80 times, about 8 times to about 50 times, about 8 times to about 30 times, about 8 times to about 20 times, about 8 times to about 15 times, about 8 times to about 10 times, about 20 times to about 1,000 times, about 20 times to about 800 times, about 20 times to about 500 times, about 20 times to about 300 times, about 20 times to about 250 times, about 20 times to about 200 times, about 20 times to about 150 times, about 20 times to about 120 times, about 20 times to about 100 times, about 20 times to about 80 times, about 20 times to about 50 times, about 20 times to about 30 times, about 50 times to about 1,000 times, about 50 times to about 500 times, about 50 times to about 350 times, about 50 times to about 300 times, about 50 times to about 250 times, about 50 times to about 150 times, or about 50 times to about 100 times to form the product layer.


In other embodiments, the vapor deposition process is a CVD process and the method includes simultaneously exposing the workpiece 100 to the first precursor and the second precursor to form the product layer. During an ALD process or a CVD process, each of the first precursor and the second precursor can independent include one or more carrier gases. One or more purge gases can be flowed across the surfaces of the workpiece 100 and/or throughout the processing chamber in between the exposures of the first precursor and the second precursor. In some examples, the same gas may be used as a carrier gas and a purge gas. Exemplary carrier gases and/or purge gases can independently be or include one or more of nitrogen (N2), argon, helium, neon, hydrogen (H2), or any combination thereof.


In one or more examples, aluminum oxide layer 110 is formed by an ALD process. The first precursor, trimethylaluminum (at a temperature of about 0° C. to about 30° C.), is delivered to the aerospace component via vapor phase delivery for at pre-determined pulse length of 0.1 seconds. During this process, the processing chamber is operated under a flow of nitrogen carrier gas (100 sccm total) with the processing chamber held at a pre-determined temperature of about 150° C. to about 350° C. and pressure about 1 Torr to about 5 Torr. After the pulse of trimethylaluminum, the processing chamber is then subsequently pumped and purged of all requisite gases and byproducts for a determined amount of time. Subsequently, water vapor, the second precursor, is pulsed into the processing chamber for about 0.1 seconds at chamber pressure of about 3.5 Torr. An additional chamber purge is then performed to rid the processing chamber of any excess reactants and reaction byproducts. This process is repeated as many times as necessary to get the target Al2O3 film to the desired film thickness. The aerospace component is then subjected to an annealing furnace at a temperature of about 500° C. under inert nitrogen flow of about 500 sccm for about one hour.


Protective Coatings


The protective coating 130, 132 can have an overall thickness of about 1 nm, about 2 nm, about 3 nm, about 5 nm, about 8 nm, about 10 nm, about 12 nm, about 15 nm, about 20 nm, about 30 nm, about 50 nm, about 60 nm, about 80 nm, about 100 nm, or about 120 nm to about 150 nm, about 180 nm, about 200 nm, about 250 nm, about 300 nm, about 350 nm, about 400 nm, about 500 nm, about 800 nm, about 1,000 nm, about 2,000 nm, about 3,000 nm, about 4,000 nm, about 5,000 nm, or thicker. In some examples, the protective coating 130, 132 can have a thickness of less than 10 μm (less than 10,000 nm). For example, the protective coating 130, 132 can have a thickness of about 1 nm to about 5,000 nm, about 1 nm to about 3,000 nm, about 1 nm to about 2,000 nm, about 1 nm to about 1,500 nm, about 1 nm to about 1,000 nm, about 1 nm to about 500 nm, about 1 nm to about 400 nm, about 1 nm to about 300 nm, about 1 nm to about 250 nm, about 1 nm to about 200 nm, about 1 nm to about 150 nm, about 1 nm to about 100 nm, about 1 nm to about 80 nm, about 1 nm to about 50 nm, about 20 nm to about 500 nm, about 20 nm to about 400 nm, about 20 nm to about 300 nm, about 20 nm to about 250 nm, about 20 nm to about 200 nm, about 20 nm to about 150 nm, about 20 nm to about 100 nm, about 20 nm to about 80 nm, about 20 nm to about 50 nm, about 30 nm to about 400 nm, about 30 nm to about 200 nm, about 50 nm to about 500 nm, about 50 nm to about 400 nm, about 50 nm to about 300 nm, about 50 nm to about 250 nm, about 50 nm to about 200 nm, about 50 nm to about 150 nm, about 50 nm to about 100 nm, about 80 nm to about 250 nm, about 80 nm to about 200 nm, about 80 nm to about 150 nm, about 80 nm to about 100 nm, about 50 nm to about 80 nm, about 100 nm to about 500 nm, about 100 nm to about 400 nm, about 100 nm to about 300 nm, about 100 nm to about 250 nm, about 100 nm to about 200 nm, or about 100 nm to about 150 nm.


