Nonvolatile memory manufacturers such as manufacturers of NAND flash memory devices typically specify a maximum number of erase suspend operations for devices that allow for erase suspend operations. Exceeding the number of erase suspend operations specified in the operating specification can lead to either a higher raw Bit Error Rate (BER) or a bad block condition. Erase suspend means suspension of an erase command prior to completion of the erasure.
For some 1× nanometer TLC NAND devices the maximum number of erase suspends is only 10, or in some cases may be less than 10. This low number of allowed erase suspends is not sufficient to obtain desired quality of service levels.
Accordingly, there is a need for a method and apparatus that allows for increasing the number of erase suspend operations and that does not increase the BER or cause a bad block condition as a result of erase suspend operations.
A method is disclosed that includes identifying an erase-suspend limit and determining a pre-suspend time each time that an erase operation is suspended. The method includes determining whether the erase-suspend limit has been reached using the determined pre-suspend time and preventing subsequent suspends of the erase operation when the erase-suspend limit has been reached.
A nonvolatile memory controller is disclosed that is configured to perform erase operations on memory cells of nonvolatile memory devices and that includes an erase suspend circuit. The erase suspend circuit is configured for determining a pre-suspend time each time that an erase operation of the nonvolatile memory device is suspended. The determined pre-suspend time for a first suspend of the erase operation is the time between a start of the erase operation and the first suspend of the erase operation, and the determined pre-suspend time for each additional suspend of the erase operation is the time between a resumption of the erase operation and the following suspend of the erase operation. The erase suspend circuit is configured for determining whether an erase-suspend limit has been reached using the determined pre-suspend time and is configured for preventing subsequent suspends of the erase operation when the erase-suspend limit has been reached.
A nonvolatile memory system is disclosed that includes a plurality of nonvolatile memory devices and a memory controller coupled to each of the nonvolatile memory devices. The nonvolatile memory controller includes an erase suspend circuit configured for determining a pre-suspend time each time that an erase operation of the nonvolatile memory device is suspended, for determining whether an erase-suspend limit has been reached using the determined pre-suspend time and for preventing subsequent suspends of the erase operation when the erase-suspend limit has been reached.
By preventing subsequent suspends of the erase operation when the erase-suspend limit has been reached, and identification of one or more erase-suspend limit that corresponds to the characteristics of the nonvolatile memory devices, the methods and apparatus of the present invention maintain BER of the nonvolatile memory devices within the range required to maintain manufacturer-specified endurance and retention specifications while allowing for more erase suspends than the number specified by the manufacturer of the nonvolatile memory devices.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate various embodiments and, together with the Description of Embodiments, serve to explain principles discussed below. The drawings referred to in this brief description should not be understood as being drawn to scale unless specifically noted.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. While various embodiments are discussed herein, it will be understood that they are not intended to be limiting. On the contrary, the presented embodiments are intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope the various embodiments as defined by the appended claims. Furthermore, in this Detailed Description of the Invention, numerous specific details are set forth in order to provide a thorough understanding. However, embodiments may be practiced without one or more of these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the described embodiments.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, regions, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Referring now to
Nonvolatile memory system 10 includes a nonvolatile memory controller 11 in communication with a host computer 1, a nonvolatile storage module 18 and external memory 17 which may be, for example one or more DRAM. Nonvolatile memory controller 11 includes memory storage 12 that may include one or more volatile or nonvolatile memory location for storing data. Nonvolatile memory storage module 18 includes a plurality of nonvolatile memory devices 20 for storing data. Nonvolatile memory devices 20 may be NAND devices, with each NAND device 20 including one or more packaged semiconductor die that is coupled to nonvolatile memory controller 11. In one exemplary embodiment, each NAND device 20 is coupled to nonvolatile memory controller 11 by chip enable line (CE#), a command latch enable (CLE) line, a read enable signal line (RE#), an address latch enable (ALE) signal line, a write enable single line (WE#), a read/busy (RB) signal line and input and output (I/O) signal lines.
Each NAND device 20 includes memory cells that are organized into blocks and pages, with each block composed of NAND strings that share the same group of word lines. A logical page is composed of cells belonging to the same word line. The number of logical pages within logical block is typically a multiple of 16 (e.g. 64, 128). In the present embodiment, a logical page is the smallest addressable unit for reading from and writing to the NAND memory and a logical block is the smallest erasable unit. However, it is appreciated that in embodiments of the present invention programming to less than an entire page may be possible, depending on the structure of the NAND array. An exemplary NAND array 30 is shown in
Each logical page is composed of a main data area and a spare area. The main data area may have the size of 4 kB, 8 kB, 16 kB or larger. The spare area is made up of hundreds of bytes for every 4 kB of main data storage area.
Erase suspend data is stored as shown by step 102 of
In the present embodiment testing of sample nonvolatile memory devices is performed and the resulting erase suspend data is stored on memory storage 12 prior to shipping nonvolatile memory system 10 or nonvolatile memory controller 11 to a customer. In one specific embodiment erase suspend data is stored in memory storage 12 of nonvolatile memory controller 11 prior to shipping nonvolatile memory controller 11 to a customer. Alternatively, the erase suspend data may be included in the configuration data for nonvolatile memory controller 11 and may be stored externally to nonvolatile memory controller 11 and may be loaded into memory storage 12 or external memory 17 upon configuration of nonvolatile memory controller 11.
