Novel proteins and nucleic acids encoding same

Abstract
The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to novel polypeptides that are targets of small molecule drugs and that have properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.



BACKGROUND

[0003] Eukaryotic cells are characterized by biochemical and physiological processes which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates, or more particularly organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways involve extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.


[0004] Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, for example two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.


[0005] Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.


[0006] Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by altered or mis-regulated levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.


[0007] Small molecule targets have been implicated in various disease states or pathologies. These targets may be proteins, and particularly enzymatic proteins, which are acted upon by small molecule drugs for the purpose of altering target function and achieving a desired result. Cellular, animal and clinical studies can be performed to elucidate the genetic contribution to the etiology and pathogenesis of conditions in which small molecule targets are implicated in a variety of physiologic, pharmacologic or native states. These studies utilize the core technologies at CuraGen Corporation to look at differential gene expression, protein-protein interactions, large-scale sequencing of expressed genes and the association of genetic variations such as, but not limited to, single nucleotide polymorphisms (SNPs) or splice variants in and between biological samples from experimental and control groups. The goal of such studies is to identify potential avenues for therapeutic intervention in order to prevent, treat the consequences or cure the conditions.


[0008] In order to treat diseases, pathologies and other abnormal states or conditions in which a mammalian organism has been diagnosed as being, or as being at risk for becoming, other than in a normal state or condition, it is important to identify new therapeutic agents. Such a procedure includes at least the steps of identifying a target component within an affected tissue or organ, and identifying a candidate therapeutic agent that modulates the functional attributes of the target. The target component may be any biological macromolecule implicated in the disease or pathology. Commonly the target is a polypeptide or protein with specific functional attributes. Other classes of macromolecule may be a nucleic acid, a polysaccharide, a lipid such as a complex lipid or a glycolipid; in addition a target may be a sub-cellular structure or extra-cellular structure that is comprised of more than one of these classes of macromolecule. Once such a target has been identified, it may be employed in a screening assay in order to identify favorable candidate therapeutic agents from among a large population of substances or compounds.


[0009] In many cases the objective of such screening assays is to identify small molecule candidates; this is commonly approached by the use of combinatorial methodologies to develop the population of substances to be tested. The implementation of high throughput screening methodologies is advantageous when working with large, combinatorial libraries of compounds.



SUMMARY OF THE INVENTION

[0010] The invention includes nucleic acid sequences and the novel polypeptides they encode. The novel nucleic acids and polypeptides are referred to herein as NOVX, or NOV1, NOV2, NOV3, etc., nucleic acids and polypeptides. These nucleic acids and polypeptides, as well as derivatives, homologs, analogs and fragments thereof, will hereinafter be collectively designated as “NOVX” nucleic acid, which represents the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or polypeptide sequences, which represents the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.


[0011] In one aspect, the invention provides an isolated polypeptide comprising a mature form of a NOVX amino acid. One example is a variant of a mature form of a NOVX amino acid sequence, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. The amino acid can be, for example, a NOVX amino acid sequence or a variant of a NOVX amino acid sequence, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also includes fragments of any of these. In another aspect, the invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof.


[0012] Also included in the invention is a NOVX polypeptide that is a naturally occurring allelic variant of a NOVX sequence. In one embodiment, the allelic variant includes an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a NOVX nucleic acid sequence. In another embodiment, the NOVX polypeptide is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution. In one embodiment, the invention discloses a method for determining the presence or amount of the NOVX polypeptide in a sample. The method involves the steps of: providing a sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the NOVX polypeptide, thereby determining the presence or amount of the NOVX polypeptide in the sample. In another embodiment, the invention provides a method for determining the presence of or predisposition to a disease associated with altered levels of a NOVX polypeptide in a mammalian subject. This method involves the steps of: measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in the sample of the first step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0013] In a further embodiment, the invention includes a method of identifying an agent that binds to a NOVX polypeptide. This method involves the steps of: introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. In various embodiments, the agent is a cellular receptor or a downstream effector.


[0014] In another aspect, the invention provides a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a NOVX polypeptide. The method involves the steps of: providing a cell expressing the NOVX polypeptide and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent. In another aspect, the invention describes a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the NOVX polypeptide. This method involves the following steps: administering a test compound to a test animal at increased risk for a pathology associated with the NOVX polypeptide, wherein the test animal recombinantly expresses the NOVX polypeptide. This method involves the steps of measuring the activity of the NOVX polypeptide in the test animal after administering the compound of step; and comparing the activity of the protein in the test animal with the activity of the NOVX polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the NOVX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the NOVX polypeptide. In one embodiment, the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene. In another aspect, the invention includes a method for modulating the activity of the NOVX polypeptide, the method comprising introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.


[0015] The invention also includes an isolated nucleic acid that encodes a NOVX polypeptide, or a fragment, homolog, analog or derivative thereof. In a preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant. In another embodiment, the nucleic acid encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence. In one embodiment, the NOVX nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a complement of the nucleotide sequence. In another aspect, the invention provides a vector or a cell expressing a NOVX nucleotide sequence.


[0016] In one embodiment, the invention discloses a method for modulating the activity of a NOVX polypeptide. The method includes the steps of: introducing a cell sample expressing the NOVX polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide. In another embodiment, the invention includes an isolated NOVX nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising a NOVX amino acid sequence or a variant of a mature form of the NOVX amino acid sequence, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes an amino acid sequence that is a variant of the NOVX amino acid sequence, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed.


[0017] In one embodiment, the invention discloses a NOVX nucleic acid fragment encoding at least a portion of a NOVX polypeptide or any variant of the polypeptide, wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed. In another embodiment, the invention includes the complement of any of the NOVX nucleic acid molecules or a naturally occurring allelic nucleic acid variant. In another embodiment, the invention discloses a NOVX nucleic acid molecule that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant. In another embodiment, the invention discloses a NOVX nucleic acid, wherein the nucleic acid molecule differs by a single nucleotide from a NOVX nucleic acid sequence.


[0018] In another aspect, the invention includes a NOVX nucleic acid, wherein one or more nucleotides in the NOVX nucleotide sequence is changed to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In one embodiment, the invention discloses a nucleic acid fragment of the NOVX nucleotide sequence and a nucleic acid fragment wherein one or more nucleotides in the NOVX nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed. In another embodiment, the invention includes a nucleic acid molecule wherein the nucleic acid molecule hybridizes under stringent conditions to a NOVX nucleotide sequence or a complement of the NOVX nucleotide sequence. In one embodiment, the invention includes a nucleic acid molecule, wherein the sequence is changed such that no more than 15% of the nucleotides in the coding sequence differ from the NOVX nucleotide sequence or a fragment thereof.


[0019] In a further aspect, the invention includes a method for determining the presence or amount of the NOVX nucleic acid in a sample. The method involves the steps of: providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the NOVX nucleic acid molecule, thereby determining the presence or amount of the NOVX nucleic acid molecule in the sample. In one embodiment, the presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.


[0020] In another aspect, the invention discloses a method for determining the presence of or predisposition to a disease associated with altered levels of the NOVX nucleic acid molecule of in a first mammalian subject. The method involves the steps of: measuring the amount of NOVX nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of NOVX nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.


[0021] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


[0022] Other features and advantages of the invention will be apparent from the following detailed description and claims.







BRIEF DESCRIPTION OF THE FIGURES

[0023]
FIG. 1 shows the x-ray crystal structure of trypsin 1 at a 2.2 Å resolution (Gaboriaud, C. et. al, Jol. Mol. Biol., 1996, 259:995-1010)(PDB code 1TRN). The sequences absent in the CG59482-02 splice variant are denoted by short arrows. The view in FIG. 1 shows the active site facing outward with a diisopropyl-phosphofluoridate inhibitor in the active site (indicated by long arrows).


[0024]
FIG. 2 shows the three residues which form the catalytic triad of the active site.


[0025]
FIG. 3 depicts a proposed mechanism for catalytic triad formation. The pKa for the serine hydroxyl is usually about 13, which makes it a poor nucleophile. The aspartate, histidine and serine are arranged in a charge relay system of hydrogen bonds that helps to lower this pKa, which makes the sidechain more reactive. The carboxyl side chain on aspartate attracts a proton from histidine, which in turn abstracts a proton from the hydroxyl of serine allowing it to react with and then cleave the polypeptide substrate.







DETAILED DESCRIPTION OF THE INVENTION

[0026] The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as “NOVX nucleic acids” or “NOVX polynucleotides” and the corresponding encoded polypeptides are referred to as “NOVX polypeptides” or “NOVX proteins.” Unless indicated otherwise, “NOVX” is meant to refer to any of the novel sequences disclosed herein. Table A provides a summary of the NOVX nucleic acids and their encoded polypeptides.
1TABLE ASequences and Corresponding SEQ ID NumbersSEQSEQID NOID NONOVXInternal(nucleic(aminoAssignmentIdentificationacid)acid)Homology1aCG105324-0112Nuclear Orphan receptor LXR alpha protein1b21277903934Human nuclear orphan receptor LXR-alpha-like Proteins1cCG105324-0156Human nuclear orphan receptor LXR-alpha-like Proteins1d20982954178Human nuclear orphan receptor LXR-alpha-like Proteins2aCG105355-01910Nuclear Aryl Hydrocarbon receptor protein2b2452796261112Aryl hydrocarbon receptor- like Proteins2cCG105355-021314Aryl hydrocarbon receptor- like Proteins2dCG105355-031516Aryl hydrocarbon receptor- like Proteins3aCG105521-011718stearoyl CoA desaturase protein3bCG105521-021920stearoyl CoA desaturase protein3c3011138812122stearoyl CoA desaturase protein3dCG105521-012324Stearoyl CoA desaturase protein3e3093300432526Stearoyl CoA desaturase protein3f3093300692728Stearoyl CoA desaturase protein3gCG105521-012930Stearoyl CoA desaturase -like protein3h2127790513132Stearoyl CoA desaturase -like protein3iCG105521-013334Stearoyl CoA desaturase- like protein3j3087821333536Stearoyl CoA desaturase- like protein3kCG105521-033738Stearoyl CoA desaturase- like protein3lCG105521-043940Stearoyl CoA desaturase- like protein3mCG105521-054142Stearoyl CoA desaturase- like protein3nCG105521-064344Stearoyl CoA desaturase- like protein4aCG107234-014546HYDROLASE like protein4bCG107234-034748HYDROLASE like protein4cCG107234-024950HYDROLASE like protein5aCG113144-015152CtBP like protein5bCG113144-025354CtBP like protein5cCG113144-035556CtBP like protein6aCG122634-015758Neuronal kinesin heavy chain protein7aCG125197-015960LYSOPHOSPHOLIPASE like protein7bCG125197-036162LYSOPHOSPHOLIPASE like protein7cCG125197-026364LYSOPHOSPHOLIPASE like protein8aCG125312-016566Myosin IF (Myosin IE) protein9aCG134439-016768Cation Efflux domain containing Proteinlike protein10aCG137109-016970phospholipid-transportingATPase like protein11aCG137330-017172TGF-BETA Receptor Type IPrecursor like protein12aCG137339-017374Epidermal Growth Factor ReceptorPrecursor like protein12bCG137339-027576Epidermal Growth Factor ReceptorPrecursor like protein13aCG138130-017778cGMP-stimulated 3′, 5′-cyclicnucleotide phosphodiesterase-like Proteins14aCG138372-017980Maleylacetoacetate Isomerase-like Proteins14bCG138372-028182Maleylacetoacetate Isomerase-like Proteins14cCG138372-018384Maleylacetoacetate Isomerase-like Proteins14d2775821218586Maleylacetoacetate Isomerase-like Proteins14eCG138372-038788Maleylacetoacetate Isomerase-like Proteins15aCG138461-018990Intracellular Proteinbelonging to Nitroreductasefamily-like Proteins16aCG138529-019192Novel SA protein-like Proteins17aCG138563-019394Novel CHOLINE/ETHANOLAMINE KINASE-like protein17bCG138563-029596Novel CHOLINE/ETHANOLAMINE KINASE-like protein18aCG138848-019798Novel protein-tyrosine kinase ryk -Like-like Proteins19aCG139990-0199100transferase HTFS-18 like protein20aCG140041-01101102Pyridoxal-dependent decarboxylaselike protein21aCG140061-01103104IMP dehydrogenase like protein22aCG140335-01105106urea transporter isoform UTA-3 likeprotein23aCG140355-01107108PEPTIDYLPROLYL ISOMERASEA like protein23bCG140612-01109110PEPTIDYLPROLYL ISOMERASEA like protein24aCG140612-02111112ATP SYNTHASE B CHAIN, MITOCHONDRIALlike protein25aCG140696-01113114AAA ATPase like protein25bCG140696-02115116AAA ATPase like protein25cCG140696-03117118AAA ATPase like protein26aCG140747-01119120Dual specificity phosphataselike protein27aCG141137-01121122long-chain acyl-coA thioesterase2 like protein28aCG141240-01123124ATP synthase F chain, mitochondriallike protein29aCG141355-01125126GTPASE RAB37 like protein29bCG141355-02127128Novel GTPASE RAB37 -like Proteins30aCG142072-01129130CATHEPSIN L PRECURSOR like protein30bCG142072-02131132CATHEPSIN L PRECURSOR like protein31aCG142102-01133134PEPTIDYLPROLYL ISOMERASE A(CYCLOPHILIN A) like protein32aCG57760-01135136Prostaglandin-H2 D-isomeraseprecursor like protein32bCG57760-02137138Prostaglandin-H2 D-isomeraseprecursor like protein33aCG59361-01139140POTENTIAL PHOSPHOLIPID-TRANSPORTINGATPASE VA like protein34aCG59444-01141142SA protein like protein34bCG59444-02143144SA protein like protein35aCG59482-01145146Trypsin I precursor like protein35bCG59482-02147148Trypsin I precursor like protein35cCG59482-03149150Trypsin I precursor like protein36aCG59522-01151152Myosin I protein36bCG59522-02153154Myosin I protein37aCG89709-01155156Serine/threonine Protein kinaselike protein37bCG89709-02157158Serine/threonine Protein kinaselike protein37cCG89709-03159160novel ser/thr kinase protein37dCG89709-04161162Serine/threonine Protein kinaselike protein37eCG89709-01163164Serine/threonine Protein kinaselike protein38aCG90879-01165166Protein kinase D2 like protein39aCG96334-01167168DUAL-SPECIFICITY TYROSINE-PHOSPHORYLATION REGULATEDKINASE 1A like protein39bCG96334-02169170DUAL-SPECIFICITY TYROSINE-PHOSPHORYLATION REGULATEDKINASE 1A like protein40aCG96714-01171172UDP-galactose transporter relatedisozyme 1 protein40b212778987173174UDP-galactose transporter relatedisozyme 1-like Proteins40cCG96714-02175176UDP-galactose transporter relatedisozyme 1-like Proteins40d190235426177178UDP-galactose transporter relatedisozyme 1-like Proteins40eCG96714-03179180UDP-galactose transporter relatedisozyme 1-like Proteins41aCG97025-011811823-Hydroxy-3methylglutaryl coenzymeA synthase protein41bCG97025-01183184Cytosolic HMG-CoA Synthase-likeprotein41cCG97025-01185186HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41d254869578187188HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41eCG97025-01189190HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41f253174237191192HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41gCG97025-01193194HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41h256420363195196HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41iCG97025-01197198HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41j255667064199200HYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC- like Proteins41kCG97025-01201202Cytosolic HMG-CoA Synthase-like protein41l228832739203204Cytosolic HMG-CoA Synthase-like protein41mCG97025-02205206Cytosolic HMG-CoA Synthase-like protein41nCG97025-03207208Cytosolic HMG-CoA Synthase-like protein41oCG97025-04209210Cytosolic HMG-CoA Synthase-like protein41pCG97025-05211212Cytosolic HMG-CoA Synthase-like protein42aCG97955-01213214Carboxypeptidase A1 like protein42bCG97955-03215216Carboxypeptidase A1 like protein42c308559628217218Carboxypeptidase A1 like protein42dCG97955-02219220Carboxypeptidase A1 like protein


[0027] Table A indicates the homology of NOVX polypeptides to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table A will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table A.


[0028] Pathologies, diseases, disorders and condition and the like that are associated with NOVX sequences include, but are not limited to: cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, metabolic disturbances associated with obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, diabetes, metabolic disorders, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias,] the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers, as well as conditions such as transplantation and fertility.


[0029] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0030] Consistent with other known members of the family of proteins, identified in column 5 of Table A, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Example A.


[0031] The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table A.


[0032] The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example C. Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. detection of a variety of cancers.


[0033] Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.


[0034] NOVX Clones


[0035] NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.


[0036] The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.


[0037] The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) a biological defense weapon.


[0038] In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO 2n, wherein n is an integer between 1 and 110 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).


[0039] In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 110; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.


[0040] In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.


[0041] NOVX Nucleic Acids and Polypeptides


[0042] One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.


[0043] A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a “mature” form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product “mature” form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (e.g., host cell) in which the gene product arises. Examples of such processing steps leading to a “mature” form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.


[0044] The term “probe”, as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), about 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single-stranded or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.


[0045] The term “isolated” nucleic acid molecule, as used herein, is a nucleic acid that is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, or of chemical precursors or other chemicals.


[0046] A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993.)


[0047] A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


[0048] As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.


[0049] In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of a NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, is one that is sufficiently complementary to the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, thereby forming a stable duplex.


[0050] As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term “binding” means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.


[0051] A “fragment” provided herein is defined as a sequence of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and is at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.


[0052] A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5′ direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3′ direction of the disclosed sequence.


[0053] A “derivative” is a nucleic acid sequence or amino acid sequence formed from the native compounds either directly, by modification or partial substitution. An “analog” is a nucleic acid sequence or amino acid sequence that has a structure similar to, but not identical to, the native compound, e.g. they differs from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. A “homolog” is a nucleic acid sequence or amino acid sequence of a particular gene that is derived from different species.


[0054] Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1993, and below.


[0055] A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for a NOVX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.


[0056] A NOVX polypeptide is encoded by the open reading frame (“ORF”) of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG “start” codon and terminates with one of the three “stop” codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bona fide cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.


[0057] The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110; or an anti-sense strand nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110; or of a naturally occurring mutant of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.


[0058] Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express a NOVX protein, such as by measuring a level of a NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.


[0059] “A polypeptide having a biologically-active portion of a NOVX polypeptide” refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a “biologically-active portion of NOVX” can be prepared by isolating a portion of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, that encodes a polypeptide having a NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.


[0060] NOVX Nucleic Acid and Polypeptide Variants


[0061] The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.


[0062] In addition to the human NOVX nucleotide sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame (ORF) encoding a NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.


[0063] Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from a human SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.


[0064] Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.


[0065] Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.


[0066] As used herein, the phrase “stringent hybridization conditions” refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60° C. for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.


[0067] Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65° C., followed by one or more washes in 0.2×SSC, 0.01% BSA at 50° C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0068] In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6×SSC, 5× Reinhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55° C., followed by one or more washes in 1×SSC, 0.1% SDS at 37° C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Krieger, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.


[0069] In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization onditions are hybridization in 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40° C., followed by one or more washes in 2×SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1 % SDS at 50° C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.


[0070] Conservative Mutations


[0071] In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, thereby leading to changes in the amino acid sequences of the encoded NOVX protein, without altering the functional ability of that NOVX protein. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an “essential” amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.


[0072] Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 40% homologous to the amino acid sequences of SEQ ID NO: 2n, wherein n is an integer between 1 and 110. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110; more preferably at least about 70% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110; still more preferably at least about 80% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110; even more preferably at least about 90% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110; and most preferably at least about 95% homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110.


[0073] An isolated nucleic acid molecule encoding a NOVX protein homologous to the protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.


[0074] Mutations can be introduced any one of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis of a nucleic acid of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.


[0075] The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved “strong” residues or fully conserved “weak” residues. The “strong” group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the “weak” group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.


[0076] In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and a NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).


[0077] In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).


[0078] Interfering RNA


[0079] In one aspect of the invention, NOVX gene expression can be attenuated by RNA interference. One approach well-known in the art is short interfering RNA (siRNA) mediated gene silencing where expression products of a NOVX gene are targeted by specific double stranded NOVX derived siRNA nucleotide sequences that are complementary to at least a 19-25 nt long segment of the NOVX gene transcript, including the 5′ untranslated (UT) region, the ORF, or the 3′ UT region. See, e.g., PCT applications WO00/44895, WO99/32619, WO01/75164, WO01/92513, WO 01/29058, WO01/89304, WO02/16620, and WO02/29858, each incorporated by reference herein in their entirety. Targeted genes can be a NOVX gene, or an upstream or downstream modulator of the NOVX gene. Nonlimiting examples of upstream or downstream modulators of a NOVX gene include, e.g., a transcription factor that binds the NOVX gene promoter, a kinase or phosphatase that interacts with a NOVX polypeptide, and polypeptides involved in a NOVX regulatory pathway.


[0080] According to the methods of the present invention, NOVX gene expression is silenced using short interfering RNA. A NOVX polynucleotide according to the invention includes a siRNA polynucleotide. Such a NOVX siRNA can be obtained using a NOVX polynucleotide sequence, for example, by processing the NOVX ribopolynucleotide sequence in a cell-free system, such as but not limited to a Drosophila extract, or by transcription of recombinant double stranded NOVX RNA or by chemical synthesis of nucleotide sequences homologous to a NOVX sequence. See, e.g., Tuschl, Zamore, Lehmann, Bartel and Sharp (1999), Genes & Dev. 13: 3191-3197, incorporated herein by reference in its entirety. When synthesized, a typical 0.2 micromolar-scale RNA synthesis provides about 1 milligram of siRNA, which is sufficient for 1000 transfection experiments using a 24-well tissue culture plate format.


[0081] The most efficient silencing is generally observed with siRNA duplexes composed of a 21-nt sense strand and a 21-nt antisense strand, paired in a manner to have a 2-nt 3′ overhang. The sequence of the 2-nt 3′ overhang makes an additional small contribution to the specificity of siRNA target recognition. The contribution to specificity is localized to the unpaired nucleotide adjacent to the first paired bases. In one embodiment, the nucleotides in the 3′ overhang are ribonucleotides. In an alternative embodiment, the nucleotides in the 3′ overhang are deoxyribonucleotides. Using 2′-deoxyribonucleotides in the 3′ overhangs is as efficient as using ribonucleotides, but deoxyribonucleotides are often cheaper to synthesize and are most likely more nuclease resistant.


[0082] A contemplated recombinant expression vector of the invention comprises a NOVX DNA molecule cloned into an expression vector comprising operatively-linked regulatory sequences flanking the NOVX sequence in a manner that allows for expression (by transcription of the DNA molecule) of both strands. An RNA molecule that is antisense to NOVX mRNA is transcribed by a first promoter (e.g., a promoter sequence 3′ of the cloned DNA) and an RNA molecule that is the sense strand for the NOVX mRNA is transcribed by a second promoter (e.g., a promoter sequence 5′ of the cloned DNA). The sense and antisense strands may hybridize in vivo to generate siRNA constructs for silencing of the NOVX gene. Alternatively, two constructs can be utilized to create the sense and anti-sense strands of a siRNA construct. Finally, cloned DNA can encode a construct having secondary structure, wherein a single transcript has both the sense and complementary antisense sequences from the target gene or genes. In an example of this embodiment, a hairpin RNAi product is homologous to all or a portion of the target gene. In another example, a hairpin RNAi product is a siRNA. The regulatory sequences flanking the NOVX sequence may be identical or may be different, such that their expression may be modulated independently, or in a temporal or spatial manner.


[0083] In a specific embodiment, siRNAs are transcribed intracellularly by cloning the NOVX gene templates into a vector containing, e.g., a RNA pol III transcription unit from the smaller nuclear RNA (snRNA) U6 or the human RNase P RNA H1. One example of a vector system is the GeneSuppressor™ RNA Interference kit (commercially available from Imgenex). The U6 and H1 promoters are members of the type III class of Pol III promoters. The +1 nucleotide of the U6-like promoters is always guanosine, whereas the +1 for H1 promoters is adenosine. The termination signal for these promoters is defined by five consecutive thymidines. The transcript is typically cleaved after the second uridine. Cleavage at this position generates a 3′ UU overhang in the expressed siRNA, which is similar to the 3′ overhangs of synthetic siRNAs. Any sequence less than 400 nucleotides in length can be transcribed by these promoter, therefore they are ideally suited for the expression of around 21-nucleotide siRNAs in, e.g., an approximately 50-nucleotide RNA stem-loop transcript.


[0084] A siRNA vector appears to have an advantage over synthetic siRNAs where long term knock-down of expression is desired. Cells transfected with a siRNA expression vector would experience steady, long-term mRNA inhibition. In contrast, cells transfected with exogenous synthetic siRNAs typically recover from mRNA suppression within seven days or ten rounds of cell division. The long-term gene silencing ability of siRNA expression vectors may provide for applications in gene therapy.


[0085] In general, siRNAs are chopped from longer dsRNA by an ATP-dependent ribonuclease called DICER. DICER is a member of the RNase III family of double-stranded RNA-specific endonucleases. The siRNAs assemble with cellular proteins into an endonuclease complex. In vitro studies in Drosophila suggest that the siRNAs/protein complex (siRNP) is then transferred to a second enzyme complex, called an RNA-induced silencing complex (RISC), which contains an endoribonuclease that is distinct from DICER. RISC uses the sequence encoded by the antisense siRNA strand to find and destroy mRNAs of complementary sequence. The siRNA thus acts as a guide, restricting the ribonuclease to cleave only mRNAs complementary to one of the two siRNA strands.


[0086] A NOVX mRNA region to be targeted by siRNA is generally selected from a desired NOVX sequence beginning 50 to 100 nt downstream of the start codon. Alternatively, 5′ or 3′ UTRs and regions nearby the start codon can be used but are generally avoided, as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. An initial BLAST homology search for the selected siRNA sequence is done against an available nucleotide sequence library to ensure that only one gene is targeted. Specificity of target recognition by siRNA duplexes indicate that a single point mutation located in the paired region of an siRNA duplex is sufficient to abolish target mRNA degradation. See, Elbashir et al. 2001 EMBO J. 20(23):6877-88. Hence, consideration should be taken to accommodate SNPs, polymorphisms, allelic variants or species-specific variations when targeting a desired gene.


[0087] In one embodiment, a complete NOVX siRNA experiment includes the proper negative control. A negative control siRNA generally has the same nucleotide composition as the NOVX siRNA but lack significant sequence homology to the genome. Typically, one would scramble the nucleotide sequence of the NOVX siRNA and do a homology search to make sure it lacks homology to any other gene.


[0088] Two independent NOVX siRNA duplexes can be used to knock-down a target NOVX gene. This helps to control for specificity of the silencing effect. In addition, expression of two independent genes can be simultaneously knocked down by using equal concentrations of different NOVX siRNA duplexes, e.g., a NOVX siRNA and an siRNA for a regulator of a NOVX gene or polypeptide. Availability of siRNA-associating proteins is believed to be more limiting than target mRNA accessibility.


[0089] A targeted NOVX region is typically a sequence of two adenines (AA) and two thymidines (TT) divided by a spacer region of nineteen (N19) residues (e.g., AA(N19)TT). A desirable spacer region has a G/C-content of approximately 30% to 70%, and more preferably of about 50%. If the sequence AA(N19)TT is not present in the target sequence, an alternative target region would be AA(N21). The sequence of the NOVX sense siRNA corresponds to (N19)TT or N21, respectively. In the latter case, conversion of the 3′ end of the sense siRNA to TT can be performed if such a sequence does not naturally occur in the NOVX polynucleotide. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3′ overhangs. Symmetric 3′ overhangs may help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. See, e.g., Elbashir, Lendeckel and Tuschl (2001). Genes & Dev. 15: 188-200, incorporated by reference herein in its entirely. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand guides target recognition.


[0090] Alternatively, if the NOVX target mRNA does not contain a suitable AA(N21) sequence, one may search for the sequence NA(N21). Further, the sequence of the sense strand and antisense strand may still be synthesized as 5′ (N19)TT, as it is believed that the sequence of the 3′-most nucleotide of the antisense siRNA does not contribute to specificity. Unlike antisense or ribozyme technology, the secondary structure of the target mRNA does not appear to have a strong effect on silencing. See, Harborth, et al. (2001) J. Cell Science 114: 4557-4565, incorporated by reference in its entirety.


[0091] Transfection of NOVX siRNA duplexes can be achieved using standard nucleic acid transfection methods, for example, OLIGOFECTAMINE Reagent (commercially available from Invitrogen). An assay for NOVX gene silencing is generally performed approximately 2 days after transfection. No NOVX gene silencing has been observed in the absence of transfection reagent, allowing for a comparative analysis of the wild-type and silenced NOVX phenotypes. In a specific embodiment, for one well of a 24-well plate, approximately 0.84 μg of the siRNA duplex is generally sufficient. Cells are typically seeded the previous day, and are transfected at about 50% confluence. The choice of cell culture media and conditions are routine to those of skill in the art, and will vary with the choice of cell type. The efficiency of transfection may depend on the cell type, but also on the passage number and the confluency of the cells. The time and the manner of formation of siRNA-liposome complexes (e.g. inversion versus vortexing) are also critical. Low transfection efficiencies are the most frequent cause of unsuccessful NOVX silencing. The efficiency of transfection needs to be carefully examined for each new cell line to be used. Preferred cell are derived from a mammal, more preferably from a rodent such as a rat or mouse, and most preferably from a human. Where used for therapeutic treatment, the cells are preferentially autologous, although non-autologous cell sources are also contemplated as within the scope of the present invention.


[0092] For a control experiment, transfection of 0.84 μg single-stranded sense NOVX siRNA will have no effect on NOVX silencing, and 0.84 μg antisense siRNA has a weak silencing effect when compared to 0.84 μg of duplex siRNAs. Control experiments again allow for a comparative analysis of the wild-type and silenced NOVX phenotypes. To control for transfection efficiency, targeting of common proteins is typically performed, for, example targeting of lamin A/C or transfection of a CMV-driven EGFP-expression plasmid (e.g. commercially available from Clontech). In the above example, a determination of the fraction of lamin A/C knockdown in cells is determined the next day by such techniques as immunofluorescence, Western blot, Northern blot or other similar assays for protein expression or gene expression. Lamin A/C monoclonal antibodies may be obtained from Santa Cruz Biotechnology.


[0093] Depending on the abundance and the half life (or turnover) of the targeted NOVX polynucleotide in a cell, a knock-down phenotype may become apparent after 1 to 3 days, or even later. In cases where no NOVX knock-down phenotype is observed, depletion of the NOVX polynucleotide may be observed by immunofluorescence or Western blotting. If he NOVX polynucleotide is still abundant after 3 days, cells need to be split and transferred to a fresh 24-well plate for re-transfection. If no knock-down of the targeted protein is observed, it may be desirable to analyze whether the target mRNA (NOVX or a NOVX upstream or downstream gene) was effectively destroyed by the transfected siRNA duplex. Two days after transfection, total RNA is prepared, reverse transcribed using a target-specific primer, and PCR-amplified with a primer pair covering at least one exon-exon junction in order to control for amplification of pre-mRNAs. RT/PCR of a non-targeted mRNA is also needed as control. Effective depletion of the mRNA yet undetectable reduction of target protein may indicate that a large reservoir of stable NOVX protein may exist in the cell. Multiple transfection in sufficiently long intervals may be necessary until the target protein is finally depleted to a point where a phenotype may become apparent. If multiple transfection steps are required, cells are split 2 to 3 days after transfection. The cells may be transfected immediately after splitting.


[0094] An inventive therapeutic method of the invention contemplates administering a NOVX siRNA construct as therapy to compensate for increased or aberrant NOVX expression or activity. The NOVX ribopolynucleotide is obtained and processed into siRNA fragments, or a NOVX siRNA is synthesized, as described above. The NOVX siRNA is administered to cells or tissues using known nucleic acid transfection techniques, as described above. A NOVX siRNA specific for a NOVX gene will decrease or knockdown NOVX transcription products, which will lead to reduced NOVX polypeptide production, resulting in reduced NOVX polypeptide activity in the cells or tissues.


[0095] The present invention also encompasses a method of treating a disease or condition associated with the presence of a NOVX protein in an individual comprising administering to the individual an RNAi construct that targets the mRNA of the protein (the mRNA that encodes the protein) for degradation. A specific RNAi construct includes a siRNA or a double stranded gene transcript that is processed into siRNAs. Upon treatment, the target protein is not produced or is not produced to the extent it would be in the absence of the treatment.


[0096] Where the NOVX gene function is not correlated with a known phenotype, a control sample of cells or tissues from healthy individuals provides a reference standard for determining NOVX expression levels. Expression levels are detected using the assays described, e.g., RT-PCR, Northern blotting, Western blotting, ELISA, and the like. A subject sample of cells or tissues is taken from a mammal, preferably a human subject, suffering from a disease state. The NOVX ribopolynucleotide is used to produce siRNA constructs, that are specific for the NOVX gene product. These cells or tissues are treated by administering NOVX siRNA's to the cells or tissues by methods described for the transfection of nucleic acids into a cell or tissue, and a change in NOVX polypeptide or polynucleotide expression is observed in the subject sample relative to the control sample, using the assays described. This NOVX gene knockdown approach provides a rapid method for determination of a NOVX minus (NOVX) phenotype in the treated subject sample. The NOVX phenotype observed in the treated subject sample thus serves as a marker for monitoring the course of a disease state during treatment.


[0097] In specific embodiments, a NOVX siRNA is used in therapy. Methods for the generation and use of a NOVX siRNA are known to those skilled in the art. Example techniques are provided below.


[0098] Production of RNAs


[0099] Sense RNA (ssRNA) and antisense RNA (asRNA) of NOVX are produced using known methods such as transcription in RNA expression vectors. In the initial experiments, the sense and antisense RNA are about 500 bases in length each. The produced ssRNA and asRNA (0.5 μM) in 10 mM Tris-HCl (pH 7.5) with 20 mM NaCl were heated to 95° C. for 1 min then cooled and annealed at room temperature for 12 to 16 h. The RNAs are precipitated and resuspended in lysis buffer (below). To monitor annealing, RNAs are electrophoresed in a 2% agarose gel in TBE buffer and stained with ethidium bromide. See, e.g., Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989).


[0100] Lysate Preparation


[0101] Untreated rabbit reticulocyte lysate (Ambion) are assembled according to the manufacturer's directions. dsRNA is incubated in the lysate at 30° C. for 10 min prior to the addition of mRNAs. Then NOVX mRNAs are added and the incubation continued for an additional 60 min. The molar ratio of double stranded RNA and mRNA is about 200:1. The NOVX mRNA is radiolabeled (using known techniques) and its stability is monitored by gel electrophoresis.


[0102] In a parallel experiment made with the same conditions, the double stranded RNA is internally radiolabeled with a 32P-ATP. Reactions are stopped by the addition of 2× proteinase K buffer and deproteinized as described previously (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Products are analyzed by electrophoresis in 15% or 18% polyacrylamide sequencing gels using appropriate RNA standards. By monitoring the gels for radioactivity, the natural production of 10 to 25 nt RNAs from the double stranded RNA can be determined.


[0103] The band of double stranded RNA, about 21-23 bps, is eluded. The efficacy of these 21-23 mers for suppressing NOVX transcription is assayed in vitro using the same rabbit reticulocyte assay described above using 50 nanomolar of double stranded 21-23 mer for each assay. The sequence of these 21-23 mers is then determined using standard nucleic acid sequencing techniques.


[0104] RNA Preparation


[0105] 21 nt RNAs, based on the sequence determined above, are chemically synthesized using Expedite RNA phosphoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are deprotected and gel-purified (Elbashir, Lendeckel, & Tuschl, Genes & Dev. 15, 188-200 (2001)), followed by Sep-Pak C18 cartridge (Waters, Milford, Mass., USA) purification (Tuschl, et al., Biochemistry, 32:11658-11668 (1993)).


[0106] These RNAs (20 μM) single strands are incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C. followed by 1 h at 37° C.


[0107] Cell Culture


[0108] A cell culture known in the art to regularly express NOVX is propagated using standard conditions. 24 hours before transfection, at approx. 80% confluency, the cells are trypsinized and diluted 1:5 with fresh medium without antibiotics (1-3×105 cells/ml) and transferred to 24-well plates (500 ml/well). Transfection is performed using a commercially available lipofection kit and NOVX expression is monitored using standard techniques with positive and negative control. A positive control is cells that naturally express NOVX while a negative control is cells that do not express NOVX. Base-paired 21 and 22 nt siRNAs with overhanging 3′ ends mediate efficient sequence-specific mRNA degradation in lysates and in cell culture. Different concentrations of siRNAs are used. An efficient concentration for suppression in vitro in mammalian culture is between 25 nM to 100 nM final concentration. This indicates that siRNAs are effective at concentrations that are several orders of magnitude below the concentrations applied in conventional antisense or ribozyme gene targeting experiments.


[0109] The above method provides a way both for the deduction of NOVX siRNA sequence and the use of such siRNA for in vitro suppression. In vivo suppression may be performed using the same siRNA using well known in vivo transfection or gene therapy transfection techniques.


[0110] Antisense Nucleic Acids


[0111] Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or fragments, analogs or derivatives thereof. An “antisense” nucleic acid comprises a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a NOVX protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, or antisense nucleic acids complementary to a NOVX nucleic acid sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, are additionally provided.


[0112] In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding a NOVX protein. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding the NOVX protein. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).


[0113] Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).


[0114] Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-carboxymethylaminomethyl-2-thiouridine, pseudouracil, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 2-thiouracil, 4-thiouracil, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 5-methoxyuracil, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, queosine, 2-thiocytosine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, 2-methylthio-N6-isopentenyladenine, beta-D-mannosylqueosine, 5-methyl-2-thiouracil, 5′-methoxycarboxymethyluracil, uracil-5-oxyacetic acid (v), wybutoxosine, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0115] The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


[0116] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (See, e.g., Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.


[0117] Ribozymes and PNA Moieties


[0118] Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.


[0119] In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of a NOVX cDNA disclosed herein (i.e., SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Pat. No. 4,987,071 to Cech, et al. and U.S. Pat. No. 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.


[0120] Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.


[0121] In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleotide bases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomer can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.


[0122] PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).


[0123] In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleotide bases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5′ end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.


[0124] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.


[0125] NOVX Polypeptides


[0126] A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in any one of SEQ ID NO: 2n, wherein n is an integer between 1 and 110. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in any one of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.


[0127] In general, a NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.


[0128] One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.


[0129] An “isolated” or “purified” polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language “substantially free of cellular material” includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.


[0130] The language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.


[0131] Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of a NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of a NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.


[0132] Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.


[0133] In an embodiment, the NOVX protein has an amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NO: 2n, wherein n is an integer between 1 and 110, and retains the functional activity of the protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, and retains the functional activity of the NOVX proteins of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.


[0134] Determining Homology Between Two or More Sequences


[0135] To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid “homology” is equivalent to amino acid or nucleic acid “identity”).


[0136] The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.


[0137] The term “sequence identity” refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.


[0138] Chimeric and Fusion Proteins


[0139] The invention also provides NOVX chimeric or fusion proteins. As used herein, a NOVX “chimeric protein” or “fusion protein” comprises a NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An “NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a NOVX protein of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, whereas a “non-NOVX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within a NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of a NOVX protein. In one embodiment, a NOVX fusion protein comprises at least one biologically-active portion of a NOVX protein. In another embodiment, a NOVX fusion protein comprises at least two biologically-active portions of a NOVX protein. In yet another embodiment, a NOVX fusion protein comprises at least three biologically-active portions of a NOVX protein. Within the fusion protein, the term “operatively-linked” is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.


[0140] In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.


[0141] In another embodiment, the fusion protein is a NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.


[0142] In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a NOVX ligand and a NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of a NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with a NOVX ligand.


[0143] A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCP amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.


[0144] NOVX Agonists and Antagonists


[0145] The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.


[0146] Variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (e.g., truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of NOVX sequences therein. There are a variety of methods which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well-known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.


[0147] Polypeptide Libraries


[0148] In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of a NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.


[0149] Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.


[0150] Anti-NOVX Antibodies


[0151] Included in the invention are antibodies to NOVX proteins, or fragments of NOVX proteins. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab′ and F(ab′)2 fragments, and an Fab expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


[0152] An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence of SEQ ID NO: 2n, wherein n is an integer between 1 and 110, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.


[0153] In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0154] The term “epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. A NOVX polypeptide or a fragment thereof comprises at least one antigenic epitope. An anti-NOVX antibody of the present invention is said to specifically bind to antigen NOVX when the equilibrium binding constant (KD) is ≦1 μM, preferably ≦100 nM, more preferably ≦10 nM, and most preferably ≦100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.


[0155] A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.


[0156] Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., incorporated herein by reference). Some of these antibodies are discussed below.


[0157] Polyclonal Antibodies


[0158] For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).


[0159] The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).


[0160] Monoclonal Antibodies


[0161] The term “monoclonal antibody” (MAb) or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.


[0162] Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.


[0163] The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


[0164] Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).


[0165] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.


[0166] After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.


[0167] The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. I The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.


[0168] Humanized Antibodies


[0169] The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No.5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).


[0170] Human Antibodies


[0171] Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed “human antibodies”, or “fully human antibodies” herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANMBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).


[0172] In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,( Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).


[0173] Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse™ as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.


[0174] An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Pat. No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.


[0175] A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Pat. No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.


[0176] In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.


[0177] Fab Fragments and Single Chain Antibodies


[0178] According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Pat. No. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F(ab′)2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab′)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.


[0179] Bispecific Antibodies


[0180] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.


[0181] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).


[0182] Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).


[0183] According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.


[0184] Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thioritrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.


[0185] Additionally, Fab′ fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.


[0186] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).


[0187] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).


[0188] Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcdγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).


[0189] Heteroconjugate Antibodies


[0190] Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.


[0191] Effector Function Engineering


[0192] It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).


[0193] Immunoconjugates


[0194] The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).


[0195] Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212 Bi, 131I, 131In, 90Y, and 186Re.


[0196] Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.


[0197] In another embodiment, the antibody can be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is in turn conjugated to a cytotoxic agent.


[0198] Immunoliposomes


[0199] The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.


[0200] Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).


[0201] Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention


[0202] In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA) and other immunologically mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an NOVX protein is facilitated by generation of hybridomas that bind to the fragment of an NOVX protein possessing such a domain. Thus, antibodies that are specific for a desired domain within an NOVX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.


[0203] Antibodies directed against a NOVX protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of a NOVX protein (e.g., for use in measuring levels of the NOVX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies specific to a NOVX protein, or derivative, fragment, analog or homolog thereof, that contain the antibody derived antigen binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as “Therapeutics”).


[0204] An antibody specific for a NOVX protein of the invention (e.g., a monoclonal antibody or a polyclonal antibody) can be used to isolate a NOVX polypeptide by standard techniques, such as immunoaffinity, chromatography or immunoprecipitation. An antibody to a NOVX polypeptide can facilitate the purification of a natural NOVX antigen from cells, or of a recombinantly produced NOVX antigen expressed in host cells. Moreover, such an anti-NOVX antibody can be used to detect the antigenic NOVX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic NOVX protein. Antibodies directed against a NOVX protein can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0205] Antibody Therapeutics


[0206] Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.


[0207] Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.


[0208] A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.


[0209] Pharmaceutical Compositions of Antibodies


[0210] Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington : The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, N.Y.


[0211] If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


[0212] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.


[0213] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


[0214] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.


[0215] ELISA Assay


[0216] An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, N.J., 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, Calif., 1996; and “Practice and Thory of Enzyme Immunoassays”, P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0217] NOVX Recombinant Expression Vectors and Host Cells


[0218] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably, as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


[0219] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably-linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).


[0220] The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).


[0221] The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE ExPRESSION TECHNOLOGY: METHODS n. ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0222] Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0223] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).


[0224] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0225] In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).


[0226] Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).


[0227] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.


[0228] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).


[0229] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., “Antisense RNA as a molecular tool for genetic analysis,” Reviews-Trends in Genetics, Vol. 1(1) 1986.


[0230] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0231] A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0232] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.


[0233] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


[0234] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.


[0235] Transgenic NOVX Animals


[0236] The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0237] A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences, i.e., any one of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.


[0238] To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of any one of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).


[0239] Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5′- and 3′-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′- and 3′-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.


[0240] The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.


[0241] In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.


[0242] Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.


[0243] Pharmaceutical Compositions The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as “active compounds”) of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


[0244] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0245] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0246] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0247] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0248] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0249] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0250] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0251] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0252] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.


[0253] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.


[0254] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0255] Screening and Detection Methods


[0256] The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in a NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.


[0257] The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.


[0258] Screening Assays


[0259] The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, e.g., NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.


[0260] In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.


[0261] A “small molecule” as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.


[0262] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.


[0263] Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Pat. No. 5,223,409), spores (Ladner, U.S. Pat. No. 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Pat. No. 5,233,409.).


[0264] In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.


[0265] In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule. As used herein, a “target molecule” is a molecule with which a NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or a NOVX protein or polypeptide of the invention. In one embodiment, a NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.


[0266] Determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with a NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.


[0267] In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.


[0268] In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to a NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate a NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.


[0269] In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a NOVX protein, wherein determining the ability of the test compound to interact with a NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of a NOVX target molecule.


[0270] The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).


[0271] In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.


[0272] Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.


[0273] In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.


[0274] In yet another aspect of the invention, the NOVX proteins can be used as “bait proteins” in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX (“NOVX-binding proteins” or “NOVX-bp”) and modulate NOVX activity. Such NOVX-binding proteins are also involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.


[0275] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.


[0276] The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.


[0277] Detection Assays


[0278] Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.


[0279] Chromosome Mapping Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.


[0280] Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.


[0281] Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.


[0282] PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.


[0283] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).


[0284] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0285] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.


[0286] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0287] Tissue Typing


[0288] The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP (“restriction fragment length polymorphisms,” described in U.S. Pat. No. 5,272,057).


[0289] Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5′- and 3′-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.


[0290] Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).


[0291] Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If coding sequences, such as those of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0292] Predictive Medicine


[0293] The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in a NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.


[0294] Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as “pharmacogenomics”). Pharmacogenomics allows for the selection of ag nts (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)


[0295] Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.


[0296] These and other agents are described in further detail in the following sections.


[0297] Diagnostic Assays


[0298] An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.


[0299] An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.


[0300] In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.


[0301] In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.


[0302] The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.


[0303] Prognostic Assays


[0304] The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.


[0305] Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).


[0306] The methods of the invention can also be used to detect genetic lesions in a NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from a NOVX gene; (ii) an addition of one or more nucleotides to a NOVX gene; (iii) a substitution of one or more nucleotides of a NOVX gene, (iv) a chromosomal rearrangement of a NOVX gene; (v) an alteration in the level of a messenger RNA transcript of a NOVX gene, (vi) aberrant modification of a NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of a NOVX gene, (viii) a non-wild-type level of a NOVX protein, (ix) allelic loss of a NOVX gene, and (x) inappropriate post-translational modification of a NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0307] In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


[0308] Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


[0309] In an alternative embodiment, mutations in a NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Pat. No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0310] In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0311] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).


[0312] Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.


[0313] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, e.g., Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on a NOVX sequence, e.g., a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Pat. No. 5,459,039.


[0314] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi,, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.


[0315] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.


[0316] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


[0317] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3′-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3′-terminus of the 5′ sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0318] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a NOVX gene.


[0319] Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.


[0320] Pharmacogenomics


[0321] Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0322] In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.


[0323] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.


[0324] As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome pregnancy zone protein precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.


[0325] Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0326] Monitoring of Effects During Clinical Trials


[0327] Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a “read out” or markers of the immune responsiveness of a particular cell.


[0328] By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.


[0329] In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.


[0330] Methods of Treatment


[0331] The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0332] These methods of treatment will be discussed more fully, below.


[0333] Diseases and Disorders


[0334] Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are “dysfunctional” (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to “knockout” endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244:1288-1292); or (v) modulators ( i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.


[0335] Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.


[0336] Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).


[0337] Prophylactic Methods


[0338] In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, a NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.


[0339] Therapeutic Methods


[0340] Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a NOVX protein, a peptide, a NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering a NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.


[0341] Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).


[0342] Determination of the Biological Effect of the Therapeutic


[0343] In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.


[0344] In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.


[0345] Prophylactic and Therapeutic Uses of the Compositions of the Invention


[0346] The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders. The disorders include but are not limited to, e.g., those diseases, disorders and conditions listed above, and more particularly include those diseases, disorders, or conditions associated with homologs of a NOVX protein, such as those summarized in Table A.


[0347] As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from diseases, disorders, conditions and the like, including but not limited to those listed herein.


[0348] Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.


[0349] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.