In one or more embodiments, the protective coating 130, 132 can have a relatively high degree of uniformity. The protective coating 130, 132 can independently have a uniformity from about 0%, about 0.1%, about 0.5%, about 1%, about 2%, about 3%, about 5%, about 8%, or about 10% to about 12%, about 15%, about 18%, about 20%, about 22%, about 25%, about 28%, about 30%, about 35%, about 40%, about 45%, or less than 50% of the thickness. For example, the protective coating 130, 132 can independently have a uniformity from about 0% to about 50%, about 0% to about 40%, about 0% to about 30%, about 0% to less than 30%, about 0% to about 28%, about 0% to about 25%, about 0% to about 20%, about 0% to about 15%, about 0% to about 10%, about 0% to about 8%, about 0% to about 5%, about 0% to about 3%, about 0% to about 2%, about 0% to about 1%, about 0.1% to about 50%, about 0.1% to about 40%, about 0.1% to about 30%, about 0.1% to less than 30%, about 0.1% to about 28%, about 0.1% to about 25%, about 0.1% to about 20%, about 0.1% to about 15%, about 0.1% to about 10%, about 0.1% to about 8%, about 0.1% to about 5%, about 0.1% to about 3%, about 0.1% to about 2%, about 0.1% to about 1%, about 1% to about 50%, about 1% to about 40%, about 1% to about 30%, about 1% to less than 30%, about 1% to about 28%, about 1% to about 25%, about 1% to about 20%, about 1% to about 15%, about 1% to about 10%, about 1% to about 8%, about 1% to about 5%, about 1% to about 3%, about 1% to about 2%, about 5% to about 50%, about 5% to about 40%, about 5% to about 30%, about 5% to less than 30%, about 5% to about 28%, about 5% to about 25%, about 5% to about 20%, about 5% to about 15%, about 5% to about 10%, about 5% to about 8%, about 10% to about 50%, about 10% to about 40%, about 10% to about 30%, about 10% to less than 30%, about 10% to about 28%, about 10% to about 25%, about 10% to about 20%, about 10% to about 15%, or about 10% to about 12% of the thickness.



FIGS. 2A and 2B are schematic views of an aerospace component 200 containing a protective coating 230, according to one or more embodiments described and discussed herein. FIG. 2A is a perspective view of the aerospace component 200 and FIG. 2B is a cross-sectional view of the aerospace component 200. The protective coating 230 can be or include the protective coating 130 (FIG. 1C) and/or the protective coating 132 (FIG. 1E). Similarly, the aerospace component 200 can be or include the substrate 102 (FIGS. 1A-1E). Aerospace components as described and discussed herein, including aerospace component 200, can be or include one or more components or portions thereof of a turbine, an aircraft, a spacecraft, or other devices that can include one or more turbines (e.g., compressors, pumps, turbo fans, super chargers, and the like). Exemplary aerospace components 200 can be or include a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.


The aerospace component 200 has one or more outer or exterior surfaces 210 and one or more inner or interior surfaces 220. The interior surfaces 220 can define one or more cavities 202 extending or contained within the aerospace component 200. The cavities 202 can be channels, passages, spaces, or the like disposed between the interior surfaces 220. The cavity 202 can have one or more openings 204, 206, and 208. Each of the cavities 202 within the aerospace component 200 typically have aspect ratios (e.g., length divided by width) of greater than 1 or greater than 2. The methods described and discussed herein provide depositing and/or otherwise forming the protective coating 230 on the interior surfaces 220 with high aspect ratios (greater than 1) and/or within the cavities 202.


The aspect ratio of the cavity 202 can be from about 2, about 3, about 5, about 8, about 10, or about 12 to about 15, about 20, about 25, about 30, about 40, about 50, about 65, about 80, about 100, about 120, about 150, about 200, about 250, about 300, about 500, about 800, about 1,000, or greater. For example, the aspect ratio of the cavity 202 can be from about 2 to about 1,000, about 2 to about 500, about 2 to about 200, about 2 to about 150, about 2 to about 120, about 2 to about 100, about 2 to about 80, about 2 to about 50, about 2 to about 40, about 2 to about 30, about 2 to about 20, about 2 to about 10, about 2 to about 8, about 5 to about 1,000, about 5 to about 500, about 5 to about 200, about 5 to about 150, about 5 to about 120, about 5 to about 100, about 5 to about 80, about 5 to about 50, about 5 to about 40, about 5 to about 30, about 5 to about 20, about 5 to about 10, about 5 to about 8, about 10 to about 1,000, about 10 to about 500, about 10 to about 200, about 10 to about 150, about 10 to about 120, about 10 to about 100, about 10 to about 80, about 10 to about 50, about 10 to about 40, about 10 to about 30, about 10 to about 20, about 20 to about 1,000, about 20 to about 500, about 20 to about 200, about 20 to about 150, about 20 to about 120, about 20 to about 100, about 20 to about 80, about 20 to about 50, about 20 to about 40, or about 20 to about 30.


The aerospace component 200 and any surface thereof including one or more outer or exterior surfaces 210 and/or one or more inner or interior surfaces 220 can be made of, contain, or otherwise include one or more metals, such as nickel, one or more nickel superalloys, one or more nickel-aluminum alloys, aluminum, iron, one or more stainless steels, cobalt, chromium, molybdenum, titanium, CMSX® superalloys (e.g., CMSX®-2, CMSX®-4, CMSX®-4+, or CMSX®-10 superalloys, commercially from Cannon-Muskegon Corporation), one or more Inconel alloys, one or more Hastelloy alloys, one or more Invar alloys, one or more Inovoco alloys, alloys thereof, or any combination thereof. The protective coating 230 can be deposited, formed, or otherwise produced on any surface of the aerospace component 200 including one or more outer or exterior surfaces 210 and/or one or more inner or interior surfaces 220.


The protective coatings, as described and discussed herein, can be conformal and substantially coat rough surface features following surface topology, including in open pores, blind holes, and non-line-of sight regions of a surface. The protective coatings do not substantially increase surface roughness, and in some embodiments, the protective coatings may reduce surface roughness by conformally coating roughness until it coalesces. The protective coatings may contain particles from the deposition that are substantially larger than the roughness of the aerospace component, but are considered separate from the monolithic film. The protective coatings are substantially well adhered and pinhole free. The thickness of the protective coatings varies within 1-sigma of 40%. In one or more embodiments, the thickness varies less than 1-sigma of 20%, 10%, 5%, 1%, or 0.1%.


The protective coatings provide corrosion and oxidation protection when the aerospace components are exposed to air, oxygen, sulfur and/or sulfur compounds, acids, bases, salts (e.g., Na, K, Mg, Li, or Ca salts), or any combination thereof.