Method 100 further includes identifying an erase-suspend limit 103. The erase-suspend limit may be identified by reading the location in memory in which the erase-suspend limit was stored in step 102. Nonvolatile memory controller 11 may include a status circuit 13 configured to determine usage characteristics of NAND devices 20 such as, for example, the number or program and erase cycles of each block of each NAND device 20. In one embodiment the erase-suspend limit may be computed using the stored erase suspend data and the determined usage characteristics. In one specific embodiment the stored erase suspend data includes a table indicating program and erase cycles values and corresponding erase-suspend limit values and pre-suspend time threshold values, with the values to be used determined by indexing the table with the current number of program and erase cycles of the block of the NAND device 20 being erased. As the ease of erasing NAND devices 20 and BER varies as the number of program and erase cycles increases, this provides identification of an erase-suspend limit that is more accurate since it represents the current point of the lifetime of the NAND device being erased.
Normal operations of the nonvolatile memory system are performed 104, which may include reading, programming and erasing NAND devices 20 as well as housekeeping operations such as wear leveling and bad block management. In the embodiment shown in
When an erase operation is being performed, nonvolatile memory controller 11 may receive an erase suspend request 105 from Host 1. If an erase suspend request is not received during an erase operation, normal operation is continued, allowing the erase operation to be performed without suspension. In a typical erase operation, as shown in
It has been found that the effectiveness of the erase is lower at the beginning of the pulse. As a result, successive applications of a short pulse will not have the same effect on the nonvolatile memory device as longer pulses or complete pulses. Accordingly, when an erase operation is suspended a number of times, the effects of the suspensions on the BER of the nonvolatile memory device will vary depending on the amount of time that the voltage was applied during the erase operation.
When a request for suspension of the erase operation is received 105 at nonvolatile memory controller 11, the erase operation of the nonvolatile memory device is suspended 106 unless the erase-suspend limit has been reached 109. In the embodiment shown in
Pre-suspend time is determined 107 each time that the erase operation of the nonvolatile memory device is suspended 106. Pre-suspend time for a first suspend of the erase operation is the time between a start of the erase operation and the first suspend of the erase operation. In the embodiment shown in
Pre-suspend time for each additional suspend of the erase operation is the time between a resumption of the erase operation and the following suspend of the erase operation. In the embodiment shown in
The time at which the erase operation is suspended can also be determined using the time at which the erase suspend command is sent from nonvolatile memory controller 11 to the NAND device 20 being erased. In this embodiment the pre-suspend time is determined to be the time between sending the erase function start command 52 (e.g., D0 h) and the suspend command 53 (e.g., 61 h) or the time between sending the resume command 54 (e.g., D2 h) and the suspend command 53a (e.g., 61 h).
With reference now to
After each suspend of the erase operation a determination is made as to whether the erase suspend limit has been reached 108. When the erase-suspend limit has not been reached the erase is resumed 111 (e.g., by sending a resume command 54, 54a, 54b to the NAND device 20) and normal operations are continued 104. When the erase-suspend limit has been reached 109 subsequent suspends of the erase operation are prevented 110 and the present erase operation is resumed 111 and allowed to complete without further suspension. More particularly, the presently ongoing erase operation on the block is not allowed to be suspended further. Subsequent erase operations of this particular block are treated separately, with each subsequent erase operation requiring performance of steps 105-111 when an erase suspend request is received during the subsequent erase operation.
In the embodiment shown in
By preventing subsequent suspends of the erase operation when the erase-suspend limit has been reached, and identification of one or more erase-suspend limit that correspond to the characteristics of nonvolatile memory devices 20, the methods and apparatus of the present invention maintain BER of nonvolatile memory devices 20 within the range required to maintain manufacturer-specified endurance and retention specifications while allowing for more erase suspends than the number specified by the manufacturer of nonvolatile memory devices 20.
A method 600 is illustrated in
The number of suspends having a pre-suspend time that does not exceed 610 a first pre-suspend time threshold (STT1) is summed 612 to obtain a first sum. This first sum indicates the number of erase suspends with pre-suspend time having a short duration and may be referred to hereinafter as the short-duration sum.
The number of suspends having a pre-suspend time that exceeds 610 the first pre-suspend time threshold and that does not exceed 611 the second pre-suspend time threshold (STT2) is summed 613 to obtain a second sum. This second sum indicates the number of erase suspends with pre-suspend time having a medium duration and may be referred to hereinafter as the medium-duration sum.
The number of suspends having a pre-suspend time that exceeds 611 the second pre-suspend time threshold is summed 614 to obtain a third sum. This third sum indicates the number of erase suspends with pre-suspend time having a longer duration and may be referred to hereinafter as the long-duration sum.
The summing of steps 612-614 is done for each block being erased. For example, counters in erase suspend circuit 16 may be incremented upon each erase suspend operation and the results stored in memory storage 12.