EXAMPLES


Example A

[0350] Polynucleotide and Polypeptide Sequences, and Homology Data



Example 1

[0351] The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
2TABLE 1ANOV1 Sequence AnalysisSEQ ID NO: 11808 bpNOV1a,CGATCGCAGAGAGGCTGGAGTGTGCTACCGACGTCGAATATCCATGCAGACTAGAAGAGTATAATCTGCG105324-01DNA SequenceGGTCCTTCCTGCAGGACAGTGCCTTGGTAATGACCACGGCTCCAGGAAGAGATGTCCTTGTGGCTGGGGGCCCCTGTGCCTGACATTCCTCCTGACTCTCGGAAGGAGCTGTGGAAGCCAGGCGCACAGGATGCAACCAGCCACGCCCAGGGAGGCAGCAGCTGCATCCTCAGAGACGAAGCCAGGATGCCCCACTCTGCTGGGGGTACTGCAGCGGTGGGGCTGGAGGCTGCAGACCCCACAGCCCTCCTCACCAGGGCAGAGCCCCCTTCAGAACCCACAGAGATCCGTCCACAAAAGCGGAAAAAGGGGCCAGCCCCCAAAATGCTGGGGAACGAGCTATGCAGCGTGTGTGGGGACAAGGCCTCGGGCTTCCACTACAATGTTCTGAGCTGCGAGGGCTCCAACGCATTCTTCCGCCGCAGCGTCATCAAGGGAGCGCACTACATCTGCCACAGTGGCGGCCACTGCCCCATGGACACCTACATGCGTCGCAAGTGCCAGGAGTGTCGGCTTCGCAAATGCCGTCAGGCTGGCATGCGGGAGGAGTGTGTCCTGTCAGAAGAACAGATCCGCCTGAAGAAACTGAAGCGGCAAGAGGAGGAACAGGCTCATGCCACATCCTTGCCCCCCAGGCGTTCCTCACCCCCCCAAATCCTGCCCCAGCTCAGCCCGGAACAACTGGGCATGATCGAGAAGCTCGTCGCTGCCCAGCAACAGTCTAACCGGCGCTCCTTTTCTGACCGGCTTCGAGTCACGCCTTGGCCCATGGCACCAGATCCCCATAGCCGGGACGCCCGTCAGCAGCGCTTTGCCCACTTCACTGAGCTGGCCATCGTCTCTGTGCAGGAGATAGTTGACTTTGCTAAACAGCTACCCGGCTTCCTGCAGCTCAGCCGGGAGGACCAGATTGCCCTGCTGAAGACCTCTGCGATCGAGGTGATGCTTCTGGAGACATCTCGGAGGTACAACCCTCGGAGTGAGAGTATCACCTTCCTCAAGGATTTCAGTTATAACCGGGAAGACTTTGCCAAAGCAGGGCTGCAAGTGGAATTCATCAACCCCATCTTCGAGTTCTCCAGGGCCATGAATGAGCTGCAACTCAATGATGCCGAGTTTGCCTTGCTCATTGCTATCAGCATCTTCTCTGCAGACCGGCCCAACGTGCAGGACCAGCTCCAGGTAGAGAGGCTGCAGCACACATATGTGGAAGCCCTGCATGCCTACGTCTCCATCCACCATCCCCATGACCGACTGATGTTCCCACCGATGCTAATGAAACTGGTGAGCCTCCGGACCCTGAGCAGCGTCCACTCAGAGCAAGTGTTTGCACTGCGTCTGCAGGACAAAAAGCTCCCACCGCTGCTCTCTGAGATCTGCGATGTGCACGAATGACTGTTCTGTCCCCATATTTTCTGTTTTCTTGGCCGGATGGCTGAGOCCTGGTGGCTGCCTCCTAGAAGTGGAACAGACTGAGAAGGGCAAACATTCCTGGGAGCTGGGCAAGGAGATCCTCCCGTGGCATTAAAAGAGAGTCAAAGGGTTGCGAGTTTTGTGGCTACTGAGCAGTGGAGCCCTCGCTAACACTGTGCTGTGTCTGAAGATCATGCTGACCCCACAAACGGATGGGCCTGGGGGCCACTTTGCACACGGTTCTCCAGAGCCCTCCCCATCCTGCCTCCACCACTTCCTGTTTTTCCCACACGGCCCCAAGAAAAATTCTCCACTGTCAAAAAAAAAORF Start: ATG at 120ORF Stop: TGA at 1461SEQ ID NO: 2447 aaMW at 50480.3kDNOV1a,MSLWLGAPVPDIPPDSAVELWKPGAQDASSQAQGGSSCILREEARMFHSAGGTAGVGLEAAEPTALLTCG105324-O1ProteinRAEPPSEPTETRPQKRKKGPAPKMLGNELCSVCGDKASGFHYNVLSCEGCKGFFRRSVIKGAHYICHSSequenceGGHCPMDTYMRRKCQECRLRKCRQAGMREECVLSEEQIRLKKLKRQEEEQAHATSLPPRRSSPPQILPQLSPEQLGMIERLVAAQQQCNRRSFSDRLRVTPWPMAPDPHSREARQQRFAHFTELAIVSVQEIVDFAKQLPGFLQLSREDQIALLKTSAILTMLLETSRRYNPGSESITFLKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQDQLQVERLQHTYVEALHAYVSIHHPHDRLMFPRMLMXLVSLRTLSSVHSEQVFALRLQDKKLPPLLSEIWDVHESEQ ID NO:31461 bpNOV1b,CCCCCAAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAG212779039DNA SequenceGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGTCCTTGTGGCTGGGGGCCCCTGTGCCTGACATTCCTCCTGACTCTGCGGTGGAGCTGTGGAAGCCAGGCGCACAGGATGCAAGCAGCCAGGCCCACGGAGGCAGCAGCTGCATCCTCAGAGAGGAAGCCAGGATGCCCCACTCTGCTGGGGGTACTGCAGGGGTGOGGCTGGAGGCTGCAGAGCCCACAGCCCTGCTCACCACGGCACAGCCCCCTTCAGAACCCACAGGTGTCCTGTCAGAAGAACAGATCCGCCTGAAGAAACTGAAGCGGCAAGAGGAGGAACAGGCTCATGCCACATCCTTGCCCCCCACGGCTTCCTCACCCCCCCAAATCCTGCCCCAGCTCAGCCOGGAACAACTGGGCATGATCCAGAAGCTCGTCGCTGCCCAGCAACAGTCTAACCGGCGCTCCTTTTCTGACCGGCTTCCAGTCACGCCTTGGCCCATCGCACCAGATCCCCATAGCCGGGAGGCCCGTCAGCAGCGCTTTGCCCACTTCACTGAGCTGGCCATCGTCTCTGTGCAGGAGATAGTTGACTTTGCTAAACAGCTACCCGGCTTCCTCCACCTCAGCCGGGAGGACCAGATTCCCCTGCTGAAGACCTCTGCGATCGACGTGATGCTTCTGGAGACATCTCGGAGGTACAACCCTGGGAGTGAGAGTATCACCTTCCTCAAGGATTTCAGTTATAACCGGGAAGACTTTGCCAAAGCAGGGCTGCAAGTGGAATTCATCAACCCCATCTTCGAGTTCTCCAGGGCCATGAATGAGCTGCAACTCAATGATGCCGAGTTTGCCTTGCTCATTGCTATCAGCATCTTCTCTGCAGACCGGCCCAACGTGCAGGACCAGCTCCAGGTAGAGAGGCTGCAGCACACATATGTGGAAGCCCTCCATGCCTACGTCTCCATCCACCATCCCCATGACCGACTGATGTTCCCACGGATGCTAATGAAACTGGTGAGCCTCCCGACCCTGAGCAGCGTCCACTCAGAGCAAGTGTTTGCACTGCGTCTGCAGGACAAAAAGCTCCCACCGCTGCTCTCTGAGATCTGGGATGTGCACGAATGAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTCATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTTAGGAORF Start: at 148ORF Stop: TGA at 1279SEQ ID NO: 4377 aaMW at 42216.6kDNOV1b,GDPSWLAFKLKLGTELGSTMSLWLGAPVPDIPPDSAVELWKPGAQDASSQAQGOSSCILREEARMPH212779039ProteinSAGGTAGVGLEAAEPTALLTRAEPPSEPTGVLSEEQIRLKKLKRQEEEQAHATSLPPRASSPPQILPSequenceQLSPEQLGMIEKLVAAQQQCNRRSFSDRLRVTPWPMAPDPHSREARQQRFAHFTELAIVSVQEIVDFAKQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGSESITFLKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQDQLQVERLQHTYVEALHAYVSTHHPHDRLMFPSEQ ID NO:51808 bpNOV1c,CGATCGGAGAGAGGCTGGAGTGTGCTACCGACGTCGAATATCCATGCAGACTAGAGTATAATCTGCG105324-01DNA SequenceGGTCCTTCCTGCAGGACAGTGCCTTGGTAATGACCAGGCCTCCAGCAAGAGATGTCCTTGTGGCTGGGGGCCCCTGTGCCTGACATTCCTCCTGACTCTGCGGTGGAGCTGTGGAAGCCAGGCGCACAGGATGCAAGCAGCCAGGCCCAGGGAGGCAGCAGCTGCATCCTCAGAGAGGAAGCCAGGATGCCCCACTCTGCTGGGGGTACTGCAGGGGTGGGGCTGGAGGCTGCAGAGCCCACAGCCCTCCTCACCAGGGCAGAGCCCCCTTCAGAACCCACAGAGATCCGTCCACAAAAGCGGAAAAAGGGGCCAGCCCCCAAAATGCTGGGGAACGAGCTATGCAGCGTGTGTGGGGACAAGGCCTCGGGCTTCCACTACGTGTTCTGAGCTGCGAGGGCTGCATGCGGATTCTTCCGCCGCAGCGTCATCAAGGGAGCGCACTACATCTGCCACAGTGGCGGCCACTGCCCCATGGACACCThCATGCGTCGCAAGTGCCAGGGAGTGTCGGCTTCCCGATGCCGTCAGGCTGGCATCCGGGAGGAGTGTGTCCTGTCAGAAGAACAGATCCGCCTGAAGAAACTGAAGCGGCAAGAGGAGGAACAGGCTCATGCCACATCCTTGCCCCCCAGGCGTTCCTCACCCCCCCTTCCTCCCCCAGCTCAGCCCGGAACACAACTGGGCATGATCGAGAGGCTCGTCGCTGCCCAGCAACAGTGTAACCGGCGCTCCTTTTCTGACCGGCTTCGAGTCACGCCTTGGCCCATGGCACCAGATCCCCATAGCCGGGAGGCCCGTCAGCAGCGCTTTGCCCACTTCACTGAGCTGGCCATCGTCTCTGTGCAGGAGATAGTTGACTTTGCTAAACAGCTACCCGGCTTCCTGCAGCTCAGCCGGGACGACCAGATTGCCCTGCTGAAGACCTCTGCGATCGAGGTGATGCTTCTGGAGACATCTCGGAGGTACAACCCTGGGAGTGAGAGTATCACCTTCCTCAAGGATTTCAGTTATGCCCGGGAAGACTTTGCCAAAGCAGGGCTGCAAGTGGAATTCATCAACCCCATCTTCGAGTTCTCCAGGGCCATGAATGAGCTGCAACTCAATGATGCCGAGTTTGCCTTCCTCATTCCTATCAGCATCTTCTCTGCAGACCGGCCCAACGTGCAGGACCAGCTCCAGGTAGAGAGGCTGCAGCACACATATGTGGTCGCCCTGCATGCCTACGTCTCCATCCACCATCCCCATGACCGACTGATGTTCCCACGGATGCTAATGAAACTGGTGAGCCTCCGGACCCTGAGCAGCGTCCACTCAGAGCAAGTGTTTGCACTGCGTCTGCAGCACGCTAHGCTCCCACCGCTGCTCTCTGAGATCTGGGATGTGCACGAATGACTGTTCTGTCCCCATATTTTCTGTTTTCTTGCCGGATGGCTGAGGCCTGGTGGCTGCCTCCTAGAAGTGGAACAGACTGAGATTGGGCGCACATTCCTGGCAGCTGGGCAAGGAGATCCTCCCGTGGCATTAGAGAGAGTCGTAAGGGTTGCGAGTTTTGTGGCTACTGAGCAGTGGAGCCCTCGCTAACACTGTGCTGTGTCTGAAGATCATGCTGACCCCACGCTCGGATGGGCCTGGGGGCCACTTTGCACAGGGTTCTCCAGAGCCCTGCCCATCCTGCCTCCACCACTTCCTGTTTTTCCCACAGGGCCCCAAGAAAATTCTCCACTGTCAAAAAAAAAAORF Start: ATG at 120RF Stop: TGA at 1461SEQ ID NO: 6447 aaMW at 50480.3kDNOV1c,MSLMLGAPVPDIPPDSAVELWKPGAQDASSQAQGGSSCILREEARMPHSAGGTAGVGLEAAEPTALLTCG105324-01ProteinRAEPPSEPTEIRPQKRKKGPAPKMLGNELCSVCGDKASGFHYNVLSCEGCKGFFRRSVIKGAHYICHSSequenceGGHCPMDTYMRRKCQECRLRKCRQAGMREECVLSEEQIRLKKLKRQEEEQAHATSLPPRRSSPPQILPQLSPEQLGMIEKLVAAQQQCNRRSFSDRLRVTPWPMAPDPHSREQQRFAHFTELHFAIVSVQEIVDFAKQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGSESITFLKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQDQLQVERLQHTYVEALHAYVSIHHPHDRLMFPRMLMKLVSLRTLSSVHSEQVFALRLQDKKLPPLLSEIWDVHESEQ ID NO:71374bpNOV1d,CGCGGATCCACCATGTCCTTGTGGCTGGGGGCCCCTGTGCCTGACATTCCTCCTGACTCTGCGGTGG209829541DNA SequenceAGCTGTGGAAGCCAGCCGCACAGGATGCAAGCAGCCAGGCCCAGGGAGGCAGCAGCTGCATCCTCAGAGAGGAAGCCAGGATGCCCCACTCTGCTGGGGGTACTGCAGGGGTGGGGCTGGAGGCTGCAGAGCCCACAGCCCTGCTCACCAGGGCAGAGCCCCCTTCAGTACCCACAGAGATCCGTCCACAAAAGCGGAAAAAGGGGCCAGCCCCCAAAATGCTGGGGAACGAGCTATGCAGTGTGTGTGGGGACAAGGCCTCGGGCTTCCACTACAATGTTCTGAGCTGCGAGGGCTGCATCGGGATTCTTCCGCCGCAGCGTCATCGGATAGCGCACTACATCTGCCACAGTGGCGGCCACTGCCCCATGGACACCTACATGCGTCGCAAGTGCCAGAAGTGTCGGCTTCGCAAATGCCGTCAGGCTGGCATGCGGACGAGTGTGTCCTGTCAGTCGAGTCAGATCCGCCTGAAGAAACTGAGCGCAAGAGGAGGAACAAATGCTCATGCCACATCCTTGCCCCCCAAGCATTCCTCACCCCCCCAATCCTGCCCCAGCTCAGCCCGGAACAACTGGGCATGATCGAGAAGCATCGTCGCTGCCCAGCAACAGTGTAACCGGCGCTCCTTTTCTGACCGGCTTCGAGTCACGCCTTGGCCCATGGCACCAGATCCCCATAGCCGGGAGGCCCGTCACCAGCGCTTTGCCCACTTCACTGACCTGCCCATCGTCTCTGTGCAGGAGATAGTTGACTTTGCTAAACAGCTACCCGGCTTCCTGCAGCTCAGCCGTAGGAGCCAGATTGCCCTGCTGATGACCTCTOCCATCCAGGTGATGCTTCTGGAGACATCTCGGAGGTACATCCCTGAGAGTGAGAGTATCACCTTCCTCAAGGATTTCAGTTATAACCGGGAAGACTTTGCCAAAGCAGGGCTGCAAGTGGAATTCATCAACCCCATCTTCGAGTTCTCCAGGGCCATGAATGAGCTGCAACTCAATGATGCCGAGTTTGCCTTGCTCATTGCTATCAGCATCTTCTCTGCAGACCGGCCCAACGTGCAGGACCAGCTCCAGGTAGAGAGGCTGCAGCACACATATGTGGAAGCCCTGCATGCCTACGTCTCCATCCACCATCCCCATGACCGACTGATGTTCCCACGGATGCTAATGAAACTGGTGAGCCTCCCGACCCTGAGCAGCCTCCACTCACAGCAAGTGTTTGCACTGCGTCTGCAGGACAAAAAGCTCCCACCGCTGCTCTCTGAGATCTGGGATGGGCACGAATGAGCGGCCGCTTTTTTCCTTORF Start: at 1ORF Stop: TGA at 1354SEQ ID NO: 8451 aaMW at 50796.6kDNOV1d,RGSTMSLWLGAPVPDIPPDSAVELWKPGAQDASSQAQGGSSCILREEARMPHSAGCTAGVGLEAAEP209829541ProteinTALLTRAEPPSEPTEIRPQKRKKGPAPKMLGNELCSVCGDKASGFHYNVLSCEGCKGFFRRSVIKGASequenceHYICHSGGHCPMDTYNRRKCQECRLRKCRQAGMREECVLSEEQIRLKKLKRQEEEQAHATSLPPRASSPPQILPQLSPEQLGMIEKLVAAQQQCNRRSTSDRLRVTPWPMAPDPHSREARQQRFAHFTELAIVSVQEIVDFAXQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGSESITFLKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQDQLQVERLQHTYVEALHAYVSIHHPHDRLMFPRMLMKLVSLRTLSSVHSEQVFALRLQDKKLPPLLSEIWDVHE


[0352] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.
3TABLE 1BComparison of NOV1a against NOV1b through NOVld.Identities/SimilaritiesProteinNOV1a Residues/for theSequenceMatch ResiduesMatched RegionNOV1b168 . . . 447 264/280 (94%)98 . . . 377 264/280 (94%)NOV1c1 . . . 447418/447 (93%)1 . . . 447418/447 (93%)NOV1d1 . . . 447417/447 (93%)5 . . . 451417/447 (93%)


[0353] Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.
4TABLE 1CProtein Sequence Properties NOV1a PSort analysis:0.3000 probability located in nucleus;0.1000 probability located in mitochondrialmatrix space; 0.1000 probability located inlysosome (lumen); 0.0000 probability locatedin endoplasmic reticulum (membrane)SignalP analysis:No Known Signal Sequence Predicted


[0354] A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1D.
5TABLE 1DGeneseq Results for NOVlaNOV1aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAW03326LXR-alpha, orphan member1 . . . 447 447/447 (100%)0.0of nuclear hormone receptor1 . . . 447 447/447 (100%)superfamily - Homo sapiens,447 aa.[WO9621726-A1,18 JUL. 1996]AAR33744XR2 - Homo sapiens, 440 aa.1 . . . 447436/447 (97%)0.0[WO9306215-A,1 . . . 440437/447 (97%)01 APR. 1993]AAR88452Retinoic acid receptor1 . . . 447422/447 (94%)0.0epsilon -Homo sapiens, 4331 . . . 433425/447 (94%)aa.[WO9600242-A1,04 JAN. 1996]AAY32374Mouse CNREB-1 - Mus1 . . . 447409/447 (91%)0.0musculus, 445 aa.1 . . . 445421/447 (93%)[WO9955343-A1,04 NOV. 1999]AAR74738Human ubiquitous nuclear14 . . . 447 287/460 (62%)e−154receptor protein - Homo4 . . . 460338/460 (73%)sapiens, 460 aa.[WO9513373-A1,18 MAY. 1995]


[0355] In a BLAST search of public sequence datbases, the NOV1a protein was found to
6TABLE 1EPublic BLASTP Results for NOV1aNOV1aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ13133Oxysterols receptor LXR-alpha1 . . . 447 447/447 (100%)0.0(Liver X receptor alpha) (Nuclear1 . . . 447 447/447 (100%)orphan receptor LXR-alpha) -Homo sapiens (Human), 447 aa.Q9Z0Y9Oxysterols receptor LXR-alpha1 . . . 447410/447 (91%)0.0(Liver X receptor alpha) (Nuclear1 . . . 445422/447 (93%)orphan receptor LXR-alpha) -Mus musculus (Mouse), 445 aa.Q91X41Similar to nuclear receptor1 . . . 447409/447 (91%)0.0subfamily 1, group H, member 3 -1 . . . 445421/447 (93%)Mus musculus (Mouse), 445 aa.Q62685Oxysterols receptor LXR-alpha1 . . . 447408/447 (91%)0.0(Liver X receptor alpha) (Nuclear1 . . . 445420/447 (93%)orphan receptor LXR-alpha) (RLD-1) -Rattus norvegicus (Rat), 445 aa.AAM90897Liver X receptor - Gallus gallus62 . . . 447 310/386 (80%)0.0(Chicken), 409 aa.24 . . . 409 341/386 (88%)


[0356] PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.
7TABLE 1FDomain Analysis of NOV1aIdentities/NOV1aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValuezf-C496 . . . 17143/77 (56%)3.4e−4164/77 (83%)hormone_rec262 . . . 443 63/207 (30%) 1.7e−53148/207 (71%) 



Example 2

[0357] The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
8TABLE 2ANOV2 Sequence AnalysisSEQ ID NO:95864 bpNOV2a,CACTCGCTGGGGAGTCCCGTCGACGCTCTGTTCCGAGAGCGTGCCCCGGACCGCCAGCTCAGAACAGCCG105355-01DNA SequenceGGCAGCCGTGTAGCCGAACGGAAGCTGGGAGCAGCCGGGACTGGTGGCCCGCGCCCGGAGCTCCGCAGGCGGGAACCACCCTGGATTTGGGAAGTCCCGGGACCAGCGCGGCGGCACCTCCCTCACCCAAGGGGCCGCGGCGACGGTCACGGGGCGCGGCGCCACCGTGAGCGACCCAGGCCAGGATTCTAAATACACGGCCCAGGCTCCTCCTCCGCCCGGGCCGCCTCACCTGCGGGCATTGCCGCGCCGCCTCCGCCGGTGTAGACGCCACCTGCGCCGCCTTGCTCGCGOGTCTCCGCCCCTCGCCCACCCTCACTGCGCCAGGCCCAGGCAGCTCACCTGTGCTGGCGCGGGCTGCGGAAGCCTGCGTGAGCCGAGGCGTTGAGGCGCGGCGCCCACGCCACTGTCCCGAGAGGACGCAGGTGGAGCGGGCGCGGCTTCGCGGAACCCGGCGCCGGCCGCCGCAGTGGTCCCAGCCTACACCGGGTTCCGGGGACCCGGCCGCCAGTGCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCAOCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGA~ACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAATGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATCGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAGACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTACGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAGGAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAGGGGACTAAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCGATCCTAGTTCCCTCCTGGCTGCCATCATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGATTGATTGGATATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTGAGGATGTGATCTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAACAGTGACTTGTACAGCATGATTGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAATGAGTTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTGATGATTCTTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACTATCTAGAACAGCAACAGCAACATCACCAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTGAAAATTGGAACATCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAGCTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCCATACCCCACTACTTCTAGTTTAGAAGATTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGCCCAACAGCCATTTTTAAACAAGTTTCAGAATGGAGTTTTAATGAACATATCCAGCTGAAATTTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAGCCAGACACTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGACCCTGGTTTTTGGATTAAATTAGTTTGTGAAGGATTATGCAAAAATAAAACTGTCACTGTTGGACGTCAGCAAGTTCACATGGAGGCATTGATGCATGCTATTCACAATTATTCCAAACCAATTTTAATTTTTCCTTTTAAGAAAAGGGAGTTTAAAAATGGTATCAAAATTACATATACTACAGTCAAGATAGATAGGGTGCTCCCACGGAGTGGTGAGGTACCGTCTACATTTCACATTATTCTGGGCACCACAAAATATACATACTTTATCAGGGAACTAAGCGATTCTTTTAAATTAGAAAATATTCTCTATTTGAATTATTTCTGTCACAGTAAAAAGATTATACTTTGAGTTTTGAGCTACTGGATTCTTATTAGTTCCCCAAATACAAAGTTAGAGAACTATGCTAGTTTTTCCTATCATGTTAACCTCTGCTTTTATCTCAGATGTTAAAATAAATGGTTTGGTGCTTTTTATAAAAAGATAATCTCAGTGCTTTCCTCCTTCACTGTTTCATCTAAGTGCCTCACATTTTTTTCTACCTATAACACTCTAGCATGTATATTTTATATAAAGTATTCTTTTTCTTTTTTAAATTAATATCTTTCTGCACACAGTTATTATTTGTGTTTCCTAAATCCAACCATTTTCATTAATTCAGGCATATTTTAACTCCACTGCTTACCTACTTTCTTCAGGTAAAGGGCAAATAATCATCGAAAAAATAATTATTTATTACATAATTTAGTTGTTTCTAGACTATAATGTTGCTATGTCCCTTATGTTGAAAAAATTTAAAAGTAAATGTCTTTCCAAAGCTTATTTCTTAATTATTATAAAAATATTAAGACAATAGCACTTAAATTCCTCAACAGTGTTTTCAGAAGAAATAAATATACCACTCTTTACCTTTATTGATATCTCCATGATGATAGTTGAATGTTCCAATGTG~.AATCTGCTGTATTTCAATGTCTATAAATTGTCTTTAAAAACTGTTTTAGACCTATAATCCTTGATAATATATTGTGTTGACGTTATAAATTTCGCTTCTTAGAACAGTGCAATCTATGTGTTTTTCTCATATTTGAGGAGTGTTTTGATTGCAGATAGCAAGGTTTCGTGCAAGTATTATAATGAGTGAATTGATGGTGCATTGTATAGATATATAATGAACAAATTATTTGTAAGATATTTGCAGTTTTTCATTTTAAAAAGTCCATACCTTATAGTATGCACTTAATTTGTTGGGGCTTTACATACTTTATCAATGTGTCTTTCTAAGAAATCAAGTAATGAATCCAACTGCTTAAAGTTGGTATTAATAAAAAGACAACCACATACTTCGTTTACCTTCAAACTTTAGGTTTTTTTAATGATATACTGATCTTCATTACCAATAGGCAAATTAATCACCCTACCAACTTTACTGTCCTAACATGGTTTAAAAGAAAAAATGACACCATCTTTTATTCTTTTTTTTTTTTTTTTTGAGAGAGAGTCTTACTCTGCCGCCCAACTGGAGTGCAGTCGCACAATCTTGGCTCACTGCAACCTCTACGCTCCTCGGTTCAAGTGATTCTCTTGCCTCAGCCTCCCGAGTTGCTGOGATTGCGGGCATGGTGGCGTGAGCCTGTAGTCCTAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCCTGAACCTGGGAATCGGAGCTTCCAGGGcCAACATCGCCCCACTGCACTCCAGCCTGGCAATAGACCGAGACTCCGTCTCCAAAAAAAAAAAAAATACAATTTTTATTTCTTTTACTTTTTTTAGTAAGTTAATGTATATAAAAATGGCTTCCGACAAAATATCTCTGAGTTCTGTGTATTTTCAGTCAAAACTTTAAACCTGTAGAATCAATTTAAGTGTTGGAAAAAATTTGTCTGAAACATTTCATAATTTGTTTCCAGCATGAGTATCTAAGGATTTAAAACCAGAGGTCTAGATTAATACTCTATTTTTACATTTAAACCTTTTATTATAAGTCTTACATAAACCATTTTTGTTACTCTCTTCCACATGTTACTGGATAAATTGTTTAGTGGAA~ATAGGCTTTTTAATCATGAATATGATGACAATCAGTTATACAGTTATAAAATTAAAAGTTTGAAAAGCAATATTGTATATTTTTATCTATATAAAATAACTAAAATGTATCTAAGAATAATAAAATCACGTTAAACCAAATACACGTTTGTCTGTATTGTTAAGTGCCAAACAAAGGATACTTAGTGCACTGCTACATTGTGGGATTTATTTCTAGATGATGTGCACATCTAAGGATATGGATGTGTCTAATTTTAGTCTTTTCCTGTACCAGGTTTTTCTTACAATACCTGAAGACTTACCAGTATTCTAGTGTATTATGAAGCTTTCAACATTACTATGCACAAACTAGTGTTTTTCGATGTTACTAAATTTTAGGTAAATGCTTTCATGGCTTTTTTCTTCAAAATGTTACTGCTTACATATATCATGCATAGATTTTTGCTTAAAGTATGATTTATAATATCCTCATTATCAAAGTTGTATACAATAATATATAATAAAATAACAAATATGAATAATAAAAAAAAAAAAAAAAAORF Start: ATG at 615ORF Stop: TAA at 3159SEQ ID NO: 10848 aaMW at 96146.5kDNOV2a,NNSSSANITYASRXRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKLSCG105355-01ProteinVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFSequenceYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGCDAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVOEHLHLEOOOOHHOKOVVVEPOOOLCOKMKHMOVNGMFENWNSNOFVPFNCPOODPOOYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLNKFQNGVLNETYFAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO:112551 bpNOV2b,CACCATGAACAGCAGCAGCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAA245279626DNA SequenceACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATCCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGACCTGAATTTCAGCGTCAGCTACACTGCGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTGGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGCCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACGAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAACAACTTTTGTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATCGGAAATGATACTATCCTGAGCCATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAACCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAACCAAAAGCATGGATTAAATCCACAGGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCACATGCAGTACAATCCAGTACTGCCAGGCCAAACAGGCATTTTTAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAAORF Start: at 2ORF Stop: TAA at 2549SEQ ID NO: 12849 aaMW at 96247.6kDNOV2b,TMNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDK245279626ProteinLSVLRLSVSYLRAKSFFDVALKSSPTERNCOQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDASequenceLVFYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQTPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPTGCDAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAKUMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKMXHMQVNGMFENWNSNQFVPFNCPQQDPQQYNVFTDLNGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPvLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO: 132677 bpNOV2c,CCAGTGCCCGGGGAGTAGCCGCCGCCGTCGGCTGGGCACCATGAACAGCAGCACCGCCAACATCACCTCG105355-02DNA SequenceACGCCAGTCGCAAGCGGCGGAAGCCGTGCAGAAAACAGTAAAGCCAATCCCAGCTGAAGGAAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACACAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAGGACAATTCTTATTACAGGCTCTGAAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATA&ATCAGAGTCTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAOCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTcTGGAcAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAWGTGTCTGCTGGATAATTCATCTGGTTTTCTAAACAATGAATTTCCAAGGGAAGTTTAAAGTATCTTCATGGACAGAAGAAAGGGAGGATGGATCAAAAATACTTCCACCTCAGTTGGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCGGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGGATATACTGAAGCAGAGCTGTGCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGACTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGGGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGCAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTGAAAATGGCACTAGTGGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAATTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAAGAGTTCCCCTACAAATCTGAAATGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTACTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATGGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGOCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTGATTTGACATCCAGTGGATTCCTGTAATTCCAAGCCCAATTTTGAGCCTGGTTTTTGGATTAAATTAGTTTGTGAAGGATTATGGAAAAATAAAACTGTCACTGTTGGACGTCAGCAORF Start: ATG at 41ORF Stop: TAA at 2585SEQ ID NO: 14848 aaMW at 96146.5kDNOV2c,MNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKLSCG105355-02ProteinVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFSequenceYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTVVCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFTERTKHKLDFTPIGCDAXGRIVLGYTEAELCTRGSGYQFHAADMLYCAESHITPLIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYTIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNTAPMGNDTILKHEQTDQPQDVNSFAGGHPGLFQDSKNSDLYSINKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQQQQSLALNSSCMVQEMLHLEQQQQHHQKQVVVEPQQQLCQKMKHMQVNGMFENWNSNQFVPFNCFQQDPQQYNVFTDLHGISQEFPYXSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFLSEQ ID NO:152551 bpNOV2d,CACCATGAACAGCAGCAGCGCCAACATCACCTACGCCAGTCGCAAGCGGCGGAAGCCGGTGCAGAAACG105355-03DNA SequenceACAGTAAAGCCAATCCCAGCTGAAGGAATCAAGTCAAATCCTTCCAAGCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCACAAGATGTTATTAATAAGTTGGACAAACTTTCAGTTCTTAGGCTCAGCGTCAGTTACCTGAGAGCCAAGAGCTTCTTTGATGTTGCATTAAAATCCTCCCCTACTGAAAGAAACGGAGGCCAGGATAACTGTAGAGCAGCAAATTTCAGAGAAGGCCTGAACTTACAAGAAGGAGAATTCTTATTACAGGCTCTGAATGGCTTTGTATTAGTTGTCACTACAGATGCTTTGGTCTTTTATGCTTCTTCTACTATACAAGATTATCTAGGGTTTCAGCAGTCTGATGTCATACATCAGAGTGTATATGAACTTATCCATACCGAAGACCGAGCTGAATTTCAGCGTCAGCTACACTGGGCATTAAATCCTTCTCAGTGTACAGAGTCTGGACAAGGAATTGAAGAAGCCACTGGTCTCCCCCAGACAGTAGTCTGTTATAACCCAGACCAGATTCCTCCAGAAAACTCTCCTTTAATGGAGAGGTGCTTCATATGTCGTCTAAGGTGTCTGCTGGATAATTCATCTGGTTTTCTCGCAATGAATTTCCAAGGGAAGTTAAAGTATCTTCATGGACAGAAAAAGAAAGGGAAAGATGGATCAATACTTCCACCTCAGTTCGCTTTGTTTGCGATAGCTACTCCACTTCAGCCACCATCCATACTTGAAATCCCGACCAAAAATTTTATCTTTAGAACCAAACACAAACTAGACTTCACACCTATTGGTTGTGATGCCAAAGGAAGAATTGTTTTAGCATATACTGAAGCAGAGCTGTCCACGAGAGGCTCAGGTTATCAGTTTATTCATGCAGCTGATATGCTTTATTGTGCCGAGTCCCATATCCGAATGATTAAGACTGGAGAAAGTGGCATGATAGTTTTCCGGCTTCTTACAAAAAACAACCGATGGACTTGCGTCCAGTCTAATGCACGCCTGCTTTATAAAAATGGAAGACCAGATTATATCATTGTAACTCAGAGACCACTAACAGATGAGGAAGGAACAGAGCATTTACGAAAACGAAATACGAAGTTGCCTTTTATGTTTACCACTGGAGAAGCTGTGTTGTATGAGGCAACCAACCCTTTTCCTGCCATAATGGATCCCTTACCACTAAGGACTAAAAATGGCACTAGTCGAAAAGACTCTGCTACCACATCCACTCTAAGCAAGGACTCTCTCAATCCTAGTTCCCTCCTGGCTGCCATGATGCAACAAGATGAGTCTATTTATCTCTATCCTGCTTCAAGTACTTCAAGTACTGCACCTTTTGAAAACAACTTTTTCAACGAATCTATGAATGAATGCAGAAATTGGCAAGATAATACTGCACCGATGGGAAATGATACTATCCTGAAACATGAGCAAATTGACCAGCCTCAGGATGTGAACTCATTTGCTGGAGGTCACCCAGGGCTCTTTCAAGATAGTAAAAACAGTGACTTGTACAGCATAATGAAAAACCTAGGCATTGATTTTGAAGACATCAGACACATGCAGAATGAAAAATTTTTCAGAAATGATTTTTCTGGTGAGGTTGACTTCAGAGACATTGACTTAACGGATGAAATCCTGACGTATGTCCAAGATTCTTTAAGTAAGTCTCCCTTCATACCTTCAGATTATCAACAGCAACAGTCCTTGGCTCTGAACTCAAGCTGTATGGTACAGGAACACCTACATCTAGAACAGCAACAGCAACATCACCAAAAGCAAGTAGTAGTGGAGCCACAGCAACAGCTGTGTCAGAAGATGAAGCACATGCAAGTTAATGGCATGTTTGAAAAGTGGAACTCTAACCAATTCGTGCCTTTCAATTGTCCACAGCAAGACCCACAACAATATAATGTCTTTACAGACTTACATGGGATCAGTCAACAGTTCCCCTACAAATCTGAAGTGGATTCTATGCCTTATACACAGAACTTTATTTCCTGTAATCAGCCTGTATTACCACAACATTCCAAATGTACAGAGCTGGACTACCCTATGGGGAGTTTTGAACCATCCCCATACCCCACTACTTCTAGTTTAGAAGATTTTGTCACTTGTTTACAACTTCCTGAAAACCAAAAGCATCGATTAAATCCACAGTCAGCCATAATAACTCCTCAGACATGTTATGCTGGGGCCGTGTCGATGTATCAGTGCCAGCCAGAACCTCAGCACACCCACGTGGGTCAGATGCAGTACAATCCAGTACTGCCAGGCCAACAGGCATTTTTAAACAAGTTTCAGAATGGAGTTTTAAATGAAACATATCCAGCTGAATTAAATAACATAAATAACACTCAGACTACCACACATCTTCAGCCACTTCATCATCCGTCAGAAGCCAGACCTTTTCCTATTTGACATCCCAGTGGATTCCTGTAAORF Start: at 2ORF Stop: TAA at 2549SEQ ID NO: 16849 aaMW at 96247.6kDNOV2d,TMNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRLASLLPFPQDVINKLDKCG105355-03ProteinLSVLRLSVSYLRAKSFFDVALKSSPTERNGGQDNCRAANFREGLNLQEGEPLLQALNGFVLVVTTDASequenceLVFYASSTIQDYLGFQQSDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATOLPQTVVCYMPDQIPPENSPLMERCFICRLRCLLDNSSGFLANNFQGKLKYLhGQKKKGKDGSILPPQLALFAIATPLQPPSILEIRDTKNFIFRTKHKLDFTPIGCDAKGRIVLGYTEAELCTRGSGYQFIHADMLYCASHIRMIKTGESGMIVFRLLTKNNRWTWVQSNARLLYKNGRPDYIHIVTQRPLTDEEGTEHLRKRNTKLPFMFTTGEAVLYEATNPFPAIHDPLPLRTKNGTSGKDSATTSTLSKDSLNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESNNECRNWQDNTAPMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDFEDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPSIPSDYQQQQSLLWSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKHTKHMQVNGMFENWNSNQFVPFNcPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNFISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKHGLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPvLPGQQAFLNKFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFL


[0358] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.
9TABLE 2BComparison of NOV2a against NOV2b through NOV2d.NOV2aIdentities/Residues/SimilaritiesProteinMatchfor theSequenceResiduesMatched RegionNOV2b1 . . . 848783/848 (92%)2 . . . 849783/848 (92%)NOV2c1 . . . 848783/848 (92%)1 . . . 848783/848 (92%)NOV2d1 . . . 848783/848 (92%)2 . . . 849783/848 (92%)


[0359] Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.
10TABLE 2CProtein Sequence Properties NOV2aPSort analysis:0.5452 probability located in mitochondrialmatrix space; 0.4900 probability located innucleus; 0.3000 probability located in microbody(peroxisome); 0.2672 probability located inmitochondrial inner membraneSignalP analysis:No Known Signal Sequence Predicted


[0360] search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.
11TABLE 2DGeneseq Results for NOV2aNOV2aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/Matchfor theExpectIdentifierLength [Patent #, Date]ResiduesMatched RegionValueAAW25668Human Ah-receptor - Homo1 . . . 848847/848 (99%)0.0sapiens, 848 aa.1 . . . 848847/848 (99%)[US5650283-A, 22 JUL. 1997]AAR80551Human Ah receptor protein -1 . . . 848847/848 (99%)0.0Homo sapiens, 848 aa.1 . . . 848847/848 (99%)[US5378822-A, 03 JAN. 1995]AAB73957Guinea pig dioxin receptor -1 . . . 848661/852 (77%)0.0Cavia porcellus, 846 aa.1 . . . 846734/852 (85%)[JP2000354494-A, 26 DEC. 2000]AAR80561Murine Ah receptor protein -3 . . . 804590/814 (72%)0.0Mus musculus, 805 aa.2 . . . 805675/814 (82%)[US5378822-A, 03 JAN. 1995]ABB08868Cricetulus griseus dioxin3 . . . 848573/960 (59%)0.0receptor SEQ ID NO 1 -2 . . . 941663/960 (68%)Cricetulus griseus, 941 aa.[JP2002045188-A, 12 FEB. 2002]


[0361] In a BLAST search of public sequence datbases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.
12TABLE 2EPublic BLASTP Results for NOV2aNOV2aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP35869Ah receptor (Aryl hydrocarbon1 . . . 848 848/848 (100%)0.0receptor) (AhR)- Homo1 . . . 848 848/848 (100%)sapiens (Human), 848 aa.Q95LD9Aryl hydrocarbon receptor -1 . . . 848713/854 (83%)0.0Delphinapterus leucas1 . . . 845767/854 (89%)(Beluga whale), 845 aa.BAB88683Aryl hydrocarbon receptor -1 . . . 848679/851 (79%)0.0Phoca sibirica (Baikal seal),1 . . . 843740/851 (86%)843 aa.O02747AH receptor (Aryl hydrocarbon1 . . . 848669/852 (78%)0.0receptor) - Oryctolagus cuniculus1 . . . 847734/852 (85%)(Rabbit), 847 aa.Q95M15Aryl hydrocarbon receptor -1 . . . 848676/851 (79%)0.0Phoca vitulina (Harbor seal),1 . . . 843740/851 (86%)843 aa.


[0362] PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.
13TABLE 2FDomain Analysis of NOV2aIdentities/Similarities forPfamNOV2athe MatchedExpectDomainMatch RegionRegionValuePAS113 . . . 17720/69 (29%)1.6e−1354/69 (78%)PAC348 . . . 38910/43 (23%)1.3e−0837/43 (86%)



