The subject matter of the present disclosure generally relates to improved materials, more particularly improved phase-change memory materials for use in the field of electronics and semiconductors, and the development and design of the same.
Technologies drive the perpetual search for novel and improved functional materials, necessitating the exploration of increasingly complex multi-component materials [1]. With each new component or material(s) parameter, the space of candidate experiments grows exponentially. For example, if investigating the impact of a new parameter (e.g., introducing doping) involves approximately ten experiments over the parameter range, N parameters will require on the order of 10N+ possible experiments. High-throughput synthesis and characterization techniques offer a partial solution: with each new parameter, the number of candidate experiments rapidly escapes the feasibility of exhaustive exploration. The search is further confounded by the diversity and complexity of materials composition-structure-property (CSP) relationships, including materials-processing parameters and atomic disorder [2]. Coupled with the sparsity of optimal materials, these challenges threaten to impede innovation and industrial advancement.
Structural phase maps, which describe the dependence of materials structure on composition, serve as blueprints in the design of functional and structural materials, as most materials properties are tied to crystal-structure prototypes. For example, property extrema tend to occur within specific phase regions (e.g., magnetism and superconductivity) or along phase boundaries (e.g., caloric-cooling materials and morphotropic phase-boundary piezoelectrics). Structural phase maps, and more specifically equilibrium phase diagrams, were traditionally generated over years with point-by-point Edisonian approaches guided by expert knowledge and intuition and involving iterative materials synthesis, diffraction-based structure characterization, and crystallographic refinement.
Machine learning (ML) is transforming materials research before our eyes [3], and yet direct coupling of ML with experiments remains a formidable challenge. Closed-loop autonomous system for materials exploration and optimization (CAMEO) offers a new materials research paradigm to truly harness the accelerating potential of ML, setting the stage for the 21st-century paradigm of materials research—the autonomous materials research lab run under the supervision of a robot scientist or artificial scientist [4]. Furthermore, CAMEO embraces aspects of human-in-the-loop autonomous systems [5, 6], where the human provides their expertise while ML presides over decision making steps. Live visualization of data analysis and decision making (including uncertainty quantification) provides interpretability of the autonomous process for the human expert in the human-machine research team (see
Active learning [7]—the ML field dedicated to optimal experiment design (i.e., adaptive design), is key to this new paradigm. Active learning provides a systematic approach to identify the best experiments to perform next to achieve user-defined objectives. Scientific application can be traced as far back as the 18th century to Laplace's guided discoveries of celestial mechanics [8]. Bayesian optimization (BO) active learning techniques have been used more recently to guide experimentalists in the lab to optimize unknown functions [9-14]. BO methods balance the use of experiments to explore the unknown function with experiments that exploit prior knowledge to identify extrema. However, these past studies only advised researchers on the next experiment to perform, leaving experiment planning, execution, and analysis to the researcher. Recent advances in robotics have shifted the burden of materials synthesis from human experts to automated systems, accelerating materials discovery [15,16]. Concurrently, active learning has been demonstrated to accelerate property optimization by guiding simulations of known phases [17]. More recently, autonomous systems and machine learning driven research have been demonstrated for optimizing process and system operation [18-20] sample characterization [21], and tuning chemical reactions of known polymers and organic molecules for technological applications [22-24], using off-the-shelf optimization schemes. Taking another step and placing active learning in real-time control of solid-state materials exploration labs promises to accelerate materials discovery while also rapidly and efficiently illuminating complex materials-property relationships. Such potential innovation has been discussed in recent perspectives [25,26], with a primary focus on autonomous chemistry [27-29].
Herein, CAMEO (see
According to an aspect, provided is a phase-change memory material including Ge4Sb6Te7.
According to another aspect, provided is a phase-change memory material including a material of formula (I):
TMxSbyTez (I)
wherein TM is a transition metal, wherein x, y, and z are each independently an integer between 1-10, and wherein the phase-change memory material has an extinction difference between crystalline and amorphous phases (kc−ka) greater than about 2 in a wavelength range of about 1000 nm to about 1500 nm.
According to another aspect, provided is a method of forming a photonic switching device including forming a film on a substrate, the film including a phase-change memory material selected to have an extinction difference between crystalline and amorphous phases (kc−ka) greater than about 2 in a wavelength range of about 1000 nm to about 1500 nm.
According to another aspect, provided is a method of forming a memory device including forming a film on a substrate, the film including a phase-change memory material selected to have an extinction difference between crystalline and amorphous phases (kc−ka) greater than about 2 in a wavelength range of about 1000 nm to about 1500 nm.
According to another aspect, provided is a method of selecting a phase-change memory material including: evaluating optical bandgap difference of phase-change memory materials; and selecting phase-change memory material or materials having larger or largest optical bandgap differences, wherein the evaluation is conducted via Bayesian active learning.
According to another aspect, provided is a method including: evaluating optical bandgap of a phase-change memory material via Bayesian active learning; and selecting a phase-change memory material or materials having larger or largest optical bandgap differences.
The foregoing and other aspects of the present disclosure will now be described in more detail with respect to other embodiments described herein. It should be appreciated that the subject matter of the present disclosure can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the examples provided in the present disclosure to those skilled in the art.
The terminology used in the description of the examples of the present disclosure is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the examples and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, as used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
The term “comprise,” as used herein, in addition to its regular meaning, may also include, and, in some embodiments, may specifically refer to the expressions “consist essentially of” and/or “consist of.” Thus, the expression “comprise” can also refer to, in some embodiments, the specifically listed elements of that which is claimed and does not include further elements, as well as embodiments in which the specifically listed elements of that which is claimed may and/or does encompass further elements, or embodiments in which the specifically listed elements of that which is claimed may encompass further elements that do not materially affect the basic and novel characteristic(s) of that which is claimed. For example, that which is claimed, such as a composition, formulation, method, system, etc. “comprising” listed elements also encompasses, for example, a composition, formulation, method, kit, etc. “consisting of,” i.e., wherein that which is claimed does not include further elements, and a composition, formulation, method, kit, etc. “consisting essentially of,” i.e., wherein that which is claimed may include further elements that do not materially affect the basic and novel characteristic(s) of that which is claimed.
