Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow

Abstract
A non-planar tri-gate p-MOS transistor structure with a strained channel region and a non-planar tri-gate integrated strained complimentary metal-oxide-semiconductor (CMOS) structure are described. A relaxed Si1-x Gex layer is formed on the silicon-on-isolator (SOI) substrate. The relaxed Si1-x Gex layer is patterned and subsequently etched to form a fin on the oxide. The compressively stressed Si1-y Gey layer, having the Ge content y higher than the Ge content x in the relaxed Si1-x Gex layer, is epitaxially grown on the fin. The Si1-y Gey layer covers the top and two sidewalls of the fin. The compressive stress in the Si1-y Gey layer substantially increases the hole mobility in a channel of the non-planar tri-gate p-MOS transistor structure.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to the field of semiconductor manufacturing, and more specifically, to a semiconductor transistor and its manufacture.


2. Discussion of Related Art


Various techniques are used to improve performance of a metal-oxide-semiconductor (MOS) transistor. Transistors have continuously been scaled down, thus increasing their density, and accordingly, their switching speeds.


Another way to increase the speed of the transistor, is to create a transistor channel with a high mobility of the carriers by, for example, growing a strained silicon (Si) layer on a relaxed silicon germanium (“Si1-x Gex”) layer thereby increasing mobility of electrons. The tensile strain in the Si layer, however, does not increase the hole mobility. Therefore, for a p-MOS transistor structure, the channel formed from the Si layer under tensile stress cannot provide increased hole mobility. In addition, the tensile strained Si layer is grown on a planar substrate, which limits the density of the transistors and increases intrinsic capacitance.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described by way of example with reference to the accompanying drawings, wherein:



FIG. 1A is a perspective view of a semiconductor structure having a Silicon-On-Isolator (SOI) substrate for a non-planar strained p-MOS transistor structure fabrication according to one embodiment of the invention;



FIG. 1B is a view similar to FIG. 1A, after a strained Si1-x Gex layer and an intrinsic Si layer are formed on the SOI substrate;



FIG. 1C is a view similar to FIG. 1B, after annealing to form a relaxed Si1-x Gex layer;



FIG. 1D is a view similar to FIG. 1C, after forming a tri-gate fin from the relaxed Si1-x Gex layer according to one embodiment of the invention;



FIG. 1E is a view similar to FIG. 1D, after a strained Si1-y Gey layer is epitaxially formed on the relaxed Si1-x Gex tri-gate fin;



FIG. 1F is a cross-sectional view of the semiconductor structure after a high-k dielectric layer is formed on the strained Si1-y Gey tri-gate fin according to one embodiment of the invention;



FIG. 1G is a cross-sectional view of the semiconductor structure after a tri-gate electrode is formed on the high-k dielectric layer according to one embodiment of the invention;



FIG. 1H is a perspective view of a tri-gate p-MOS semiconductor structure according to one embodiment of the invention;



FIG. 2A is a cross-sectional side view of a semiconductor structure for a non-planar tri-gate CMOS fabrication with tri-gate fins according to one embodiment of the invention;



FIG. 2B is a view similar to FIG. 2A, after covering an n-MOS portion of the semiconductor structure by a protection layer, leaving a p-MOS portion exposed;



FIG. 2C is a view similar to FIG. 2B, after epitaxially forming a strained Si1-y Gey layer on a tri-gate fin of the p-MOS portion of the semiconductor structure;



FIG. 2D is a view similar to FIG. 2C, after a protection oxide layer is formed on the strained Si1-y Gey layer covering the tri-gate fin of the p-MOS portion of the semiconductor structure;



FIG. 2E is a view similar to FIG. 2D, after removing the protection layer from the n-MOS portion of the semiconductor structure;



FIG. 2F is a view similar to FIG. 2E, after forming a strained Si layer on a tri-gate fin of the n-MOS portion of the semiconductor structure;



FIG. 2G is a view similar to FIG. 2F, after forming a protection pad oxide layer on the strained Si layer covering the tri-gate fin of the n-MOS portion of the semiconductor structure;



FIG. 2H is a view similar to FIG. 2G, after removing the protection oxide layers from the n-MOS and p-MOS portions of the semiconductor structure;



FIG. 21 is a view similar to FIG. 2H, after forming a high-k dielectric layer on the strained Si layer and Si1-y Gey layer;



FIG. 2J is a view similar to FIG. 21, after forming a tri-gate gate electrode on the high-k dielectric layer; and



FIG. 2K is a perspective view of the strained CMOS structure according to one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

A non-planar strained p-MOS transistor structure and a non-planar integrated strained complementary metal-oxide-semiconductor (CMOS) structure with respective processes of their fabrication are described herein. A relaxed Si1-x Gex layer is formed on the silicon-on-isolator (SOI) substrate. The relaxed Si1-x Gex layer is patterned, and subsequently, etched to form a tri-gate fin on the SOI substrate. Further, a Si1-y Gey layer, having a Ge content y higher than a Ge content x in the relaxed Si1-x Gex layer, is epitaxially formed on the tri-gate fin formed from the etched relaxed Si1-x Gex layer on the SOI substrate. The Si1-y Gey layer covers two opposing sidewalls and a top surface of the tri-gate fin. Due to the higher Ge content, the lattice of the Si1-y Gey layer has a larger spacing than the spacing of the lattice of the underlying relaxed Si1-x Gex layer. The larger spacing of the Si1-y Gey strains the Si1-y Gey layer, resulting in the compressive stress in the latter. A compressively stressed Si1-y Gey layer epitaxially grown on the top surface and the two opposing sidewalls of the tri-gate fin formed from the relaxed Si1-x Gex layer, which rests on the SOI substrate, is used to form a strained channel between a source and drain region of the non-planar p-MOS transistor structure. Compressive stress in Si1-y Gey layer substantially increases the hole mobility in the transistor channel of the non-planar p-MOS transistor structure improving current-voltage (I-V) characteristics. The I-V characteristics are improved, for example, by increasing a saturation drain current (IDSAT) and a linear drain current (IDLN) of a non-planar p-MOS transistor, as a result of increased hole mobility in the transistor channel.



FIG. 1A of the accompanying drawings illustrates a semiconductor structure for a non-planar strained p-MOS transistor structure fabrication according to one embodiment of the invention. As shown in FIG. 1A, semiconductor structure 400 includes an insulating layer 402, which is sandwiched between a silicon layer 403 and a bulk monocrystalline silicon substrate 401 forming a silicon-on-isolator (SOI) substrate. Generally, devices are formed in and on the layer of silicon 403. The insulating layer 402 may serve to reduce capacitance between the devices formed in the silicon layer 403 and the substrate 401, resulting in less power consumption and greater circuit speed. In one embodiment, the insulating layer 402 is a buried oxide layer, for example, SiO2, and the like. In alternative embodiments, the insulating layer 402 may be any one, or a combination of, sapphire, silicon dioxide, silicon nitride, or other insulating materials. The thickness of the silicon layer 403 may be in the approximate range of 2.5 nanometers (“nm”) to 7.5 nm. The thickness of the insulating layer 402 may be in the approximate range of 500 angstroms (“Å”) to 1500 Å. More specifically, the thickness of the silicon layer formed on top surface of the buried oxide layer resting on the monocrystalline Si substrate, is about 5 nm and the thickness of the buried oxide layer is about 1000 Å. The SOI substrate may be formed by any one of the techniques known in the art, for example, separation by implantation of oxygen (SIMOX), hydrogen implantation and separation approach (also called SmartCut®), and the like.