Example 3

[0363] The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
14TABLE 3ANOV3 Sequence AnalysisSEQ NO: 175221 bpNOV3a,ATAAAAGGGCGCTGAGGAAATACCGGACACGGTCACCCGTTGCCAGCTCTAGCCTTTAAATTCCCGGCCG105521-01DNA SequenceTCGGGGACCTCCACGCACCGCGGCTAGCGCCGACAACCAGCTAGCGTGCAAGGCGCCGCGGCTCAGCGCGTACCGGCGGGCTTCGAAACCGCAGTCCTCCGGCGACCCCGAACTCCGCTCCGGAGCCTCAGCCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTCCTACACTTGCGACCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACCTGGGTTGGCTCCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGCGGAGTACGCTACACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGCTGATGTGCTTCATCCTCCCCACGCTTGTGCCCTGGTATTTCTGGGGTCAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTCTCGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGTTTTCACTTGGAGCTGTGGGTGACGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGCAAACTACAAGAGTCGCTGAGTTTGGGGTCCCTCAGGTTTCCTTTTTCAAAAACCAGCCACGCAGAGGTTTTAATGTCTGTTTATTAACTACTGAATAATGCTACCAGGATGCT~GATGATGATGTT~CCCATTCCAGTACAGTATTCTTTTAAAATTCAAAAGTATTGAAAGCCAAC~CTCTGCCTTTATGATGCTAAGCTGATATTATTTCTTCTCTTATCCTCTCTCTCTTCTAGGCCCATTGTCCTCCTTTTCACTTTATTGCTATCGCCCTCCTTTCCCTTATTGCCTCCCAGGCAAGCAGCTGGTCAGTCTTTGCTCAGTGTCCAGCTTCCAAAGCCTAGACAACCTTTCTGTAGCCTAAAACGAATGGTCTTTGCTCCAGATAACTCTCTTTCCTTGAGCTGTTGTGAGCTTTGAAGTAGGTGGCTTGAGCTAGAGATAAAACAGAATCTTCTGGGTAGTCCCCTGTTGATTATCTTCAGCCCAGGCTTTTGCTAGATGGA~ATGGAA~GC~CTTCATTTGACAC~GCTTCTAAGCAGGTAAATTGTCGGGGGAGAGAGTTAGCATGTATGAATGTAAGGATOAGG~AGCG~GCAAGAGGAACCTCTCGCCATGATCAGACATACAGCTGCCTACCTAATGAGGACTTC~GCCCCACCPCATAGCATGCTTCCTTTCTCTCCTGGCTCGGGGTAAAAAGTGGCTGCGGTCTTTGGC~TGCT~TTCAATCCCGCAACATATAGTTGAGGCCGAGGATAAAGAAAAGACATTTTAAGTTTGTAGT~~GTGGTCTCTGCTGGGGAAGGGTTTTCTTTTCTTTTTTTCTTTAATAACAAGGAGATTTCTTAGTTCATATATC~AGAAGTCTTGAAGTTGGGTGTTTCCAGAATTGGTAAAAACAGCAGCTCATGGAATTTTGAGTATTCCATGAGCTGCTCATTACAGTTCTTTCCTCTTTCTGCTCTGCCATCTTCAGGATATTGGTTCTTCCCCTCATAGTAATAAGATGGCTGTGGCATTTCCAAACATCCAAAAAAAGGGAAGGATTTAAGGAGGTGAAGTCGGGTCAAAAATAAAATATATATACATATATACATTGCTTAGAACGTTAAACTATTAGAGTATTTCCCTTCCAAAGAGGGATGTTTGGAAAAAACTCTGAAGGAGAGGAGAAATTAGTTCGGATGCCAATTTCCTCTCCACTGCTGGACATGAGATCGAGAGGCTGAGGGACAGGATCTATAGGCAGCTTCTAAGAGCGCACTTCACATAGGAAGGGATCTGAGAACACGTTGCCAGGGGCTTGAGAAGGTTACTGAGTGAGTTATTGGGAGTCTTAATAAAATAAACTAGATATTAGGTCCATTCATTAATTAGTTCCAGTTTCTCCTTGAAATGAGTAAAAACTAGAAGGCTTCTCTCCACAGTGTTGTGCCCCTTCACTCATTTTTTTTTGAGGAGAAGGGGGTCTCTGTTAACATCTAGCCTAAAGTATACAACTGCCTGGGGGGCACGGTTAGGAATCTCTTCACTACCCTGATTCTTGATTCCTGGCTCTACCCTGTCTGTCCCTTTTCTTTGACCAGATCTTTCTCTTCCCTGAGCGTTTTCTTCTTTCCCTGGACAGGCAGCCTCCTTTGTGTGTATTCAGAGGCAGTGATGACTTGCTGTCCAGTCAGCTCCCTPCCTGCACACAGAATGCTCAGGGTCACTGAACCACTGCTTCTCTTTTGAAAGTACAGCTAGCTGCCACTTTCACGTGGCCTCCGCAGTGTCTCCACCTACACCCCTGTGCTCCCCTGCCACACTGATCGCTCAAGACAAGGCTGGCAAACCCTCCCAGAAACATCTCTGGCCCAGAAAGCCTCTCTCTCCCTCCCTCTCTCATGAGGCACAGCCAAGCCAAGCGCTCATGTTGAGCCAGTGGGCCAGCCACAGAGCAAAAGAGGGTPTATTTTCAGTCCCCTCTCTCTGGGTCAGAACCAGAGGGCATGCTGAATGCCCCCTGCTTACTTGGTGAGGGTGCCCCGCCTGAGTCAGTGCTCTCAGCTGGCAGTGCAATGCTTGTAGTATATAGAAGTCTGGGTTCTCACTGGGAAGAAGCAAGGGCAAGAACCCAAGTGCCTCACCTCCAAAGGAGGCCCTGTTCCCTGGAGTCAGGGTGAACTGCAAGCTTTGGCTGAGACCTQGGATTTGAGATACCACAACCCTGCTGACATTTCAGTGTCTGTTCAGCAAACTAACCAGCATTCCCTACAGCCTAGGGCAGACAATAGTATAGAACTCTGCAAAAAAACAAAAACAGAATTTGAGAACCTTGGACCACTCCTGTCCCTGTAGCTCAGTCATCAAAGCAGAAGTCTCGCTTTGCTCTATTAAGATTGGAAATGTACACTACCAAACACTCAGTCCACTGTTGACCCCCAGTGCTGGAAGGGAGGAAGGCCTTTCTTCTGTGTTAATTGCGTAGAGGCTACAGGGGTTAGCCTGGACTAAAGGCATCCTTGTCTTTTTGAGCTATTCACCTCAGTAGAAAAGGATCTAAGGGAGATCACTGTAGTTTAGTTCTGTTGACCTGTGCACCTACCCCTTGGAAATGTCTGCTGGTATTTCTAATTCCACAGGTCATCAGATGCCTGCTTGATAATATATAAACAATAAAAACAACTTTCACTTCTTCCTATTGTAATCGTGTGCCATGGATCTGATCTGTACCATGACCCTACATAAGGCTGGATGGCACCTCAGGCTGAGGGCCCCAATGTATGTGTGGCTGTGGGTGTGGGTGGGAGTGTGTCTGCTGAGTAAGGAACACGATTTTCAAGATTCTAAAGCTCAATTCAAGTGACACATTAATGATAAACTCAGATCTGATCAAGAGTCCGGATTTCTAACAGTCCCTGCTTTGGGGGGTGTGCTGACAACTTAGCTCAGGTGCCTTACATCTTTTCTAATCACAGTGTTGCATATGAGCCTGCCCTCACTCCCTCTGCAGAATCCCTTTGCACCTGAGACCCTACTGAAGTAACTGGTAGAAAAAGGGGCCTGAGTGGAGGATTATCAGTATCACGATTTGCAGGATTCCCTTCTGGGCTTCATTCTGGAAACTTTTGTTAGGGCTGCTTTTCTTAAGTGCCCACATTTGATGGAGGGTGGAAATAATTTGAATGTATTTGATTTATAAGTTTTTTTTTTTTTTTGGGTTAAAAGATGGTTGTAGCATTTAAAATGGAAAATTTTCTCCTTGGTTTGCTAGTATCTTGGGTGTATTCTCTGTAAGTGTAGCTCAAATACGTCATCATGAGGTAATAAAAAAGCGAGGTGGCCATGTTATGCTGGTGGTTAAGGCCAGACCTCTCCACCACTGTGCCACTCAAACTTGCTGTGTGACCCTGGGCAAGTCACTTAACTATAAGGTGCCTCAGTTTTCCTTCTGTTAAAATGGGGATAATAATACTGACCTACCTCAAAGGGCAGTTTTGAGGCATGACTAATGCTTTTTAGAAAGCATTTTGGGATCCTTCAGCACAGGAATTCTCAAGACCTGAGTATTTTTTATAATAGGAATGTCCACCATGAACTTGATACGTCCGTGTGTCCCAGATGCTGTCATTAGTCTATATGGTTCTCCAAGAAACTGAATGAATCCATTGGAGAAGCGGTGGATAACTAGCCAGACAAAATTTGAGAATACATAAACAACGCATTGCCACGGAAACATACAGAGGATGCCTTTTCTGTGATTGGGTGGGATTTTTTCCCTTTTTATGTGGGATATAGTAGTTACTTGTGACAAAAATAATTTTGGAATAATTTCTATTAATATCAACTCTGAAGCTAATTGTACTAATCTGAGATTGTGTTTGTTCATAATAAAAGTGAAGTGAATCTAAAAAAAAAAAAAAAORF Start: ATG at 236ORF Stop: TGA at 1313SEQ ID NO:18359 aaMW at 41504.1kDNOV3a,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPKCG105521-01ProteinVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLSequenceFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLLMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENTLVSLGAVGEGFHNYHHSFPYDYSASEYRWHIMFTTFFIDCMAALGLAYDRKKVSSEQ ID NO: 191988 bpNOV3b,GGGCTGAGCAAATACCGGACACGCTCACCCGTTGCCAGCTCTAGCCTTTAAATTCCCGGCTCGGGGCG105521-02DNA SequenceACCTCCACGCACCGCGGCTAGCGCCGACAACCAGCTAGCGTGCCAACGCCGCGGCTCAGCGCGTACCGCCGGGCTTCGAAACCGCAGTCCTCCGGCGACCCCGAACTCCGCTCCGGAGCCTCAGCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCAGGCGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGTCCTGCAGAATGGAGGAGATAAGTTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAGCTCGGCTGCCCCTACCGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCCCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGATGATGTCCTTCATCCTGCCCACGCTTGTGCCCTAATATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAACGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGTTTGGGGTCCCTCAGGTTCCTTTTTCAAAAACCAGCCAGGCAGAGGTTTTAATGTCTGTTTATTAACTACTGAATAATGCTACCAGGATGCTAAAGATGATGATGTTAACCCATTCCAGTACACTATTCTTTTAAAATTCAAAAGTATTGAAAGCCAACAACTCTGCCTTTATGATGCTAAGCTGATATTATTTCTTCTCTTATCCTCTCTCTCTTCTAGGCCCATTGTCCTCCTTTTCACTTTATTGCTATCGCCCTCCTTTCCCTTATTGCCTCCCACGCAAGCAGCTGGTCAGTCTTTGCTCAGTGTCCAGCTTCCAAGCCTAGACAACCTTTCTGTAGCCTAAAACGAATTGGTCTTTGCTCCAGATAACTCTCTTTCCTTGAGCTGTTGTGAGCTTTGAAGTAGGTGGCTTGAGCTAGAGATAAAACAGAATCTTCTGGGTAGTCCCCTGTTGATTATCTTCAGCCCAGGCTTTTGCTAGATGGAATGGAAAAGCAACTTCATTTGACACAAAGCTTCTAAAGCAGGTAAATTGTCGGGGGAGAGAGTTAGCATGTATGAATGTAAGGATGAGGGAAGCGAAGCAACAGGAACCTCTCGCCATGATCAGACATACAGCTGCCTACCTAATGAGGACTTCAAGCCCCACCACATAGCATGCTTCCTTTCTCTCCTORF Start: ATG at 229ORF Stop: TGA at 1306SEQ ID NO:20359 aaMW at 41522.2kDNOV3b,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPCG105521-02ProteinKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLSequenceRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:211104 bpNOV3c,CACCGGATCCACCATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCA301113881DNA SequenceCCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTAGAGACCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGAATATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTAACTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCAAGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAACTACAAACAGTGGCTGAGCGGCCGCTATORF Start: at 2ORF Stop: TGA at 1091SEQ ID NO: 22363 aaMW at 41868.5kDNOV3c,TGSTMPAHLLQDDISSSYTTTTTTTAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEG301113881ProteinPSPKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGARRLWSHRSYKARLSequencePLRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAELFGYRPYDKNISPRENILVSLGAVGEGFHYHHSFPYDYSASEYRWHINFTTFFIDCMAAKLGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:235221 bpNOV3d,ATAAAAGGGGGCTGACGAATACCGGACACGGTCACCCGTTGCCAGCTCTAGCCTTTTAAATTCCCGGCG105521-01DNA SequenceCTCGGGGACCTCCACGCACCGCGGCTAGCGCCGACAACCAGCTAGCGTCCAAGGCGCCGCGGCTCAGCGCGTACCGGCGGGCTTCGAAACCGCAGTCCTCCGGCGACCCCGAACTCCGCTCCGGAGCCTCAGCCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATAAAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGCGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGCTGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTATGCCACCTGGCTGGTGACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAAGCCATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGACTACCGCTGCCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGTTTGGGGTCCCTCAGGTTTCCTTTTTCAAAAACCAGCCAGGCAGAGGTTTTAATGTCTGTTTATTAACTACTGAATAATGCTACCAGGATGCTAAAGATGATGATGTTAACCCATTCCAGTACAGTATTCTTTTAAAATTCAAAAGTATTGAAAGCCAACAACTCTGCCTTTATGATGCTAACCTGATATTATTTCTTCTCTTATCCTCTCTCTCTTCTAGGCCCATTGTCCTCCTTTTCACTTTATTGCTATCGCCCTCCTTTCCCTTATTGCCTCCCAGGCAAGCAGCTGGTCAGTCTTTGCTCAGTGTCCAGCTTCCAAAGCCTAGACAACCTTTCTGTAGCCTAAAACGAATGGTCTTTGCTCCAGATAACTCTCTTTCCTTGAGCTGTTGTGAGCTTTGAAGTAGGTGGCTTGAGCTAGAGATAAAACAGAATCTTCTGGGTAGTCCCCTGTTGATTATCTTCAGCCCAGGCTTTTGCTAGATGGAATGGAAAAGCAACTTCATTTGACACAAAGCTTCTAAAGCAGGTAAATTGTCGGGGGAGAGAGTTAGCATGTATGAATGTAAGGATGAGGGAAGCGAAGCAAGAGGAACCTCTCGCCATGATCAGACATACAGCTCCCTACCTAATGAGGACTTCAAGCCCCACCACATAGCATGCTTCCTTTCTCTCCTGGCTCGGGGTAAAAAGTGGCTGCGGTGTTTGGCAATGCTAATTCAATGCCGCAACATATAGTTGAGGCCGAGGATAAAGAAAAGACATTTTAAGTTTGTAGTAAAAGTGGTCTCTGCTGGGGAAGGGTTTTCTTTTCTTTTTTTCTTTAATAACAAGGAGATTTCTTAGTTCATATATCAAGAAGTCTTGAAGTTGGGTGTTTCCAGAATTGGTAAAAACAGCAACTCATGGAATTTTGAGTATTCCATGAGCTGCTCATTACAGTTCTTTCCTCTTTCTGCTCTGCCATCTTCAGGATATTGGTTCTTCCCCTCATAGTAATAAGATGGCTGTGGCATTTCCAAACATCCAAAAAAAGGGAAGGATTTAAGGAGGTGAAGTCGGGTCAAAAATAAAATATATATACATATATACATTGCTTAGAACGTTAAACTATTAGAGTATTTCCCTTCCAAAGACGGATGTTTGGAAAAAACTCTGAAAGAGAGGAGGAATTAGTTGGGATGCCAATTTCCTCTCCACTGCTGGACATGAGATGGAGAGGCTGAGGGACAGGATCTATAGGCAGCTTCTAAGAGCGAACTTCACATAGGAAGGGATCTGAGAACACGTTGCCAGGGGCTTGAGAAGGTTACTGAGTGAGTTATTGGGAGTCTTAATAAAATAAACTAGATATThGGTCCATTCATTAATTAGTTCCAGTTTCTCCTTGAAATGAGTAAAAACTAGAACGCTTCTCTCCACAGTGTTGTGCCCCTTCACTCATTTTTTTTTGAGGAGAAGCGGGTCTCTGTTAACATCTAGCCTAAAGTATACAACTGCCTGGGGGGCAGGGTTACGAATCTCTTCACTACCCTGATTCTTCATTCCTGGCTCTACCCTGTCTGTCCCTTTTCTTTGACCAGATCTTTCTCTTCCCTGAACGTTTTCTTCTTTCCCTGGACAGGCAGCCTCCTTTGTGTGTATTCAGAGGCAGTGATGACTTGCTGTCCAGGCAGCTCCCTCCTGCACACAGAATGCTCAGGGTCACTGAACCACTGCTTCTCTTTTGAAAGTAGAGCTAGCTGCCACTTTCACGTGCCCTCCGCAGTGTCTCCACCTACACCCCTGTGCTCCCCTGCCACACTGATGGCTCAAGACAAGGCTGGCAAACCCTCCCAGAAACATCTCTGGCCCAGAAAGCCTCTCTCTCCCTCCCTCTCTCATGAGGCACAGCCAAGCCAAGCGCTCATGTTGAGCCAGTGGGCCAGCCACAGAGCAAAAGAGGGTTTATTTTCAGTCCCCTCTCTCTGGGTCAGAACCAGAGGGCATGCTGAATGCCCCCTGCTTACTTGGTGAGGGTGCCCCGCCTGAGTCAGTGCTCTCAGCTGGCAGTGCAATGCTTGTAGAAGTACGAGGAAACAGTTCTCACTGGGAAGAAGCAACGGCAAGAACCCAAGTGCCTCACCTCGAAAGGAGGCCCTGTTCCCTGGAGTCAGCGTGAACTGCAAAGCTTTGGCTGACACCTGGGATTTGAGATACCACAAACCCTGCTGAACACAGTGTCTGTTCAGCAAACTAACCAGCATTCCCTACAGCCTAGGGCAGACAATAGTATAGAAGTCTGGAAAAAAACAAAAACAGAATTTGAGAACCTTGGACCACTCCTGTCCCTGTAGCTCAGTCATCAAAGCAGAAGTCTGGCTTTGCTCTATTAAGATTGGAAATGTACACTACCAAACACTCAGTCCACTGTTGAGCCCCAGTGCTCGAAGGGAGGAAGGCCTTTCTTCTGTGTTAATTGCGTAGAGGCTACAGGGGTTAGCCTGGACTAAAGGCATCCTTGTCTTTTGAGCTATTCACCTCAGTAGAAAAGGATCTAAGGGAAGATCACTGTAGTTTAGTTCTGTTGACCTGTGCACCTACCCCTTGGAAATGTCTGCTGGTATTTCTAATTCCACAGGTCATCAGATGCCTCCTTGATAATATATAAACAATAAAAACAACTTTCACTTCTTCCTATTGTAATCGTGTGCCATGGATCTGATCTGTACCATGACCCTACATAAGGCTGGATGGCACCTCAGGCTGAGCGCCCCAATGTATGTGTGGCTGTGGGTGTGGGTGGGAGTGTGTCTGCTGAGTAAGGAACACGATTTTCAAGATTCTAAAGCTCAATTCAAGTGACACATTAATGATAAACTCAGATCTGATCAAGAGTCCGGATTTCTAACAGTCCCTGCTTTGGGGGGTGTGCTGACAACTTAGCTCAGGTGCCTTACATCTTTTCTAATCACAGTGTTGCATATGAGCTCTGCCTCACTCCCTCTGCAGAATCCCTTTGCACCTGAGACCCTACTGAAGTGGCTGGTAGAAAAAGGGGCCTGAGTGGAGGATTATCAGTATCACGATTTGCAGGATTCCCTTCTGGGCTTCATTCTGGAAACTTTTGTTAGGGCTGCTTTTCTTAAGTGCCCACATTTGATGGAGGGTGGAAATAATTTGAATGTATTTGATTTATAAGTTTTTTTTTTTTTTTGGGTTAAAAGATGGTTGTAGCATTTAAAATGGAAAATTTTCTCCTTGGTTTGCTAGTATCTTGGGTTTATTCTCTGTAAGTGTAGCTCAAATAGGTCATCATGAAAGGTTAAAAAAGCGAGGTGGCCATGTTATGCTGGTGGTTAAGGCCAGGGCCTCTCCAACCACTGTGCCACTGACTTGCTGTGTGACCCTGGGCAAGTCACTTAACTATAAGGTGCCTCAGTTTTCCTTCTGTTAAAATGGGGATAATAATACTGACCTACCTCAAAGGGCAGTTTTGAGGCATGACTAATGCTTTTTAGAAAGCATTTTGCGATCCTTCAGCACAGGAATTCTCAAGACCTGAGTATTTTTTATAATAGGAATGTCCACCATGAACTTGATACGTCCGTGTGTCCCAGATGCTGTCATTAGTCTATATGGTTCTCCAAGAAACTGAATGAATCCATTGGAGAAGCCGTGGATAACTAGCCAGACAAAATTTGACAATACATAAACAACGCATTGCTACGGAAACATACAGAGGATGCCTTTTCTGTGATTGGGTGGGATTTTTTCCCTTTTTATGTGGGATATAGTAGTTACTTGTGACAAAAATAATTTTGGAATAATTTCTATTAATATCAACTCTGAAGCTAATTGTACTAATCTGAGATTGTGTTTGTTCATAATAAAAGTGAAGTGAATCTAAAAAAAAAAAAAAAORF Start: ATG at 236ORF Stop: TGA at 1313SEQ ID NO: 24359 aaMW at 41504.1kDNOV3d,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPCG105521-01ProteinKVEYVWRNIILMSLLHLGALYGITLTPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLSequenceRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYXPGLLLMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWUINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:251116 bpNOV3e,CCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCC309330043DNA SequenceCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACCATGCCCCTCTACTTGCAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAACGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGCCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTCATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGCCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTG~CTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCAGGTGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TGA at 1075SEQ ID NO:26358 aaMW at 41391.0kDNOV3e,PAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPKV309330043ProteinEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLFSequenceLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFESHVCWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:271129 bpNOV3f,ACATCATCACCACCATCACCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCA309330069DNA SequenceCCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAACGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCACGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTCGTGATGTTCCAGAGGACGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGCCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGOTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TGA at 1094SEQ ID NO: 28364 aaMW at 42213.9kDNOV3f,HHHHHHPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKE309330069ProteinGPSPKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAOAHRLWSHRSYKARSequenceLPLRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENTLVSLGAVGEOFHNYHHSFPYDYSASEYRWHINFTTFEIDCHAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:295221 bpNOV3g,ATAAAAGGGGGCTGAGGAAATACCGGACACGGTCACCCGTTGCCAGCTCTAGCCTTTAAATTCCCGGCG105521-01DNA SequenceCTCGGGGACCTCCACGCACCGCGGCTAGCGCCGACAACCAGCTAGCGTGCAAGGCGCCGCGGCTCAGCGCGTACCGGCCGOCTTCGAAACCGCAGTCCTCCGGCGACCCCGAACTCCGCTCCGGAGCCTCAGCCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTCCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAACGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCACAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTCATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGCTGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGOTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTCAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAAcATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGTTTGGGGTCCCTCAGGTTTCCTTTTTCAAAAACCAGCCAGGCAGAGGTTTTAATGTCTGTTTATTAACTACTGAATAATGCTACCAGGATGCTAAAGATGATGATGTTAACCCATTCCAGTACAGTATTCTTTTAAAATTCAAAAGTATTGAAAGCCAACAACTCTGCCTTTATGATGCTAAGCTGATATTATTTCTTCTCTTATCCTCTCTCTCTTCTAGGCCCATTGTCCTCCTTTTCACTTTATTGCTATCGCCCTCCTTTCCCTTATTGCCTCCCAGGCAAGCAGCTGGTCAGTCTTTGCTCAGTGTCCAGCTTCCAAAGCCTAGACAACCTTTCTGTAGCCTAAAACGAATGGTCTTTGCTCCAGATAACTC~CTTTCCTTGAGCTGTTGTGAGCTTTGAAGTAGGTGGCTTGAGCTAGAGATAAAACAGAATCTTCTGGGTAGTCCCCTGTTGATTATCTTCAGCCCAGGCTTTTGCTAGATGGAATGGAAAAGCAACTTCATTTGACACAAAGCTTCTAAAGCAGGTAAATTGTCGGGGGAGAGAGTTAGCATGTATGAATGTAAGGATGAGGGAAGCGAAGCAAGACGAACCTCTCGCCATGATCAGACATACAGCTGCCTACCTAATGAGGACTTCAAGCCCCACCACATAGCATGCTTCCTTTCTCTCCTGGCTCGGGGTAAAAAGTGGCTGCGGTGTTTGGCAATGCTAATTCAATGCCGCAACATATAGTTGAGGCCGAGGATAAAGAAAAGACATTTTAAGTTTGTAGTAAAAGTGGTCTCTGCTGGGGAAGGGTTTTCTTTTCTTTTTTTCTTTAATAACAAGGAGATTTCTTAGTTCATATATCAAGAAGTCTTGAAGTTGGGTGTTTCCAGAATTGGTAAAAACAGCAGCTCATGGAATTTTGAGTATTCCATGAGCTGCTCATTACAGTTCTTTCCTCTTTCTGCTCTGCCATCTTCAGGATATTGGTTCTTCCCCTCATAGTAATAAGATGGCTGTGGCATTTCCAAACATACAAAAAAAGGGAAGGATTTAAGGAGGTGAAGTCGGGTCAAAAATAAAATATATATACATATATACATTGCTTAGAACGTTAAACTATTAGAGTATTTCCCTTCCAAAGAGGGATGTTTGGAAAAAACTCTGAAGGAGAGGAGGAATTAGTTGGGATGCCAATTTCCTCTCCACTGCTGGACATGAGATGGAGAGGCTGAGGGACAGGATCTATAGGCAGCTTCTAAGAGCGAACTTCACATAGGAAGGGATCTGAGAACACGTTGCCAGGGGCTTGAGAAGGTTACTGAGTGAGTTATTGGGAGTCTTAATAAAATAAACTAGATATTAGGTCCATTCATTAATTAGTTCCAGTTTCTCCTTGAAATGAGTAAAAACTAGAAGGCTTCTCTCCACAGTGTTGTGCCCCTTCACTCATTTTTTTTTGAGGAGAAGGGGGTCTCTGTTAACATCTAGCCTAAAGTATACAACTGCCTGGGGGGCAGGGTTAGGAATCTCTTCACTACCCTGATTCTTGATTCCTGGCTCTACCCTGTCTGTCCCTTTTCTTTGACCAGATCTTTCTCTTCCCTGAACGTTTTCTTCTTTCCCTGGACAGGCAGCCTCCTTTGTGTGTATTCAGAGGCAGTGATGACTTGCTGTCCAGGCAGCTCCCTCCTGCACACAGAATACTCAGCGTCACTGAACCACTGCTTCTCTTTTGAAAGTAGAGCTAGCTGCCACTTTCACGTGGCCTCCGCAGTGTCTCCACCTACACCCCTGTGCTCCCCTGCCACACTGATGGCTCAAGACAAGGCTGGCAAACCCTCCCAGAAACATCTCTGGCCCAGAAAGCCTCTCTCTCCCTCCCTCTCTCATGAGGCACAGCCAAGCCAAGCGCTCATGTTGAGCCAGTGCGCCAGCCACAGAGCAAAAGAGGGTTTATTTTCAGTCCCCTCTCTCTGGGTCAGAACCAGAGGGCATGCTGAATGCCCCCTGCTTACTTGGTGAGGGTGCCCCGCCTGAGTCAGTGCTCTCAGCTGGCAGTGCAATGCTTGTAGAAGTAGGAGGAAACAGTTCTCACTGGGAAGAAACAAGGGCAAGAACCCAAGTGCCTCACCTCGAAAGGAGGCCCTGTTCCCTGGAGTCAGGGTGAACTGCAAAGCTTTGCCTGAGACCTGGGATTTGAGATACCACAAACCCTGCTGAACACAGTGTCTGTTCAGCAAACTAACCAGCATTCCCTACAGCCTAGGGCAGACAATAGTATAGAAGTCTGGAAAAAAACAAAAACAGAATTTGAGAACCTTGGACCACTCCTGTCCCTGTAGCTCAGTCATCAAAGCAGAAGTCTGGCTTTGCTCTATTAAGATTGGAAATGTACACTACCAAACACTCAGTCCACTGTTGAGCCCCAGTGCTGGAAGGCAGGAAGGCCTTTCTTCTGTGTTAATTGCGTAGAGGCTACAGGGGTTAGCCTGGACTAAAGGCATCCTTGTCTTTTGAGCTATTCACCTCAGTAGAAAAGGATCTAAGGGAAGATCACTGTAGTTTAGTTCTGTTGACCTGTGCACCTACCCCTTGGAAATGTCTGCTGGTATTTCTAATTCCACAGGTCATCAGATGCCTGCTTGATAATATATAAACAATAAAAACAACTTTCACTTCTTCCTATTGTAATCGTGTGCCATGGATCTGATCTGTACCATGACCCTACATAAGGCTGGATGGCACCTCAGGCTGACGGCCCCAATGTATGTGTGGCTGTGGGTGTGGGTGGGAGTGTGTCTGCTGAGTAAGGAACACGATTTTCAAGATTCTAAAGCTCAATTCAAGTGACACATTAATGATAAACTCAGATCTGATCAAGAGTCCGGATTTCTAACAGTCCCTGCTTTGGGGGGTGTGCTGACAACTTAGCTCAGGTGCCTTACATCTTTTCTAATCACAGTGTTGCATATGAGCCTGCCCTCACTCCCTCTGCAGAATCCCTTTGCACCTGAGACCCTACTGAAGTGGCTGGTAGAAAAAGGGGCCTGAGTGGAGGATTATCAGTATCACGATTTGCAGGATTCCCTTCTGGGCTTCATTCTGGAAACTTTTGTTAGGGCTGCTTTTCTTAAGTGCCCACATTTGATGGAGGGTGGAAATAATTTGAATGTATTTGATTTATAAGTTTTTTTTTTTTTTTGGGTTAAAAGATGGTTGTACCATTTAAAATGGAAAATTTTCTCCTTGGTTTGCTAGTATCTTGGGTGTATTCTCTGTAAGTGTAGCTCAAATAGGTCATCATGAAAGGTTAAAAAAGCGAGGTGGCCATGTTATGCTGGTGGTTAAGGCCAGGGCCTCTCCAACCACTGTGCCACTGACTTGCTGTGTGACCCTGGGCAAGTCACTTAACTATAAGGTGCCTCAGTTTTCCTTCTGTTAAAATGGGGATAATAATACTGACCTACCTCAAAGGGCAGTTTTGAGGCATGACTAATGCTTTTTAGAAAGCORF Start: ATG at 236ORF Stop: TGA at 1313SEQ ID NO: 30359 aaMW at 41504.1kDNOV3g,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDFTYKDKEGPSPCG105521-01ProteinKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLSequenceRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLLMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPREUILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO: 311420bpNOV3h,ATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCACAGCTCTCTGGCTAACTAGAGAACCCA212779051DNA SequenceCTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCACCATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGAPGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGGGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGCTGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTCTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCCACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTTORF Start: at 108ORF Stop: TGA at 1242SEQ ID NO:32378 aaMW at 43506.4kDNOV3h,GDPSWLAFKLKLGTELGSTMPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRP212779051ProteinDIKDDIYDPTYKDKEGPSPKVEYVWRNTILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGISequenceTAGAHRLWSHRSYKARLPLRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLLMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHIYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYXSGSEQ ID NO:335221 bpNOV3i,ATAAAAGGGGGCTGAGGAAATACCGGACACGGTCACCCGTTGCCAGCTCTAGCCTTTAAATTCCCGGCCG105521-01DNA SequenceTCGGGGACCTCCACGCACCGCGGCTAGCGCCGACAACCAGCTAGCGTGCAAGGCGCCGCGGCTCAGCCCGTACCGGCGGGCTTCGAAACCGCAGTCCTCCGGCGACCCCGAACTCCGCTCCGGAGCCTCAGCCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGCGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTc~GAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGCCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGCTGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCGTCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGTTTGGGGTCCCTCAGGTTTCCTTTTTCAAAAACCAGCCAGGCAGAGGTTTTAATGTCTGTTTATTAACTACTGAATAATGCTACCAGGATGCTAAAGATGATGATGTTAACCCATTCCAGTACAGTATTCTTTTAAAATTCAAAAGTATTGAAAGCCAACAACTCTGCCTTTATGATGCTAAGCTGATATTATTTCTTCTCTTATCCTCTCTCTCTTCTAGQCCCATTGTCCTCCTTTTCACTTTATTCCTATCGCCCTCCTTTCCCTTATTGCCTCCCAGGCAAGCAGCTGGTCAGTCTTTGCTCAGTGTCCAGCTTCCAAAGCCTAGACAACCTTTCTGTAGCCTAAAACGAATGGTCTTTGCTCCAGATAACTCTCTTTCCTTGAGCTGTTGTGAGCTTTGAAGTAGGTGGCTTGAGCTAGAGATAAAACAGAATCTTCTGGGTAGTCCCCTGTTGATTATCTTCAGCCCACGCTTTTGCTAGATGGAATGGAAAAGCAACTTCATTTCACACAAACCTTCTAAAGCAGGTAAATTGTCGGGGGAGAGAGTTAGCATGTATGAATGTAAGGATGAGGGAAGCGAACCAAGAGGAACCTCTCGCCATGATCAGACATACAGCTGCCTACCTAATGAGGACTTCAAGCCCCACCACATAGCATGCTTCCTTTCTCTCCTGGCTCGGGGTAAAAAGTGGCTGCGGTGTTTGGCAATGCTAATTCAATGCCGCAACATATAGTTGAGGCCGAGGATAAAGAAAAGACATTTTAAGTTTGTAGTAAAAGTCGTCTCTGCTGGGGAAGGGTTTTCTTTTCTTTTTTTCTTTAATAACAAGGAGATTTCTTAGTTCATATATCAAGAAGTCTTGAAGTTGGGTGTTTCCAGAATTGGTAAAAACAGCAGCTCATGGAATTTTGAGTATTCCATGAGCTGCTCATTACAGTTCTTTCCTCTTTCTGCTCTGCCATCTTCAGGATATTGGTTCTTCCCCTCATAGTAATAAGATGGCTGTGGCATTTCCAAACATCCAAAAAAAGGGAAGGATTTAAGGAGGTGAAGTCGGGTCAAAAATAAAATATATATACATATATACATTGCTTAGAACGTTAAACTATTAGAGTATTTCCCTTCCAAAGAGGGATGTTTGCAAAAAACTCTGAAGGAGAGGAGGAATTAGTTGGGATGCCAATTTCCTCTCCACTGCTGGACATGAGATGGAGAGGCTGAGGGACAGGATCTATAGGCAGCTTCTAAGAGCGAACTTCACATACGAAAGGATCTGAGAACACGTTCCCAGGGGCTTGAGAAGGTTACTGACTGAGTTATTGGGAGTCTTAATAAAATAAACTAGATATTAGGTCCATTCATTAATTAGTTCCAGTTTCTCCTTGAAATGAGTAAAAACTAGAAGGCTTCTCTCCACAGTGTTGTGCCCCTTCACTCATTTTTTTTTGAGGAGAAGGGGGTCTCTGTTAACATCTAGCCTAAAGTATACAACTGCCTGGGGGGCAGGGTTAGGAATCTCTTCACTACCCTGATTCTTGATTCCTGGCTCTACCCTGTCTGTCCCTTTTCTTTGACCATATCTTTCTCTTCCCTGAACGTTTTCTTCTTTCCCTGGACAGGCAGCCTCCTTTGTGTGTATTCAGAGGCAGTGATGACTTGCTGTCCAGGCAGCTCCCTCCTGCACACAGAATGCTCAGGGTCACTGAACCACTGCTTCTCTTTTGAAAGTAGAGCTAGCTGCCACTTTCACGTGGCCTCCGCAGTGTCTCCACCTACACCCCTGTGCTCCCCTGCCACACTGATGGCTCAAGACAACGCTGGCAAACCCTCCCAGAAACATCTCTGGCCCAGAAAGCCTCTCTCTCCCTCCCTCTCTCATGAGGCACAGCCAAGCCAAGCGCTCATGTTGAGCCAGTGGGCCAGCCACAGAGCAAAAGAGGGTTTATTTTCAGTCCCCTCTCTCTGGGTCAGAACCAGAGGGCATGCTGAATGCCCCCTGCTTACTTGGTGAGGGTGCCCCGCCTGAGTCAGTGCTCTCAGCTGGCAGTGCAATGCTTCTAGAAGTAGGAGGAAACAGTTCTCACTGGGAAGAAGCAACGGCAAGAACCCAAGTGCCTCACCTCGAAAGGAGGCCCTGTTCCCTGGAGTCAGGGTGAACTGCAAAGCTTTGGCTGAGACCTGGGATTTGAGATACCACAAACCCTGCTGAACACAGTGTCTGTTCAGCAAACThACCAGCATTCCCTACAGCCTAGGGCAGACAATAGTATAAAAGTCTGGAAAAAAACAAAAACAGAATTTGAGAACCTTGGACCACTCCTGTCCCTGTAGCTCAGTCATCAAAGCAGAAGTCTGGCTTTGCTCTATTAAGATTGGAAATGTACACTACCAAACACTCAGTCCACTGTTGAGCCCCAGTGCTGGAAGGGAGGAAGGCCTTTCTTCTGTGTTAATTGCGTAGAGGCTACAGGGGTTAGCCTGGACTAAAGGCATCCTTGTCTTTTGAGCTATTCACCTCAGTAGAAAAGGATCTAAGGGAAGATCACTGTAGTTTAGTTCTOTTGACCTGTGCACCTACCCCTTGGAAATCTCTCCTGGTATTTCTAATTCCACAGGTCATCAGATGCCTGCTTGATAATATATAAACAATAAAAACAACTTTCACTTCTTCCTATTGTAATCCTGTGCCATGGATCTGATCTGTACCATGACCCTACATAAGGCTGGATGGCACCTCAGGCTGAGGGCCCCAATGTATGTGTGGCTGTGGGTGTGGGTGGGAGTGTGTCTGCTGAGTAAGGAACACGATTTTCAAGATTCTAAAGCTCAATTCAAGTGACACATTAATGATAAACTCAGATCTGATCAAGAGTCCGGATTTCTAACAGTCCCTGCTTTGGGGGGTGTGCTGACAACTTAGCTCAGGTGCCTTACATCTTTTCTAATCACAGTGTTGCATATGAGCCTGCCCTCACTCCCTCTGCAGAATCCCTTTGCACCTGAGACCCTACTGAAGTGGCTGGTAGAAAAAGGGGCCTGAGTGGAGGATTATCAGTATCACGATTTCCAGGATTCCCTTCTGGGCTTCATTCTGGAAACTTTTGTTAGGGCTGCTTTTCTTAAGTGCCCACATTTGATGGAGGGTGGAAATAATTTGAATGTATTTGATTTATAAGTTTTTTTTTTTTTTTGCGTTAAAAGATGGTTGTAGCATTTAAAATGGAAAATTTTCTCCTTGGTTTGCTAGTATCTTGGGTGTATTCTCTGTAAGTGTAGCTCAAATAGGTCATCATGAAAGGTTAAAAAAGCGAGGTGGCCATGTTATGCTGGTGGTTAAGGCCAGGGCCTCTCCAACCACTGTGCCACTGACTTGCTGTGTGACCCTGGGCAAGTCACTTAACTATAAGGTGCCTCAGTTTTCCTTCTGTTAAAATGGGGATAATAATACTGACCTACCTCAAAGGGCAGTTTTGAGGCATGACTAATGCTTTTTAGAAAGCATTTTGGGATCCTTCAGCACAGGAATTCTCAAGACCTGAGTATTTTTTATAATAGGAATGTCCACCATGAACTTGATACGTCCGTGTGTCCCAGATGCTGTCATTAGTCTATATGGTTCTCCAAGAAACTGAATGAATCCATTGGAGAAGCCGTGGATAACTAGCCAGACAAAATTTGAGAATACATAAACAACGCATTGCCACGGAAACATACAGACGATGCCTTTTCTGTGATTGGGTGGGATTTTTTCCCTTTTTATGTGGGATATAGTAGTTACTTGTGACAAAAATAATTTTGGAATAATTTCTATTAATATCAACTCTGAAGCTAATTGTACTAATCTGAGATTGTGTTTGTTCATAATAAAGTGAAGTGAATCTAAAAAAAAAAAAAAAAORF Start: ATG at 236ORF Stop: TGA at 1313SEQ ID NO: 34359 aaMW at 41504.1kDNOV3i,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPKCG105521-01ProteinVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLSequenceFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLLMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRXKVSKAAILARIRRTGDGNYKSGSEQ ID NO:351089 bpNOV3j,ACCATGCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGC308782133DNA SequenceGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTPACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATCATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTCGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGCGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTCCCCACGCTTGTGCCCTCGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGCATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTCGTTTCACTTCGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCCGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCAGGTORF Start: at 1ORF Stop: TGA at 1081SEQ ID NO:36360 aaMW at 41623.3kDNOV3j,TMPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSP308782133ProteinKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRSequenceLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:371104 bpNOV3k,ACCATGGGACATCATCACCACCATCACCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACG105521-03DNA SequenceCCACCACCACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGCGTATTCTACTATTTTGTCAGTCCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTCCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTCCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCcACAAcTACCACCACTccTTTccCTATGACTACTCTCCCAGTGAGTACCGCTCGCACATCAACTTCACCACATTCTTCATTGATGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGOACATGGAAACTACAAGACTGGCTGAORF Start: at 1ORF Stop: TGA at 1102SEQ ID NO: 38367 aaMW at 42503.2kDNOV3k,TMGHHHHHHPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMFLYLEDDIRPDIKDDIYDPTYCG105521-03ProteinKDKEGPSPKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGABRLWSHRSequenceSYKARLPLRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:391138 bpNOV31,GCCGAATTCTCAGCCCCTGGAAAGTGATCCCGGCATCCGAGAGCCAAGATGCCGGCCCACTTGCTGCACG105521-04DNA SequenceGGACGATATCTCTAGCTCCTATACCACCACCACCACCATTACAGCGCCTCCCTCCAGGCTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTCGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGCGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATCGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAACCACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTCCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGCCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGGATCCGGTGORF Start: ATG at 49ORF Stop: TGA at 1126SEQ ID NO: 40359 aaMW at 41522.2kDNOV31,MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDTYDPTYKDKEGPSPKCG105521-04ProteinVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLSequenceFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSGSEQ ID NO:411129 bpNOV3m,ACATCATCACCACCATCACCCGGCCCACTTGCTGCAGGACGATATCTCTAGCTCCTATACCACCACCCG105521-05DNA SequenceACCACCATTACAGCGCCTCCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTGGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTGGAGCCACCGCTCTTACAAAGCTCGGCTGCCCCTACGGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGCGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGOAGGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCGGATATCGTCCTTATGACAAGAACATTAGCCCCCGGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTGCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCCGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TGA at 1094SEQ ID NO: 42364 aaMW at 42213.9WNOV3m,HHHHHHPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKCG105521-05ProteinEGPSPKVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGARRLWSHRSYKSequenceARLPLRLFLIIANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYXSGSEQ ID NO:431116 bpNOV3n,CCGGCCCACTTGCTGCAGGACGATATCTCTACCTCCTATACCACCACCACCACCATTACAGCGCCTCCG105521-06DNA SequenceCCTCCAGGGTCCTGCAGAATGGAGGAGATAAGTTOGAGACGATGCCCCTCTACTTGGAAGACGACATTCGCCCTGATATAAAAGATGATATATATGACCCCACCTACAAGGATAAGGAAGGCCCAAGCCCCAAGGTTGAATATGTCTGGAGAAACATCATCCTTATGTCTCTGCTACACTTGGGAGCCCTGTATGGGATCACTTTGATTCCTACCTGCAAGTTCTACACCTGGCTTTGGGGGGTATTCTACTATTTTGTCAGTGCCCTGGGCATAACAGCAGGAGCTCATCGTCTGTCGAGCCACCGCTCTTACAAAGCTCCGCTGCCCCTACCGCTCTTTCTGATCATTGCCAACACAATGGCATTCCAGAATGATGTCTATGAATGGGCTCGTGACCACCGTGCCCACCACAAGTTTTCAGAAACACATGCTGATCCTCATAATTCCCGACGTGGCTTTTTCTTCTCTCACGTGGGTTGGCTGCTTGTGCGCAAACACCCAGCTGTCAAAGAGAAGGGGAGTACGCTAGACTTGTCTGACCTAGAAGCTGAGAAACTGGTGATGTTCCAGAGGAGGTACTACAAACCTGGCTTGCTGATGATGTGCTTCATCCTGCCCACGCTTGTGCCCTGGTATTTCTGGGGTGAAACTTTTCAAAACAGTGTGTTCGTTGCCACTTTCTTGCGATATGCTGTGGTGCTTAATGCCACCTGGCTGGTGAACAGTGCTGCCCACCTCTTCCGATATCGTCCTTATGACAAGAACATTAGCCCCCCGGAGAATATCCTGGTTTCACTTGGAGCTGTGGGTGAGGGCTTCCACAACTACCACCACTCCTTTCCCTATGACTACTCTCCCAGTGAGTACCGCTGGCACATCAACTTCACCACATTCTTCATTGATTGCATGGCCGCCCTCGGTCTGGCCTATGACCGGAAGAAAGTCTCCAAGGCCGCCATCTTGGCCAGGATTAAAAGAACCGGAGATGGAAACTACAAGAGTGGCTGAGCAGGTGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TGA at 1075SEQ ID NO:44358 aaMW at 41391.0kDNOV3n,PAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDTKDDIYDPTYKDKEGPSPKCG105521-06ProteinVEYVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRSequenceLFLIIANTMAEQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKLVMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNISPRENTLVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKRTGDGNYKSG


[0364] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 3B.
15TABLE 3BComparison of NOV3a against NOV3b through NOV3n.Identities/Similarities forProteinNOV3a Residues/the MatchedSequenceMatch ResiduesRegionNOV3b1 . . . 359346/359 (96%)1 . . . 359347/359 (96%)NOV3c1 . . . 359346/359 (96%)5 . . . 363347/359 (96%)NOV3d1 . . . 359347/359 (96%)1 . . . 359347/359 (96%)NOV3e2 . . . 359345/358 (96%)1 . . . 358346/358 (96%)NOV3f2 . . . 359345/358 (96%)7 . . . 364346/358 (96%)NOV3g1 . . . 359347/359 (96%)1 . . . 359347/359 (96%)NOV3h1 . . . 359347/359 (96%)20 . . . 378 347/359 (96%)NOV3i1 . . . 359347/359 (96%)1 . . . 359347/359 (96%)NOV3j1 . . . 359346/359 (96%)2 . . . 360347/359 (96%)NOV3k2 . . . 359345/358 (96%)10 . . . 367 346/358 (96%)NOV3l1 . . . 359346/359 (96%)1 . . . 359347/359 (96%)NOV3m2 . . . 359345/358 (96%)7 . . . 364346/358 (96%)NOV3n2 . . . 359345/358 (96%)1 . . . 358346/358 (96%)


[0365] Further analysis of the NOV3a protein yielded the following properties shown in Table 3C.
16TABLE 3CProtein Sequence Properties NOV3aPSort0.6000 probability located in plasma membrane;analysis:0.4000 probability located in Golgi body;0.3000 probability located in endoplasmicreticulum (membrane); 0.3000 probability locatedin microbody (peroxisome)SignalPNo Known Signal Sequence Predictedanalysis:


[0366] A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 3D.
17TABLE 3DGeneseq Results for NOV3aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV3a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABB44583Human wound healing1 . . . 359 359/359 (100%)0.0related polypeptide SEQ ID1 . . . 359 359/359 (100%)NO 40 - Homo sapiens, 359aa. [CA2325226-A1,17 MAY 2001]AAY69378Amino acid sequence of1 . . . 359 359/359 (100%)0.0human skin stearoyl-CoA1 . . . 359 359/359 (100%)desaturase - Homo sapiens,359 aa. [WO200009754-A2,24 FEB. 2000]AAY69377Amino acid sequence of1 . . . 359298/359 (83%)0.0murine skin stearoyl-CoA1 . . . 359334/359 (93%)desaturase (M-SCD4v1) -Mus sp, 359 aa.[WO200009754-A2,24 FEB. 2000]ABB44582Mouse wound healing related1 . . . 359297/359 (82%)0.0polypeptide SEQ ID NO 39 -1 . . . 358327/359 (90%)Mus musculus, 358 aa.[CA2325226-A1,17 MAY 2001]AAR25853MSH-dependent protein obtd.1 . . . 359290/360 (80%)e−179from hamster flank organ -1 . . . 354324/360 (89%)Mesocricetus auratus, 354 aa.[JP04179481-A,26 JUN. 1992]


[0367] In a BLAST search of public sequence datbases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3E.
18TABLE 3EPublic BLASTP Results for NOV3aIdentities/ProteinSimilarities forAccessionNOV3a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueO00767Acyl-CoA desaturase (EC1 . . . 359358/359 (99%)0.01.14.99.5) (Stearoyl-CoA1 . . . 359359/359 (99%)desaturase) (Fatty aciddesaturase)(Delta(9)-desaturase) - Homosapiens (Human), 359 aa.Q9P1L1Acyl-CoA desaturase (EC38 . . . 359 321/322 (99%)0.01.14.99.5) (Stearoyl-CoA1 . . . 322322/322 (99%)desaturase) (Fatty aciddesaturase)(Delta(9)-desaturase) - Homosapiens (Human), 322 aa.O62849Acyl-CoA desaturase (EC1 . . . 359312/359 (86%)0.01.14.99.5) (Stearoyl-CoA1 . . . 359342/359 (94%)desaturase) (Fatty aciddesaturase)(Delta(9)-desaturase) - Ovisaries (Sheep), 359 aa.Q9BG81Acyl-CoA desaturase (EC1 . . . 359312/359 (86%)0.01.14.99.5) (Stearoyl-CoA1 . . . 359342/359 (94%)desaturase) (Fatty aciddesaturase)(Delta(9)-desaturase) - Caprahircus (Goat), 359 aa.Q95MI7Stearoyl coenzyme A1 . . . 359312/359 (86%)0.0desaturase (EC 1.14.99.5) -1 . . . 359341/359 (94%)Capra hircus (Goat), 359 aa.


[0368] PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3F.
19TABLE 3FDomain Analysis of NOV3aIdentities/Similarities forPfamNOV3athe MatchedExpectDomainMatch RegionRegionValueDesaturase77 . . . 321154/248 (62%)2.9e−164231/248 (93%)



Example 4

[0369]

20





TABLE 4A








NOV4 Sequence Analysis



















SEQ ID NO: 45
1346 bp










NOV4a,


TGGAACTCCAGGATACACTCCCCTCCTGCTACCTAGGCAGGCGTGAGGGTGTGACGGCCGCGCATTCG





CG107234-01


DNA Sequence


CCAGACGAGAGCG


ATG
CTGACAACGCCGCACCAGGTCTGATCTCAGAGCTGGGCTGGCTGTGCCCT







GGGGCCACATCGCAGCCAAAGCCTGGGGCTCCCTGCACGGCCCTCCAGTTCTCTGCCTGCACGGCTGG






CTGGACAATGCCAGCTCCTTCGACAGACTCATCCCTCTTCTCCCGCAAGACTTTTATTACGTTGCCAT






GGATTTCGGAGGTCATGGGCTCTCGTCCCATTACAGCCCAGGTGTCCCATATTACCTCCAGACTTTTG






TGAGTGAGATCCGAAGAGTTGTGGCAGCCTTGAAATGGAATCGATTCTCCATTCTGGGCCACAGCTTC






GGTGGCGTCGTGGGCGGAATGTTTTTCTGTACCTTCCCCGAGATGGTGGATCCGATCTTATCTTGCTA






CACGCCGCTCTTTCTCCTCGAATCAGATGAAATGGAGAACTTGCTGACCTACAGGCGGAGAGCCATAG






AGCACGTCCTCCAGGTAGAGGCCTCCCAGGAGCCCTCGCACGTGTTCAGCCTGAAGCAGCTGCTGCAG






AGGCAGAGAACAGCATTGACTTCGTCAGCAGGGAGCTGTGTGCGCATTCCATCATAGAGCTGCAGGCC






CATGTCCTGTTGATCAAAGCAGTCCACGGATATTTTGATCCAAGAGAGAGATTACTCTGACGGGAGTC






CCTGTCGTTCATGATAGACACAATGAATCCACCCTCAAGAGGACTACTTCGTAATACGTTCACAGCAA






ACCCTGGCCTCGGCCCTGCCCTGTCCCTGCCATGCAACTTCACAACTCAGCTGGCCTAGACCCCTGGC






AGGCCTCCAAGTCCCTAAGCGGTTCCAGTTTGTGGAAGTCCCAGGCAATCACTGTGTCCACATGAGCG






AACCCCAGCACGTGGCCAGTATCATCAGCTCCTTCTTACAGTGCACACACACGCTCCCAGCCCAGCTG






TAGCTCTGGGCCTGGAACTATGAAGACCTAGTGCTCCCAGACTCGACACTGGGACTCTGAGTGCCTGA






GCCCCACAACAAGGCCAGGGATGGTGTGGACAGGCCTCACTAGTCTTGAGGCCCAGCCTAGGATGGTG






GTCAGGGGAAGGAGCGAGATTCCAACTTCAACATCTGTGACCTCAAGGGGGAGACAGAGTCTGGGTTC






CAGGGCTGCTGTCTCCTGGCTAATAATCTCCAGCCAGCTGGAGGAAGGAAGGGCGGGCTGGGCCCACC















ORF Start: ATG at 82

ORF Stop: TGA at 691




SEQ ID NO: 46
203 aa
MW at 22470.7kD









NOV4a,
MAENAAPGLISELKLAVPWGHIAAKAWGSLQGPPVLCLHGWLDNASSFDRLIPLLPQDFYYVAMDFGG



CG107234-01


Protein
HGLSSHYSPGVPYYLQTFVSEIRRVVAALKWNRFSILGHSFGGVVGGMFFCTFPEMVDKLILLDTPLF


Sequence



LLESDEMENLLTYKRRAIEHVLQVEASQEPSHVFSLKQLLQRQRTALTSSAGSCVRIPSGSCRPMSC














SEQ ID NO:47
937 bp










NOV4b,
CGGGACGAGAGCGATGAGTGAGAACGCCGCACCAGGTCTGATCTCAGAGCTGAAGCTGGCTGTGCCC



CG107234-03


DNA Sequence
TGGGGCCACATCGCAGCCAAAGCCTGGGGCTCCCTGCAGGGCCCTCCAGTTCTCTGCCTGCACGGCT






GGCTGGACAATGCCAGCTCCTTCGACAGACTCATCCCTCTTCTCCCGCATGACTTTTATTACGTTGC






CATGGATTTCGGAGGTCATGGGCTCTCGTCCCATTACAGCCCAGGTGTCCCATATTACCTCCAGACT






TTTGTGAGTCACATCCGAAGAGTTGTGGCAGGTGGCGTCGTGGGCGGAGTGTTTTTCTGTACCTTCC






CCGAGATGGTGGATAAACTTATCTTGCTGGACACGCCGCTCTTTCTCCTGGAATCAGATGAAATGGA






GAATTGCTGACCTACAAGCGAGAGCCATAGAGCACGTGCTGCACGTAGAGTCCTCCCATTAGAGCCC






TCGCACGTGTTCAGCCTGAAGCAGCTGCTGCAGAGGTTACTGAAGAGCAATAGCCACTTGAGTGAGG






AGTGCGGGAGCTTCTCCTGCAAGAGAACCACGAAGGTGGCCACAGGTCTGGTTCTGTCGATCAGAGA






CCAGAGGCTCGCCTGGGCAGAGAACACCATTGACTTCATCACCAGGGAGCTGTGTGCGCATTCCATC






AGGAAGCTGCAGGCCCATGTCCTGTTGATCAAAGCAGTCCACGGATATTTTGATTCAAGACAGAATT






ACTCTGAGAAGGAGTCCCTGTCGTTCATGATAGACACGATGAAATCCACCCTCAAAGAGCAGTTCCA






GTTTGTGGAAGTCCCAGGCAATCACTGTGTCCACATGAGCGAACCCCAGCACGTGGCCAGTATCATC








AGCTCCTTCTTACAGCGCACACACATGCTCCCAGCCCAGCTGTAGCTCTGGGCCTGGAACTATGAA

















ORF Start: ATG at 14

ORF Stop: TAG at 914




SEQ ID NO: 48
300 aa
MW at 33777.6kD









NOV4b,
MSENAAPGLISELKLAVPWGHIAAKAWGSLQGPPVLCLHGWLDNASSFDRLIPLLPQDFYYVAMDFG



CG107234-03


Protein
GHGLSSHYSPGVPYYLQTFVSEIRRVVAGGVVGGMEFCTFPEMVDKLILLDTPLFLLESDEMEKLLT


Sequence



YKRRAIEHVLQVEASQEPSHVFSLKQLLQRLLKSNSHLSEECGELLLQRGTTKVATGLVLNRDQRLA






WAENSIDFISRELCAHSIRKLQAHVLLIKAVHGYFDSRQNYSEKESLSFMIDTMKSTLKEQFQFVEV






PGNHCVHMSEPQHVASIISSFLQRTHMLPAQL














SEQ ID NO: 49
1058 bp










NOV4c,


CGGGACGAGAGCG


ATG
AGTGAGAACGCCGCACCAGGTCTGATCTCAGAGCTGAAGCTGGCTGTGCCCT




CG107234-02


DNA Sequence
GGGGCCACATCGCAGCCAAAGCCTGGGGCTCCCTGCAGGGCCCTCCAGTTCTCTGCCTGCACGGCTGG






CTGGACAATGCCAACTCCTTCGACAGACTCATCCCTCTTCTCCCGCAAGACTTTTATTACGTTGCCAT






GGATTTCGGAGGTCATGGGCTCTCGTCCCATTACAGCCCAGGTGTCCCATATTACCTCCAGACTTTTG






TGAGTGAGATCCGAAGAGTTGTGGCAGCCTTGAAATGGAATCGATTCTCCATTCTGGGCCACAGCTTC






GGTGGCGTCCTGGGCGGAATGTTTTTCTGTACCTTCCCCGAGATGGTGGATAAACTTATCTTGCTGGA






CACGCCGCTCTTTCTCCTGGAATCAGATGAAATGGAGAACTTGCTGACCTACAAGCGGAGAGCCATAG






AGCACGTGCTGCAGGTAGAGGCCTCCCAGOAGCCCTCGCACGTGTTCAGCCTGAAGCAGCTGCTGCAG






AGGTTACTGAAGAGCAATAGCCACTTGAGTGAGGAGTGCGGGGAGCTTCTCCTGCAAAGAGGAACCAC






GAAGGTGGCCACAGAGATGGAGTTTCGCCATGTTGCCCAGGCTGGTCTCGAACTCCTGAACTCAAGCG






ATCCTACTGACTCGACCTCCCAAAATGGTCTGGTTCTGAACAGAGACCAGAGGCTCGCCTGGGCAGAG






AACAGCATTGACTTCATCAGCAGGGAGCTGTGTGCGCATTCCATCAGGAAGCTGCAGGCCCATGTCCT






GTTGATCAAAGCAGTCCACGGATATTTTGATTCAAGACAGAATTACTCTGAGAAGGAGTCCCTGTCGT






TCATGATAGACACGATGAAATCCACCCTCAAAGAGCAGTTCCAGTTTGTGGAAGTCCCAGGCAATCAC






TGTGTCCACATGAGCGAACCCCAGCACGTGGCCAGTATCATCAGCTCCTTCTTACAGCGCACACACAT






GCTCCCAGCCCAGCTGTAGCTCTGGGCCTGGAACTATG















ORF Start: ATG at 14

ORF Stop: TAG at 1037




SEQ ID NO: 50
341 aa
MW at 38407.6kD









NOV4c,
MSENAAPGLISELKLAVPWGHIAAKAWGSLQGPPVLCLHGWLDNANSFDRLIPLLPQDFYYVAMDFGG



CG107234-02


Protein
HGLSSHYSPGVPYYLQTFVSEIRRVVAALKWNRFSILGHSFGGVVGGMFFCTFPEMVDKLILLDTPLF


Sequence



LLESDEMENLLTYKRRAIEHVLQVEASQEPSHVFSLKQLLQRLLKSNSHLSEECGELLLQRGTTKVAT






EMEERHVAQAGLELLNSSDPTDSTSQNGLVLNRDQRLAWAENSIDFISRELCAHSIRKLQAHVLLIKA






VHGYFDSRQNYSEKESLSFMIDTMKSTLKEQEQFVEVPGNHCVHMSEPQHXTASHSSFLQRTHMLPAQ






L










[0370] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.
21TABLE 4BComparison of NOV4a against NOV4b and NOV4c.Identities/Similarities forProteinNOV4a Residues/the MatchedSequenceMatch ResiduesRegionNOV4b1 . . . 170145/170 (85%)1 . . . 156146/170 (85%)NOV4c1 . . . 170168/170 (98%)1 . . . 170170/170 (99%)


[0371] Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.
22TABLE 4CProtein Sequence Properties NOV4aPSort0.6072 probability located in microbodyanalysis:(peroxisome); 0.4500 probability locatedin cytoplasm; 0.1930 probability locatedin lysosome (lumen); 0.1000 probabilitylocated in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0372] A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4D.
23TABLE 4DGeneseq Results for NOV4aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV4a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAY71117Human Hydrolase protein-151 . . . 178177/178 (99%) e−102(HYDRL-15) - Homo1 . . . 178178/178 (99%)sapiens, 314 aa.[WO200028045-A2,18 MAY 2000]AAU23386Novel human enzyme1 . . . 178175/178 (98%) e−100polypeptide #472 - Homo10 . . . 187 176/178 (98%)sapiens, 323 aa.[WO200155301-A2,02 AUG. 2001]AAM39135Human polypeptide SEQ ID1 . . . 98  94/98 (95%)1e−51NO 2280 - Homo sapiens,1 . . . 98  96/98 (97%)150 aa. [WO200153312-A1,26 JUL. 2001]ABB60261Drosophila melanogaster12 . . . 132  58/122 (47%)4e−28polypeptide SEQ ID NO 7575 -41 . . . 162  77/122 (62%)Drosophila melanogaster,331 aa. [WO200171042-A2,27 SEP. 2001]ABB68618Drosophila melanogaster12 . . . 177  61/171 (35%)2e−27polypeptide SEQ ID NO8 . . . 176 98/171 (56%)32646 - Drosophilamelanogaster, 342 aa.[WO200171042-A2,27 SEP. 2001]


[0373] In a BLAST search of public sequence datbases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.
24TABLE 4EPublic BLASTP Results for NOV4aIdentities/ProteinSimilarities forAccessionNOV4a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ9NQF3Putative serine hydrolase-like1 . . . 203 203/203 (100%) e−117protein (EC 3.1.-.-) - Homo1 . . . 203 203/203 (100%)sapiens (Human), 203 aa.Q9H4I8Serine hydrolase-like protein1 . . . 178177/178 (99%) e−101(EC 3.1.-.-) - Homo sapiens1 . . . 178178/178 (99%)(Human), 314 aa.Q9EPB5Serine hydrolase-like protein8 . . . 177127/171 (74%)1e−71(EC 3.1.-.-) (SHL) - Mus2 . . . 172145/171 (84%)musculus (Mouse), 311 aa.BAC04444CDNA FLJ37553 fis, clone1 . . . 114111/114 (97%)2e−61BRCAN2028338, moderately1 . . . 114111/114 (97%)similar to Mus musculusserine hydrolase protein,isoform 2 - Homo sapiens(Human), 146 aa.O18391Probable serine hydrolase12 . . . 132  58/122 (47%)1e−27(EC 3.1.-.-) (Kraken protein) -41 . . . 162  77/122 (62%)Drosophila melanogaster(Fruit fly), 331 aa.


