Non-plugging D.C. plasma gun

Information

  • Patent Grant
  • 8803025
  • Patent Number
    8,803,025
  • Date Filed
    Friday, December 10, 2010
    14 years ago
  • Date Issued
    Tuesday, August 12, 2014
    10 years ago
Abstract
A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet; and a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber and a port, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber, and the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.


FIELD OF THE INVENTION

The present invention relates to the field of powder material processing. More specifically, the present invention relates to powder material processing using a plasma gun.


BACKGROUND OF THE INVENTION


FIG. 1 illustrates one embodiment of a plasma gun 100 used to process powder material. The plasma gun 100 is a DC plasma torch including a male electrode 120 and a female electrode 130. A power supply (not shown) is connected to the male electrode 120 and the female electrode 130 and delivers power through the plasma gun 100 by passing current across the gap 160 between the male electrode 120 and the female electrode 130. Furthermore, the plasma gun 100 includes a gas inlet 140 fluidly coupled to the gap 160 and configured to receive a working gas. The plasma gun 100 also includes a plasma outlet 150 fluidly coupled to the gap 160 on the opposite side of the plasma gun 100 from the gas inlet 140 and configured to provide a path through which a plasma stream 180 can be expelled from the plasma gun 100.


During operation, working gas flows through the gas inlet 140, through the gap 160 and out of the outlet 150. At the same time, power is supplied to the plasma gun 100. The current arcing across the gap 160 energizes the working gas and forms plasma 180, which flows out of the outlet 150. Powdered material 110 is fed into the plasma stream 180 through a channel 170 that is fluidly coupled to the pathway between the gap 160 and the plasma outlet 150 via a port 175 to the pathway. The plasma stream 180 entrains and works on the powder, forming a plasma powder mixture that flows out of the plasma gun 100 through the outlet 150.


There is a problem with this configuration of the plasma gun. The radiant and conductive heat of the plasma 180 melts the powder particles 110 before they get all the way down the channel 170 and exit the port 175 into the pathway between the gap 160 and the outlet 150. As a result, the melted particles agglomerate and stick to the sides of the channel 170 and the port 175, clogging them up. Consequently, operation of the plasma gun has to be stopped until it is cleaned, which results in a significant loss of productivity.


SUMMARY OF THE INVENTION

In one aspect of the present invention, a method of using a plasma gun system is provided. The method comprises generating a plasma stream using a plasma gun, wherein the plasma stream flows through an outlet of the plasma gun and into an extension chamber having an interior diameter defined by a chamber wall. The plasma stream expands upon entering the extension chamber. A powder flows into the expanded plasma stream in the extension chamber via a port fluidly coupled to the extension chamber. The port introduces the powder to the expanded plasma stream at a location outside of the plasma gun.


In another aspect of the present invention, a plasma gun system is provided. The plasma gun system comprises a plasma gun and a plasma gun extension assembly. The plasma gun comprises an outlet and is configured to generate a plasma stream and provide the plasma stream to the outlet. The plasma gun extension assembly is configured to be coupled to the plasma gun. The plasma gun extension assembly comprises an extension chamber and a port. The extension chamber has an interior diameter defined by a chamber wall and is configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber. The port is configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.


In some embodiments, the port is disposed on a faceplate that is coupled between the plasma gun and the extension chamber. In some embodiments, the faceplate comprises a circular ring shape and the outlet of the plasma gun is aligned with the center of the faceplate to enable the plasma stream to pass the faceplate and flow into the extension chamber. In some embodiments, the faceplate comprises copper.


In some embodiments, the chamber wall comprises a ceramic material. In some embodiments, the chamber wall comprises boron nitride. In some embodiments, the chamber wall comprises a substantially tubular shape. In some embodiments, a stainless steel sheath is coupled to the faceplate and around the chamber wall.


In some embodiments, the faceplate is configured to be coupled to the chamber wall prior to being coupled to the plasma gun, thereby allowing the faceplate and the chamber wall to be coupled to the plasma gun and de-coupled from the plasma gun as a single unit. In some embodiments, the faceplate, the chamber wall, and the plasma gun are configured to be coupled together using one or more threaded fasteners.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one embodiment of a plasma gun used to process powder material.



FIG. 2 illustrates one embodiment of a plasma gun and an extension assembly used to process powder material in accordance with the principles of the present invention.



FIG. 3 illustrates one embodiment of method of using a plasma gun and an extension assembly to process powder material in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.


This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders(nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.