FIG. 1B illustrates a semiconductor structure 400 after a strained Si1-x Gex layer and an intrinsic Si layer are formed on the SOI substrate. The strained Si1-x Gex layer 404 and an intrinsic Si layer 405 are subsequently formed on the Si layer 403. The Si1-x Gex layer 404 is epitaxially grown on the Si layer 403. Generally, Si1-x Gex material has a lattice structure substantially the same as a monocrystalline Si lattice structure. Because of the presence of Ge atoms, the Si1-x Gex lattice spacing is substantially larger than the Si lattice spacing. Ge atoms of the Si1-x Gex layer 404 are diagrammed as large circles, whereas Si atoms are diagrammed as small circles in FIG. 1B. The lattice spacing of the Si1-x Gex increases with increasing the Ge content x in the Si1-x Gex. The larger lattice spacing strains the Si1-x Gex layer 404 formed on the Si layer 403 and generates the compressive stress in the Si1-x Gex layer 404. In one embodiment, an intrinsic Si layer 405 is epitaxially grown on the strained Si1-x Gex layer 404 to become a capping layer for the Si1-x Gex layer 404. In one embodiment, the Ge content x in the Si1-x Gex layer 404 formed on the Si layer 403 is in the approximate range of 0.05 to 0.2 (that is of 5% to 20%). In more specific embodiment, the Ge content x in the Si1-x Gex layer 404 on the Si layer 403 is about 0.15 that is equivalent to 15%. Generally, the thickness of the strained Si1-x Gex layer 404 depends on the ultimate device geometry. In one embodiment, to form a non-planar tri-gate transistor structure, the strained Si1-x Gex layer 404 may have the thickness in the approximate range of 15-25 nm and the intrinsic Si layer 405 may have the thickness in the approximate range between 3 nm to 15 nm. In another embodiment, the strained Si1-x Gex layer 404 may have the thickness about 20 nm. In yet another embodiment, to form, for example, a double-gate device, the strained Si1-x Gex layer 404 may be about 100 nm thick.


The heat treatment, or annealing, of the semiconductor structure 400 is carried out to reduce strain of the Si1-x Gex layer 404. Annealing results in diffusion of the Ge atoms from Si1-x Gex layer 404 into the underlying Si layer 403 and upper intrinsic Si layer 405, as illustrated in FIG. 1B. The diffusion of the Ge atoms relaxes the strain in the Si1-x Gex layer 404, such that the relaxed Si1-x Gex layer 406 is formed, as illustrated in FIG. 1C. In one embodiment, the annealing temperature to relax the strained Si1-x Gex layer 404 is in the approximate range of 1000 to 1100 C., and more specifically, about 1050 C.



FIG. 1C is a view of the semiconductor structure 400 after annealing. As shown in FIG. 1C, the semiconductor structure 400, after annealing, comprises a relaxed Si1-x Gex layer 406 formed from the strained Si1-x Gex layer 404, the Si layer 403 and the intrinsic Si layer 405. The relaxed Si1-x Gex layer 406 rests on top surface of the buried oxide layer 402 covering the silicon substrate 401. In one embodiment, the total thickness of the relaxed Si1-x Gex layer 406 may be in the approximate range of 20 nm to 100 nm.


The semiconductor structure 400 is patterned to expose portions of the relaxed Si1-x Gex layer 406. The exposed portions of the relaxed Si1-x Gex layer 406 are subsequently etched and removed so that tri-gate fins in the relaxed Si1-x Gex layer 406 are formed. FIG. 1D shows the semiconductor structure 400 with a tri-gate fin formed from relaxed Si1-x Gex layer on the oxide layer according to one embodiment of the invention. The tri-gate fin 407 stands above the insulating layer 402, the insulating layer 402 covers the Si substrate 401. In one embodiment, patterning of the relaxed Si1-x Gex layer 406 to form the tri-gate fin 407 may be performed by using a well known in the art photolithographic technique. Etching the portions of the relaxed Si1-x Gex layer 406 can be performed with an anisotropic etchant, which selectively removes the exposed portions of the relaxed Si1-x Gex layer 406 over the other exposed materials of the structure, generating the tri-gate fm 407 with vertical sidewalls. In one embodiment, the width 421 of the tri-gate fin 407 is in the approximate range of 20 nm to 120 nm.



FIG. 1E illustrates a strained Si1-y Gey 408 selectively grown on the tri-gate fin 407. The strained Si1-y Gey layer 408 covers the top surface and two opposing sidewalls of the tri-gate fin 407, but does cover the insulating layer 402. Because the Si1-y Gey layer 408 has the same lattice structure as the relaxed Si1-x Gex layer 406 comprising the tri-gate fin 407, it can be epitaxially grown on the relaxed Si1-x Gex layer. In one embodiment, the Si1-y Gey layer, which is selectively grown by epitaxy on the relaxed Si1-x Gex tri-gate fin, has the Ge content y approximately from 0.10 to 0.50 (10% to 50%) higher than the Ge content x in the underlying relaxed Si1-x Gex fin. In another embodiment, the Ge content y of the Si1-y Gey layer epitaxially grown on the relaxed Si1-0.15 Ge0.15 tri-gate fin is about 0.3 (30%) higher than the Ge content x in the underlying relaxed Si1-x Gex fin. In yet another embodiment, the Ge content y of the Si1-y Gey layer epitaxially grown on the relaxed Si1-0.15 Ge0.15 tri-gate fin is about 0.3 (30%). Generally, the higher Ge content means larger lattice spacing of the Si1-y Gey layer relative to the relaxed Si1-x Gex layer. Larger lattice spacing creates compressive stress in the Si1-y Gey layer covering the top surface and two opposing sidewalls of the relaxed Si1-x Gex tri-gate fin. The compressive stress in the Si1-y Gey layer reduces the effective mass of the p-type carriers (holes) that substantially increases the hole mobility in a channel of the non-planar PMOS transistor, wherein the channel is formed in the strained Si1-y Gey layer 408. In one embodiment, the hole mobility enhancement factor in the channel formed in the strained Si1-y Gey layer 408 is in the approximate range of 1.2 to 5.


In one embodiment, the strained Si1-y Gey layer 408 may be epitaxially grown on the tri-gate fin 407 by a low pressure chemical vapour deposition (CVD) technique including Silane (SiH4) and Germane (GeH4) gases. For another embodiment, the strained Si1-y Gey layer 408 may be epitaxially grown on the relaxed Si1-x Gex tri-gate fin 407 by a low pressure chemical vapour deposition (CVD) technique including DichloroSilane (SiCl2H2) and Germane (GeH4) gases. In one embodiment, the pressure in the reactor may be in the approximate range of 1 torr to 400 torr and the temperature may be in the approximate range of 300 C to 900 C. In one embodiment, the thickness of the strained Si1-y Gey layer selectively grown by epitaxy on the relaxed Si1-x Gex tri-gate fin is in the approximate range of 50 Å to 200 Å. More specifically, the thickness of the strained Si1-y Gey layer is about 100 Å. Further, a n-type dopant, for example, arsenic (“As”), phosphorus (“P”), and the like, is added to the relaxed Si1-x Gex tri-gate fin 407 covered by the strained Si1-y Gey layer 408 to form a n-well. The n-type dopant may be added by using, for example, the ion implantation technique. The concentration of the n-type dopants is in the approximate range of 2×1016 cm−3 to 2×1019 cm−3.