[0374] PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.
25TABLE 4FDomain Analysis of NOV4aIdentities/Similarities forPfamNOV4athe MatchedExpectDomainMatch RegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 5

[0375] The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 5A.
26TABLE 5ANOV5 Sequence AnalysisSEQ ID NO:512109 bpNOV5a,CGCGCAGCCCGCCGGAGTGGTCGGGGCCCGCGGCCGCTCGCGCCTCTCGATGGGCAGCTCGCACTTGCCG113144-01DNA SequenceTCAACAAGGGCCTGCCGCTTCGCGTCCGACCTCCGATCATGAACGGGCCCCTGCACCCGCGGCCCCTGGTGGCATTGCTGGATGGCCGGGACTGCACAGTGGAGATGCCCATCCTGAAGGACGTCCCCACTGTGGCCTTCTGCGACGCGCAGTCCACGCAGGAGATCCATGAGAAGGTCCTGAACGAGGCTGTGGGGGCCCTGATGTACCACACCATCACTCTCACCACGGAGGACCTGGAGAAGTTCAAAGCCCTCCGCATCATCGTCCGGATTCGCAGTGGTTTTGACAACATCGACATCAAGTCGGCCGGGGATTTAGGCATTGCCGTCTGCAACGTGCCCGCGGCGTCTGTGGAGGAGACGGCCGACTCGACCCTGTGCCACATCCTGAACCTGTACCGGCGGGCCACCTCGCTGCACCAGGCGCTGCGGGAGGGCACACGAGTCCAGAGCGTCGAGCAGATCCGCGAGGTGGCGTCCGGCGCTGCCAGGATCCGCGGGGAGACCTTGGGCATCATCCGACTTGGTCGCGTGGGGCAGGCAGTGGCGCTGCGGGCCAAGGCCTTCGGCTTCAACGTGCTCTTCTACGACCCTTACTTGTCGGATGGCGTGGAGCGGGCGCTGGGGCTGCAGCGTGTCAGCACCCTGCAGGACCTGCTCTTCCACAGCGACTGCGTGACCCTGCACTGCGCCCTCAACGAGCACAACCACCACCTCATCAACGACTTCACCGTCAAGCAGATGAGACAAGGGGCCTTCCTGGTGAACACAGCCCGGGGTGGCCTGGTGGATGAGAAGGCGCTGGCCCAGGCCCTGAAGGAGGGCCGGATCCCCGGCGCGGCCCTGGATGTGCACGAGTCCGAACCCTTCAGCTTTAGCCAGGGCCCTCTGAAGGATGCACCCAACCTCATCTGCACCCCCCATGCTGCATGGTACAGCGAGCAGGCATCCATCGAGATGCGAGAGGAGGCGGCACGGGAGATCCGCAGAGCCATCACAGGCCGGATCCCAGACAGCCTGAAGAACTGTGTCAACAAGGACCATCTGACAGCCGCCACCCACTGGGCCAGCATGGACCCCGCCGTCGTGCACCCTGAGCTCAATGGGGCTGCCTATAGGTACCCTCCGGGCGTGGTGGGCGTGGCCCCCACTGGCATCCCAGCTGCTGTGGAAGGTATCGTCCCCAGCGCCATGTCCCTGTCCCACGGCCTGCCCCCTGTGGCCCACCCGCCCCACGCCCCTTCTCCTGGCCAAACCGTCAAGCCCGAGGCGGATAGAGACCACGCCAGTGACCAGTTGTAGCCCGGGACGAGCTCTCCAGCCTCGGCGCCTGGGGCAGCGGGCCCGGAAACCCTCGACCAGAGTGTGTGAGAGCATGTGTGTGGTGGCCCCTGTACACTGCAGAACTGGTCCGGGCTGTCAGGAGGGCGGGAGGGCGCAGCGCTGGGCCTCGTGTCGCTTGTCGTCCGTCCTGTGGGCGCTCTGCCCTGTGTCCTTCGCGTTCCTCGTTAAGCAGAAGAAGTCAGTAGTTATTCTCCCATGAACGTTCTTGTCTGTGTACAGTTTTTAGAACATTACAAAGGATCTGTTTGCTTAGCTGTCAACAAAAAGAAAACCTGAAGGAGCATTTGGAAGTCAATTTGAGGTTTTTTTTTTTGGTTTTTTTTTTTTTOTATTTTGGAACGTGCCCCAGAATGAGGCAGTTGGCAAACTTCTCAGGACAATGAATCTTCCCGTTTTTCTTTTTATGCCACACACTGCATTGTTTTTTCTACCTGCTTGTCTTATTTTTAGCATAATTTAGAAAAACAAAACAAAGGCTGTTTTTCCTAATTTTGGCATCAACCCCCCCTTGTTCCAAAATGAAGACGGCATCATCACGAACCAGCTCCAAAAGGAAAAGCTTGGCAGGTGCCCTCGTCCTGGGGACGTGGAGGGTGGCACGCTCCCCGCCTGCACCAGTGCCGTCCTGCTGATGTGGTAGGCTAGCAATATTTTGGTTAAAATCATGTTTGTGGCCGAACGGGCCCCTGCACCCGORF Start: ATG at 50ORF Stop: TAG at 1370SEQ ID NO: 52440 aaMW at 47534.7kDNOV5a,MGSSHLLNXGLPLGVRPPINNGPLHPRPLVALLDGRDCTVEMPILKDVATVAFCDAQSTQEIHEKVLNCG113144-01ProteinEAVGALMYHTITLTREDLEKFKALRIIVRIGSGFDNIDIKSAGDLGIAVCNVPAASVEETADSTLCHISequenceLNLYRRATWLHQALREGTRVQSVEQIREVASGAARIRGETLGIIGLGRVGQAVALRAKAFGFNVLFYDPYLSDGVERALGLQRVSTLQDLLFHSDCVTLHCGLNEHNHHLINDFTVKQMRQGAFLVNTARGGLVDEKALAQALKEGRIRGAALDVHESEPFSFSQGPLKDAPNLICTPHAAWYSEQASIEMREEAAREIRRAITGRIPDSLKNCVNKDHLTAATHWASMDPAVVHPELNGAAYRYPPGVVGVAPTGIPAAVEGIVPSAMSLSHGLPPVAHPPHAPSPGQTVKPEADRDHASDQLSEQ ID NO:532125 bpNOV5b,TATTAAGAGATGTCAGGCGTCCGACCTCCGATCATGAACGGGCCCCTGCACCCGCGGCCCCTGGTCGCG113144-02DNA SequenceCATTGCTGGATGGCCGGGACTGCACAGTGGAGATGCCCATCCTGAAGGACGTGGCCACTGTGGCCTTCTGCGACGCGCAGTCCACGCAGCAGATCCATGAGAAGGTCCTGAACGAGGCTGTGGGGGCCCTGATGTACCACACCATCACTCTCACCAGGGAGGACCTGGACAAGTTCAAACCCCTCCGCATCATCGTCCGGATTGGCAGTCGTTTTGACAACATCGACATCAAGTCGGCCGGGGATTTAGGCATTGCCGTCTGCAACGTGCCCGCGGCGTCTGTGGAGGAGACGGCCGACTCGACGCTGTGCCACATCCTGAACCTGTACCGGCGGGCCACCTCGCTGCACCAGCCGCTGCGGGAGGGCACACGAGTCCAGAGCGTCGAGCAGATCCGCGAGGTGGCCTCCGGCGCTGCCAGGATCCGCGGGGAGACCTTGCGCATCATCGGACTTCGTCCCGTGGCGCAGCCAGTGGCGCTGCGCGCCAAGGCCTTCGGCTTCAACGTGCTCTTCTACGACCCTTACTTGTCGGATGGCGTGGAGCGGGCGCTGGGGCTGCAGCGTGTCAGCACCCTGCAGCACCTCCTCTTCCACACCGACTGCGTGACCCTGCACTCCGGCCTCAACGAGCACAACCACCACCTCATCAACGACTTCACCGTCAACCAGATGAGACAAGGGGCCTTCCTGGTGAACACAGCCCGGGGTGGCCTCGTCGATCAGAACCCGCTGGCCCAGGCCCTGAAGGAGGGCCGCATCCGCGGCGCGGCCCTGGATGTGCACGAGTCGGAACCCTTCAGCTTTAGCCAGGGCCCTCTGAAGGATGCACCCAACCTCATCTGCACCCCCCATCCTCCATCGTACACCGAGCAGCCATCCATCGAGATGCGAGAGGAGGCGGCACGGGAGATCCGCAGAGCCATCACAGGCCGGATCCCAGACAGCCTGAAGAACTGTGTCAACAAGGACCATCTGACAGCCGCCACCCACTCCGCCAGCATGCACCCCCCCGTCGTGCACCCTGAGCTCAATGGCGCTGCCTATAGCAGGTACCCTCCGGGCGTGGTGGGCGTGGCCCCCACTGGCATCCCAGCTGCTGTGGAAGOTATCGTCCCCAGCGCCATGTCCCTCTCCCACGGCCTGCCCCCTGTCGCCCACCCCCCCCACGCCCCTTCTCCTGCCCAAACCGTCAAGCCCGACGCGGATAGAGACCACGCCAGTGACCAGTTGTAGCCCGGGAGGACCTCTCCAGCCTCGGCGCCTGGGCAGAGGGCCCGGAAACCCTCGGACCAGACTGTCTGCAGGAGGCATCTGTGTCCTGGCCCTGGCACTGCAGACACTCGTCCGGGCTGTCAGGAGGCGGGAGGGGGCAGCGCTGGGCCTCGTGTCGCTTGTCGTCGTCCGTCCTGTGGGCGCTCTGCCCTGTGTCCTTCGCGTTCCTCGTTAAGCACAAGAAGTCAGTAGTTATTCTCACATGAACGTTCTTGTCTGTGTACACTTTTTAGAACATTACAAAGGATCTGTTTGCTTAGCTGTCAACAAAAAGAAAACCTCAAGGAGCATTTGGAACTCAATTTCAGGTTTTTTTTTTTCGTTTTTTTTTTTTTGTATGTTGGAACCTCCCCCAGAATGAGGCAGTTGGCAAACTTCTCACCACAATCAATCCTTCCCGTTTTTCTTTTTATGCCACACAGTGCATTGTTTTTTCTACCTGCTTGTCTTATTTTTAGAATAATTTACAAAAACAAAACAAAGGCTGTTTTTCCTAATTTTCGCATGAACCCCCCCTTGTTCCAAATGAAGACCGCATCATCACGAACCACCTCCAAAAGGAAAAGCTTGCGCGGTGCCCAGCGTGCCCGCTGCCCATCGACGTCTGTCCTGGGGACGTGGAGGGTGGCAGCGTCCCCGCCTGCACCAGTGCCGTCCTCCTGATGTGGTAGGCTAGCAATATTTTCGTTAAAATCATGTTTGTCACTGTAACCATTTGTATGAATTATTTTAAAGAAATAAAAATCCTCGAAAGAGCCAGCGTGCCCACCAAAAAAAAAACCTCORF Start: ATG at 10ORF Stop: TAG at 1300SEQ ID NO: 54430 aaMW at 46491.5kDNOV5b,MSGVRPPIMNGPLHPRPLVALLDGRDCTVEMPILKDVATVAFCDAQSTQEIHEKVLNEAVGALMYHTCG113144-02ProteinITLTREDLEKFKALRIIVRIGSGFDNIDIKSAGDLGIAVCNVPAASVEETADSTLCHILNLYRRATWSequenceLHQALREGTRVQSVEQIREVASGAARIRGETLGITGLGRVGQAVALRAKAFGFNVLFYDPYLSDGVERALGLQRVSTLQDLLFHSDCVTLHCGLNEHNHHLINDFTVKQMRQGAFLVNTARGGLVDEKALAQALKEGRIRGAALDVHESEPFSFSQGPLKDAPNLICTPHAAWYSEQASIENREEAAREIRRAITGRIPDSPVAHPPHAPSPGQTVKPEADRDHASDQLSEQ ID NO:552085 bpNOV5c,GCGCAGGCCGCCGAGGGTCGGGGCCCGCGCCGGCTCGCGCCTCTCGATGGGCAGCTCGCACTTGCTCACG113144-03DNA SequenceACAAGGGCCTGCCGCTTCGCGTCCGACCTCCGATCATGAACGGGCCCCTGCACCCGCGGCCCCTGGTGGCATTGCTGGATGGCCGGGACTGCACAGTGGAGATGCCCATCCTGAAGGACGTGGCCACTGTGGCCTTCTGCGACGCGCAGTCCACGCAGGAGATCCATGAGAAGGTCCTGAACGAGGCTGTGGGGGCCCTGATGTACCACACCATCACTCTCACCAGGGAGGACCTGGAGAAGTTCAAAGCCCTCCGCATCATCGTCCGGATTGGCAGTGGTTTTGACAACATCGACATCAAGTCGGCCGGGGATTTAGGCATTGCCGTCTGCAACGTGCCCGCGGCGTCTGTGGAGGAGACGGCCGACTCGACGCTGTGCCACATCCTGAACCTGTACCGGCGGGCCACTGGCTGCACCAGGCGCTGCGGGAGGGCACACGAGTCCAGAGCGTCGAGCAGATCCGCGAGGTGGCGTCCGCGCTGCCAGGATCCGCGGGGAGACCTTGGGCATCATCGGACTTGOTCGCGTGGGGCAGGCAGTGGCGCTGCGGGCCAACGTGTCGGCTTCAACCTGCTCTTCTACGACCCTTACTTGTCGGATGGCGTGGAGCGGGCGCTGGGGCTGCAGCGTGTCAGCACCCTGCAGGACCTGCTCTTCCACAGCGACTGCGTGACCCTGCACTGCGGCCTCAACGAGCACAACCACCACCTCATCAACGACTTCACCGTCAAGCAGATGAGACAAGGGGCCTTCCTGGTGAACACAGCCCGGGGTGGCCTGGTGGATGAGAAGGCGCTCCCCCAGGCCCTGAAGGAGGGCCGGATCCGCGGCGCGGCCCTGGATGTGCACGAGTCGGAACCCTTCAGCTTTAGCCAGGGCCCTCTGAAGGATGCACCCAACCTCATCTGCACCCCCCATGCTGCATGGTACAGCGAGCAGGCATCCATCGAGATGCGAGAGGAGGCGGCACGGGAGATCCGCAGAGCCATCACAGGCCGGATCCCAGACAGCCTGAAGAACTGTGTCAACAAGGACCATCTGACAGCCGCCACCCACTGGGCCAGCATGGACCCCGCCGTCGTGCACCCTGAGCTCAATGGGGCTCCCTATAGGTACCCTCCGGGCGTGGTGGGCGTGGCCCCCACTGGCATCCCAGCTGCTGTGGAAGGTATCGTCCCCAGCGCCATGTCCCTGTCCCACGGCCTGCCCCCTGTGGCCCACCCGCCCCACGCCCCTTCTCCTGGCCAAACCGTCAAGCCCGAGGCGGATAGAGACCACGCCAGTGACCAGTTGTAGCCCGGGAGGAGCTCTCCAGCCTCGGCGCCTGGGGCACCGGGCCCGGAAACCCTCCACCAGAGTGTGTGAGAGCATGTGTGTGGTGGCCCCTGGCACTGCAGAGACTGGTCCGGCCTGTCAGGAGGGCGGCAGGGCGCAGCGCTGGGCCTCGTGTCGCTTGTCGTCCGTCCTGTGGGCGCTCTGCCCTGTGTCCTTCGCGTTCCTCGTTAAGCAGAAGAAGTCAGTAGTTATTCTCCCATGAACGTTCTTGTCTGTGTACAGTTTTTACAACATTACAAAGGATCTGTTTGCTTAGCTGTCAACAAAAAGAAAACCTGAAGGAGCATTTGGAAGTCAATTTGAGCTTTTTTTTTTTGGTTTTTTTTTTTTTGTATTTTGGAACGTGCCCCAGAATGAOGCAGTTGGCAAACTTCTCAGGACAATGAATCTTCCCGTTTTTCTTTTTATGCCACACAGTGCATTGTTTTTTCTACCTGCTTGTCTTATTTTTAGCATAATTTAGAAAAACAAAACAAAGGCTGTTTTTCCTAATTTTGGCATGAACCCCCCCTTGTTCCAAAATGAAGACGGCATCATCACGAAGCAGCTCCAAAAGGAAAAGCTTGGCAGCTGCUCCTCGTCCTGGGGACGTGGAGGGTGGCACGGTCCCCGCCTGCACCAGTGCCGTCCTGCTGATGTGGTAGGCTAGCAATATTTTGGTTAAAATCATGTTTGTGCCCORF Start: ATG at 47ORF Stop TAG at 1364SEQ ID NO: 56439 aaMW at 47552.4kDNOV5c,MGSSHLLNKGLPLGVRPPIMNGPLHPRPLVALLDGRDCTVEMPILKDVATVAFCDAQSTQEIHEKVLNCG113144-03ProteinEAVGALMYHTITLTREDLEKFKALRIIVRIGSGFDNIDIKSAGDLGIAVCNVPAASVEETADSTLCHISequenceLNLYRRATGCTRRCGRAHESRASSRSARWRPRCQDPRGDLGHBRTWSRGAGSGAAGQRVGFNVLFYDPYLSDGVERALGLQRVSTLQDLLFHSDCVTLHCGLNEHNUHLINDFTVKQMRQGAFLVNTARGGLVDEKALAQALKEGRIRGAALDVHESEPFSFSQGPLKDAPNLICTPHAAWYSEQASIEHREEAAHEIRRAITGRIPDSLKNCVNKDHLTAATHWASHDFAVVHPELNGAAYRYPPGVVGVAPTGIPAAVEGIVPSAMSLSHGLPPVAHPPHAPSPGQTVKPEADRDHASDQL


[0376] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 5B.
27TABLE 5BComparison of NOV5a against NOV5b and NOV5c.Identities/Similarities forProteinNOV5a Residues/the MatchedSequenceMatch ResiduesRegionNOV5b14 . . . 440 394/428 (92%)3 . . . 430394/428 (92%)NOV5c1 . . . 440355/440 (80%)1 . . . 439357/440 (80%)


[0377] Further analysis of the NOV5a protein yielded the following properties shown in Table 5C.
28TABLE 5CProtein Sequence Properties NOV5aPSort0.4500 probability located in cytoplasm; 0.3000analysis:probability located in microbody (peroxisome);0.2559 probability located in lysosome (lumen);0.1000 probability located in mitochondrialmatrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0378] A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 5D.
29TABLE 5DGeneseq Results for NOV5aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV5a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAB12879Murine JNK3 binding protein14 . . . 440 421/428 (98%)0.0amino acid sequence #5 -3 . . . 430424/428 (98%)Mus sp, 430 aa.[WO200031132-A1,02 JUN. 2000]AAW42104Amino acid sequence of the1 . . . 440396/447 (88%)0.0Adenovirus E1A binding1 . . . 439403/447 (89%)protein (CtBP) - Homosapiens, 439 aa.[US5773599-A,30 JUN. 1998]AAB95805Human protein sequence SEQ74 . . . 439 288/366 (78%)e−175ID NO: 18790 - Homo1 . . . 366329/366 (89%)sapiens, 366 aa.[EP1074617-A2,07 FEB. 2001]ABB12442Human bone marrow99 . . . 439 252/342 (73%)e−150expressed protein SEQ ID1011 . . . 1352 292/342 (84%)NO: 281 - Homo sapiens,1352 aa. [WO200174836-A1,11 OCT. 2001]ABB71579Drosophila melanogaster1 . . . 373262/375 (69%)e−150polypeptide SEQ ID NO1 . . . 375307/375 (81%)41529 - Drosophilamelanogaster, 386 aa.[WO200171042-A227 SEP. 2001]


[0379] In a BLAST search of public sequence datbases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5E.
30TABLE 5EPublic BLASTP Results for NOV5aIdentities/ProteinSimilarities forAccessionNOV5a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ13363C-terminal binding protein 11 . . . 440 440/440 (100%)0.0(CtBP1) - Homo sapiens1 . . . 440 440/440 (100%)(Human), 440 aa.O88712C-terminal binding protein 11 . . . 440435/440 (98%)0.0(CtBP1) - Mus musculus1 . . . 440437/440 (98%)(Mouse), 440 aa.Q91WI6C-terminal binding protein 1 -1 . . . 440435/441 (98%)0.0Mus musculus (Mouse), 4411 . . . 441437/441 (98%)aa.Q9YHU0C-terminal binding protein1 . . . 440420/440 (95%)0.0(CtBP) - Xenopus laevis1 . . . 440428/440 (96%)(African clawed frog), 440 aa.Q91YX3C-terminal binding protein 1 -14 . . . 440 422/428 (98%)0.0Mus musculus (Mouse), 4303 . . . 430424/428 (98%)aa.


[0380] PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5F.
31TABLE 5FDomain Analysis of NOV5aIdentities/Similarities forPfamNOV5athe MatchedExpectDomainMatch RegionRegionValue2-Hacid_DH28 . . . 12228/104 (27%)0.01165/104 (62%)2-Hacid_DH_C124 . . . 315 83/207 (40%)3.6e−54145/207 (70%) 



Example 6

[0381] The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
32TABLE 6ANOV6 Sequence AnalysisSEQ ID NO:573657 bpNOV6a,GAGTCCCAGCCCCACGCCGGCTACCACCATGGCGGAGACCAACAACGAATGTAGCATCAAGGTGCTCTCG122634-01DNA SequenceGCCGATTCCGGCCCCTGAACCAGGCTGAGATTCTGCGGGGAGACAAGTTCATCCCCATTTTCCAAGGGGACGACAGCGTCGTTATTGGGGGGAAGCCATATGTTTTTGACCGTGTATTCCCCCCAAACACGACTCAACAAGCAAGTTTATCATGCATGTGCCATGCAGATTGTCAAAGATGTCCTTGTGGCTACAATGGCACCATTTTTGCTTATGGACAGACATCCTCAGGGAAAACACATACCATGGAGGGAAAGCTGCACGACCCTCAGCTGATGGGAATCATTCCTCGAATTGCCCGAGACATCTTCAACCACATCTACTCCATGGATCACAACCTTGAGTTCCACATCAAGGTTTCTTACTTTGAAATTTACCTGGACAAAATTCCTGACCTTCTGCATGTGACCAAGACAAATCTGTCCGTGCACGAGGACAAGAACCGGGTGCCATTTGTCAAGGGTTGTACTGAACGCTTTGTGTCCAGCCCGGAGGAGATTCTGGATGTGATTGATGAAGGGAAATCAAATCGTCATGTGGCTGTCACCAACATGAATGAACACAGCTCTCGGAGCCACAGCATCTTCCTCATCAACATCAAGCAGGAGAACATGGAAACGGAGCAGAAGCTCAGTGGGAAGCTGTATCTGGTGGACCTGGCAGGGAGTGAGAAGGTCAGCAAGACTGGAGCACAGGGAGCCGTGCTGGACGAGGCAAAGAATATCAACAAGTCACTGTCAGCTCTGGGCAATGTGATCTCCGCACTGGCTGAGCGCACTAAAAGCTATGTTCCATATCGTGACAGCAAAATGACAAGGATTCTCCAGGACTCTCTCGCGGGAAACTGCCGGACGACTATGTTCATCTGTTGCTCACCATCCAGTTATAATGATGCAGAGACCAAGTCCACCCTGATGTTTGGGCAGCGGGCAAAGACCATTAAGAACACTGCCTCAGTAAATTTCGAGTTGACTGCTGAGCAGTGGAAGAAGAAATATGAGAAGGAGAAGGAGAAGACAAAGGCCCAGAAGGAGACGATTGCGAAGCTGGAGGCTGAGCTGAGCCGGTGGCGCAATGOAGAGAATGTGCCTGAGACAGAGCGCCTGGCTGGGGAGGAGGCAGCCCTGGGAGCCGAGCTCTGTGAGGAGACCCCTGTGAATGACAACTCATCCATCGTGGTGCGCATCGCGCCCGAGGAGCGGCAGAAATACGAGGAGGAGATCCGCCGTCTCTATAAGCAGCTTGACGACAAGGATGATGAAATCAACCAACAAAGCCAACTCATAGAGAAGCTCAAGCAGCAAATGCTGGACCAGGAAGAGCTGCTGGTGTCCACCCGAGGAGACAACGAGAAGGTCCAGCGGGAGCTGAGCCACCTGCAATCAGAGAACGATGCCGCTAAGGATGAGGTGAAGGAAGTGCTGCAGGCCCTGGAGGAGCTGGCTGTGAACTATGACCAGAAGTCCCAGGAGGTGGAGGAGAAGAGCCAGCAGAACCAGCTTCTCGTGGATGAGCTGTCTCAGAAGGTGGCCACCATGCTGTCCCTGGAGTCTGAGTTGCAGCGGCTACAGGAGGTCAGTGGACACCAGCGAAAACGAATTGCTGAGGTGCTGAACGGGCTGATGAAGGATCTGAGCGAGTTCAGTGTCATTGTGGGCAACGGGGAGATTAAGCTGCCAGTGGAGATCAGTGGGGCCATCGAGGAGGAGTTCACTGTGGCCCGACTCTACATCAGCAAAATCAAATCAGAAGTCAAGTCTGTGGTCAAGCGGTGCCGGCAGCTGGAGAACCTCCAGGTGGAGTGTCACCGCAAGATGGAAGTGACCGGGCGGGAGCTCTCATCCTGCCAGCTCCTCATCTCTCAGCATGAGGCCAAGATCCCCTCGCTTACGGAATACATGCAGAGCGTGGAGCTAAAGAAGCGGCACCTGGAAGAGTCCTATGACTCCTTGAGCGATGACCTGGCCAAGCTCCAGGCCCAGGAAACTGTGCATGAAGTGGCCCTGAAGGACAAGGAGCCTGACACTCAGGATGCAGATGAAGTGAAGAAGGCTCTGGAGCTGCAGATGGAGAGTCACCGGGAGGCCCATCACCGGCAGCTGGCCCGGCTCCGGGACGAGATCAACGAGAAGCAGAAGACCATTGATGAGCTCAAAGACCTAAATCAGAAGCTCCAGTTAGAGCTAGAGAAGCTTCAGGCTGACTACGAGAAGCTGAAGAGCGAAGAACACGAGAAGAGCACCAAGCTGCAGGAGCTGACATTTCTGTACGAGCGACATGAGCAGTCCAAGCAGGACCTCAAGGGTCTGGAGGAGACAGTTGCCCGGGAACTCCAGACCCTCCACAACCTTCGCAAGCTGTTCGTTCAAGACGTCACGACTCGAGTCAAGAAAAGTGCAGAAATGGAGCCCGAAGACAGTGGGGGGATTCACTCCCAAAAGCAGAACATTTCCTTTCTTGAGAACAACCTGGAACAGCTTACAAAGGTTCACAAACAGCTGGTACGTGACAATGCAGATCTGCGTTGTCAGCTTCCTAAATTGGAAAAACGACTTAGGGCTACGGCTGAGAGAGTTAAGGCCCTGGAGGGTGCACTGAAGGAGGCCGTTCGCTACAAGAGCTCGGGCAAACGGGGCCATTCTGCCCAGATTGCCAAACCCGTCCGGCCTGGCCACTACCCAGCATCCTCACCCACCAACCCCTATGGCACCCGGAGCCCTGAGTGCATCAGTTACACCAACAGCCTCTTCCAGAACTACCAGAATCTCTACCTGCAGGCCACACCCAGCTCCACCTCAGATATGTACTTTGCAAACTCCTGTACCAGCACTGGAGCCACATCTTCTGGCGGCCCCTTGGCTTCCTACCAGAAGGCCAACATGGACAATGGAAATGCCACAGATATCAATGACAATAGGAGTGACCTGCCGTGTCGCTATGAGGCTGAGGACCAGGCCAAGCTTTTCCCTCTCCACCAAGAGACAGCAGCCAGCTAATCTCCCACACCCACGGCTGCATACCTGCACTTTCAGTTTCTAAGAGGGACTGAGGCCTCTTCTCAGCATGCTGCAAACCTGTGGTCTCTGATACTAACTCCCTCCCCAACCCCTGTTGTTGGACTGTACTATGTTTGATGTCTTCTCTTACTTACTCTGTATCTCTTTGTACTCTGTATCTATATATCAAAAGCTGCTGCTATGTCTCTCTTCTGTCTTATTCTCAAGTATCTACTGATGTATTTAGCAATTTCAAAGCATAGTCTACCTTCCTTATTTGGGGCAATAGGGAGGAGGGTGAATGTTTCTTCTTTCTCATCTACTCGTCTCACACTGAGTGGTGTTAGTCACTGAGTAGAGGTCACAGAGATGACAAAAGGAAAAATGGGAGCTAGAGGGTTGTGACCCTTCATACACACACGCACACACGCACACAAACATGCACACACGCATGCACACACACAAAGCCTTAAGCAGAAGAATGTCTTAGCATCATGAGACGAGAAATATACTCTTCCTCCCTCCTCTTTCACATATAGCACAGAAGGTAAAATGGAACGGCTCCTAATTGAGACATATAATTTTCGCAATTCORF Start: ATG at 29ORF Stop: TAA at 3062SEQ ID NO:581011 aaMW at 114816.1kDNOV6a,MAETNNECSIKVLCRFRPLNQAEILRGDKFTPIFQGDDSVVIGGKPYVFDRVFPPNTTQEQVYHACAMCG122634-01ProteinQIVKDVLAGYNGTIFAYGQTSSGKTHTMEGKLHDPQLMGIIPRIARDIFNHIYSHDENLEFHIKVSYFSequenceEIYLDKIRDLLDVTKTNLSVHEDKNRVPFVKGCTERFVSSPEEILDVIDEGKSURHVAVTNNNEHSSRSHSIFLINIKQENMETEQKLSGKLYLVDLACSEKVSKTGAEGAVLDFAKNINKSLSALGNVISALAEGTKSYVPYRDSKHTRILQDSLGGNCRTTMFICCSPSSYNDAETKSTLHFGQRAKTIKNTASVNLELTAEQWKKKYEKEKEKTKAQKETIAXLEAELSRWRNGENVPETERLAGEEAALGAELCEETPVNDNSSIVVRIAPEERQKYEEEIRRLYKQLDDKDDEINQQSQLIEKLKQQMLDQEELLVSTRGDNEKVQRELSHLQSENDAAKDEVKEVLQALEELAVNYDQKSQEVEEKSQQNQLLVDELSQKVATMLSLESELQRLQEVSGHQRKRIAEVLNGLHKDLSEFSVIVGNGEIKLPVEISGAIEEEFTVARLYISKHISEVKSVVKRCRQLENLQVECHRKMEVTGRELSSCQLLISQHEAKIRSLTEYMQSVELKKRHLEESYDSLSDELAKLQAQETVHEVALKDKEPDTQDADEXTKKALELQMESHREAHHRQLARLRDEINEKQKTIDELKDLNQKLQLLEKLQADYEKLKSEEHEKSTKLQELTFLYERHEQSKQDLKGLEETVARELQTLHNLRKLFVQDVTTRVKKSAEMEPEDSGGTHSQKQKISFLENNLEQLTKVHKQLVRDNADLRCELPKLEKRLRATAERVKALEGALKEAVRYKSSGKRGHSAOIAKPVRPGHYPASSPTNPYGTRSPECISYTNSLFONYONLYLOATPSSTSDMYFANSCTSSGATSSGGPLASYQKANMDNGNATDINDNRSDLPCGYEAEDQAKLFPLHQETAAS


[0382] Further analysis of the NOV6a protein yielded the following properties shown in Table 6B.
33TABLE 6BProtein Sequence Properties NOV6aPSort0.4379 probability located in mitochondrialanalysis:matrix space; 0.3000 probability located inmicrobody (peroxisome); 0.3000 probabilitylocated in nucleus; 0.1217 probability locatedin mitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0383] A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.
34TABLE 6CGeneseq Results for NOV6aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV6a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAM78880Human protein SEQ ID NO7 . . . 918661/939 (70%)0.01542 - Homo sapiens, 963 aa.6 . . . 941787/939 (83%)[WO200157190-A2,09 AUG. 2001]AAM79864Human protein SEQ ID NO7 . . . 918654/940 (69%)0.03510 - Homo sapiens, 979 aa.21 . . . 957 780/940 (82%)[WO200157190-A2,09 AUG. 2001]ABB63485Drosophila melanogaster7 . . . 904551/946 (58%)0.0polypeptide SEQ ID NO10 . . . 949 699/946 (73%)17247 - Drosophilamelanogaster, 975 aa.[WO200171042-A2,27 SEP. 2001]AAW72746Drosophila kinesin -7 . . . 904550/946 (58%)0.0Drosophila sp, 975 aa.10 . . . 949 698/946 (73%)[US5830659-A,03-NOV-1998]AAW72745Drosophila kinesin7 . . . 386273/383 (71%)e−159N-terminal 411 amino acid10 . . . 392 322/383 (83%)residues - Drosophila sp, 411aa. [US5830659-A,03 NOV. 1998]


[0384] In a BLAST search of public sequence datbases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.
35TABLE 6DPublic BLASTP Results for NOV6aIdentities/ProteinSimilarities forAccessionNOV6a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ12840Neuronal kinesin heavy chain1 . . . 10111010/1032 (97%) 0.0(NKHC) (Kinesin heavy chain1 . . . 10321010/1032 (97%) isoform 5A) (Kinesin heavy chainneuron-specific 1) -Homo sapiens (Human), 1032aa.P33175Neuronal kinesin heavy chain1 . . . 1011983/1032 (95%)0.0(NKHC) (Kinesin heavy chain1 . . . 1027999/1032 (96%)isoform 5A) (Kinesin heavychain neuron-specific 1) -Mus musculus (Mouse), 1027aa.S37711kinesin heavy chain - mouse,7 . . . 1011956/1027 (93%)0.01027 aa.6 . . . 1027987/1027 (96%)O60282Kinesin heavy chain isoform7 . . . 918  699/939 (74%)0.05C (Kinesin heavy chain6 . . . 943  806/939 (85%)neuron-specific 2) - Homosapiens (Human), 957 aa.P28738Kinesin heavy chain isoform7 . . . 918  695/938 (74%)0.05C (Kinesin heavy chain6 . . . 942  803/938 (85%)neuron-specific 2) - Musmusculus (Mouse), 956 aa.


[0385] PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6E.
36TABLE 6EDomain Analysis of NOV6aIdentities/Similarities forPfamNOV6athe MatchedExpectDomainMatch RegionRegionValuekinesin15 . . . 357178/417 (43%)8.4e−174299/417 (72%)Phosphoprotein482 . . . 507   7/26 (27%)0.77 20/26 (77%)



Example 7

[0386] The NOV7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
37TABLE 7ANOV7 Sequence AnalysisSEQ ID NO: 59701 bpNOV7a, GCGGTGTATGTGCGGCAATAACATGTCAACCCCOCTGCCCACCATCGTGCCCGCCCCCCGGAAGGCCACG125197-01 DNA Sequence CCACTGAGGTGATTTTCCTGCATGGATTGGGAGATACTGGGCACGGATGGGCAGAAGccTTTGCCGGTATCATAAGTTCACATATCAAATATATCTGCCCGCATGCGCCTGTTAGGCCTGTTACATTAAATATGAACATAGCTATGCCTTCATGGTTTGATATTATTGGGCTTTCACCAGATTCACAGGAGGATGAATCTGGGATTAAACAGGCAGCACAAAATATAAAAGCTTTGATTGATCAAGAAGTGAAGAATGGCATTCCTTCTAACAGAATTATTTTGGGAGGGTTTTCTCAGGGAGGAGCTTTATCTTTATATACTGCCCTTACCACGCACCAGAAACTGGCAGGTGTCACTGCACTCAATTGCTGGCTTCCACTTTGGGCTTCCTTTCCACAGGGTCCTATCGGTGGTGCTAATAGAGATATTTCTATTCTCCAGTGCCACGGGGATTGTGACCCTTTGGTTCCCCTGATGTTTGGTTCTCTTACGGTTGAAAAACTAAAAACATTGGTGAATCCACCCAATGTGACCTTTAAAACCTATGAAGGTATGATGCACAGTTCGTGTCAACAGGAAATGATGAATGTCAAGCAATTCATTGATAAACTCCTACCTCCAATTGATTGACORF Start: ATG at 8ORF Stop: TGA at 698SEQ ID NO: 60230 aaMW at 24848.5kDNOV7a, MCGNNMSTPLPTIVPAPRKATTEVIFLHGLGDTGHGWAEAFAGIISSHIKYICPHAPVRPVTLNMNIACG125197-01 Protein MPSWFDIIGLSPDSQEDESGIKQAAQNIKALIDQEVKNGIPSNRIILGGFSQGGALSLYTALTTHQKLSequence AGVTALNCWLPLWASFPQGPIGGANRDISILQCHGDCDPLVPLMFGSLTVEKLKTLVNPANVTFKTYEGMMHSSCQQEMNVKQFIDKLLPPIDSEQ ID NO: 61616 bpNOV7b, TGTGAGCTGAGGCGGTGTATGTGCGGCAATAACATGTCAACCCCGCTGCCCGCCATCGTGCCCGCCGCG125197-03 DNA Sequence CCCGGAAGGCCACCGCTCCGGTGATTTTCCTGCATGGGTTGGGAGATACTGGGCACGGATOGGCAGAAGCCTTTGCAGGTATCAGAAGTTCACATATCAAATATATCTGCCCGCATGCGCCTGTTAGGCCTGTTACATTAAATATGAACGTGGCTATGCCTTCATGGTTTGATATTATTGGGCTTTCACCAGATTCACAGGAGGATGAATCTGGGATTAAACAGGCAGCAGAAAATATAAAAGCTTTGATTGATCAAGAAGTGAAGAATGGCATTCCTTCTAACAGAATTATTTTGGCAGGGTTTTCTCAGTGCCACGGGGATTGTGACCCTTTGGTTCCCCTGATGTTTGGTCCTCTTACGGTGGAAAAACTAAAAACATTGGTGAATCCAGCCAATGTGACCTTTAAAACCTATGAAGGTATGATGCACAGTTCGTGTCAACACGAAATGATGGATGTCAAGCAATTCATTGATAAACTCCTACCTCCAATTGATTGACGTCACTAAGAGGCCTTGTGTAGAAGTACACCAGCATCATTGTAGTAGAORF Start: ATG at 19ORF Stop: TGA at 565SEQ ID NO: 62182 aaMW at 19740.7kDNOV7b, MCGNNMSTPLPAIVPAARKATAAVIFLHGLGDTGHGWAEAFAGIRSSHIKYICPHAPVRPVTLNMNVCG125197-03 Protein AMPSWFDIIGLSPDSQEDESGIKQAAENIKALIDQEVKNGIPSNRIILGGFSQCHGDCDPLVPLMFGSequencePLTVEKLKTLVNPANVTFKTYEGMMHSSCQQEMMDVKQFIDKLLPPIDSEQ ID NO: 631486 bpNOV7c, AGCCGCTCGCACGCCCTTGGGCCGCGGCCGGGCGCCCGCTCTTCCTTCCGCTTGCGCTGTGAGCTGAGCG125197-02 DNA Sequence GCGGTGTATGTGCGGCAATAACATGTCAACCCCGCTGCCCGCCATCGTGCCCGCCGCCCGGAAGGCCACCGCTGCGGTGATTTTCCTGCATGGATTGGGAGATACTGGGCACGGATGGGCAGAAGCCTTTGCAGGTATCAGAAGTTCACATATCAAATATATCTGCCCGCATGCGCCTGTTACGCCTGTTACATTAAATATGAACGTGGCTATGCCTTCATGGTTTGATATTATTGGGCTTTCACCAGATTCACAGGAGGATGAATCTGGGATTAAACAGGCAGCAGAAAATATAAAAGCTTTGATTGATCAAGAAGTGAAGAATGGCATTCCTTCTAACAGAATTATTTTGGGAGGGTTTTCTCAGGGAGGAGCTTTATCTTTATATACTGCCCTTACCACACAGCAGAAACTCGCAGGTGTCACTGCACTCAGTTGCTGGCTTCCACTTCGGGCTTCCTTTCCACAGGGTCCTATCGGTGGTGCTAATAGAGATATTTCTATTCTCCAGTGCCACGCGGATTGTGACCCTTTGGTTCCCCTGATGTTTGGTTCTCTTACGGTCGAAAAACTAAAAACATTGGTGAATCCAGCCAATGTGACCTTTAAAACCTATGAAGGTATGATGCACAGTTCGTGTCAACAGGAAATGATGGATGTCAAGCAATTCATTGATAAACTCCTACCTCCAATTGATTGACGTCACTAAGAGGCCTTGTGTAGAAGTACACCAGCATCATTGTAGTAGAGTGTAAACCTTTTCCCATGCCCAGTCTTCAAATTTCTAATGTTTTGCAGTGTTAAAATGTTTTGCAAATACATGCCAATAACACAGATCAAATAATATCTCCTCATGAGAAATTTATGATCTTTTAAGTTTCTATACATGTATTCTTATAAGACGACCCAGGATCTACTATATTAGAATAGATGAAGCAGGTAGCTTCTTTTTTCTCAAATGTAATTCAGCAAAATAATACAGTACTGCCACCAGATTTTTTATTACATCATTTGAAAATTAGCAGTATCCTTAATGAAAATTTGTTCAGGTATAAATGAGCAGTTAAGATATAAACAATTTATGCATGCTGTGACTTAGTCTATGGATTTATTCCAAAATTGCTTAGTCACCATGCAGTGTCTGTATTTTTATATATGTGTTCATATATACATAATGATTATAATACATAATAAGAATGACGTGGTATTACATTATCCCTAATAATAGGGATAATGCTGNTTATTGTCCAGGAAAAAGTAAAATCGGTCCCCTTCAATTAATGGCCCTTTTAATNTNGGGACCAGGCTTTTAATTTTCCCCGGATATTAATTTCCAATTTAATACCCCTTTCCNCNCCAGAAAAAAAAAAAAAGTTTGTTTTTTCCTTAATTGTCTTCATAGCAGGCCAAGTATTGCCORF Start: ATG at 76ORF Stop: TGA at 766SEQ ID NO: 64230 aaMW at 24669.3kDNOV7c, MCGNNMSTPLPAIVPAARKATAAVIFLHGLGDTGHGWAEAFAGIRSSHIKYICPHAPVRPVTLNMNVACG125197-02 Protein MPSWFDIIGLSPDSQEDESGIKQAAENIKALIDQEVKNGIPSNRIILGGFSQGGALSLYTALTTQQKLSequence AGVTALSCWLPLRASFPQGPIGGANRDISILQCHGDCDPLVPLMFGSLTVEKLKTLVNPANVTFKTYEGMMHSSCQQEMMDVKQFIDKLLPPID


[0387] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 7B.
38TABLE 7BComparison of NOV7a against NOV7b and NOV7c.Identities/NOV7a Residues/Similarities forProtein SequenceMatch Residuesthe Matched RegionNOV7b1 . . . 230173/230 (75%)1 . . . 182176/230 (76%)NOV7c1 . . . 230219/230 (95%)1 . . . 230223/230 (96%)


[0388] Further analysis of the NOV7a protein yielded the following properties shown in Table 7C.
39TABLE 7CProtein Sequence Properties NOV7aPSort analysis:0.6500 probability located in cytoplasm; 0.2605probability located in lysosome (lumen); 0.1000probability located in mitochondrial matrix space;0.0000 probability located in endoplasmic reticulum(membrane)SignalP analysis:No Known Signal Sequence Predicted


[0389] A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7D.
40TABLE 7DGeneseq Results for NOV7aNOV7aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAU85134Human lysophospholipase I1 . . . 230219/230 (95%)e−128#2 - Homo sapiens, 230 aa.1 . . . 230223/230 (96%)[WO200210185-A1,07 FEB. 2002]AAU85132Human lysophospholipase I1 . . . 230219/230 (95%)e−128#1 - Homo sapiens, 230 aa.1 . . . 230223/230 (96%)[WO200210185-A1,07 FEB. 2002]ABG07277Novel human diagnostic1 . . . 230219/230 (95%)e−128protein #7268 - Homo46 . . . 275 223/230 (96%)sapiens, 275 aa.[WO200175067-A2,11 OCT. 2001]AAB53451Human colon cancer antigen1 . . . 230219/230 (95%)e−128protein sequence SEQ ID34 . . . 263 223/230 (96%)NO: 991 - Homo sapiens, 263aa. [WO200055351-A1,21 SEP. 2000]AAY09531Human lysophospholipase1 . . . 230219/230 (95%)e−128extended NHLP - Homo1 . . . 230223/230 (96%)sapiens, 230 aa.[WO9849319-A1,05 NOV. 1998]


[0390] In a BLAST search of public sequence datbases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7E.
41TABLE 7EPublic BLASTP Results for NOV7aNOV7aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueO75608Lysophospholipase1 . . . 230219/230 (95%)e−127(Acyl-protein thioesterase-1)1 . . . 230223/230 (96%)(Lysophospholipase I) - Homosapiens (Human), 230 aa.O77821Calcium-independent1 . . . 230202/230 (87%)e−119phospholipase A2 isoform 2 -1 . . . 230213/230 (91%)Oryctolagus cuniculus(Rabbit), 230 aa.P70470LYSOPHOSPHOLIPASE -1 . . . 230203/230 (88%)e−118Rattus norvegicus(Rat), 2301 . . . 230213/230 (92%)aa.O77820Calcium-independent14 . . . 230 202/217 (93%)e−116phospholipase A2 isoform 1 -3 . . . 219207/217 (95%)Oryctolagus cuniculus(Rabbit), 219 aa (fragment).Q9UQF9Lysophospholipase isoform -1 . . . 230204/230 (88%)e−114Homo sapiens (Human), 2141 . . . 214207/230 (89%)aa.


[0391] PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7F.
42TABLE 7FDomain Analysis of NOV7aIdentities/NOV7aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValueabhydrolase_210 . . . 226123/236 (52%)1.3e−108193/236 (82%)



Example 8

[0392] The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
43TABLE 8ANOV8 Sequence AnalysisSEQ ID NO: 653515 bpNOV8a, AAAGGGGAGTCCGGTGAACGGGCAGAAGCAGGGCCATGCCCAAGCCACCCCCAAGATCCCCCTGAACCCG125312-01 DNA Sequence TGCACCTCCATCACGACCCATTCAGGAGCCTCCAGGAGCCCAGACACCAGCCCCCCACCATGGGCAGCAAGGAGCGCTTCCACTGGCAGAGCCACAACGTGAAGCAGAGCGGCGTGGATGACATGGTGCTTCTTCCCCAGATCACCGAAGACGCCATTGCCGCCAACCTCCGGAAGCGCTTCATGGACGACTACATCTTCACCTACATCGGCTCTGTGCTCATCTCTGTAAACCCCTTCAAGCAGATGCCCTACTTCACCGACCGTGAGATCGACCTCTATCAGGGCGCGGTGCAGTATGAGAATCCCCCGCACATCTACGCCCTCACGGACAACATGTACCGGAACATGCTTATCGACTGTGAGAACCAGTGTGTCATCATTAGTCGAGAGAGTGGAGCTGGGAAGACAGTGGCAGCCAAATATATCATGGGCTACATCTCCAAGGTGTCTGGCGGAGGCGAGAAGGTCCAGCACGTCAAAGATATCATCCTGCAGTCCAACCCGCTGCTCGAGGCCTTCGGCAACGCCAAGACTGTGCGCAACAACAATTCCAGCCGCTTTGGCAAGTACTTTGAGATCCAGTTCAGCCGAGGTGGGGAGCCAGATGGGGGCAAGATCTCCAACTTCTTGCTGGAGAAGTCCCGCGTGGTCATCCAAAATGAAAATGAGAGGAACTTCCACATCTACTACCAGCTGCTGGAAGGGGCCTCCCAGGAGCAAAGGCAGAACCTGGGCCTCATGACACCGGACTACTATTACTACCTCAACCAATCGGACACCTACCAGGTGGACGGCACGGACGACAGAAGCGACTTTGGTGAGACTCTGAGTGCTATGCAGGTTATTGGGATCCCGCCCAGCATCCAGCAGCTGGTCCTGCAGCTCGTGGCCGGCATCTTGCACCTGGGGAACATCAGTTTCTGTGAAGACGGGAATTACGCCCGAGTGGAGAGTGTGGACCTGGCCTTTCCCGCCTACCTGCTGGGCATTGACAGCGGGCGACTGCAGGAGAAGCTGACCAGCCGCAAGATGGACAGCCCCTCGGGCCGGCGCAGCGAGTCCATCAATGTGACCCTCAACGTGGAGCAGGCAGCCTACACCCGTGATGCCCTGGCCAAGGGGCTCTATGCCCGCCTCTTCGACTTCCTCGTGGAGGCGATCAACCGTGCTATGCAGAAACCCCAGGAAGAGTACAGCATCGGTGTGCTGGACATTTACGGCTTCGAGATCTTCCAGAAAAATGGCTTCGAGCAGTTTTGCATCAACTTCGTCAATGAGAAGCTGCAGCAAATCTTTATCGAACTTACCCTGAAGGCCGAGCAGGAGGAGTATGTGCAGGAAGGCATCCGCTGGACTCCAATCCAGTACTTCAACAACAAGGTCGTCTGTGACCTCATCGAAAACAAGCTGAGCCCCCCAGGCATCATGAGCGTCTTGGACGACGTGTGCGCCACCATCCACGCCACGCGCCGGGGAGCAGACCAGACACTGCTGCAGAAGCTGCAGGCGGCTGTGGGGACCCACGAGCATTTCAACAGCTGGAGCGCCGGCTTCGTCATCCACCACTACGCTGGCAAGGTGTCCTACGACGTCAGCGGCTTCTGCCAGAGGAACCGAGACGTTCTCTTCTCCGACCTCATAGAGCTGATGCAGACCAGTGAGCAGTTCCTCCGGATGCTCTTCCCCGAGAAGCTGGATGGAGACAAGAAGGGGCGCCCCAGCACCGCCGGCTCCAAGATCAAGAAACAAGCCAACGACCTGGTGGCCACACTGATGACGTGCACACCCCACTACATCCGCTGCATCAAACCCAACGAGACCAAGAGGCCCCGAGACTGGGAGGAGAACAGGGTCAAGCACCAGGTGGAATACCTGGGCCTGAAGGAGAACATCAGGGTGCGCAGAGCCGGCTTCGCCTACCGCCGCCAGTTCGCCAAATTCCTGCAGACGTATGCCATTCTGACCCCCGAGACGTGGCCGCGGTGGCGTGGGGACGAACCCCAGGGCGTCCAGCACCAGCTTCGGGCGGTCAACATGGAGCCCGACCAGTACCAGATGGGGAGCACCAAGGTCTTTGTCAAGAACCCAGAGTCGCTTTTCCTCCTGGAGGAGGTGCGACAGCGAAAGTTCGATCGCTTTGCCCGAACCATCCAGAAGGCCTGGCGGCGCCACGTGGCTGTCCGOAAGTACGAGGAGATGCGGGAGGAAGCTTCCAACATCCTGCTGAACAAGAAGGAGCGGAGGCGCAACAGCATCAATCGGAACTTCGTCCGGGACTACCTGGGGCTGGACGAGCGGCCCGAGCTGCGTCAGTTCCTGGGCAAGAGGGAGCGGGTGGACTTCGCCGATTCGGTCACCAAGTACGACCGCCGCTTCAAGCCCATCAAGCGGGACTTGATCCTGACGCCCAAGTGTGTGTATGTGATTGGGCGAGAGAAAGTGAAGAAGGGACCTGACAAGGGCCAGGTGTGTGAAGTCTTGAAGAAGAAAGTGGACATCCAGGCTCTGCGGGGAGTCTCCCTCAGCACGCGACAGGACGACTTCTTCATCCTCCAAGAGGATGCCGCCGACAGCTTCCTGGAGAGCGTCTTCAAGACCGAGTTTGTCAGCCTTCTGTGCAAGCGCTTCGAGGAGGCGACGCGGAGGCCCCTGCCCCTCACCTTCAGCGACAGACTACAGTTTCGGGTGAAGAAGGAGGCCTGGGGCGGTGGCGGCACCCGCAGCGTCACCTTCTCCCGCGGCTTCGGCGACTTGGCAGTGCTCAAGGTTGGCGGTCGGACCCTCACGGTCAGCGTGGGCCATGGGCTGCCCAAGAGCTCAGAGCCTACGCGGAAGCGAATCGCCAAGGGAAAACCTCGGAGGTCGTCCCAAGCCCCTACCCGGGCGGCCCCTGCGCCCCCCAGAGGTATGGATCGCAATGGGGTGCCCCCCTCTGCCAGAGGGGGCCCCCTGCCCCTGGAGATCATGTCTGGAGGGGGCACCCACAGGCCTCCCCGGGGCCCTCCGTCCACATCCCTGGGAGCCAGCAGACGACCCCGGGCACGTCCGCCCTCAGAGCACAACACAGAATTCCTCAACGTGCCTGACCAGGGCATGGCCGGGATGCAGAGGAACCCCACCGTGGGGCAACGGCCAGTGCCTGGTGTGGGCCGACCCAAGCCCCACCCTCGGACACATGGTCCCAGGTGCCGGGCCCTATACCAGTACGTGGGCCAAGATGTGGACGAGCTGAGCTTCAACGTGAACCAGGTCATTGAGATCCTCATGGAAGATCCCTCGGGCTGGTGGAAGGGCCGGCTTCACGGCCAGGAGGGCCTTTTCCCAGGAAACTACGTGGAGAACATCTGAGCTGGGCCCTCGGATACTGCCTTCTCTPTCGCCCGCCTATCTGCCTGCCGGCCTGGTGCGGAGCCAGGCCCTGCCAATGAGAGCCTCGTTTACCTGGORF Start: ATG at 128ORF Stop: TGA at 3416SEQ ID NO: 661096 aaMW at 124743.0kDNOV8a, MGSKERFHWQSHNVKQSGVDDMVLLPQITEDAIAANLRKRFHDDYTFTYIGSVLISVNPFKQMPYPTDCG125312-01 Protein REIDLYQGAVQYENPPHIYALTDNMYRNMLIDCENQCVIISGESGAGKTVAAKYIMGYISKVSGGGEKSequence VQHVKDIILQSNPLLEAFGNAKTVRNNNSSRFGKYFEIQFSRGGEPDGGKISNFLLEKSRVVMQNENERNFHIYYQLLEGASQEQRQNLGLMTPDYYYYLNQSDTYQVDGTDDRSDFGETLSAMQVIGIPPSIQQLVLQLVAGILHLGNISFCEDGNYARVESVDLAFPAYLLGIDSGRLQEKLTSRKNDSRWGGRSESINVTLNVEQAAYTRDALAKGLYARLFDFLVEAINRAMQKPQEEYSIGVLDIYGFEIFQKNGFEQFCINFVNEKLQQIFIELTLKAEQEEYVQEGIRWTPIQYFNNKVVCDLIENKLSPPGIMSVLDDVCATNHATGGGADQTLLQKLQAAVGTHEHFNSWSAGFVIHHYAGKVSYDVSGFCERNRDVLFSDLIELMQTSEQFLRMLFPEKLDGDKKGRPSTAGSKIKKQANDLVATLNRCTPHYIRCIKPNETKRPRDWEENRVKHQVEYLGLKENIRVRRAGFAYRRQFAKFLQRYAILTPETWPRWRGDERQGVQHLLRAVNMEPDQYQMGSTKVFVKNPESLFLLEEVRERKFDGFARTIQKAWRRHVAVRKYEEMREEASNILLNKKERRRNSINRNFVGDYLGLEERPELRQFLGKRERVDFADSVTKYDRRFKPIKRDLILTPKCVYVIGREKVKKGPEKGQVCEVLKKKVDTQALRGVSLSTRQDDFFILQEDAADSFLESVFKTEFVSLLCKRFEEATRRPLPLTFSDRLQFRVKKEGWGGGGTRSVTFSRGFGDLAVLKVGGRTLTVSVGDGLPKSSEPTRKGMAXGKPRRSSQAPTRAAPAPPRGMDRNGVPPSARGGPLPLEIMSGGGTHRPPRGPPSTSLGASRRPRARPPSEUNTEFLNVPDQGMAGMQRKRSVGQRPVPGVGRPKPQPRTHGPRCRALYQYVGQDVDELSFNVNEVIEILMEDPSGWWKGRLHGQEGLFPGNYVEKI


[0393] Further analysis of the NOV8a protein yielded the following properties shown in Table 8B.
44TABLE 8BProtein Sequence Properties NOV8aPSort analysis:0.9800 probability located in nucleus; 0.4008probability located in microbody (peroxisome);0.1619 probability located in lysosome (lumen);0.1000 probability located in mitochondrialmatrix spaceSignalP analysis:No Known Signal Sequence Predicted


[0394] A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.
45TABLE 8CGeneseq Results for NOV8aNOV8aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAU97544Human Myosin-1F protein 1 . . . 10961089/1098 (99%) 0.0MYO1F - Homo sapiens, 1 . . . 10981092/1098 (99%) 1098 aa.[WO200218946-A2,07 MAR. 2002]ABB97258Novel human protein SEQ 63 . . . 1096994/1097 (90%) 0.0ID NO: 526 - Homo sapiens, 1 . . . 10891006/1097 (91%) 1089 aa.[WO200222660-A2,21 MAR. 2002]AAM39991Human polypeptide SEQ ID18 . . . 718327/724 (45%)e−173NO 3136 - Homo sapiens,47 . . . 761453/724 (62%)1063 aa.[WO200153312-A1,26 JUL. 2001]ABG10171Novel human diagnostic18 . . . 718327/724 (45%)e−173protein #10162 - Homo33 . . . 747453/724 (62%)sapiens, 1050 aa.[WO200175067-A2,11 OCT. 2001]AAB64616Human secreted protein18 . . . 686319/701 (45%)e−169BLAST search protein SEQ16 . . . 697438/701 (61%)ID NO: 126 - Homo sapiens,697 aa. [WO200077197-A1,21 DEC. 2000]


[0395] In a BLAST search of public sequence datbases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8D.
46TABLE 8DPublic BLASTP Results for NOV8aNOV8aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueAAH28071Hypothetical 124.8 kDa1 . . . 10961093/1098 (99%)0.0protein - Homo sapiens1 . . . 10981094/1098 (99%)(Human), 1098 aa.Q8WWN7Myosin-1F - Homo sapiens1 . . . 10961089/1098 (99%)0.0(Human), 1098 aa.1 . . . 10981092/1098 (99%)BAC03995CDNA FLJ35558 fis, clone1 . . . 10871083/1089 (99%)0.0SPLEN2004984, highly1 . . . 10891084/1089 (99%)similar to M. musculusmyosin I - Homo sapiens(Human), 1098 aa.P70248Myosin If - Mus musculus1 . . . 1096 993/1107 (89%)0.0(Mouse), 1099 aa.1 . . . 10991042/1107 (93%)Q90748Brush border myosin IB -1 . . . 1096 917/1102 (83%)0.0Gallus gallus (Chicken),1 . . . 1099 996/1102 (90%)1099 aa.


