Noise Parameter Determination of Scalable Devices

Information

  • Patent Application
  • 20210263091
  • Publication Number
    20210263091
  • Date Filed
    February 18, 2021
    3 years ago
  • Date Published
    August 26, 2021
    3 years ago
Abstract
A method to determine noise parameters of a scalable device, is presented in which the determination of the noise parameters of the scalable device is independent of the model adopted for the device. The scalable device is connected as part of a test circuit including a noise source, a recirculator, a first power detector and a second power detector. The first power detector is connected to the recirculator and between the noise source and the scalable device and the second detector is connected to the device under test.
Description
FIELD OF INVENTION

The present invention relates generally to noise measurement and estimation, and more particularly to determining noise in scalable devices.


BACKGROUND

The standard approach for the determination of the noise parameters of a microwave device relies on a well-known procedure, which requires an external tuner. The measurement technique is applicable to any two-port linear device and determines the whole set of four real-valued noise parameters at the frequency of interest. The determination of the noise parameters is particularly attractive when considering active devices used in the design of low-noise amplifiers and other microwave circuits. Indeed, the noise parameters of a linear active device are set over frequency once the designer selects its bias point. If the device is part of an integrated circuit, the designer has the additional degree of freedom of selecting the device size as well as emitter area in the bipolar transistor case and gate dimensions in the field-effect transistor (FET) case.


Device scalability is directly reflected by the proportional dependence of its admittance matrix Y on size, which we will refer to as W






Y=y·W.   (1)


From a noise perspective, the device equivalent current noise sources are proportional to √W because the definition of noise current source in is based on the concept of available noise power at temperature T and the assumption that a conductance G is proportional to its size (G=g·W). Hence






i
n=√(4N0tgW)   (2)


where t=T/T0 and N0=kBT0 is the available noise power in a bandwidth B at the standard temperature T0=290K (k being Boltzmann's constant). Equation (2) shows that the noise current available to a matched termination varies as √W, whereas the available power to the same matched termination is constant and solely proportional to the temperature T: Pav=N0t=kBT. Consequently, the correlation matrix in admittance representation that describes the noise performance of a linear two-port network in terms of available powers will also be proportional to the device size as it is its admittance matrix










C
n
Y

=



W



i
n



i
n




W


=


W


[




c

n
11

Y




c

n
12

Y







(

c

n
11

Y

)






c

n
22

Y




]


.






(
3
)







Recently, it has been demonstrated how to leverage the dependence of a device under test (DUT) on its size in order to: 1) determine its noise parameters and 2) remove the source tuner from the measurement setup. Removal of the tuner is key to drastically reduce the overall characterization time and extend the noise parameter measurement to the full extent of the measurement equipment capability.


The size-based approach is intuitively understandable after recasting the standard expression of noise figure or equivalent noise temperature Te and keeping in mind that the DUT's correlation matrix is a function of its size











T
e



(
W
)


=




[




Y
S






1



]



·


C
n
T



(
W
)


·

[




Y
S






1



]



4


N
θ



G
S







(
4
)







where YS=GS+JBS is the source admittance at the measurement frequency; CTn(W) is the correlation matrix in transmission (chain or ABCD) representation of the DUI with size W; and † is the Hermitian conjugate operation. Note that the following bolds.

  • 1. The superscript symbol T used in (4) is adopted herein to solely refer to the transmission (ABCD) matrix representation.
  • 2. The superscript symbol † is adopted to indicate the following.
    • 1. The Hermitian conjugate operation on a matrix of complex elements.
    • 2. The transpose operation when applied to a matrix M=[M]P×Q of real elements: [M]†P×Q=[M]TP×Q.
    • 3. The complex conjugate operation on a complex number z (i.e., a 1×1 matrix z=[Z]1×1): z†=z*.


The reason for generalizing the use of the superscript † throughout this disclosure is to consolidate and streamline its notation and for the superscript T to solely identify the transmission matrix representation.


Refocusing attention on (4), it is clear that measuring the DUT's Te(Wm) at size Wm, with m=1, . . . , Mcustom-character4 , appears equivalent to changing the value of YS in (4) by moving a source tuner Mcustom-character4 times and applying a least-squares method (LSM) approximation on the measured data to extract the four noise parameters.