The term “about” generally refers to a range of numeric values that one skilled in the art would consider equivalent to the recited numeric value or having the same function or result. For example, “about” may refer to a range that is within ±1%, ±2%, ±5%, ±10%, ±15%, or even ±20% of the indicated value, depending upon the numeric values that one skilled in the art would consider equivalent to the recited numeric value or having the same function or result. Furthermore, in some embodiments, a numeric value modified by the term “about” may also include a numeric value that is “exactly” the recited numeric value. In addition, any numeric value presented without modification will be appreciated to include numeric values “about” the recited numeric value, as well as include “exactly” the recited numeric value. Similarly, the term “substantially” means largely, but not wholly, the same form, manner or degree and the particular element will have a range of configurations as one skilled in the art would consider as having the same function or result. When a particular element is expressed as an approximation by use of the term “substantially,” it will be understood that the particular element forms another embodiment.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one skilled in the art.
The present disclosure relates to preparation of phase-change materials, such as phase-change memory materials, with improved and enhanced properties. Features include:
1. Phase-change memory materials having improved or enhanced optical bandgap differences between amorphous and crystalline states;
2. Methods of evaluating/examining phase-change memory materials using machine/active learning, such as Bayesian active learning and/or Bayesian manifold learning, to select phase-change memory materials, such as materials having larger optical bandgap differences between phases; and
3. Methods of forming electronic devices, such as photonic switching devices and/or enhanced memory devices, with phase-change memory materials selected using the methods evaluating/examining phase-change memory materials using machine/active learning, such as Bayesian active learning and/or Bayesian manifold learning, as set forth herein.
Phase-change memory materials include, for example, phase-change memory materials including a material of formula (I):
TMxSbyTez (I)
wherein TM is a transition metal, wherein x, y, and z are each independently between about 1-10, between about 3-10, between about 3-9, between about 4-9, between about 3-7 or about 4-7, and wherein the phase-change memory material has an extinction difference between crystalline and amorphous phases (kc−ka) greater than about, e.g., 2, in a wavelength range of, e.g., about 1000 nm to about 1500 nm. Other properties of the phase-change memory materials include, for example: a phase-change temperature of, e.g., about 200° C.; a ΔEg of greater than or equal to about, e.g., 0.76 eV; stability over, e.g., at least about 30,000 cycles, such as switching between, crystalline and amorphous phases; and, e.g., at least about 15-20 distinct levels, such as, for example, about 17, distinct levels in non-volatile symmetric multi-level switching. It will be appreciated that switching between phases, such as switching between crystalline and amorphous phases, of materials may be accomplished by exposing/subjecting the materials to, for example, light, such as laser light, or an electrical current, but are not limited thereto.
In some embodiments, phase-change memory materials, such as those materials of formula (I), include a material of formula (II):
GexSbyTez (II)
wherein x is between about 3.4 and 4, y is between about 5 and 6, and z is between about 6.5 and 7.5, and wherein the phase-change memory material has an extinction difference between crystalline and amorphous phases (kc−ka) greater than about, e.g., 2, in a wavelength range of, e.g., about 1000 nm to about 1500 nm. Other properties of the phase-change memory materials include, for example: a phase-change temperature of, e.g., about 200° C.; a ΔEg of greater than or equal to about, e.g., 0.76 eV; stability over, e.g., at least about 30,000 cycles, such as switching between, crystalline and amorphous phases; and, e.g., at least about 15-20 distinct levels, such as, for example, about 17, distinct levels in non-volatile symmetric multi-level switching, wherein switching between phases, such as switching between crystalline and amorphous phases, of materials may be accomplished by, for example, exposing/subjecting the materials to, for example, light, such as laser light, or an electrical current.
In some embodiments, systems for analysis, optimization, and/or prediction of characteristics of compositions/materials, and selection of compositions/materials that are suitable for use as, for example, phase-change memory materials, are provided. Systems may include any electrical circuitry that would be appreciated by one skilled in the art configured to perform analysis, optimization, and/or prediction of characteristics of compositions/materials described herein. In some embodiments, circuitry to perform the analysis, optimization, and/or prediction of characteristics of compositions/materials may employ one or more artificial intelligence and/or machine learning methods/techniques, which in some embodiments may be implemented by circuitry configured to perform the artificial intelligence and/or one or more machine learning methods/techniques.
“Artificial intelligence” is used herein to broadly describe any computationally intelligent systems and methods that can learn knowledge (e.g., based on training data), and use such learned knowledge to adapt its approaches for solving one or more problems, for example, by making inferences based on a received input, such as the received characteristics/properties of compositions/materials having potential use as a phase-change memory material. “Machine learning” generally refers to a sub-field or category of artificial intelligence, and is used herein to broadly describe any algorithms, mathematical models, statistical models, or the like that are implemented in one or more computer systems or circuitry, such as processing circuitry, and which build one or more models based on sample data (or training data) in order to make predictions or decisions related to, for example, analysis, optimization, prediction, and/or selection of compositions/materials that have potential for use, such as phase-change memory materials, according to embodiments as set forth herein.
Machine learning techniques utilized may include, for example, neural networks, convolutional neural networks, deep learning, active learning techniques such as Bayesian active learning, Bayesian program learning and/or Bayesian manifold learning, support vector machines, pattern recognition techniques, etc. to analyze, optimize, predict, and/or select characteristics of compositions/materials as set forth herein. Furthermore, the machine learning techniques may implement any one or any combination of the following computational algorithms or techniques: classification, regression, supervised learning, unsupervised learning, feature learning, clustering, decision trees, etc., or the like.
