This application is related to co-pending U.S. patent application Ser. No. 10/955,326, entitled “Method and System for Controlling a Velocity Field of a Supercritical Fluid in a Processing System”, filed on Sep. 30, 2004. The entire content of this application is herein incorporated by reference.
The present invention relates to a method and apparatus for flowing a fluid in a processing system and, more particularly, to the diverting of processing fluid, for example of a supercritical processing fluid, and valve structure useful therefor.
During the fabrication of semiconductor devices for integrated circuits (ICs), a critical processing requirement for processing semiconductor devices is cleanliness. The processing of semiconductor devices includes vacuum processing, such as etch and deposition processes whereby material is removed from or added to a substrate surface, as well as atmospheric processing, such as wet cleaning whereby contaminants or residue accumulated during processing are removed. For example, the removal of residue, such as photoresist (serving as a light-sensitive mask for etching), post-etch residue, and post-ash residue subsequent to the etching of features, such as trenches or vias, can utilize plasma ashing with an oxygen plasma followed by wet cleaning.
Other critical processing requirements for the processing of semiconductor devices include substrate throughput and reliability. Production processing of semiconductor devices in a semiconductor fabrication facility requires a large capital outlay for processing equipment. In order to recover these expenses and generate sufficient income from the fabrication facility, the processing equipment requires a specific substrate throughput and a reliable process in order to ensure the achievement of this throughput.
Until recently, plasma ashing and wet cleaning were found to be sufficient for removing residue and contaminants accumulated during semiconductor processing. However, recent advancements for ICs include a reduction in the critical dimension for etched features below a feature dimension acceptable for wet cleaning, such as a feature dimension below 45 to 65 nanometers, as well as the introduction of new materials, such as low dielectric constant (low-k) materials, which are susceptible to damage during plasma ashing.
Therefore, at present, interest has developed for the replacement of plasma ashing and wet cleaning. One interest includes the development of dry cleaning systems utilizing a supercritical fluid as a carrier for a solvent, or other residue removing composition. Post-etch and post-ash cleaning are examples of such systems. Other interests include other processes and applications that can benefit from the properties of supercritical fluids, particularly of substrates having features with a dimension of 65 nanometers (nm), or 45 nm, or smaller. Such processes and applications may include restoring low dielectric films after etching, sealing porous films, drying of applied films, depositing materials, as well as other processes and applications.
Certain challenges occur when attempting to process silicon wafers under high pressure. One such issue is how to switch flow direction or path within the equipment without generating particles. Typically, ball valves have been used for high flow rate applications, but these have many cleanliness issues including rubbing surfaces and trapped internal volumes. Plug valves have similar rubbing issues. Bellows valves, even if rated to high enough pressure, have many convoluted surfaces which can trap and release particles. Diaphragm valves have recently been the valve type of choice, due to their relatively clean construction, but flow rates are typically less than one-tenth that of comparable ball valves.
Typical pressures encountered in SCCO2 processing are a minimum of 1,031 psi, but 3,000 psi is not uncommon, and upwards of 10,000 psi has been reported in the literature. Some equipment configurations may require flow diversion, but not total shut-off. Within a high pressure tool, the differences within different sections of the tool may be quite low, maybe 10 to 100 psi. Internal pressure differences can exceed these pressures, but typically inline filters will limit the available pressure gradient possible within the tool.
Accordingly, there is a need for improved valving in supercritical fluid processing systems and other high pressure processing systems that will overcome the problems discussed above and more general problems of the prior art.
One object of the present invention is to reduce or eliminate any or all of the above-described problems.
Another object of the present invention is to provide a valve for switching high pressure fluid, particularly supercritical fluid, and more particularly supercritical carbon dioxide, in a semiconductor wafer processing system while generating fewer particulates than in prior systems.
A further object of the present invention is to provide a flow diversion valve having a moveable element and actuating the element without contact therewith.
According to one embodiment of the invention, a method and apparatus are provided incorporating magnetic coupling for diverting flow of high pressure processing fluid, particularly supercritical processing fluid, in a non-rubbing, non-contact manner in semiconductor wafer high pressure processing tools.