The size-based procedure is not model-agnostic because it has been developed in conjunction with the Pospieszalski noise model, a very popular noise model based on two uncorrelated noise temperatures. Indeed, as there are four real noise parameter values in any 2×2 correlation matrix, a minimum of four different DUT sizes should support the full determination of its noise correlation matrix independently of the choice of model, making the tuner-less noise parameter determination approach applicable to any scalable, linear, active, or passive network.


Unfortunately, this logical and straightforward conclusion turns out to be incorrect as is explained herein. Instead, two new and unique results are presented:

  • 1. to formally explain the limitation of the size-based procedure as to why attempting to use Mcustom-character4 different sizes of the same DUT will not yield the device's numerical four noise parameters;
  • 2. to confirm that the size-based procedure that relies on the two temperature noise model for the scalable device is still sound in light of the conclusions of this article.


SUMMARY OF INVENTION

Therefore, described herein is a method to determine the 4 noise parameters (np) of a scalable linear device without using a tuner. Exemplary embodiments are of particular interest when active devices (transistors) are being tested, especially in a large pool of potential users.


The new method described in this disclosure overcomes the limit imposed by the conventional approach to allow the determination of all the 4 parameters in the out's correlation matrix. Conventional approaches detect the noise power generated by a device under test (out) at its output port. This disclosure describes a general method to determine the noise parameters of a scalable device by detecting the noise power from the out at both input and output ports. This method overcomes the limitations of conventional methods. Further, the method accounts for the noise power that an additional network positioned at the out's input port introduces. The additional network may not be scalable and is not critical: it can be a standard 3 (example: circulator) or 4 (example: directional coupler) port linear network (any network can work).


According to one aspect of the invention, a method to determine noise parameters of a scalable device, includes the determination of the noise parameters of the scalable device being independent of model adopted for the device.


Optionally, no additional external tuner is needed to determine the noise parameters of the scalable device.


Optionally, a circulator is not necessary to determine the noise parameters of the scalable device because a source of the device itself is used as a power detector.


Optionally, the scalable device is connected as part of a test circuit including a noise source, a recirculator, a first power detector and a second power detector.


Optionally, the first power detector is connected to the recirculator and between the noise source and the scalable device and the second detector is connected to the device under test.


Optionally, the scalable device generates noise powers bn1, bn2 outwards and the noise power bn1 is directed to the first power detector by the circulator for independent detection and the power bn2 2 is directed to power detector 2.


Optionally, measurement is repeated changing a size of the scalable device.


The foregoing and other features of the invention are hereinafter described in greater detail with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fairly general representation of a noise measurement setup aiming at the experimental determination of the DUT's noise figure Fm or its equivalent noise temperature Te,m at each size Wm. The noise measurement does not include the contribution of the load, which is accounted for during calibration and subtracted out of the noise quantity measured by the receiver. This analysis will consider a noiseless load (i.e., receiver) by setting the load's normalized equivalent noise temperature tL=0 to obtain IL=0.



FIG. 2 shows simulation results of a scalable passive network. The table in (a) corresponds to five arbitrary sizes selected with the sole purpose of implementing DUT scalability. (a) Passive, scalable DUT schematic used as verification example. (b) Noise parameters in normalized admittance Y (top row) and scattering S (bottom row) representations.



FIG. 3 shows a circuit generalization of the DUT measurement for verification purpose. (a) Extrinsic and intrinsic circuits; (b) DUT's extrinsic (network A) and intrinsic (network B) representation in a commercial simulator.



FIG. 4 shows a graph providing verification that det(A†A)=0 for the intrinsic circuit of FIG. 3.



FIG. 5 shows an exemplary test circuit.





DETAILED DESCRIPTION

A noisy linear two-port network can be described and analyzed in any representation of choice because they are equivalent in carrying the same information. However, some representations are more favorable than others when applied to particular cases or applications. For example, a scattering parameter representation is the standard choice for microwave DUT characterization; a transmission parameter representation, on the other hand, facilitates the analysis of cascaded networks.


The analysis herein will be developed in admittance parameter representation because of the direct proportionality of the Y parameters with size. However, we are conscious that measurement equipment relies on scattering parameters, and for that reason, the characteristic impedance of the scattering parameter measurement system may also be considered in our discussion. Finally, as it is customary with microwave measurement systems, the characteristic impedance Z0=1/Y0 is assumed to be real.