Embodiments of the present disclosure further relate to any one or more of the following paragraphs 1-46:


1. A method of forming a protective coating on an aerospace component, comprising: forming an aluminum oxide layer on a surface of the aerospace component; and depositing a boron nitride layer over the aluminum oxide layer during a vapor deposition process.


2. The method according to paragraph 1, further comprising: depositing a metal-containing catalytic layer on the aluminum oxide layer prior to depositing the boron nitride layer, and then depositing the boron nitride layer on the metal-containing catalytic layer.


3. The method according to paragraph 2, wherein the metal-containing catalytic layer comprises nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof.


4. The method according to paragraph 2, wherein the aerospace component comprises a nickel-containing superalloy, and wherein each of the metal-containing catalytic layer and the nickel-containing superalloy comprises one or more of the same metals.


5. The method according to paragraph 2, wherein the metal-containing catalytic layer has a thickness of about 0.3 nm to about 1.5 nm.


6. The method according to paragraph 2, wherein the metal-containing catalytic layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), or combinations thereof.


7. The method according to any one of paragraphs 1-6, wherein the boron nitride layer comprises hexagonal boron nitride (hBN).


8. The method according to any one of paragraphs 1-7, wherein the aerospace component is maintained at a temperature of about 800° C. to about 1,500° C. while depositing the boron nitride layer.


9. The method according to any one of paragraphs 1-8, wherein the boron nitride layer has a thickness of about 5 nm to about 500 nm.


10. The method according to any one of paragraphs 1-9, wherein the boron nitride layer has a thickness of about 25 nm to about 200 nm.


11. The method according to any one of paragraphs 1-10, wherein the boron nitride layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), plasma-enhanced ALD (PE-ALD), chemical vapor deposition (CVD), plasma-enhanced CVD (PE-CVD), or combinations thereof.


12. The method according to any one of paragraphs 1-11, wherein the aluminum oxide layer is formed on the surface of the aerospace component by: heating the aerospace component during a thermal process, wherein the aerospace component comprises a nickel-containing superalloy; diffusing aluminum atoms from the nickel-containing superalloy to the surface of the aerospace component; and oxidizing the aluminum atoms to form the aluminum oxide layer.


13. The method according to paragraph 12, wherein the thermal process comprises heating the aerospace component to a temperature of about 700° C. to about 1,200° C. for about 1 hour to about 20 hours.


14. The method according to any one of paragraphs 1-13, wherein the aluminum oxide layer is formed on the surface of the aerospace component by exposing the aerospace component to an aluminum precursor and an oxidizing agent during a vapor deposition process.


15. The method according to paragraph 14, wherein the vapor deposition process for forming the aluminum oxide layer is an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.


16. The method according to any one of paragraphs 1-15, wherein the aluminum oxide layer has a thickness of about 1 nm to about 1,500 nm.


17. The method according to any one of paragraphs 1-16, wherein the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.


18. The method according to any one of paragraphs 1-17, wherein the surface of the aerospace component is an interior surface within a cavity of the aerospace component, and wherein the cavity has an aspect ratio of greater than 2 to about 1,000.


19. A method of forming a protective coating on an aerospace component, comprising: forming an aluminum oxide layer on a surface of the aerospace component, wherein the aerospace component comprises a nickel-containing superalloy; depositing a metal-containing catalytic layer on the aluminum oxide layer, wherein the metal-containing catalytic layer comprises nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof; and depositing a boron nitride layer on the metal-containing catalytic layer during a vapor deposition process.


20. The method according to paragraph 19, wherein the aluminum oxide layer is formed on the surface of the aerospace component by: heating the aerospace component during a thermal process, wherein the aerospace component comprises a nickel-containing superalloy; diffusing aluminum atoms from the nickel-containing superalloy to the surface of the aerospace component; and oxidizing the aluminum atoms to form the aluminum oxide layer.


21. The method according to paragraph 20, wherein the thermal process comprises heating the aerospace component to a temperature of about 700° C. to about 1,200° C. for about 1 hour to about 20 hours.


22. The method according to any one of paragraphs 19-21, wherein the aluminum oxide layer is formed on the surface of the aerospace component by exposing the aerospace component to an aluminum precursor and an oxidizing agent during a vapor deposition process.


23. The method according to paragraph 22, wherein the vapor deposition process for forming the aluminum oxide layer is an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.


24. The method according to any one of paragraphs 19-23, wherein the aluminum oxide layer has a thickness of about 1 nm to about 1,500 nm.


25. The method according to any one of paragraphs 19-24, wherein the metal-containing catalytic layer has a thickness of about 0.3 nm to about 1.5 nm.


26. The method according to any one of paragraphs 19-25, wherein the metal-containing catalytic layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), or combinations thereof.


27. The method according to any one of paragraphs 19-26, wherein the boron nitride layer comprises hexagonal boron nitride (hBN).


28. The method according to any one of paragraphs 19-27, wherein the boron nitride layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), plasma-enhanced ALD (PE-ALD), chemical vapor deposition (CVD), plasma-enhanced CVD (PE-CVD), or combinations thereof.


29. The method according to any one of paragraphs 19-28, wherein the aerospace component is maintained at a temperature of about 800° C. to about 1,500° C. while depositing the boron nitride layer.


30. The method according to any one of paragraphs 19-29, wherein the boron nitride layer has a thickness of about 5 nm to about 500 nm.


31. The method according to any one of paragraphs 19-30, wherein the boron nitride layer has a thickness of about 25 nm to about 200 nm.


32. The method according to any one of paragraphs 19-31, wherein the aerospace component comprises a nickel-containing superalloy, and wherein each of the metal-containing catalytic layer and the nickel-containing superalloy comprises one or more of the same metals.


33. The method according to any one of paragraphs 19-32, wherein the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.


34. The method according to any one of paragraphs 19-33, wherein the surface of the aerospace component is an interior surface within a cavity of the aerospace component, and wherein the cavity has an aspect ratio of greater than 2 to about 1,000.


