1. Field of the Invention
The present invention relates to programmable integrated circuits. More specifically, the present invention relates to layouts for non-volatile memory cells and arrays.
2. The Prior Art
Two-transistor non-volatile memory cells for use in programmable integrated circuits are known in the art.
Each two-transistor non-volatile memory cell (one of which is shown in dashed rectangle 10) of
Persons of ordinary skill in the art will observe that mirrored pairs of memory transistors and switch transistors are shown in p-type well 12 in
Common control gate 32 is associated with the first memory and switch transistors of all of the two-transistor non-volatile memory cells and common control gate 34 is associated with the second memory and switch transistors of all of the two-transistor non-volatile memory cells. Floating gate segments 36-1, 36-2, and 36-3, respectively, are common to the first memory and switch transistors in the three cell pairs shown and floating gate segments (hidden under control gate 32 and not shown in
The programming, erasing, and normal-mode operating of the two-transistor, non-volatile memory cells shown in
As can be seen from an examination of
While the two-transistor memory cells shown in
A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory-transistor well. A memory transistor through which the cell may be programmed and erased is formed within the memory-transistor well and includes spaced-apart source and drain regions. A switch transistor that may be used to make interconnections between circuit elements is formed within the switch-transistor well region and includes spaced-apart source and drain regions. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and the switch transistor. A control gate is disposed above and self aligned with respect to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
An array of two-transistor non-volatile memory cells is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory-transistor well. A plurality of memory transistors are formed within the memory transistor well, each including spaced-apart source and drain regions. A plurality of switch transistors are formed within the switch-transistor well region, each associated with one of the memory transistors and including spaced-apart source and drain regions. Each memory transistor includes a floating gate insulated from and self-aligned with the source and drain regions of the switch transistor with which it is associated. Each memory transistor also includes a control gate disposed above and self aligned with its floating gate and with the source and drain regions of the at least one switch transistor with which it is associated. More than one switch transistor may be associated with a memory transistor.
According to another aspect of the present invention, because the memory transistors and the switch transistor are disposed in different wells, the characteristics of the memory-transistor wells and transistors, and the characteristics of the switch-transistor wells and transistors can be separately optimized for the different performance characteristics desired for each of these devices.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons. For example, although exemplary embodiments of the invention are disclosed employing n-channel transistors disposed in p-type bulk regions, p-type transistors disposed in n-type bulk regions may also be employed. In addition, well isolation techniques are disclosed herein, but persons of ordinary skill in the art will appreciate that other isolation techniques, such as silicon on insulator (SOI), may be employed to form the two-transistor non-volatile memory cells and arrays of the present invention.
Referring now to
Unlike the two-transistor non-volatile memory cells of
A memory-transistor p-type well 42 is disposed in the n-type well 40. P-type wells 42 may have depths of between about 0.5 to about 5 microns and may typically be about 30% deeper than the switch n-type wells 40. N-type wells 42 may be doped to from between about 1e16 and about 1e18. Active n-type regions 44 and 46 are formed in memory-transistor p-type well 42 and may have doping concentrations of from between about 1e19 and about 1e18. As will be appreciated by persons of ordinary skill in the art, a mirrored memory-transistor structure is depicted in
A first switch-transistor p-type well 60 is disposed in n-type well 40 and is spaced apart from memory-transistor p-type well 42. As with memory-transistor p-type well 42, mirrored switch transistors may be employed in the present invention. Thus, active regions 62 and 64 are formed in switch-transistor p-type well 60. A contact 66 makes contact to a portion of active region 62 that acts the common source for two separate switch transistors. Contact 68 makes contact to the drain region of a first (upper) one of the switch transistors in active region 62 and contact 70 makes contact to the drain region of a second (lower) one of the switch transistors in active region 62. Similarly, contact 72 makes contact to a portion of active region 64 that acts the common source for two separate switch transistors. Contact 74 makes contact to the drain region of a first (upper) one of the memory transistors in active region 64 and contact 76 makes contact to the drain region of a second (lower) one of the memory transistors in active region 64. Thus, four separate transistors are shown disposed within switch-transistor p-type well 60.
A second switch-transistor p-type well 80 is disposed in n-type well 40 and is spaced apart from memory-transistor p-type well 42 on the side opposite from first switch-transistor p-type well 60. As with switch-transistor p-type well 60, mirrored switch transistors may be employed in second switch-transistor p-type well 80. Thus, active regions 82 and 84 are formed in switch-transistor p-type well 80. A contact 86 makes contact to a portion of active region 82 that acts as the common source for two separate switch transistors. Contact 88 makes contact to the drain region of a first (upper) one of the switch transistors in active region 82 and contact 90 makes contact to the drain region of a second (lower) one of the switch transistors in active region 82. Similarly, contact 92 makes contact to a portion of active region 84 that acts as the common source for two separate switch transistors. Contact 94 makes contact to the drain region of a first (upper) one of the memory transistors in active region 84 and contact 96 makes contact to the drain region of a second (lower) one of the memory transistors in active region 84. Thus, four separate transistors are shown disposed within switch-transistor p-type well 80.