FIG. 1 represents an idealized noise measurement setup consisting of a noisy source, a noisy scalable DUT, and a noisy receiver or load. The source TS and load TL temperatures are normalized to the standard T0=290K and equal to tS and tL, respectively. M instances with a different size Wm,(m=1, . . . , M) of the same noisy DUT are measured over frequency to determine its noise and signal performance—for example, scattering parameters and its equivalent noise temperature Te,m=Te(Wm). Source, receiver, and DUT are, respectively, described by their Norton equivalent circuits and its admittance matrix Y at the angular frequency ω=2πf










I
1

=


I
S

-


Y
S



V
1







(

5

a

)






I
=

YV
+

I
n






(

5

b

)







I
2

=


I
L

-


Y
L



V
2






where






(

5

c

)






{






I
=

[




I
1






I
2




]


,




V
=

[




V
1






V
2




]








Y
=

[




Y
11




Y
12






Y
21




Y
22




]


,





I
n

=

[




I

n
1







I

n
2





]









Y
S

=


G
S

+

jB
S



,





Y
L

=


G
L

+

jB
L













I
S



2

=

4


N
0



t
S



G
S



,








I
L



2

=

4


N
0



t
L



G
L










t
S

=


T
S


T
0



,





t
L

=


T
L


T
0






.





(
6
)







Furthermore, with reference to FIG. 1, the following standard assumptions are made.

  • 1. The noise source is fully characterized, and its equivalent noise temperature tS=TS/T0 is known.
  • 2. The DUT's admittance matrix Y=Y(Wm) in (5b) is known at each available size Wm,(m=1, . . . , M).
  • 3. The receiver is noiseless (TL=0↔IL=0).


The goal of the measurement setup is to determine the DUT's correlation matrix cYn=CYn/W normalized by size W and defined in (3).



FIG. 1 is a fairly general representation of a noise measurement setup aiming at the experimental determination of the DUT's noise figure Fm or its equivalent noise temperature Te,m at each size Wm. The noise measurement does not include the contribution of the load, which is accounted for during calibration and subtracted out of the noise quantity measured by the receiver. This analysis will consider a noiseless load (i.e., receiver) by setting the load's normalized equivalent noise temperature tL=0 to obtain IL=0.


An admittance matrix representation may not be used in very limited cases—the canonical example is a series impedance. Other representations may be used to deal with those special cases of academic interest—for example, the scattering parameters—once the analysis of this article, whose primary interest focuses on two-port linear scalable devices, is understood. Additional passive networks may be present in a practical noise characterization setup, such as input tuner or output circulators. The noise contribution of these known networks can be easily accounted for and deembedded in our analysis to effectively obtain the setup of FIG. 1. Finally, neither the noisy source admittance YS nor the noiseless load admittance YL is assumed to perfectly matched to the corresponding system admittance Y0 adopted by standard measurement equipment, such as vector network analyzers.


Herein is developed a procedure that allows the experimental determination of the four real-valued parameters of the correlation matrix cYn=CYn/W normalized by size W with the measurement setup shown in FIG. 1. The procedure to be developed leverages the DUT's noise performance dependence on its size W.


The expression noise performance is used to allow for the many equivalent results that can be obtained from the measurement setup of FIG. 1 at each given size Wm: noise figure Fm, equivalent noise temperature Te,m, and noise power Pn,m. However, the primary quantity that the receiver measures is the average noise power in a bandwidth B, and we will develop our analysis in terms of noise powers.


As FIG. 1 is a linear system whose source and DUT generate uncorrelated noise of each other, the power detected by the noiseless receiver is a superposition of the following:

  • 1. power PScustom-characterL delivered by the noise source IS to the load YL=1/ZL;
  • 2. power PDcustom-characterL delivered by the noisy network to the same load YL.


It will become clear in the next steps that developing the analysis in terms of the DUT's power contribution PDcustom-characterL to the receiver is sufficient to formally explain the limitation of the size-based procedure in the determination of the DUT's four noise parameters.