FIG. 2 illustrates one embodiment of a plasma gun system 200 comprising a plasma gun 202 and an extension assembly 204. Generally, the plasma gun system 200 operates as a reactor, producing an output comprising particles within a gas stream.


In some embodiments, the plasma gun 202 includes a male electrode 220 and a female electrode 230 encased within an insulating housing 205. A power supply (not shown) is connected to the male electrode 220 and the female electrode 230 and delivers power through the plasma gun 202 by passing current across the gap 260 between the male electrode 220 and the female electrode 230. A variety of different means can be employed to deliver this energy, including, but not limited to, DC coupling, capacitive coupling, inductive coupling, and resonant coupling.


Furthermore, the plasma gun 202 includes a gas inlet 240 fluidly coupled to the gap 260 and configured to receive a working gas. The plasma gun 202 also includes a plasma outlet 250 fluidly coupled to the gap 260 on the opposite side of the plasma gun 202 from the gas inlet 240 and configured to provide a path through which a plasma stream 280 can be expelled from the plasma gun 202.


As the plasma stream 280 exits the plasma gun 202, it enters the extension chamber 285 of the extension assembly 204. The diameter of the extension chamber 285 is greater than the diameter of the pathway between the gap 260 and the plasma outlet 250. Therefore, the plasma stream 280 expands as it enters the extension chamber 285. A powder material 210 flows into the expanded plasma stream 280 in the extension chamber 285 via a port 275 that is fluidly coupled to the extension chamber 285. The port 275 introduces the powder 210 to the expanded plasma stream 280 at a location outside of the plasma gun 202.


In some embodiments, the extension assembly 204 comprises a faceplate 290 and an extension tube 294. It is noted that FIG. 2 displays faceplate 290 as a patterned component. However, the purpose of this patterning is to help distinguish the faceplate 290 from the other components and should not be used to limit the scope of the present invention.


In some embodiments, the port 275 is disposed on the faceplate 290, which is coupled between the plasma gun 202 and the extension chamber 285. In some embodiments, the faceplate 290 comprises a circular ring shape and the outlet 250 of the plasma gun 202 is aligned with the center of the faceplate 290 to enable the plasma stream 280 to pass the faceplate 290 and flow into the extension chamber 285. In some embodiments, the faceplate 290 is configured to fit securely around a protruding end portion of the plasma gun 202, such as the end of female electrode 230 as shown in FIG. 2. In some embodiments, the faceplate 290 is formed from a metal material. In some embodiments, the faceplate 290 comprises copper.


As previously discussed, the port 275 is configured to introduce the powder 210 to the expanded plasma stream 280 at a location outside of the plasma gun 202. In some embodiments, the port 275 is configured to enable the powder 210 to flow into the chamber 285, and into the plasma stream 280, at an angle that is configured in the general direction of the flow of the plasma stream 280 (i.e., away from the plasma gun 202). In some embodiments, the port 275 is configured to enable the powder 210 to flow into the chamber 285, and into the plasma stream 280, at an angle that is configured in the general direction of the flow of the plasma stream 280 (i.e., away from the plasma gun 202) and towards the center of the chamber 285. For example, in some embodiments, the port 275 is configured to enable the powder 210 to flow into the chamber 285, and into the plasma stream 280, towards the center of the chamber 285 at an angle approximately 45-degrees from the interior wall 294 of the chamber 285, as shown in FIG. 2.


In some embodiments, the powder material 210 is flows to the port 275 through a channel 270 that is fluidly coupled to the port 275. In some embodiments, the channel 270 is disposed within the faceplate 290. In some embodiments, the powder material 210 is supplied to the channel 270 via a feeding tube 277, which can be coupled to or formed integrally with the faceplate 290. In some embodiments, a valve (not shown) is disposed on the feeding tube 277 or on the faceplate 290 to control the flow of powder material through the channel 270 and port 275 and into the chamber 285.


In some embodiments, the extension chamber 285 has an interior diameter defined by the chamber wall 294. In some embodiments, the chamber wall 294 comprises a ceramic material. In some embodiments, the chamber wall 294 comprises boron nitride. In some embodiments, the chamber wall 294 comprises a substantially tubular shape.