As illustrated in FIG. 1F, a dielectric layer is formed on the strained Si1-y Gey layer. The dielectric layer 409 covers the top surface and two opposing sidewalls of the tri-gate fin 407 with the strained Si1-y Gey layer 408. The dielectric layer 409 forms a gate dielectric of the tri-gate transistor structure. In one embodiment, the dielectric layer 409 may be blanket deposited, patterned, and etched into the gate dielectric utilizing known photolithographic and etching techniques. In one embodiment, the dielectric layer may include oxide of a transition metal. In one embodiment, the dielectric layer 409 may include a high-k dielectric, for example, zirconium oxide(“ZrO2”). For alternative embodiments, the dielectric layer 409 may include of any one of a hafnium oxide (“HFO2”) and lanthanum oxide (“La2O4”). The thickness of the dielectric layer 409 may be between 10 Å and 40 Å.



FIG. 1G is a cross-sectional view of the semiconductor structure 400 after a tri-gate electrode layer is formed on the high-k dielectric layer according to one embodiment of the invention. The tri-gate electrode layer 411 is formed on the dielectric layer 409 covering the top surface and the sidewalls of the tri-gate fin 407, as illustrated in FIG. 1G. In one embodiment, the thickness of the tri-gate electrode layer 411 is in the approximate range of 500 Å to 1500 Å. In one embodiment, the tri-gate electrode layer 411 may be formed by blanket deposition of polysilicon and patterning the polysilicon into the tri-gate electrode utilizing known photolithographic techniques. For an embodiment, the tri-gate electrode layer 411 and the underlying dielectric layer 409 may be subsequently patterned and etched to a predetermined width. In another embodiment, the tri-gate electrode layer 411 includes a metal underlayer under the polysilicon. In yet another embodiment, the tri-gate electrode layer 411 is a metal.



FIG. 1H is a perspective view of a tri-gate p-MOS semiconductor structure 400 according to one embodiment of the invention. The structure 400 has a source region 413 and a drain region 414 formed in the fin structure (“fin body”) 418 at opposite sides of the gate electrode 421. The gate electrode 421 with underlying dielectric 429 has a predetermined width 415 and covers a portion of the fin body 418. For an embodiment, the fin body 418 includes a tri-gate fin 407 formed from relaxed Si1-x Gex layer covered by the strained Si1-y Gey layer 408. The fin body 418 is formed on top surface of the insulating layer 402. The insulating layer 402 rests on the silicon substrate 401. In one embodiment, the width 415 of the gate electrode 421 is in the approximate range of 80 nm to 120 nm, the thickness 416 of the fin body 418 is in the approximate range of 20 nm to 120 nm, and the width 417 of the fin body 418 is in the approximate range of 20 nm to 120 nm. For an embodiment, to form the source region 413 and the drain region 414 of the p-MOS transistor structure 400, a p-type dopant, for example, boron (“B”) is added to the fin body 418 at the opposite sides of the gate electrode 421, for example, by ion implantation. For an embodiment, the concentration of the p-type dopants is in the approximate range of 1018 cm−3 to 1021 cm−3.



FIGS. 2A-2K illustrate an exemplary process to fabricate a strained non-planar tri-gate CMOS structure, according to one embodiment of the invention. FIG. 2A illustrates a cross-sectional view of the semiconductor structure 500 for tri-gate CMOS fabrication with two tri-gate fins 503N and 503P formed from a relaxed Si1-x Gex layer. As shown in FIG. 2A, the tri-gate fins 503N and 503P formed from a relaxed Si1-x Gex layer are located on an oxide layer 502, which covers a Si substrate 501. One of the tri-gate fins 503N belongs to an n-MOS portion 520 of the semiconductor structure, whereas the other tri-gate fin 503P belongs to a p-MOS portion 530 of the CMOS structure. Semiconductor structure 500 having tri-gate fins 503N and 503P formed from the relaxed Si1-x Gex layer may be fabricated using the process described presently. Next, before forming the p-MOS portion 530, the n-MOS portion 520 is covered by a first protection layer to protect the n-MOS portion during p-MOS portion formation.



FIG. 2B is a cross-sectional view of the semiconductor structure 500 after covering the n-MOS portion by a first protection layer. The p-MOS portion 530 of the structure 500 is uncovered, while the first protection layer 505 covers the top surface and sidewalls of the tri-gate fin 503N that belongs to the n-MOS portion 520. For an embodiment, the first protection layer 505 may be formed, for example, by depositing a silicon nitride (“Si3N4”) layer on the wafer, forming a resist on the Si3N4 layer, patterning the resist to expose portions of the Si3N4 layer covering the p-MOS portion 530, etching the silicon nitride layer on the p-MOS portion 530 to expose p-MOS portion 530, and then ashing the resist producing the structure in FIG. 2B. In alternative embodiments, other implant mask materials may be used as a first protection layer 505. Next, to form a strained channel in the p-MOS portion 530 of the semiconductor structure 500, a strained Si1-y Gey layer is selectively formed on the tri-gate fin 503P of the p-MOS portion 530.



FIG. 2C shows a cross-sectional view of the semiconductor structure 500 after epitaxially forming a strained Si1-y Gey layer on the tri-gate fin of the p-MOS portion. The n-MOS portion 520 is covered by the first protection layer 505. The strained Si1-y Gey layer 504 covers the top surface and two opposing sidewalls of the tri-gate fin 503P of the p-MOS portion 530 of the structure 500 leaving the oxide layer 502 uncovered. In one embodiment, the strained Si1-y Gey layer 504 is selectively epitaxially grown on the top surface and two opposing sidewalls of the tri-gate fin 503P of the p-MOS portion 530. More specifically, the strained Si1-y Gey layer 504 is grown by low pressure CVD technique with a flow including SiH4 and GeH4 gases. For another embodiment, the strained Si1-y Gey layer 504 may be epitaxially grown by a low-pressure chemical vapour CVD with a flow including of SiCl2H2 and GeH4 gases. The pressure in the reactor may be in the approximate range of 1 torr to 400 torr and the temperature may be in the approximate range of 300 C. to 900 C.


The strained Si1-y Gey layer 504 has a Ge content y approximately 15% higher than the Ge content x of the relaxed Si1-x Gex layer of the tri-gate fin 503P and a lattice spacing substantially larger than the lattice spacing of the Si1-x Gex layer of the tri-gate fin 503P that results in a compressive stress in the strained Si1-y Gey layer 504 along the top surface and two opposing sidewalls of the tri-gate fin 503P of the p-MOS portion 530. In one embodiment, the strained Si1-y Gey layer 504 has the Ge content y about 10% to 50% higher than the relaxed Si1-x Gex layer of the tri-gate fin 503P. In one embodiment, the strained Si1-y Gey layer 504 has the Ge content y about 0.3 (30%) and the relaxed Si1-x Gex layer of the tri-gate fin 503P has the Ge content x of about 0.15 (15%). The compressive stress increases the hole mobility in the strained Si1-y Gey layer 504. In one embodiment, the hole mobility enhancement factor in the channel formed in the strained Si1-y Gey layer 408 is in the approximate range of 1.2 to 5. In one embodiment, the thickness of the strained Si1-y Gey layer 504 is in the approximate range of 50 Å to 200 Å, and more specifically, about 100 Å. Further, to form a n-well, a n-type dopant is added to the tri-gate fin 503N covered by the strained Si1-y Gey layer 504. The n-type dopant may be any one of As, P, and the like. The n-type dopant may be added, for example, by the ion implantation technique. For an embodiment, the concentration of the dopants is in the approximate range of 2×1017 cm−3 to 2×1019 cm−3. In one embodiment, before the ion implantation, the strained Si1-y Gey layer 504 may be covered by a second protection layer to protect the surface of the strained Si1-y Gey layer 504 from unnecessary damage.