The power PDcustom-characterL detected by the receiver with the assumptions above is easily found by considering the power absorbed by load YL when the DUT is the only active generator of noise power because the external noise sources IS and IL in (5a) and (Sc) are










P

D

L


=


ℛϵ


{


V
2



I
2



}


|

{






I
S

=
0







I
L

=
0




=



G
L





Y
L



2




I
2



I
2










(
7
)







which can be expanded with (5) to obtain










P

D

L


=



G
L





Y
L



2




U
01




QI
n



I
n




Q




U
01






where





(
8
)






Q
=



Y
SL



(

Y
+

Y
SL


)



-
1






(

9

a

)







Y
SL

=

[




Y
S



0




0



Y
L




]





(

9

b

)







U
01


=

[

0





1

]





(

9

c

)








I
n



I
n



=


i
n



i
n




W
.






(

9

d

)







The correlation matrix ini†n in (9d) is equivalent to (3) and defines the unknown normalized noise parameters cnijY that are to be determined by measuring PDcustom-characterL as a function of DUT's size W. The DUT's matrix Y is defined in (1) versus size W as well.


The next steps are as follows:

  • 1. to expand (8) for each available DUT of size Wm(m=1, . . . , M);
  • 2. to determine the DUT's noise parameters cnijY from the expansion of (8) through an LSM optimization.


The determination of the four real-valued noise parameters in Y representation defined as









X
=






c

n
11

Y












e


{

c

n
12

Y

}







𝒥





m


{

c

n
12

Y

}







c

n
22

Y










(
10
)







would logically suggest that M=4 is the minimum number of distinct DUT sizes required for the solution of (8). Hence, the following holds.

  • 1. Equation (8) is fully expanded as a linear combination of the unknown noise parameters (10).
  • 2. Four coefficients, one for each noise parameter, are identified and collected.
  • 3. For each coefficient defined in the previous step, the size parameter Wm is identified and collected.


The outcome of this procedure is to rewrite (8) as










P


D

L

,
m


=



G
L




m




m






R
m




D
y


X





where





(
11
)







R
m

=

[





P
2



(

W
m

)








P
2



(

W
m

)








P
2



(

W
m

)








P
2



(

W
m

)





]





(

12

a

)








D
y



(
ω
)


=

[





y
^

11



















y
^

22



















y
^

23



















y
^

44




]





(

12

b

)









y
^

11



(
ω
)


=

[







y
21



2





0




0



]





(

12

c

)









y
^

22



(
ω
)


=







-
2








e


{


y
21



y
11



}








-
2








e


{


y
21



Y
S



}






0









(

12

d

)









y
^

33



(
ω
)


=

[




2

𝒥m


{


y
21



y
11



}







2

𝒥





m


{


y
21



Y
S



}






0



]





(

12

e

)









y
^

44



(
ω
)


=

[







y
11



2






2







e


{


Y
S



y
11



}










Y
S



2




]





(

12

f

)







the quantity Ø in (12b) is a 3×1 vector of zeros; P2(Wm) is an instantiation of











P
N



(
W
)


=

[




W
N






W

N
-
1












W
0




]





(
13
)







with N=2 at size Wm










Θ
m

=



P
2




(

W
m

)




θ


(


Y
S

,

Y
L

,
ω

)







(

14

a

)







θ


(


Y
S

,

Y
L

,
ω

)


=

[




Δ
y








Y
L



y
11


+


Y
S



y
22









Y
L



Y
S





]





(

14

b

)







and Δy is the determinant of the normalized admittance matrix (1). The denominator in (11) expresses the determinant of (Y+YSL) stemming from its inversion defined in (9a).


Note that the following holds.

  • 1. Expression (12) shows how frequency and size interact by clearly separating frequency and size dependence in each term.
  • 2. Only Θm in (12) depends on the load YL. As a consequence, it becomes intuitively understandable that the noise power (11) at constant frequency is a ratio of a quadratic polynomial PN=2(W) at numerator to its dyadic product PN=2P†N=2 at denominator, stemming from ΘmΘ†m and mapping into a PN=4(W) vectora—fact that implies ∂PDcustom-characterL/∂W to be zero for some W value at constant frequency.


Finally, all the quantities in (11) are comprised of real numbers and each factor carriers the proper dimension to accommodate for the various products: it would be straightforward to assume at this stage that measuring PDcustom-characterL,m for each available device with size Wm(m=1, . . . , Mcustom-character4) will allow a least-squares fit to determine the noise parameters X from (11), but this is not the case, as described below.