35. The method according to any one of paragraphs 19-34, wherein the aluminum oxide layer is formed on the surface of the aerospace component by exposing the aerospace component to an aluminum precursor and an oxidizing agent during a vapor deposition process.


36. The method according to paragraph 35, wherein the vapor deposition process for forming the aluminum oxide layer is an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.


37. An aerospace component prepared by the method according to any one of paragraphs 1-36.


38. An aerospace component having a protective coating, comprising: an aluminum oxide layer disposed on a surface of the aerospace component, wherein the aerospace component comprises a superalloy comprising at least nickel and aluminum; and a boron nitride layer disposed on the aluminum oxide layer.


39. An aerospace component having a protective coating, comprising: an aluminum oxide layer disposed on a surface of the aerospace component, wherein the aerospace component comprises a superalloy comprising at least nickel and aluminum; a metal-containing catalytic layer disposed on the aluminum oxide layer, wherein the metal-containing catalytic layer comprises nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof; and a boron nitride layer disposed on the metal-containing catalytic layer.


40. The aerospace component according to paragraph 39, wherein the aerospace component comprises a nickel-containing superalloy, and wherein each of the metal-containing catalytic layer and the nickel-containing superalloy comprises one or more of the same metals.


41. The aerospace component according to any one of paragraphs 38-40, wherein the metal-containing catalytic layer has a thickness of about 0.3 nm to about 1.5 nm.


42. The aerospace component according to any one of paragraphs 38-41, wherein the boron nitride layer comprises hexagonal boron nitride (hBN).


43. The aerospace component according to any one of paragraphs 38-42, wherein the boron nitride layer has a thickness of about 5 nm to about 500 nm.


44. The aerospace component according to any one of paragraphs 38-43, wherein the aluminum oxide layer has a thickness of about 1 nm to about 1,500 nm.


45. The aerospace component according to any one of paragraphs 38-44, wherein the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.


46. The aerospace component according to any one of paragraphs 38-45, wherein the surface of the aerospace component is an interior surface within a cavity of the aerospace component, and wherein the cavity has an aspect ratio of greater than 2 to about 1,000.


While the foregoing is directed to embodiments of the disclosure, other and further embodiments may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow. All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures to the extent they are not inconsistent with this text. As is apparent from the foregoing general description and the specific embodiments, while forms of the present disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the present disclosure. Accordingly, it is not intended that the present disclosure be limited thereby. Likewise, the term “comprising” is considered synonymous with the term “including” for purposes of United States law. Likewise whenever a composition, an element or a group of elements is preceded with the transitional phrase “comprising”, it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of”, “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.


Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges including the combination of any two values, e.g., the combination of any lower value with any upper value, the combination of any two lower values, and/or the combination of any two upper values are contemplated unless otherwise indicated. Certain lower limits, upper limits and ranges appear in one or more claims below.

Claims
  • 1. A method of forming a protective coating on an aerospace component, comprising: forming an aluminum oxide layer on a surface of the aerospace component;depositing a metal-containing catalytic layer on the aluminum oxide layer, wherein the metal-containing catalytic layer has a thickness of about 0.1 nm to about 5 nm; anddepositing a boron nitride layer over the metal-containing catalytic layer during a vapor deposition process.
  • 2. The method of claim 1, wherein the metal-containing catalytic layer comprises nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof.
  • 3. The method of claim 1, wherein the aerospace component comprises a nickel-containing superalloy, and wherein each of the metal-containing catalytic layer and the nickel-containing superalloy comprises one or more of the same metals.
  • 4. The method of claim 1, wherein the metal-containing catalytic layer has a thickness of about 0.3 nm to about 1.5 nm.
  • 5. The method of claim 1, wherein the metal-containing catalytic layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), or combinations thereof.
  • 6. The method of claim 1, wherein the boron nitride layer comprises hexagonal boron nitride (hBN).
  • 7. The method of claim 1, wherein the boron nitride layer has a thickness of about 5 nm to about 500 nm.
  • 8. The method of claim 1, wherein the aerospace component is maintained at a temperature of about 800° C. to about 1,500° C. while depositing the boron nitride layer, and wherein the boron nitride layer is deposited by a vapor deposition process selected from atomic layer deposition (ALD), plasma-enhanced ALD (PE-ALD), chemical vapor deposition (CVD), plasma-enhanced CVD (PE-CVD), or combinations thereof.
  • 9. The method of claim 1, wherein the aluminum oxide layer is formed on the surface of the aerospace component by: heating the aerospace component during a thermal process, wherein the aerospace component comprises a nickel-containing superalloy;diffusing aluminum atoms from the nickel-containing superalloy to the surface of the aerospace component; andoxidizing the aluminum atoms to form the aluminum oxide layer.
  • 10. The method of claim 9, wherein the thermal process comprises heating the aerospace component to a temperature of about 700° C. to about 1,200° C. for about 1 hour to about 20 hours.
  • 11. The method of claim 1, wherein the aluminum oxide layer is formed on the surface of the aerospace component by exposing the aerospace component to an aluminum precursor and an oxidizing agent during an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
  • 12. The method of claim 1, wherein the aluminum oxide layer has a thickness of about 1 nm to about 1,500 nm.
  • 13. The method of claim 1, wherein the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof.
  • 14. The method of claim 1, wherein the surface of the aerospace component is an interior surface within a cavity of the aerospace component, and wherein the cavity has an aspect ratio of greater than 2 to about 1,000.
  • 15. A method of forming a protective coating on an aerospace component, comprising: forming an aluminum oxide layer on a surface of the aerospace component, wherein the aerospace component comprises a nickel-containing superalloy;depositing a metal-containing catalytic layer on the aluminum oxide layer, wherein the metal-containing catalytic layer comprises nickel, chromium, cobalt, molybdenum, tungsten, tantalum, aluminum, titanium, iron, rhenium, ruthenium, hafnium, iridium, platinum, palladium, gold, silver, oxides thereof, alloys thereof, or any combination thereof, and wherein the metal-containing catalytic layer has a thickness of about 0.1 nm to about 5 nm; anddepositing a boron nitride layer on the metal-containing catalytic layer during a vapor deposition process.
  • 16. The method of claim 15, wherein the aluminum oxide layer is formed on the surface of the aerospace component by: heating the aerospace component to a temperature of about 700° C. to about 1,200° C. for about 1 hour to about 20 hours during a thermal process, wherein the aerospace component comprises a nickel-containing superalloy;diffusing aluminum atoms from the nickel-containing superalloy to the surface of the aerospace component; andoxidizing the aluminum atoms to form the aluminum oxide layer.
  • 17. The method of claim 15, wherein the aluminum oxide layer is formed on the surface of the aerospace component by exposing the aerospace component to an aluminum precursor and an oxidizing agent during an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
  • 18. The method of claim 15, wherein the aluminum oxide layer has a thickness of about 1 nm to about 1,500 nm.
  • 19. The method of claim 15, wherein the metal-containing catalytic layer has a thickness of about 0.3 nm to about 1.5 nm.
  • 20. A method of forming a protective coating on an aerospace component, comprising: forming an aluminum oxide layer on a surface of the aerospace component, wherein the aerospace component is a turbine blade, a turbine vane, a support member, a frame, a rib, a fin, a pin fin, a fuel nozzle, a combustor liner, a combustor shield, a heat exchanger, a fuel line, a fuel valve, an internal cooling channel, or any combination thereof;depositing a metal-containing catalytic layer over the aluminum oxide layer, wherein the metal-containing catalytic layer has a thickness of about 0.1 nm to about 5 nm; anddepositing a boron nitride layer over the metal-containing catalytic layer during an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit to U.S. Appl. No. 63/028,429, filed on May 21, 2020, which is herein incorporated by reference.