According to one embodiment of the invention, a valve for switching the flow of high pressure processing fluid between a common port and alternative switched ports in a semiconductor processing system is provided in which the valve comprises a valve body having a cavity therein, a common port coupled to the cavity and at least two switched ports coupled to the cavity. The valve element is moveable in the cavity between alternative positions. The alternative positions include a first position and a second position. At the first position, the element blocks flow of the high pressure fluid between the common port and a first one of the switched ports and permits flow of the high pressure fluid between the common port and a second one of the switched ports. At the second position, the element blocks flow of the high pressure fluid between the common port and the second one of the switched ports and permits flow of the high pressure fluid between the common port and the first one of the switched ports. At least two actuators are mounted on said valve body and magnetically coupled to said valve element. When activated in response to a control signal, a first actuator moves the element to the first position. When activated, the second element moves the element to the second position.
According to other embodiments of the invention, a high pressure fluid processing system is provided for processing semiconductor wafers. The system comprises a processing chamber, a high pressure fluid flow system coupled to the chamber and operative to flow high pressure processing fluid through the chamber and across a semiconductor wafer supported in the chamber, and a flow diverting valve and a controller. The flow diverting valve has a common port, at least two switched ports and a valve element moveable within the valve between alternative positions, including a first position at which flow of the high pressure fluid is directed between the common port and a first one of the switched ports and a second position at which flow of the high pressure fluid is directed between the common port and a second one of the switched ports. The valve has at least one actuator mounted thereon and magnetically coupled to said valve element. The actuator is operable, when activated in response to a control signal, to move the valve element between the alternative positions. The controller selectively communicates control signals to said actuators to cause the valve to switch.
According to another embodiment of the invention, a method of diverting the flow of a high pressure fluid processing fluid is provided in a high pressure fluid system for processing semiconductor wafers. The method comprises magnetically moving a valve element in a valve body to switch flow of the high pressure fluid between a common port and alternative switched ports and alternatively flowing the fluid in the processing system in through the valve in accordance with the position of the valve element.
In the accompanying drawings:
In the following description, to facilitate a thorough understanding of the invention and for purposes of explanation and not limitation, specific details are set forth, such as a particular geometry of the high pressure processing system and various descriptions of the internal members. However, it should be understood that the invention may be practiced with other embodiments that depart from these specific details.
Nonetheless, it should be appreciated that, contained within the description are features which, notwithstanding the inventive nature of the general concepts being explained, are also of an inventive nature.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views,
In
The controller 150 can be used to configure any number of processing elements (110, 120, 130, and 140), and the controller 150 can collect, provide, process, store, and display data from processing elements. The controller 150 can comprise a number of applications for controlling one or more of the processing elements. For example, controller 150 can include a graphic user interface (GUI) component (not shown), that can provide easy to use interfaces that enable a user to monitor and/or control one or more processing elements.
Referring still to
Referring still to
As described above, the fluid supply system 140 can include a supercritical fluid supply system, which can be a carbon dioxide supply system. For example, the fluid supply system 140 can be configured to introduce a high pressure fluid having a pressure substantially near the critical pressure for the fluid. Additionally, the fluid supply system 140 can be configured to introduce a supercritical fluid, such as carbon dioxide in a supercritical state. Additionally, for example, the fluid supply system 140 can be configured to introduce a supercritical fluid, such as supercritical carbon dioxide, at a pressure ranging from approximately the critical pressure of carbon dioxide to 10,000 Psi. Examples of other supercritical fluid species useful in the broad practice of the invention include, but are not limited to, carbon dioxide (as described above), oxygen, argon, krypton, xenon, ammonia, methane, methanol, dimethyl ketone, hydrogen, and sulfur hexafluoride. The fluid supply system can, for example, comprise a carbon dioxide source (not shown) and a plurality of flow control elements (not shown) for generating a supercritical fluid. For example, the carbon dioxide source can include a CO2 feed system, and the flow control elements can include supply lines, valves, filters, pumps, and heaters. The fluid supply system 140 can comprise an inlet valve (not shown) that is configured to open and close to allow or prevent the stream of supercritical carbon dioxide from flowing into the processing chamber 110. For example, controller 150 can be used to determine fluid parameters such as pressure, temperature, process time, and flow rate.
Referring still to
The process chemistry supply system 130 can be configured to introduce one or more of the following process compositions, but not limited to: cleaning compositions for removing contaminants, residues, hardened residues, photoresist, hardened photoresist, post-etch residue, post-ash residue, post chemical-mechanical polishing (CMP) residue, post-polishing residue, or post-implant residue, or any combination thereof; cleaning compositions for removing particulate; drying compositions for drying thin films, porous thin films, porous low dielectric constant materials, or air-gap dielectrics, or any combination thereof; film-forming compositions for preparing dielectric thin films, metal thin films, or any combination thereof; healing compositions for restoring the dielectric constant of low dielectric constant (low-k) films; sealing compositions for sealing porous films; or any combination thereof. Additionally, the process chemistry supply system 130 can be configured to introduce solvents, co-solvents, surfactants, film-forming precursors, or reducing agents, or any combination thereof.