A collection of power measurements PDcustom-characterL,m for m=1, . . . , Mcustom-character4 devices with distinct size Wm generates an overdetermined system that can be solved with an LSM procedure











[




R
1












R
M





]



D
y


X

=


[










1



2


G
L




P


D

L

,
1



















M



2


G
L




P


D

L

,
M






]















(

15

a

)











AX
=
b





(

15

b

)







from which






X=(A†A)−1A†b   (16)


is obtained. However, the noise parameters in X can be determined by (16) only if the square matrix A†A is invertible—which implies that its determinant is not zero.


The A matrix is the product of two matrices, as shown in (15a).

  • 1. [Dy]12×4 defined in (12b) is a 12×4 matrix that only depends on the angular frequency ω through the normalized admittance parameters yij of the DUT and the source admittance YS. Hence, M measurements over size at the frequency of interest change neither size nor values of this matrix.
  • 2. A matrix [R†m]M×12 with as many rows as the number M of measurements and 12 columns is shown by









{







[

R
m


]


M
×
12


=

[



P
2




(

W
m

)









P
2




(

W
m

)









P
2




(

W
m

)









P
2




(

W
m

)



]














[


P
2




(

W
m

)


]


M
×
3


=


[




W
1
2




W
1



1





W
2
2




W
2



1
















W
M
2




W
M



1



]

.









(
17
)







Hence, the matrix A in (15b) consists of M rows and four columns. It is now possible to examine the product A†t A in (16) in order to investigate its determinant


The product A†A can be expanded explicitly in the product of its terms [see (19)]. A singular value decomposition (SVD) procedure could be applied to each matrix in (19) to determine their respective rank. A closer look at [RmR†m]12×12 with the help of (17) reveals that it can be written as a set of 4×4 elements, each element being a 3×3 matrix E









{






[


R
m



R
m



]


12
×
12


=

[



E


E


E


E




E


E


E


E




E


E


E


E




E


E


E


E



]









[
E
]


3
×
3


=





[


P
2



(

W
m

)


)


3
×
M




[


P
2




(

W
m

)


]



M
×
3


.









(
18
)







It appears evident that the rank of [RmR†m]12×12 is 3 because only one out of four columns of matrices [E]3×3 in (18) is clearly independent; and only first row of that column is independent—which makes the rank of [RmR†m]12×12 the same as the rank of [E]3×3. After expressing the matrix A, as shown in the following equation:













[

A


]


4
×
M




[
A
]



M
×
4


=









[

D
y


]


4
×
12




[

R
m

]



12
×
M




[

R
m


]



M
×
12




[

D
y

]



12
×
4
















(

19

a

)








[


A



A

]


4
×
4


=







[

D
y


]


4
×
12




[


R
m



R
m



]



12
×
12




[

D
y

]



12
×
4


.





(

19

b

)







It follows that the rank of (19b) is also 3, which implies that A†A, being a 4×4 matrix, is not invertible. In other words, against simple logic and intuition, the LSM determination of the four noise parameters through (16) will fail because det(A†A)=0 even if Mcustom-character4 DUTs are characterized.


Before providing a numerical verification of the abovementioned concepts by using recent published results obtained from the independent signal and noise characterization of active devices over frequency and size, some initial considerations on passive networks are presented, because the results above are applicable to either passive or active networks as long as they are scalable.


Regarding passive networks, the noise parameters of a passive scalable network can be calculated directly from its signal matrix. In admittance representation, the noise correlation matrix at temperature t=T/T0 can be calculated as














C
n
Y

W

=

c
n
Y







=

4


N
0


t



y
+

y



2









(
20
)







which shows that the noise parameters in CYn are proportional to the size W because the admittance matrix Y is proportional to size as previously expressed in (1).


It is also interesting to note from (20) that reciprocal passive networks can be grouped into a set characterized by a real correlation coefficient













ρ
n
Y

=


C

n
12

Y




C

n
11

Y







C

n
22

Y










=


c

n
12

Y




C

n
11

Y







C

n
22

Y











(
21
)







because custom-characterm{cYn12}=0. Hence, passive scalable two port reciprocal networks allow the determination of their noise parameters through (16) because their noise correlation matrix (20) is real with a total of three independent real elements.


Passive nonreciprocal networks are characterized by an asymmetrical matrix (y12≠y21), which will cause (20) to yield a complex correlation coefficient. For example, a scalable circulator or a passive scalable network with controlled sources (similarly to the linear model of an active device) will have a complex correlation coefficient because the off-diagonal elements of its noise correlation matrix (20) are not the same.