As one example, an artificial neural network may be utilized by the system to develop, train, or update one or more machine learning models which may be utilized to optimize, predict, and/or determine the characteristics of compositions/materials. An example artificial neural network may include a plurality of interconnected “neurons” which exchange information between each other. The connections have numeric weights that can be tuned based on experience, and thus neural networks are adaptive to inputs and are capable of learning. The “neurons” may be included in a plurality of separate layers which are connected to one another, such as an input layer, a hidden layer, and an output layer. The neural network may be trained by providing training data (e.g., past data related to characteristics/properties of compositions/materials) to the input layer. Through training, the neural network may generate and/or modify the hidden layer, which represents weighted connections mapping the training data provided at the input layer to known output information at the output layer (e.g., classification of characteristics/properties of compositions/materials). Relationships between neurons of the input layer, hidden layer, and output layer, formed through the training process and which may include weight connection relationships, may be stored, for example, as one or more machine learning models within the system, or any circuitry thereof.
Once the neural network has been sufficiently trained, the neural network may be provided with non-training data (e.g., received characteristics/properties of novel and/or uncharacterized compositions/materials that are not currently part of the training data) at the input layer. Utilizing characteristics/properties knowledge (e.g., as stored in the machine learning model, and which may include, for example, weighted connection information between neurons of the neural network), the neural network may make determinations about the received characteristics/properties of novel and/or uncharacterized compositions/materials at the output layer. For example, the neural network may be used to predict and/or determine if a particular novel and/or uncharacterized composition/material may have characteristics/properties that are suitable for its use as a phase-change memory material.
Employing one or more computationally intelligent and/or machine learning operations, the system may learn, for example, by developing and/or updating a machine learning algorithm or model based on training data, to predict and/or determine characteristics of compositions/materials based at least in part on knowledge, inferences or the like developed or otherwise learned through training of the system.
In some embodiments, systems may be operated by and/or on a computer processor, a microprocessor, a microcontroller, or the like, configured to perform the various functions and operations described herein with respect to a system and/or circuitry for analysis of compositions/materials characteristics as set forth herein. In some embodiments, systems and/or electrical circuitry for analysis of compositions/materials characteristics may be configured to execute software instructions stored in any computer-readable storage medium, including, for example, read-only memory (ROM), random access memory (RAM), flash memory, hard disk drive, optical storage device, magnetic storage device, electrically erasable programmable read-only memory (EEPROM), organic storage media, or the like. In some embodiments, analysis of compositions/materials characteristics may include data/information transmission on a communications network without limitation. The communications network may utilize one or more protocols to communicate data/information via one or more physical networks, including local area networks, wireless networks, dedicated lines, intranets, the Internet, and the like.
Methods used to select compositions/materials, such as phase-change memory materials, accordingly may include, for example, selecting materials using machine learning methods/techniques, such as active learning methods/techniques, for example, Bayesian active learning and/or Bayesian manifold learning, to analyze, optimize and/or predict characteristics, e.g., extinction differences, phase change temperatures, stability, such as cycle stability of switching between crystalline and amorphous phases, of compositions/materials, such as compositions/materials of formula (I) and (II), that may be suitable for phase-change memory materials. The analysis of characteristics may, in some embodiments, be based at least in part on known characteristics that are part of a database for characteristics of compositions/materials, for example, characteristics and/or physical properties of compositions/materials that are available at www.AFLOW.org. In some embodiments, analyzing, optimizing, and/or predicting characteristics of the compositions/materials, as well as selecting compositions/materials, is accomplished via Bayesian active learning and/or Bayesian manifold learning. In some embodiments, the Bayesian active learning and/or Bayesian manifold learning utilized in the methods includes closed-loop autonomous materials exploration and optimization (CAMEO). In some embodiments, methods used to select compositions/materials may include methods as set forth, for example, in Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020) and supplemental information therefor, the disclosure of which hereby is incorporated by reference in its entirety.
Having described various aspects, the same will be explained in further detail in the following examples, which are included herein for illustrative purposes, and which are not intended to be construed as limiting.
Closed-loop autonomous system for materials exploration and optimization (CAMEO) has been demonstrated in real-time control of X-ray diffraction measurement experiments over composition spreads at the synchrotron beamline and in the lab. The algorithm can accelerate phase mapping and materials discovery of a novel solid-state material, with a 10-fold reduction in required experiments, each iteration taking seconds to tens of minutes depending on the experimental task.
CAMEO uses a materials-specific active-learning campaign that combines the joint objectives of maximizing knowledge of the phase map P(x) with hunting for materials x* that correspond to property F(x) extrema. Here x∈d is the set of d materials-composition parameters. In particular, subsequent phase mapping measurements are driven by Bayesian graph-based predictions combined with risk minimization-based decision making, ensuring that each measurement maximizes phase map knowledge (see “Methods” sections “M1c-e”). CAMEO accelerates both tasks by exploiting their mutual information via function g (see Eq. 1). Further acceleration is achieved through integration of physics knowledge (e.g., Gibbs phase rule) as well as prior experimental and theory-based knowledge of the target material system.
These features allow CAMEO to target its search in specific phase regions or to search near phase boundaries where significant changes in the target property are likely to occur, thus exploiting the dependence of materials property on structure. An example of how phase map knowledge can accelerate materials discovery and optimization is shown in
For this example a simplified implementation of g is used, switching from phase mapping to materials optimization once phase mapping converges. Materials optimization is focused in the most promising phase region, with a greater importance given to compounds near the phase boundaries. CAMEO thus provides two benefits—a significant reduction of the search space and an improved functional property prediction due to phase map knowledge. Discussion of other approaches to g appears in the “Methods” section. We demonstrate that this physics-informed approach accelerates materials optimization compared to general optimization methodologies that focus on directly charting the high dimensional, complex property function.