US Referenced Citations (272)
Number Name Date Kind
4698130 Restall et al. Oct 1987 A
5217757 Olson et al. Jun 1993 A
5362228 Vaudel Nov 1994 A
5503874 Ackerman et al. Apr 1996 A
5871820 Hasz Feb 1999 A
5950925 Fukunaga et al. Sep 1999 A
6042898 Burns et al. Mar 2000 A
6156382 Rajagopalan et al. Dec 2000 A
6162715 Mak et al. Dec 2000 A
6207295 Stowell et al. Mar 2001 B1
6245192 Dhindsa et al. Jun 2001 B1
6309713 Mak et al. Oct 2001 B1
6332926 Pfaendtner et al. Dec 2001 B1
6359089 Hung et al. Mar 2002 B2
6379466 Sahin et al. Apr 2002 B1
6402898 Brumer et al. Jun 2002 B1
6437066 Hung et al. Aug 2002 B1
6495271 Vakil Dec 2002 B1
6551929 Kori et al. Apr 2003 B1
6607976 Chen et al. Aug 2003 B2
6620670 Song et al. Sep 2003 B2
6620723 Byun et al. Sep 2003 B1
6620956 Chen et al. Sep 2003 B2
6630244 Mao et al. Oct 2003 B1
6677247 Yuan et al. Jan 2004 B2
6740585 Yoon et al. May 2004 B2
6784096 Chen et al. Aug 2004 B2
6797340 Fang et al. Sep 2004 B2
6805750 Ristau et al. Oct 2004 B1
6809026 Yoon et al. Oct 2004 B2
6811814 Chen et al. Nov 2004 B2
6821891 Chen et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6827978 Yoon et al. Dec 2004 B2
6831021 Chua et al. Dec 2004 B2
6833161 Wang et al. Dec 2004 B2
6838125 Chung et al. Jan 2005 B2
6846516 Yang et al. Jan 2005 B2
6869838 Law et al. Mar 2005 B2
6872429 Chen et al. Mar 2005 B1
6905939 Yuan et al. Jun 2005 B2
6911391 Yang et al. Jun 2005 B2
6924191 Liu et al. Aug 2005 B2
6936538 Byun Aug 2005 B2
6939801 Chung et al. Sep 2005 B2
6939804 Lai et al. Sep 2005 B2
6951804 Seutter et al. Oct 2005 B2
6972267 Cao et al. Dec 2005 B2
7026238 Xi et al. Apr 2006 B2
7041335 Chung May 2006 B2
7049226 Chung et al. May 2006 B2
7081271 Chung et al. Jul 2006 B2
7101795 Xi et al. Sep 2006 B1
7211144 Lu et al. May 2007 B2
7211508 Chung et al. May 2007 B2
7241686 Marcadal et al. Jul 2007 B2
7244683 Chung et al. Jul 2007 B2
7262133 Chen et al. Aug 2007 B2
7264846 Chang et al. Sep 2007 B2
7265048 Chung et al. Sep 2007 B2
7279432 Xi et al. Oct 2007 B2
7285312 Li Oct 2007 B2
7317229 Hung et al. Jan 2008 B2
7371467 Han et al. May 2008 B2
7396565 Yang et al. Jul 2008 B2
7404985 Chang et al. Jul 2008 B2
7405158 Lai et al. Jul 2008 B2
7416979 Yoon et al. Aug 2008 B2
7429402 Gandikota et al. Sep 2008 B2
7429540 Olsen Sep 2008 B2
7439191 Law et al. Oct 2008 B2
7473655 Wang et al. Jan 2009 B2
7507660 Chen et al. Mar 2009 B2
7531468 Metzner et al. May 2009 B2
7547952 Metzner et al. Jun 2009 B2
7569501 Metzner et al. Aug 2009 B2
7573586 Boyer et al. Aug 2009 B1
7585762 Shah et al. Sep 2009 B2
7595263 Chung et al. Sep 2009 B2
7601652 Singh et al. Oct 2009 B2
7651955 Ranish et al. Jan 2010 B2
7732327 Lee et al. Jun 2010 B2
7737028 Wang et al. Jun 2010 B2
7776395 Mahajani Aug 2010 B2
7816200 Kher Oct 2010 B2
7824743 Lee et al. Nov 2010 B2
7833358 Chu et al. Nov 2010 B2
7846840 Kori et al. Dec 2010 B2
7867900 Lee et al. Jan 2011 B2
7875119 Gartland et al. Jan 2011 B2
7910165 Ganguli et al. Mar 2011 B2
7910231 Schuh et al. Mar 2011 B2
7910446 Ma et al. Mar 2011 B2
7964505 Khandelwal et al. Jun 2011 B2
7972978 Mahajani Jul 2011 B2
8043907 Ma et al. Oct 2011 B2
8056652 Lockwood et al. Nov 2011 B2
8227078 Morra et al. Jul 2012 B2
8277670 Heo et al. Oct 2012 B2
8470460 Lee Jun 2013 B2
8721812 Furrer et al. May 2014 B2
8741420 Bunker et al. Jun 2014 B2
8871297 Barnett et al. Oct 2014 B2
9255327 Winter et al. Feb 2016 B2
9347145 Bessho May 2016 B2
9683281 Meehan et al. Jun 2017 B2
9777583 Leggett Oct 2017 B2
9873940 Xu et al. Jan 2018 B2
10072335 Marquardt et al. Sep 2018 B2
10287899 Dierberger May 2019 B2
10369593 Barnett et al. Aug 2019 B2
10443142 Miettinen et al. Oct 2019 B2
10488332 Kessler et al. Nov 2019 B2
10633740 Melnik et al. Apr 2020 B2
11028480 Knisley et al. Jun 2021 B2
20020002258 Hung et al. Jan 2002 A1
20020045782 Hung et al. Apr 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020127336 Chen et al. Sep 2002 A1
20030010451 Tzu et al. Jan 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030082301 Chen et al. May 2003 A1
20030123216 Yoon et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030136520 Yudovsky et al. Jul 2003 A1