The sums from steps 612, 613 and 614 are compared 615 to the corresponding erase suspend limits to determine when the erase-suspend limit has been reached. More particularly, the short duration sum is compared to the first erase-suspend limit, the medium duration sum is compared to the second erase-suspend limit and the long duration sum is compared to the third erase-suspend limit. The erase-suspend limit is reached when the short duration sum reaches the first erase-suspend limit or when the medium duration sum reaches the second erase-suspend limit or when the long duration sum reaches the third erase-suspend limit. In the present embodiment, the first erase-suspend limit is greater than the second erase-suspend limit and the second erase-suspend limit is greater than the third erase-suspend limit such that more short-duration-pre-suspend-time suspends are allowed than medium-duration-pre-suspend-time suspends, and more medium-duration-pre-suspend-time suspends are allowed than long-duration-pre-suspend-time suspends.
Following is an example in which the testing 101 of exemplary NAND devices that are similar to NAND devices 20 (e.g., the same manufacturer, model, manufacturing batch, etc.) has determined that up to 20 suspends can be tolerated for pre-suspend time intervals of less than 300 microseconds, up to 15 suspends can be tolerated for pre-suspend time intervals of more than 300 microseconds and up to 1,000 microseconds, and up to 10 suspends can be tolerated for pre-suspend time intervals of more than 1,000 microseconds. In this embodiment the first pre-suspend time threshold is set at 300 microseconds, which is less than a third of the duration of the erase pulse used by NAND devices 20 and the second pre-suspend time threshold is set at 1,000 microseconds which is approximately the length of the erase pulse used by NAND devices 20. The first erase-suspend limit is set at 20, the second erase-suspend limit is set at 15 and the third erase-suspend limit is set at 10. Each time a suspend is performed having a time within the first interval (less than or equal to 300 microseconds) the counter for the short duration sum is incremented 612 by one. Each time a suspend is performed having a time within the second interval (more than 300 microseconds and less than or equal to 1,000 microseconds) the counter for the medium duration sum is incremented 613 by one. Each time a suspend is performed having a time within the third interval (more than 1,000 microseconds) the counter for the long duration sum is incremented 614 by one. When the first erase-suspend limit reaches 20, the second erase-suspend limit reaches 15 or the third erase-suspend limit reaches 10 further suspends are prevented 110.
By allowing more short-duration-pre-suspend-time suspends than medium-duration-pre-suspend-time suspends, and more medium-duration-pre-suspend-time suspends than long-duration-pre-suspend-time suspends, the method and apparatus of the present invention maintain BER of nonvolatile memory devices 20 within the range required to maintain manufacturer-specified endurance and retention specifications while allowing for more erase suspends than the number specified by the manufacturer of nonvolatile memory devices 20.
In other embodiments pre-suspend time may be categorized into more or fewer groupings, depending on the characteristics of NAND devices 20. In one alternate embodiment only two groups are used, a first group having pre-suspend times with short-duration and a second group that includes pre-suspend times having a greater duration. In one exemplary embodiment the erase-suspend limit includes a first erase-suspend limit and a second erase-suspend limit, and the determining whether the erase-suspend limit has been reached includes summing the number of suspends having a pre-suspend time that does not exceed a first pre-suspend time threshold to obtain a first sum, summing the number of suspends having a pre-suspend time that exceeds the first pre-suspend time threshold to obtain a second sum. In this embodiment the erase-suspend limit is reached when the first sum reaches the first erase-suspend limit or when the second sum reaches the second erase-suspend limit. For example, only the first pre-suspend time threshold (PSTT1) of 300 microseconds can be used, producing a first sum that is the sum of pre-suspend times that do not exceed the pre-suspend time threshold and a second sum that is the sum of pre-suspend times that exceed the pre-suspend time threshold. In this embodiment the testing of step 101 identifies a short duration pre-suspend time window in which the erase pulses are not effective to move the BER of the cells being erased, and allows for an increased number of suspends that occur within the identified window as compared to the number of suspends allowed outside of the identified window. For example, in an embodiment in which the NAND device 20 manufacturer only specifies that 10 total suspends are allowed, in one embodiment only 10 total suspends are allowed that have a pre-suspend time greater than that of the identified window. In the present embodiment more suspends are allowed having a pre-suspend time that does not exceed the first pre-suspend time threshold than are allowed having a pre-suspend time that exceeds the first pre-suspend time threshold. For example, up to thirty suspends could be allowed that have a pre-suspend time within the identified window. It is appreciated that more or fewer suspends within the identified window could be allowed, depending on the results of the testing of the sample NAND devices.
In method 700 that is shown in
Weighted pre-suspend time is determined as shown by step 710 using the pre-suspend time determined in step 107. In one embodiment weighted pre-suspend time is determined by assigning a different weighted pre-suspend time value to each of a plurality of pre-suspend time intervals. Since pre-suspend times having shorter duration have less impact on the BER than longer pre-suspend times, pre-suspend times having a shorter duration will have a lower weighting factor than pre-suspend times having an intermediate pre-suspend time and pre-suspend times having a longer pre-suspend time. Also, pre-suspend times having medium duration have less impact on the BER than suspends with longer pre-suspend times and therefore will have a lower weighting factor than suspends having a longer pre-suspend time.