[0396] PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8E.
47TABLE 8EDomain Analysis of NOV8aIdentities/NOV8aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValuemyosin_head19 . . . 675336/736 (46%) 0549/736 (75%) IQ692 . . . 712  8/21 (38%)0.9616/21 (76%)SH31042 . . . 1096 28/58 (48%)2.2e−2049/58 (84%)



Example 9

[0397] The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
48TABLE 9ANOV9 Sequence AnalysisSEQ ID NO: 671364 bpNOV9a, AGATCTTAGTCGAAGCTTGTGTGGAATTATTCCGGGACTTAGCAGTATCTTCCTTCCCCGAATGAATCCG134439-01 DNA Sequence CATTTGTTTTGATTGATCTTGCTGGAGCATTTGCTCTTTGTATTACATATATGCTCATTGAAATTAATAATTATTTTGCCGTAGACACTGCCTCTGCTATAGCTATTGCCTTGATGACATTTGGCACTATGTATCCCATGAGTGTGTACAGTGGGAAAGTCTTACTCCAGACAACACCACCCCATGTTATTGGTCAGTTGGACAAACTCATCAGAGAGGTATCTACCTTAGATGGAGTTTTAGAAGTCCGAAATGAACATTTTTCGACCCTAGGTTTTGGCTCATTGGCTGGATCAGTGCATGTAAGAATTCGACGAGATGCCAATGAACAAATGGTTCTTGCTCATGTGACCAACAGGCTGTACACTCTAGTGTCTACTCTAACTGTTCAAATTTTCAAGGATGACTGGATTAGGCCTGGCTTATTGTCTGGGCCTCTTGCAGCCAATGTCCTAAACTTTTCAGATCATCACGTAATCCCAATGCCTCTTTTAAAGGGTACTGATGGTTTGAACCCGTATGTTCATTTCCTTTGGAAGATTAATTTTTTCCTTTTTTTTGACATGGAGTCTCTCTCTGTCGCCCAGGCTGGAGTGCAGTGGCACGATCTTGGCTCACTGCAACCCCACCTCCCAGGTTCAAGCAATTCTGCCTGCCTCAGCCTCCCGAGTAGCTGCGATTACAGGCATGCACCACCACACTTGCCTAATTTTTGTATTATTAGTAAAGATGGGGTTCTGCCATGTTGGCCATCCTGGTCTTGAACTCGTGACCTAAGGTGATCTGCCTGCCTTGGCCTCCCAAACTGCTGGGATTACAGGTGTGAGCCACTACACCCGGCCTGATTAATTTCTTTTACTTGCTTCAAGTGTCTCCTTTATTCCAGCCTACACATACAGGTAAATATTCCTAGGAAACTTTCAGCAAGTTAAATCCTATTATAAAATCCCAGAGTCAGTTGTCTAATTPTTATTTTATTTTATTATTATTATTTTTTTTGAGACAGGGTCTTGCTTTGTCACCCAGGCTGGAGTGCAGTGGCGTGAACACAGCTCACCACAGCCTTCACCTCCCAGGCTCAAGTGATCGTTCCAGTTCAGCCTCCTTAGTAGCTGGGATCACAGGTGCAGACCACCACACCCGACTAATTTTCTTTTTTTTTTTTTTAAGACAAGGTCTCACTCTGTCGTCCAGGCTGGAGTACAGTGAGCTGAGATTGTGCCACTACTCCAGCCTGGGTGACAGAGCAAGACTCCATCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 62ORF Stop: TGA at 830SEQ ID NO: 68256 aaMW at 28494.7kDNOV9a, MNPFVLIDLAGAFALCITYMLIEINNYFAVDTASAIAIALMTFGTMYPMSVYSGKVLLQTTPPHVIGQCG134439-01 Protein LDKLIREVSTLDGVLEVRNEHFWTLGFGSLAGSVHVRIRRDANEQMVLAHVTNRLYTLVSTLTVQIFKSequence DDWIRPGLLSGPVAANVLNFSDHHVIPMPLLKGTDGLNPYVHFLWXINFFLFFDMESLSVAQAGVQWHDLGSLQPHLPGSSNSACLSLPSSWDYRHAPPHLPNFCIISKDGVLPCWPCWS


[0398] Further analysis of the NOV9a protein yielded the following properties shown in Table 9B.
49TABLE 9BProtein Sequence Properties NOV9aPSort analysis:0.7762 probability located in outside; 0.2165probability located in microbody (peroxisome);0.1000 probability located in endoplasmicreticulum (membrane); 0.1000 probabilitylocated in endoplasmic reticulum (lumen)SignalP analysis:Cleavage site between residues 54 and 55


[0399] A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 9C.
50TABLE 9CGeneseq Results for NOV9aNOV9aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueABG08221Novel human diagnostic26 . . . 175148/150 (98%) 5e−81protein #8212 - Homo239 . . . 388 148/150 (98%) sapiens, 477 aa.[WO200175067-A2,11 OCT. 2001]AAM05878Peptide #4560 encoded by99 . . . 17575/77 (97%)4e−37probe for measuring breast1 . . . 7775/77 (97%)gene expression - Homosapiens, 166 aa.[WO200157270-A2,09 AUG. 2001]AAM02915Peptide #1597 encoded by99 . . . 17575/77 (97%)4e−37probe for measuring breast1 . . . 7775/77 (97%)gene expression - Homosapiens, 166 aa.[WO200157270-A2,09 AUG. 2001]AAM30756Peptide #4793 encoded by99 . . . 17575/77 (97%)4e−37probe for measuring placental1 . . . 7775/77 (97%)gene expression - Homosapiens, 166 aa.[WO200157272-A2,09 AUG. 2001]AAM27634Peptide #1671 encoded by99 . . . 17575/77 (97%)4e−37probe for measuring placental1 . . . 7775/77 (97%)gene expression - Homosapiens, 166 aa.[WO200157272-A2,09 AUG. 2001]


[0400] In a BLAST search of public sequence datbases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.
51TABLE 9DPublic BLASTP Results for NOV9aNOV9aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9NWI4CDNA FLJ20837 fis, clone49 . . . 256 207/208 (99%) e−123ADKA02602 - Homo sapiens1 . . . 208207/208 (99%)(Human), 208 aa.Q96NC3CDNA FLJ31101 fis, clone1 . . . 175173/175 (98%)2e−95IMR321000266, weakly198 . . . 372 173/175 (98%)similar to zinc/cadmiumresistance protein - Homosapiens (Human), 461 aa.AAM27917Zinc transporter 6 - Mus1 . . . 175164/175 (93%)4e−89musculus (Mouse), 460 aa.198 . . . 372 165/175 (93%)Q8R4Z2Zinc transporter-like 31 . . . 175161/175 (92%)1e−87protein - Mus musculus198 . . . 372 163/175 (93%)(Mouse), 460 aa.AAH32525Similar to hypothetical49 . . . 175 125/127 (98%)5e−67protein MGC11963 - Homo1 . . . 127125/127 (98%)sapiens (Human), 216 aa.


[0401] PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9E.
52TABLE 9EDomain Analysis of NOV9aIdentities/SimilaritiesNOV9afor the MatchedExpectPfam DomainMatch RegionRegionValueCation_efflux30 . . . 12324/97 (25%)6e−1474/97 (76%)



Example 10

[0402] The NOV10 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 10A.
53TABLE 10ANOV10 Sequence AnalysisSEQ ID NO: 693450 bpNOV10a, CGCCCCGCGGGACCCGGACGGCGACGACGGGGGAATGTCCCGCTGGATCCGGCAGCAGCTGCGTTTTCG137109.01 DNA Sequence GACCCACCACATCAGAGTGACACAAGAACCATCTACGTAGCCAACAGGTTTCCTCAGAATGGCCTTTACACACCTCAGAAATTTATAGATAACACGATCATTTCATCTAAGTACACTGTGTGCAATTTTCTTCCAAAAAATTTATTTGAACAGTTCAGAAOAGTGGCAAACTTTTATTTTCTTATTATATTTTTGGTTCAGCTTATGATTGATACACCTACCAGTCCAGTTACCAGTGGACTTCCATTATTCTTTGTGATAACACTAACTGCCATAAAGCAGGGATATGAAGATTGGTTACGGCATAACTCAGATAATGAACTAAATGGACCTCCTGTTTATGTTGTTCGAAGTGGTGGCCTTGTAAAAACTACATCAAAAAACATTCGGGTGGGTGATATTGTTCGAATAGCCAAACATGAAATTTTTCCTGCAGACTTGGTGCTTCTGTCCTCAGATCGACTGGATGGTTCCTGTCACGTTACAACTCCTAGTTTGCACCGACAAACTAACCTGAAGACACATGTGGCAGTTCCAGAAACAGCATTATTACAAACACTTGCCAATTTCGACACTCTAGTAGCTGTAATAGAATGCCAGCAACCAGAAGCAGACTTATACAGATTCATGGGACGAATGATCATAACCCAACAAATGGAACAAATTGTAAGGCCTCTGGGGCCCGAGAGTCTCCTGCTTCGTCGACCCACATTAAAAAACACAAAAGAAATTTTTGGTTTGTACATATTTAAACATTTTAAATTAGGTGTTGCGGTATACACTGGAATGCAAACTAAGATGGCATTAAATTACAACAGCAAATCACAGAAACGATCTGCACTAGAAAAGTCAATGAATACATTTTTGATAATTTATCTAGTAATTCTTATATCTCAAGCTGTCATCAGCACTATCTTGAAGTATACATGGCAAGCTGAAGAAAAATGGGATGAACCTTCCTATAACCAAAAAACACAACATCAAAGAAATAOCAGTAAGGTAGAGTACCTGTTTACAGATAAAACTGGTACACTGACAGAAAATGAGATGCAGTTTCCCCAATGTTCAATTAATGGCATGAAATACCAAGAAATTAATGGTAGACTTGTACCCGAACGACCAACACCAGACTCTTCAGAAGGAAACTTATCTTATCTTAGTACTTTATCCCATCTTAACAACTTATCCCATCTTACAACCAGTTCCTCTTTCAGAACCAGTCCTGAAAATGAAACTGAACTAGTAAAAGAACATGATCTCTTCTTTAAAGCAGTCAGTCTCTGTCACACTGTACAGATTAGCAATGTTCAAACTGACTGCACTGGTGATGGTCCCTGGCAATCCAACCTGGCACCATCGCAGTTGGAGTACTATGCATCTTCACCAGATGAAAAGGCTCTAGTAGAAGCTGCTGCAAGGATTCGTATTGTGTTTATTCCCAATTCTCAAGAAACTATGGAGGTTAAAACTCTTGGAAAACTGGAACGGTACAAACTGCTTCATATTCTGGAATTTGATTCACATCGTAGCACAATGAGTGTAATTGTTCAGGCACCTTCAGGTGACAAGTTATTATTTGCTAAAGGACCTGAGTCATCAATTCTCCCTAAATGTATAGGTGCAGAAATAGAAAAAACCACAATTCATGTAGATGAATTTGCTTTGAAAGGGCTAAGAACTCTGTGTATAGCATATAGAAAATTTACATCAAAAGAGTATCAGCAAATACATAAACGCATATTTGAAGCCAGGACTGCCTTGCACCAGCGGGAAGAGAAATTCGCACCTGTTTTCCAGTTCATAGAGAAAGACCTGATATTACTTGGAGCCACAGCAGTAGAAGACAGACTACAAGATAAACTTCCACAAACTATTGAAGCATTGAGAATGGCTGGTATCAAAGTATGGGTACTTACTGGGGATAAACATGAAACAGCTGTTAGTGTGAGTTTATCATGTGGCCATTTTCATAGAACCATGAACATCCTTGAACTTATAAACCAGAAATCAGACAGCGAGTCTCCTGAACAATTGAGCCAGCTTGCCAGAAGAATTACAGAGGATCATGTGATTCAGCATGGGCTGGTAGTGGATGGGACCAGCCTATCTCTTGCACTCAGGGAGCATCAAAAACTATTTATGGAACTTTGCACAAATTCTTCAGCTGTATTATGCTGTCGTATGGCTCCACTCCAGAAAGCAAAAGTAATAAGACTAATAAAAATATCACCTGAGAAACCTATAACATTCGCTGTTGCTGATGCTCCTAATGACGTAAGCATGATACAAGAAGCCCATGTTGGCATAGGAATCATGGGTAAAGAAGGAAGACACGCTGCAAGAAACAGTGACTATGCAATAGCCACATTTAAGTTCCTCTCCAAATTGCTTTTTGTTCATGGTCATTTTTATTATATTAGAATAGCTACCCTTGTACAGTATTTTTTTTATAAGAATGTGTGCTTTATCACACCCCAGTTTTTATATCAGTTCTACTGTTTGTTTTCTCACCAAACATTGTATGACACCGTCTACCTGACTTTATACAATATTTGTTTTACTTCCCTACCTATTCTCATATATACTCTTTTCGAACAGCATGTAGACCCTCATGTGTTACAAAATAAGCCCACCCTTTATCGAGACATTAGTAAAAACCGCCTCTTAAGTATTAAAACATTTCTTTATTGCACCATCCTGGGCTTCAGTCATCCCTTTATTTTCTTTTTTGGATCCTATTTACTAATAGGGAAAGATACATCTCTGCTTCGAAATCGCCAGATGTTTGCAAACTCCACATTTGGCACTTTGGTCTTCACAGTCATGGTTATTACAGTCACAGTAAACATGGCTCTGGAAACTCATTTTTGGACTTGGATCAACCATCTCGTTACCTGGGGATCTATTATATTTTATTTTGTATTTTCCTTGTTTTATGGAGCGATTCTCTGGCCATTTTTGGGCTCCCAGAATATGTATTTTGTGTTTATTCAGCTCCTGTCAAGTGGTTCTGCTTGGTTTGCCATAATCCTCATGGTTGTTACATGTCTATTTCTTGATATCATAAAGAAGGTCTTTGACCGACACCTCCACCCTACAAGTACTGAAAAGCCACAGCTTACTGAAACAAATGCAGGTATCAACTGCTTGGACTCCATGTGCTCTTTCCCCGAAGGAGAAGCAGCGTGTGCATCTGTTGGAAGAATGCTGGAACGAGTTATAGGAAGATCTAGTCCAACCCACATCACCAGATCATGGAGTGCATCGGATCCTTTCTATACCAACGACAGGAGCATCTTGACTCTCTCCACAATGGACTCATCTACTTGTTAAAGGGGCAGTAGTACTTTGTGGCAGCCAGTTCACCTCCTTTCCTAAAATTCORF Start: ATG at 35ORF Stop: TAA at 3398SEQ ID NO: 701121 aaMW at 127704.1kDNOV10a, MWRWIRQQLGFDPPHQSDTRTIYVANRFPQNGLYTPQKFIDNRIISSKYTVWNFVPKNLFEQFRRVACS137109-01 Protein SequenceNFYFLIIFLVQLMIDTFTSPVTSGLPLFFVITVTAIKQGYEDWLRHNSDNEVNCAPVYVVRSGGLVKTRSKNIRVGDIVRIAKDEIFPADLVLLSSDRLDGSCHVTTASLDCETNLKTHVAVPETALLQTVANLDTLVAVIECQQFEADLYRFMGRMIITQQMEEIVRPLCPESLLLRGARLKNTKEIFCLYIFKHFKLGVAVYTCMETKMALNYKSKSQKRSAVEKSMNTFLIIYLVILISEAVISTILKYTWQAEEKWDEPWYNQKTEHQRNSSKVEYVFTDKTGTLTENEMQFRECSINGMXYQEINGRLVPEGPTPDSSEGNLSYLSSLSHLNNLSHLTTSSSFRTSPENETELVKEHDLFFKAVSLCHTVQISNVQTDCTGDGPWQSNLAFSQLEYYASSPDEKALVEAAARIGIVFICNSEETMEVKTLGKLERYKLLHILEFDSDRRRMSVIVQAFSGEKLLFAKGAESSILPKCIGGEIEKTRIHVDEFALKCLRTLCIAYRKFTSKEYEEIDKRIFEARTALQQREEKLAAVFQFIEKDLILLCATAVEDRLQDKVRETIEALRMAGIKVWVLTGDKHETAVSVSLSCCHFHRTMNILELINQKSDSECAEQLRQLARRITEDHVIQNGLVVDCTSLSLALREHEKLFMEVCRNCSAVLCCRMAPLQKAKVIRLIKISPEKPITLAVGDCANDVSMIQEAHVGIGIMCKEGRQAARNSDYAIARFKFLSKLLFVHGHFYYIRTATLVQYFFYKNVCFITPQFLYQFYCLFSQQTLYDSVYLTLYNICFTSLPILIYSLLEQHVDPHVLQNKPTLYRDISKNRLLSIKTFLYWTILGFSHAFIFFFGSYLLIGKDTSLLGNGQNFGNWTFGTLVFTVMVITVTVKMALETHFWTWINHLVTWCSIIFYFVFSLFYCCILWPFLGSQNMYFVFTQLLSSCSAWFAIILMVVTCLFLDIIKKVFDRULHFTSTEKAQLTETUAGIKCLDSMCCFPEGEAACASVGRMLERVIGRCSPTHISRSWSASDPFYTNDRSTLTLSTMDSSTC


[0403] Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.
54TABLE 10BProtein Sequence Properties NOV10aPSort0.6000 probability located in plasma membrane; 0.4000analysis:probability located in Golgi body; 0.3000 probabilitylocated in endoplasmic reticulum (membrane); 0.3000probability located in microbody (peroxisome)SignalPNo Known Signal Sequence Predictedanalysis:


[0404] A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 10C.
55TABLE 10CGeneseq Results for NOV10aNOV10aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAO14203Human transporter and ion1 . . . 10951084/1095 (98%)0.0channel TRICH-20 - Homo1 . . . 10851085/1095 (98%)sapiens, 1096 aa.[WO200204520-A2,17 JAN. 2002]AAG67546Amino acid sequence of a1 . . . 11211064/1187 (89%)0.0human transporter protein -1 . . . 11771081/1187 (90%)Homo sapiens, 1177 aa.[WO200164878-A2,07 SEP. 2001]AAM39290Human polypeptide SEQ ID327 . . . 1121  780/804 (97%)0.0NO 2435 - Homo sapiens,12 . . . 815  789/804 (98%)815 aa. [WO200153312-A1,26 JUL. 2001]AAM41076Human polypeptide SEQ ID344 . . . 1121  775/778 (99%)0.0NO 6007 - Homo sapiens,5 . . . 782  778/778 (99%)782 aa. [WO200153312-A1,26 JUL. 2001]AAO14200Human transporter and ion18 . . . 1050  591/1129 (52%)0.0channel TRICH-17 - Homo22 . . . 1109  759/1129 (66%)sapiens, 1192 aa.[WO200204520-A2,17 JAN. 2002]


[0405] In a BLAST search of public sequence datbases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.
56TABLE 10DPublic BLASTP Results for NOV10aNOV10aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9N0Z4RING-finger binding9 . . . 11211047/1117 (93%) 0.0protein - Oryctolagus1 . . . 11071080/1117 (95%) cuniculus (Rabbit), 1107aa (fragment).Q9Y2G3Potential450 . . . 1121  672/672 (100%)0.0phospholipid-transporting1 . . . 672  672/672 (100%)ATPase IR (EC 3.6.3.1) -Homo sapiens (Human), 672aa (fragment).Q8R0F1Hypothetical 69.8 kDa508 . . . 1121 573/614 (93%)0.0protein - Mus musculus1 . . . 613 596/614 (96%)(Mouse), 613 aa (fragment).T42662hypothetical protein698 . . . 1121  424/424 (100%)0.0DKFZp434N1615.1 - human,1 . . . 424  424/424 (100%)424 aa (fragment).P98196Potential299 . . . 1050 407/789 (51%)0.0phospholipid-transporting15 . . . 772 537/789 (67%)ATPase IS (EC 3.6.3.1) -Homo sapiens (Human), 797aa (fragment).


[0406] PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10E.


[0407] PFam analysis predicts that the NOV10a protein contained the domains shown in the Table 10E.
57TABLE 10EDomain Analysis of NOV10aIdentities/SimilaritiesNOV10afor the MatchedExpectPfam DomainMatch RegionRegionValueE1-E2_ATPase126 . . . 16410/39 (26%)0.1332/39 (82%)Hydrolase345 . . . 78648/453 (11%) 6.6e−09277/453 (61%) 



Example 11

[0408] The NOV11 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 11A.
58TABLE 11ANOV11 Sequence AnalysisSEQ ID NO: 712077 bpNOV11a, GGCGAGGCGAGGTTTGCTGGOGTGAGGCAGCGGCGCGGCCGGGCCGGGCCGOGCCACAGGCGGTGGCCG137330-01 DNA Sequence GGCGGGACCATGGACGCGGCGGTCGCTGCTCCGCGTCCCCGGCTGCTCCTCCTCGTGCTGGCGGCGGCGGCGGCGGCGGCGGCCGCGCTGCTCCCGGGGGCGACGGCGTTACAGTGTTTCTGCCACCTCTGTACAAAAGACAATTTTACTTGTGTGACAGATGGGCTCTGCTTTGTCTCTGTCACAGAGACCACAGACAAAGTTATACACAACAGCATGTGTATAGCTGAAATTGACTTAATTCCTCGAGATAGGCCGTTTGTATGTGCACCCTCTTCAAAAACTGGGTCTGTGACTACAACATATTCCTGCAATCAGGACCATTGCAATAAAATAGAACTTCCAACTACTGGTTTACCATTGCTTGTTCAGAGAACAATTGCGAGAACTATTGTGTTACAAGAAAGCATTGGCAAAGGTCGATTTGGAGAAGTTTGGAGAGGAAAGTCGCGGGGAGAAGAAGTTGCTGTTAAGATATTCTCCTCTACAGAAGAACGTTCGTGGTTCCGTGAGGCAGAGATTTATCAAACTGTAATGTTACGTCATGAAAACATCCTGGGATTTATAGCAGCAGACAATAAAGACAATGGTACTTGGACTCAGCTCTGGTTGGTGTCAGATTATCATGAGCATGGATCCCTTTTTGATTACTTAAACAGATACACAGTTACTGTGGAAGGAATGATAAAACTTGCTCTGTCCACGGCCAGCGGTCTTGCCCATCTTCACATGGAGATTGTTGGTACCCAAGGAAAGCCAGCCATTGCTCATAGAGATTTGAAATCAAAGAATATCTTGGTAAAGAAGAATGGAACTTGCTGTATTGCAGACTTAGGACTGGCAGTAAGACATGATTCAGCCACAGATACCATTGATATTGCTCCAAACCACAGAGTGGGAACAAAAAGGTACATGGCCCCTGAAGTTCTCGATGATTCCATAAATATGAAACATTTTGAATCCTTCAAACGTGCTGACATCTATGCAATGGGCTTAGTATTCTGGGAAATTGCTCGACGATGTTCCATTGGTGGAATTCATGAAGATTACCAACTGCCTTATTATGATCTTGTACCTTCTGACCCATCAGTTGAAGAAATGAGAAAAGTTGTTTGTGAACAGAAGTTAAGGCCAAATATCCCAAACAGATGGCAGAGCTGTGAAGCCTTGAGAGTAATGGCTAAAATTATGAGAGAATGTTGGTATGCCAATGGAGCAGCTAGGCTTACAGCATTGCGGATTAAGAAAACATTATCGCAACTCAGTCAACAGGAAGGCATCAAAATGTAATTCTACAGCTTTGCCTGAACTCTCCTTTTTTCTTCAGATCTGCTCCTGGGTTTTAATTTGGGAGGTCAGTTGTTCTACCTCACTGAGAGGGAACAGAAGGATATTGCTTCCTTTTGCAGCAGTGTAATAAAGTCAATTAAAAACTTCCCAGGATTTCTTTGGACCCAGGAAACAGCCATGTGGGTCCTTTCTGTGCACTATGAACGCTTCTTTCCCAGGACAGAAAATGTGTAGTCTACCTTTATTTTTTATTAACAAAACTTGTTTTTTAAAAAGATGATTGCTGGTCTTAACTTTAGGTAACTCTGCTGTGCTGGAGATCATCTTTAAGGGCAAAGGAGTTGGATTCCTGAATTACAATGAAACATGTCTTATTACTAAAGAAAGTGATTTACTCCTGGTTAGTACATTCTCAGAGGATTCTGAACCACTAGAGTTTCCTTGATTCAGACTTTGAATGTACTGTTCTATAGTTTTTCAGGATCTTAAAACTAACACTTATAAAACTCTTATCTTGAGTCTAAAAATCACCTCATATAGTAGTGAGGAACATAATTCATGCAATTGTATTTTGTATACTATTATTGTTCTTTCACTTATTCAGAACATTACATGCCTTCAAAATGGGATTGTACTATACCAGTAAGTGCCACTTCTGTGTCTTTCTAATGGAAATGAGTAGAATTGCTGAAAGTCTCTATGTTAAAACCTATAGTGTTTORF Start: ATG at 77ORF Stop: TAA at 1355SEQ ID NO: 72426 aaMW at 47689.6kDNOV11a, MEAAVAAPRPRLLLLVLAAAAAAAAALLPGATALQCFCHLCTKDNFTCVTDGLCFVSVTETTDKVIHCG137330-01 Protein SequenceNSMCIAEIDLIPRDRPFVCAPSSKTGSVTTTYCCNQDHCNKIELPTTGLPLLVQRTIARTIVLQESIGKGRFGEVWRGKWRGEEVAVKIFSSREERSWFREAEIYQTVMLRHENILGFIAADNKDNGTWTQLWLVSDYHEHGSLFDYLNRYTVTVEGMIKLALSTASGLAHLHNEIVGTQGKPAIARRDLKSKNILVKKNGTCCIADLGLAVRHDSATDTIDIAPNHRVGTKRYMAPEVLDDSINMKHFESFKRADIYAMGLVFWEIARRCSIGGIHEDYQLPYYDLVPSDPSVEEMRKVVCEQKLRPNIPNRWQSCEALRVMAKIMRECWYANGAARLTALRIKKTLSQLSQQEGIKM


[0409] Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.
59TABLE 11BProtein Sequence Properties NOV11aPSort0.8200 probability located in outside; 0.1900analysis:probability located in lysosome (lumen); 0.1038probability located in microbody (peroxisome); 0.1000probability located in endoplasmic reticulum (membrane)SignalPCleavage site between residues 34 and 35analysis:


[0410] A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 11C.
60TABLE 11CGeneseq Results for NOV11aNOV11aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAY59452Human Transforming growth114 . . . 426312/313 (99%)0.0factor-beta protein sequence -191 . . . 503313/313 (99%)Homo sapiens, 503 aa.[JP11326328-A,26 NOV. 1999]AAY33303Human hALK-5 clone114 . . . 426312/313 (99%)0.0EMBLA protein - Homo191 . . . 503313/313 (99%)sapiens, 503 aa.[WO9946386-A1,16 SEP. 1999]AAW03758Mullerian inhibiting114 . . . 426312/313 (99%)0.0substance receptor MISR4 -189 . . . 501313/313 (99%)Rattus sp, 501 aa.[US5538892-A,23 JUL. 1996]AAR70241Serine/threonine kinase114 . . . 426312/313 (99%)0.0receptor W120 - Mus191 . . . 503313/313 (99%)musculus, 503 aa.[WO9507982-A,23 MAR. 1995]AAR41923MISR4 - Rattus rattus, 501114 . . . 426312/313 (99%)0.0aa. [WO9319177-A,189 . . . 501313/313 (99%)30 SEP. 1993]


[0411] In a BLAST search of public sequence datbases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.
61TABLE 11DPublic BLASTP Results for NOV11aNOV11aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueJC2062transforming growth factor114 . . . 426312/313 (99%)0.0beta receptor type I187 . . . 499313/313 (99%)precursor - mouse, 499 aa.Q9D5H8Transforming growth factor,114 . . . 426312/313 (99%)0.0beta receptor I - Mus108 . . . 420313/313 (99%)musculus (Mouse), 420 aa.P80204TGF-beta receptor type I114 . . . 426312/313 (99%)0.0precursor (EC 2.7.1.37)189 . . . 501313/313 (99%)(TGFR-1) (TGF-beta type Ireceptor)(Serine/threonine-proteinkinase receptor R4) (SKR4) -Rattus norvegicus (Rat), 501aa.Q64729TGF-beta receptor type I114 . . . 426312/313 (99%)0.0precursor (EC 2.7.1.37)191 . . . 503313/313 (99%)(TGFR-1) (TGF-beta type Ireceptor) (ESK2) - Musmusculus (Mouse), 503 aa.P36897TGF-beta receptor type I114 . . . 426312/313 (99%)0.0precursor (EC 2.7.1.37)191 . . . 503313/313 (99%)(TGFR-1) (TGF-beta type Ireceptor)(Serine/threonine-proteinkinase receptor R4) (SKR4)(Activin receptor-like kinase5) (ALK-5) - Homo sapiens(Human), 503 aa.


[0412] PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.
62TABLE 11EDomain Analysis of NOV11aIdentities/SimilaritiesNOV11afor the MatchedExpectPfam DomainMatch RegionRegionValueActivin_recp21 . . . 11440/118 (34%)9.4e−3077/118 (65%)pkinase128 . . . 415 85/312 (27%)6.1e−61222/312 (71%) 



Example 12

[0413] The NOV12 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 12A.
63TABLE 12ANOV12 Sequence AnalysisSEQ ID NO: 735367 bpNOV12a, GCCGCGCTGCGCCGGAGTCCCGAGCTAGCCCCGGCGCCGCCGCCGCCCAGACCGGACGACAGGCCACCS137339-01 DNA Sequence CTCGTCGGCGTCCGCCCGAGTCCCCGCCTCGCCGCCAACGCCACAACCACCCCGCACGGCCCCCTGACTCCGTCCAGTATTGATCGGGAGAGCCGGAGCGAGCTCTTCGGGGAGCAGCGATGCGACCCTCCGGGACGGCCCGGGCAGCGCTCCTGGCGCTGCTGGCTGCGCTCTGCCCGGCGAGTCGGGCTCTGGAGGAAAAGAAAGTTTGCCAAGGCACGAGTAACAAGCTCACOCAGTTCGGCACTTTTGAAGATCATTTTCTCAGCCTCCACACGATGTTCAATAACTGTGAGGTGGTCCTTGGGAATTTGGAAATTACCTATGTGCAGAGGAATTATGATCTTTCCTTCTTAAAGACCATCCAGGAGGTGGCTGGTTATGTCCTCATTGCCCTCAACACAGTGGAGCCAATTCCTTTGGAAAACCTGCAGATCATCAGAGGAAATATGTACTACGAAAATTCCTATGCCTTAGCAGTCTTATCTAACTATGATGCAAATAAAACCGGACTGAAGGAGCTGCCCATGAGAAATTTACAGGAAATCCTGCATGGCGCCGTGCGGTTCAGCAACAACCCTGCCCTGTGCAACGTGGAGAGCATCCAGTGGCGGGACATAGTCAGCAGTGACTTTCTCAGCAACATGTCGATGGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAATGGGACCTGCTGGGGTGCAGGAGAGCAGAACTGCCAGAAACTGACCAAAATCATCTGTGCCCAGCAGTGCTCCGGGCGCTGCCGTGGCAAGTCCCCCAGTGACTGCTGCCACAACCAGTGTGCTGCAGGCTGCACAGGCCCCCGGGAGAGCGACTGCCTGGTCTGCCGCAAATTCCGAGACGAAGCCACGTGCAAGGACACCTGCCCCCCACTCATGCTCTACAACCCCACCACGTACCAGATGGATGTGAACCCCGAGGGCAAATACAGCTTTGGTGCCACCTGCCTGAAGAAGTGTCCCCGTAATTATGTGGTGACAGATCACGGCTCGTGCGTCCGAGCCTGTGGGGCCGACAGCTATGAGATGGAGGAAGACGGCGTCCGCAAGTGTAAGAACTGCGAAGGGCCTTGCCGCAAAGTGTGTAACGGAATAGGTATTGGTGAATTTAAAGACTCACTCTCCATAAATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCGATCTCCACATCCTGCCGGTGGCATTTAGGGGTGCTCAGTTTTCTCTTGCAGTCGTCAGCCTGAACATAACATCCTTGGGATTACGCTCCCTCAAGGAGATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATGCAAATACAATAAACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAGGTGAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCCCCCGAGGGCTGCTGGGGCCCGGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGACGCAGGGAATGCGTGGACAAGTGCAACCTTCTGGAGGGGGAGCCAAGGGAGTTTGTGGAGAACTCTGAGTGCATACAGTGCCACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGGACCAGACAACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCCCGGCAGGAGTCATGGGAGAAAACAACACCCTGGTCTGGAAGTACGCAGACGCCGGCCATGTGTGCCACCTGTGCCATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAACGAATGGGCCTAAGATCCCGTCCATCGCCACTGGGATGGTGGGGGCCCTCCTCTTGCTGCTGGTCGTGGCCCTGGGGATCGGCCTCTTCATGCGAAGGCGCCACATCGTTCGGAAGCGCACGCTGCGGAGGCTGCTGCAGGAGAGGGAGCTTGTGGAGCCTCTTACACCCAGTGGAGAAGCTCCCAACCAAGCTCTCTTGAGGATCTTGAAGGAAACTGAATTCAAAAAGATCAAAGTGCTGGGCTCCGGTGCGTTCGGCACGGTGTATAAGGGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGATGAAGCCTACGTGATCGCCAGCGTGGACAACCCCCACGTGTGCCGCCTGCTGGGCATCTGCCTCACCTCCACCGTGCAACTCATCACGCAGCTCATGCCCTTCCGCTGCCTCCTGGACTATGTCCGGGAACACAAAGACAATATTGGCTCCCAGTACCTGCTCAACTGGTGTGTGCAGATCGCAAAGGGCATGAACTACTTCGAGGACCGTCGCTTGGTGCACCGCGACCTGGCAGCCAGGAACGTACTGGTGAAAACACCGCAGCATGTCAAGATCACAGATTTTGGGCTGGCCAAACTGCTGGGTGCGGAAGAGAAAGAATACCATGCAGAAGGAGGCAAAGTGCCTATCAAGTGGATGGCATTGGAATCAATTTTACACAGAATCTATACCCACCAGAGTGATGTCTGGAGCTACGGGGTGACCGTTTGGGAGTTGATGACCTTTGGATCCAAGCCATATGACGGAATCCCTGCCAGCGAGATCTCCTCCATCCTGGAGAAAGGAGAACGCCTCCCTCAGCCACCCATATGTACCATCGATGTCTACATGATCATGGTCAAGTGCTGGATGATAGACGCAGATAGTCGCCCAAAGTTCCGTGAGTTGATCATCGAATTCTCCAAAATGGCCCGAGACCCCCAGCGCTACCTTGTCATTCAGGGGGATGAAAGAATGCATTTGCCAAGTCCTACAGACTCCAACTTCTACCGTGCCCTGATGGATGAAGAAGACATGGACGACGTGGTGGATGCCGACGAGTACCTCATCCCACAGCAGGGCTTCTTCAGCAGCCCCTCCACGTCACGGACTCCCCTCCTGAGCTCTCTGAGTGCAACCAGCAACAATTCCACCGTGGCTTGCATTGATAGAAATGGGCTGCAAAGCTGTCCCATCAAGGAAGACAGCTTCTTGCAGCGATACAGCTCAGACCCCACAGGCGCCTTGACTGAGGACAGCATAGACGACACCTTCCTCCCAGTGCCTGAATACATAAACCAGTCCGTTCCCAAAAGGCCCGCTGGCTCTGTGCAGAATCCTGTCTATCACAATCAGCCTCTGAACCCCGCGCCCAGCAGAGACCCACACTACCAGGACCCCCACAGCACTGCAGTGGGCAACCCCGAGTATCTCAACACTGTCCAGCCCACCTGTGTCAACAGCACATTCGACAGCCCTGCCCACTGGGCCCAGAAAGGCAGCCACCAAATTAGCCTCGACAACCCTGACTACCAGCAGGACTTCTTTCCCAAGGAACCCAAGCCAAATCGCATCTTTAAGGGCTCCACAGCTGAAAATGCAGAATACCTAAGGGTCGCGCCACAAAGCAGTGAATTTATTGGAGCATGACCACGGAGGATAGTATGAGCCCTAAAAATCCAGACTCTTTCGATACCCAGGACCAAGCCACAGCAGGTCCTCCATCCCAACAGCCATGCCCGCATTAGCTCTTAGACCCACAGACTGGTTTTGCAACGTTTACACCGACTAGCCAGGAAGTACTTCCACCTCGGGCACATTTTGGGAAGTTGCATTCCTTTGTCTTCAAACTGTGAAGCATTTACAGAAACCCATCCAGCAAGAATATTGTCCCTTTGAGCAGAAATTTATCTTTCAAAGAGGTATATTTCAAAAAAAAAAAAAAAGTATATGTGAGGATTTTTATTGATTGGGGATCTTGGAGTTTTTCATTGTCGCTATTGATTTTTACTTCAATGGGCTCTTCCAACAAGGAAGAAGCTTGCTCGTAGCACTTGCTACCCTGAGTTCATCCAGGCCCAACTGTGAGCAAGGAGCACAAGCCACAAGTCTTCCAGAGGATGCTTGATTCCAGTGGTTCTGCTTCAAGGCTTCCACTGCAAAACACTAAAGATCCAAGAAGGCCTTCATGGCCCCAGCAGGCCGGATCGGTACTGTATCAAGTCATGCCAGGTACAGTAGGATAAGCCACTCTGTCCCTTCCTGGGCAAAGAAGAAACGGAGGGGATGAATTCTTCCTTAGACTTACTTTTGTAAAAATGTCCCCACGGTACTTACTCCCCACTGATGGACCAGTGGTTTCCAGTCATGAGCGTTAGACTGACTTGTTTGTCTTCCATTCCATTGTTTTGAAACTCAGTATGCCGCCCCTGTCTTGCTGTCATGAAATCAGCAAGAGAGGATGACACATCAAATAATAACTCGGATTCCAGCCCACATTGGATTCATCAGCATTTGGACCAATAGCCCACAGCTGAGAATGTGGAATACCTAAGGATAACACCGCTTTTGTTCTCGCAAAAACGTATCTCCTAATTTGAGGCTCAGATGAAATGCATCAGGTCCTTTGGGGCATAGATCAGAAGACTACAAAAATCAACCTGCTCTGAAATCTCCTTTAGCCATCACCCCAACCCCCCAAAATTAGTTTGTGTTACTTATGGAAGATAGTTTTCTCCTTTTACTTCACTTCAAAAGCTTTTTACTCAAAGAGTATATGTTCCCTCCAGGTCAGCTGCCCCCAAACCCCCTCCTTACGCTTTGTCACACAAAAAGTGTCTCTGCCTTGAGTCATCTATTCAAGCACTTACAGCTCTGGCCACAACAGGGCATTTTACAGGTGCGAATGACAGTAGCATTATGAGTAGTGTGAATTCAGGTAGTAAATATGAAACTAGGGTTTGAAATTGATAATGCTTTCACAACATTTGCAGATGTTTTAGAAGGAAAAAAGTTCCTTCCTAAAATAATTTCTCTACAATTGGAAGATTGGAAGATTCAGCTAGTTAGGAGCCCATTTTTTCCTAATCTGTGTGTGCCCTGTAACCTGACTGGTTAACAGCAGTCCTTTGTAAACAGTGTTTTAAACTCTCCTAGTCAATATCCACCCCATCCAATTTATCAAGGAACAAATGGTTCAGAAAATATTTTCAGCCTACAGTTATGTTCAGTCACACACACATACAAAATGTTCCTTTTGCTTTTAAAGTAATTTTTGACTCCCAGATCAGTCAGAGCCCCTACAGCATTGTTAAGAAAGTATTTGATTTTTGTCTCAATGAAAATAAAACTATATTCATTTCCORF Start: ATG at 187ORF Stop: TGA at 3652SEQ ID NO: 741155 aaMW at 127869.7kDNOV12a, MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTPEDHFLSLQRMFNNCEVVLGNLEICG137339-01 Protein SequenceTYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANXTGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSEGATCVKKCPRNYVVTDHCSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGTGIGEFKDSLSINATNIKHFKNCTSISGDLHILPVAFRGGQFSLAVVSLNITSLGLRSLKEISDGDVIISGNXNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREFVENSECIQCHPECLPQAMNTTCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGNVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLNPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGNNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYThQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVXQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLNTVQPTCVNSTFDSPAHWAQKGSHQISLDNPDYQQDFFPKEAKPNGIFKGSTAENAEYLRVAPQSSEFIGASEQ ID NO: 753633 bpNOV12b, ATGCGACCCTCCGGGACGGCCGGGGCAGCGCTCCTGGCGCTGCTGGCTGCGCTCTGCCCGGCGAGTCCG137339-02 DNA Sequence GGGCTCTGGAGGAAAAGAAAGTTTGCCAAGGCACGAGTAACAAGCTCACGCACTTGGGCACTTTTGAAGATCATTTTCTCAGCCTCCAOAGGATGTTCAATAACTGTGAGGTGGTCCTTGGGAATTTGGAAATTACCTATGTGCAGAGGAATTATGATCTTTCCTTCTTAAAGACCATCCAGGAGGTGGCTGGTTATGTCCTCATTGCCCTCAACACAGTGGAGCGAATTCCTTTGGAAAACCTGCAGATCATCAGAGGAAATATGTACTACGAAAATTCCTATGCCTTAGCAGTCTTATCTAACTATGATGCAAATAAAACCGGACTGAACGAGCTGCCCATGAGAAATTTACAGGAAATCCTGCATGGCGCCGTGCGGTTCAGCAACAACCCTGCCCTGTGCAACGTGGAGAGCATCCAGTGGCGGGACATAGTCAGCAGTGACTTTCTCAGCAACATGTCGATCGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAATGGGAGCTGCTGGCGTGCAGGAGAGGAGAACTGCCAGAAACTGACCAAAATCATCTGTGCCCAGCAGTGCTCCGGGCGCTGCCGTGGCAAGTCCCCCAGTGACTGCTGCCACAACCAGTGTGCTGCAGGCTGCACAGGCCCCCGGGAGAGCGACTGCCTGGTCTGCCGCAAATTCCGAGACGAAGCCACGTGCAAGGACACCTGCCCCCCACTCATGCTCTACAACCCCACCACGTACCAGATGGATGTGAACCCCGAGGGCAAATACAGCTTTGGTGCCACCTGCGTGAAGAAGTGTCCCCGTAATTATGTGOTGACAGATCACGGCTCGTGCGTCCGAGCCTGTGGGGCCGACAGCTATGAGATGGAGGAAGACGGCGTCCGCAAGTGTAAGAAGTGCGAAGGGCCTTGCCGCAAAGTGTGTAACGGAATAGGTATTGGTGAATTTAAAGACTCACTCTCCATAAATGCTACGAATATTAAACACTTCAAAAACTGCACCTCCATCAGTGGCGATCTCCACATCCTGCCGGTGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTCTGGATCCACAGGAACTGGATATTCTGAAAACCGTAAAGGAAATCACAGGGTTTTTGCTGATTCAGGCTTGGCCTGAAAACAGGACGGACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACCAAGCAACATGGTCAGTTTPCTCTTGCAGTCGTCAGCCTGAACATAACATCCTTGGGATTACGCTCCCTCAAGGAGATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATGCAAATACAATAAACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAGGTGAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTTGTGCTCCCCCGAGGGCTGCTGGGGCCCOGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGAGGCAGGGAATGCGTGGACAAGTGCAAGCTTCTGGAGGGTGAGCCAAGGGAGTTTGTGGAGAACTCTGAGTGCATACAGTGCCACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGGACCAGACAACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCCCGGCAGGAGTCATGGGAGAAAACAACACCCTGGTCTGGAAGTACGCAGACGCCGGCCATGTGTGCCACCTGTGCCATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAACGAATGGGCCTAAGATCCCGTCCATCGCCACTGGGATGGTGGGGGCCCTCCTCTTGCTGCTGGTGGTGGCCCTGGGGATCGGCCTCTTCATGCGAAGGCGCCACATCGTTCGGAAGCGCACGCTGCGGAGGCTGCTGCAGGAGAGGGAGCTTGTGGAGCCTCTTACACCCAGTGGAGAAGCTCCCAACCAAGCTCTCTTGAGGATCTTGAAGGAAACTGAATTCAAAAAGATCAAAGTGCTCGGCTCCGGTGCGTTCGGCACGGTGTATAAGGGACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATTAAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGATGAAGCCTACGTGATGGCCAGCGTGGACAACCCCCACGTGTGCCGCCTGCTGGGCATCTGCCTCACCTCCACCGTGCAACTCATCACGCAGCTCATGCCCTTCGGCTGCCTCCTGGACTATGTCCGGGAACACAAAGACAATATTGGCTCCCAGTACCTGCTCAACTGGTGTGTGCAGATCGCAAAGGGCATGAACTACTTGGAGGACCGTCGCTTGGTGCACCGCGACCTGGCAGCCAGGAACGTACTGGTGAAAACACCGCAGCATGTCAAGATCACAGATTTTGGGCTGGCCAAACTCCTGGGTGCGGAAGAGAAAGAATACCATGCAGAAGGAGGCAAAGTGCCTATCAAGTGGATGGCATTGGAATCAATTTTACACAGAATCTATACCCACCAGAGTGATGTCTGGAGCTACGGGGTGACCGTTTCGGAGTTGATGACCTTTGGATCCAAGCCATATGACGGAATCCCTGCCAGCGAGATCTCCTCCATCCTGGAGAAAGGAGAACGCCTCCCTCAGCCACCCATATGTACCATCCATGTCTACATGATCATGGTCAAGTGCTGGATGATAGACGCAGATAGTCGCCCAAAGTTCCGTGAGTTGATCATCGAATTCTCCAAAATGGCCCGAGACCCCCAGCGCTACCTTGTCATTCAGGGGGATGAAAGAATGCATTTGCCAAGTCCTACAGACTCCAACTTCTACCGTGCCCTGATGGATGAAGAAGACATGGACGACGTGGTGGATGCCGACGAGTACCTCATCCCACAGCAGGGCTTCTTCAGCAGCCCCTCCACGTCACGGACTCCCCTCCTGAGCTCTCTGAGTGCAACCAGCAACAATTCCACCGTGGCTTGCATTGATAGAAATGGGCTGCAAAGCTGTCCCATCAAGGAAGACAGCTTCTTGCAGCGATACAGCTCAGACCCCACAGGCGCCTTGACTGAGGACAGCATAGACGACACCTTCCTCCCAGTGCCTGAATACATAAACCAGTCCGTTCCCAAAAGGCCCGCTGGCTCTGTGCAGAATCCTGTCTATCACAATCAGCCTCTGAACCCCGCGCCCAGCAGAGACCCACACTACCAGGACCCCCACAGCACTGCAGTGGGCAACCCCGAGTATCTCAACACTGTCCAGCCCACCTGTGTCAACAGCACATTCGACAGCCCTGCCCACTGGGCCCAGAAAGGCAGCCACCAAATTAGCCTGGACAACCCTGACTACCAGCAGGACTTCTTTCCCAAGGAAGCCAAGCCAAATGGCATCTTTAAGGCCTCCACAGCTGAAAATGCAGAATACCTAAGGGTCGCGCCACAAAGCAGTGAATTTATTGGAGCATGAORF Start: ATG at 1ORF Stop: TGA at 3631SEQ ID NO: 761210 aaMW at 134289.9kDNOV12b, MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEVVLGNLEICG137339-02 Protein SequenceTYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPNRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNCSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSTNATNIKHFKNCTSISGDLHILPVAFRGDSFThTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNITSLGLRSLKEISDGDVIISCNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCKLLEGEPREFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAXGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVTQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLNTVQFTCVNSTFDSPAHWAQKGSMQISLDNPDYQQDFFPKEAKPNGIFKGSTAENAEYLRVAPQSSEFIGA


[0414] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.
64TABLE 12BComparison of NOV12a against NOV12b.ProteinNOV12a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV12b1 . . . 11551049/1210 (86%)1 . . . 12101051/1210 (86%)


[0415] Further analysis of the NOV12a protein yielded the following properties shown in Table 12C.
65TABLE 12CProtein Sequence Properties NOV12aPSort0.8834 probability located in plasma membrane;analysis:0.1000 probability located in endoplasmicreticulum (membrane); 0.1000 probability locatedin endoplasmic reticulum (lumen);0.1000 probability located in outsideSignalPCleavage site between residues 25 and 26analysis:


[0416] A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
66TABLE 12DGeneseq Results for NOV12aNOV12aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB68420Amino acid sequence of1 . . . 11551149/1210 (94%)0.0wild type EGFR1 - Homo1 . . . 12101149/1210 (94%)sapiens, 1210 aa.[WO200136659-A2,25 MAY 2001]AAE23019Human Her-1 protein #1 -1 . . . 11551148/1210 (94%)0.0Homo sapiens, 1210 aa.1 . . . 12101148/1210 (94%)[WO200226758-A1,04 APR. 2002]AAM50768Human epidermal growth1 . . . 11551148/1210 (94%)0.0factor receptor precursor -1 . . . 12101148/1210 (94%)Homo sapiens, 1210 aa.[WO200198321-A1,27 DEC. 2001]AAY50616Human EGF receptor protein -1 . . . 11551148/1210 (94%)0.0Homo sapiens, 1210 aa.1 . . . 12101148/1210 (94%)[US5985553-A,16 NOV. 1999]AAB19259Amino acid sequence of an1 . . . 11551148/1210 (94%)0.0epidermal growth factor1 . . . 12101148/1210 (94%)receptor - Homo sapiens,1210 aa. [US6127126-A,03 OCT. 2000]


[0417] In a BLAST search of public sequence datbases, the NOV12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
67TABLE 12EPublic BLASTP Results for NOV12aNOV12aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP00533Epidermal growth factor1 . . . 11551149/1210 (94%)0.0receptor precursor (EC1 . . . 12101149/1210 (94%)2.7.1.112) (Receptorprotein-tyrosine kinaseErbB-1) - Homo sapiens(Human), 1210 aa.GQHUEepidermal growth factor1 . . . 11551148/1210 (94%)0.0receptor precursor - human,1 . . . 12101148/1210 (94%)1210 aa.Q01279Epidermal growth factor1 . . . 11551040/1212 (85%)0.0receptor precursor (EC1 . . . 12101091/1212 (89%)2.7.1.112) -Mus musculus(Mouse), 1210 aa.A53183epidermal growth factor1 . . . 11551039/1212 (85%)0.0receptor precursor - mouse,1 . . . 12101091/1212 (89%)1210 aa.Q9EP98Epidermal growth factor1 . . . 11551039/1212 (85%)0.0receptor isoform 1 - Mus1 . . . 12101090/1212 (89%)musculus (Mouse), 1210 aa.