The process chemistry supply system 130 can be configured to introduce N-Methyl Pyrrolidone (NMP), diglycol amine, hydroxyl amine, di-isopropyl amine, tri-isoprpyl amine, tertiary amines, catechol, ammonium fluoride, ammonium bifluoride, methylacetoacetamide, ozone, propylene glycol monoethyl ether acetate, acetylactone, dibasic esters, ethyl lactate, CHF3, BF3, HF, other fluorine containing chemicals, or any mixture thereof. Other chemicals such as organic solvents may be utilized independently or in conjunction with the above chemicals to remove organic materials. The organic solvents may include, for example, an alcohol, ether, and/or glycol, such as acetone, diacetone alcohol, dimethyl sulfoxide (DMSO), ethylene glycol, methanol, ethanol, propanol, or isopropanol (IPA). For further details, see U.S. Pat. No. 6,306,564B1, filed May 27, 1998, and titled “REMOVAL OF RESIST OR RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE”, and U.S. Pat. No. 6,509,141B2, filed Sep. 3, 1999, and titled “REMOVAL OF PHOTORESIST AND PHOTORESIST RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE PROCESS,” both incorporated by reference herein.
Additionally, the process chemistry supply system 130 can comprise a cleaning chemistry assembly (not shown) for providing cleaning chemistry for generating supercritical cleaning solutions within the processing chamber. The cleaning chemistry can include peroxides and a fluoride source. For example, the peroxides can include hydrogen peroxide, benzoyl peroxide, or any other suitable peroxide, and the fluoride sources can include fluoride salts (such as ammonium fluoride salts), hydrogen fluoride, fluoride adducts (such as organo-ammonium fluoride adducts), and combinations thereof. Further details of fluoride sources and methods of generating supercritical processing solutions with fluoride sources are described in U.S. patent application Ser. No. 10/442,557, filed May 20, 2003, and titled “TETRA-ORGANIC AMMONIUM FLUORIDE AND HF IN SUPERCRITICAL FLUID FOR PHOTORESIST AND RESIDUE REMOVAL”, and U.S. patent application Ser. No. 10/321,341, filed Dec. 16, 2002, and titled “FLUORIDE IN SUPERCRITICAL FLUID FOR PHOTORESIST POLYMER AND RESIDUE REMOVAL,” both incorporated by reference herein.
Furthermore, the process chemistry supply system 130 can be configured to introduce chelating agents, complexing agents and other oxidants, organic and inorganic acids that can be introduced into the supercritical fluid solution with one or more carrier solvents, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such a methanol, ethanol and 2-propanol).
Moreover, the process chemistry supply system 130 can comprise a rinsing chemistry assembly (not shown) for providing rinsing chemistry for generating supercritical rinsing solutions within the processing chamber. The rinsing chemistry can include one or more organic solvents including, but not limited to, alcohols and ketone. In one embodiment, the rinsing chemistry can comprise sulfolane, also known as thiocyclopentane-1,1-dioxide; (Cyclo)tetramethylene sulphone; and 2,3,4,5-tetrahydrothiophene-1,1-dioxide; which can be purchased from a number of venders, such as Degussa Stanlow Limited, Lake Court, Hursley Winchester SO21 2LD UK.
Moreover, the process chemistry supply system 130 can be configured to introduce treating chemistry for curing, cleaning, healing, or sealing, or any combination thereof, low dielectric constant films (porous or non-porous). The chemistry can include hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), or trichloromethylsilane (TCMS). For further details, see U.S. patent application Ser. No. 10/682,196, filed Oct. 10, 2003, and titled “METHOD AND SYSTEM FOR TREATING A DIELECTRIC FILM,” and U.S. patent application Ser. No. 10/379,984, filed Mar. 4, 2003, and titled “METHOD OF PASSIVATING LOW DIELECTRIC MATERIALS IN WAFER PROCESSING,” both incorporated by reference herein.
The processing chamber 110 can be configured to process substrate 105 by exposing the substrate 105 to high pressure fluid from the high pressure fluid supply system 140, or process chemistry from the process chemistry supply system 130, or a combination thereof in a processing space 112 that may be enclosed in an inner wall, lid, or other closure structure 113. Additionally, processing chamber 110 can include an upper chamber assembly 114, and a lower chamber assembly 115.