The weighted pre-suspend time determined in step 710 is summed 711 for each erase operation. The erase-suspend limit is reached 108 when the sum reaches the weighted pre-suspend time limit. More particularly, the summed weighted pre-suspend time for the block subject to the suspend operation is compared to the weighted pre-suspend time limit identified in step 103.
When the summed weighted pre-suspend time reaches the erase-suspend limit (which is the weighted pre-suspend time limit) 109 further suspends of the erase are prevented 110 and the erase is resumed 111, allowing the erase operation to complete without further interruption.
In the present embodiment erase suspend circuit 16 is operable for determining weighted pre-suspend time 710, summing the determined weighted pre-suspend times for the erase operation 711 and storing the sum for each block being erased in memory storage 12 or external memory 17. In addition, erase suspend circuit 16 is operable for comparing the sum determined in step 711 to the weighted pre-suspend time limit identified in step 103 for determining whether the erase-suspend limit has been reached 108. When the summed weighted pre-suspend time reaches the weighted pre-suspend time limit 109 erase suspend circuit 16 resets summed weighted pre-suspend time to zero and prevents further suspends 110.
In method 800 that is illustrated in
The third weighted suspend (Long-Duration WPST) time is greater than the second weighted pre-suspend time (Medium-Duration WPST), and the second weighted pre-suspend time (Medium-Duration WPST) is greater than the first weighted pre-suspend time (Short-Duration WPST). The WPST sum is compared to the weighted pre-suspend time limit and the erase-suspend limit is reached when the WPST sum reaches the weighted erase-suspend limit. Thereby, more short-duration-suspend-time suspends are allowed than medium-duration-suspend-time suspends, and more medium-duration-suspend-time suspends are allowed than long-duration-suspend-time suspends. Thereby, the method and apparatus of the present invention maintain BER of nonvolatile memory devices 20 within the range required to maintain manufacturer-specified endurance and retention specifications while allowing for more erase suspends than the number specified by the manufacturer of nonvolatile memory devices 20.
Following is an exemplary embodiment in which testing of exemplary NAND devices has determined that up to 20 suspends can be tolerated for pre-suspend time intervals of less than 300 microseconds, up to 15 suspends can be tolerated for pre-suspend time intervals of more than 300 microseconds and up to 1,000 microseconds, and up to 10 suspends can be tolerated for pre-suspend time intervals of more than 1,000 microseconds. This gives a weighting factor of 45/20=2.25 for pre-suspend times having a short-duration pre-suspend time, a weighting factor of 45/15=3 for erase suspends having a medium-duration pre-suspend time and a weighting factor of 45/10=4.5 for erase suspends having a long-duration pre-suspend time and a weighted pre-suspend time limit of 45. Each time a suspend is performed having a time within the first interval (less than or equal to 300 microseconds) a weighted pre-suspend time of 2.25 is summed in step 810. Each time a suspend is performed having a time within the second interval (more than 300 microseconds and less than or equal to 1,000 microseconds) a weighted pre-suspend time of 3 is summed in step 811. Each time a suspend is performed having a time within the third interval (more than 1,000 microseconds) a weighted pre-suspend time of 4.5 is summed in step 812. When the weighted pre-suspend time sum reaches 45 further suspends are prevented 110.
In this embodiment the weighted pre-suspend time limit is 45, allowing for the erase operation to continue to be suspended until the weighted pre-suspend time sum reaches 45. At that time, further suspends of the erase are prevented 110 and the erase is resumed 111. Thus, a total number of 20 suspends are allowed when all are within the first interval, a total of 15 suspends are allowed when all are within the second interval, and a total of 10 suspends are allowed when all are within the third interval.
In other embodiments erase-pre-suspend time may be categorized into more or fewer groupings, depending on the characteristics of NAND devices 20. In one alternate embodiment only two groups are used, a first group having pre-suspend times with short duration and a second group that includes pre-suspend times having a greater duration, with different weighting applied to each group. In this embodiment the weighted pre-suspend time is equal to a first weighted pre-suspend time when the determined pre-suspend time does not exceed the first pre-suspend time threshold and the weighted pre-suspend time is equal to a second weighted pre-suspend time that is greater than the first weighted pre-suspend time when the determined pre-suspend time exceeds the first pre-suspend time threshold. In this embodiment the erase-suspend limit is reached when the sum reaches the weighted erase-suspend limit. In this embodiment the testing of step 101 identifies a short duration pre-suspend time window in which the erase pulses are not effective to move the BER of the cells being erased, and allows for an increased number of suspends that occur within the identified window as compared to the number of suspends allowed outside of the identified window. For example, in an embodiment in which the NAND device 20 manufacturer only specifies that 10 total suspends are allowed, in one embodiment only 10 total suspends are allowed that have a pre-suspend time greater than that of the identified window and up to 30 suspends are allowed having a pre-suspend time within the identified window, giving a weighting factor of 1 to each pre-suspend time within the identified time window and a weighting factor of 3 to each pre-suspend time outside of the identified time window and a weighted suspend-time limit of 30. Accordingly, each time that the determined pre-suspend time does not exceed the first pre-suspend time threshold the weighted pre-suspend time sum is incremented by one and each time that the determined pre-suspend time exceeds the first pre-suspend time threshold the weighted pre-suspend time sum is incremented by a value of three. Thus, significantly more suspends are allowed having a pre-suspend time that does not exceed the first pre-suspend time threshold than are allowed having a pre-suspend time that exceeds the first pre-suspend time threshold. It is appreciated that more or fewer suspends within the identified window could be allowed, depending on the results of the testing of the sample NAND devices in step 101.