FIG. 2D is a cross-sectional view of the semiconductor structure 500 having a second protection layer 506 formed on the strained Si1-y Gey layer. The second protection layer 506 is deposited on the strained Si1-y Gey layer 504 along the top surface and two opposing sidewalls of the tri-gate fin 503P of the p-MOS portion 530. For an embodiment, the second protection layer 506 may be a silicon oxide layer formed by the epitaxial growth and the subsequent oxidation of silicon. For another embodiment, the second protection layer 506 may be a second silicon nitride layer formed by patterning and etching technique, which is known to one of ordinary skill in the art of semiconductor fabrication. For example, the protection layer 506 may be formed by repeating the deposition of silicon nitride layer on the wafer, lithographically patterning the silicon nitride layer to leave a resist on the p-MOS portion 530, etching the silicon nitride layer off the n-MOS portion 520, and then stripping off the resist.


The second protection layer 506 also protects the p-MOS portion 530 from, for example, unnecessary deposition of Si during the strained channel formation at the n-MOS portion 520 of the semiconductor structure 500. The thickness of the second protection layer 506 may be in the approximate range of 30 Å to 100 Å. Next, to form a n-MOS portion, the first protection layer 505 is removed from the n-MOS portion 520 of the semiconductor structure 500.



FIG. 2E is a cross-sectional view of the semiconductor structure 500, after removing the first protection layer 505 from the n-MOS portion of the semiconductor structure 500. For an embodiment, the first protection layer 505 may be removed by, for example, wet etching using a hot phosphoric acid. Further, to form a strained channel, the strained Si layer is epitaxially grown on the tri-gate fin 503N of the n-MOS portion 520.



FIG. 2F is a cross-sectional view of the semiconductor structure after forming a strained Si layer on the tri-gate fin of the n-MOS portion. The strained Si layer 507 covers the top surface and two opposing sidewalls of the fin tri-gate 503N of the n-MOS portion 520 of the semiconductor structure 500 and does not cover the oxide layer 502. For an embodiment, the strained Si layer 507 may be formed by the epitaxy. Because of presence of Ge atoms, the Si1-x Gex layer of the tri-gate fin 503N has substantially larger lattice spacing, than the lattice spacing of the Si layer, resulting in a tensile strain in the Si layer along the top surface and two opposing sidewalls of the tri-gate fin 503N of the n-MOS portion 520. The tensile strain increases the electron mobility in the strained Si layer 507 of the n-MOS portion 520 of the semiconductor structure 500. In one embodiment, the electron mobility enhancement factor in the channel formed in the strained Si layer 507 is in the approximate range of 1.2 to 5. In one embodiment, the thickness of the strained Si layer 507 is in the approximate range of 50 Å to 200 Å, and more specifically, about 100 Å.


Further, a p-well is formed in the n-MOS portion 520. For an embodiment, to form a p-well, a p-type dopant, for example, B, and the like, is added to the tri-gate fin 503N covered by the strained Si layer 507 by the ion implantation technique. For an embodiment, before the ion implantation, to protect the surface of the channel during the ion implantation, the pad oxide layer is formed on the strained Si layer, covering the top surface and two opposing sidewalls of the tri-gate fin 503N. The concentration of p-dopants is in the approximate range of 2×1017 cm−3 to 2×1019 cm−3.



FIG. 2G is a cross-sectional view of the semiconductor structure 500 after forming a pad oxide layer. The pad oxide layer 508 is formed on the strained Si layer 507 covering the tri-gate fin 503N of the n-MOS portion 530. The pad oxide layer 508 covers the strained Si layer 507 along the top surface and two opposing sidewalls of the tri-gate fin 503N. In one embodiment, the pad oxide layer 508 is a silicon oxide. Next, the second protection layer 506 and the pad oxide layer 508 are removed from the n-MOS portion 520 and the p-MOS 530 portion, respectively.



FIG. 2H is a cross-sectional view of the semiconductor structure 500 after removing the oxide layers from the n-MOS and p-MOS portions. In one embodiment, the second protection layer 506 and the pad oxide layer 508 may be removed by, for example, wet etching. Next, a dielectric layer is formed on the strained Si and Si1-y Gey layers.



FIG. 2I is a cross-sectional view of semiconductor structure 500 after forming a dielectric layer on the strained Si layer and Si1-y Gey layer, which respectively covers the tri-gate fins of each of the n-MOS and p-MOS portions. The dielectric layer 509 is deposited on the strained Si layer 507 and the strained Si1-y Gey layer 504, covering the top surface and two opposing sidewalls of the tri-gate fins 503N and 503P of the n-MOS portion 520 and the p-MOS 530 portion respectively, as illustrated in FIG. 21. In one embodiment, the dielectric layer 509 may be blanket deposited, patterned, and etched into the gate dielectric using known photolithographic and etching techniques. For an embodiment, the dielectric layer 509 is a high-k dielectric. For an embodiment, the dielectric layer 509 may include an oxide. For another embodiment, the dielectric layer 509 may include an oxide of transition metal. For alternative embodiments, the dielectric layer 509 may be made of ZrO2, HFO2, or La2O5 or any combination thereof. For an embodiment, the dielectric layer 509 may be formed to the thickness in the approximate range of 10 Å to 40 Å. Next, the tri-gate electrode layer is formed on the dielectric layer 509.



FIG. 2J is a cross-sectional view of the semiconductor structure 500, after forming a tri-gate electrode layer. The tri-gate electrode layer 510 is formed on the gate dielectric layer 509 covering the top surface and two opposing sidewalls of each of the tri-gate fins 503N and 503P of the n-MOS 520 portion and the p-MOS portion 530. For an embodiment, the thickness of the tri-gate electrode layer 510 is in the approximate range of 500 Å to 1500 Å. For an embodiment, the tri-gate electrode layer 510 may be formed by blanket deposition of polysilicon. Then, the tri-gate electrode layer 510 may be patterned and etched into the tri-gate electrode using known in the art photolithographic and etching techniques. For an embodiment, the tri-gate electrode layer 510 with the underlying dielectric layer 509 are patterned and etched to a predetermined width.



FIG. 2K is a perspective view of the non-planar tri-gate CMOS structure 600 according to one embodiment of the invention. The CMOS structure 600 has the n-MOS portion 520 and the p-MOS portion 530. The n-MOS portion 520 has a source region 523 and a drain region 524 formed in the portions of n-MOS fin structure (“n-MOS fin body”) 525 at opposite sides of the gate electrode 521. The n-MOS gate electrode 521 with the underlying dielectric layer 509 has the width 542 and covers the top surface and two opposing sidewalls of the n-MOS fin body 525. The n-MOS fin body 525 is formed on top surface of the oxide layer 502. The oxide layer 502 covers the silicon substrate 501. For an embodiment, the n-MOS fin body 525 includes a relaxed Si1-x Gex layer covered by the tensile strained Si layer. A strained channel of the n-MOS portion 527 is formed in the tensile strained Si layer under the dielectric layer 509 along the top surface and the two opposing sidewalls of the fin body 525. For an embodiment, to form the source region 523 and the drain region 524 of the n-MOS portion of the CMOS structure, a n-type dopant, for example, arsenic (“As”) is added into the fin body 525 on the opposite sides of the gate electrode 521 on the n-MOS portion 520 of the CMOS structure 600. The n-type dopant may be added by, for example, the ion implantation. For an embodiment, the concentration of n-dopants may be in the approximate range of 1018 cm−3 to 1021 cm−3.