The upper chamber assembly 114 can comprise a heater (not shown) for heating the processing chamber 110, the substrate 105, or the processing fluid, or a combination of two or more thereof. Alternately, a heater is not required. Additionally, the upper chamber assembly can include flow components (not shown) for flowing processing fluid through the processing chamber 110, and particularly through the processing space 112, which surrounds the substrate 105 and the processing chamber 110. In one example, a circular flow pattern can be established, and in another example, a substantially linear flow pattern can be established. Alternately, the flow components for flowing the fluid can be configured differently to affect a different flow pattern.
The lower chamber assembly 115 can include a platen 116 configured to support substrate 105 and a drive mechanism 118 for translating the platen 116 in order to load and unload substrate 105, and seal lower chamber assembly 115 with upper chamber assembly 114. The platen 116 can also be configured to heat or cool the substrate 105 before, during, and/or after processing the substrate 105. Additionally, the lower assembly 115 can include a lift pin assembly for displacing the substrate 105 from the upper surface of the platen 116 during substrate loading and unloading.
A transfer system (not shown) can be used to move a substrate into and out of the processing chamber 110 through a slot (not shown). In one example, the slot can be opened and closed by moving the platen, and in another example, the slot can be controlled using a gate valve.
The substrate can include semiconductor material, metallic material, dielectric material, ceramic material, or polymer material, or a combination of two or more thereof. The semiconductor material can include Si, Ge, Si/Ge, or GaAs. The metallic material can include Cu, Al, Ni, Pb, Ti, and Ta. The dielectric material can include silica, silicon dioxide, quartz, aluminum oxide, sapphire, low dielectric constant materials, TEFLON, and polyimide. The ceramic material can include aluminum oxide, silicon carbide, etc.
The processing system 100 can also comprise a pressure control system (not shown). The pressure control system can be coupled to the processing chamber 110, but this is not required. In alternate embodiments, pressure control system can be configured differently and coupled differently. The pressure control system can include one or more pressure valves (not shown) for exhausting the processing chamber 110 and/or for regulating the pressure within the processing chamber 110. Alternately, the pressure control system can also include one or more pumps (not shown). For example, one pump may be used to increase the pressure within the processing chamber, and another pump may be used to evacuate the processing chamber 110. In another embodiment, the pressure control system can comprise seals for sealing the processing chamber. In addition, the pressure control system can comprise an elevator for raising and lowering the substrate and/or the platen.
There are several places in the systems described above and other systems of these types where flow direction control is useful. Some of these are illustrated in
An example of the use of a flow diversion valve which is not 100% shut off tight would be for secondary branches which may be used to inject chemistry into the high pressure environment, such as from chemistry supply system 130 through valve 132 in
Another possible use for flow diverter valves is for directing flow to different areas of the wafer 105. If local high velocity jets are required for cleaning a wafer, it may not be practical to generate very high pressure gradients within the entire area of the tool, for example, because of filtration concerns. Such high velocity jets may be directed to only certain areas of the wafer 105 at a time. In this case, one or more flow diversion valves may be activated to move the high velocity flow to different areas of the wafer for cleaning. Small leakages are insignificant within the valve, as only relatively higher velocity flow is required within the tool to do the processing. Although the leakage will reduce the available flow rate to some degree, this might not outweigh the benefits of a high flow valve solution. An example of the placement of such a valve is the valve 172 illustrated in
As illustrated in
The valves 126, 127, 132, 142 and 162 in
The ball 210 itself is a composite formulated for use in this valve. Since electromagnets can only operate on magnetic metals, the ball 210 is formed of a magnetic grade steel. Since ferrous metals are generally poor performers with respect to corrosion, stainless steel or some other non-corrosive material is preferably in contact with the working fluid. The ball 210 is, to serve this purpose in this embodiment, composed of a thin shell of austenitic stainless steel welded around a ferrous metal interior ball. Martinsitic stainless steels could also be used. While the corrosion protection and the level of magnetic attraction they provide are usually less good, they could be acceptable in some applications, as can other materials possessing the desired properties.
As illustrated in
In
Additional relief for the bottom of the spring support plate 212 is provided in one of the blocks, for example, block 224. For simplicity of machining, the opposite half does not require this relief, which means the spring plate 212 and ball 210 will be off center by half the thickness of the spring plate 212, but that is not significant enough to cause any significant difference in performance. Of course, matching reliefs could be present in both blocks 222,224 to exactly center the spring plate 212.