20030139005 Song et al. Jul 2003 A1
20030145875 Han et al. Aug 2003 A1
20030157760 Xi et al. Aug 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030203616 Chung et al. Oct 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040009665 Chen et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040018738 Liu Jan 2004 A1
20040079648 Khan et al. Apr 2004 A1
20040161628 Gupta et al. Aug 2004 A1
20040171280 Conley et al. Sep 2004 A1
20050003310 Bai et al. Jan 2005 A1
20050008780 Ackerman et al. Jan 2005 A1
20050019593 Mancini et al. Jan 2005 A1
20050053467 Ackerman et al. Mar 2005 A1
20050079368 Gorman Apr 2005 A1
20050085031 Lopatin et al. Apr 2005 A1
20050126593 Budinger et al. Jun 2005 A1
20050158590 Li Jul 2005 A1
20050255329 Hazel Nov 2005 A1
20050260347 Narwankar et al. Nov 2005 A1
20050260357 Olsen et al. Nov 2005 A1
20050271813 Kher et al. Dec 2005 A1
20060019032 Wang et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060021633 Harvey Feb 2006 A1
20060040052 Fang et al. Feb 2006 A1
20060062917 Muthukrishnan et al. Mar 2006 A1
20060084283 Paranjpe et al. Apr 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060153995 Narwankar et al. Jul 2006 A1
20060228895 Chae et al. Oct 2006 A1
20060246213 Moreau et al. Nov 2006 A1
20060286819 Seutter et al. Dec 2006 A1
20070009658 Yoo et al. Jan 2007 A1
20070009660 Sasaki et al. Jan 2007 A1
20070049043 Muthukrishnan et al. Mar 2007 A1
20070054487 Ma et al. Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070099415 Chen et al. May 2007 A1
20070134518 Feist et al. Jun 2007 A1
20070202254 Ganguli et al. Aug 2007 A1
20070259111 Singh et al. Nov 2007 A1
20070274837 Taylor et al. Nov 2007 A1
20080032510 Olsen Feb 2008 A1
20080038578 Li Feb 2008 A1
20080056905 Golecki Mar 2008 A1
20080090425 Olsen Apr 2008 A9
20080113095 Gorman et al. May 2008 A1
20080135914 Krishna et al. Jun 2008 A1
20080268154 Kher et al. Oct 2008 A1
20080268635 Yu et al. Oct 2008 A1
20090004386 Makela et al. Jan 2009 A1
20090004850 Ganguli et al. Jan 2009 A1
20090053426 Lu et al. Feb 2009 A1
20090061613 Choi et al. Mar 2009 A1
20090098289 Deininger et al. Apr 2009 A1
20090098346 Li Apr 2009 A1
20090155976 Ahn et al. Jun 2009 A1
20090269507 Yu et al. Oct 2009 A1
20090286400 Heo et al. Nov 2009 A1
20100062149 Ma et al. Mar 2010 A1
20100062614 Ma et al. Mar 2010 A1
20100075499 Olsen Mar 2010 A1
20100110451 Biswas et al. May 2010 A1
20100120245 Tjandra et al. May 2010 A1
20100159150 Kirby et al. Jun 2010 A1
20100167527 Wu et al. Jul 2010 A1
20100239758 Kher et al. Sep 2010 A1
20100252151 Furrer et al. Oct 2010 A1
20100270609 Olsen et al. Oct 2010 A1
20110175038 Hou et al. Jul 2011 A1
20110293825 Atwal et al. Dec 2011 A1
20120024403 Gage et al. Feb 2012 A1
20120040084 Fairbourn Feb 2012 A1
20120082783 Barnett et al. Apr 2012 A1
20120148944 Oh et al. Jun 2012 A1
20120276306 Ueda Nov 2012 A1
20120318773 Wu et al. Dec 2012 A1
20130048605 Sapre et al. Feb 2013 A1
20130140526 Kim Jun 2013 A1
20130164456 Winter et al. Jun 2013 A1
20130292655 Becker et al. Nov 2013 A1
20140103284 Hsueh et al. Apr 2014 A1
20140264297 Kumar et al. Sep 2014 A1
20140271220 Leggett Sep 2014 A1
20140287244 Shin Sep 2014 A1
20150017324 Barnett et al. Jan 2015 A1
20150184296 Xu et al. Jul 2015 A1
20150221541 Nemani et al. Aug 2015 A1
20160010472 Murphy et al. Jan 2016 A1
20160060758 Marquardt et al. Mar 2016 A1
20160181627 Roeder et al. Jun 2016 A1
20160251972 Dierberger Sep 2016 A1
20160281230 Varadarajan et al. Sep 2016 A1
20160298222 Meehan et al. Oct 2016 A1
20160300709 Posseme et al. Oct 2016 A1
20160328635 Dave et al. Nov 2016 A1
20160333493 Miettinen et al. Nov 2016 A1
20160333494 Miettinen et al. Nov 2016 A1
20170076968 Wang et al. Mar 2017 A1
20170084425 Uziel et al. Mar 2017 A1
20170145836 Sivaramakrishnan May 2017 A1
20170159198 Miettinen et al. Jun 2017 A1
20170213570 Cheng et al. Jul 2017 A1
20170233930 Keuleers et al. Aug 2017 A1
20170292445 Nelson et al. Oct 2017 A1
20170314125 Fenwick et al. Nov 2017 A1
20180006215 Jeong et al. Jan 2018 A1
20180105932 Fenwick et al. Apr 2018 A1