[0418] PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12F.
68TABLE 12FDomain Analysis of NOV12aIdentities/SimilaritiesNOV12afor theMatchMatchedExpectPfam DomainRegionRegionValueRecep_L_domain 57 . . . 18054/133 (41%)5.1e−59116/133 (87%) Furin-like184 . . . 33893/183 (51%)  2e−99150/183 (82%) Recep_L_domain341 . . . 43732/132 (24%)2.8e−1174/132 (56%)pkinase657 . . . 91080/294 (27%)  1e−74210/294 (71%) 



Example 13

[0419] The NOV13 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 13A.
69TABLE 13ANOV13 Sequence AnalysisSEQ ID NO: 774145 bpNOV13a, GGCGGGCGGGCGGGCGGCTGCGAGCATGGTCCTGGTGCTGCACCACATCCTCATCGCTGTTGTCCAACG138130-01 DNA Sequence TTCCTCACGCGGGGCCAGCACGTCTTCCTCAAGCCGGACGAGCCGCCGCCCCCGCCGCAGCCATGCGCCGACAGCCTGCAGCCAGCCTGGACCCCCTTGCAAAGGAGCCAGGACCCCCACGGAGTAGACACGACCGACTGGAGGACGCCTTGCTGAGTCTGGGCTCTGTCATCGACATTTCAGGCCTGCAACGTGCTGTCAAGGAGGCCCTGTCAGCTGTGCTCCCCCGAGTGGAAACTGTCTACACCTACCTACTGGATGGTGAGTCCCAGCTGGTGTGTGAGGACCCCCCACATGAGCTGCCCCAGGAGGGGAAAGTCCGGGAGGCTATCATCTCCCAGAAGCGGCTGGGCTGCAATGGGCTGGGCTTCTCAGACCTGCCACGGAAGCCCTTGGCCAGGCTGGTGGCTCCACTGGCTCCTGATACCCAAGTGCTGGTCATGCCGCTACCGGACAAGGAGGCTGGCGCCGTGGCAGCTGTCATCTTGGTGCACTGTGGCCAGCTGAGTGATAATGAGGAATGGAGCCTGCAGGCGGTGGAGAAGCATACCCTGGTCGCCCTGCGGAGGGTGCAGGTCCTGCAGCAGCGCGGGCCCAGGGAGGCTCCCCGAGCCGTCCAOAACCCCCCGGAGGGGACGGCGGAAGACCAGAAGGGCGGGGCGGCGTACACCGACCGCGACCGCAAGATCCTCCAACTGTGCGGGGAACTCTACGACCTGGATGCCTCTTCCCTGCAGCTCAAAGTGCTCCAATACCTGCAGCAGGAGACCCGGGCATCCCGCTGCTGCCTCCTGCTGGTGTCGGAGGACAATCTCCAGCTTTCTTGCAAGGTCATCGGAGACAAAGTGCTCGGGGAAGAGGTCAGCTTTCCCTTGACAGGATGCCTGGGCCAGGTGGTGGAAGACAAGAAGTCCATCCAGCTGAAGGACCTCACCTCCGAGGATGTACAACAGCTGCAGAGCATGTTGGGCTGTGAGCTGCAGGCCATGCTCTGTGTCCCTGTCATCAGCCGGGCCACTGACCAGGTGGTGGCCTTGGCCTGCGCCTTCAACAAGCTAGAAGGAGACTTGTTCACCGACGAGGACGAGCATGTGATCCAGCACTGCTTCCACTACACCAGCACCGTGCTCACCAGCACCCTGGCCTTCCAGAAGGAACAGAAACTCAAGTGTGAGTGCCAGGCTCTTCTCCAAGTGGCAAAGAACCTCTTCACCCACCTGGATGACGTCTCTGTCCTGCTCCAGGAGATCATCACGGAGGCCAGAAACCTCAGCAACGCAGAGATCTGCTCTGTGTTCCTGCTGGATCAGAATGAGCTGGTGGCCAAGGTGTTCGACGGGGGCGTGGTGGATGATGAGAGCTATGAGATCCGCATCCCGGCCGATCAGGGCATCGCGGGACACGTGGCGACCACGGGCCACATCCTGAACATCCCTOACGCATATGCCCATCCGCTTTTCTACCGCGGCGTGGACGACAGCACCGGCTTCCCCACGCGCAACATCCTCTGCTTCCCCATCAAGAACGAGAACCAGGAGGTCATCGGTGTGGCCGAGCTGGTGAACAAGATCAATGGGCCATGGTTCAGCAAGTTCGACGAGGACCTGGCGACGGCCTTCTCCATCTACTGCGGCATCAGCATCGCCCATTCTCTCCTATACAAAAAAGTGAATGAGGCTCAGTATCGCAGCCACCTGGCCAATGAGATGATGATGTACCACATGAAGGTCTCCGACGATGAGTATACCAAACTTCTCCATGATGGGATCCAGCCTGTGGCTGCCATTGACTCCAATTTTGCAAGTTTCACCTATACCCCTCCTTCCCTGCCCGAGGATGACACGTCCATGGCCATCCTGAGCATGCTCCAGGACATGAATTTCATCAACAACTACAAAATTGACTGCCCGACCCTCGCCCGGTTCTGTTTOATGGTGAAGAAGGGCTACCGGGATCCCCCCTACCACAACTGGATGCACGCCTTTTCTGTCTCCCACTTCTGCTACCTGCTCTACAAGAACCTGGAGCTCACCAACTACCTCCAGGACATCGAGATCTTTGCCTTGTTTATTTCCTGCATGTGTCATGACCTGGACCACAGAGGCACAAACAACTCTTPCCAGGTGGCCTCGAAATCTGTGCTGGCTGCGCTCTACAGCTCTGAGGGCTCCGTCATGGAGAGGCACCACTTTGCTCAGGCCATCGCCATCCTCAACACCCACGGCTGCAACATCTTTGATCATTTCTCCCGGAAGGACTATCAGCGCATGCTGGATCTGATGCGGGACATCATCTTGGCCACAGACCTGGCCCACCATCTCCGCATCTTCAAGGACCTCCAGAAGATGGCTGAGGTGGGCTACGACCGAAACAACAAGCAGCACCACAGACTTCTCCTCTGCCTCCTCATGACCTCCTGTGACCTCTCTGACCAGACCAAGCGCTGGAAGACTACGAGAAAGATCGCGGAGCTGATCTACAAAGAATTCTTCTCCCAGGGAGACCTGGAGAAGGCCATGGGCAACAGGCCGATGGAGATGATGGACCGGGAGAAGGCCTATATCCCTGAGCTGCAAATCAGCTTCATGGAGCACATTGCAATGCCCATCTACAAGCTGTTGCAGGACCTGTTCCCCAAAGCGGCAGAGCTGTACGAGCGCGTGGCCTCCAACCGTGAGCACTGGACCAAGGTGTCCCACAAGTTCACCATCCGCGGCCTCCCAAGTAACAACTCGCTGGACTTCCTGGATGAGGAGTACGAGGTGCCTGATCTGGATGGCACTAGGGCCCCCATCAATGGCTGCTGCAGCCTTGATGCTGAGTGATCCCCTCCAGGACACTTCCCTGCCCAGGCCACCTCCCACAGCCCTCCACTGGTCTGGCCAGATGCACTCGGAACAGAGCCACGGGTCCTGGGTCCTAGACCAGGACTTCCTGTGTGACCCTGGACAAGTACTACCTTCCTGGGCCTCAGCTTTCTCCTCTGTATAATGGAAGCAAGACTTCCAACCTCACGGAGACTTTGTAATTTCCTTCTCTGAGAGCACAGGGGTGACCAATGAGCAGTGGGCCCTACTCTGCACCTCTGACCACACCTTGGCAAGTCTTTCCCAAGCCATTCTTTGTCTGAGCAGCTTGATGGTTTCTCCTTGCCCCATTTCTGCCCCACCAGATCTTTGCTCCTTTCCCTTTGAGGACTCCCACCCTTTGGGTCTCCAGGATCCTCATGGAAGGGGAAGCTGAGACATCTGAGTGAGCAGAGTGTGGCATCTTGGAAACAGTCCTTAGTTCTGTGGGAGGACTAGAAACAGCCGCGGCGAAGGCCCCCTGAGGACCACTACTATACTGATGGTGGGATTGGGACCTGGGGGATACAGGGGCCCCAGGAAGAAGCTGGCCAGAGGCGCAGCTCAGTGCTCTGCAGAGAGGGGCCCTGGGGAGAACCAGGATGGGATTGATGGCCAGGAGGGATCCCCGCACTGGGAGACAGGCCCAGGTATGAATGAGCCAGCCATGCTTCCTCCTGCCTGTGTGACGCTGGGCGAGTCTCTTCCCCTGTCTGGGCCAAACAGGGAGCGGGPAAGACAATCCATGCTCTAAGATCCATTTTAGATCAATGTCTAAAATAGCTCTATGGCTCTGCGGAGTCCCAGCAGAGGCTATGGAATGTTTCTGCAACCCTAAGGCACAGAGAGCCAACCCTGAGTGTCTCAGAGGCCCCCTGAGTGTTCCCCTTGGCCTGAGCCCCTTACCCATTCCTGCAGCCAGTGAGAGACCTGGCCTCAGCCTGGCAGCGCTCTCTTCAAGGCCATATCCACCTGTGCCCTGGGGCTTGGGAGACCCCATAGGCCGGCACTCTTGGGTCAGCCCGCCACTGGCTTCTCTCTTTTTCTCCGTTTCATTCTGTGTGCGTTGTGGGGTGGGGGAGGGGGTCCACCTGCCTTACCTTTCTGAGTTGCCTTTAGAGAGATGCGTTTTTCTAGGACTCTCTGCAACTGTCGTATATGGTCCCGTGGGCTGACCGCTTTGTACATGAGAATAAATCTATTTCTTTCTACCAAAAAAAAAAAAAAAAAAAORF Start: ATG at 130ORF Stop: TGA at 2890SEQ ID NO: 78920aaMW at 103477.0kDNOV13a, MRRQPAASLDPLAKEPGPPOSRDDRLEDALLSLGSVIDISGLQRAVKEALSAVLPRVETVYTYLLDGCG138130-01 Protein SequenceESQLVCEDPPHELPQEGKVREAIISQKRLGCNGLGESDLPGKPLARLVAPLAPDTQVLVMPLADKEAGAVAAVILVHCGQLSDNEEWSLQAVEKHTLVALRRVQVLQQRGPREAPRAVQNPPEGTAEDQKGGAAYTDRDRKILQLCGELYDLDASSLQLKVLQYLQQETRASRCCLLLVSEDMLQLSCKVIGDKVLGEEVSFPLTGCLGQVVEDKKSIQLKDLTSEDVQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKLEGDLFTDEDEBVIQHCFHYTSTVLTSTLAFQKEQKLKCECQALLQVAKNLFTHLDDVSVLLQEIITEARNLSNAEICSVFLLDQNELVAXVFDGGVVDDESYEIRIPADQGIAGHVATTGQILNIPDAYAHPLFYRGVDDSTGFRTRNILCFPIKNENQEVIGVAELVNKINGPWFSKFDEDLATAFSIYCGISIAHSLLYKKVNEAQYRSHLANEMMMYHMKVSDDEYTKLLHDGIQPVAAIDSNFASFTYTPRSLPEDDTSMAILSMLQDMNFINNYKIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFCYLLYKNLELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKSVLAALYSSEGSVMERHHFAQAIAILNTHGCNIFDHFSRKDYQRMLDLMRDIILATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCLLMTSCDLSDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPMEMMDREKAYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASNREHWTKVSHKFTIRGLPSNNSLDFLDEEYEVPDLDGTRAPINGCCSLDAE


[0420] Further analysis of the NOV13a protein yielded the following properties shown in Table 13B.
70TABLE 13BProtein Sequence Properties NOV13aPSort0.4500 probability located in cytoplasm; 0.3000analysis:probability located in microbody (peroxisome);0.1000 probability located in mitochondrial matrixspace; 0.1000 probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0421] A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
71TABLE 13CGeneseq Results for NOV13aNOV13aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAB85117Human cGMP-stimulated16 . . . 920898/905 (99%)0.0PDE2A3 - Homo sapiens,37 . . . 941899/905 (99%)941 aa. [EP1097707-A1,09 MAY 2001]AAB85106Human cGMP-stimulated16 . . . 920898/905 (99%)0.0PDE2A3 sequence - Homo37 . . . 941899/905 (99%)sapiens, 941 aa.[EP1097706-A1,09 MAY 2001]AAG66539Human interferon-alpha16 . . . 920898/905 (99%)0.0induced polypeptide, PDE2A -37 . . . 941899/905 (99%)Homo sapiens, 941 aa.[WO200159155-A2,16 AUG. 2001]AAE07954Human phosphodiesterase16 . . . 920898/905 (99%)0.0(PDE) type 2 protein - Homo37 . . . 941899/905 (99%)sapiens, 941 aa.[EP1097719-A1,09 MAY 2001]AAE07918Human phosphodiesterase16 . . . 920898/905 (99%)0.0(PDE) type 2 protein - Homo37 . . . 941899/905 (99%)sapiens, 941 aa.[EP1097718-A1,09 MAY 2001]


[0422] In a BLAST search of public sequence datbases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
72TABLE 13DPublic BLASTP Results for NOV13aNOV13aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueO00408cGMP-dependent 3′,5′-cyclic16 . . . 920 898/905 (99%)0.0phosphodiesterase (EC37 . . . 941 899/905 (99%)3.1.4.17) (Cyclic GMPstimulatedphosphodiesterase)(CGS-PDE) (cGSPDE) -Homo sapiens (Human),941 aa.P14099cGMP-dependent 3′,5′-cyclic1 . . . 920873/921 (94%)0.0phosphodiesterase (EC1 . . . 921894/921 (96%)3.1.4.17) (Cyclic GMPstimulatedphosphodiesterase)(CGS-PDE) (cGSPDE) - Bostaurus (Bovine), 921 aa.Q01062cGMP-dependent 3′,5′-cyclic1 . . . 918835/919 (90%)0.0phosphodiesterase (EC16 . . . 927 866/919 (93%)3.1.4.17) (Cyclic GMPstimulatedphosphodiesterase)(CGS-PDE) (cGSPDE) -Rattus norvegicus (Rat), 928aa.AAH29810Similar to cyclic GMP407 . . . 918 507/512 (99%)0.0stimulated phosphodiesterase -1 . . . 512512/512 (99%)Mus musculus (Mouse),513 aa (fragment).Q922S4cGMP-dependent 3′,5′-cyclic555 . . . 918 359/364 (98%)0.0phosphodiesterase (EC1 . . . 364364/364 (99%)3.1.4.17) (Cyclic GMPstimulatedphosphodiesterase)(CGS-PDE) (cGSPDE) - Musmusculus (Mouse), 365 aa(fragment).


[0423] PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13E.
73TABLE 13EDomain Analysis of NOV13aIdentities/NOV13aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueGAF220 . . . 361 28/148 (19%)3.8e−16104/148 (70%)GAF388 . . . 532 45/150 (30%)2.6e−36125/150 (83%)PDEase634 . . . 871119/279 (43%) 1.6e−181236/279 (85%)



Example 14

[0424] The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
74TABLE 14ANOV14 Sequence AnalysisSEQ ID NO: 791216 bpNOV14a, AAGACACGGGCCTGATTCGTCGAGTCTCACTGAGCCTTAGTCGTCGGCAGGTCCCAGGCCCGAAGTTCG138372-01 DNA Sequence TCTCGGCCTGGAGGAGGGGGTCGCGCGAAGTGCCAGATGCAGGCGGGGAAGCCCATCCTCTATTCCTATTTCCGAAGCTCCTGCTCATGGAGAGTTCGAATTGCTCTGGCCTTGAAAGGCATCGACTACAAGACGGTGCCCATCAATCTCATAAAGGATGGGGGCCAACAGTTTTCTAAGGACTTCCAGGCACTGAATCCTATGAAGCAGGTGCCAACCCTGAAGATTGATGGAATCACCATTCACCAGTCACTGGCCATCATTGAGTATCTAGAGGAGACGCGTCCCACTCCGCGACTTCTGCCTCAGGACCCAAAGAAGAGOGCCAGCGTGCGTATGATTTCTGACCTCATCGCTGGTGGCATCCAGCCCCTGCAGAACCTGTCTGTCCTGAAGCAAGTGGGAGAGGAGATGCAGCTGACCTGGGCCCAGAACGCCATCACTTGTGGCTTTAACGCCCTGGAGCAGATCCTACAGAGCACAGCGGGCATATACTGTGTAGGAGACGAGGTGACCATGGCTGATCTGTGCTTGGTGCCTCAGGTGGCAAATGCTGAAAGATTCAAGGTGGATCTCACCCCCTACCCTACCATCAGCTCCATCAACAAGAGGCTGCTGGTCTTGGAGGCCTTCCAGGTGTCTCACCCCTGCCGGCAGCCAGATACACCCACTGAGCTGAGGGCCTAGCTCCCAAATCCTGCCCCGTTGGCACAGGGCCACAGGAGCAGAAGCTGGGTGGGCTGAAGAGGCCTGGAAACGAGAGTCTTAATTGAGGAGATGGGAGACTCGAACTCTAGCCCTGGATCTGCCTTCCTGCTGAAACTTGTTCCACCTCAGTCCCCTCATCTGTCACACGCATGTGGGGTGGAGTAGGGAGATGCGGGGAGCAGGGTGGGCAGGAATACTGTTATCTATGTGACGGGGCAGTCGTGAGGCTGAGATGAGAATGCGGATTAAAATGCCTGGCGTGCTCACCGTAACACCACGGGGAAGGCTGTGTGCCTTTTCTCATCCGCTTTTGTTGTGTGTGACTCCAAAGAATGCCCGCGCTGAAATTTGGCGTGAATTAAACTGAAGCCCAGGCCTCTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start ATG at 104ORF Stop: TAG at 752SEQ ID NO: 80216 aaMW at 24082.7kDNOV14a, MQAGKPILYSYFRSSCSWRVRIALALKGIDYKTVPINLIKDGGQQFSKDFQALNPMKQVPTLKIDGICG138372-01 Protein SequenceTIHQSLAIIEYLEETRPTPRLLPQDPKKRASVRMTSDLIAGGIQPLQNLSVLKQVGEEMQLTWAQNAITCGFNALEQILQSTAGIYCVGDEVTMADLCLVPQVANAERFKVDLTPYPTISSINKRLLVLEAFQVSHPCRQPDTPTELRASEQ ID NO: 81579 bpNOV14b, GTCGCGCGAAGTGCCAGATGCAGGCGGGGAAGCCCATCCTCTATTCCTATTTCCGAAGCTCCTGCTCCG138372-01 DNA Sequence ATGGAGAGTTCGAATTGCTCTGGCCTTGAAAGGCATCGACTACGACACGGTGCCCATCAATCTCATAAAGGATGGGGGCCAACAGTTTTCTAAGGACTTCCAGGCACTGAATCCTATGAAGCAGGTGCCAACCCTGAAGATTGATGGAATCACCATTCACCAGTCAAACCTGTCTGTCCTGAAGCAAGTGGGAGAGGAGATGCAGCTGACCTGGGCCCAGAACGCCATCACTTGTCGCTTTAACGCCCTGGAGCAGATCCTACAGAGCACAGCGGGCATATACTGTGTAGGAGACGAGGTGACCATGGCTGATCTGTGCTTGGTCCCTCAGGTGGCAAATGCTGAAAGATTCAAGGTGGATCTCACCCCCTACCCTACCATCAGCTCCATCAACAAGAGGCTGCTGGTCTTGGAGGCCTTCCACGTGTCTCACCCCTGCCGGCAGCCAGATACACCCACTGAGCTGAGGGCCTAGCTCCCAAATCCTGCCCCGTTGGCACAGGGCCACAGGAORF Start: ATG at 18ORF Stop: TAG at 540SEQ ID NO: 82174 aaMW at 19382.2kDNOV14b, MQAGKPILYSYFRSSCSWRVRIALALKGIDYETVPINLIKDCGQQFSKDFQALNPMKQVPTLKIDGICG138372-02 Protein SequenceTIHQSNLSVLKQVGEEMQLTWAQNAITCGFNALEQILQSTAGIYCVGDEVTMADLCLVPQVANAERFKVDLTPYPTISSINKRLLVLEAFHVSHPCRQPDTPTELRASEQ ID NO: 831216 bpNOV14c, AAGACACGGGCCTGATTCGTCGAGTCTCACTGAGCCTTAGTCGTCGGCAGGTCCCAGGCGCGAACTTCG138372-01 DNA Sequence TCTCGGCCTGGAGGAGGGGGTCGCGCGAAGTGCCAGATGCAGGCGGGGAAGCCCATCCTCTATTCCTATTTCCGAAGCTCCTGCTCATGGAGAGTTCGAATTGCTCTGGCCTTGAAAGGCATCGACTACAAGACGGTGCCCATCAATCTCATAAAGGATGGGGCCCAACAGTTTTCTAAGGACTTCCACGCACTGAATCCTATGAAGCAGGTGCCAACCCTOAAGATTGATGGAATCACCATTCACCAGTCACTGGCCATCATTGAGTATCTAGAGGAGACGCGTCCCACTCCGCGACTTCTGCCTCAGGACCCAAAGAAGAGGGCCAGCGTGCGTATGATTTCTGACCTCATCGCTGGTGGCATCCAGCCCCTGCAGAACCTGTCTGTCCTGAAGCAAGTGGGAGAGGAGATGCAGCTGACCTGGGCCCAGAACGCCATCACTTGTGGCTTTAACGCCCTGGAGCAGATCCTACAGAGCACAGCGGGCATATACTGTGTAGGAGACGAGGTGACCATGGCTGATCTGTGCTTGGTGCCTCAGGTGGCAAATGCTGAAAGATTCAAGGTGGATCTCACCCCCTACCCTACCATCAGCTCCATCAACAAGAGGCTGCTGGTCTTGCAGGCCTTCCAGGTGTCTCACCCCTGCCGGCAGCCAGATACACCCACTGAGCTGAGGGCCTAGCTCCCAAATCCTGCCCCGTTGGCACAGGGCCACAGGAGCAGAAGCTGGGTGGGCTGAAGAGGCCTGGAAACGAGAGTCTTAATTGAGGAGATGGGAGACTCGAACTCTAGCCCTGGATCTGCCTTCCTGCTGAAACTTGTTCCACCTCAGTCCCCTCATCTGTCACACGCATGTGGGGTGGAGTAGGGAGATGCGGGCAGCAGGGTGGCCACGAATACTGTTATCTATGTGACGGGGCAGTCGTGAGGCTGAGATGAGAATGCGGATTAAAATGCCTGGCGTGCTCACCGTAACACCACGGGGAAGGCTGTGTGCCTTTTCTCATCCGCTTTTGTTGTGTGTCACTCCAAAGAATGCCCGCGCTGAAATTTGGCGTGAATTAAACTGAAGCCCAGGCCTCTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 104ORF Stop: TAG at 752SEQ ID NO: 84216 aaMW at 24082.7kDNOV14c, MQAGKPILYSYFRSSCSWRVRIALALKGIDYKTVPINLIKDGGQQFSKDFQALNPMKQVPTLKIDGICG138372-01 Protein SequenceTIHQSLAITEYLEETRPTPRLLPQDPKKRASVEMISDLIAGGIQPLQNLSVLKQVGEEMQLTWAQNAITCGFNALEQILQSTAGIYCVGDEVTMADLCLVPQVANAERFKVDLTPYPTISSINKRLLVLEAFQVSHPCRQPDTPTELRASEQ ID NO: 85159 bpNOV14d, CACCGGATCCACCATGCAGGCGGGGAAGCCCATCCTCTATTCCTATTTCCGAAGCTCCTGCTCATGG277582121 DNA Sequence AGAGTTCGAATTGCTCTGGCCTTGAAAGGCATCGACTACGAGACGGTGCCCATCAATCTCATAAAGGATGGGGGCCAACAGTTTTCTAAGGACTTCCAGCCACTGAATCCTATGAAGCACGTGCCAACCCTGAAGATTGATGGAATCACCATTCACCAGTCAAACCTGTCTGTCCTGAAGCAAGTGGGAGAGGAGATGCAGCTGACCTGGGCCCAGAACGCCATCACTTGTGGCTTTAACGCCCTGGAGCAGATCCTACAGAGCACAGCGGGCATATACTGTGTAGGAGACOAGGTGACCATCGCTGATCTGTGCTTGGTGCCTCAGGTGGCAAATGCTGAAAGATTCAAGGTGGATCTCACCCCCTACCCTACCATCAGCTCCATCAACAAGAGGCTGCTGGTCTTGGAGGCCTTCCAGGTGTCTCACCCCTGCCGGCAGCCAGATACACCCACTGAGCTGAGGGCCCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 86181 aaMW at 20018.8kDNOV14d, TGSTMQAGKPILYSYFRSSCSWRVRIALALKGIDYETVPINLIKDGGQQFSKDFQALNPMKQVPTLK277582121 Protein SequenceIDGITIHQSNLSVLKQVGEEMQLTWAQNAITCGFNALEQILQSTAGIYCVGDEVTMADLCLVPQVANAERFKVDLTPYPTISSINKRLLVLEAFQVSHPCRQPDTPTELRALEGSEQ ID NO: 87720 bpNOV14e, GTCGCGCGAAGTGCCAGATGCAGGCGGGGAAGCCCATCCTCTATTCCTATTTCCGAAGCTCCTGCTCCG138372-03 DNA Sequence ATGGAGAGTTCGAATTGCTCTGGCCTTGAAAGGCATCGACTACGAGACGGTGCCCATCAATCTCATAAAGGATGGGGGCCAACAGTTTTCTAAGGACTTCCAGGCACTGAATCCTATGAAGCAGGTGCCAACCCTGAAGATTGATGGAATCACCATTCACCAGTCACTGGCCATCATTGAGTATCTAGAGGAGACGCGTCCCACTCCGCGACTTCTGCCTCAGGACCCAAAGAAGAGGGCCAGCGTGCGTATGATTTCTGACCTCATCGCTGGTGGCATCCAGCCCCTGCAGAACCTGTCTGTCCTGAAGCAAGTGGGAGAGGAGATGCAGCTGACCTGGGCCCAGAACGCCATCACTTGTGGCTTTAACGCCCTGGAGCAGATCCTACAGAGCACAGCGGGCATATACTGTGTAGGAGACGAGGTGACCATCGCTGATCTGTGCTTGGTGCCTCAGGTGGCAAATGCTGAAAGATTCAAGGTGGATCTCACCCCCTACCCTACCATCAGCTCCATCAACAAGAGGCTGCTGGTCTTGGAGCCCTTCCAGGTGTCTCACCCCTGCCGGCAGCCAGATACACCCACTGAGCTGAGGGCCTAGCTCCCAAATCCTGCCCCGTTGGCACACGGCCACAGGAGCAGAAGAAGGGCGAORF Start: ATG at 18ORF Stop: TAG at 666SEQ ID NO: 88216 aaMW at 24083.7kDNOV14e, MQAGKPILYSYFRSSCSWRVRIALALKGIDYETVPINLIKDGGQQFSKDFQALNPMKQVPTLKIDGICG138372-03 Protein SequenceTIHQSLAIIEYLEETRPTPRLLPQDPKKRASVRMISDLIAGGIQPLQNLSVLKQVGEEMQLTWAQNAITCGFNALEQILQSTAGIYCVGDEVTMADLCLVPQVANAERFKVDLTPYPTISSINKRLLVLEAFQVSHPCRQPDTPTELRA


[0425] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 14B.
75TABLE 14BComparison of NOV14a against NOV14b through NOV14e.Identities/SimilaritiesProteinNOV14a Residues/for theSequenceMatch ResiduesMatched RegionNOV14b1 . . . 216172/216 (79%)1 . . . 174173/216 (79%)NOV14c1 . . . 216 216/216 (100%)1 . . . 216 216/216 (100%)NOV14d1 . . . 216173/216 (80%)5 . . . 178174/216 (80%)NOV14e1 . . . 216215/216 (99%)1 . . . 216216/216 (99%)


[0426] Further analysis of the NOV14a protein yielded the following properties shown in Table 14C.
76TABLE 14CProtein Sequence Properties NOV14aPSort0.4856 probability located in mitochondrialanalysis:matrix space; 0.3000 probability located innucleus; 0.2246 probability located inlysosome (lumen); 0.1962 probability located inmitochondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0427] A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14D.
77TABLE 14DGeneseq Results for NOV14aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV14a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABB64377Drosophila melanogaster3 . . . 213123/212 (58%)3e−68polypeptide SEQ ID NO31 . . . 242 160/212 (75%)19923 - Drosophilamelanogaster, 246 aa.[WO200171042-A2,27 SEP. 2001]ABB64379Drosophila melanogaster5 . . . 214126/210 (60%)2e−66polypeptide SEQ ID NO15 . . . 224 155/210 (73%)19929 - Drosophilamelanogaster, 227 aa.[WO200171042-A2,27 SEP. 2001]AAG43196Arabidopsis thaliana protein8 . . . 212100/210 (47%)2e−47fragment SEQ ID NO: 53962 -11 . . . 218 137/210 (64%)Arabidopsis thaliana, 221aa. [EP1033405-A2,06 SEP. 2000]AAG43195Arabidopsis thaliana protein8 . . . 212100/210 (47%)2e−47fragment SEQ ID NO: 53961 -27 . . . 234 137/210 (64%)Arabidopsis thaliana, 237aa. [EP1033405-A2,06 SEP. 2000]AAG10203Arabidopsis thaliana protein8 . . . 212 98/210 (46%)4e−46fragment SEQ ID NO: 8428 -11 . . . 218 134/210 (63%)Arabidopsis thaliana, 221 aa.[EP1033405-A2,06 SEP. 2000]


[0428] In a BLAST search of public sequence datbases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.
78TABLE 14EPublic BLASTP Results for NOV14aIdentities/ProteinSimilarities forAccessionNOV14a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueO43708Maleylacetoacetate isomerase1 . . . 216215/216 (99%) e−120(EC 5.2.1.2) (MAAI)1 . . . 216215/216 (99%)(Glutathione S- transferasezeta 1) (EC 2.5.1.18)(GSTZ1-1) - Homo sapiens(Human), 216 aa.Q9WVL0Maleylacetoacetate isomerase1 . . . 215184/215 (85%) e−102(EC 5.2.1.2) (MAAI)1 . . . 215196/215 (90%)(Glutathione S- transferasezeta 1) (EC 2.5.1.18)(GSTZ1-1) - Mus musculus(Mouse), 216 aa.Q9VHD3Probable maleylacetoacetate3 . . . 213123/212 (58%)8e−68isomerase 1 (EC 5.2.1.2)31 . . . 242 160/212 (75%)(MAAI 1) - Drosophilamelanogaster (Fruit fly), 246aa.Q9VHD2Probable maleylacetoacetate5 . . . 214126/210 (60%)6e−66isomerase 2 (EC 5.2.1.2)15 . . . 224 155/210 (73%)(MAAI 2) - Drosophilamelanogaster (Fruit fly), 227aa.AAM61889Glutathione S-transferase -5 . . . 213123/209 (58%)4e−65Anopheles gambiae (African11 . . . 219 156/209 (73%)malaria mosquito), 222 aa.


[0429] PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14F.
79TABLE 14FDomain Analysis of NOV14aIdentities/NOV14aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValueGST_N3 . . . 8127/88 (31%)1.5e−2065/88 (74%)GST_C90 . . . 19729/121 (24%) 1.1e−0575/121 (62%) 



Example 15

[0430] The NOV15 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 15A.
80TABLE 15ANOV15 Sequence AnalysisSEQ ID NO: 89891 bpNOV15a, ACCATGTATTTCCTGACTCCCATCTTGGTAGCCATTCTCTGCATTTTGGTTGTGTGGATCTTTAAAACG138461-01 DNA Sequence ATGCCGACAGAAGCATGGAGAAAAAGAAGGGGGAGCCTAGAACCAGGGCCGAAGCTCGCCCCTGGGTGGATGAAGACTTAAAAGACAGCAGTOACCTGCACCAAGCAGAAGAAGATGCTGATGAATGGCAAGAATCAGAAGAAAATGTTGAACACATCCCCTTCTCTCATAACCACTATCCTGAGAAGGAAATGGTTAAGAGGTCTCAGGAATTTTATGAACTTCTCAATAAGAGACGGTCAGTCAGGTTCATAAGTAATGAGCAAGTCCCAATGGAAGTCATTGATAATGTCATCAGAACGGCAGGTACAGCCCCGAGTGGGGCTCACACAGAGCCCTGGACCTTCGTGGTTGTGAAGGACCCAGACGTGAAGCACAAGATTCGAAAGATCATTGAGGAGGAAGAGGAGATCAACTACATGAAAAGGATGGGACATCGCTGGGTCACAGACCTCAAGAAACTGAGAACCAACTGGATTAAAGAGTACTTGGATACTGCCCCTATTTTGATTCTCATTTTCAAACAAGTACATGGTTTCGCCGCAAATGGCAAGAAAAAAGTCCACTACTACAATGAGATCAGTGTTTCCATCGCTTGTGGCATCCTGCTAGCTGCCCTGCAGAATGCAGGTCTGGTGACTGTCACTACCACTCCTCTCAACTGTGGCCCTCGACTGAGGGTGCTCCTGGGCCGCCCCGCACATGAAAAGCTGCTGATGCTGCTCCCCGTGGGGTACCCCAGCAAGGAGGCCACGGTGCCTGACCTCAAGCGCAAACCTCTGGACCAGATCATGGTGACAGTGTAGGCACGGCCCCCCAAGGGAORF Start: ATG at 4ORF Stop: TAG at 871SEQ ID NO: 90289 aaMW at 33359.3kDNOV15a, MYFLTPILVAILCILVVWIFKNADRSMEKKKGEPRTRAEARPWVDEDLKDSSDLHQAEEDADEWQESCG138461-01 Protein SequenceEENVEHIPFSHNHYPEKEMVKRSQEFYELLNKRRSVRFISNEQVPMEVIDNVIRTAGTAPSGAUTEPWTFVVVKDPDVKHKIRKIIEEEEEINYNKRMGHRWVTDLKKLRTNWIKEYLDTAPILILIFKQVHGFAANGKKKVHYYNETSVSIACGILLAALQNAGLVTVTTTPLNCGPRLRVLLGRPAHEKLLMLLPVGYPSKEATVPDLKRKPLDQIMVTV


[0431] Further analysis of the NOV15a protein yielded the following properties shown in Table 15B.
81TABLE 15BProtein Sequence Properties NOV15aPSort0.8200 probability located in endoplasmic reticulumanalysis:(membrane); 0.1900 probability located in plasmamembrane; 0.1080 probability located in nucleus;0.1000 probability located in endoplasmic reticulum(lumen)SignalPCleavage site between residues 24 and 25analysis:


[0432] A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 15C.
82TABLE 15CGeneseq Results for NOV15aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV15a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAM39746Human polypeptide SEQ ID1 . . . 289 289/289 (100%)e−169NO 2891 - Homo sapiens,1 . . . 289 289/289 (100%)289 aa. [WO200153312-A1,26 JUL. 2001]ABG27497Novel human diagnostic42 . . . 289 236/259 (91%)e−134protein #27488 - Homo146 . . . 404 240/259 (92%)sapiens, 404 aa.[WO200175067-A2,11 OCT. 2001]ABG26409Novel human diagnostic45 . . . 287 224/243 (92%)e−128protein #26400 - Homo166 . . . 404 227/243 (93%)sapiens, 404 aa.[WO200175067-A2,11 OCT. 2001]ABG26408Novel human diagnostic1 . . . 167 167/167 (100%)2e−95 protein #26399 - Homo2 . . . 168 167/167 (100%)sapiens, 168 aa.[WO200175067-A2,11 OCT. 2001]ABG27496Novel human diagnostic1 . . . 156155/156 (99%)6e−88 protein #27487 - Homo2 . . . 157156/156 (99%)sapiens, 157 aa.[WO200175067-A2,11 OCT. 2001]


[0433] In a BLAST search of public sequence datbases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15D.
83TABLE 15DPublic BLASTP Results for NOV15aIdentities/ProteinSimilarities forAccessionNOV15a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ9DCX80610009AO7Rik protein 1 . . . 289245/289 (84%) e−144(RIKEN cDNA 0610009A07 1 . . . 285271/289 (92%)gene) - Mus musculus(Mouse), 285 aa.O75989DJ422F24.1 (Putative novel74 . . . 257 184/184 (100%) e−105protein similar to C. elegans 1 . . . 184 184/184 (100%)C02C2.5) - Homo sapiens(Human), 184 aa (fragment).Q8T3Q0AT19107p - Drosophila44 . . . 288137/247 (55%)3e−68melanogaster (Fruit fly), 28749 . . . 286173/247 (69%)aa.Q9VTE7CG6279 protein - Drosophila44 . . . 288137/247 (55%)5e−68melanogaster (Fruit fly), 748510 . . . 747 174/247 (69%)aa.Q9XAG5Putative oxidoreductase -74 . . . 282 87/210 (41%)2e−40Streptomyces coelicolor, 226 9 . . . 217124/210 (58%)aa.


[0434] PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15E.
84TABLE 15EDomain Analysis of NOV15aIdentities/NOV15aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValueNitroreductase92 . . . 25439/182 (21%)1.3e−13113/182 (62%) 



Example 16

[0435] The NOV16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 16A.
85TABLE 16ANOV16 Sequence AnalysisSEQ ID NO: 911787 bpNOV16a, TTCATTCTCAGCACTACAATCTCAGTCATTATCCCTCTGAGCTGCTCAATTACTCCCTGTCTTTTCCCG138529-01 DNA Sequence TCAATTTACCTAGGTGGTTCCCTGTCTGACCCAAATGCTAGGCCGATTTCPACCCTTCTCCTTGGTCCGGAGTTTCAGACTGCGATTTGGAGCCTGCTGCTATCCAAACCAAAAATGTGCTACTCAGACCATCAGACCCCCTGACTCCAGGTGCCTAGTCCAAGCAGTTTCTCAGAACTTTAATTTTGCAAAGGATGTGTTGGATCAGTGGTCCCAGCTGGAAAAGGTAGACGGACTCAGAGGGCCTTACCCCGCCCTCTGGAAGGTTAGTGCCAAAGGAGAAGAGGACAAATGGAGCTTTGAAAGGATGACTCAACTCTCCAAGAAGGCCGCCAGCATCCTCTCACACACCTGTGCCCTTAGCCATGGAGACCGGCTGATGATAATCTTGCCCCCAACACCTCAACCCTACTGGATCTGCCTGGCCTGTGTGCGCTTGGGTATCACCTTTGTGCCTGGGAGCCCCCAGCTGACTGCCAAGAAAATTCGCTATCAATTACGCATGTCTAAGGCCCAGTGCATTGTGGCTAATGAAGCTATGGCCCCAGTTGTAAACTCTGCCGTGTCCGACTGCCCCACCTTGAAAACCAAGCTCCTGGTGTCAGATAAGAGCTATCATGGGTGGTTGGATTTCAAGAAGTTGATTCAGGTTGCCCCTCCAAAGCAGACCTACATGAGGACCAAAAGCCAAGATCCAATCGCCATATTCTTCACCAAGGGTACAACAGCAGCTCCCAAAATGGTCGAGTATTCCCAGTATGGTTTGGGAATGGGATTCAGCCACGCTTCCAGGTACTGGATGGATCTCCAGCCAACAGATGTCTTGTGGAGTCTGGGTGATGCCTTTGGTGGATCTTTATCCCTGAGCGCTGTCTTGGGAACTTGGTTCCAAGGAGCCTGTGTGTTTCTGTGTCACATGCCAACCTTCTGCCCTGAGACTGTTCTAAATGTAAGATCAATTCCTAGTGTGGAATGTGTGGGACAAAGGCCAGAGAGAGGCATTAGCAATGACCCAGTGACTAGCTACAGATTCAAGAGTCTGAAGCAGTGTGTGGCTGCAGGAGCACCCATCAGCCCTGGGGTGATTGAGGACTGGAAACGCATCACTAAGTTGGACATCTATGAAGGCTATGGGCAGACGCAAACTGTAGGTCTCTGTGCCACTTCCAAAACAATAAAATTGAAGCCAAGCTCTCTGGGGAAGCCATTGCCACCTTATATTGTCCAGCAGATTGTGGATGAAAACTCAAATCTCCTGCCTCCAGGGGAAGAAGGAAATATTGCAATCCGCATAAAACTAAACCAACCTGCTTCTCTGTACTGTCCACACATGGTAAGAAAATTTTCTGCTTCAGCAAGAGGCCACATGCTTTACCTCACAGGTGACAGAGGGATCATGGATGAAGACGGCTACTTCTGGTGGTCTGGTAGAGTTGATGATGTTGCCAATGCATTGGGTCAGAGATTGAATGCCAACCAACACCCCAGCTTATCTGAGGTCAGCATAGTTACACACCTAGTTTGTACTCCCATTCTGCAGGTGGTGAAGCCCCCTAATGTCCTGACTCCACAGTTCCTGTCCCATGACCAGGGCCAGCTCACCAAAGAGCTATAGCAGCACATAAAGTCAGTGACAGGCCCATGCAAGTACCAAAGGAAGGTGGAGTTTGTCCCAGAGCTGCCAAAAACCGTCACTCGCAAGATTAAACGGGAACTTCAAORF Start: ATG at 102ORF Stop: TAG at 1680SEQ ID NO: 92526 aaMW at 58238.8kDNOV16a, MLGRFQPFSLVRSFRLGFCACCYPWQKCATQTIRPPDSRCLVQAVSQNFNFAKDVLDQWSQLEKVDGCG138529-01 Protein SequenceLRGPYPALWKVSAKGEEDKWSFERMTQLSKKAASILSDTCALSHGDRLMIILPPTPEAYWICLACVRLGITFVPGSPQLTAKKIRYQLRMSKAQCIVANEANAPVVNSAVSDCPTLKTKLLVSDKSYDGWLDFKKLIQVAPPKQTYMRTKSQDPMAIFFTKGTTGAPKMVEYSQYGLGMGFSQASRYWMDLQPTDVLWSLGDAFGGSLSLSAVLGTWFQGACVFLCHMPTFCPETVLNVRSIPSVECVGQRPERCISNDPVTSYREKSLKQCVAAGGPISPGVIEDWKRITKLDIYEGYGQTETVGLCATSKTIKLKPSSLGKPLPPYIVQQIVDENSNLLPPGEEGNIAIRIKLNQPASLYCPHMVRKFSASARGHHLYLTGDRGIMDEDGYFWWSGRVDDVANALGQRLNANQHPSLSEVSIVTHLVCTPILQVVKPPNVLTPQFLSHDQGQLTKEL


[0436] Further analysis of the NOV16a protein yielded the following properties shown in Table 16B.
86TABLE 16BProtein Sequence Properties NOV16aPSort0.4993 probability located in mitochondrialanalysis:matrix space; 0.2177 probability located inmitochondrial inner membrane; 0.2177probability located in mitochondrialintermembrane space; 0.2177 probabilitylocated in mitochondrial outer membraneSignalPCleavage site between residues 22 and 23analysis:


[0437] A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 16C.
87TABLE 16C Geneseq Results for NOV16aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV16a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABB53263Human polypeptide #3 -1 . . . 526480/539 (89%)0.0Homo sapiens, 583 aa.1 . . . 534489/539 (90%)[WO200181363-A1,01 NOV. 2001]ABB53262Human polypeptide #2 -1 . . . 478450/482 (93%)0.0Homo sapiens, 480 aa.1 . . . 480455/482 (94%)[WO200181363-A1,01 NOV. 2001]AAE22093Human kidney specific renal43 . . . 526 204/496 (41%)    e−103cell carcinoma (KSRCC)38 . . . 527 304/496 (61%)protein - Homo sapiens, 577aa. [WO200216595-A2,28 FEB. 2002]AAB43245Human ORFX ORF300949 . . . 526 203/490 (41%)    e−102polypeptide sequence SEQ4 . . . 487302/490 (61%)ID NO: 6018 - Homo sapiens,537 aa. [WO200058473-A2,05 OCT. 2000]AAM41894Human polypeptide SEQ ID258 . . . 526 107/281 (38%)  6e−45NO 6825 - Homo sapiens,7 . . . 283163/281 (57%)390 aa. [WO200153312-A1,26 JUL. 2001]


[0438] In a BLAST search of public sequence datbases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16D.
88TABLE 16DPublic BLASTP Results for NOV16aIdentities/ProteinSimilarities forAccessionNOV16a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueO60363SA gene - Homo sapiens45 . . . 526225/494 (45%)e−120(Human), 578 aa.46 . . . 534318/494 (63%)Q13732SA SA gene product precursor -45 . . . 526222/494 (44%)e−118Homo sapiens (Human), 57846 . . . 534315/494 (62%)aa.Q91WI1SA rat hypertension-associated45 . . . 526215/494 (43%)e−113homolog (SA protein) - Mus46 . . . 534314/494 (63%)musculus (Mouse), 578 aa.Q9Z2F3SA protein - Mus musculus45 . . . 526215/494 (43%)e−113(Mouse), 578 aa.46 . . . 534314/494 (63%)Q9Z2X0SA - Mus musculus (Mouse),45 . . . 526214/495 (43%)e−111578 aa.46 . . . 534312/495 (62%)


[0439] PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16E.
89TABLE 16EDomain Analysis of NOV16aIdentities/NOV16aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValueAMP-binding 88 . . . 29741/212 (19%) 9.9e−25136/212 (64%) AMP-binding334 . . . 41925/89 (28%)  5e−1362/89 (70%)AMP-binding447 . . . 47714/31 (45%)0.002523/31 (74%)



Example 17

[0440] The NOV17 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 17A.
90TABLE 17ANOV17 Sequence AnalysisSEQ ID NO:931574 bpNOV 17a,TCGGCCTTCCGAAACACCCCCGGGCCGGGGCACGGAGAGAGCCGAGCGCCGCAGCCGTGAGCCGAATCG138563-01DNA SequenceAGAGCCGGAGAGACCCGAGTATGACCGGAGAAGCCCAGGCCGGCCCGAAGAGGAGCCGAGCGCGGCCGGAAGGAACCGAGCCCGTCCGAAGGGAGCGGACGCAGCCTGGCCTGGGGCCCGGTCGAGCCCGCGCCATGGCGGCCGAGGCGACAGCTGTGGCCGGAAGCGGGGCTGTTCGCGGCTGCCTGGCCAAAGACGGCTTGCAGCAGTCTAAGTGCCCGGACACTACCCCAAAACGGCCGCGCGCCTCGTCGCTGTCGCGTGACGCCGAGCGCCGAGCCTACCAATGGTGCCGGGAGTACTTGGGCGGGGCCTGGCGCCGAGTGCAGCCCGAGGAGCTGAGGGTTTACCCCGTGAGCGGAGGCCTCAGCAACCTGCTCTTCCGCTGCTCGCTCCCGGACCACCTGCCCAGCGTTGGCGAGGAGCCCCGGGAGGTGCTTCTGCGGCTGTACGGAGCCATCTTGCAGGGCGTGGACTCCCTGGTGCTAGAAAGCGTGATGTTCGCCATACTTGCGGAGCGGTCGCTGGCCCCCCAGCTGTACGGAGTCTTCCCAGAGGGCCGGCTGGAACAGTACATCCCAAGTCGGCCATTGAAAACTCAAGAGCTTCGAGAGCCAGTGTTGTCAGCAGCCATTGCCACGAAGATGGCGCAATTTCATGGCATGGAGATGCCTTTCACCAAGGAGCCCCACTGGCTGTTTGGGACCATGGAGCGGTACCTAAAACAGATCCAGGACCTGCCCCCAACTGGCCTCCCTGAGATGAACCTGCTGGAGATGTACAGCCTGAAGGATGAGATGGGCAACCTCAGGAAGTTACTAGAGTCTACCCCATCGCCAGTCGTCTTCTGCCACAATGACATCCAGGAAGGTAGGAGAAGGCATCTGAGTCTCCTAACCCAAGATGGAAGAGCCAGAGGGCTCTGGAGTGAGCAGAACCTCACCCCATTCCCCCAGGGAACATCTTGCTGCTCTCAGAGCCAGAAAATGCTGACAGCCTCATGCTGGTGGACTTCGAGTACAGCAGTTATAACTATAGTTGCATTTTATTCGTCATTACCTGGCAGAGGCAAAGAAACGTGAGACCCTCTCCCAAGAGGAGCAGAGAAAACTGGAAGAAGATTTGCTGGTAGAAGTCAGTCGGTATGCTCTGGCATCCCATTTCTTCTGGGGTCTGTGGTCCATCCTCCAGGCATCCATGTCCACCATAGAATTTGGTTACTTCGACTATGCCCAGTCTCGGTTCCAGTTCTACTTCCAGCAGAAGGGGCAGCTGACCAGTGTCCACTCCTCATCCTGACTCCACCCTCCCACTCCTTGGATTTCTCCTGGAGCCTCCAGGGCAGGACCTTGGAGGGAGGAACAACGAGCAGAAGGCCCTGGCGACTGGGCTGAGCCCCCAAGTGAAACTGAGGTTCAGGAGACCGGCCTGTTCCTGAGTTTGAGTAGGTCCCCATGGCTGGCAGGCCAGAGCCCCGTGCTGTGTATGTAACACAATAAACAAGCTGORE Start: ATG at 88ORE Stop: TGA at 1147SEQ ID NO: 94353 aaMW at 39344.7 kDNOV 17a,MTGEAQAGRXRSRARPEGTEPVRRERTQPGLGPGRARANAAEATAVAGSGAVGGCLAKDGLQQSKCPCG138563-01Protein SequenceDTTPKRRRASSLSRDAERRAYQWCREYLGGAWRRVQPEELRVYPVSGGLSNLLFRCSLPDHLPSVGEEPREVLLRLYGAILOGVDSLVLESVMFAILAERSLGPOLYGVFPEGRLEOYIPSRPLKTOELREPVLSAAIATKMAQFHGMEMPFTKEPHWLFGTMERYLKQIQDLPPTGLPEMMLLEMYSLKDEMGNLRKLLESTPSPVVFCHNDIQEGRRRHLSLLTQDGRARGLWSEQNLTPFPQGTSCCSQSQKMLTASCWWTSSTAVITIVAFYSSLPGRGKERSEQ ID NO:951540 bpNOV 17b,AGCCGAATAGAGCCGGAGAGACCCGAGTATGACCGGAGAAGCCCAGGCCGGCCGGAAGAGGAGCCGACG138563-02DNA SequenceGCGCGGCCGGAAGGAACCGAGCCCGTCCGAAGGGAGCGGAGCGCAGCCTGGCCTGGGGCCCGGTCGAGCCCGCGCCATGGCGGCCGAGGCGACAGCTGTGGCCGGAAGCGGGGCTGTTGGCGGCTGCCTGGCCAAAGACGGCTTGCAGCAGTCTAAGTGCCCGGACACTACCCCAAAACGGCGGCGCGCCTCGTCGCTGTCGCGTGACGCCGAGCGCCGAGCCTACCAATGGTGCCGGGAGTACTTGGGCGGGGCCTGGCGCCGAGTGCAGCCCGAGGAGCTGAGGGTTTACCCCGTGAGCGGAGGCCTCAGCAACCTGCTCTTCCGCTGCTCGCTCCCGGACCACCTGCCCAGCGTTGGCGAGGAGCCCCGGGAGGTGCTTCTGCGGCTGTACGGAGCCATCTTGCAGGGCGTGGACTCCCTGGTGCTAGAAAGCGTGATGTTCGCCATACTTGCGGAGCGGTCGCTGGGGCCCCAGCTGTACGGAGTCTTCCCAGAGGGCCGGCTGGAACAGTACATCCCAAGTCGGCCATTGAAAACTCAAGAGCTTCGAGAGCCAGTGTTGTCAGCAGCCATTGCCACGAAGATGGCGCAATTTCATGGCATGGAGATGCCTTTCACCAAGGAGCCCCACTGGCTGTTTGGGACCATGGAGCGGTACCTAAAACAGATCCAGGACCTGCCCCCAACTGGCCTCCCTGAGATGAACCTGCTGGAGATGTACAGCCTGAAGGATGACATGGGCAACCTCAGGAAGTTACTAGAGTCTACCCCATCGCCAGTCGTCTTCTGCCACAATGACATCCAGGAAGGGAACATCTTGCTGCTCTCAGAGCCAGAAAATGCTGACAGCCTCATGCTGCTGGACTTCGAGTACAGCAGTTATAACTATAGGGGCTTTGACATTGGGAACCATTTTTGTGAGPGGGTTTATGATTATACTCACGAGGAATGGCCTTTCTACAAAGCAAGGCCCACAGACTACCCCACTCAAGAACAGCAGTTGCATTTTATTCGTCATTACCTGGCAGAGGCAAAGAAAGGTGAGACCCTCTCCCAAGAGGAGCAGAGAAAACTGGAAGAAGATTTGCTGGTAGAAGTCAGTCGGTATGCTCTGGCATCCCATTTCTTCTGGGGTCTGTGGTCCATCCTCCAGGCATCCATGTCCACCATAGAATTTGGTTACTTGGACTATGCCCAGTCTCGGTTCCAGTTCTACTTCCAGCAGAAGGGGCAGCTGACCAGTGTCCACTCCTCATCCTGACTCCACCCTCCCACTCCTTGGATTTCTCCTGGAGCCTCCAGGGCAGGACCTTGGAGGGAGGAACAACGAGCAGAACGCCCTGGCGACTGGGCTGAGCCCCCAAGTGAAACTGAGGTTCAGGAGACCGGCCTGTTCCTGAGTTTGAGTAGGTCCCCATGGCTGGCACGCCAGAGCCCCGTGCTGTGTATGTAACACAATAAACAAGCTTCORF Start: ATG at 144ORF Stop: TGA at 1329SEQ ID NO:96395 aaMW at 45270.9 kDNOV 17b,MAAEATAVAGSGAVCGCLAKDGLQQSKCPDTTPKRRRASSLSRDAERRAYQWCREYLGGAURRVQPECG138563-02Protein SequenceELRVYPVSGGLSNLLFRCSLPDHLPSVGEEPREVLLRLYGAILQGVDSLVLESVMFAILAERSLGPQLYGVFPEGRLEQYIPSRPLKTQELREPVLSAAIATKMAQFHGMEMPFTKEPHWLFGTMERYLKQIQDLPPTGLPEMNLLEMYSLKDEMGNLRKLLESTPSPVVFCHNDIQEGNILLLSEPENADSLMLVDFEYSSYNYRGFDIGNHFCEWVYDYTHEEWPFYKARPTDYPTQEQQLHFIRHYLAEAKKGETLSQEEQRKLEEDLLVEVSRYALASHFFWGLWSILQASMSTIEFGYLDYAQSRFQFYFQQKGQLTSVHSSS


[0441] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.
91TABLE 17BComparison of NOV17a against NOV17b.NOV17aIdentities/Residues/SimilaritiesProteinMatchfor theSequenceResiduesMatched RegionNOV17b58 . . . 317236/266 (88%)20 . . . 282241/266 (89%)


[0442] Further analysis of the NOV17a protein yielded the following properties shown in Table 17C.
92TABLE 17CProtein Sequence Properties NOV17aPSort analysis:0.9600 probability located in nucleus; 0.1629 probabilitylocated in lysosome (lumen); 0.1000 probability locatedin mitochondrial matrix space; 0.0000 probability locatedin endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0443] A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 17D.
93TABLE 17DGeneseq Results for NOV17aNOV17aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAY68787Amino acid sequence of a1 . . . 317293/323 (90%) e−166human phosphorylation1 . . . 320298/323 (91%)effector PHSP-19 - Homosapiens, 433 aa.[WO200006728-A2,10 FEB. 2000]AAU30777Novel human secreted7 . . . 329258/335 (77%) e−137protein #1268 - Homo7 . . . 337271/335 (80%)sapiens, 483 aa.[WO200179449-A2,25 OCT. 2001]AAR32999Rat choline kinase - Rattus85 . . . 284 125/204 (61%)5e−67rattus, 435 aa.85 . . . 288 158/204 (77%)[JP05015367-A,26 JAN. 1993]ABB58945Drosophila melanogaster123 . . . 284  67/174 (38%)3e−32polypeptide SEQ ID NO137 . . . 310 107/174 (60%)3627 - Drosophilamelanogaster, 495 aa.[W0200171042-A2,27 SEP. 2001]AAB87672Bovine mammary tissue188 . . . 247  55/60 (91%)1e−26derived protein #63 - Bos9 . . . 68  58/60 (96%)taurus, 69 aa.[WO200114553-A1,01 MAR. 2001]


[0444] In a BLAST search of public sequence datbases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17E.
94TABLE 17EPublic BLASTP Results for NOV17aNOV17aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9Y259Choline/ethanolamine kinase39 . . . 317255/285 (89%)e−142[Includes: Choline kinase (EC 1 . . . 282260/285 (90%)2.7.1.32) (CK); Ethanolaminekinase (EC 2.7.1.82)(EK)] - Homosapiens (Human), 395 aa.O55229Choline/ethanolamine kinase39 . . . 284211/246 (85%)e−122[Includes: Choline kinase (EC 1 . . . 246226/246 (91%)2.7.1.32) (CK); Ethanolaminekinase (EC 2.7.1.82)(EK)] - Musmusculus (Mouse), 394 aa.O54783Choline/ethanolamine kinase39 . . . 284208/246 (84%)e−120[Includes: Choline kinase (EC 1 . . . 246226/246 (91%)2.7.1.32) (CK); Ethanolaminekinase (EC 2.7.1.82)(EK)] - Rattusnorvegicus (Rat), 394 aa.AAH36471Similar to choline kinase - Homo85 . . . 297133/217 (61%)7e−70 sapiens (Human), 439 aa.89 . . . 300169/217 (77%)P35790Choline kinase (EC 2.7.1.32) (CK)29 . . . 297145/292 (49%)2e−68 (CHETK-alpha) - Homo sapiens31 . . . 317187/292 (63%)(Human), 456 aa.