x
*=argmaxx[g(f(x),P(x))] (1)
Here, we explored the Ge—Sb—Te ternary system to identify an optimal phase-change memory (PCM) material for photonic switching devices30. PCM materials can be switched between the amorphous and crystalline states with an associated change in resistance and optical contrast which can be accessed on the nanosecond scale or shorter. Various Ge—Sb—Te based PCMs, especially Ge2Sb2Te5 (GST225), have been used in DVD-RAM and nonvolatile phase-change random-access memory. We have implemented our strategy for identifying the optimal composition within the ternary for high-performance photonic switching with an eye toward neuromorphic memory applications31. Our goal was to find a compound with the highest optical contrast between amorphous and crystalline states in order to realize multi-level optical switching with a high signal-to-noise ratio. The composition range mapped was selected based on the lack of detailed phase distribution and optical property information near known PCM phases. We tasked CAMEO to find the composition with the largest difference in the optical bandgap ΔEg and hence optical contrast between amorphous and crystalline states. We have discovered a naturally-forming stable epitaxial nanocomposite at a phase boundary between the distorted face-centered cubic Ge—Sb—Te structure (which we refer to as FCC—Ge—Sb—Te or simply GST) phase region and phase coexisting region of GST and Sb—Te whose optical contrast is superior to the well-known GST225 or other compounds within the Ge—Sb—Te ternary. In a direct comparison, a photonic switching device made of the newly discovered material outperforms a device made of GST225 with a significant margin.
CAMEO satisfies many attributes of a robot scientist, as diagrammed in
CAMEO is based on the fundamental precept that in navigating compositional phase diagrams, enhancement in most functional properties is inherently tied to the presence of particular structural phases and/or phase boundaries. The strategy is, therefore, broadly applicable to a variety of topics with disparate physical properties. The method was first benchmarked and its hyperparameters tuned using a previously characterized composition spread Fe—Ga—Pd, where an entirely different physical property—remnant magnetization, was optimized (see “Methods” for benchmarking method and performance analysis). It was then successfully used to discover a new photonic PCM composition whose ΔEg (between crystalline and amorphous states) is up to 3 times larger than that of the well-known Ge2Sb2Te5.
For this task, scanning ellipsometry measurements were performed on the spread wafer with films in amorphous (initial) and crystalline states ahead of the CAMEO run, and the raw ellipsometric spectra data were incorporated as a phase-mapping prior. This was performed by increasing graph edge weights between samples of similar raw ellipsometry spectra during the phase mapping operation (see “Methods” section “M1c”). Thus, the algorithm makes use of information regarding phase distribution across the spread that is “hidden” in the unreduced complex spectroscopic data, which vary non-trivially across the spread. At each iteration, CAMEO identifies the next material to query, indicates the material to the experimentalist (human-in-the-loop) who performs the intensive task of processing the raw optical data to extract AEg. In parallel, CAMEO remotely controls scanning of the synchrotron beam to collect X-ray diffraction data from the spread wafer with films in the crystalline state. CAMEO first seeks knowledge of the phase map until 80% convergence, and then switches to material optimization (see “Methods” section “M1”). This procedure identified the material with the largest AEg over 19 iterations taking approximately 10 h, compared to over 90 continuous hours for the full set of 177 composition spots. After data collection CAMEO was bench-marked against common active learning schemes with each run for 100 simulations. CAMEO provides an approximate maximum average 35-iteration lead over the best alternative Gaussian process-upper confidence bounds (GP-UCB) focusing on AEg optimization in the composition space. The use of the ellipso-metry prior to accelerate phase mapping provides a 25-iteration lead out of the 35. Furthermore, over the 100 runs, CAMEO gets within 1% of the optimal in the first 20 runs 31% of the time compared to GP-UBC's 10% (see
As seen in
This boost in AEg indeed directly leads to large enhancement in optical contrast as captured in Ak=kc−ka, the difference in the extinction coefficient (between amorphous (ka) and crystalline states (kc)) extracted from the ellipsometry data at different wavelengths (
We have fabricated photonic switching PCM devices based on the discovered GST467 nanocomposite. With a sequence of laser pulses (energy and pulse width) with varying amplitude sent through the device, the material can be switched between the crystalline and amorphous phases (
Recent reports of nanostructured PCM materials, including multilayer and superlattice thin films have highlighted the crucial roles interfaces and defects play in their switching mechanisms leading to faster switching speed and lower switching energies34,35. Our finding of GST467 exhibiting significant boost in ΔEg, and consequently larger optical contrast, underscores the effectiveness of naturally-forming nanocomposites as another approach to enhancing performance of PCM materials, especially for optical switching devices. It is the presence of epitaxial nano-pockets of the SbTe phase in GST467 which is locally modifying the resonant bonding in the GST matrix resulting in the lowered optical bandgap in the crystalline state, which in turn leads to the larger ΔEg.
The discovery of a novel PCM material demonstrates that systems similar to CAMEO will fulfill the primary goals of materials design by accelerating the discovery and collection of materials knowledge, streamlining the experiment cycle, improving control over experimental variability, and improving reproducibility, thus improving trust in scientific results. They will also generate reference and benchmark datasets—automatically processed, analyzed, and converted to actionable knowledge with all associated metadata, for developing and improving trust in machine learning tools. Further benefits include automatic knowledge capture to maintain institutional knowledge, maximizing information gain, and reducing use of consumable resources, such as expert time, freeing up experts to work on higher level challenges. Research at the synchrotron exemplifies these resource demands and limitations, where obtaining scientist and equipment time is difficult or expensive. And potentially most impactful, placing labs under the control of AI may greatly reduce the technical expertise needed to perform experiments, resulting in a greater ‘democratization’ of science36. In turn, this may facilitate a more distributed approach to science, as advocated by the materials collaboratory concept37.
M0 Outline of Sections.