In one alternate embodiment weighted pre-suspend time is determined 710 by multiplying the pre-suspend time determined in step 107 by a suspend weighting factor determined in step 101. The suspend weighting factor in this embodiment more heavily weights suspends outside of the pre-suspend time window in which the erase pulses are not effective to significantly move the BER of the cells being erased.
In one embodiment that is illustrated in
In one specific embodiment, status circuit 13 maintains the number of program and erase cycles of each block and stores the number of program and erase cycles in memory storage 12 or in the spare area of one or more of nonvolatile memory devices 20. In this embodiment erase suspend circuit 16 is configured for determining a pre-suspend time each time that an erase operation of the nonvolatile memory device is suspended, for determining whether an erase-suspend limit has been reached using the determined pre-suspend time and incrementing the number of program and erase cycles for the block being erased when the erase-suspend limit has been reached. In the embodiment shown in
By allowing for more erase suspends, the method and apparatus of the present invention allows for more suspends than prior art systems, providing a nonvolatile memory system having improved quality of service.
Unless specifically stated otherwise as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “testing”, “identifying”, “generating”, “comparing”, “sending”, “summing”, “preventing”, or the like, can refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.
Further, for purposes of discussing and understanding the embodiments of the invention, it is to be understood that various terms are used by those knowledgeable in the art to describe techniques and approaches. Furthermore, in the description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, and other changes may be made without departing from the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
815137 | Beecher | Mar 1906 | A |
5615235 | Kakuishi et al. | Mar 1997 | A |
5732092 | Shinohara | Mar 1998 | A |
5822244 | Hansen et al. | Oct 1998 | A |
5875343 | Binford et al. | Feb 1999 | A |
6115788 | Thowe | Sep 2000 | A |
6412041 | Lee et al. | Jun 2002 | B1 |
6539515 | Gong | Mar 2003 | B1 |
6567313 | Tanaka et al. | May 2003 | B2 |
6633856 | Richardson et al. | Oct 2003 | B2 |
6725409 | Wolf | Apr 2004 | B1 |
6789227 | De Souza et al. | Sep 2004 | B2 |
6871168 | Tanaka et al. | Mar 2005 | B1 |
6895547 | Eleftheriou et al. | May 2005 | B2 |
6934804 | Hashemi | Aug 2005 | B2 |
6963507 | Tanaka et al. | Nov 2005 | B2 |
6976194 | Cypher | Dec 2005 | B2 |
6976197 | Faust et al. | Dec 2005 | B2 |
7050334 | Kim et al. | May 2006 | B2 |
7116732 | Worm et al. | Oct 2006 | B2 |
7206992 | Xin et al. | Apr 2007 | B2 |
7209527 | Smith et al. | Apr 2007 | B2 |
7237183 | Xin | Jun 2007 | B2 |
7324559 | McGibney | Jan 2008 | B2 |
7376015 | Tanaka et al. | May 2008 | B2 |
7450668 | Ghosh et al. | Nov 2008 | B2 |
7457906 | Pettey et al. | Nov 2008 | B2 |
7472331 | Kim et al. | Dec 2008 | B2 |
7484158 | Sharon et al. | Jan 2009 | B2 |
7529215 | Osterling | May 2009 | B2 |
7567472 | Gatzemeier et al. | Jul 2009 | B2 |
7620784 | Panabaker et al. | Nov 2009 | B2 |
7650480 | Jiang et al. | Jan 2010 | B2 |
7694047 | Alston | Apr 2010 | B1 |
7708195 | Yoshida et al. | May 2010 | B2 |
7739472 | Guterman et al. | Jun 2010 | B2 |
7752346 | Talayco et al. | Jul 2010 | B2 |
7801233 | Chow et al. | Sep 2010 | B1 |
7860930 | Freimuth et al. | Dec 2010 | B2 |
7904793 | Mokhlesi et al. | Mar 2011 | B2 |
7930623 | Pisek et al. | Apr 2011 | B2 |
7937641 | Amidi | May 2011 | B2 |
7945721 | Johnsen et al. | May 2011 | B1 |