[0445] PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17F.
95TABLE 17FDomain Analysis of NOV17aIdentities/NOV17aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValueCholine_kinase125 . . . 35288/349 (25%)1.6e−41192/349 (55%) 



Example 18

[0446] The NOV18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 18A.
96TABLE 18ANOV18 Sequence AnalysisSEQ ID NO:973705 bpNOV18a,CGGCTCGGGGCTGTGAGCGCCTCGGGGCCGGGGGTGGGCGGCGGTGCGGCGGGCGGCCGACGCTCCTCG138848-01DNA SequenceCTTCGGCGGCCGCGGCGGCGGCCATGCGTGGGGCGGCGCGGCTGGCGCGGCCGGGCCGGAGTTGCCTCCCGGGGGCCCGCGGCCTGAGGGCCCCGCCGCCGCCGCCGCTGCTGCTTCTGCTTGCGCTGTTGCCGCTGCTGCCCGCGCCTGGCGCTGCCGCCGCCCCCGCCCCGCGGCCCCCGGAGCTGCAGTCGGCTTCCGCGGGGCCCAGCGTGAGTCTCTACCTGAGCGAGGACGAGGTGCGCCGGCTGATCGGTCTTGATGCAGAACTTTATTATGTGAGAAATGACCTTATTAGTCACTACGCTCTATCCTTTAGTCTCTTAGTACCCAGTGAGACAAATTTCCTGCACTTCACCTGGCATGCGAAGTCCAAGGTTGAATATAAGCTGGGATTCCAAGTGGACAATGTTTTGGCAATGGATATGCCCCAGGTCAACATTTCTGTTCAGGCGGAAGTTCCACGCACTTTATCAGTGTTTCGGGTAGAGCTTTCCTGTACTCGCAAAGTAGATTCTGAAGTTATGATACTAATGCAGCTCAACTTGACAGTAAATTCTTCAAAAAATTTTACCGTCTTAAATTTTAAACGAAGGAAAATGTGCTACAAAAAACTTGAAGAAGTAAAAACTTCAGCCTTGGACAAAAACACTAGCAGAACTATTTATGATCCTGTACATGCAGCTCCAACCACTTCTACGCGTGTGTTTTATATTAGTGTAGGGGTTTGTTGTGCAGTAATATTTCTCGTAGCAATAATATTAGCTGTTTTGCACCTTCATAGTATGAAAAGGATTGAACTGGATGACAGCATTAGTGCCAGCAGTAGTTCCCAAGGGCTGTCTCAGCCATCCACCCAGACGACTCAGTATCTGAGAGCAGACACGCCCAACAAPGCAACTCCTATCACCAGCTCCTTAGGTTATCCTACCTTGCGGATAGAGAAGAACGACTTGAGAAGTGTCACTCTTTTGGAGGCCAAAGGCAAGGTGAAGGATATAGCAATATCCAGAGAGAGGATAACTCTAAAAGATGTACTCCAAGAAGGTACTTTTGGGCGTATTTTCCATGGGATTTTAATAGATGAAAAAGATCCAAATAAAGAAAAACAAGCATTTGTCAAAACAGTTAAAGATCAAGCTTCTGAAATTCAGGTGACAATGATGCTCACTGAAAGTTGTAAGCTGCGAGGTCTTCATCACAGAAATCTTCTTCCTATTACTCATGTGTGTATAGAAGAAGGAGAAAAGCCCATGGTGATATTGCCTTACATGAATTGGGGGAATCTTAAATTGTTTTTACGACAGTGCAAGTTAGTAGAGGCCAATAATCCACAGGCAATTTCTCAGCAAGACCTGGTACACATGGCTATTCAGATTGCCTGTGGAATGAGCTACCTGGCCAGAAGGGAAGTCATCCACAAAGACCTGGCTGCCAGGAACTGTGTCATTGATGACACACTTCAAGTTAAGATCACAGACAATGCCCTCTCCAGAGACTTGTTCCCCATGGACTATCACTGTCTGGGGGACAATGAAAACACGCCAGTTCGTTGGATGGCTCTTGAAAGTCTGGTTAATAACGAGTTCTCTAGCGCTAGTGATGTGTGGGCCTTTGGAGTGACGCTGTGGGAACTCATGACTCTGGGCCAGACTCCCTACGTGGACATTGACCCCTTCGAGATGGCCGCATACCTGAAAGATGGTTACCGAATAGCCCAGCCAATCAACTGTCCTGATGAATTATTTGCTGTGATGGCCTGTTGCTGGGCCTTAGATCCAGAGGAGAGGCCCAAGTTTCAGCAGCTGGTACAGTGCCTAACAGAGTTTCATGCACCCCTCGGGGCCTACGTCTGACTCCTCTCCAATCCCACACCATCAGGAAGAAGGTGCCTGTCGGGGCTCACTTGAAGCCTGTCAGGGATGCTTTGTATCTAACACAACGCCAACAGAAGCACATTTGTCTTCCAGAACACCGTGCCTTAGAAATGCTTTAGAATCTGAACTTTTTAAGACAGACTTAATAATGTGGCATATTTTCTAGATATCACTTTTATTAGGTTGAACTGAAAGGGTTTTTGTAAATTTTTTGGCCAAAATTTTTTAAAACATACTTACTTTGGACTAGGGGTACATTCTTACAAAATAAATAAACAGTTTTTAAAATTGTTTAGACACAGATATTTGGAATTAGCTATCTTAGTGCCAACTGCTTTTTATTTTTTTACTTCATCAAGGTGATGTAAGTGACTCACCTTTAAAGTTTTTTTAGTGTTATTTTTTATCACTACTCTGGGAAATGGTTTGTCTTCAAGATGCAATACTTTTCTTAGTAAAGGAAAAACAGCATAAAAAGATACCTGGTCTGCCTTGTACAAGAAAAGGCAATATTAGAGGAAGAAAATTTAAAGAAAAGCTAGAGGAAAAAAAAATTTTTTTAAAAATACTTATTAGAAGCAAACTGCCCTTGCATGGAAAACTGTTTATTTTTTTCAGTGAAAAGGAATTCTGCTTTCGTGTTTTTGGGAAAGCAGGAACTGAGTTCATTACATCTTTAATTTGGCAGAAATTAGCCTTTCTGTGAACCAGATGTGGTTTGGGGCAGATCTGTTGTAAACAATGGTGATTTTATTTATTTTTACTCTCTGGAAAAGGAGATAATACAATTCCAGAAAGTGAACTCATATTTCTAAGGTTAAGATTCCCTTTTATTGCACCTAGAATAGTGCTATGCACAGAGCGGGTGCTTGAGTTGTTGTCGTTTTTTGTTTGTTTTTTAAATGTAAACTGGTAAATTTTGTGCTTATCTTCAAGGCTGGCTTAAGTATAAAATTGTTTTTTAAACACTTGAAAAATTAAAGGATTTGTTTTATATTATGACAGTATTGAAATTATTTTTCATAATGAATGATTGGTTATTGTGTCTGGTAAGTCTTTGAACATTCAACAGCCAGACATTTGTGTTTTATTTCATGATGTTCCAGTCAAGTTCCAAAGCCCTAACACAGTTAAACTGGCTCAGACTCCAGGTTCTAGTAAAAAGTTGGAATTAATGTTATAAGGAAGTATTAAAACACTGAAACATTTCTCCAGAACCAGCAAGTAAGGGATATGTATGTATTTATGCTCAGTTTTAGTTGGCCTAAAGCAGAGTTGAATGGGCTTTCTAAATAGCTAGCCCTGCAGGTACCTGCCACTACTCCCATCTTCAGAGGTATATAAGGGAGAATGTGTAGCAGTTTGACGCTTTTGCTGTTTTTAAAAAAGCCTTATGAATCAGCAGCACACCGGGAAAAATAGCTCACATAGTACCTGGTTTTCCACAAGTAAGCCAAGGGCATGATTTTCTGTGTACATTTATTAACAGTTCTTTGGTTTTATGAAATACTCATATGAAGCCAGTCCCTGGAGTACTGTTTTTTAAAAGGTCCCTTTGAACCATTTGTAAATTATATTTTCATTCATAACCTGCATTCTTAGAAGGCATTCAGTCAACATTTACAGCACTTACTGTGTATTTTCCACATGGAGTGGTTCAACTCAAGCGTCCCTTCCAGTATTCAGGGCATTCTTATTTCATGTTCAAGTGAGTGCATTGTTTAGAAATCACAGTTTATTAACATGTACATGATCTATTTTORF Start: ATG at 91ORF Stop: TGA at 1921SEQ ID NO:98610 aaMW at 68071.0 kDNOV18a,MRGAARLGRPGRSCLPGARGLRAPPPPPLLLLLALLPLLPAPGAAAAPAPRPPELQSASAGPSVSLYCG138848-011Protein SequenceLSEDEVRRLIGLDAELYYVRNDLISHYALSFSLLVPSETNFLHFTWHAXSKVEYKLGFQVDNVLAMDMPQVNTSVQGEVPRTLSVFRVELSCTGKVDSEVMILMQLNLTVNSSKNFTVLNFKRRKMCYKKLEEVKTSALDKNTSRTIYDPVHAAPTTSTRVFYISVGVCCAVIFLVAITLAVLHLHSMKRIELDDSISASSSSQGLSQPSTQTTQYLRADTPNNATPITSSLGYPTLRIEKNDLRSVTLLEAKGKVKDIAISRERITLKDVLQEGTFGRIFHGILIDEKDPNKEKQAFVKTVKDQASEIQVTMMLTESCKLRGLHHRNLLPITHVCIEEGEKPMVILPYMNWGNLKLFLRQCKLVEANNPQAISQQDLVHMAIQIACGMSYLARREVIHKDLAARNCVIDDTLQVKITDNALSRDLFPMDYHCLGDNENRPVRWMALESLVNNEFSSASDVWAFGVTLWELMTLGQTPYVDIDPFEMAAYLKDGYRIAQPINCPDELFAVMACCWALDPEERPKFQQLVQCLTEFHAALGAYV


[0447] Further analysis of the NOV18a protein yielded the following properties shown in Table 18B.
97TABLE 18BProtein Sequence Properties NOV18aPSort0.6000 probability located in plasma membrane;analysis:0.4000 probability located in Golgi body; 0.3000probability located in endoplasmic reticulum(membrane); 0.3000 probability located inmicrobody (peroxisome)SignalPCleavage site between residues 47 and 48analysis:


[0448] A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 18C.
98TABLE 18CGeneseq Results for NOV18aNOV18aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAG66030Amino acid sequence of seq1 . . . 610604/610 (99%)0.0Id No. 6 - Homo sapiens, 6071 . . . 607606/610 (99%)aa. [WO200185789-A2,15 NOV. 2001]AAR42480Human RYK cDNA - Homo1 . . . 610581/612 (94%)0.0sapiens, 606 aa.1 . . . 606587/612 (94%)[WO9323429-A,25 NOV. 1993]AAR42479Mouse RYK - Mus musculus,46 . . . 610 539/565 (95%)0.0593 aa. [WO9323429-A,32 . . . 593 548/565 (96%)25 NOV. 1993]ABB57333Mouse ischaemic condition9 . . . 331291/323 (90%)e−158related protein sequence SEQ2 . . . 314298/323 (92%)ID NO: 928 - Mus musculus,317 aa. [WO200188188-A2,22 NOV. 2001]AAG66025Ryk protein extracellular47 . . . 237 190/191 (99%)e−105domain - Homo sapiens, 1911 . . . 191191/191 (99%)aa. [WO200185789-A2,15 NOV. 2001]


[0449] In a BLAST search of public sequence datbases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18D.
99TABLE 18DPublic BLASTP Results for NOV18aNOV18aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueI37560protein-tyrosine kinase (EC1 . . . 610603/610 (98%)0.02.7.1.112) ryk - human, 6071 . . . 607605/610 (98%)aa.P34925Tyrosine-protein kinase RYK1 . . . 610585/610 (95%)0.0precursor (EC 2.7.1.112) -1 . . . 604588/610 (95%)Homo sapiens (Human), 604aa.Q01887Tyrosine-protein kinase RYK9 . . . 610566/602 (94%)0.0precursor (EC 2.7.1.112)2 . . . 594577/602 (95%)(Kinase VIK) (NYK-R)(Met-related kinase) - Musmusculus (Mouse), 594 aa.I58386receptor tyrosine kinase -9 . . . 610565/602 (93%)0.0mouse, 594 aa.2 . . . 594576/602 (94%)A47186receptor protein tyrosine9 . . . 610550/602 (91%)0.0kinase homolog RYK - mouse,2 . . . 593562/602 (92%)593 aa.


[0450] PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18E.
100TABLE 18EDomain Analysis of NOV18aIdentities/NOV18aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValueWIF66 . . . 19464/147 (44%)1.7e−69125/147 (85%) pkinase333 . . . 599 78/302 (26%)1.8e−76216/302 (72%) 



Example 19

[0451] The NOV19 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 19A.
101TABLE 19ANOV19 Sequence AnalysisSEQ ID NO:991983bpNOV 19a,GGTAGAGCGGAGACGACGCTCCCAGACTCCTCCGGTCTCCCCGGGCAGCATGAAGACCGCCGAGAACCG139990-01DNA SequenceATCAGAGGAACCCGCAGCGACGGGCCGCGGAAACGAGGCCTCTGCGTCCTCTGTGGCCTCCCCGCGGCAGGAAAATCGACTTTCGCGCGCGCCCTCGCCCACCGOCTGCAGCAGGAGCAGGGTTGGGCCATCGGTGTTGTCGCGTATGATGACGTCATGCCCGACGCGTTTCTCGCCGGGGCAAGAGCGCGACCGGCGCCATCCCAATGGAAATTGCTTCGACAGGAACTGTTGAAGTACCTGGAATACTTCTTGATGGCTGTCATTAATGGGTGTCAGATGTCTGTCCCACCCAACAGGACTGAAGCCATGTGGGAAGATTTTATAACCTGCTTAAAGGATCAAGATCTGATATTTTCTGCAGCATTTGAGGCCCAGTCTTGCTACCTCTTAACAAAAACTGCTGTTTCTAGACCTTTGTTTTTGGTTTTGGATGACAATTTTTATTATCAGAGTATGAGATATGAAGTCTACCAGCTGGCTCGGAAATATTCATTGGGCTTTTGCCAGCTCTTTTTAGATTGTCCTCTTGAGACCTGTTTACAGACGAATGGCCAGAGGCCACAGGCACTGCCTCCTGAGACCATCCACCTGATGCGAAGAAAGCTAGAAAAGCCCAACCCTGAGAAAAATGCTTGGGAACACAACAGCCTCACAATTCCGAGTCCAGCATGTGCTTCGGAGGCCAGATGAACAAGTGCTTCCTCACAACTTGAAGCTTCTAGCAGAAGAACTTAACCAGCTCAAAGCAGAGTTTTTGOAAGACCTAAAACAAGGAAACAAAAAATATCTGTGCTTTCAGCAAACCATTGACATACCAGATGTCATTTCTTTTTTTCATTATGAGAAAGATAATAPTGTACAGAAGTATTTTTCAAAGCAGCATTAAAATTTCTGAACTGCCAAAAAAAAAAAAORF Start: ATG at 50ORF Stop: TGA at 758SEQ ID NO:1001236 aaMW at 26728.5 kDNOV19a,MKTAENIRGTGSDGPRKRGLCVLCGLPAAGKSTFARALAHRLQQEQGWAIGVVAYDDVMPDAFLAGACG139990-01Protein SequenceRARPAPSQWKLLRQELLKYLEYFLMAVINGCQNSVPPNRTEAMWEDFITCLKDQDLIFSAAFEAQSCYLLTKTAVSRPLFLVLDDNFYYQSMRYEVYQLARKYSLGFCQLFLDCPLETCLQRNGQRPQALPPETIHLMRRKLEKPNPEKNAWEHNSLTIPSPACASEAR


[0452] Further analysis of the NOV19a protein yielded the following properties shown in Table 19B.
102TABLE 19BProtein Sequence Properties NOV19aPSort0.3700 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0453] A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.
103TABLE 19CGeneseq Results for NOV19aNOV19aResidues/Identities/GeneseqProtein/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB73511Human transferase HTFS-18, 1 . . . 235 235/235 (100%) e−138SEQ ID NO: 18 - Homo 1 . . . 235 235/235 (100%)sapiens, 358 aa.[WO200132888-A2,10 MAY 2001]AAB47957Homo zinc finger protein95 . . . 220123/126 (97%)1e−6918.04 - Homo sapiens, 16421 . . . 146124/126 (97%)aa. [WO200220595-A1,14 MAR. 2002]AAU14714Novel bone marrow121 . . . 235  115/115 (100%)7e−64polypeptide #113 - Homo 1 . . . 115 115/115 (100%)sapiens, 238 aa.[WO200157187-A2,9 AUG. 2001]AAG74560Human colon cancer antigen21 . . . 107 86/87 (98%)1e−44protein SEQ ID NO: 5324 -12 . . . 98  86/87 (98%)Homo sapiens, 98 aa.[WO200122920-A2,5 APR. 2001]ABB65970Drosophila melanogaster16 . . . 226 62/216 (28%)2e−12polypeptide SEQ ID NO 2 . . . 178 94/216 (42%)24702 - Drosophilamelanogaster, 292 aa.[WO200171042-A2,27 SEP. 2001]


[0454] In a BLAST search of public sequence datbases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.
104TABLE 19DPublic BLASTP Results for NOV19aNOV19aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9VWF7CG12788 protein (SD05444P) -16 . . . 22662/216 (28%) 5e−12Drosophila melanogaster 2 . . . 17894/216 (42%) (Fruit fly), 292 aa.Q8TUS5Predicted nucletide kinase -20 . . . 23457/219 (26%) 6e−08Methanopyrus kandleri, 255 3 . . . 16090/219 (41%) aa.Q58933Hypothetical protein MJ1538 -129 . . . 226 30/98 (30%)4e−07Methanococcus jannaschii,57 . . . 15255/98 (55%)252 aa.Q9XTU1Y49E10.22 protein -134 . . . 213 24/82 (29%)0.015Caenorhabditis elegans, 25958 . . . 13944/82 (53%)aa.P34253KTI12 protein -139 . . . 229 24/92 (26%)0.015Saccharomyces cerevisiae73 . . . 16344/92 (47%)(Baker's yeast), 313 aa.


[0455] PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.
105TABLE 19EDomain Analysis of NOV19aIdentities/NOV19aSimilaritiesPfamMatchfor the MatchedExpectDomainRegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 20

[0456] The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 20A.
106TABLE 20ANOV20 Sequence AnalysisSEQ ID NO:1013875 bpNOV2Oa,CGGGGGACGTCAGCGCTGCCAGCGTGGAAGGAGCTGCGGGGCGCGGGAGGAGGAAGTAGAGCCCCGCCG140041-01DNA SequenceACCGCCAGGCCACCACCGGCCGCCTCAGCCATGGACGCGTCCCTGGAGAAGATAGCAGACCCCACGTTAGCTGAAATGGGAAAAAACTTGAAGGAGGCAGTGAAGATGCTGGAGGACAGTCAGAGAAGAACAGAAGAGGAAAATGGAAAGAAGCTCATATCCGGAGATATTCCAGGCCCACTCCAGGGCAGTGGGCAAGATATGGTGAGCATCCTCCAGTTAGTTCAGAATCTCATGCATGGAGATGAAGATGAGGAGCCCCAGAGCCCCAGAATCCAAAATATTGGAGAACAAGGTCATATGGCTTTGTTGGGACATAGTCTCGGAGCTTATATTTCAACTCTGGACAAAGAGAAGCTGAGAAAACTTACAACTAGGATACTTTCAGATACCACCTTATGGCTATGCAGAATTTTCAGATATGAAAATGGGTGTGCTTATTTCCACGAAGAGGAAAGAGAAGGACTTGCAAAGATATGTAGGCTTGCCATTCATTCTCGATATGAAGACTTCGTAGTGGATGGCTTCAATGTGTTATATAACAAGAAGCCTGTCATATATCTTAGTGCTGCTGCTAGACCTGGCCTGGGCCAATACCTTTGTAATCAGCTCGGCTTGCCCTTCCCCTGCTTGTGCCGTGTACCCTGTAACACTGTGTTTGGATCCCAGCATCAGATGGATGTTGCCTTCCTGGAGAAACTGATTAAAGATGATATAGAGCGAGGAAGACTGCCCCTGTTGCTTGTCGCAAATGCAGGAACGGCAGCAGTAGGACACACAGACAAGATTGGGAGATTGAAAGAACTCTGTGAGCAGTATGGCATATGGCTTCATGTGGAGGGTGTGAATCTGGCAACATTGGCTCTGGGTTATGTCTCCTCATCAGTGCTGGCTGCAGCCAAATGTGATAGCATGACGATGACTCCTGGCCCGTGGCTGGGTTTGCCAGCTGTTCCTGCGGTGACACTGTATAAACACGATGACCCTGCCTTGACTTTAGTTGCTGGTCTTACATCAAATAAGCCCACAGACAAACTCCGTGCCCTGCCTCTGTGGTTATCTTTACAATACTTGGGACTTGATGGGTTTGTGGAGAGGATCAAGCATGCCTGTCAACTGAGTCAACGGTTGCAGGAAAGTTTGAAGAAAGTGAATTACATCAAAATCTTGGTGGAAGATGAGCTCAGCTCCCCAGTGGTGGTGTTCAGATTTTTCCAGGAATTACCAGGCTCAGATCCGGTGTTTAAAGCCGTCCCAGTGCCCAACATGACACCTTCAGGAGTCGGCCGGGAGAGGCACTCGTGTGACGCGCTGAATCGCTGGCTGGGAGAACAGCTGAAGCAGCTGGTGCCTGCAAGCGGCCTCACAGTCATGGATCTGGAAGCTGAGGGCACGTGTTTGCGGTTCAGCCCTTTGATGACCGCAGCAGTTTTAGGAACTCGGCGAGAGGATGTGGATCAGCTCGTAGCCTGCATAGAAAGCAAACTGCCAGTGCTGTGCTGTACGCTCCAGTTGCGTGAAGAGTTCAAGCAGGAAGTGGAAGCAACAGCAGGTCTCCTATATGTTGATGACCCTAACTGGTCTGGAATAGGGGTTGTCAGGTATGAACATGCTAATGATGATAAGAGCAGTTTGAAATCAGATCCCGAAGGGGAAAACATCCATGCTGGACTCCTGAAGAAGTTAAATGAACTGGAATCTGACCTAACCTTTAAAATAGGCCCTGAGTATAAGAGCATGAAGAGCTGCCTTTATGTCGGCATCGCGAGCGACAACGTCGATGCTGCTGAGCTCGTGGAGACCATTGCGGCCACAGCCCGGGAGATAGAGGAGAACTCGAGGCTTCTGGAAAACATGACAGAAGTGGTTCGGAAAGGCATTCAGGAAGCTCAAGTGGAGCTGCAGAAGGCAAGTGAAGAACGGCTTCTGGAAGAGGGGGTGTTGCGGCAGATCCCTGTAGTGGGCTCCGTGCTGAATTCGTTTTCTCCGGTCCAGGCTTTACAGAAGGGAAGAACTTTTAACTTGACAGCAGGCTCTCTGGAGTCCACAGAACCCATATATGTCTACAAAGCACAAGGTGCAGGAGTCACGCTGCCTCCAACGCCCTCCGGCAGTCGCACCAAGCAGAGGCTTCCAGGCCAGAAGCCTTTTAAAAGGTCCCTGCGAGGTTCAGATGCTTTGAGTGAGACCAGCTCAGTCAGTCACATTGAAGACTTAGAAAAGGTGGAGCGCCTATCCAGTGCGCCGGAGCAGATCACCCTCOAGGCCAGCAGCACTGAGGGACACCCAGGGGCTCCCAGCCCTCAGCACACCGACCAGACCGAGGCCTTCCAGAAAGGGGTCCCACACCCAGAAGATGACCACTCACAGGTAGAAGGACCGGAGAGCTTAAGATGAGACTCATTGTGTGGTTTGAGACTGTACTGAGTATTGTTTCAGGGAAGATGAAGTTCTATTGGAAATGTGAACTGTGCCACATACTAATATAAATTACTGTTGTTTGTGCTTCACTGGGATTTTGGCACAAATATGTGCCTGAAAGGTACGCTTTCTAGGAGGGGAGTCAGCTTGTCTAACTTCATGTACATGTAGAACCACGTTTGCTGTCCTACTACGACTTTTCCCTAAGTTACCATAAACACATTTTATTCACAAAAAACACTTCGAATTTCAAGTGTCTACCAGTAGCACCCTTGCTCTTTCTAAACATAAGCCTAAGTATATGAGGTTGCCCGTGGCAACTTTTTGGTAAAACAGCTTTTCATTAGCACTCTCCAGGTTCTCTGCAACACTTCACAGAGGCGAGACTGGCTGTATCCTTTGCTGTCGGTCTTTAGTACGATCAAGTTGCAATATACAGTGGGACTGCTAGACTTGAAGGAGAGCAGTGATTGTGGGATTGTAAATAAGAGCATCAGAAGCCCTCCCCAGCTACTGCTCTTCGTGGAGACTTAGTAAGGACTGTGTCTACTTGAGCTGTGGCAAGGCTGCTGTCTGGGACTGTCCTCTGCCACAAGGCCATTTCTCCCATTATATACCGTTTGTAAAGAGAAACTGTAAAGTCTCCTCCTGACCATATATTTTTAAATACTGGCAAAGCTTTTAAAATTGGCACACAAGTACAGACTGTGCTCATTTCTGTTTAGTATCTGAAAACCTGATAGATGCTACCCTPAAGAGCTTGCTCTTCCGTGTGCTACGTAGCACCCACCTGGTTAAAATCTGAAAACAAGTACCCCTTTGACCTGTCTCCCACTGAAGCTTCTACTGCCCTGGCAGCTCCCCTGGGCCCAACTCAGAAACAGGAGCCAGCAGAGCACTCTCTCACGCTGATCCAGCCGGGCACCCTCCTTAAGTCAGTAGAAGCTCGCTGGCACTGCCCGTTCCTACTTTTCCGAAGTACTGCGTCACTTTGTCGTAAGTAATGGCCCCTGTGCCTTCTTAATCCAGCAGTCAAGCTTTTGGGAGACCTGAAAATGGGAAAATTCACACTGGGTTTCTGGACTGTAGTATTGGAAGCCTTAGTTATAGTATATTAAGCCTATAATTATACTCTGATTTGATGGGATTTTTGACATTTACACTTCTCAAAATGCAGGGGGTTTTTTTTCGTGCAGATGATTAAACAGTCTTCCCTATTTGGTGCAATCAAGTATAGCAGATAAAATGGGGGAGGGGTAAATTATCACCTTCAAGAAAATTACATGTTTTTATATATATTTGGAATTGTTAAATTGGTTTTGCTGAAACATTTCACCCTTGAGATATTATTTGAATGTTGCTTTCAATAAAGGTTCTTGAAATTGTTORE Start: ATG at 98ORF Stop: TGA at 2462SEQ ID NO:102788 aaMW at 86705.9 kDNOV2Oa,MDASLEKIADPTLAEMGKNLKEAVKMLEDSQRRTEEENGKKLISGDIPGPLQGSGQDMVSILQLVQNCG14004101Protein SequenceLMHGDEDEEPQSPRIQNIGEQGHIMLLGHSLGAYISTLDKEKLRKLTTRILSDTTLWLCRIFRYENGCAYFHEEEREGLAKICRLAIHSRYEDFVVDGFNVLYNXKPVIYLSAAARPGLGQYLCNQLGLPFPCLCRVPCNTVFGSOHQMDVAFLEKLIKDDIERGRLPLLLVANAGTAAVGHTDKIGRLKELCEOYGIWLHVEGVNLATLALGYVSSSVLAAAKCDSMTMTPGPWLGLPAVPAVTLYKHDDPALTLVAGLTSNKPTDKLRALPLWLSLQYLGLDGFVERIKHACQLSQRLQESLKKVNYIKILVEDELSSPVVVFRFFQELPGSDPVFKAVPVPNMTPSGVGRERHSCDALNRWLGEQLKQLVPASGLTVMDLEAEGTCLRFSPLMTAAVLGTRGEDVDQLVACIESKLPVLCCTLQLREEFKQEVEATAGLLYVDDPNWSGIGVVRYEHANDDKSSLKSDPEGENIHAGLLKKLNELESDLTFKIGPEYKSMKSCLYVGMASDNVDAAELVETIAATAREIEENSRLLENMTEVVRKGIQEAQVELQKASEERLLEEGVLRQIPVVGSVLNWFSPVQALQKGRTFNLTAGSLESTEPIYVYKAQGAGVTLFPTPSGSRTKQRLPGQKPFKRSLRGSDALSETSSVSHIEDLEKVERLSSGPEQITLEASSTEGHPGAPSPQHTDQTEAFQKGVPHPEDDHSQVEGPESLR


[0457] Further analysis of the NOV20a protein yielded the following properties shown in Table 20B.
107TABLE 20BProtein Sequence Properties NOV20aPSort0.4500 probability located in cytoplasm; 0.3000analysis:probability located in microbody (peroxisome);0.1000 probability located in mitochondrial matrixspace; 0.1000 probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0458] A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 20C.
108TABLE 20CGeneseq Results for NOV20aNOV20aResidues/Identities/GeneseqProtcin/Organism/LengthMatchSimilarities for theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAM39095Human polypeptide SEQ ID1 . . . 788788/788 (100%)0.0NO 2240 - Homo sapiens,1 . . . 788788/788 (100%)788 aa. [WO200153312-A1,26 JUL. 2001]AAM40881Human polypeptide SEQ ID1 . . . 788784/788 (99%) 0.0NO 5812 - Homo sapiens,33 . . . 820 786/788 (99%) 820 aa. [WO200153312-A1,26 JUL. 2001]AAM25938Human protein sequence1 . . . 466466/466 (100%)0.0SEQ ID NO: 1453 - Homo36 . . . 501 466/466 (100%)sapiens, 518 aa.[WO200153455-A2,26 JUL. 2001]AAG75454Human colon cancer antigen381 . . . 788 408/408 (100%)0.0protein SEQ ID NO: 6218 -18 . . . 425 408/408 (100%)Homo sapiens, 425 aa.[WO200122920-A2,5 APR. 2001]AAB57103Human prostate cancer432 . . . 788 357/357 (100%)0.0antigen protein sequence15 . . . 371 357/357 (100%)SEQ ID NO: 1681 - Homosapiens, 371 aa.[WO200055174-A1,21 SEP. 2000]


[0459] In a BLAST search of public sequence datbases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.
109TABLE 20DPublic BLASTP Results for NOV20aNOV20aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueO00236KIAA0251 protein - Homo1 . . . 788 788/788 (100%)0.0sapiens (Human), 820 aa33 . . . 820  788/788 (100%)(fragment).Q99K01Hypothetical 87.3 kDa1 . . . 788697/788 (88%)0.0protein - Mus musculus1 . . . 787726/788 (91%)(Mouse), 787 aa.Q9DC25Adult male lung cDNA,1 . . . 702638/702 (90%)0.0RIKEN full-length enriched1 . . . 702664/702 (93%)library, clone: 1200006G13,full insert sequence - Musmusculus (Mouse), 710 aa.Q8TBS5Similar to KIAA0251193 . . . 788 595/596 (99%)0.0hypothetical protein - Homo3 . . . 598596/596 (99%)sapiens (Human), 598 aa(fragment).AAH33748Similar to expressed1 . . . 369345/369 (93%)0.0sequence AA415817 - Homo1 . . . 346346/369 (93%)sapiens (Human), 347 aa.


[0460] PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.
110TABLE 20EDomain Analysis of NOV20aIdentities/NOV20aSimilaritiesMatchfor the MatchedExpectPfam DomainRegionRegionValuepyridoxal_deC214 . . . 26922/62 (35%)1.6e−1244/62 (71%)



Example 21

[0461] The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
111TABLE 21ANOV21 Sequence AnalysisSEQ ID NO:1031683 bpNOV21a,TTATGTCGGGTCGCGGGGTGTCATGACAGCATGGCAGACTACCTGATCAGCAGCGGCACCAGCTACGCG14006101DNA SequenceTGCCCGAGGACGGGCTCACCGCGCAGCAGCTCTTCACCAGCACCAACGGCCTCACCTACAATGACTTCCTGATTCTCCCAOGATTCATAGACTTCATAGCTGATGATGAGGTGGACCTCACCTCAGCCCTGACCCACAAGGGCCTGAAGACGCCGCTGATCTCCTCCCCTATGGACACTTCTCCTCCCCTGTGGACACTGACAGAGGCTGACATGGCAATCGGGATGGCTCTGATGGGAGGTATTGGTTTCATTCACCACAACTGCACCCCAGAGTTCGAGGCCAATGAGGTGCTGAAGGTCAAGAAGTTTGAACAGGGCTTCATCACGGACCCTGTGGTGCTGAGCCCCTTGCACACCGTGGGTGATGTGCTTCTGAAGACGCCGCTGATCTCCTCCCCTGTGGACACTGAGGCCAAGATGCTGCATCGCTTCTCTGGTATCCCCCTCACTGAGACGGGCACCATGGGCAGCAAGCTGGTGGGCATCATCACCTCCCGAGACGTCGACTTTCTTGCTAAGAAGGAGCACGCCACCTTCATCAGTGAGGTGATGACCCCAAGCATGGAACTGGTGGTGGCTGACAAAGGTGTGACGTTGAAAGAGGCAAATGAGATCCTGCAGCGTAACAAGAAAGGGAAGCTGCCTATCGTCAGTGATCGCGATGAGCTGGTGGCCATCATTGCCCGCACTGACCTGAAGAAGAATCGAGACTACCCTCTGGCCTCCAAGGATTCCCACAAACAGCTGCTGTGCAGGGCAGCTGTGGGCACCCGTGAGGATGACGAATGCCACCTGGACCTGCTCACCCAGGCGGGTGTCAATGTTGTAGTCTTGGACTCATCCCAAGGGAGCTCGGTGTATCAGATCACCATGGTGCATTACATCAAACAGAAGTACCCCCACCTCCAGGTGATTGGGGGGAACGTGGTGACAGCAGCCCAGGCCAAGAACCTGATGGACGCTCGTGTGGACGGGCTGCATGTGGGCATGGGCTACGGCTCCATCTGCATTACCCAGAAAGTGATGGCCTGCGGTTGGCCCCAGGGCACTGCTGTGTACAAGGTCGCCAAGTATGCCCAGTGCTTTGGTGTGCCCATCATAGTCGATGGTGGCATCCAGACTGTGGGGCACGTGGTCAAGGCCCTGGCCCTTGGAGCCTCCACAGTGATGATGGCCTCCCTGCTGGCCACCACCACGGAGGCACCTGGTGAGTACTTCTTCTTAGAAAGGGTGCAGCTCAAGAAGTACCAGGGCATGGGCTCACTGGATGCCATGGAGAAGAGCAGCAGCAGCCAGAAACGATACTTCAGCAAGCGGGATAAGGTGAAGATCGCACAGGGTGTCTCGGGCTCCATCCAGGACAAAGGGTCCATTCAGAAGTTCGTGCCCTACCTCATAGCGGGCATCCAGCACAGCTGCCAGGATATCGGGGCCCGCAGCCTGTCTGTCCTTTGGTCCATGATGTACTCAGGGGAGCTCAAGTTTGAGAAGCAGACCATGTCGGCCCAGATCAAGGGTGGTGTCCATGGCCTGCACTCGTATGAGAAGCAGCTGTGATGAGGACAGCGGTGGAGGCTCAGGTCGTGCAGCGGGTGCACCCTGAAGACGCCGCTGORF Start: ATG at 31ORE Stop: TGA at 1624SEQ ID NO:104531 aaMW at 57605.0 kDNOV21a,MADYLISSGTSYVPEDGLTAQQLFTSTNGLTYNDFLILPGFIDFIADDEVDLTSALTHKGLKTPLISCG140061-01Protein SequenceSPMDTSPPLWTLTEADMAIGMALMGGIGFIHHNCTPEFEANEVLKVKKFEQGFITDPVVLSPLHTVGDVLLKTPLISSPVDTEAKMLHGFSGIPLTETGTMGSKLVGIITSRDVDFLAKKEHATFISEVMTPRMELVVADKGVTLKEANEILQRNKKGKLPIVSDRDELVAIIARTDLKKNRDYPLASKDSHKQLLCRAAVGTREDDECHLDLLTQAGVNVVVLDSSQGSSVYQITMVHYIKQKYPHLQVIGGNVVTAAQAKNLMDARVDGLHVGMGYGSICITQKVMACGWPQGTAVYKVAKYAQCFGVPIIVDGGIQTVGHVVKALALGASTVMMGSLLATTTEAPGEYFFLERVQLKKYQGMGSLDAMEKSSSSQKRYFSKGDKVKIAQGVSCSIQDKGSIQKFVPYLIAGIQHSCQDIGARSLSVLWSMMYSGELKFEKQTMSAQIKGGVHGLHSYEKQL


[0462] Further analysis of the NOV21a protein yielded the following properties shown in Table 21B.
112TABLE 21BProtein Sequence Properties NOV21aPSort0.4500 probability located in cytoplasm;analysis:0.3785 probability located in microbody(peroxisome); 0.1507 probability locatedin lysosome (lumen); 0.1000 probabilitylocated in mitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0463] A search of the NOV21 a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21C.
113TABLE 21CGeneseq Results for NOV21aNOV21aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE18188Human wild-type inosine1 . . . 531454/532 (85%)0.05′-monophosphate1 . . . 513481/532 (90%)dehydrogenase (IMPDH) -Homo sapiens, 514 aa.[WO200185952-A2,15 NOV. 2001]AAE18257Human type I inosine1 . . . 531453/532 (85%)0.05′-monophosphate1 . . . 513480/532 (90%)dehydrogenase (IMPDH)mutant, D29G - Homosapiens, 514 aa.[WO200185952-A2,15 NOV. 2001]AAE18258Human type I IMPDH1 . . . 531453/532 (85%)0.0mutant, N109K - Homo1 . . . 513480/532 (90%)sapiens, 514 aa.[WO200185952-A2,15 NOV. 2001]AAE18185Human wild-type, type I1 . . . 531452/532 (84%)0.0IMPDH #1 - Homo sapiens,1 . . . 513479/532 (89%)514 aa. [WO200185952-A2,15 NOV. 2001]AAE18190Human wild-type, type I1 . . . 531448/532 (84%)0.0IMPDH #2 - Homo sapiens,1 . . . 513475/532 (89%)514 aa. [WO200185952-A2,15 NOV. 2001]


[0464] In a BLAST search of public sequence datbases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21D.
114TABLE 21DPublic BLASTP Results for NOV21aNOV21aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueAAH33622IMP (inosine monophosphate)1 . . . 531454/532 (85%)0.0dehydrogenase 1 - Homo sapiens1 . . . 513481/532 (90%)(Human), 514 aa.P20839Inosine-5′-monophosphate1 . . . 531452/532 (84%)0.0dehydrogenase 1 (EC 1.1.1.205)1 . . . 513479/532 (89%)(IMP dehydrogenase 1) (IMPDH-I)(IMPD 1) - Homo sapiens (Human),514aa.P50096Inosine-5′-monophosphate1 . . . 531445/532 (83%)0.0dehydrogenase 1 (EC 1.1.1.205)1 . . . 513479/532 (89%)(IMP dehydrogenase 1) (IMPDH-I)(IMPD 1) - Mus musculus (Mouse),514aa.Q96NU2CDNA FLJ30078 fis, clone1 . . . 531431/532 (81%)0.0BGGI12000533, highly similar to1 . . . 488457/532 (85%)inosine-5′-monophosphatedehydrogenase 2 (EC 1.1.1.205) -Homo sapiens (Human), 489 aa.P12268Inosine-5′-monophosphate1 . . . 531395/532 (74%)0.0dehydrogenase 2(EC 1.1.1.205)1 . . . 513452/532 (84%)(IMP dehydrogenase 2) (IMPDH-II)(IMPD 2) - Homo sapiens (Human),514aa.


[0465] PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21E.
115TABLE 21EDomain Analysis of NOV21aIdentities/Similarities forPfamNOV21athe MatchedExpectDomainMatch RegionRegionValueIMPDH_N 21 . . . 11649/97 (51%)6.7e−4081/97 (84%)CBS118 . . . 18616/69 (23%)0.3350/69 (72%)CBS197 . . . 25016/54 (30%)  1e−0843/54 (80%)IMPDH_C280 . . . 501113/232 (49%)  6.7e−134202/232 (87%) 



Example 22

[0466] The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
116TABLE 22ANOV22 Sequence AnalysisSEQ ID NO:1051387 bpNOV22a,GAATGTCTGACCCCCACAGCAGTCCTCTCCTGCCAGAGCCACTTTCCAGCAGATACAAACTCTACGACG140335-01DNA SequenceGGCAGAGTTTACCAGCCCGAGCTGGCCCTCGACATCCCCGGATACTCACCCAGCTCTGCCCCTCCTGGAAATGCCTGAAGAAAAGGATCTCCGGTCTTCCAATGAAGACAGTCACATTGTGAAGATCGAAAAGCTCAATGAAAGGAGTAAAAGGAAAGACGACGGGGTGGCCCATCGGGACTCAGCAGGCCAAAGGTGCATCTGCCTCTCCAAAGCAGTGGGCTACCTCACGGGCGACATGAAGGAGTACAGGATCTGGCTTCCAGACAAACCCGTGGTCCTCCAGTTCATTGACTGGATTCTCCGGCGCATATCCCAAGTCGTGTTCGTCAACAACCCCGTCAGTGGAATCCTGATTCTGGTAGGACTTCTTGTTCAGAACCCCTGGTGGGCTCTCACTCGCTGGCTGGGAACAGTGGTCTCCACTCTGATGGCCCTCTTGCTCAGCCAGGACAGGTCTGCCATTGCCTCAGGACTCCATGGGTACAACGGGATGCTGGTGGGACTGCTGATGGCCGTGTTCTCGGAGAAGTTAGACTACTACTGGTGCCTTCTGTTTCCTGTGACCTTCACAGCCATGTCCGGACCAGTTCTTTCTAGTGCCTTGAATTCCATCTTCAGCAAGTGGGACCTCCCCGTCTTCACTCTGCCCTTCAACATTGCAGTCACCTTGTACCTTGCAGCCACAGGCCACTACAACCTCTTCTTCCCCACAACACTGGTAGAGCCTGTGTCTTCAGTGCCCAATATCACCTGGACAGAGATGGAAATGCCCCTGCTGTTACAAGCCATCCCTGTTGGGGTCCGCCAGGTGTATGGCTGTGACAATCCCTGGACAGGCGGCGTGTTCCTGGTGGCTCTGTTCATCTCCTCGCCACTCATCTGCTTGCATGCAGCCATTGGCTCAATCGTGGGGCTGCTAGCAGCCCTGTCAGTGGCCACACCCTTCGAGACCATCTACACAGGCCTCTGGAGCTACAACTGCGTCCTCTCCTGCAPCGCCATCGGAGGCATGTTCTATGCCCTCACCTGGCAGACTCACCTGCTCGCCCTCATCTGTGCCCTGTTCTGTGCATACATGGAAGCAGCCATCTCCAACATCATGTCAGTGGTAGGCGTGCCACCAGGCACCTGGGCCTTCTGCCTTGCCACCATCATCTTCCTGCTCCTGACGACAAACAACCCAGCCATCTTCAGACTCCCACTCAGCAAAGTCACCTACCCCGAGGCCAACCGCATCTACTACCTGACAGTGAAAAGCGGTGAAGAAGAGAAGGCCCCCAGCCGTGAATAGCCATGTTCGGGGAAGAAACGCTCTTTORF Start: ATG at 3ORF Stop: TAG at 1359SEQ ID NO:106452 aaMW at 49740.4 kDNOV22a,MSDPHSSPLLPEPLSSRYKLYEAEFTSPSWPSTSPDTHPALPLLEMPEEKDLRSSNEDSHIVKIEKLCG140335-01Protein SequenceNERSKRKDDGVAHRDSAGQRCICLSKAVGYLTGDMKEYRIWLPDKPVVLQFTDWILRGISQVVFVNNPVSGILILVGLLVQNPWWALTGWLGTVVSTLMALLLSQDRSAIASGLHGYNGMLVGLLMAVFSEKLDYYWWLLFPVTFTAMSGPVLSSALNSIFSKWDLPVFTLPFNIAVTLYLAATGHYNLEFPTTLVEPVSSVPNITWTEMEMPLLLQAIPVGVGQVYGCDNPWTGGVFLVALFISSPLICLHAAIGSIVGLLAALSVATPFETIYTGLWSYNCVLSCIAICGMFYALTWQTHLLALICALFCAYMEAAISNIMSVVGVPPGTWAFCLATIIFLLLTTNNPAIFRLPLSKVTYPEANRIYYLTVKSGEEEKAPSGE


[0467] Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.
117TABLE 22BProtein Sequence Properties NOV22aPSort0.6000 probability located in plasma membrane;analysis:0.4000 probability located in Golgi body; 0.3000probability located in endoplasmic reticulum(membrane); 0.0300 probability located in mito-chondrial inner membraneSignalPNo Known Signal Sequence Predictedanalysis:


[0468] A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.
118TABLE 22CGeneseq Results for NOV22aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV22a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAE22853Human transporter protein -1 . . . 452431/452 (95%)0.0 Homo sapiens, 452 aa.1 . . . 452441/452 (97%)[WO200220763-A2, 14 MAR. 2002]AAW13742Urea transporter polypeptide -57 . . . 439 271/383 (70%)     e−164Oryctolagus cuniculus, 397 aa.2 . . . 378329/383 (85%)[US5441875-A, 15 AUG. 1995]ABP40193Staphylococcus epidermidis ORF114 . . . 419  82/312 (26%)    3e−24amino acid sequence SEQ ID4 . . . 305150/312 (47%)NO: 5038 - Staphylococcusepidermidis, 305 aa.[US6380370-B1, 30 APR. 2002]AAU32094Novel human secreted protein352 . . . 391  21/40 (52%)    3e−04#2585 - Homo sapiens, 70 aa.6 . . . 45  28/40 (69%)[WO200179449-A2, 25 OCT. 2001]ABB48958Listeria monocytogenes protein121 . . . 197  24/78 (30%)0.29#1662 - Listeria monocytogenes,26 . . . 98  43/78 (54%)357 aa. [WO200177335-A2,18 OCT. 2001]


[0469] In a BLAST search of public sequence datbases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.
119TABLE 22DPublic BLASTP Results for NOV22aIdentities/ProteinSimilarities forAccessionNOV22a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ96PH5Urea transporter UT-A1 -1 . . . 451429/451 (95%)0.0Homo sapiens (Human), 920 aa.1 . . . 451439/451 (97%)Q9ES04Urea transporter isoform1 . . . 452362/452 (80%)0.0UTA-3 - Mus musculus (Mouse),10 . . . 461 413/452 (91%)461 aa.Q8R4T9Urea transporter isoform1 . . . 451362/451 (80%)0.0UT-A1 - Mus musculus (Mouse),10 . . . 460 412/451 (91%)930 aa.Q9R1Y7Urea transporter UT-A3 -1 . . . 452360/452 (79%)0.0Rattus norvegicus (Rat),9 . . . 460410/452 (90%)460 aa.Q9Z2R3Urea transporter UT4 - Rattus1 . . . 452359/452 (79%)0.0norvegicus (Rat), 460 aa.9 . . . 460409/452 (90%)


[0470] PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22E.
120TABLE 22EDomain Analysis of NOV22aIdentities/Similarities forPfamNOV22athe MatchedExpectDomainMatch RegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 23

[0471] The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
121TABLE 23ANOV23 Sequence AnalysisSEQ ID NO:107534 bpNOV23a,GCCTCCAGGGGCCCCATACTATCAGCTATGGTCAACCCCACCAAGTTCTTCAATGAGCCCTGGGGCCCG140355-01DNA SequenceGCATCTCCATCCAGCTGTTTGCAGACAAGTTTCCAAAGACAGCAGAAAATGTTTGTGCTCTGAGCATTCGAGAGAAAGGATTTGGTTATAACGGTTCCTGCTTTCACAGAATTATTCCGGGGTTTATGTGTCACGGTGGTGACTTCACACACCATAATGGCAGTGGTGGCAAGTACATCTATGCGGAGAAATTTGATGATGAGAACTTCATCCTGAAGCAGACAGGTTCTGGCATCTTGTCCAAGGAAAATGCTGGACCCAACACAAACGGTTCCCAGTTTTTCATCTGCAGTGCCAAGAGTGAGTGGTTCGATCGTGAGCATGTGTTCTTTGGCAAGGTGAAAGAAGGCATGAATATTGTGGAGGCCATGGAGGGTTTTGGGTCCAGGAATGGCAAGACCAGCAAGAAGATCACCATTGCTGACTGTTGACAACTCTAATAAGCTTGACTTGTGTTCGTTTTGTTTORE Start: ATG at 28ORE Stop: TGA at 496SEQ ID NO: 108156 aaMW at 17164.3 kDNOV23a,MVNPTKFFNEPWGRISIQLFADKFPKTAENVCALSIGEKGFGYKGSCFHRIIPGFMCNGGDFTHHNGCG140355-01Protein SequenceSGGKYIYGEKFDDENFILKQTGSGILSKENAGPNTNGSQFFICSAKSEWLDGEHVFFGKVXEGNNIVEAMEGFGSRNGKTSKKITIADC


[0472] Further analysis of the NOV23a protein yielded the following properties shown in Table 23B.
122TABLE 23BProtein Sequence Properties NOV23aPSort0.6400 probability located in microbody (peroxisome);analysis:0.4500 probability located in cytoplasm; 0.1000probability located in mitochondrial matrixspace; 0.1000 probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0473] A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.
123TABLE 23CGeneseq Results for NOV23aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV23a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABG29319Novel human diagnostic protein1 . . . 156 156/156 (100%)2e−92#29310 - Homo sapiens, 407 aa.252 . . . 407  156/156 (100%)[WO200175067-A2, 11 OCT. 2001]ABG27276Novel human diagnostic protein1 . . . 156 156/156 (100%)2e−92#27267 - Homo sapiens, 407 aa.252 . . . 407  156/156 (100%)[WO200175067-A2, 11 OCT. 2001]AAU01195Human cyclophilin A protein -1 . . . 156132/161 (81%)5e−74Homo sapiens, 165 aa.1 . . . 161140/161 (85%)[WO200132876-A2, 10 MAY 2001]AAW56028Calcineurin protein - Mammalia,1 . . . 156132/161 (81%)5e−74165 aa. [WO9808956-A2,1 . . . 161140/161 (85%)05 MAR. 1998]AAR13726Bovine cyclophilin - Bos taurus,2 . . . 156132/160 (82%)6e−74163 aa. [US5047512-A,1 . . . 160139/160 (86%)10 SEP. 1991]


[0474] In a BLAST search of public sequence datbases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.
124TABLE 23DPublic BLASTP Results for NOV23aIdentities/ProteinSimilarities forAccessionNOV23a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueCAC39529Sequence 26 from Patent1 . . . 156132/161 (81%)1e−73WO0132876 - Homo sapiens1 . . . 161140/161 (85%)(Human), 165 aa.P04374Peptidyl-prolyl cis-trans2 . . . 156132/160 (82%)2e−73isomerase A (EC 5.2.1.8)1 . . . 160139/160 (86%)(PPIase) (Rotamase)(Cyclophilin A) (Cyclo-sporin A-binding protein) -Bos taurus (Bovine), and,163 aa.Q9BRU4Peptidylprolyl isomerase A1 . . . 156131/161 (81%)5e−73(cyclophilin A) - Homo1 . . . 161139/161 (85%)sapiens (Human), 165 aa.P05092Peptidyl-prolyl cis-trans2 . . . 156131/160 (81%)5e−73isomerase A (EC 5.2.1.8)1 . . . 160139/160 (86%)(PPIase) (Rotamase)(Cyclophilin A) (Cyclo-sporin A-binding protein) -Homo sapiens (Human),, 164 aa.Q96IX3Peptidylprolyl isomerase A1 . . . 156131/161 (81%)2e−72(cyclophilin A) - Homo1 . . . 161139/161 (85%)sapiens (Human), 165 aa.