A description of the closed-loop, autonomous system for materials exploration and optimization (CAMEO) scheme can be found in M1 beginning with a detailed description of results and a description of materials and device synthesis and characterization in section M2. The description of CAMEO is broken down into the subsections: M1a detailed results, M1b Initialization and data pre-processing, M1c Phase mapping, M1d Knowledge propagation, M1e Active learning, M1f Statistics and performance measures. The materials and device section is broken down into the subsections: M2a Sample fabrication, M2b Mapping of phase-change temperature, M2c Structural mapping, M2d High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) of Ge4Sb6Te7 (GST467), M2e Modeling and calculation of the ellipsometry spectra, M2f GST467 photonic device fabrication and measurement.
M1 CAMEO.
CAMEO's methodology follows the diagrams of
CAMEO's specific implementation of Eq. 1 is shown in Eq. 2:
Recent use of active learning in materials science seeks to optimize functional material properties as a function of only the material synthesis parameters, e.g., composition. However, a material's properties are clearly not just dependent on its composition. Fundamental to functional properties are a material's lattice structure, microstructure, stress, etc. The general function g provides a framework for incorporating these different pieces of knowledge as well as an active learning scheme for acting on the knowledge. Here we take the simplest action scheme, switching between one phase of optimization (phase mapping) to another (materials optimization). However, g is a general function, flexible for other implementations, such as combining knowledge of composition, lattice structure, and functional property (as well as microstructure, and other information) in one integrated acquisition function. Future work will explore the pros and cons of these other implementations.
For this work, the first set of iterations maximize phase map knowledge until the estimated phase map convergences to the user defined threshold c, at which point the system switches to materials property optimization. A separate Gaussian Process is fit to each individual phase region for the functional property, allowing for phase region dependent hyperparameter optimization. This exploits the CSP relationship to improve functional property prediction accuracy, accelerate materials optimization, and provide potential computational resource savings. The phase regions are then ranked by the maximum expected functional property value and the top R regions are selected for optimization, with R a user defined variable. Here R is set to 1. Optimization balances exploitation and exploration through the mean μ(xr) and weighted variance βσ(xr) (the iteration dependent β follows ref. 38 and is described below). The optimization acquisition function also allows the user to target points closer or further from phase boundaries via γd(xr), where d(xr) is the distance from point xr to the nearest phase boundary and γ is a user-defined parameter—negative (positive) to emphasize points near the edge (center) of the phase region. Here the value is set to 10. Myopia to particular phase regions can be removed with an additional exploration policy.
Pre-synthesized (pseudo) ternary combinatorial spreads are used to provide a pool of hundreds of materials to investigate. While for this demonstration the autonomous system must select samples from the given pool of pre-synthesized samples, this is only a limit of the current physical experimental system and not a limit of the presented ML methodology.
M1a CAMEO Detailed Results.
CAMEO was benchmarked on a material system previously studied39. Efficacy was compared to a range of alternative methods as shown in
Once tuned, CAMEO was placed in active control over the high-throughput X-ray diffraction system at SLAC and a commercial in-house diffraction system. Here, the material optimization goal was to identify an optimal phase change material in the Ge—Sb—Te system, characterized by maximizing ΔEg—the difference between the amorphous and crystalline optical bandgap. Scanning ellipsometry measurements were performed on the spread wafer in amorphous and crystalline states ahead of the CAMEO run, and we fed the unprocessed ellipsometric spectra as a prior for building the phase map model. At each iteration, the query material was indicated to the experimentalist (human-in-the-loop) who then performed the intensive task of processing the raw optical data to obtain ΔEg and provided this data to CAMEO (see section “M2e” for full description). This procedure identified the material with the largest ΔEg over 19 iterations taking approximately 10 h, compared to 90 h for the full set of 177 materials. A post-analysis is shown in
M1b System Initialization and Data Pre-Processing
Physical system initialization. The system is initialized by loading the composition spread into the X-ray diffraction system, either the Bruker D8* or the SSRL diffraction synchrotron beamline endstation. For the SSRL system, a network connection is used for sending commands to the X-ray diffraction system via the SPEC interface40. Exposure time for each point measurement was 15 s.
Importing external data: ICSD and AFLOW.org. The user first indicates the material system of interest. A database of known stable phases, derived from past phase diagrams, is then used to automatically identify pertinent phases. Structure data is then automatically assembled for these phases from the Inorganic Crystal Structure Database (ICSD)—a database of critically evaluated experimental structures, and the AFLOW.org41 density functional theory database. All retrieved structures are then used to generate simulated diffraction patterns through a call to Bruker's Topas42. After data is collected from the databases, the pool of material samples is updated to contain both the samples on the composition spread and those derived from databases. Previously it was shown that external structure data improved phase mapping performance in the case of exhaustive data collection42. For this work, the AFLOW.org computed ternary energy hull is imported and converted to region labels which are used as phase region (i.e. cluster) priors, see
Initialize phase mapping. Phase mapping is initialized with a user-selected expected number of phase regions for the material system, 5 for Fe—Ga—Pd and 10 for Ge—Sb—Te. While this number is used to initialize the phase map model, the phase mapping technique will converge to either a larger or smaller number of phase regions as described in the GRENDEL (graph-based endmember extraction and labeling) section. All other phase mapping hyperparameters were optimized on the benchmark system, and these values were used without modification for the Ge—Sb—Te system. Other default parameters include: graph distance multiplier is 1.2 and max number of iterations is 100.
Selection of first sample to seed processes. If prior material structure data is imported, such as data from AFLOW.org, that knowledge is used to initialize phase mapping (see Phase mapping prior), with the active learning criterion used to select the most informative material to query next. However, if no such prior data is used, the first sample queried can be selected randomly or using some other informative process. For benchmarking, the initial material was selected at random with uniform probability. For the live application to the Ge—Sb—Te system, the first sample was selected to be the one at the composition center of the materials on the composition spread. This sample was selected as it is potentially the most informative, given no other knowledge of the samples. The live run for the Ge—Sb—Te system completed after all the materials were measured, allowing for later analysis of active learning methodologies. To compare these methods, the initial material was again selected at random with a uniform prior.