20180127868 Xu et al. May 2018 A1
20180156725 Kessler et al. Jun 2018 A1
20180261516 Lin et al. Sep 2018 A1
20180261686 Lin et al. Sep 2018 A1
20180329189 Banna et al. Nov 2018 A1
20180339314 Bhoyar et al. Nov 2018 A1
20180351164 Hellmich et al. Dec 2018 A1
20180358229 Koshizawa et al. Dec 2018 A1
20190019690 Choi et al. Jan 2019 A1
20190032194 Dieguez-Campo et al. Jan 2019 A2
20190079388 Fender et al. Mar 2019 A1
20190088543 Lin et al. Mar 2019 A1
20190130731 Hassan et al. May 2019 A1
20190271076 Fenwick et al. Sep 2019 A1
20190274692 Lampropoulos et al. Sep 2019 A1
20190284686 Melnik et al. Sep 2019 A1
20190284692 Melnik et al. Sep 2019 A1
20190284693 Task Sep 2019 A1
20190284694 Knisley et al. Sep 2019 A1
20190287808 Goradia et al. Sep 2019 A1
20190311900 Pandit et al. Oct 2019 A1
20190311909 Bajaj et al. Oct 2019 A1
20190382879 Jindal et al. Dec 2019 A1
20200027767 Zang et al. Jan 2020 A1
20200043722 Cheng et al. Feb 2020 A1
20200240018 Melnik et al. Jul 2020 A1
20200340107 Chatterjee et al. Oct 2020 A1
20200361124 Britz Nov 2020 A1
20200392626 Chatterjee et al. Dec 2020 A1
20210292901 Knisley et al. Sep 2021 A1
Foreign Referenced Citations (22)
Number Date Country
104647828 May 2015 CN
0209307 Jan 1987 EP
0387113 Dec 1993 EP
1431372 Jun 2004 EP
1236812 May 2006 EP
2022868 Feb 2009 EP
2103707 Sep 2009 EP
2194164 Jun 2010 EP
2392895 Dec 2011 EP
2161352 Feb 2014 EP
3540092 Sep 2019 EP
2001342556 Dec 2001 JP
2006199988 Aug 2006 JP
20060106104 Oct 2006 KR
20110014989 Feb 2011 KR
2630733 Sep 2017 RU
9631687 Oct 1996 WO
0009778 Feb 2000 WO
2005059200 Jun 2005 WO
2014159267 Oct 2014 WO
2015047783 Apr 2015 WO
2019182967 Sep 2019 WO
Non-Patent Literature Citations (44)
Entry
International Search Report and Written Opinion dated Oct. 30, 2020 for Application No. PCT/US2020/041382.
International Search Report and Written Opinion dated Jul. 2, 2019 for Application No. PCT/US2019/022788.
International Search Report and Written Opinion for International Application No. PCT/US2019/022709 dated Jun. 28, 2019, 13 pages.
Kaloyeros et al. “Review-Silicon Nitrtide and Silicon Nitride-Rich Thin Film Technologies: Trends in Deposition Technniques and Related Application”. ECS Journal of Solid State Science and Technology, 6 (10) p. 691-p. 714 (2017).
“A Review on Alumina-Chrome (Al2O3—Cr2O3) and Chrome-Silica (Cr2O3—SiO2) Refractories along with their Binary Phase Diagrams,” Nov. 18, 2009, 6 pages, <http://www.idc-online.com/technical_references/pdfs/chemical_engineering/A_Review_on_Alumina_Chrome.pdf>.
Bensch et al. “Modeling of the Influence of Oxidation of Thin-Walled Specimens of Single Crystal Superalloys,” Superalloys 2012: 12th International Symposium on Superalloys, The Minerals, Metals & Materials Society, pp. 331-340, <https://www.tms.org/superalloys/10.7449/2012/Superalloys_2012_331_340.pdf>.
Fujita et al. “Sintering of Al2O3—Cr2O3 Powder Prepared by Sol-Gel Process,” Journal of the Society of Materials Science, Japan, vol. 56, No. 6, Jun. 2007, pp. 526-530, <http://www.ecm.okayama-u.ac.jp/ceramics/Research/Papers/2007/Fujita_JSMS56(2007)526.pdf>.
Hirata et al. “Corrosion Resistance of Alumina-Chromia Ceramic Materials against Molten Slag,” Materials Transactions, vol. 43, No. 10, 2002, pp. 2561-2567, <https://www.jim.or.jp/journal/e/pdf3/43/10/2561.pdf>.
Knisley et al. “Volatility and High Thermal Stability in Mid to Late First Row Transition Metal Diazadienyl Complexes,” Organometallics, 2011, vol. 30, No. 18, pp. 5010-5017.
Pettit et al. “Oxidation and Hot Corrosion of Superalloys,” Jan. 1984, The Metal Society AIME, Warrendale, PA, pp. 651-687, <http://www.tms.org/superalloys/10.7449/1984/Superalloys_1984_651_687.pdf>.
Tsai et al. “Growth mechanism of Cr2O3 scales: oxygen and chromium diffusion, oxidation kinetics and effect of yttrium,” Materials Science and Engineering A, vol. 212, No. 1, pp. 6-13, 1996, <https://doi.org/10.1016/0921-5093(96)10173-8>.
He et al. “Role of annealing temperatures on the evolution of microstructure and properties of Cr2O3 films,” Applied Surface Science, vol. 357, Part B, Dec. 1, 2015, pp. 1472-1480, <https://doi.org/10.1016/j.apsusc.2015.10.023>.