In some embodiments, a stainless steel sheath 292 is coupled around the chamber wall 294. In cases where the stainless steel sheath 292 is used, it is preferably not in direct contact with the chamber wall 294 as such contact can cause overheating and melting of the sheath 292. Instead, the interior wall of the sheath 292 is preferably coupled to the faceplate 290, leaving an air gap between the chamber wall 294 and the sheath 292. In order to prevent the air gap from getting hot enough to melt the sheath 292, axial vents 293 can be disposed in the sheath 292 to allow the heat to escape from the air gap between the chamber wall 294 and the sheath 292. It is contemplated that the sheath 292 can be coupled around the chamber wall 294 in a variety of ways. In a preferred embodiment, the sheath 292 is coupled to the faceplate 290, thereby avoiding direct contact with the chamber wall 294. In some embodiments, the sheath 292 is coupled to the faceplate 290 using screws or some other fastening means (not shown). In some embodiments, ceramic screws (not shown) are used at or near the end of the chamber wall 294 opposite the faceplate 290 to support and center the chamber wall 294 within the sheath 292.


In some embodiments, the faceplate 290 is configured to be coupled to the chamber wall 294 prior to being coupled to the plasma gun 202, thereby allowing the faceplate 290 and the chamber wall 294 to be coupled to the plasma gun 202 and de-coupled from the plasma gun 202 as a single unit. In some embodiments, the faceplate 290, the chamber wall 294, and the plasma gun 202 are configured to be coupled together using one or more threaded fasteners. FIG. 2 shows the faceplate 290 being coupled to the chamber wall 294 using threaded fasteners 296. In a preferred embodiment, threaded fasteners 296 pass through the faceplate 290 at a location that does not interfere with channel 270. For example, in FIG. 2, the threaded fastener 296 at the top of the figure is shown being disposed behind channel 270. FIG. 2 also shows the coupling of the faceplate 290 and the chamber wall 294 being coupled to the plasma gun 202 using threaded fasteners 298. In this embodiment, the faceplate 290 and the chamber wall 294 can be de-coupled and removed from the plasma gun 202 as a single unit by loosening fasteners 298 if and when channel 270 and/or port 275 become clogged. A pre-coupled faceplate 290 and chamber wall 294 can then be immediately fastened to the plasma gun 202 using fasteners 298. By configuring the faceplate 290 and the chamber wall 294 to be coupled together separately from the plasma gun 202, the present invention significantly reduces and minimizes the amount of down time that occurs when a channel or port becomes clogged. A clean faceplate/chamber wall coupling can be immediately swapped in to replace the clogged faceplate/chamber wall coupling.



FIG. 3 illustrates one embodiment of method 300 of using a plasma gun and an extension assembly to process powder material in accordance with the principles of the present invention.


At step 310, a plasma gun extension assembly is formed. In a preferred embodiment, the extension assembly comprises a faceplate and an extension tube coupled together, as discussed above with respect to FIG. 2.


At step 320, the extension assembly is coupled to a plasma gun, as discussed above with respect to FIG. 2. In a preferred embodiment, the faceplate of the extension assembly is positioned between the plasma gun and the extension tube as shown in FIG. 2. Furthermore, the extension assembly preferably comprises a port that is configured to introduce powder to an expanded plasma stream at a location outside of the plasma gun and within the extension assembly. In some embodiments, as discussed above, this port is disposed on the faceplate.


At step 330, a plasma stream is generated using the plasma gun. In a preferred embodiment, working gas flows through a gas inlet of the plasma gun, through a gap between an anode and a cathode, and out of an outlet of the plasma gun. At the same time, power is supplied to the plasma gun. The current arcing across the gap energizes the working gas and forms a the plasma stream, which flows out of the outlet and into the extension tube, where the plasma stream expands.


At step 340, a powder is flown into the plasma stream in the extension tube. In a preferred embodiment, the powder flows through a port in the faceplate and is introduced into the plasma stream at a location downstream from the outlet of the plasma gun. The plasma stream entrains and works on the powder, forming a highly reactive and energetic mixture, wherein the powder is vaporized in some embodiments.