The two pins 232 in the spring plate 212 are used for positioning the ball unit and the two body halves 222,224, as well for as stabilizing the spring support plate 212 from moving out of position during use. The channels 227,228 are shown with portions that form two flow streams that connect into a single common port. The blocks 222 and 224, as well as exit block 226, are conically relieved to expose a tubular stub suitable for the welding thereto of the tube extensions to the ports 216–218.
In operation, in a start up mode, the valve 200 is unpowered. When unpowered, the ball 210 assumes will find a natural position in the center of the valve cavity 215 blocking neither port 217 nor 218. If flow were present in this unpowered condition, the ball 210 could begin to oscillate due to the flow creating unsteady low pressure regions on the side of the ball 210. The spring stiffness of plate 212 and the flow rate of fluid through the valve 200, as well as the fluid properties, are factors that determine the rate of vibration under the no-power condition.
Once either one of the electromagnets 204,206 is switched on, the ball 210 is drawn toward it. The spring plate 212 flexes in an arc, allowing the ball 210 to move toward the actuated electromagnet. Ideally, the stiffness of the plate 212 is sufficient to counterbalance the force from the electromagnet such that the plate never comes into contact with the arc in the body half. Alternatively, the spring flexure of plate 212 can be such that the ball 210 does not come into contact with the body half, so that, instead, the spring plate 212 would rest against the body half at full flexure, producing a gentle contact, that could be beneficial in resulting in fewer particulates being generated. When flow direction needs to be switched, the opposite electromagnet 204,206 is turned on and the other electromagnet is switched off. The ball 210 will then be drawn toward the opposite side of the valve cavity 215, shutting off the previously open flow port 217,218 and opening the other.
A number of other optional features may be employed. For example, the electromagnets 204,206 may be ramped up and ramped down in force for optimum control. Both electromagnets may be actuated at the same time during the transition period, for example with overlapping actuation periods, when switching flow ports to produce smooth control of the ball 210 and spring plate 212. Voltage and current can also be regulated to the electromagnets 204,206 in such a way as to more precisely control the flex of the spring plate 212. The flow rate and fluid viscosity also play a role in the deflection characteristics of the spring plate 212, and may vary during operation.
As addition optional features, inputs of flow meters and other diagnostics can be input into controller 150 or another controller, which can calculate results in real time and closed loop mode, and output a signal to the electromagnets 204,206 to keep the position of the ball 210 in the correct location. A small hole or two can be cross-drilled from the inlet port to the very bottom of the arc 235 on the body half 222,224 to allow incoming flow to sweep away the dead flow area that could result at the junction of the body halves 222,224 and the spring plate 212.
As further optional features, for example, the ball 210 can contain a high strength permanent magnet instead of an iron based alloy, such that magnetic attraction between the ball 210 and the electromagnets 204,206 is enhanced. The ball 210 can contain a high strength permanent magnet, such that magnetic repulsion between the ball and the electromagnets 204,206 is utilized rather than magnetic attraction for actuation. Further, sensors can be incorporated to sense the position of the ball to indicate switching. A sensor can be provided to provide electrical feedback from the electromagnet indicating presence within its control field.