Heidary et al. “Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature,” Nanotechnology, 27, 245701, 2016, pp. 1-32.
Dyer et al. “CVD Tungsten Carbide and Titanium Carbide Coatings for Aerospace Components,” SAE Transactions, vol. 98, Section 1: Journal of Aerospace (1989), pp. 64-70 Abstract Only.
Vargas Garcia et al. “Thermal barrier coatings produced by chemical vapor deposition,” Science and Technology of Advanced Materials, vol. 4, No. 4, 2003, pp. 397-402.
International Search Report and Written Opinion dated Jul. 6, 2020 for Application No. PCT/US2020/024285.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019113; dated Jun. 10, 2019; 11 total pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/022737 dated Jul. 2, 2019, 11 pages.
Taiwan Office Action dated Apr. 22, 2020 for Application No. 108106406.
PCT International Search Report and the Written Opinion for International Application No. PCT/US2019/041181; dated Oct. 25, 2019; 15 total pages.
International Search Report and Written Opinion dated Jun. 24, 2020 for Application No. PCT/US2020/019151.
Liu et al., “Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride” Nature Communications doi: 10.1038/ncomms3541; Pub. Oct. 4, 2013, 8 pages.
Calderon, “Boron Nitride Growth and Electronics”, Cornell University, May 2018.
W. Auwarter, “Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures”, Surface Science Reports 74 (2019) 1-95.
International Search Report and Written Report dated Jul. 31, 2020 for Application No. PCT/US2020/027247.
International Search Report and the Written Opinion for International Application No. PCT/US2020/028462 dated Jul. 29, 2020, 11 pages.
Leppaniemi, Jarmo, et al., “Corrosion protection of steel with multilayer coatings: Improving the sealing properties of physical vapor deposition CrN coatings with AI203/Ti02atomic layer deposition nanolaminates”. Thin Solid Films 627 (2017) pp. 59-68.
Ali, Muhammad Rostom, et al., “Electrodeposition of aluminum-chromium alloys from AI&BPC melt and its corrosion and high temperature oxidation behaviors” Electrochimica Acta, vol. 42. No. 15 , pp. 2347-2354, 1997.
Wu, Yanlin, et al., “Atomic Layer Deposition from Dissolved Precursors”. Nano Letters 2015, 15, 6379-6385.
Johnson, Andrew L., et al., “Recent developments in molecular precursors for atomic layer deposition”. Organomet. Chem., 2019, 42, 1-53.
Haukka, Suvi, et al., “Chemisorption of chromium acetylacetonate on porous high surface area silica”. Applied Surface Science, vol. 75, Issues 1-4, Jan. 2, 1994, pp. 220-227. Abstract Only.
Taiwan Office Action dated Dec. 21, 2020 for Application No. 109113600.
International Search Report and Written Opinion dated Feb. 2, 2021 for Application No. PCT/US2020/056618.
Taiwan Office Action dated May 10, 2021 for Application No. 109126499.
European Search Report dated Jul. 26, 2021 for Application No. 19793402.9.
International Search Report and Written Opinion dated Sep. 28, 2021 for Application No. PCT/US2021/035874.
Extended European Search Report dated Oct. 4, 2021 for Application No. 19793402.9.
Partial Supplementary European Search Report dated Feb. 10, 2022 for Application No. 19770951.2.
Taiwan Office Action dated Oct. 7, 2021 for Application No. 109126499.
Extended European Search Report dated Feb. 28, 2022 for Application No. 19771810.9.
International Search Report dated Dec. 1, 2021 for Application No. PCT/US2021/046245.
International Search Report and Written Opinion dated Dec. 2, 2021 for Application No. PCT/US2021/045766.
Liu et al., “Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation”, Materials and Design, 80 (2015) pp. 63-69.
Wang et al., “Hydrogen permeation properties of CrxCy@Cr2O3/Al2O3 composite coating derived from selective oxidation of a Cr—C alloy and atomic layer deposition”, International Journal of Hydrogen Energy, 43 (2018) pp. 21133-21141.
Related Publications (1)
Number Date Country
20210363630 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
63028429 May 2020 US