Floating gate segment 98 (seen in
Floating gate segment 100 (seen in
It is apparent that the group of memory cells depicted in
As may be seen from an examination of
As will be appreciated by persons of ordinary skill in the art, the layout of the present invention permits the use of single straight segmented polysilicon lines to form all of the floating gates for the upper (and lower) memory and switch transistors of the group of two-transistor non-volatile memory cells depicted in
Such skilled persons will observe that the n-type well 40 acts to advantageously provide electrical isolation of the memory transistor in each two-transistor non-volatile memory cell from its switch transistor. This isolation, combined with the grouping of the memory transistors in a memory-transistor well and the switch transistors in a switch-transistor well, not only allows for advantageously programming and erasing of the memory cells, but also advantageously allows the wells, the memory transistors, and the switch transistors to be separately optimized for desired characteristics. For example, the memory-well depth, doping and diffusion parameters and switch-well depth, doping and diffusion parameters can be separately optimized for desired characteristics of the memory transistors (e.g., programming and erase method and efficiency) and the switch transistors (e.g., speed, current handling capability).
Referring now to
The layout of the group of two-transistor non-volatile memory cells shown in
In addition to the isolation provided by the n-type well 40, further isolation is provided by the presence of n-type well 110. As shown most clearly in
Referring now to
The layout of the group of two-transistor non-volatile memory cells shown in
From an examination of
Referring now to
The layout of the group of two-transistor non-volatile memory cells shown in
In addition to the n-type well regions 80 and the deep n-type well regions 112, enhanced p-type regions 114 are disposed about the periphery of the memory-transistor p-type well 42 and the switch-transistor p-type wells 60 and 80. Persons of ordinary skill in the art will also note that, instead of being spaced apart from the edges of the memory-transistor p-type well 42 and the switch-transistor p-type wells 60 and 80, the n-type wells 110 and deep n-type wells 112 are preferably located at the edges of the memory-transistor p-type well 42 and the switch-transistor p-type wells 60 and 80 as shown most clearly in
In the groups of two-transistor non-volatile memory cells presently disclosed, the n-type well regions are the most heavily doped. The deep n-type well regions 112 are doped to about 25% of the concentration of the n-type well regions 110. The n-type well regions 42 are doped to a concentration that is about an order of magnitude lower than that of the n-type well regions 110. The enhanced p-type well regions are doped to a higher than the other p-type well regions to reduce depletion regions.
Referring now to
As may be easily seen in both
In all of the embodiments of the present invention, the memory-transistor p-type well 42 is decoupled from the switch-transistor p-type wells 60 and 80. This allows optimization of the memory-transistor p-type well 42 for program and erase efficiency and optimization of the switch-transistor p-type wells 60 and 80 for device performance. Accordingly, the switch-transistor p-type wells 50 and 80 may be formed as regular low-voltage or I/O device p-type wells. In addition, the switch-transistor source/drain implants, channel lengths and well implants may be optimized for performance characteristics such as low output impedance, and to suppress hot carrier injection programming.
Similarly, the memory-transistor source/drain implants, halo implants, well implants and channel lengths can be optimized for hot carrier injection or Fowler-Nordheim program and erase efficiency and device reliability. Depending on the junction breakdown levels, the switch transistors and the memory transistors can both be placed in low-voltage wells, or the switch transistors can be placed in a low-voltage well and the memory transistors can be placed in a high-voltage well to optimize the spacing between the wells to favorably impact memory cell size.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
This application is a is a divisional of U.S. patent application Ser. No. 11/962,615, filed Dec. 21, 2007, which is a divisional of U.S. patent application Ser. No. 11/750,650, filed May 18, 2007, now issued as U.S. Pat. No. 7,342,278, which is a divisional of U.S. patent application Ser. No. 11/155,005, filed Jun. 15, 2005, now issued as U.S. Pat. No. 7,285,818, all of which are hereby incorporated by reference as if set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5510730 | El Gamal et al. | Apr 1996 | A |
5587603 | Kowshik | Dec 1996 | A |
5625211 | Kowshik | Apr 1997 | A |
5640344 | Pani et al. | Jun 1997 | A |
5740106 | Nazarian | Apr 1998 | A |
5847993 | Dejenfelt | Dec 1998 | A |
5999444 | Fujiwara et al. | Dec 1999 | A |
6014044 | Kramer et al. | Jan 2000 | A |
6114724 | Ratnakumar | Sep 2000 | A |
6144580 | Murray | Nov 2000 | A |
6252273 | Salter, III et al. | Jun 2001 | B1 |
6356478 | McCollum | Mar 2002 | B1 |
6358478 | Soremark | Mar 2002 | B1 |
6438030 | Hu et al. | Aug 2002 | B1 |
7285818 | Dhaoui et al. | Oct 2007 | B2 |
7342278 | Dhaoui et al. | Mar 2008 | B2 |
7473960 | Dhaoui et al. | Jan 2009 | B1 |
7501681 | Dhaoui et al. | Mar 2009 | B2 |
7538379 | Dhaoui et al. | May 2009 | B1 |
7538382 | Dhaoui et al. | May 2009 | B1 |
7573093 | Dhaoui et al. | Aug 2009 | B1 |
20040114436 | Hecht et al. | Jun 2004 | A1 |
20040233736 | Auricchio et al. | Nov 2004 | A1 |
20040262669 | Shum et al. | Dec 2004 | A1 |
20070215935 | Dhaoui et al. | Sep 2007 | A1 |
20080093654 | Dhaoui et al. | Apr 2008 | A1 |
20090159954 | Dhaoui et al. | Jun 2009 | A1 |
20090212343 | Dhaoui et al. | Aug 2009 | A1 |
20100038697 | Dhaoui et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
101 26 799 | Dec 2002 | DE |
1 357 598 | Oct 2003 | EP |
2008-547198 | Dec 2008 | JP |
2006138086 | Dec 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090159954 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11962615 | Dec 2007 | US |
Child | 12359481 | US | |
Parent | 11750650 | May 2007 | US |
Child | 11962615 | US | |
Parent | 11155005 | Jun 2005 | US |
Child | 11750650 | US |