The p-MOS portion 530 has a source region 533 and a drain region 534 formed in the p-MOS fin body 535 on opposite sides of the gate electrode 531. The p-MOS gate electrode 531 with underlying dielectric layer 509 has the predetermined width 542 and covers the top surface and the two opposing sidewalls of the p-MOS fin body 535. The p-MOS fin body 535 is formed on top surface of the oxide layer 502. The oxide layer 502 covers the silicon substrate 501. For an embodiment, the p-MOS fin body 535 of the p-MOS portion includes the relaxed Si1-x Gex layer, wherein the top surface and two opposing sidewalls of the relaxed Si1-x Gex layer are covered by the compressively strained Si1-y Gey layer. A strained channel 537 of the p-MOS portion 530 is formed in the compressively strained Si1-y Gey layer under the gate dielectric layer 509 along the top surface and the two opposing sidewalls of the p-MOS fin body 535. For an embodiment, to form the p-MOS source region 533 and the p-MOS drain region 534 of the CMOS structure 600, a p-type dopant, for example, boron (“B”) is added into the p-MOS fin body 535 at the opposite sides of the gate electrode 531 on the p-MOS portion 530 of the CMOS structure 600. The p-type dopant may be added by, for example, the ion implantation. For an embodiment, the concentration of p-dopants may be in the approximate range of 1018 cm−3 to 1021 cm−3.


For an embodiment, the width 542 of the n-MOS tri-gate electrode 521 and the p-MOS tri-gate electrode 531 with the underlying dielectric 509 may be in the approximate range of 30 nm to 120 nm each. The width 541 of the n-MOS fin body 525 and the p-MOS fin body 535 may be in the approximate range of 30 nm to 120 nm each. The thickness 543 of the n-MOS fin body 525 and the p-MOS fin body 535 may be in the approximate range of 20 nm to 120 nm each.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art. It may, for example, be possible to create similar structures utilizing materials other than Si and SiGe.

Claims
  • 1. A semiconductor transistor, comprising: an insulating layer;a fin, having opposing sidewalls and a top surface, the fin of a first material having a first silicon germanium content causing a first lattice spacing, above the insulating layer;a layer of a second material covering the fin, the layer of the second material having a second silicon germanium content causing a second lattice spacing substantially larger than the first lattice spacing of the first material;a dielectric layer, formed on the layer of the second material; anda gate electrode with the dielectric layer between the gate electrode and the opposing sidewalls and the top surface of the fin.
  • 2. The semiconductor transistor of claim 1, wherein the first material has a germanium content of at least 15% less than the second material.
  • 3. The semiconductor transistor of claim 1, wherein the first material has a germanium content of about 15% and the second material has a germanium content of about 30%.
  • 4. The semiconductor transistor of claim 1, wherein the layer of the second material covers the top surface and the opposing sidewalls of the fin.
  • 5. The semiconductor transistor of claim 4, wherein the layer of the second material covering the top surface and the opposing sidewalls of the fin is under a compressive stress.
  • 6. The semiconductor transistor of claim 5, wherein the compressive stress in the layer of the second material grown on the fin increases mobility of holes in the channel of a p-MOS structure.
  • 7. A semiconductor transistor structure, comprising: an insulating layer;a first fin on the insulating layer;a second fin on the insulating layer, wherein the first fin and the second fin are formed from a first material having a first lattice spacing;a second layer of a second material formed on a first fin, wherein the second layer of the second material has a second lattice spacing substantially larger than the first lattice spacing; anda third layer of a third material formed on a second fin, wherein the third material has a third lattice spacing substantially smaller than the first lattice spacing.
  • 8. The semiconductor transistor structure of claim 7, wherein the second material comprises silicon germanium and the third material comprises silicon.
  • 9. The semiconductor transistor structure of claim 7 further comprising: a first gate dielectric on the second layer;a second gate dielectric on the third layer;a first gate electrode on the first gate dielectric;a second gate electrode on the second gate dielectric;a first source region and a first drain region at opposing sides of the first gate electrode; anda second source region and a second drain region at opposing sides of the second gate electrode.
  • 10. The semiconductor transistor structure of claim 7, wherein the second layer covers a top surface and two opposing sidewalls of the first fin and the third layer covers the top and two sidewalls of the second fin.
Parent Case Info

This patent application is a divisional application of U.S. patent application Ser. No. 10/915,780 filed on Aug. 10, 2004, now U.S. Pat. No. 7,348,284 entitled “NON-PLANAR STRUCTURE WITH A STRAINED CHANNEL REGION AND AN INTEGRATED STRAINED CMOS FLOW” and claims priority benefit thereof.