7958430 | Kolokowsky et al. | Jun 2011 | B1 |
7975193 | Johnson | Jul 2011 | B2 |
8094508 | Gatzemeier et al. | Jan 2012 | B2 |
8140930 | Maru | Mar 2012 | B1 |
8176367 | Dreifus et al. | May 2012 | B2 |
8219894 | Au et al. | Jul 2012 | B2 |
8223745 | Johnsen et al. | Jul 2012 | B2 |
8228728 | Yang et al. | Jul 2012 | B1 |
8244946 | Gupta et al. | Aug 2012 | B2 |
8245112 | Hicken et al. | Aug 2012 | B2 |
8245117 | Wu | Aug 2012 | B1 |
8250286 | Yeh et al. | Aug 2012 | B2 |
8254112 | Yang et al. | Aug 2012 | B2 |
8255770 | Park et al. | Aug 2012 | B2 |
8259498 | Yogev et al. | Sep 2012 | B2 |
8259506 | Sommer et al. | Sep 2012 | B1 |
8261136 | D'Abreu et al. | Sep 2012 | B2 |
8281217 | Kim et al. | Oct 2012 | B2 |
8281227 | Inskeep et al. | Oct 2012 | B2 |
8286004 | Williams | Oct 2012 | B2 |
8307258 | Flynn et al. | Nov 2012 | B2 |
8327220 | Borchers et al. | Dec 2012 | B2 |
8335977 | Weingarten et al. | Dec 2012 | B2 |
8341502 | Steiner et al. | Dec 2012 | B2 |
8351258 | Yang et al. | Jan 2013 | B1 |
8359522 | Gunnam et al. | Jan 2013 | B2 |
8392789 | Biscondi et al. | Mar 2013 | B2 |
8402201 | Strasser et al. | Mar 2013 | B2 |
8418023 | Gunnam et al. | Apr 2013 | B2 |
8429325 | Onufryk et al. | Apr 2013 | B1 |
8429497 | Tu et al. | Apr 2013 | B2 |
8473812 | Ramamoorthy et al. | Jun 2013 | B2 |
8493791 | Karakulak et al. | Jul 2013 | B2 |
8504885 | Haratsch et al. | Aug 2013 | B2 |
8504887 | Varnica et al. | Aug 2013 | B1 |
8555140 | Gunnam et al. | Oct 2013 | B2 |
8621318 | Micheloni et al. | Dec 2013 | B1 |
8638602 | Horn et al. | Jan 2014 | B1 |
8640005 | Wilkerson et al. | Jan 2014 | B2 |
8645613 | Tan et al. | Feb 2014 | B2 |
8656257 | Micheloni et al. | Feb 2014 | B1 |
8665648 | Mun et al. | Mar 2014 | B2 |
8694849 | Micheloni et al. | Apr 2014 | B1 |
8694855 | Micheloni et al. | Apr 2014 | B1 |
8706956 | Cagno et al. | Apr 2014 | B2 |
8707122 | Micheloni et al. | Apr 2014 | B1 |
8737141 | Melik-Martirosian | May 2014 | B2 |
8739008 | Liu et al. | May 2014 | B2 |
8755229 | Visconti et al. | Jun 2014 | B1 |
8762620 | Prins et al. | Jun 2014 | B2 |
8769374 | Franceschini et al. | Jul 2014 | B2 |
8775913 | Haratsch et al. | Jul 2014 | B2 |
8787428 | Dai et al. | Jul 2014 | B2 |
8856622 | Ramamoorthy et al. | Oct 2014 | B2 |
8898372 | Yeh | Nov 2014 | B2 |
8917734 | Brown | Dec 2014 | B1 |
8924824 | Lu | Dec 2014 | B1 |
8953373 | Haratsch et al. | Feb 2015 | B1 |
8958247 | Asaoka et al. | Feb 2015 | B2 |
8959280 | Ma et al. | Feb 2015 | B2 |
8984216 | Fillingim | Mar 2015 | B2 |
8995197 | Steiner et al. | Mar 2015 | B1 |
8995302 | Brown et al. | Mar 2015 | B1 |
9025495 | Onufryk et al. | May 2015 | B1 |
9058289 | Tai et al. | Jun 2015 | B2 |
9142314 | Beltrami et al. | Sep 2015 | B2 |
9164891 | Karamcheti et al. | Oct 2015 | B2 |
9244763 | Kankani et al. | Jan 2016 | B1 |
9251909 | Camp et al. | Feb 2016 | B1 |
9257182 | Grunzke | Feb 2016 | B2 |
9268531 | Son et al. | Feb 2016 | B1 |
9292428 | Kanamori et al. | Mar 2016 | B2 |
9294132 | Peleato-Inarrea et al. | Mar 2016 | B1 |
9444655 | Sverdlov et al. | Sep 2016 | B2 |
9886214 | Micheloni | Feb 2018 | B2 |
9916906 | Wu et al. | Mar 2018 | B2 |
20020051501 | Demjanenko et al. | May 2002 | A1 |
20020129308 | Kinoshita et al. | Sep 2002 | A1 |
20020181438 | McGibney | Dec 2002 | A1 |
20030033567 | Tamura et al. | Feb 2003 | A1 |
20030104788 | Kim | Jun 2003 | A1 |
20030225970 | Hashemi | Dec 2003 | A1 |
20040088636 | Cypher | May 2004 | A1 |
20040123230 | Lee et al. | Jun 2004 | A1 |
20040136236 | Cohen et al. | Jul 2004 | A1 |
20040181735 | Xin | Sep 2004 | A1 |
20040234150 | Chang | Nov 2004 | A1 |
20040252791 | Shen et al. | Dec 2004 | A1 |
20040268015 | Pettey et al. | Dec 2004 | A1 |