It addition, it should also be pointed out that the correlation coefficient, (21) being either complex or real, also depends on the representation in use. For example, the same scalable DUT in FIG. 2 has a complex correlation coefficient in scattering parameter representation because S12=S21 is complex, and






C
n
S
=N
0
t(I−S S†)   (22)


will generate a complex CSn12. Furthermore, CSn would also be size-dependent unless the characteristic impedance in use was size-dependent as well—then, the bilinear transformation at the basis of the definition of Sij will be size-independent.



FIG. 3 shows the active DUT's equivalent circuit as the combination of a five-port network A [extrinsic circuit in FIG. 3(a)], embedding a three-port network B [intrinsic circuit in FIG. 3(a)]. The intrinsic model is based on the well- known two temperature noise models. FIG. 3(b) highlights the standard approach of considering the intrinsic circuit [network B in FIG. 3(b)] surrounded by parasitic components [network A in FIG. 3(b)]. The intrinsic circuit is the scalable network whose noise temperatures Tgs and Tds must be extracted from measurement in order for the model to mimic the DUT's noise performance. It is customary to consider Tgd=290K and expect Tgs≈300K.


To confirm the results of this analysis, attention is focused on the intrinsic circuit of FIG. 3 after de-embedding it from the extrinsic circuit, and the results are used to support a numerical example: the component values of the intrinsic circuit are collected in Table I, and the noise temperatures were found to be Tds=4958.101K and Tgs=328.255K. The signal and noise performance of the intrinsic circuit over size W at 20 GHz is also reported in Table II. The values from both Table I and Table II allow the calculation outlined above and the verification that the matrix (A†A) is not invertible: indeed, its determinant is also shown in Table II at 20 GHz and over frequency in FIG. 4, and it is equal to 0 within the numerical error of the simulator calculation.









TABLE I







Intrinsic Elements of the Scalable Model of FIG. 3











Component
Value
Dimension















gm
602.761
(mS/mm)



T
1.006
(ps)



Cgs
1.151
(pF/mm)



Cds
0.257
(pF/mm)



Cgd
0.138
(pF/mm)



Tgs
0.490
(Ω · mm)



Tds
34.449
(Ω · mm)



Tgd
1.196
(Ω · mm)

















TABLE II







Real and Imaginary Values of the Admittance Matrix Elements and Corresponding


Noise Temperature Measured at 20 GHz for the Intrinsic Circuit of FIG. 3. Calculation of


|det(AA)| Executed With MATLAB Based on Corresponding Y/W Normalized Values













W
Y11
Y12
Y21
Y22
Teq/T0
|det (AA)|


(μm)
(mS)
(mS)
(mS)
(mS)
(—)
(MS)text missing or illegible when filed
















50
 0.5283 + text missing or illegible when filed 8.0641 
−0.9179 − text missing or illegible when filed 0.8657

29.4621 − text missing or illegible when filed 6.7text missing or illegible when filedtext missing or illegible when filed 1

1.4694 + text missing or illegible when filed 2.4819
0.879
9.17 · 10−32


100
1.0566 + text missing or illegible when filed 16.1282
−0.6359 − text missing or illegible when filed 1.7318
 58.9242 − text missing or illegible when filed 13.5103
2.9387 + text missing or illegible when filed 4.9637
0.587
2.95 · 10−32


200
2.1132 + text missing or illegible when filed 82.2565
−0.8717 − text missing or illegible when filed 3.4629
117.8481 − text missing or illegible when filed 27.0286

text missing or illegible when filed .5775 + text missing or illegible when filed 9.9274

0.576
3.50 · 10−32


300
3.1697 + text missing or illegible when filed 48.3847
−0.1076 − text missing or illegible when filed 5.1944
176.7726 − text missing or illegible when filed 40.5308
 8.8152 + text missing or illegible when filed 14.8911
0.693
4.91 · 10−32


400
4.2263 + text missing or illegible when filed 64.5129
−0.1434 − text missing or illegible when filed 6.9259
235.6987 − text missing or illegible when filedtext missing or illegible when filed 4.0411
11.7550 + text missing or illegible when filed 19.8349
0.841
1.55 · 10−32