Measurement and data pre-processing: collection, integration, background subtraction. Once the next query material has been identified, the system then measures the query material for X-ray diffraction using a programmatically generated script via SPEC for the SLAC high-throughput system or a GADDS script for the Bruker system. For the Bruker system, the diffraction image is integrated into a diffraction pattern automatically, and for the SLAC system, integration is performed as well43. The background signal is then automatically identified and subtracted.
The background signal from sample to sample can vary significantly, requiring a background subtraction method capable of handling these variations. For both the SLAC and Bruker diffraction measurements, Matlab's envelope function with the ‘peak’ setting and the parameter value of 50 was used to identify and remove the background curve.
M1c Phase mapping
Main method: GRENDEL—list of physical constraints. Phase mapping was performed using the physics-informed phase region and constituent phase identification method GRENDEL44. This method represents the material composition space as a graph, where each material is represented by a vertex that is connected by edges to neighboring materials in composition space (or wafer x-y coordinate). Neighboring materials are defined by Voronoi tessellating the composition space44. Mathematically, G={V, E}, where V is the set of vertices, E is the set of edges with all edge weights set to 1. G is used to define a Markov Random Field (MRF)45 where materials identified with the same vertex label belong to the same phase region, and each phase region is described by a set of constituent phases. This method encodes a list of physical constraints through the methods listed in Table 2.
This method identifies a phase map for hundreds of samples in tens of seconds, on the same order of X-ray diffraction measurements at SSRL which typically takes 30 s, and measurements on the Bruker D8 which takes over 10 min.
GRENDEL hyperparameters include the MRF segmentation (i.e., graph cut) weight and the balance between the material-phase region matrix based on clustering and that based on phase mixture44. As the graph cut weight is increased, a greater number of clusters becomes possible, increasing the phase mapping performance using the measured described in the text, while also increasing cluster complexity. For the Fe—Ga—Pd a graph cut weight of wgc=100*n3/53 was found to output the desired number of clusters n. The full set of phase mapping parameters are described in the text.
During the GRENDEL process, if the number of clusters drops below 90% of the number of clusters used when starting the process, GRENDEL is terminated and the computed phase map labels and constituent phases from the previous internal GRENDEL iteration are output.
Phase mapping prior. Material property data is incorporated into the MRF model as a prior through the edge weights of the composition graph G, where the original edge weights of G are modified by a functional property graph Gp with edge weights of 0 (disconnected) or 1 (connected) and f: E, Ep->E. If e E En Ep then e=1+ϵe else e=1−ϵe. The value of ϵe was varied for the benchmark material system and the value of ϵe=0.5 selected as it demonstrates clear improved phase mapping performance during the first active learning selected measurements and worse performance near the end of the run. This is to be expected as prior knowledge can benefit initial analysis but can overwhelm knowledge gained from data if the prior is weighted too heavily. A smaller (larger) value of ϵe demonstrates a smaller (larger), similar effect.
For the benchmark system an AFLOW.org based phase map prior was used, as shown in
For the Ge—Sb—Te material system, the prior was determined based on optical data collected. For each material, the complex reflectance ratio amplitude ψ and phase difference Δ for the amorphous and crystalline phases were collected for the set of angles e={50°, 55°, 60°, 65°, 70°} relative to the laser's plane of incidence, creating 20 spectral measurements for each material consisting of different measurement types m∈{ψcrystalline, ψamorphous, Δcrystalline, Δamorphous}. Example optical data used for the prior is shown in
To define a prior for the phase diagram, the set of all spectra are reduced into a set of similarity weights defining a similarity of 0 or 1 for each pair of samples, which can then be used to evaluate Ep. The following equations are used for mapping of spectra to similarity values. First the Euclidean difference between each set of materials (i, j) is computed for each spectral measurement type and angle {m, e}. These differences are then averaged for each pair of samples (i, j) over the set of angles e and then normalized to between 0 and 1 for each measurement type m. These values are then averaged again over measurements m, resulting in a final dissimilarity value for each pair (i, j). A threshold is then used to convert the continuous dissimilarity values to 0 or 1, defining whether an edge between (i, j) exists (1) or does not (0). The threshold of DThreshold=0.07 was selected to achieve a ratio of |Ep|/|E|=0.49≈0.5, i.e., the prior removes approximately half the edges from the initial graph.
M1d Knowledge Propagation
Phase mapping knowledge propagation. Once the phase map has been identified for the given data, the phase region labels must be propagated to the materials that have yet to be measured for structure. To exploit the graph-described data manifold, the semi-supervised learning technique Gaussian random field harmonic energy minimization46 (HEM) is used. HEM computes the likelihood of each material belonging to each phase region and then assigns each material to the phase region with the greatest likelihood, thus defining the most likely phase map for the full set of materials on the composition spread. Using this information, alternative phase maps can also be identified along with their likelihoods. The edge weights Ep define the similarity matrix used to define the graph Laplacian.
Phase mapping knowledge propagation—comparison method: nearest neighbor (NN). The phase mapping knowledge propagation harmonic energy minimization method is compared to the use of 1-nearest neighbor, where any material without a phase region label takes on the label of its 1st nearest neighbor with a label. First nearest neighbor was implemented using MATLAB's knnsearch function with default parameters.
Functional property knowledge propagation: Gaussian process regression. GPR was implemented using MATLAB's ‘fitrgp’ function with default parameters.
M1e Active Learning.