Although only certain exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2617719 | Stewart | Nov 1952 | A |
2625886 | Browne | Jan 1953 | A |
2750960 | Hansen et al. | Jun 1956 | A |
3108613 | Bochan | Oct 1963 | A |
3215162 | Carver | Nov 1965 | A |
3605780 | Kranz | Sep 1971 | A |
3744660 | Gaines et al. | Jul 1973 | A |
3968885 | Hassan et al. | Jul 1976 | A |
4029517 | Rand | Jun 1977 | A |
4091643 | Zucchini | May 1978 | A |
4245154 | Uehara et al. | Jan 1981 | A |
4341592 | Shortes et al. | Jul 1982 | A |
4355937 | Mack et al. | Oct 1982 | A |
4367140 | Wilson | Jan 1983 | A |
4406596 | Budde | Sep 1983 | A |
4422651 | Platts | Dec 1983 | A |
4474199 | Blaudszun | Oct 1984 | A |
4522788 | Sitek et al. | Jun 1985 | A |
4549467 | Wilden et al. | Oct 1985 | A |
4592306 | Gallego | Jun 1986 | A |
4601181 | Privat | Jul 1986 | A |
4626509 | Lyman | Dec 1986 | A |
4670126 | Messer et al. | Jun 1987 | A |
4682937 | Credle, Jr. | Jul 1987 | A |
4693777 | Hazano et al. | Sep 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4778356 | Hicks | Oct 1988 | A |
4788043 | Kagiyama et al. | Nov 1988 | A |
4789077 | Noe | Dec 1988 | A |
4823976 | White, III et al. | Apr 1989 | A |
4825808 | Takahashi et al. | May 1989 | A |
4827867 | Takei et al. | May 1989 | A |
4838476 | Rahn | Jun 1989 | A |
4865061 | Fowler et al. | Sep 1989 | A |
4879431 | Bertoncini | Nov 1989 | A |
4917556 | Stark et al. | Apr 1990 | A |
4924892 | Kiba et al. | May 1990 | A |
4944837 | Nishikawa et al. | Jul 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960140 | Ishijima et al. | Oct 1990 | A |
4983223 | Gessner | Jan 1991 | A |
5011542 | Weil | Apr 1991 | A |
5013366 | Jackson et al. | May 1991 | A |
5044871 | Davis et al. | Sep 1991 | A |
5062770 | Story et al. | Nov 1991 | A |
5068040 | Jackson | Nov 1991 | A |
5071485 | Matthews et al. | Dec 1991 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5143103 | Basso et al. | Sep 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5169296 | Wilden | Dec 1992 | A |
5169408 | Biggerstaff et al. | Dec 1992 | A |
5185296 | Morita et al. | Feb 1993 | A |
5186594 | Toshima et al. | Feb 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188515 | Horn | Feb 1993 | A |
5190373 | Dickson et al. | Mar 1993 | A |
5191993 | Wanger et al. | Mar 1993 | A |
5193560 | Tanaka et al. | Mar 1993 | A |
5195878 | Sahiavo et al. | Mar 1993 | A |
5213485 | Wilden | May 1993 | A |
5213619 | Jackson et al. | May 1993 | A |
5215592 | Jackson | Jun 1993 | A |
5217043 | Novakovi | Jun 1993 | A |
5221019 | Pechacek et al. | Jun 1993 | A |
5222876 | Budde | Jun 1993 | A |
5224504 | Thompson et al. | Jul 1993 | A |
5236669 | Simmons et al. | Aug 1993 | A |
5237824 | Pawliszyn | Aug 1993 | A |
5240390 | Kvinge et al. | Aug 1993 | A |
5243821 | Schuck et al. | Sep 1993 | A |
5246500 | Samata et al. | Sep 1993 | A |
5251776 | Morgan, Jr. et al. | Oct 1993 | A |
5267455 | Dewees et al. | Dec 1993 | A |
5280693 | Heudecker | Jan 1994 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5288333 | Tanaka et al. | Feb 1994 | A |
5304515 | Morita et al. | Apr 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5313965 | Palen | May 1994 | A |
5314574 | Takahashi | May 1994 | A |
5316591 | Chao et al. | May 1994 | A |
5328722 | Ghanayem et al. | Jul 1994 | A |
5337446 | Smith et al. | Aug 1994 | A |
5339844 | Stanford, Jr. et al. | Aug 1994 | A |
5355901 | Mielnik et al. | Oct 1994 | A |