600
6.3395 + text missing or illegible when filed 96.7693
 −0.2152 − text missing or illegible when filed 10.3888
353.5450 − text missing or illegible when filed 81.0617
17.6324 + text missing or illegible when filed 29.7823
1.169
8.37 · 10−32






text missing or illegible when filed indicates data missing or illegible when filed







The results above are general and applicable to any passive or active, scalable DUT independently of the representation. Stating that it is not possible to extract four real-valued noise parameters from measurements over size independently of the representation of choice in use is correct because any two representations V and K are connected by a matrix transformation of the type





CnK=CVcustom-characterKCnVC†Vcustom-characterK   (23)


where CVcustom-characterT is a matrix that transform the noise correlation matrix CVn in V representation to the noise correlation matrix CKn in K representation, and it only depends on the elements of the signal matrix in V representation. Therefore, if the extraction over size fails in one representation, it will fail in any other representation. This is not to say that (16) may not be applicable in particular cases.


It has been pointed out earlier that a passive, reciprocal network will generate a real correlation coefficient based on (20). If the network is also scalable, then the analysis of this article can be tailored to account for custom-characterm{cYn12}=0 by appropriately reducing the size of A. This reduction in size affects only the matrix Dy (12b), not the matrix Rm (12a) that contains size information only. As a consequence, the number of unknowns decreases from four to three, and (16) can support the extraction of the three remaining real-valued noise parameters. It is easy to set this case up in a circuit simulator and verify this conclusion. Deceivingly, if our analysis had been conducted in the scattering parameter domain, (22) would not easily lead to matrix size reduction as easily as in the cYn case because its off-diagonal elements are complex and nonzero, as shown in FIG. 2.


It is also noticeable from the procedure outlined to obtain (11) that the noise power PDcustom-characterL absorbed by the load depends on the load YL. Indeed, we have made no statement when determining PDcustom-characterL—for example, we have not claimed that PDcustom-characterL is defined as the available power; to the contrary, a generic YL is loading the DUT's output port, as shown in FIG. 1. On the other hand, it is a well-known fact that the noise performance of a device in terms of noise figure or equivalent noise temperature is not dependent on the load because of the selection of the load as the conjugate value of the output impedance value. As a consequence, the noise power PScustom-characterL delivered by the source to the load through the DUT will have the same GL/|Θm|2 dependence shown by PDcustom-characterL in (11) in order to guarantee that the ratio PDcustom-characterL/PScustom-characterL at the basis of the definition of noise figure or equivalent noise temperature is independent of the load, independently of the choice of YL value.


The LSM procedure (16) for the determination of X obtains PDcustom-characterL,m from the measurement of the DUT's noise figure Fm and the determination of PScustom-characterL,m at size Wm. This latter quantity, PScustom-characterL,m, will be the product of the following:

  • 1. a load termination term GL/|Θm|2 that depends on the terminations YS and YL, size Wm, and frequency because of (14);
  • 2. a term Ym(Wm,y) dependent on the DUT's size Wm and its normalized admittance matrix y;
  • 3. the noise source |IS|2.


Hence









P


S

L

,
m


=



G
L






M



2





Υ
m



(


W
m

,
y

)







I
S



2






(
24
)







and the load termination term cancels out with the corresponding term of (15) to yield





(Fm−1)custom-characterm|IS|t=R†mDyX.   (25)


The noise figure measurement allows (25) to be employed and the dependence on the load termination completely removed. However, the considerations on the inversion of A†A still apply because A=R†mDy (25) as well as (15) in terms of power PDcustom-characterL.


The results described herein fits with the experimental determination of the noise parameters versus size demonstrated and discussed by those skilled in the art. The reason lays in two facts described by the following statements.

  • 1. The DUT's intrinsic (noise) model in use, shown in FIG. 3(a), is based on and relies on two uncorrelated noise sources represented in transmission (chain or ABCD) representation by Tgs and Td s associated with the input and output resistors.
  • 2. The topology of the model is known.