At step 350, further processing of this mixture can be performed. For example, in some embodiments, this mixture of vaporized powder moves through the system in the flow direction of the working gas. As it moves, the mixture cools and condensed particles are formed therein. In some embodiments, particles of one type can be coated with particles of another type. In some embodiments, the reactive mixture flows into a quench portion of the extension assembly or a separate quench chamber. One example of a suitable quench chamber is provided in U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009, and entitled “MATERIALS PROCESSING.” The quench area preferably comprises a substantially cylindrical surface extending into a frusto-conical surface. The frusto-conical surface narrows to meet an outlet. The frusto-conical surface acts as a funneling surface, channeling conditioning fluid through into a quench region where the reactive mixture is to be conditioned. While the reactive mixture flows into the quench region, conditioning fluid is supplied into the quench region. Preferably, the angle at which the conditioning fluid is supplied produces a high degree of turbulence and promotes mixing with the reactive mixture. This turbulence can depend on many parameters. In a preferred embodiment, one or more of these parameters is adjustable to control the level of turbulence. These factors include the flow rates of the conditioning fluid, the temperature of the frusto-conical surface, the angle of the frusto-conical surface (which affects the angle at which the conditioning fluid is supplied into the quench region), and the size of the quench region. Following injection into the quench region, cooling, and particle formation, the mixture flows from the quench chamber through an outlet port. In some embodiments, suction generated by a generator moves the mixture and conditioning fluid from the quench region into a conduit. From the outlet port, the mixture flows along the conduit, toward the suction generator. Preferably, the particles are removed from the mixture by a collection or sampling system prior to encountering the suction generator.