20050010846 | Kikuchi et al. | Jan 2005 | A1 |
20050226355 | Kibune et al. | Oct 2005 | A1 |
20050248999 | Tamura et al. | Nov 2005 | A1 |
20050252791 | Pechtold et al. | Nov 2005 | A1 |
20050286511 | Johnsen et al. | Dec 2005 | A1 |
20060039370 | Rosen et al. | Feb 2006 | A1 |
20060050694 | Bury et al. | Mar 2006 | A1 |
20060126728 | Yu et al. | Jun 2006 | A1 |
20060206655 | Chappell et al. | Sep 2006 | A1 |
20060282603 | Onufryk et al. | Dec 2006 | A1 |
20070050688 | Thayer | Mar 2007 | A1 |
20070089031 | Huffman et al. | Apr 2007 | A1 |
20070101225 | Moon et al. | May 2007 | A1 |
20070118743 | Thornton et al. | May 2007 | A1 |
20070136628 | Doi et al. | Jun 2007 | A1 |
20070147489 | Sun et al. | Jun 2007 | A1 |
20070217253 | Kim et al. | Sep 2007 | A1 |
20070233939 | Kim | Oct 2007 | A1 |
20070239926 | Gyl et al. | Oct 2007 | A1 |
20080005382 | Mimatsu | Jan 2008 | A1 |
20080016425 | Khan et al. | Jan 2008 | A1 |
20080049869 | Heinrich et al. | Feb 2008 | A1 |
20080077843 | Cho et al. | Mar 2008 | A1 |
20080148129 | Moon et al. | Jun 2008 | A1 |
20080229079 | Flynn et al. | Sep 2008 | A1 |
20080229164 | Tamura et al. | Sep 2008 | A1 |
20080256280 | Ma | Oct 2008 | A1 |
20080256292 | Flynn et al. | Oct 2008 | A1 |
20080263265 | Litsyn et al. | Oct 2008 | A1 |
20080267081 | Roeck | Oct 2008 | A1 |
20080276156 | Gunnam et al. | Nov 2008 | A1 |
20080320214 | Ma et al. | Dec 2008 | A1 |
20090027991 | Kaizu et al. | Jan 2009 | A1 |
20090067320 | Rosenberg et al. | Mar 2009 | A1 |
20090077302 | Fukuda | Mar 2009 | A1 |
20090164694 | Talayco et al. | Jun 2009 | A1 |
20090290441 | Gatzemeier et al. | Nov 2009 | A1 |
20090296798 | Banna et al. | Dec 2009 | A1 |
20090303788 | Roohparvar et al. | Dec 2009 | A1 |
20090307412 | Yeh et al. | Dec 2009 | A1 |
20090327802 | Fukutomi et al. | Dec 2009 | A1 |
20100085076 | Danilin et al. | Apr 2010 | A1 |
20100162075 | Brannstrom et al. | Jun 2010 | A1 |
20100185808 | Yu et al. | Jul 2010 | A1 |
20100199149 | Weingarten et al. | Aug 2010 | A1 |
20100211737 | Flynn et al. | Aug 2010 | A1 |
20100211852 | Lee et al. | Aug 2010 | A1 |
20100226422 | Taubin et al. | Sep 2010 | A1 |
20100246664 | Citta et al. | Sep 2010 | A1 |
20100262979 | Borchers et al. | Oct 2010 | A1 |
20100293440 | Thatcher et al. | Nov 2010 | A1 |
20110010602 | Chung et al. | Jan 2011 | A1 |
20110055453 | Bennett et al. | Mar 2011 | A1 |
20110055659 | Tu et al. | Mar 2011 | A1 |
20110066902 | Sharon et al. | Mar 2011 | A1 |
20110072331 | Sakaue et al. | Mar 2011 | A1 |
20110119553 | Gunnam et al. | May 2011 | A1 |
20110161678 | Niwa | Jun 2011 | A1 |
20110209031 | Kim et al. | Aug 2011 | A1 |
20110225341 | Satoh et al. | Sep 2011 | A1 |
20110246136 | Haratsch et al. | Oct 2011 | A1 |
20110246842 | Haratsch et al. | Oct 2011 | A1 |
20110246853 | Kim et al. | Oct 2011 | A1 |
20110296084 | Nango | Dec 2011 | A1 |
20110307758 | Fillingim et al. | Dec 2011 | A1 |
20120008396 | Park et al. | Jan 2012 | A1 |
20120051144 | Weingarten et al. | Mar 2012 | A1 |
20120054413 | Brandt | Mar 2012 | A1 |
20120096192 | Tanaka et al. | Apr 2012 | A1 |
20120140583 | Chung et al. | Jun 2012 | A1 |
20120141139 | Bakhru et al. | Jun 2012 | A1 |
20120166690 | Regula | Jun 2012 | A1 |
20120167100 | Li et al. | Jun 2012 | A1 |
20120179860 | Falanga et al. | Jul 2012 | A1 |
20120203986 | Strasser et al. | Aug 2012 | A1 |
20120239991 | Melik-Martirosian et al. | Sep 2012 | A1 |
20120254515 | Melik-Martirosian et al. | Oct 2012 | A1 |
20120311388 | Cronin et al. | Dec 2012 | A1 |
20120311402 | Tseng et al. | Dec 2012 | A1 |
20130013983 | Livshitz et al. | Jan 2013 | A1 |
20130024735 | Chung et al. | Jan 2013 | A1 |
20130060994 | Higgins et al. | Mar 2013 | A1 |