In the Bayesian optimization47 literature, the following formalism is used:
y=f(x)+ε (7)
x
*=argmaxx(f(x)) (8)
where y is the target property to be maximized, x∈d is the set of material synthesis and processing parameters to be searched over, f(x) is the function to optimize, ε is typically independent stochastic measurement noise, and x* defines the material synthesis and processing parameters that result in the maximal material property (for the minimum, replace argmax with argmin). When f(x) is unknown, a surrogate model is used to approximate it based on given data. The surrogate function is then used to identify the best next material to study. Each subsequent material is selected to identify the optimal material x* in the smallest number of experiments possible. Identifying extrema of a function involves a balance between exploiting prior data to identify nearby extrema and exploring to identify extrema far from prior data. An alternative active learning objective is to select experiments that will best improve the overall prediction accuracy of the surrogate model, or in other words, select experiments to most efficiently learn the unknown function f(x). Such a campaign learns the general trends of f(x), which is highly useful when attempting to quantify anomalous behavior of novel materials.
Active learning for phase mapping: risk minimization. The active learning method used to select the next material to query for phase mapping is based on risk minimization46. HEM propagates phase region labels to unmeasured material and identifies the likelihood of each material belonging to each phase region. These likelihoods can be aggregated to define the set of potential phase diagrams and their associated likelihoods. The set of potential phase diagrams form a hypothesis space of phase diagrams. Risk minimization seeks to identify the optimal material to query next for its structure that will most rapidly whittle down the hypothesis set and most rapidly hone-in on the optimal phase map for the full set of materials, i.e., minimize expected total phase region label misclassification error and equivalently maximize knowledge of the phase map.
Active learning comparison methods: random, sequential, and 10% sampling. The risk minimization method is compared to (1) random sampling—selecting each subsequent material at random from the wafer, with a uniform prior, (2) sequential sampling—where each sample is selected in the order it appears on the wafer, and (3) where 10% of the materials are selected in a pre-determined design. Random sampling is expected to provide increasingly poor performance relative to active learning as the search space increases in dimension due to the curse of dimensionality48. The pre-determined 10% selection of materials in (3) are chosen to provide maximal coverage of the composition space. However, the use of 10% is not a generalizable benchmark. For a given number of data points, the density of data points decreases as the dimensionality of the composition space increases, with each point describing a larger volume. The optimal number of benchmark materials is thus dependent on the expected size of phase regions. If smaller phase regions are expected, a larger number of materials will be required to identify the phase regions.
The Fe—Ga—Pd composition spread contains 278 samples. For the 10% sampling, the 28 samples are indicated in
Active learning—materials optimization: Gaussian process upper confidence bounds. For CAMEO and GP-UCB the iteration dependent weight parameter β is used38.
β=2 log(DI2π2/6λ) (9)
Where D is the total number of samples, I is the current iteration number, and λ=0.1.
Active learning—CAMEO: phase mapping convergence. The phase maps identified at each iteration i is compared to the iteration (i-4) using the FMI performance measure. Convergence is defined as FMI>=80%.
Active learning—materials optimization: benchmark system. The target optimization for the benchmark system is maximizing remnant magnetization, as measured by scanning SQUID voltage. One modification was made to the remnant magnetization signal: The signal saturates over a large range of the composition spread. For BO benchmarking, it is preferred that one material is identified as the optimum. As such, the saturated values were modified with a squared exponential function, in effect “hallucinating” the remnant magnetization values as if sensor saturation had not occurred, converting the signal from
x=(b/100)+(c/100)*sin(30°),y=(c/100)*sin(60°) (10)
N
xy(μ=(0.19,0.05),σ2=0.001) (11)
Mapping to ternary space gives μ=Fe78Ga16Pd6.
M1f Statistics and Performance Metrics
Confidence interval. The 95% confidence interval was computed for the variable of interest over 100 experiments at the given iteration with:
Where F−1 is the inverse of the Student's t cumulative distribution function, σ is the standard deviation, n=100 is the number of experiments, p={2.5%, 97.5%}, and ν=99 is the degrees of freedom.
Phase mapping. Phase mapping performance is evaluated by comparing phase region labels determined by experts with those estimated by CAMEO for the entire phase map (after the knowledge propagation step). To evaluate system performance, the Fowlkes-Mallows Index (FMI) is used, which compares two sets of cluster labels. The equations are presented below for the expert labels l∈L and the ML estimated labels
If the number of phase regions is taken to be too large by either the user or the ML algorithm while the phase mapping is correct, some phase regions will be segmented into sub-regions with the dominant phase boundaries preserved. For example, peak shifting can induce phase region segmentation42. To ensure that the performance measures ignore such sub-region segmentation, each estimated phase region is assigned to the expert labeled phase region that shares the greatest number of samples. The number of phase regions is monitored to ensure that increases in model accuracy are not driven by increases in model complexity.
Fowlkes-Mallows Index: FMI=TP/√{square root over ((TP+FP)(TP+FN))} (13)
TP=½ΣiΣj(li=lj&{circumflex over (l)}i={circumflex over (l)}j) (14)
FP=½ΣiΣj(li≠lj&{circumflex over (l)}i={circumflex over (l)}j) (15)
FN=½ΣiΣj(li=lj&{circumflex over (l)}i≠{circumflex over (l)}j) (16)
TN=½ΣiΣj(li≠lj&{circumflex over (l)}i≠{circumflex over (l)}j) (17)
M1g Live Visualizations.
CAMEO provides live visualizations to support algorithm interpretability. Phase mapping is supported by
Bayesian optimization. Bayesian optimization performance is measured with minimum percent deviation from optimal, related to simple regret.
M2 Materials Synthesis and Characterization
M2a Sample fabrication. Amorphous thin-film composition spreads encompassing a region of the Ge—Sb—Te ternary (separated into 177 samples using a gridded physical shadow mask) were fabricated on 3-inch silicon wafers with SiO2 layers (2 μm) by co-sputtering Ge, Sb, and Te targets at room temperature. Different (average) thickness composition spreads (covering the same composition range) were fabricated for different measurements: they were 20 nm, 100 nm, 200 nm, and 500 nm for optical, structural, resistance, and composition mapping, respectively. To obtain a crystalline state, some of the wafers were annealed at 300° C. for 10 min following their characterization in the amorphous state.
