The present invention relates to a non-planar, non-volatile floating gate memory cell, and an array of such cells and a method of making same in a semiconductor substrate. More particularly, the present invention relates to a such a memory cell having a floating gate, a control gate and an erase gate.
Non-volatile semiconductor memory cells using a floating gate to store charges thereon and memory arrays of such non-volatile memory cells formed in a semiconductor substrate are well known in the art. Typically, such floating gate memory cells have been of the split gate type, or stacked gate type.
It is also known to form memory cell elements over non-planar portions of the substrate. For example, U.S. Pat. No. 5,780,341 (Ogura) discloses a number of memory device configurations that includes a step channel formed in the substrate surface. While the purpose of the step channel is to inject hot electrons more efficiently onto the floating gate, these memory device designs are still deficient in that it is difficult to optimize the size and formation of the memory cell elements as well the necessary operational parameters needed for efficient and reliable operation.
The use of three gates in a non-volatile memory cell is also well known in the art. See for example U.S. Pat. Nos. 5,856,943 or 6,091,104.
Finally, self-aligned methods to form non-volatile split gate floating gate memory cells are also well known. See U.S. Pat. No. 6,329,685.
Erasure of charges on a floating gate through the mechanism of poly-to-poly tunneling of electrons through Fowler-Nordheim tunneling is also well known in the art. See U.S. Pat. No. 5,029,130, whose disclosure is incorporated herein by reference in its entirety.
Thus, it is one object of the present invention to create a self-aligned method to make a non-planar split gate floating non-volatile memory cell, and an array of such cells, in which the cell has three gates: a floating gate, a control gate and an erase gate, wherein charges are removed from the floating gate to the erase gate through the mechanism of Fowler-Nordheim tunneling.
In the present invention, an electrically programmable and erasable memory device comprises a substrate of a semiconductor material having a first conductivity type and a horizontal surface. A trench is formed into the surface of the substrate. A first and second spaced-apart regions are formed in the substrate, each has a second conductivity type, with a channel region formed in the substrate between the first region and the second region. The first region is formed underneath the trench. The channel region includes a first portion that extends substantially along a sidewall of the trench and a second portion that extends substantially along the surface of the substrate. An electrically conductive floating gate has at least a lower portion thereof disposed in the trench adjacent to and insulated from the channel region first portion for controlling a conductivity of the channel region first portion. An electrically conductive erase gate has at least a lower portion thereof disposed in the trench adjacent to and insulated from the floating gate. An electrically conductive control gate is disposed over and insulated from the channel region second portion for controlling the conductivity of the channel region second portion.
The present invention also relates to an array of the foregoing described memory cells. Finally, the present invention relates to a method of manufacturing the foregoing described array of memory cells.
The method of the present invention is illustrated in
Isolation Region Formation
Once the first and second layers 12/14 have been formed, suitable photo resist material 16 is applied on the nitride layer 14 and a masking step is performed to selectively remove the photo resist material from certain regions (stripes 18) that extend in the Y or column direction, as shown in
The structure is further processed to remove the remaining photo resist 16. Then, an isolation material such as silicon dioxide is formed in trenches 20 by depositing a thick oxide layer, followed by a Chemical-Mechanical-Polishing or CMP etch (using nitride layer 14 as an etch stop) to remove the oxide layer except for oxide blocks 26 in trenches 20, as shown in
The STI isolation method described above is the preferred method of forming isolation regions 24. However, the well known LOCOS isolation method (e.g. recessed LOCOS, poly buffered LOCOS, etc.) could alternately be used, where the trenches 20 may not extend into the substrate, and isolation material may be formed on the substrate surface in stripe regions 18.
Memory Cell Formation
The structure shown in
An insulation layer 28 (preferably silicon nitride) is first formed over the substrate 10. Photoresist (not shown) is then formed over the silicon nitride 28. The photoresist is patterned in a direction orthogonal to the active region resulting in stripes of photoresist in the X direction spaced apart from one another in the Y direction. Using the photoresist as a mask, the silicon nitride 28 is patterned. The distance z between adjacent stripes of silicon nitride 28 can be as small as the smallest lithographic feature of the process used. Using the silicon nitride 28 as a mask, silicon of the substrate 10 is then anisotropically etched in the regions between the silicon nitride 28. Since the silicon substrate 10 is not continuous because of the STI 26 formed between adjacent active regions, the anisotropic etching of the silicon substrate 10 results in “pockets”. The STI 26 is formed between the pockets 30 of etched silicon. The resultant structure is shown in
The structure shown in
Next, the structure shown in
The structure shown in
Using the spacer 40 as a mask, the polysilicon 38 is anisotropically etched. Further, the anisotropic etching proceeds through the heavily doped polysilicon 36 which is deposited on the bottom of the pocket 30. Thereafter, a layer 42 of silicon dioxide (approximately 150-250 angstroms thick) deposited by an HTO (high temperature oxide) process is made on the structure. The layer 42 then lines pocket 30 and is adjacent to the side wall of the pocket and is deposited along the bottom wall of the pocket 30. The resultant structure is shown on
Polysilicon 44 is then deposited filling the pocket 30 of the structure shown in
The structure shown in
The structure in
The structure shown in
The structure in
The structure shown in
The structure shown in
A layer of polysilicon 56 is then deposited and is then anisotropically etched back forming polysilicon spacers 56. Each of the polysilicon spacers 56 is immediately adjacent to an oxide layer 34 and is on the gate oxide 54. A gap 58 is formed between pairs of adjacent polysilicon spacers 56. The resultant structure is shown in