20130086451 | Grube et al. | Apr 2013 | A1 |
20130094286 | Sridharan et al. | Apr 2013 | A1 |
20130094290 | Sridharan et al. | Apr 2013 | A1 |
20130117616 | Tai et al. | May 2013 | A1 |
20130117640 | Tai et al. | May 2013 | A1 |
20130145235 | Alhussien et al. | Jun 2013 | A1 |
20130163327 | Karakulak et al. | Jun 2013 | A1 |
20130163328 | Karakulak et al. | Jun 2013 | A1 |
20130176779 | Chen et al. | Jul 2013 | A1 |
20130185598 | Haratsch et al. | Jul 2013 | A1 |
20130198451 | Hyun et al. | Aug 2013 | A1 |
20130205085 | Hyun et al. | Aug 2013 | A1 |
20130314988 | Desireddi et al. | Nov 2013 | A1 |
20130315252 | Emmadi et al. | Nov 2013 | A1 |
20130318422 | Weathers et al. | Nov 2013 | A1 |
20140029336 | Venkitachalam et al. | Jan 2014 | A1 |
20140040704 | Wu et al. | Feb 2014 | A1 |
20140053037 | Wang et al. | Feb 2014 | A1 |
20140068368 | Zhang et al. | Mar 2014 | A1 |
20140068382 | Desireddi et al. | Mar 2014 | A1 |
20140072056 | Fay | Mar 2014 | A1 |
20140085982 | Asaoka et al. | Mar 2014 | A1 |
20140101510 | Wang et al. | Apr 2014 | A1 |
20140164881 | Chen et al. | Jun 2014 | A1 |
20140181426 | Grunzke et al. | Jun 2014 | A1 |
20140181617 | Wu et al. | Jun 2014 | A1 |
20140185611 | Lie et al. | Jul 2014 | A1 |
20140198569 | Kim et al. | Jul 2014 | A1 |
20140198581 | Kim et al. | Jul 2014 | A1 |
20140215175 | Kasorla et al. | Jul 2014 | A1 |
20140219003 | Ebsen et al. | Aug 2014 | A1 |
20140229774 | Melik-Martirosian et al. | Aug 2014 | A1 |
20140281767 | Alhussien et al. | Sep 2014 | A1 |
20140281771 | Yoon et al. | Sep 2014 | A1 |
20140281808 | Lam et al. | Sep 2014 | A1 |
20140281822 | Wu et al. | Sep 2014 | A1 |
20140281823 | Micheloni et al. | Sep 2014 | A1 |
20150039952 | Goessel et al. | Feb 2015 | A1 |
20150043286 | Park et al. | Feb 2015 | A1 |
20150046625 | Peddle et al. | Feb 2015 | A1 |
20150127883 | Chen et al. | May 2015 | A1 |
20150131373 | Alhussien et al. | May 2015 | A1 |
20150149871 | Chen et al. | May 2015 | A1 |
20150169468 | Camp et al. | Jun 2015 | A1 |
20150186055 | Darragh | Jul 2015 | A1 |
20150221381 | Nam | Aug 2015 | A1 |
20150242268 | Wu et al. | Aug 2015 | A1 |
20150332780 | Kim et al. | Nov 2015 | A1 |
20150371718 | Becker et al. | Dec 2015 | A1 |
20160034206 | Ryan et al. | Feb 2016 | A1 |
20160049203 | Alrod et al. | Feb 2016 | A1 |
20160071601 | Shirakawa et al. | Mar 2016 | A1 |
20160072527 | Tadokoro et al. | Mar 2016 | A1 |
20160155507 | Grunzke | Jun 2016 | A1 |
20160179406 | Gorobets et al. | Jun 2016 | A1 |
20160247581 | Yoshida et al. | Aug 2016 | A1 |
20160293259 | Kim et al. | Oct 2016 | A1 |
20170147135 | Higashibeppu | May 2017 | A1 |
20170213597 | Micheloni et al. | Jul 2017 | A1 |
20180033490 | Marelli et al. | Feb 2018 | A1 |
Entry |
---|
Cai, et al., “Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery”, 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA); Carnegie Mellon University, LSI Corporation, 2015, pp. 551-563. |
Chen, et al., “Increasing flash memory lifetime by dynamic voltage allocation for constant mutual information”, 2014 Information Theory and Applications Workshop (ITA), 2014, pp. 1-5. |
Peleato, et al., “Probabilistic graphical model for flash memory programming”, Statistical Signal Processing Workshop (SSP), 2012 IEEE, 2012, pp. 1-4. |
Wu, et al., “Reducing SSD Read Latency via NAND Flash Program and Erase Suspension”, Proceedings of FAST'2012; Department of Electrical and Computer Engineering Virginia Commonwealth University, Richmond, VA 23284, 2012, pp. 117-123. |
Number | Date | Country | |
---|---|---|---|
20180081589 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62266261 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15370391 | Dec 2016 | US |
Child | 15827189 | US |