At step 360, it is determined whether or not the port that introduces the powder into the extension chamber is clogged. If the port is not clogged, then the process continues to generate a plasma stream at step 330 and process powder. If the port is clogged, then the extension assembly is removed from the plasma gun, at step 370, and a new extension assembly is provided. The new extension assembly is then coupled to the plasma gun at step 320, and the process repeats the plasma generation and powder processing steps. Since the extension assembly, comprising the faceplate and the extension tube, is already pre-assembled, it takes very little time to replace the clogged extension assembly. The clogged extension assembly can simply be de-coupled from the plasma gun as a single unit, and the replacement extension assembly can then be coupled to the plasma gun as a single unit.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method of using a plasma gun system, the method comprising: generating a plasma stream using a plasma gun, wherein the plasma stream flows through an outlet of the plasma gun and into an extension chamber having an interior diameter defined by a chamber wall, the plasma stream expanding upon entering the extension chamber; andflowing a powder into the expanded plasma stream in the extension chamber through a channel fluidly coupled to a port that is fluidly coupled to the extension chamber, wherein the port introduces the powder to the expanded plasma stream at a location outside of the plasma gun and the port is disposed on a faceplate that is coupled to the plasma gun using one or more fasteners and to the chamber wall using one or more fasteners and the channel is disposed within the faceplate.
  • 2. The method of claim 1, wherein the faceplate comprises a circular ring shape and the outlet of the plasma gun is aligned with the center of the faceplate to enable the plasma stream to pass the faceplate and flow into the extension chamber.
  • 3. The method of claim 1, wherein the faceplate comprises copper.
  • 4. The method of claim 1, wherein the chamber wall comprises a ceramic material.
  • 5. The method of claim 4, wherein the chamber wall comprises boron nitride.
  • 6. The method of claim 1, wherein the chamber wall comprises a substantially tubular shape.
  • 7. The method of claim 1, wherein a stainless steel sheath is coupled to the faceplate and around the chamber wall.
  • 8. The method of claim 1, wherein the faceplate is configured to be coupled to the chamber wall prior to being coupled to the plasma gun, thereby allowing the faceplate and the chamber wall to be coupled to the plasma gun and de-coupled from the plasma gun as a single unit.
  • 9. The method of claim 8, wherein the faceplate, the chamber wall, and the plasma gun are configured to be coupled together using one or more threaded fasteners.
  • 10. A plasma gun system comprising: a plasma gun comprising an outlet, wherein the plasma gun is configured to generate a plasma stream and provide the plasma stream to the outlet;a plasma gun extension assembly configured to be coupled to the plasma gun, wherein the plasma gun extension assembly comprises an extension chamber, the extension chamber having an interior diameter defined by a chamber wall and being configured to receive the plasma stream from the outlet of the plasma gun and to enable the plasma stream to expand upon entering the extension chamber; anda faceplate configured to be coupled to the plasma gun using one or more fasteners and to the chamber wall using one or more fasteners, wherein the face plate comprises a port disposed on the faceplate and a channel disposed within the faceplate that is fluidly coupled to the port, the port being configured to introduce a powder to the expanded plasma stream at a location outside of the plasma gun.
  • 11. The system of claim 10, wherein the faceplate comprises a circular ring shape and the outlet of the plasma gun is aligned with the center of the faceplate to enable the plasma stream to pass the faceplate and flow into the extension chamber.
  • 12. The system of claim 10, wherein the faceplate comprises copper.
  • 13. The system of claim 10, wherein the chamber wall comprises a ceramic material.
  • 14. The system of claim 10, wherein the chamber wall comprises boron nitride.
  • 15. The system of claim 10, wherein the chamber wall comprises a substantially tubular shape.
  • 16. The system of claim 10, wherein a stainless steel sheath is coupled to the faceplate and around the chamber wall.
  • 17. The system of claim 10, wherein the faceplate is configured to be coupled to the chamber wall prior to being coupled to the plasma gun, thereby allowing the faceplate and the chamber wall to be coupled to the plasma gun and de-coupled from the plasma gun as a single unit.
  • 18. The system of claim 17, wherein the faceplate, the chamber wall, and the plasma gun are configured to be coupled together using one or more threaded fasteners.
US Referenced Citations (465)
Number Name Date Kind
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3235700 Mondain-Monval et al. Feb 1966 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kiernan Jun 1969 A
3457788 Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4146654 Guyonnet Mar 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4751021 Mollon et al. Jun 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4877937 Muller Oct 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4970364 Muller Nov 1990 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5192130 Endo et al. Mar 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5330945 Beckmeyer et al. Jul 1994 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5452854 Keller Sep 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5733662 Bogachek Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5804155 Farrauto et al. Sep 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5884473 Noda et al. Mar 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6066587 Kurokawa et al. May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6093378 Deeba et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6168694 Huang et al. Jan 2001 B1
6190627 Hoke et al. Feb 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6488904 Cox et al. Dec 2002 B1
6506995 Fusaro et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569393 Hoke et al. May 2003 B1
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7282167 Carpenter Oct 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7576031 Beutel et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8211392 Grubert et al. Jul 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
8557727 Yin et al. Oct 2013 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20010055554 Hoke et al. Dec 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020071800 Hoke et al. Jun 2002 A1
20020079620 Dubuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030129098 Endo et al. Jul 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040129222 Nylen et al. Jul 2004 A1
20040166036 Chen et al. Aug 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Pesiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060211569 Dang et al. Sep 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080045405 Beutel et al. Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080104735 Howland May 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277264 Sprague Nov 2008 A1
20080277266 Layman Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090209408 Kitamura et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20090324468 Golden et al. Dec 2009 A1
20100089002 Merkel Apr 2010 A1
20100092358 Koegel et al. Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100166629 Deeba Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100180582 Mueller-Stach et al. Jul 2010 A1
20100186375 Kazi et al. Jul 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143926 Yin et al. Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20110305612 Müller-Stach et al. Dec 2011 A1
20120023909 Lambert et al. Feb 2012 A1
20120045373 Biberger Feb 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120124974 Li et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20130213018 Yin et al. Aug 2013 A1
20130280528 Biberger Oct 2013 A1
20130281288 Biberger et al. Oct 2013 A1
20130316896 Biberger Nov 2013 A1
20130345047 Biberger et al. Dec 2013 A1
20140018230 Yin et al. Jan 2014 A1
Foreign Referenced Citations (47)
Number Date Country
1 134 302 Sep 2001 EP
1 619 168 Jan 2006 EP
1 307 941 Feb 1973 GB
56-146804 Nov 1981 JP
61-086815 May 1986 JP
62-102827 May 1987 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
06272012 Sep 1994 JP
H6-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
8-158033 Jun 1996 JP
10-130810 May 1998 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-88486 Mar 2002 JP
2002-336688 Nov 2002 JP
2003-126694 May 2003 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2007-46162 Feb 2007 JP
2007-203129 Aug 2007 JP
493241 Mar 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 02092503 Nov 2002 WO
WO 2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2011081833 Jul 2011 WO
Non-Patent Literature Citations (83)
Entry
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I li, P. Fauchais, Universite de Limoges,123 Avenue A. Thomas 87000, Limoges , F., Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M. Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,”Joumal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Young, Lee W. International Searching Authority, International Search Report and Written Opinion for Application No. PCT/US10/60140, mailed Feb. 11, 2011, 10 pgs.
English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled “Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685.
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404.
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66.
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,” Chemical Physics Letters 221:363-367.
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998.
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370.
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3-5 vol.% Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936.
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996.
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 119(9):2297-2298.
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67.
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799.
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256.
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727.
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065.
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642.
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017.
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77.
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793.
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81.
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358.
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275.
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/151,830, filed May 8, 2008, for Biberger et al.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Journal of the American Ceramic Society 71: C-399-C401.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2 and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Related Publications (1)
Number Date Country
20110143041 A1 Jun 2011 US
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US