US Referenced Citations (473)
Number Name Date Kind
3387820 Sanderfer et al. Jun 1968 A
4231149 Chapman et al. Nov 1980 A
4487652 Almgren Dec 1984 A
4711701 McLevige Dec 1987 A
4818715 Chao Apr 1989 A
4905063 Beltram et al. Feb 1990 A
4906589 Chao Mar 1990 A
4907048 Huang Mar 1990 A
4994873 Madan Feb 1991 A
4996574 Shirasaki et al. Feb 1991 A
5023203 Choi Jun 1991 A
5120666 Gotou Jun 1992 A
5124777 Lee Jun 1992 A
5179037 Seabaugh Jan 1993 A
5216271 Tagaki et al. Jun 1993 A
5218213 Gaul et al. Jun 1993 A
5278012 Yamanaka et al. Jan 1994 A
5308999 Gotou May 1994 A
5328810 Lowrey et al. Jul 1994 A
5338959 Kim et al. Aug 1994 A
5346836 Manning et al. Sep 1994 A
5346839 Sundaresan Sep 1994 A
5357119 Wang et al. Oct 1994 A
5391506 Tada et al. Feb 1995 A
5466621 Hisamoto et al. Nov 1995 A
5475869 Gomi et al. Dec 1995 A
5479033 Baca et al. Dec 1995 A
5482877 Rhee Jan 1996 A
5514885 Myrick May 1996 A
5521859 Ema et al. May 1996 A
5539229 Noble, Jr. et al. Jul 1996 A
5543351 Hirai et al. Aug 1996 A
5545586 Koh Aug 1996 A
5563077 Ha Oct 1996 A
5576227 Hsu Nov 1996 A
5578513 Maegawa Nov 1996 A
5595919 Pan Jan 1997 A
5652454 Iwamatsu et al. Jul 1997 A
5658806 Lin et al. Aug 1997 A
5665203 Lee et al. Sep 1997 A
5682048 Shinohara et al. Oct 1997 A
5698869 Yoshimi et al. Dec 1997 A
5701016 Burroughs et al. Dec 1997 A
5716879 Choi et al. Feb 1998 A
5739544 Yuki et al. Apr 1998 A
5760442 Shigyo et al. Jun 1998 A
5770513 Okaniwa Jun 1998 A
5773331 Solomon et al. Jun 1998 A
5776821 Haskell et al. Jul 1998 A
5793088 Choi et al. Aug 1998 A
5804848 Mukai Sep 1998 A
5811324 Yang Sep 1998 A
5814895 Hirayama et al. Sep 1998 A
5821629 Wen et al. Oct 1998 A
5827769 Aminzadeh et al. Oct 1998 A
5844278 Mizuno et al. Dec 1998 A
5856225 Lee et al. Jan 1999 A
5880015 Hata Mar 1999 A
5888309 Yu Mar 1999 A
5889304 Watanabe et al. Mar 1999 A
5899710 Mukai May 1999 A
5905285 Gardner et al. May 1999 A
5908313 Chau et al. Jun 1999 A
5952701 Bulucea et al. Sep 1999 A
5965914 Miyamoto Oct 1999 A
5976767 Li Nov 1999 A
5985726 Yu et al. Nov 1999 A
6013926 Oku et al. Jan 2000 A
6018176 Lim Jan 2000 A
6031249 Yamazaki et al. Feb 2000 A
6051452 Shigyo et al. Apr 2000 A
6054355 Inumiya et al. Apr 2000 A
6063675 Rodder May 2000 A
6066869 Noble et al. May 2000 A
6087208 Krivokapic et al. Jul 2000 A
6093621 Tseng Jul 2000 A
6114201 Wu Sep 2000 A
6114206 Yu Sep 2000 A
6117741 Chatterjee et al. Sep 2000 A
6120846 Hintermaier et al. Sep 2000 A
6130123 Liang et al. Oct 2000 A
6144072 Iwamatsu et al. Nov 2000 A
6150222 Gardner et al. Nov 2000 A
6153485 Pey et al. Nov 2000 A
6159808 Chuang Dec 2000 A
6163053 Kawashima Dec 2000 A
6165880 Yaung et al. Dec 2000 A
6174820 Habermehl et al. Jan 2001 B1
6190975 Kubo et al. Feb 2001 B1
6200865 Gardner et al. Mar 2001 B1
6218309 Miller et al. Apr 2001 B1
6251729 Montree et al. Jun 2001 B1
6251751 Chu et al. Jun 2001 B1
6251763 Inumiya et al. Jun 2001 B1
6252284 Muller et al. Jun 2001 B1
6259135 Hsu et al. Jul 2001 B1
6261921 Yen et al. Jul 2001 B1
6262456 Yu et al. Jul 2001 B1
6274503 Hsieh Aug 2001 B1
6287924 Chau et al. Sep 2001 B1
6294416 Wu Sep 2001 B1
6307235 Forbes et al. Oct 2001 B1
6310367 Yagishita et al. Oct 2001 B1
6317444 Chakrabarti Nov 2001 B1
6319807 Yeh et al. Nov 2001 B1
6335251 Miyano et al. Jan 2002 B2
6358800 Tseng Mar 2002 B1
6359311 Colinge et al. Mar 2002 B1
6362111 Laaksonen et al. Mar 2002 B1
6368923 Huang Apr 2002 B1
6376317 Forbes et al. Apr 2002 B1
6383882 Lee et al. May 2002 B1
6387820 Sanderfer May 2002 B1
6391782 Yu May 2002 B1
6396108 Krivokapic et al. May 2002 B1
6399970 Kubo et al. Jun 2002 B2
6403434 Yu Jun 2002 B1
6403981 Yu Jun 2002 B1
6407442 Inoue et al. Jun 2002 B2
6410371 Yu et al. Jun 2002 B1
6413802 Hu et al. Jul 2002 B1
6413877 Annapragada Jul 2002 B1
6424015 Ishibashi et al. Jul 2002 B1
6437550 Andoh et al. Aug 2002 B2
6457890 Kohlruss et al. Oct 2002 B1
6458662 Yu Oct 2002 B1
6459123 Enders et al. Oct 2002 B1
6465290 Suguro et al. Oct 2002 B1
6472258 Adkisson et al. Oct 2002 B1
6475869 Yu Nov 2002 B1
6475890 Yu Nov 2002 B1
6479866 Xiang Nov 2002 B1
6483146 Lee Nov 2002 B2
6483151 Wakabayashi et al. Nov 2002 B2
6483156 Adkisson et al. Nov 2002 B1
6495403 Skotnicki et al. Dec 2002 B1
6498096 Bruce et al. Dec 2002 B2
6500767 Chiou et al. Dec 2002 B2
6501141 Leu Dec 2002 B1
6506692 Andideh Jan 2003 B2
6515339 Shin et al. Feb 2003 B2
6525403 Inaba et al. Feb 2003 B2
6526996 Chang et al. Mar 2003 B1
6534807 Mandelman et al. Mar 2003 B2
6537862 Song Mar 2003 B2
6537885 Kang et al. Mar 2003 B1
6537901 Cha et al. Mar 2003 B2
6541829 Nishinohara et al. Apr 2003 B2
6555879 Krivokapic et al. Apr 2003 B1
6562665 Yu May 2003 B1
6562687 Deleonibus May 2003 B1
6566734 Sugihara et al. May 2003 B2
6583469 Fried et al. Jun 2003 B1
6605498 Murthy et al. Aug 2003 B1
6610576 Nowak Aug 2003 B2
6611029 Ahmed et al. Aug 2003 B1
6630388 Sekigawa et al. Oct 2003 B2
6635909 Clark et al. Oct 2003 B2
6642090 Fried et al. Nov 2003 B1
6642114 Nakamura Nov 2003 B2
6645797 Buynoski et al. Nov 2003 B1
6645826 Yamazaki et al. Nov 2003 B2
6645861 Cabral et al. Nov 2003 B2
6656853 Ito Dec 2003 B2
6657259 Fried et al. Dec 2003 B2
6660598 Hanafi et al. Dec 2003 B2
6664160 Park et al. Dec 2003 B2
6680240 Maszara Jan 2004 B1
6686231 Ahmed et al. Feb 2004 B1
6689650 Gambino et al. Feb 2004 B2
6693324 Maegawa et al. Feb 2004 B2
6696366 Morey et al. Feb 2004 B1
6706571 Yu et al. Mar 2004 B1
6709982 Buynoski et al. Mar 2004 B1
6713396 Anthony Mar 2004 B2
6716684 Krivokapic et al. Apr 2004 B1
6716686 Buynoski et al. Apr 2004 B1
6716690 Wang et al. Apr 2004 B1
6730964 Horiuchi May 2004 B2
6744103 Synder Jun 2004 B2
6756657 Zhang et al. Jun 2004 B1
6762469 Mocuta et al. Jul 2004 B2