It is, therefore, possible based on statement 1 to obtain the correlation matrix in admittance representation starting from the hybrid representation, whereas the off-diagonal element in the correlation matrix CHn is zero. Furthermore, statement 2 allows expressing the hybrid matrix H in terms of its components that constitute the scalable intrinsic model. The final result stemming from applying (23) is










c
n
Y

=




4


N
0






H
11



2




[





t
gs




r
gs


W
2







t
gs




r
gs


W
2




H
21









t
gs




r
gs


W
2




H
21





{






t
gs




r
gs


W
2







H
21



2


+







t
ds



g
ds






H
11



2





}




]







where





(
26
)






{






H
11



1
W


;








H
21




W


=
0








r
gs

=


R
gs


W


;





t
gs

=


T
gs


T
0










g
ds

=


G
ds

W


;





t
ds

=


T
ds


T
0










(
27
)







and the dependence of the H parameters of interest on the size W is also indicated in (27). If (26) is used in the analysis above, the unknown vector X (10) will consist of two elements, tgs and tds, and an LSM solution (16) can be obtained as demonstrated in prior publications because the dimensions of the matrix Dy (12b) will be reduced to a 12×2 dimension.


Turning now to FIG. 5, shown is an exemplary test circuit 500 including a noise source 510, a device under test 520, a recirculator 530, a first power detector 540 and a second power detector 550. The first power detector is connected to the recirculator and between the noise source and the device under test. The second detector is connected to the device under test in a conventional manner The device under test 520 generates noise powers bn1, bn2 outwards. The DUT's 520 noise power bn1 is directed to power detector 1 by the circulator for independent detection. The power bn2 is directed to power detector 2 as in standard setup for independent detection. Measurement is repeated changing DUT size. The setup allows the direct measurement of both noise powers bn1 and bn2 at the same time.


This setup solves a system of two equations:











F

Source





to





Power





Detector





1


=

1
+




y
S
+



(

W
·

C
dev


)




y
S



4


N
i



G
S












F

Source





to





Power





Detector





2


=

1
+




y
S
+



(

W
·

C
dev


)




y
S



4


N
i



G
S









(
28
)







This setup has been demonstrated in a system simulator to determine the FS→PD1 and FS→PD2 values for each size W, the de-embedding (elimination) of the noise contribution of the circulator, and the solution of the equations for the correlation matrix Cdev, elements.


This disclosure has discussed the basis for the characterization of the noise performance of a scalable linear network as a function of size, and it has proved that it is not possible to extract the four noise parameters of a scalable network as a general procedure. A practical example is offered with data obtained from a measurement of a set of active devices. Nevertheless, this disclosure has also discussed particular cases that support the determination of the elements of the noise correlation matrix versus size and explained the reasons why prior work is valid. In particular, the determination of the equivalent noise temperatures Tgs and Tds at the basis of a widely used noise model is confirmed when a number of different size DUTs are available.


A novel solution to overcome the limitations to the determination of the noise parameters discussed earlier has been devised and described. The solution requires only standard measurement equipment and commercially available hardware. Simulations have been executed to confirm that a model-agnostic approach to the determination of the four real-valued noise parameters of a scalable two-port device is indeed achievable. The new approach has valuable applications of great interest in the semiconductor arena because it allows the noise characterization of any active device to be automated over frequency, bias, and temperature.


Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.

Claims
  • 1. A method to determine noise parameters of a scalable device, wherein the determination of the noise parameters of the scalable device is independent of model adopted for the device.
  • 2. The method of claim 1, wherein no additional external tuner is needed to determine the noise parameters of the scalable device.
  • 3. The method of claim 2, wherein a circulator is not necessary to determine the noise parameters of the scalable device because a source of the device itself is used as a power detector.
  • 4. The method of claim 1, wherein the scalable device is connected as part of a test circuit including a noise source, a recirculator, a first power detector and a second power detector.
  • 5. The method of claim 4, wherein the first power detector is connected to the recirculator and between the noise source and the scalable device and the second detector is connected to the device under test.
  • 6. The method of claim 4, wherein the scalable device generates noise powers b1, bn2 outwards and the noise power bn1 is directed to the first power detector by the circulator for independent detection and the power bn2 is directed to power detector 2.
  • 7. The method of claim 4, wherein measurement is repeated changing a size of the scalable device.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/978,058 filed Feb. 18, 2020, which is hereby incorporated herein by reference.

FEDERALLY-SPONSORED RESARCH AND DEVELOPMENT

The United States Government has ownership rights in this invention. Licensing inquiries may be directed to Office of Technology Transfer, US Naval Research Laboratory, Code 1004, Washington, D.C. 20375, USA; +1.202.767.7230; techtran@nrl.navy.mil, referencing NC 110346-US2.

Provisional Applications (1)
Number Date Country
62978058 Feb 2020 US