The composition mapping of the spreads is measured using the wavelength dispersion spectroscopy. For every separated sample region on a spread, three random spots are measured, and the average composition value is used for the actual stoichiometry mapping in
M2b Mapping of phase-change temperature. Upon increasing the temperature, a phase-change memory material undergoes a structural transition from amorphous to crystalline states with up to four orders of magnitude in the change of resistance. The temperature at which the resistance drop takes place can be taken as the phase-change temperature, Tcp (
M2c Structural mapping. Synchrotron diffraction on crystallized spreads was carried out at Beamline 10-2 at SLAC. In addition to the remote-controlled CAMEO run, we have also carried out diffraction of entire spreads in order to obtain the complete structural phase mapping of the probed Ge—Sb—Te region and to verify the accuracy of the phase diagram determined by CAMEO.
SbTe (R
M2d HAADF-STEM of GST467. We have performed cross-sectional high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements on the GST467 thin film and found that there are nanometer-sized SbTe regions grown coherently inside the distorted cubic GST matrix as shown in
M2e Modeling and calculation of the ellipsometry spectra. The experimental ellipsometry data (J.A. Woollam company) of the combinatorial Gs—Sb—Te spread was analyzed in the range from 200 to 1000 nm using the CompleteEASE software. The dielectric function e(ω) used in the model contains49 (1) a constant, (2) a Drude-type contribution for free carriers in the case of crystalline state, and (3) a Tauc-Lorentz oscillator to describe the onset of optical transition:
amorphous state:ε(ω)=εconst+εTauc-Lorentz(ω), (20)
crystalline state:ε(ω)=εconst+εDrude(ω)+εTauc-Lorentz(ω) (21)
For the Drude model:
where ωp=√{square root over (N·e2/m·ε0)}, and ωp is the plasma frequency, Γ is the collision frequency.
For the Tauc-Lorentz model:
Where A is the prefactor, Eo is the peak in the joint density of the state, Eg is the optical bandgap, and Γ is the broadening parameter.
The optical parameters, e.g., refractive index n and extinction coefficient k, as well as the optical bandgap, can be extracted from these models. In order to confirm the accuracy of the optical parameters, one needs to check if the fitting curves as well as a set of fitting parameters, e.g. thickness, carrier density, and surface roughness, can be used to analyze the experimental data of the samples for the entire spread wafer. Typically, a fitting procedure requires repeated steps in order to fine-tune the parameters manually to optimize the results, and some samples require more manual fitting steps for setting the range and the starting values of the parameters than others.
For the CAMEO run, the unprocessed raw ellipsometry data taken at each composition spot (for crystalline and amorphous states) are used as the prior (see section “M1c, Phase mapping prior”). Once a spot is identified as a possible composition with enhanced AEg (the difference in the optical bandgap between the amorphous and crystalline state), the fitting procedure above is carried out on the raw data, and the value of AEg is computed, the process of which includes manual inspection of fitting parameters. Depending on the number of repeated steps, each computation can take up to 20 min. at a composition spot, and the AEg value is then fed back to the CAMEO algorithm.
The complete mapping of the optical bandgap of amorphous and crystalline states measured and calculated from one spread are shown in
M2f Ge4Sb6Te7 photonic device fabrication and measurement. Photonic switching devices were fabricated out of GST467 films (
A symmetric multi-level switching of the photonic device was investigated as shown in
[1] Upon increasing the temperature, a phase-change memory material undergoes a structural transition from amorphous to crystalline states with up to four orders of magnitude in the change of resistance. The temperature at which the resistance drop takes place can be taken as the phase-change temperature, Tcp. This new nanocomposite phase-change memory material was checked in a scanning four-probe station combined with a Keithley 2400 from room temperature up to 300° C. The phase-change temperature of Ge4Sb6Te7 was confirmed to be approximately 200° C., which is much larger than that of well-known Ge2Sb2Te5.
[2] Synchrotron diffraction on crystallized Ge4Sb6Te7 was carried out at Beamline 10-2 at SLAC. A weak SbTe diffraction peak was observed in
[3] The ellipsometry measurements were performed on Ge4Sb6Te7 on in amorphous and crystalline states to analyze the optical parameters, e.g., refractive index n (
[4] Device fabrication: photonic switching devices were fabricated out of Ge4Sb6Te7 films. The 30 nm thick nanocomposite Ge4Sb6Te7 thin film was sputtered on a 330 nm thick Si3N4 layer on an oxidized silicon wafer. A 10 nm thick SiO2 protection layer was then coated on the top of the Ge4Sb6Te7 thin film. Using e-beam lithography and inductively coupled plasma etching, a 1.2 μm wide photonic waveguide was fabricated. Then the Ge4Sb6Te7 thin film was patterned into disk shaped features 500 nm in diameter on the top of the waveguide, and they were encapsulated with a 200 nm thick Al2O3 layer (see, inset of
[5] The device made of the nanocomposite Ge4Sb6Te7 thin film was found to be stable up to at least 30,000 cycles indicating the high reversibility of the crystallization and quenching processes of the coherent nanocomposite, (see,
The foregoing is illustrative of the present disclosure and is not to be construed as limiting thereof. Further embodiments of the present disclosure are exemplified in the following claims.
All patents, patent applications, and printed publications cited herein are incorporated herein by reference in the entireties, except for any definitions, subject matter disclaimers or disavowals, and except to the extent that the incorporated material is inconsistent with the express disclosure herein, in which case the language in this disclosure controls.
This application claims priority to U.S. Provisional Application Ser. No. 63/151,263, filed Feb. 19, 2021, the disclosure of which hereby is incorporated herein by reference in its entirety.
This invention was made with government support under Grant No. HR0011-18-3-0004 awarded by the Department of Defense Advanced Research Projects Agency (DARPA), Grant No. 70NANB17H041 awarded by the National Institute of Standards and Technology (NIST), and Grant No. N0000141712661 awarded by the Office of Naval Research (ONR). The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
63151263 | Feb 2021 | US |