6764884 Yu et al. Jul 2004 B1
6770516 Wu et al. Aug 2004 B2
6774390 Sugiyama et al. Aug 2004 B2
6784071 Chen et al. Aug 2004 B2
6784076 Gonzalez et al. Aug 2004 B2
6787402 Yu Sep 2004 B1
6787406 Hill et al. Sep 2004 B1
6787439 Ahmed et al. Sep 2004 B2
6787845 Deieonibus Sep 2004 B2
6787854 Yang et al. Sep 2004 B1
6790733 Natzle et al. Sep 2004 B1
6794313 Chang Sep 2004 B1
6798000 Luyken et al. Sep 2004 B2
6800885 An et al. Oct 2004 B1
6800910 Lin et al. Oct 2004 B2
6803631 Dakshina-Murthy et al. Oct 2004 B2
6812075 Fried et al. Nov 2004 B2
6812111 Cheong et al. Nov 2004 B2
6815277 Fried et al. Nov 2004 B2
6821834 Ando Nov 2004 B2
6825506 Chau et al. Nov 2004 B2
6794718 Nowak et al. Dec 2004 B2
6830998 Pan et al. Dec 2004 B1
6831310 Matthew et al. Dec 2004 B1
6833588 Yu et al. Dec 2004 B2
6835614 Hanafi et al. Dec 2004 B2
6835618 Dakshina-Murthy et al. Dec 2004 B1
6838322 Pham et al. Jan 2005 B2
6844238 Yeo et al. Jan 2005 B2
6849556 Takahashi Feb 2005 B2
6849884 Clark et al. Feb 2005 B2
6852559 Kwak et al. Feb 2005 B2
6855588 Liao et al. Feb 2005 B1
6855606 Chen et al. Feb 2005 B2
6855990 Yeo et al. Feb 2005 B2
6858472 Schoenfeld Feb 2005 B2
6858478 Chau et al. Feb 2005 B2
6864519 Yeo et al. Mar 2005 B2
6864540 Divakaruni et al. Mar 2005 B1
6867433 Yeo et al. Mar 2005 B2
6867460 Anderson et al. Mar 2005 B1
6869868 Chiu et al. Mar 2005 B2
6869898 Inaki et al. Mar 2005 B2
6870226 Maede et al. Mar 2005 B2
6881635 Chidambarrao et al. Apr 2005 B1
6884154 Mizushima et al. Apr 2005 B2
6885055 Lee Apr 2005 B2
6888199 Nowak et al. May 2005 B2
6890811 Hou et al. May 2005 B2
6891234 Connelly et al. May 2005 B1
6897527 Dakshina-Murthy et al. May 2005 B2
6902947 Chinn et al. Jun 2005 B2
6902962 Yeo et al. Jun 2005 B2
6909147 Aller et al. Jun 2005 B2
6909151 Hareland et al. Jun 2005 B2
6919238 Bohr Jul 2005 B2
6921691 Li et al. Jul 2005 B1
6921702 Ahn et al. Jul 2005 B2
6921963 Krivokapic et al. Jul 2005 B2
6921982 Joshi et al. Jul 2005 B2
6924190 Dennison Aug 2005 B2
6946377 Chambers Sep 2005 B2
6955969 Djomehri et al. Oct 2005 B2
6960517 Rios et al. Nov 2005 B2
6967351 Fried et al. Nov 2005 B2
6969878 Coronel et al. Nov 2005 B2
6974738 Hareland Dec 2005 B2
6975014 Krivokapic et al. Dec 2005 B1
6977415 Matsuo Dec 2005 B2
6998301 Yu et al. Feb 2006 B1
6998318 Park Feb 2006 B2
7018551 Beintner et al. Mar 2006 B2
7045401 Lee et al. May 2006 B2
7045407 Keating et al. May 2006 B2
7045441 Chang et al. May 2006 B2
7045451 Shenai-Khatkhate May 2006 B2
7049654 Chang May 2006 B2
7056794 Ku et al. Jun 2006 B2
7060539 Chidambarrao et al. Jun 2006 B2
7061055 Sekigawa et al. Jun 2006 B2
7071064 Doyle et al. Jul 2006 B2
7074623 Lochtefeld et al. Jul 2006 B2
7074656 Yeo Jul 2006 B2
7074662 Lee et al. Jul 2006 B2
7084018 Ahmed et al. Aug 2006 B1
7105390 Brask et al. Sep 2006 B2
7105891 Visokay Sep 2006 B2
7105894 Yeo et al. Sep 2006 B2
7105934 Anderson et al. Sep 2006 B2
7112478 Grupp et al. Sep 2006 B2
7115954 Shimizu et al. Oct 2006 B2
7119402 Kinoshita et al. Oct 2006 B2
7122463 Ohuchi Oct 2006 B2
7132360 Schaefer et al. Nov 2006 B2
7138320 Bentum et al. Nov 2006 B2
7141480 Adam et al. Nov 2006 B2
7141856 Lee et al. Nov 2006 B2
7154118 Lindert Dec 2006 B2
7163851 Adadeer et al. Jan 2007 B2
7172943 Yeo et al. Feb 2007 B2
7183137 Lee et al. Feb 2007 B2
7187043 Arai et al. Mar 2007 B2
7196372 Yu et al. Mar 2007 B1
7238564 Ko et al. Jul 2007 B2
7241653 Hareland et al. Jul 2007 B2
7247547 Zhu et al. Jul 2007 B2
7247578 Brask Jul 2007 B2
7250645 Wang et al. Jul 2007 B1
7250655 Bae et al. Jul 2007 B2
7256455 Ahmed et al. Aug 2007 B2
7268024 Yeo et al. Sep 2007 B2
7268058 Chau et al. Sep 2007 B2
7291886 Doris et al. Nov 2007 B2
7297600 Oh et al. Nov 2007 B2
7304336 Cheng et al. Dec 2007 B2
7323710 Kim et al. Jan 2008 B2
7326634 Lindert et al. Feb 2008 B2
7329913 Brask et al. Feb 2008 B2
7348284 Doyle et al. Mar 2008 B2
7354817 Wantanabe et al. Apr 2008 B2
7358121 Chau et al. Apr 2008 B2
7385262 O'Keefee et al. Jun 2008 B2
7396730 Li Jul 2008 B2
20010019886 Bruce et al. Sep 2001 A1
20010026985 Kim et al. Oct 2001 A1
20010040907 Chakrabarti Nov 2001 A1
20020011612 Hieda Jan 2002 A1
20020036290 Inaba et al. Mar 2002 A1
20020037619 Sugihara et al. Mar 2002 A1
20020048918 Grider et al. Apr 2002 A1
20020058374 Kim May 2002 A1
20020074614 Furuta et al. Jun 2002 A1
20020081794 Ito Jun 2002 A1
20020096724 Liang et al. Jul 2002 A1
20020142529 Matsuda et al. Oct 2002 A1
20020149031 Kim et al. Oct 2002 A1
20020160553 Yamanaka et al. Oct 2002 A1
20020166838 Nagarajan Nov 2002 A1
20020167007 Yamazaki et al. Nov 2002 A1
20020177263 Hanafi et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20030036290 Hsieh et al. Feb 2003 A1
20030042542 Maegawa et al. Mar 2003 A1
20030057477 Hergenrother et al. Mar 2003 A1
20030057486 Gambino Mar 2003 A1
20030067017 Leong et al. Apr 2003 A1
20030085194 Hopkins, Jr. May 2003 A1
20030098479 Murthy et al. May 2003 A1
20030098488 O'Keeffe et al. May 2003 A1
20030102497 Fried et al. Jun 2003 A1
20030102518 Fried et al. Jun 2003 A1
20030111686 Nowak Jun 2003 A1
20030122186 Sekigawa et al. Jul 2003 A1
20030143791 Cheong et al. Jul 2003 A1
20030151077 Mathew et al. Aug 2003 A1
20030174534 Clark et al. Sep 2003 A1
20030186167 Johnson, Jr. et al. Oct 2003 A1
20030190766 Gonzalez et al. Oct 2003 A1
20030201458 Clark et al. Oct 2003 A1
20030227036 Sugiyama et al. Dec 2003 A1
20040016968 Coronel et al. Jan 2004 A1
20040029323 Shimizu et al. Feb 2004 A1
20040029345 Deleonibus et al. Feb 2004 A1
20040029393 Ying et al. Feb 2004 A1
20040031979 Lochtefeld et al. Feb 2004 A1
20040033639 Chinn et al. Feb 2004 A1
20040036118 Abadeer et al. Feb 2004 A1
20040036126 Chau et al. Feb 2004 A1