5368171 | Jackson | Nov 1994 | A |
5370740 | Chao et al. | Dec 1994 | A |
5370741 | Bergman | Dec 1994 | A |
5377705 | Smith, Jr. et al. | Jan 1995 | A |
5401322 | Marshall | Mar 1995 | A |
5403621 | Jackson et al. | Apr 1995 | A |
5404894 | Shiraiwa | Apr 1995 | A |
5412958 | Iliff et al. | May 1995 | A |
5417768 | Smith, Jr. et al. | May 1995 | A |
5433334 | Reneau | Jul 1995 | A |
5447294 | Sakata et al. | Sep 1995 | A |
5456759 | Stanford, Jr. et al. | Oct 1995 | A |
5494526 | Paranjpe | Feb 1996 | A |
5500081 | Bergman | Mar 1996 | A |
5501761 | Evans et al. | Mar 1996 | A |
5503176 | Dummire et al. | Apr 1996 | A |
5505219 | Lansberry et al. | Apr 1996 | A |
5509431 | Smith, Jr. et al. | Apr 1996 | A |
5522938 | O'Brien | Jun 1996 | A |
5526834 | Mielnik et al. | Jun 1996 | A |
5533538 | Marshall | Jul 1996 | A |
5236602 | Jackson | Aug 1996 | A |
5571330 | Kyogoku | Nov 1996 | A |
5589224 | Tepman et al. | Dec 1996 | A |
5621982 | Yamashita et al. | Apr 1997 | A |
5629918 | Ho et al. | May 1997 | A |
5644855 | McDermott et al. | Jul 1997 | A |
5649809 | Stapelfeldt | Jul 1997 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5669251 | Townsend et al. | Sep 1997 | A |
5672204 | Habuka | Sep 1997 | A |
5683977 | Jureller et al. | Nov 1997 | A |
5702228 | Tamai et al. | Dec 1997 | A |
5706319 | Holtz | Jan 1998 | A |
5746008 | Yamashita et al. | May 1998 | A |
5769588 | Toshima et al. | Jun 1998 | A |
5797719 | James et al. | Aug 1998 | A |
5798126 | Fujikawa et al. | Aug 1998 | A |
5817178 | Mita et al. | Oct 1998 | A |
5868856 | Douglas et al. | Feb 1999 | A |
5868862 | Douglas et al. | Feb 1999 | A |
5881577 | Sauer et al. | Mar 1999 | A |
5882165 | Maydan et al. | Mar 1999 | A |
5888050 | Fitzgerald et al. | Mar 1999 | A |
5898727 | Fujikawa et al. | Apr 1999 | A |
5900107 | Murphy et al. | May 1999 | A |
5900354 | Batchelder | May 1999 | A |
5904737 | Preston et al. | May 1999 | A |
5906866 | Webb | May 1999 | A |
5908510 | McCullough et al. | Jun 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5934856 | Asakawa et al. | Aug 1999 | A |
5934991 | Rush | Aug 1999 | A |
5955140 | Smith et al. | Sep 1999 | A |
5967187 | Horne et al. | Oct 1999 | A |
5975492 | Brenes | Nov 1999 | A |
5976264 | McCullough et al. | Nov 1999 | A |
5979306 | Fujikawa et al. | Nov 1999 | A |
5980648 | Adler | Nov 1999 | A |
5981399 | Kawamura et al. | Nov 1999 | A |
5989342 | Ikede et al. | Nov 1999 | A |
6005226 | Aschner et al. | Dec 1999 | A |
6017820 | Ting et al. | Jan 2000 | A |
6024801 | Wallace et al. | Feb 2000 | A |
6029371 | Kamikawa et al. | Feb 2000 | A |
6035871 | Eui-Yeol | Mar 2000 | A |
6037277 | Masakara et al. | Mar 2000 | A |
6053348 | Morch | Apr 2000 | A |
6056008 | Adams et al. | May 2000 | A |
6067728 | Farmer et al. | May 2000 | A |
6077053 | Fujikawa et al. | Jun 2000 | A |
6077321 | Adachi et al. | Jun 2000 | A |
6082150 | Stucker | Jul 2000 | A |
6085935 | Malchow et al. | Jul 2000 | A |
6097015 | McCullough et al. | Aug 2000 | A |
6110232 | Chen et al. | Aug 2000 | A |
6122566 | Nguyen et al. | Sep 2000 | A |
6128830 | Bettcher et al. | Oct 2000 | A |
6145519 | Konishi et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6159295 | Maskara et al. | Dec 2000 | A |
6164297 | Kamikawa | Dec 2000 | A |
6186722 | Shirai | Feb 2001 | B1 |
6203582 | Berner et al. | Mar 2001 | B1 |
6216364 | Tanaka et al. | Apr 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6235634 | White et al. | May 2001 | B1 |
6239038 | Wen | May 2001 | B1 |
6241825 | Wytman | Jun 2001 | B1 |
6242165 | Vaartstra | Jun 2001 | B1 |
6244121 | Hunter | Jun 2001 | B1 |
6251250 | Keigler | Jun 2001 | B1 |