Finally, ion implantation is performed implanting through the gate oxide 54 to form the other source/drain region 60 through the gate oxide 54. The resultant structure is shown in
Electrically, within each pocket 30 there is a region of source/drain 32, and a floating gate comprising of polysilicon 36 and 38 with a tip 46, an erase gate 44 immediately adjacent to the floating gate 36/38 but extending over the immediately adjacent STI 26 to the adjacent pocket 30 in the X direction and a conductive block of polysilicon 52 in electrical contact with the source/drain region 32 and extending in the X direction connecting to the block in the other pockets 30 in the same row. In the Y direction within an active region, a second source/drain region 60 is formed with a polysilicon 56 extending in the x direction being the gate of a transistor that is formed along the top surface of the substrate 10. The floating gate 36/38 influences the channel region which is along the side wall of the pocket 30. A top view of the structure formed by the aforementioned method is shown in
In the operation of the device 80 of the present invention, a selected cell is programmed by placing a relatively low voltage such as ground or +0.5 volts on the selected drain/source region 60. The gate 56 immediately adjacent to the selected drain/source region 60 is turned on by applying a positive voltage, thereby turning on the channel region which is along the top surface of the substrate 10. The selected block 52 of polysilicon is applied with a positive high voltage such as +8 volts which is then applied to the source/drain region 32. Finally, the selected erase gate 44 of the selected cell is applied with a positive voltage to turn on the channel region along the side wall of the pocket 30 of the selected cell irrespective of the state of the floating gate 36/38, thereby turning on the side wall channel of the selected transistor cell. This causes electrons from the drain/source region 60 to be accelerated toward the source/drain region 32 and near the junction of the top surface of the substrate 10 and the side wall of the pocket 30, the electrons experience an abrupt voltage increase and are accelerated onto the floating gate 36/38. This mechanism of hot electron programming is disclosed in U.S. Pat. No. 5,029,130 which is incorporated herein by reference and is also disclosed in U.S. patent application Ser. No. 10/757,830, filed on Jan. 13, 2004, which disclosure is also incorporated herein by reference. The mechanism of erasure is by the mechanism of poly to poly tunneling of electrons by Fowler-Nordheim tunneling. This is also disclosed in U.S. Pat. No. 5,029,130 whose disclosure is incorporated herein by reference. To erase, a positive high potential is applied to the erase gate 44. Because of the strong coupling between the erase gate 44 and the floating gate 36/38, electrons tunnel through the tip 46 onto the erase gate 44. In an erase operation, all of the transistor cells aligned in the same row as the selected erase gate 44 are erased at the same time. Finally, to read a selected transistor cell, a positive potential is applied to the drain/source region 60. A ground voltage is applied to the conducted block 52 which is applied to the drain/source region 32. A low positive voltage is applied to the erase gate 44. In the event the floating 36/38 is programmed or has electrons stored thereon, the low positive voltage applied to the erase gate 44 is not sufficient to turn on the channel region which is along the side wall of the pocket 30. Thus, no charges would traverse the channel region from the source/drain 32 to or from the drain/source 60. However, if the floating gate 36/38 is not charged or programmed, then the potential on the erase gate 44 is sufficient to turn on the side wall of the channel along the side wall of the pocket 30. The gate spacer 56 is applied with a positive potential sufficient to turn on the channel region in the top planar surface of the substrate 10. In that event, the channel region is fully turned on and charges would traverse to or from the drain/source regions 32 and source/drain region 60.
Referring to
Referring to
The process and the description shown in
Unlike the method and process shown and described for
The structure shown in
The hydrogen-rich, low-temperature PEDCD silicon dioxide 45 is then subject to a wet etch which preferentially etches the silicon dioxide 45 at a faster rate than the HTO deposited silicon dioxide 42. Thereafter, HTO deposited silicon dioxide 50 on the order of 200 to 800 angstroms is deposited everywhere which covers the polysilicon 44 and lines along the bottom wall of the pocket 30. The resultant structure is shown in
The structure shown in
The structure shown in
The structure shown in
The difference between the structure shown in
In operation, one of the differences that could result from the change in the structure as shown in
From the foregoing, it can be seen that a highly compact, non-planar, non-volatile memory cell with a floating gate for storage of charges and with an erase gate and an array therefor and a method making the same has been disclosed.
It is to be understood that the present invention is not limited to the embodiment(s) described above and illustrated herein, but encompasses any and all variations falling within the scope of the appended claims. For example, the pockets 30 can end up having any shape that extends into the substrate, not just the elongated rectangular shape shown in the figures. Also, although the foregoing method describes the use of appropriately doped polysilicon as the conductive material used to form the memory cells, it should be clear to those having ordinary skill in the art that in the context of this disclosure and the appended claims, “polysilicon” refers to any appropriate conductive material that can be used to form the elements of non-volatile memory cells. In addition, any appropriate insulator can be used in place of silicon dioxide or silicon nitride. Moreover, any appropriate material who's etch property differs from that of silicon dioxide (or any insulator) and from polysilicon (or any conductor) can be used in place of silicon nitride. Further, as is apparent from the claims, not all method steps need be performed in the exact order illustrated or claimed, but rather in any order that allows the proper formation of the memory cell of the present invention. Additionally, the above described invention is shown to be formed in a substrate which is shown to be uniformly doped, but it is well known and contemplated by the present invention that memory cell elements can be formed in well regions of the substrate, which are regions that are doped to have a different conductivity type compared to other portions of the substrate. Lastly, single layers of insulating or conductive material could be formed as multiple layers of such materials, and vice versa.