20040036127 Chau et al. Feb 2004 A1
20040038436 Mori et al. Feb 2004 A1
20040038533 Liang Feb 2004 A1
20040061178 Lin et al. Apr 2004 A1
20040063286 Kim et al. Apr 2004 A1
20040070020 Fujiwara et al. Apr 2004 A1
20040075149 Fitzgerald et al. Apr 2004 A1
20040082125 Hou et al. Apr 2004 A1
20040092062 Ahmed et al. May 2004 A1
20040092067 Hanafi et al. May 2004 A1
20040094807 Chau et al. May 2004 A1
20040099903 Yeo et al. May 2004 A1
20040099966 Chau et al. May 2004 A1
20040108523 Chen et al. Jun 2004 A1
20040108558 Kwak et al. Jun 2004 A1
20040110097 Ahmed et al. Jun 2004 A1
20040119100 Nowak et al. Jun 2004 A1
20040124492 Matsuo Jul 2004 A1
20040126975 Ahmed et al. Jul 2004 A1
20040132236 Doris et al. Jul 2004 A1
20040132567 Schonnenbeck Jul 2004 A1
20040145000 An et al. Jul 2004 A1
20040145019 Dakshina-Murthy et al. Jul 2004 A1
20040166642 Chen et al. Aug 2004 A1
20040169221 Ko et al. Sep 2004 A1
20040173815 Yeo et al. Sep 2004 A1
20040173846 Hergenrother et al. Sep 2004 A1
20040180491 Arai et al. Sep 2004 A1
20040191980 Rios et al. Sep 2004 A1
20040195624 Liu et al. Oct 2004 A1
20040197975 Krivokapic et al. Oct 2004 A1
20040198003 Yeo et al. Oct 2004 A1
20040203254 Conley et al. Oct 2004 A1
20040209463 Kim et al. Oct 2004 A1
20040217420 Yeo et al. Nov 2004 A1
20040219722 Pham et al. Nov 2004 A1
20040219780 Ohuchi Nov 2004 A1
20040222473 Risaki Nov 2004 A1
20040227187 Cheng et al. Nov 2004 A1
20040238887 Nihey Dec 2004 A1
20040238915 Chen et al. Dec 2004 A1
20040253792 Cohen et al. Dec 2004 A1
20040256647 Lee et al. Dec 2004 A1
20040262683 Bohr et al. Dec 2004 A1
20040262699 Rios et al. Dec 2004 A1
20050017377 Joshi et al. Jan 2005 A1
20050019993 Lee Jan 2005 A1
20050020020 Collaert et al. Jan 2005 A1
20050035391 Lee et al. Feb 2005 A1
20050035415 Yeo et al. Feb 2005 A1
20050040444 Cohen Feb 2005 A1
20050059214 Cheng et al. Mar 2005 A1
20050073060 Datta et al. Apr 2005 A1
20050093028 Chambers May 2005 A1
20050093067 Yeo et al. May 2005 A1
20050093075 Bentum et al. May 2005 A1
20050093154 Kottantharayil et al. May 2005 A1
20050104055 Kwak et al. May 2005 A1
20050104096 Lee et al. May 2005 A1
20050110082 Cheng May 2005 A1
20050116289 Boyd et al. Jun 2005 A1
20050118790 Lee et al. Jun 2005 A1
20050127362 Zhang et al. Jun 2005 A1
20050127632 Gehre Jun 2005 A1
20050133866 Chau et al. Jun 2005 A1
20050136584 Boyanov Jun 2005 A1
20050139860 Synder et al. Jun 2005 A1
20050145894 Chau et al. Jul 2005 A1
20050145941 Bedell et al. Jul 2005 A1
20050145944 Murthy et al. Jul 2005 A1
20050148131 Brask Jul 2005 A1
20050148137 Brask et al. Jul 2005 A1
20050153494 Ku et al. Jul 2005 A1
20050156171 Brask et al. Jul 2005 A1
20050156202 Rhee et al. Jul 2005 A1
20050156227 Jeng Jul 2005 A1
20050161739 Anderson et al. Jul 2005 A1
20050167766 Yagishita Aug 2005 A1
20050170593 Kang et al. Aug 2005 A1
20050184316 Kim Aug 2005 A1
20050189583 Kim et al. Sep 2005 A1
20050191795 Chidambarrao et al. Sep 2005 A1
20050199919 Liu Sep 2005 A1
20050215014 Ahn et al. Sep 2005 A1
20050215022 Adam et al. Sep 2005 A1
20050224797 Ko et al. Oct 2005 A1
20050224798 Buss Oct 2005 A1
20050224800 Lindert et al. Oct 2005 A1
20050227498 Furkawa Oct 2005 A1
20050230763 Huang et al. Oct 2005 A1
20050233156 Senzaki Oct 2005 A1
20050239252 Ahn et al. Oct 2005 A1
20050255642 Liu Nov 2005 A1
20050266645 Park Dec 2005 A1
20050272192 Oh et al. Dec 2005 A1
20050277294 Schaefer et al. Dec 2005 A1
20050280121 Doris et al. Dec 2005 A1
20060014338 Doris et al. Jan 2006 A1
20060040054 Pearistein et al. Feb 2006 A1
20060046521 Vaartstra et al. Mar 2006 A1
20060063469 Talieh et al. Mar 2006 A1
20060068590 Lindert et al. Mar 2006 A1
20060068591 Radosavljevic et al. Mar 2006 A1
20060071299 Doyle et al. Apr 2006 A1
20060086977 Shah et al. Apr 2006 A1
20060138548 Richards et al. Jun 2006 A1
20060154478 Hsu et al. Jul 2006 A1
20060172480 Wang et al. Aug 2006 A1
20060202270 Son et al. Sep 2006 A1
20060205164 Ko et al. Sep 2006 A1
20060211184 Boyd et al. Sep 2006 A1
20060227595 Chuang et al. Oct 2006 A1
20060240622 Lee et al. Oct 2006 A1
20060263699 Abatchev et al. Nov 2006 A1
20060281325 Chou et al. Dec 2006 A1
20070001219 Radosavljevic et al. Jan 2007 A1
20070023795 Nagano et al. Feb 2007 A1
20070045748 Booth et al. Mar 2007 A1
20070048930 Figura et al. Mar 2007 A1
20070093010 Mathew et al. Apr 2007 A1
20070108514 Inoue et al. May 2007 A1
20070241414 Narihiro Oct 2007 A1
20070262389 Chau et al. Nov 2007 A1
Foreign Referenced Citations (48)
Number Date Country
10203998 Aug 2003 DE
0 623 963 Nov 1994 EP
1091413 Apr 2001 EP
1 202 335 May 2002 EP
1 566 844 Aug 2005 EP
2156149 Oct 1985 GB
56073454 Jun 1981 JP
59145538 Aug 1984 JP
02303048 Dec 1990 JP
06005856 Jan 1994 JP
6151387 May 1994 JP
06177089 Jun 1994 JP
06224440 Aug 1994 JP
7-50421 Feb 1995 JP
9162301 Jun 1997 JP
200037842 Feb 2000 JP
2001338987 Dec 2001 JP
2002-110977 Dec 2002 JP
2003-298051 Oct 2003 JP
0222363 Oct 1999 KR
200414538 Aug 1992 TW
200518310 Nov 1998 TW
508669 Nov 2002 TW
516232 Jan 2003 TW
561530 Jan 2003 TW
546713 Aug 2003 TW
548799 Aug 2003 TW
200402872 Feb 2004 TW
200405408 Apr 2004 TW
591798 Jun 2004 TW
594990 Jun 2004 TW
200414539 Aug 2004 TW
200417034 Sep 2004 TW
I223449 Nov 2004 TW
I231994 May 2005 TW
I238524 Aug 2005 TW
I239102 Sep 2005 TW
WO 0243151 May 2002 WO
WO 02095814 Nov 2002 WO
WO 03003442 Jan 2003 WO
WO 2004059726 Jul 2004 WO
WO 2005034212 Apr 2005 WO
WO 2005036651 Apr 2005 WO
WO 2005098963 Oct 2005 WO
WO 2006007350 Jan 2006 WO
WO 2006078469 Jul 2006 WO
WO 2007002426 Jan 2007 WO
WO 2007041152 Apr 2007 WO
Related Publications (1)
Number Date Country
20080169512 A1 Jul 2008 US
Divisions (1)
Number Date Country
Parent 10915780 Aug 2004 US
Child 12004706 US