6277753 | Mullee et al. | Aug 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6305677 | Lenz | Oct 2001 | B1 |
6306564 | Mullee | Oct 2001 | B1 |
6319858 | Lee et al. | Nov 2001 | B1 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6344174 | Miller et al. | Feb 2002 | B1 |
6355072 | Racette et al. | Mar 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6389677 | Lenz | May 2002 | B1 |
6418956 | Bloom | Jul 2002 | B1 |
6436824 | Chooi et al. | Aug 2002 | B1 |
6454519 | Toshima et al. | Sep 2002 | B1 |
6454945 | Weigl et al. | Sep 2002 | B1 |
6464790 | Sherstinsky et al. | Oct 2002 | B1 |
6508259 | Tseronis et al. | Jan 2003 | B1 |
6509141 | Mullee | Jan 2003 | B1 |
6521466 | Castrucci | Feb 2003 | B1 |
6541278 | Morita et al. | Apr 2003 | B1 |
6546946 | Dunmire | Apr 2003 | B1 |
6550484 | Gopinath et al. | Apr 2003 | B1 |
6558475 | Jur et al. | May 2003 | B1 |
6561213 | Wang et al. | May 2003 | B1 |
6561220 | McCullough et al. | May 2003 | B1 |
6561481 | Filonczuk | May 2003 | B1 |
6561767 | Berger et al. | May 2003 | B1 |
6564826 | Shen | May 2003 | B1 |
6802961 | Jackson | Oct 2004 | B1 |
6848667 | Wygnanski | Feb 2005 | B1 |
6890853 | Biberger et al. | May 2005 | B1 |
20020046707 | Biberger et al. | Apr 2002 | A1 |
20030198895 | Toma et al. | Oct 2003 | A1 |
20040020518 | DeYoung et al. | Feb 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040177867 | Schilling | Sep 2004 | A1 |
20050077597 | Toma et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
251213 | Aug 1948 | CH |
36 08 783 | Sep 1987 | DE |
39 04 514 | Mar 1990 | DE |
40 04 111 | Aug 1990 | DE |
39 06 724 | Sep 1990 | DE |
39 06 735 | Sep 1990 | DE |
39 06 737 | Sep 1990 | DE |
44 29 470 | Mar 1995 | DE |
43 44 021 | Jun 1995 | DE |
198 60 084 | Jul 2000 | DE |
0 244 951 | Nov 1987 | EP |
02 72 141 | Jun 1988 | EP |
0 283 740 | Sep 1988 | EP |
0 302 345 | Feb 1989 | EP |
0 370 233 | May 1990 | EP |
0 391 035 | Oct 1990 | EP |
0 453 867 | Oct 1991 | EP |
0 518 653 | Dec 1992 | EP |
0 536 752 | Apr 1993 | EP |
0 572 913 | Dec 1993 | EP |
0 587 168 | Mar 1994 | EP |
0 620 270 | Oct 1994 | EP |
0 679 753 | Nov 1995 | EP |
0 711 864 | May 1996 | EP |
0 726 099 | Aug 1996 | EP |
0 727 711 | Aug 1996 | EP |
0 822 583 | Feb 1998 | EP |
0 829 312 | Mar 1998 | EP |
0 836 895 | Apr 1998 | EP |
0 903 775 | Mar 1999 | EP |
1 499 491 | Sep 1967 | FR |
2 003 975 | Mar 1979 | GB |
2 193 482 | Feb 1988 | GB |
60-192333 | Sep 1985 | JP |
60-2348479 | Nov 1985 | JP |
60-246635 | Dec 1985 | JP |
61-017151 | Jan 1986 | JP |
61-231166 | Oct 1986 | JP |
62-125619 | Jun 1987 | JP |
63-303059 | Dec 1988 | JP |
1-045131 | Feb 1989 | JP |
1-246835 | Oct 1989 | JP |
2-148841 | Jun 1990 | JP |
2-209729 | Aug 1990 | JP |
2-304941 | Dec 1990 | JP |
7-142333 | Jun 1995 | JP |
8-186140 | Jul 1996 | JP |
8-222508 | Aug 1996 | JP |
10-144757 | May 1998 | JP |
56-142629 | Nov 1998 | JP |
10335408 | Dec 1998 | JP |
11-200035 | Jul 1999 | JP |
2000-106358 | Apr 2000 | JP |
WO 8707309 | Dec 1987 | WO |
WO 9006189 | Jun 1990 | WO |
WO 9013675 | Nov 1990 | WO |
WO 9112629 | Aug 1991 | WO |
WO 9314255 | Jul 1993 | WO |
WO 9314259 | Jul 1993 | WO |
WO 9320116 | Oct 1993 | WO |
WO 96277704 | Sep 1996 | WO |
WO 9918603 | Apr 1999 | WO |
WO 9949998 | Oct 1999 | WO |
WO 0036635 | Jun 2000 | WO |
WO 0073241 | Dec 2000 | WO |
WO 0110733 | Feb 2001 | WO |
WO 0133615 | May 2001 | WO |
WO 0155628 | Aug 2001 | WO |
WO 0168279 | Sep 2001 | WO |
WO 0174538 | Oct 2001 | WO |
WO 0178911 | Oct 2001 | WO |
WO 0185391 | Nov 2001 | WO |
WO 0194782 | Dec 2001 | WO |
WO 0209894 | Feb 2002 | WO |
WO 0211191 | Feb 2002 | WO |
WO 0216051 | Feb 2002 | WO |
WO 03030219 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060130913 A1 | Jun 2006 | US |