[0475] PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23E.
125TABLE 23EDomain Analysis of NOV23aIdentities/Similarities forPfamNOV23athe MatchedExpectDomainMatch RegionRegionValuepro_isomerase10 . . . 15695/166 (57%)1.2e−75128/166 (77%) 



Example 24

[0476] The NOV24 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
126TABLE 24ANOV24 Sequence AnalysisSEQ ID NO:109900 bpNOV24a,GCTAAGATTGCTACCTGGACTTTCGTTGACCATGCTGTCCCGGGTGGTACTTTCCGCCGCCGCCACACG140612-01DNA SequenceGCGGCCCCCTCTCTGAAGAATGCAGCCTTCCTAGGTCCAGGGGTATTGCACGCAACAAGGACCTTTCATACAGGGCAGCCACACCTTGTCCCTGTACCACCTCTTCCTGAATACGGAGGAAAAGTTCGTTATGGACTGATCCCTGAGGAATTCTTCCAGTTTCTTTATCCTAAAACTGGTGTAACAGGGCCCTATGTACTCGGAACTGGGCTTATCTTGTACGCTTTATCCAAAGAAATATATGTGATTAGCGCAGAGACCTTCACTGCCCTATCAGTACTAGGTGTAATGGTCTATGGAATTAAAAAATATGGTCCCTTTGTTGCAGACTTTGCTGATAAACTCAATGAGCAAAAACTTGCCCAACTAGAAGAGGCGAACCAGGCTTCCATCCAACACATCCGGAATGCAATTGATACGGAGAAGTCACAACAGGCACTGGTTCAGAAGCGCCATTACCTTTTTGATGTGCAAAGGAATAACATTGCTATGGCTTTGGAAGTTACTTACCGGGAACGACTGTATAGAGTATATAAGGAAGTAAAGAATCGCCTGGACTATCATATATCTGTGCAGAACATGATGCGTCGAAAGGAACAAGAACACATGATAAATTGGGTGGAGAAGCACGTGGTGCAAAGCATCACCACACAGCAGGAAAAGGAGACAATTGCCGAGTGCATTGCGGACCTAAAGCTGCTGGCAAAGAAGGCCCAAGCACAGCCAGTTATGTAAATGTATCTATCCCAATTGAGACAGCTAGAAACAGTTGACTGACTAAATGGAAACTAGTCTATTTGACAAAGTCTTTCTGTGTTGGTGTCTACTGAAGTORF Start: ATG at 32ORF Stop: TAA at 800SEQ ID NO:110256 aaMW at 28951.4 kDNOV24a, MLSRVVLSAAATAAPSLKNAAFLGPGVLQATRTFHTGQPHLVPVPPLPEYGGKVRYGLIPEEFFQFLCG140612-01Protein SequenceYPKTGVTGPYVLGTGLILYALSKEIYVISAETFTALSVLGVMVYGIKKYGPFVADFADKLNEQKLAQLEEAKQASIQHIRNAIDTEKSQQALVQKRHYLFDVQRNNIAMALEVTYRERLYRVYKEVKNRLDYHISVQNMMRRKEQEHMINWVEKHVVQSTTTQQEKETIAECIADLKLLAKKAQAQPVMSEQ ID NO:111894 bpNOV24b,GCTAAGATTGCTACCTGGACTTTCGTTGACCATGCTGTCCCGGGTGGTACTTTCCGCCGCCGCCACACG140612-02DNA SequenceGCGGCCCCCTCTCTGAAGAATGCAGCCTTCCTAGGTCCAGCGGTATTGCAGGCAACAAGGACCTTTCATACAGGGCAGCCACACCTTGTCCCTGTACCACCTCTTCCTGAATACGGAGGAAAAGTTCGTTATGGACTGATCCCTGAGGAATTCTTCCAGTTTCTTTATCCTAAAACTGGTGTAACAGGACCCTATGTACTCGGAACTGGGCTTATCTTGTACGCTTTATCCAAAGAAATATATGTGATTAGCGCAGAGACCTTCACTGCCCTATCAGTACTAGGTGTAATGGTCTATGGAATTAAAAAATATGGTCCCTTTGTTGCAGACTTTGCTGATAAACTCAATGAGCAAAAACTTGCCCAACTAGAAGAGGCGAAGCAGGCTTCCATCCAACACATCCAGAATGCAATTGATACGGAGAAGTCACAACAGGCACTGGTTCAGAAGCGCCATTACCTTTTTGATGTGCAAAGGAATAACATTGCTATGGCTTTGGAAGTTACTTACCGGGAACGACTGTATAGAGTATATAAGGAAGTAAAGAATCGCCTGGACTATCATATATCTGTGCAGAACATGATGCGTCGAAAGGAACACATGATAAATTGGGTGGAGAAGCACGTGGTGCAAAGCATCTCCACACAGCAGGAAAAGGAGACAATTGCCAAGTGCATTGCGGACCTAAAGCTGCTGGCAAAGAAGGCTCAAGCACAGCCAGTTATGTAAATGTATCTATCCCAATTGAGACAGCTAGAAACAGTTGACTGACTAAATGGAAACTAGTCTATTTGACAAAGTCTTTCTGTGTTGGTGTCTACTGAAGTORE Start: ATG at 32ORF Stop: TAA at 794SEQ ID NO:112254 aaMW at 28651.1 kDNOV24b,MLSRVVLSAAATAAPSLKNAAFLGPGVLQATRTFHTGQPHLVPVPPLPEYGGKVRYGLIPEEFFQFLCG140612-02Protein SequenceYPKTGVTGPYVLGTGLILYALSKEIYVISAETFTALSVLGVMVYGIKKYGPFVADFADKLNEQKLAQLEEAKQASIQHIQNAIDTEKSQQALVQKRHYLFDVQRNNIAMALEVTYRERLYRVYKEVKNRLDYHISVQNMMRRKEHMINWVEKHVVQSISTQQEKETIAKCIADLKLLAKKAQAQPVM


[0477] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 24B.
127TABLE 24BComparison of NOV24a against NOV24b.Identities/Similarities forProteinNOV24a Residues/the MatchedSequenceMatch ResiduesRegionNOV24b1 . . . 256240/256 (93%)1 . . . 254243/256 (94%)


[0478] Further analysis of the NOV24a protein yielded the following properties shown in Table 24C.
128TABLE 24CProtein Sequence Properties NOV24aPSort0.5326 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in lysosome (lumen)SignalPCleavage site between residues 14 and 15analysis:


[0479] A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24D.
129TABLE 24DGeneseq Results for NOV24aNOV24aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAG03729Human secreted protein, SEQ1 . . . 132126/132 (95%)4e−67ID NO: 7810 - Homo1 . . . 132127/132 (95%)sapiens, 134 aa.[EP1033401-A2,06 SEP. 2000]AAU32833Novel human secreted1 . . . 253169/282 (59%)1e−66protein #3324 - Homo10 . . . 290 188/282(65%)sapiens, 292 aa.[WO200179449-A2,25 OCT. 2001]ABG17750Novel human diagnostic72 . . . 230 117/159 (73%)3e−59protein #17741 - Homo206 . . . 360 134/159 (83%)sapiens, 360 aa.[WO200175067-A2,11 OCT. 2001]AAU32832Novel human secreted2 . . . 104102/103 (99%)4e−53protein #3323 - Homo1 . . . 103103/103 (99%)sapiens, 114 aa.[WO200179449-A2,25 OCT. 2001]ABB63734Drosophila melanogaster48 . . . 252  94/206 (45%)1e−47polypeptide SEQ ID NO38 . . . 242 138/206 (66%)17994 - Drosophilamelanogaster, 243 aa.[WO200171042-A2,27 SEP. 2001]


[0480] In a BLAST search of public sequence datbases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24E.
130TABLE 24EPublic BLASTP Results for NOV24aNOV24aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP24539ATP synthase B chain,1 . . . 256253/256 (98%)e−142mitochondrial precursor (EC1 . . . 256256/256 (99%)3.6.3.14) - Homo sapiens(Human), 256 aa.JQ1144H+-transporting ATP1 . . . 256252/256 (98%)e−142synthase (EC 3.6.1.34) chain1 . . . 256256/256 (99%)b precursor, mitochondrial -human, 256 aa.Q9CQQ7ATP synthase B chain,1 . . . 256209/256 (81%)e−118mitochondrial precursor (EC1 . . . 256234/256 (90%)3.6.3.14) - Mus musculus(Mouse), 256 aa.P19511ATP synthase B chain,1 . . . 256207/256 (80%)e−118mitochondrial precursor (EC1 . . . 256234/256 (90%)3.6.3.14) - Rattus norvegicus(Rat), 256 aa.P13619ATP synthase B chain,43 . . . 256 182/214 (85%)e−102mitochondrial (EC 3.6.3.14) -1 . . . 214201/214 (93%)Bos taurus (Bovine), 214 aa.


[0481] PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24F.
131TABLE 24FDomain Analysis of NOV24aIdentities/NOV24aSimilaritiesPfamMatchfor the MatchedExpectDomainRegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 25

[0482] The NOV25 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 25A.
132TABLE 25ANOV25 Sequence AnalysisSEQ ID NO:1131316 bpNOV25a,TCCTACCACAGTGTCTGATGGAGCTTTCCTACCAGACCCTGAAATTCACCCATCACGCGCGGGAAGCCG140696-01DNA SequenceGAGCGAGATGAGGACAGAAGCACGACGAAAAAATCTTCTCATTTTGATTTCGCATTATTTAACACAAGAAGGGTATCTCGATACAGCAAATGCTTTGGAGCAAGAAACTAAACTGGGGTTACGACGGTTTGAAGTTTCTGACAACATTGATCTTGAAACTATTTTGATGGAATATGAGAGTTATTATTTTGTAAAATTTCAGAAATACCCCAAAATTGTCAAAAAGTCATCAGACACAGCAGAAAATAATTTACCGCAAAGAAGTAGAGGGAAGACCAGAAGGATGATGAACGACAGTTGTCAAAATCTTCCCAAGATCAATCAGCAGAGGCCCCGGTCCAAAACCACAGCGGGGAAGACAGCGGACACCAAATCGCTCAAAAAGCATCTATTGCAGGTCTTAGAGTCAGTCTCTAACACTCGCCTGGAAAGTGCCAACTTCGGCCTACATATATCAAGAATCCGTAAAGACAGTGGAGAGGAAAATGCCCACCCACGAAGACGCCAAATCATTGACTTCCAAGGGCTGCTCACAGATGCCATCAAGGGAGCAACCAGTGAACTTGCCTTGAACACCTTCGACCATAATCCAGACCCCTCAGAACGACTCCTGAAACCTCTGAGTGCATTTATTGGCATGAACAGTGAGATGCGAGAATTGGCAGCCGTGGTGAGCCGGGACATTTATCTCCATAATCCAAACATAAAGTGGAATGACATTATTGGACTTGATGCAGCCAAGCAGTTAGTCAAAGAAGCTGTTGTGTATCCTATAAGGTATCCACAGCTATTTACAGGAATTCTTTCTCCCTGGAAAGGACTACTGCTGTACGGCCCTCCAGGTACAGGAAAGACTTTACTGGCCAAAGCTCTGGCCACTGAATGTAAAACAACCTTCTTTAACATTTCTGCATCCACCATTGTCAGCAAATGGAGAGGGGATTCAGAAAAACTCGTTCGGGTGTTATTTGAGCTTGCCCGCTACCACGCCCCATCCACGATCTTCCTGGACGAGCTGGAGTCGGTGATGAGTCAGAGAGGCACAGCTTCTGGGGGAGAACATGAACGAAGCCTGCGGATGAAGACAGAGTTACTGGTGCAGATGGATGGGCTGGCACGCTCAGAAGATCTCGTATTTGTCTTAGCAGCTTCTAACCTGCCGTGGTAAGAGACCAAGAGAGTAAATTTTGAATACATTTTCAGGAGTCACTAAGTGCAAATAAAAATTTTATATTGACCACTTCAAAAAORF Start: ATG at 18ORF Stop: TAA at 1233SEQ ID NO:114405 aaMW at 45796.9 kDNOV25a,MELSYQTLKFTHQAREASEMRTEARRKNLLILISHYLTQEGYLDTANALEQETKLGLRRFEVCDNIDCG140696-01Protein SequenceLETILMEYESYYFVKFQKYPKIVKKSSDTAENNLPQRSRGKTRRMMNDSCQNLPKINQQRPRSKTTAGKTGDTKSLKKHLLQVLESVSNTRLESANFGLHISRIRKDSGEENANPRRGQIIDFQGLLTDAIKGATSELALNTFDHNPDPSERLLKPLSAFIGMNSEMRELAAVVSRDTYLHNPNIKWNDIIGLDAAKQLVKEAVVYPIRYPQLFTGILSPWKGLLLYGPPGTGKTLLAKAVATECKTTFFNISASTIVSKWRGDSEKLVRVLFELARYHAPSTIFLDELESVMSQRGTASGGEHEGSLRMKTELLVQMDGLARSEDLVFVLAASNLPWSEQ ID NO:1151035 bpNOV25b,TCCTAGCACAGTGTCTGATGGAGCTTTCCTACCAGACCCTGAAATTCACGCATCAGGCGCGGGAAGCCG140696-02DNA SequenceGACTGATGAACGACAGTTGTCAAAATCTTCCCAAGATCAATCAGCAGAGGCCCCGGTCCAAAACCACAGCCGGGGCAAGACACGGGGACACCAAATCGCTCAATAAGGAGCATCCTAATCAGGAGGTAGTTGATAACACTCGCCTGCAAAGTGCCAACTTCGGCCTACATATATCAAGAATCCGTAAAGACAGTGGAGAGGAAAATGCCCACCCACGAAGAGGCCAAATCATTGACTTCCAAGGGCTGCTCACAGATGCCATCAAGGGAGCAACCAGTGAACTTGCCTTGAACACCTTCGACCATAATCCAGACCCCTCAGAACGACTGCTGAAACCTCTGAGTGCATTTATTGGCATGAACAGTGAGATGCGAGAATTGGCAGCCGTGGTGAGCCGGGACATTTATCTCCATAATCCAAACATAAAGTGGAATGACATTATTGGACTTGATGCAGCCAAGCAGTTAGTCAAAGAAGCTGTTGTGTATCCTATAAGGTATCCACAGCTATTTACAGGAATTCTTTCTCCCTGGAAAGGACTACTGCTGTACGGCCCTCCAGGTACAGGAAAGACTTTACTGGCCAAAGCTGTGCCCACTGAATGTAAAACAACCTTCTTTAACATTTCTGCATCCACCATTGTCAGCAAATGGAGAGGGGATTCAGAAAAACTCGTTCGGGTGTTATTTGAGCTTGCCCGCTACCACGCCCCATCCACGATCTTCCTGGACGAGCTGGAGTCGGTGATGAGTCAGAGAGGCACAGCTTCTGGGGGAGAACATGAAGGAAGCCTGCGGATGAAGACAGAGTTACTGGTGCAGATGGATGGGCTGGCACCCTCAGAAGATCTCGTATTTGTCTTAGCAGCTTCTAACCTGCCCTGGTAACAGACCAACAGAGTAAATTTTGAATACATTTTCAGGAGTCACTAAGTGCAAATAAAAATTTTATATTGACCACTTCAAAAAORF Start: ATG at 73ORF Stop: TAA at 952SEQ ID NO:116293 aaMW at 32516.6 kDNOV2Sb,MNDSCQNLPKINQQRPRSKTTAGARHGDTKSLNKEHPNQEVVDNTRLESANFGLHISRIRKDSGEENCG140696-02Protein SequenceAHPRRGQIIDFQGLLTDAIKGATSELALNTFDHNPDPSERLLKPLSAFIGMNSEMRELAAVVSRDIYLHNPNIKWNDIIGLDAAKQLVKEAVVYPTRYPQLFTGILSPWKGLLLYGPPGTGKTLLAKAVATECKTTFFNISASTIVSKWRGDSEKLVRVLFELARYHAPSTIFLDELESVMSQRGTASGGEHEGSLRNKTELLVQMDGLARSEDLVFVLAASNLPWSEQ ID NO:1171215 bpNOV25c,ATGGAGCTTPCCTACCAGACCCTGAAATTCACGCATCAGGCGCGGGAAGCGTGCGAGATGAGGACAGCG140696-03DNA SequenceAAGCACGACGAAAAAATCTTCTCATTTTGATTTCCCATTATTTAACACAAGAAGGGTATATCGATACAGCAAATGCTTTGGAGCAAOAAACTAAACTGGGGTTACGACGGTTTGAAGTTTGTGACAACATTGATCTTGAAACTATTTTGATGGAATATGAGAGTTATTATTTTGTAAAATTTCAGAAATACCCCAAAATTGTCAAAAAGTCATCAGACACAGCAGAAAATAATTTACCGCAAAGAAGTAGAGGGAAGACCAGAAGGATGATGAACGACAGTTGTCAAAATCTTCCCAAGATCAATCAGCAGAGGCCCCGGTCCAAAACCACAGCGGGGAAGACAGGGGACACCAAATCGCTCAATAAGGAGCATCCTAATCACGAGGTAGTTGATAACACTCGCCTCGAAAGTGCCAACTTCGGCCTACATATATCAAGAATCCGTAAAGACAGTGGAGACGAAAATGCCCACCCACGAAGAGGCCAAATCATTGACTTCCAAGGGCTGCTCACAGATGCCATCAAGGGAGCAACCAGTGAACTTGCCTTGAACACCTTCGACCATAATCCAGACCCCTCAGAACGACTGCTGAAACCTCTGAGTGCATTTATTGGCATGAACAGTGAGATGCGAGAATTGGCAGCCGTGGTGAGCCGGGACATTTATCTCCATAATCCAAACATAAAGTGGAATGACATTATTGGACTTGATGCAGCCAAGCAGTTAGTCAAAGAAGCTGTTGTGTATCCTATAAGGTATCCACAGCTATTTACAGGAATTCTTTCTCCCTGGAAAGGACTACTGCTGTACGGCCCTCCAGGTACAGGAAAGACTTTACTGGCCAAAGCTGTGGCCACTGAATGTAAAACAACCTTCTTTAACATTTCTGCATCCACCATTGTCAGCAAATGGAGAGGGGATTCAGAAAAACTCGTTCGGGTGTTATTTGAGCTTGCCCCCTACCACGCCCCATCCACGATCTTCCTGGACGAGCTGGAGTCGGTGATGAGTCAGAGAGGCACAGCTTCTGGFGGAGAACATGAAGGAAGCCTGCGGATGAAGACAGAGTTACTGGTGCAGATGGATGGGCTGGCACGCTCAGAAGATCTCGTATTTGTCTTAGCAGCTTCTAACCTGCCGTGGTAAORF Start: ATG at 1ORF Stop: TAA at 1213SEQ ID NO:118404 aaMW at 45740.7 kDNOV25c,MELSYQTLKFTHQAREACEMRTEARRKNLLILISHYLTQEGYIDTANALEQETKLGLRRFEVCDNIDCG140696-03Protein SequenceLETILMEYESYYFVKFQKYPKIVKKSSDTAENNLPQRSRGKTRRMMNDSCQNLPKINQQRPRSKTTAGKTGDTKSLNKEHPNQEVVDNTRLESANFGLHISRIRKDSGEENAHPRRGQIIDFQGLLTDAIKGATSELALNTFDHNPDPSERLLKPLSAFIGMNSEMRELAAVVSRDIYLHNPNIKWNDIIGLDAAKQLVKEAVVYPIRYPOLFTGILSPWKGLLLYGPPGTGKTLLAKAVATECKTTFFNISASTIVSKWRGDSEKLVRVLFELARYHAPSTIFLDELESVMSQRGTASGGEHEGSLRMXTELLVQNDGLARSEDLVFVLAASNLPW


[0483] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 25B.
133TABLE 25CProtein Sequence Properties NOV25aPSort0.6500 probability located in cytoplasm; 0.1000analysis:probability located in mitochondrial matrixspace; 0.1000 probability located in lysosome(lumen); 0.0000 probability located inendoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0484] Further analysis of the NOV25a protein yielded the following properties shown in Table 25C.
134TABLE 25DGeneseq Results for NOV25aNOV25aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAG67151Amino acid sequence of a1 . . . 405394/406 (97%)0.0human enzyme - Homo1 . . . 403396/406 (97%)sapiens, 403 aa.[WO200164896-A2,07 SEP. 2001]AAB69399Human retinoid receptor230 . . . 405 176/176 (100%)4e−97interacting protein #2 -1 . . . 176 176/176 (100%)Homo sapiens, 176 aa.[WO200112786-A1,22 FEB. 2001]AAG48014Arabidopsis thaliana protein231 . . . 405122/175 (69%)5e−69fragment SEQ ID NO: 60587 -7 . . . 181150/175 (85%)Arabidopsis thaliana, 312aa. [EP1033405-A2,06 SEP. 2000]AAG48013Arabidopsis thaliana protein231 . . . 405122/175 (69%)5e−69fragment SEQ ID NO: 60586 -88 . . . 262150/175 (85%)Arabidopsis thaliana, 393aa. [EP1033405-A2,06 SEP. 2000]AAG31755Arabidopsis thaliana protein231 . . . 405122/175 (69%)5e−69fragment SEQ ID NO: 38188 -7 . . . 181150/175 (85%)Arabidopsis thaliana, 312aa. [EP1033405-A2,06 SEP. 2000]


[0485] A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 25D.


[0486] In a BLAST search of public sequence datbases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25E.
135TABLE 25EPublic BLASTP Results for NOV25aNOV25aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9D3R64933439B08Rik protein - 1 . . . 405354/405 (87%)0.0Mus musculus(Mouse), 409 1 . . . 405374/405 (91%)aa.Q9GNC3Probable AAA ATPase 8 . . . 405184/427 (43%)9e−82(Probable katanin-like 22 . . . 429256/427 (59%)protein) - Leishmania major,565 aa.Q8S0S5Katanin p60 subunit A 1-like -211 . . . 405131/195 (67%)8e−70Oryza saliva (japonica104 . . . 293161/195 (82%)cultivar-group), 428 aa.B84758probable katanin [imported] -231 . . . 405122/175 (69%)2e−68Arabidopsis thaliana, 393 aa. 88 . . . 262150/175 (85%)O64691Putative katanin - Arabidopsis231 . . . 405122/175 (69%)2e−68thaliana(Mouse-ear cress), 79 . . . 253150/175 (85%)384 aa.


[0487] PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25F.
136TABLE 25FDomain Analysis of NOV25aIdentities/SimilaritiesNOV25afor theMatchMatchedExpectPfam DomainRegionRegionValueSigma54_activat291 . . . 30810/18 (56%)0.9416/18 (89%)AAA290 . . . 40559/220 (27%) 6.8e−1399/220 (45%) 



Example 26

[0488] The NOV26 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 26A.
137TABLE 26ANOV26 Sequence AnalysisSEQ ID NO:1193915 bpNOV26a,ATACCTACTGAACGTGAACGAACAGAAAGGCTAATTAAAACCAAATTAAGGGAGATCATGATGCAGACG140747-01DNA SequenceAGGATTTCGAGAATATTACATCCAAAGAGATAAGAACAGAGTTGGAAATGCAAATGGTGTGCAACTTGCGGGAATTCAACGAATTTATAGACAATGAAATGATAGTGATCCTTGGTCAAATGGATAGCCCTACACAGATATTTGACCATGTGTTCCTGGGCTCAGAATGGAATGCCTCCAACTTAGAGGACTTACAGAACCGAGGGGTACGGTATATCTTGAATGTCACTCGAGAGATAGATAACTTCTTCCCAGGAGTCTTTGAGTATCATAACATTCGGGTATATGATGAAGAGGCAACGGATCTCCTGGCGTACTGGAATGACACTTACAAATTCATCTCTAAAGCAAAGAAACATGGATCTAAATGCCTTGTGCACTGCAAAATGGGGGTGAGTCGCTCAGCCTCCACCGTGATTGCCTATGCAATGAAGGAATATGGCTGGAATCTGGACCGAGCCTATGACTATGTGAAACAAAGACGAACGGTAACCAAGCCCAACCCAAGCTTCATGAGACAACTGGAAGAGTATCAGGGGATCTTGCTGGCAAGCAAACAGCGGCATAACAAACTATGGAGATCTCATTCAGATAGTGACCTCTCAGACCACCACGAACCCATCTGCAAACCTGGGCTAGAACTCAACAAGAAGGATATCACCACCTCAGCAGACCAGATTGCTGAGGTGAAGACCATGGAGAGTCACCCACCCATACCTCCTGTCTTTGTGCAACATATGGTCCCACAAGATGCAAATCAGAAAGGCCTGTGTACCAAAGAAAGAATGATCTGCTTGGAGTTTACTTCTAGGGAATTTCATGCTGGACAGATTGAGGATGAATTAAACTTAAATGACATCAATGGATGCTCATCAGGGTGTTGTCTGAATGAATCAAAATTTCCTCTTGACAATTGCCATGCATCCAAAGCCTTAATTCAGCCTGGACATGTCCCAGAAATGGCCAACAAGTTTCCAGACTTAACAGTGGAAGATTTGGAGACAGATGCACTGAAAGCAGACATGAATGTCCACCTACTGCCTATGGAAGAATTGACATCTCCACTGAAAGACCCCCCCCATGTCCCCTGATCCTGAGTCACCAAGCCCCCAACCAGTTGCCAGACTGAAATCTCAGATTTCAGTACAGATCGCATTGACTTTTTTAGTGCCCTAGAGAAGTTTGTGGAGCTCTCCCAAGAAACCCGGTCACGATCTTTTTCCCATTCAAGGATGGAGGAACTGGGTGGAGGAAGGAATGAGAGCTGTCGACTGTCAGTGGTAGAAGTAGCCCCTTCCAAAGTGACAGCTGATGACCAGAGAAGCAGCTCTTTGAGTAATACTCCCCATGCATCAGAAGAATCTTCAATGGATGAGGAACAGTCAAAGGCAATTTCAGAACTGGTCAGCCCAGACATCTTCATGCAGTCTCACTCGGAAAATGCAATTTCAGTCAAAGAAATTGTCACTGAAATTGAGTCCATCAGTCAAGGAGTTGCGCAGATTCAACTGAAAGGAGACATCTTACCCAACCCATGCCATACACCAAAGAAGAACAGCATCCATGAGCTGCTCCTTGAGAGGGCCCAGACTCCAGAGAACAAACCTGGACATATGGAGCAAGATGAGGACTCCTGCACAGCCCAGCCTGAACTAGCCAAAGACTCAGGGATGTGCAACCCAGAAGGCTGCCTAACCACACACTCATCTATAGCAGACTTCGAAGAAGGGGAACCAGCTGAGGGGGAACAAGAGCTCCAGGGCTCAGCGATGCACCCAGGTGCCAAGTGGTACCCTGGGTCTGTGAGGCGAGCCACCTTGGAGTTCGAAGAGCGCTTACGGCAGGAGCAAGAGCATCATGGTGCTGCCCCAACATGTACCTCATTGTCCACTCGTAAGAATTCAAAGAATGATTCTTCTGTGGCAGACCTAGCACCAAAAGGGAAAAGTGATGAAGCCCCCCCAGAACATTCATTTGTCCTCAAGGAACCAGAAATGAGCAAAGGCAAAGGGAAATACAGTGGGTCTGAGGCTGGCTCACTGTCCCATTCTGAGCAGAATGCCACTGTTCCAGCTCCCAGGGTGCTGGAGTTTGACCACTTGCCAGATCCTCAGGAGGGCCCAGGGTCAGATACTGGAACACAGCAGGAAGGAGTCCTGAAGGATCTGAGGACTGTGATTCCATACCACGAGTCTGAAACACAAGCAGTCCCTCTTCCCCTTCCCAAGAGGGTAGAAATCATTGAATATACCCACATAGTTACATCACCCAATCACACTGGGCCAGGGAGTGAAATAGCCACCAGTGAGAAGACCGGAGAGCAAGGGCTGAGGAAAGTGAACATGGAAAAATCTGTCACTGTGCTCTGCACACTGGATGAAAATCTAAACAGGACTCTGGACCCCAACCAGGTTTCTCTGCACCCCCAAGTGCTACCTCTGCCTCATTCTTCCTCCCCTGAGCACAACAGACCCACTCACCATCCAACCTCCATCCTGAGTAGCCCTGAAGACAGAGGCAGCAGCCTGTCCACAGCCCTGGAGACAGCAGCACCTTTTGTCAGTCATACAACCCATTTACTGTCTGCCAGTTTGGATTACCTGCATCCCCAGACTATGGTTCACCTGGAGAGGGCTTCACAGAGCAGAGCAGCACTACAGATGAGCCCTCTGCAGCAGGTTAGCTGCGAAGAAAGTCAGGAGAGCCCTCTCTCCAGTGGCAGTGAGGTGCCATATAAGGACTCCCAGCTAAGTAGCGCAGACCTAAGTTTAATTAGCAAACTTCGTGACAACACTGGGCAGTTACAGGAGAAAATGGACCCATTGCCTGTAGCCTGTCGACTCCCACATAGCTCTAGTAGTGAAACATAAAAGAGTCTCAGCCACAGCCCCCGTGTGGTGAAGGAGCGTGCTAAAGAAATCGAGTCTCGAGTGGTTTTCCAGGCAGGGCTCACCAAACCATCCCAAATGAGGCGCTCAGCTTCTCTCGCCAAATTAGGTTACTTGGACCTCTGTAAAGACTGCTTACCAGAGAGGGAGCCTGCCTCCTGTGAATCCCCTCATCTCAAACTGCTTCAGCCTTTCCTCAGAACAGACTCAGGCATGCACGCGATGGAGGACCAAGAGTCCCTAGAAAACCCAGGTGCCCCCCACAACCCAGAGCCCACCAAGTCTTTTGTAGAACAACTCACAACAACAGAGTGTATTGTGCAGAGCAAGCCAGTGGAGAGGCCCCTTGTGCAGTATGCCAAAGAATTTGGTTCTAGTCAGCAGTATTTGCTCCCCAGGGCAGGACTTGAATTGACTAGTTCTGAAGGAGGCCTTCCCGTGCTACAGACCCAGGGACTGCAGTGTGCATGCCCAGCTCCAGGGCTGGCCGTGGCACCCCGTCACCAACGGCCAGAAACTCACCCCCTTAGGAGACTGAAAAAGGCAAATGACAAAAAACGGACAACCAACCCCTTCTATAATACCATGTGATTCTGAGCCTACACATGTGACTTTCTAGAAGAAAATGTTTGTAAAGGGGCAGGTGTAATATGTAAGGAACATGCACTTTATTGGTTAATTTTATAATATTTTGGTCATTTTACTGTTTCTGGTGCATGCAGGGTTTGGGTGTTTTTCAGTGTGTATGTGTGTGTATATGTAAGGGGAAAGAGAGATTGATCTGGATGGCAAGACCCTTTATCATTTTTTATTTAAAAAAATCAAACCTCAAAAAAGTCATTTTCAGAGAACACCTTTATCAAAGGCAATTGCTGTTTTTCAGTCAGCTGCCACCTGCTTCTCATTTTGCCCTCTGAGAAAAAGGCATGGTTTCTTAATTGAGGGAAGGAAGCAGATTCGORF Start: ATG at 58ORF Stop: TGA at 3544SEQ ID NO:1201162 aaMW at 128957.7 kDNOV26a,MMQKDLENITSKEIRTELEMQMVCNLREFKEFIDNEMIVILGQMDSPTQIFEHVFLGSEWNASNLEDCG140747-01Protein SequenceLQNRGVRYILNVTREIDNFFPGVFEYHNIRVYDEEATDLLAYWNDTYKFISKAKKHGSKCLVHCKMGVSRSASTVIAYAMKEYGWNLDRAYDYVKERRTVTKPNPSFMRQLEEYQGILLASKQRHNKLWRSHSDSDLSDHHEPICKPGLELNKKDITTSADQIAEVKTMESHPPIPPVFVEHMVPQDANQKGLCTKERMICLEFTSREFHAGQIEDELNLNDINGCSSGCCLNESKFPLDNCHASKALIQPGHVPEMANKFPDLTVEDLETDALKADMNVHLLPMEELTSPLKDPPMSPDPESPSPQPSCQTEISDFSTDRIDFFSALEKFVELSQETRSRSFSHSRMEELGGGRNESCRLSVVEVAPSKVTADDQRSSSLSNTPHASEESSMDEEQSKAISELVSPDIFMQSHSENAISVXEIVTEIESISQGVGQIQLKGDILPNPCHTPKKNSIHELLLERAQTPENKPGHMEQDEDSCTAQPELAKDSGMCNPEGCLTTHSSIADLEEGEPAEGEQELQGSGMHPGAKWYPGSVRRATLEFEERLRQEQEHHGAAPTCTSLSTRKNSKNDSSVADLAPKGKSDEAPPEHSFVLKEPEMSKGKGKYSGSEAGSLSHSEQNATVPAPRVLEFDHLPDPQEGPGSDTGTQQEGVLKDLRTVIPYQESETQAVPLPLPKRVEIIEYTHTVTSPNHTGPGSEIATSEKSGEQGLRKVNMEKSVTVLCTLDENLNRTLDPNQVSLHPQVLPLPHSSSPEHNRPTDHPTSILSSPEDRGSSLSTALETAAPFVSHTTHLLSASLDYLHPQTMVHLEGFTEQSSTTDEPSAEQVSWEESQESPLSSGSEVPYKDSQLSSADLSLISKLGDNTGELQEKMDPLPVACRLPHSSSSENIKSLSHSPGVVKERAKEIESRVVFQAGLTKPSQMRRSASLAKLGYLDLCKDCLPEREPASCESPHLKLLQPFLRTDSGMHAMEDQESLENPGAPHNPEPTKSFVEQLTTTECIVQSKPVERPLVQYAKEFGSSQQYLLPRAGLELTSSEGGLPVLQTQGLQCACPAPGLAVAPRQQHGRTHPLRRLKKANDKKRTTNPFYNTM


[0489] Further analysis of the NOV26a protein yielded the following properties shown in Table 26B.
138TABLE 26BProtein Sequence Properties NOV26aPSort0.4500 probability located in cytoplasm; 0.3000analysis:probability located in microbody (peroxisome);0.1000 probability located in mitochondrialmatrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0490] A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 26C.
139TABLE 26CGeneseq Results for NOV26aNOV26aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAE06776Human dual-specificity1 . . . 188 188/188 (100%)e−107phosphatase (DSP)-13 splice1 . . . 188 188/188 (100%)variant protein - Homosapiens, 241 aa.[WO200157221-A2,09 AUG. 2001]AAE06775Human dual-specificity1 . . . 188 188/188 (100%)e−107phosphatase (DSP)-13269 . . . 456  188/188 (100%)protein - Homo sapiens, 509aa. [WO200157221-A2,09 AUG. 2001]AAE07044Human dual-specificity1 . . . 188187/188 (99%)e−106phosphatase (DSP)-13269 . . . 456 187/188 (99%)mutant protein, D368A -Homo sapiens, 509 aa.[WO200157221-A2,09 AUG. 2001]AAE07045Human dual-specificity1 . . . 188187/188 (99%)e−106phosphatase (DSP)-13269 . . . 456 187/188 (99%)mutant protein, C399S -Homo sapiens, 509 aa.[WO200157221-A2,09 AUG. 2001]AAE04835Human SGP001 phosphatase1 . . . 188184/188 (97%)e−102polypeptide - Homo sapiens,262 . . . 445 184/188 (97%)498 aa. [WO200146394-A2,28 JUN. 2001]


[0491] In a BLAST search of public sequence datbases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26D.
140TABLE 26DPublic BLASTP Results for NOV26aNOV26aProteinResidues/Identities/AccessionMatchSimilarities for theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ9C0D8KIAA1725 protein - Homo 121 . . . 11621042/1042 (100%) 0.0sapiens (Human), 1042 aa  1 . . . 10421042/1042 (100%) (fragment).Q8WYL2HSSH-2 - Homo sapiens 1 . . . 187 187/187 (100%) e−106(Human), 449 aa.262 . . . 448 187/187 (100%)BAC04546CDNA FLJ38102 fis, clone 1 . . . 246163/249 (65%)7e−91D3OST2000618,274 . . . 522195/249 (77%)moderately similar toDrosophila melanogasterslingshot mRNA - Homosapiens (Human), 703 aa.Q8WYL4HSSH-1S - Homo sapiens 1 . . . 246163/249 (65%)7e−91(Human), 692 aa.263 . . . 511195/249 (77%)Q8WYL5HSSH-1L - Homo sapiens 1 . . . 246163/249 (65%)7e−91(Human), 1049 aa.263 . . . 511195/249 (77%)


[0492] PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26E.
141TABLE 26EDomain Analysis of NOV26aIdentities/NOV26aSimilaritiesPfamMatchfor theExpectDomainRegionMatched RegionValueDSPc46 . . . 18462/172 (36%)1.5e−45116/172 (67%) 



Example 27

[0493] The NOV27 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 27A.
142TABLE 27ANOV27 Sequence AnalysisSEQ ID NO: 1211290bpNOV27a,GACCTTAAGATTCCCCGCTCCAGCTCCGAGATGTCAGCAACGCTGATCCTGGAGCCCGCGGGCCGCGCG141137-01DNA SequenceGCTGCCGAGACAAGCCGGTGCGCATCACCATGCGCGGCCTGGCTTCGGAGCCGCTGGACACGCTGCGCGCGTCCCTGCGCGGCGAGAAGGCTGGGCTCTTCCGCTACTGCGCCGACGCCCGCGGCGAGCTGGACCTGGAGCGCGCGCCCGTGCTGGGCGGCAGCTTTAGGGGGCTAGAGTCCATGGGGCTGCTCTGGGCCCTGGAATCCAAGAAACCTTTTTGGCGCTTTCTGAAGCGGGACGTACAGATTCCCTTTATCGTGGAGTTGGAGGTGCTGGACGGCCACGACCCCGAGCCTGGAGAGCGCGACTTCCTCCCACAAGGGGTGCGGAGCGATTCGGTGCGCGCGGGCCGGGTACGCGCCACGCTCTTCCTGCCGCCAGGACCTGGACCCTTCCTAGGGATCATTGGCATCTTTGGTATTGGAGGGAGCCTGTTGGAATATCGAGCCAGCCTCCTTGCTGGCCATGGCTTTGCCACGTTCGCTCTAGCTTGTTATAACTTTGAAGATCTCCCCAAGAACGTGGACAACATACCCCTGGAGTACTTCGAAGAAGCCCTATGCTACATGCTTCAACATCCCCAGGTAAAAGGCCCAGGCACTGGGCTTTGGGGCATTTCTCTAGGAGCTGATATTTGTCTCTCAATGGCCTCATTCTTGAAGAATGACTCAGACACAGTTTCCATCAATGGATCCGGGATCAGTGGGAACAGAGGCATAAACTGTAAGCAGAATAGCATTCCACCATTGGGCTATGACCTGAGGAGAATCAAGGTAGCTTTCTCAGGCCTCGTGGACGTCGTGGATATAAAGAATGATCTTGTAGGAGGGTATAAGAACCCCAGCATGATTTCAATGGAGAAGGCCCAGGGCCCCATCATTTTCATTGTTGGTCAGGATGACCATAACTGGAGGAGTGAGTTGTATGCCGAACGGTTACGGGCCCATGGAAAGGGAAAACCCCAGATCATCTGTTACCCTGGGACTGGGCTTTACACTGAGCCTCCTTACTTCCCCCTGTGCCCAGCTTCCCTTCACAAATTACTGAACAAACACGTGATATGGGTTGGGGAGCCAAGGGCTCATTCTAAGGCCCAGGTAGATGCCTGGAAGCAAATTCTAGCCGCCTTCTCCAAACACCTGGGAGGTACCCAGAAAACAGCTTTCCCTAAATTGTAATGCCTTTGTCTGTTGTTGACATGAGAGAGTCAAGATCACATTORF Start: ATG at 31ORF Stop: TAA at 1246SEQ ID NO: 122405 aaMW at 44471.8kDNOV27a,MSATLILEPAGRGCRDKPVRITNRGLASEPLDTLRASLRGEKAGLFRYCADARGELDLERAPVLGGSCG141137-01Protein SequenceFRGLESMGLLWALESKKPFWRFLKRDVQIPFIVELEVLDGHDPEPGERDFLPQGVRSDSVPAGRVRATLFLPPGPGPFLGIIGIFGIGGSLLEYRASLLAGHGFATFALACYNFEDLPKNVDNIPLEYFEEALCYMLQHPQVKGPGTGLWGISLGADICLSMASFLKNDSDTVSINGSGISGNRGINCKQNSIPPLGYDLRRIKVAFSGLVDVVDIKNDLVGGYKNPSMISMEKAQGPIIFIVGQDDHNWRSELYAERLRAHGKEKPQIICYPGTGLYTEPPYFPLCPASLHKLLNXMVINVGEPRAHSKAQVDAWKQILAAFCKHLGGTQKTAFPKL


[0494] Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.
143TABLE 27BProtein Sequence Properties NOV27aPSort0.4500 probability located in cytoplasm; 0.3164analysis:probability located in microbody (peroxisome);0.1984 probability located in lysosome (lumen);0.1000 probability located in mitochondrialmatrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0495] A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 27C.
144TABLE 27CGeneseq Results for NOV27aNOV27aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU76350Human Acyl-CoA1 . . . 405347/421 (82%)0.0thioesterase 56939 - Homo1 . . . 421361/421 (85%)sapiens, 421 aa.[WO200208274-A2,31 JAN. 2002]AAM41490Human polypeptide SEQ ID1 . . . 400256/416 (61%)e−141NO 6421 - Homo sapiens,74 . . . 489 299/416 (71%)494 aa. [WO200153312-A1,26 JUL. 2001]AAM39704Human polypeptide SEQ ID1 . . . 400256/416 (61%)e−141NO 2849 - Homo sapiens,63 . . . 478 299/416 (71%)483 aa. [WO200153312-A1,26 JUL. 2001]AAY71112Human Hydrolase protein-101 . . . 400256/416 (61%)e−141(HYDRL-10) - Homo63 . . . 478 299/416 (71%)sapiens, 483 aa.[WO200028045-A2,18 MAY 2000]AAB93479Human protein sequence1 . . . 400255/416 (61%)e−141SEQ ID NO: 12766 - Homo63 . . . 478 298/416 (71%)sapiens, 483 aa.[EP1074617-A2,07 FEB. 2001]


[0496] In a BLAST search of public sequence datbases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.
145TABLE 27DPublic BLASTP Results for NOV27aNOV27aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueBAC04313CDNA FLJ36904 fis, clone1 . . . 405345/421 (81%)0.0BRACE2002762, moderately1 . . . 421359/421 (84%)similar to CYTOSOLICACYL COENZYME ATHIOESTER HYDROLASE,INDUCEBLE (EC 3.1.2.2) -Homo sapiens(Human), 421aa.Q9QYR8Peroxisomal long chain1 . . . 405275/421 (65%)e−158acyl-CoA thioesterase Ib -1 . . . 421327/421 (77%)Mus musculus (Mouse), 421aa.P49753Peroxisomal acyl-coenzyme1 . . . 400256/416 (61%)e−141A thioester hydrolase 2 (EC1 . . . 416299/416 (71%)3.1.2.2) (Peroxisomallong-chain acyl-coAthioesterase 2) (ZAP128) -Homo sapiens (Human), 421aa.Q9QYR7Peroxisomal acyl-coenzyme1 . . . 405245/423 (57%)e−130A thioester hydrolase 2 (EC12 . . . 432 296/423 (69%)3.1.2.2) (Peroxisomallong-chain acyl-coAthioesterase 2) (PTE-Ia) -Mus musculus (Mouse), 432aa.O88267Cytosolic acyl coenzyme A1 . . . 405239/422 (56%)e−128thioester hydrolase, inducible1 . . . 419295/422 (69%)(EC 3.1.2.2) (Long chainacyl-CoA thioesterhydrolase) (Long chainacyl-CoA hydrolase) (CTE-I)(LACH2) (ACH2) - Rattusnorvegicus (Rat), 419 aa.


[0497] PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27E.
146TABLE 27EDomain Analysis of NOV27aIdentities/NOV27aSimilaritiesPfamMatchfor the MatchedExpectDomainRegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 28

[0498] The NOV28 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 28A.
147TABLE 28ANOV28 Sequence AnalysisSEQ ID NO: 123384 bpNOV28a,TTGTGCAACGGCAGTCCAGCCCGGGCAAAAGAGTGAGACTATGTCTCTAAAAAAACCAAGATGGAGTCG141240-01DNA SequenceCAGTTGTACCAGTGAAGGACAAGAAACTTCTGGAGGTCAAACTAGGGGAGCTGCCAAGCTGGATCTTGATGTGCGACTTCAGCCCTAGTGGCCTTGATGGAGCGTTTCAAAGAGGTTACTACTGGTACTACAACAAGTACATCAACGTCAAGAAGGGGAGCATCTCGGGGTTTACCATGGTGCTGGCAGGGTACATGCTCTTCATCTACTGCCTTTCCTACAAGAGCTCAAGCACGAGCGGCTATGCAAGTACCACTGAAGAAGACATGCTCTGCACTCCCCCAGCAACCTTCTTGGCTGCAACCCCTCCATAAGCORF Start: ATG at 61ORF Stop: TGA at 325SEQ ID NO: 12488 aaMW at 10416.2kDNOV28a,MESVVPVKDKKLLEVKLGELPSWILMWDFSPSGLDGAFQRGYYWYYNKYINVKKGSISGFTMVLAGYCG141240-01Protein SequenceMLFIYCLSYKELKHERLCKYH


[0499] Further analysis of the NOV28a protein yielded the following properties shown in Table 28B.
148TABLE 28BProtein Sequence Properties NOV28aPSort0.6400 probability located in microbodyanalysis:(peroxisome); 0.4500 probability locatedin cytoplasm; 0.1000 probability locatedin mitochondrial matrix space; 0.1000probability located in lysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0500] A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 28C.
149TABLE 28CGeneseq Results for NOV28aNOV28aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAG89150Human secreted protein, SEQ1 . . . 8875/88 (85%)4e−37ID NO: 270 - Homo sapiens,1 . . . 8877/88 (87%)88 aa. [WO200142451-A2,14 JUN. 2001]AAY66171Human bladder tumour EST1 . . . 8875/88 (85%)4e−37encoded protein 29 - Homo17 . . . 10477/88 (87%)sapiens, 104 aa.[DE19818619-A1,28 OCT. 1999]AAB65990Human secreted protein3 . . . 8874/86 (86%)1e−36BLAST search protein SEQ2 . . . 8776/86 (88%)ID NO: 130 - Homo sapiens,87 aa. [WO200077023-A1,21 DEC. 2000]AAB65989Human secreted protein3 . . . 8874/86 (86%)1e−36BLAST search protein SEQ2 . . . 8776/86 (88%)ID NO: 129 - Homo sapiens,87 aa. [WO200077023-A1,21 DEC. 2000]AAY29462Human CBMAJC02 protein -5 . . . 8872/84 (85%)1e−35Homo sapiens, 94 aa.11 . . . 94 74/84 (87%)[WO9936526-A1,22 JUL. 1999]


[0501] In a BLAST search of public sequence datbases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28D.
150TABLE 28DPublic BLASTP Results for NOV28aNOV28aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueA54211H+-transporting ATP synthase1 . . . 8869/88 (78%)3e−35(EC 3.6.1.34) chain f - bovine, 881 . . . 8877/88 (87%)aa.P56134ATP synthase f chain,5 . . . 8872/84 (85%)3e−35mitochondrial (EC 3.6.3.14) -10 . . . 93 74/84 (87%)Homo sapiens (Human), 93 aa.Q28851ATP synthase f chain,3 . . . 8868/86 (79%)8e−35mitochondrial (EC 3.6.3.14) -2 . . . 8776/86 (88%)Bos taurus (Bovine), 87 aa.Q95339ATP synthase f chain,3 . . . 8866/86 (76%)4e−34mitochondrial (EC 3.6.3.14) -2 . . . 8776/86 (87%)Sus scrofa (Pig), 87 aa.AAH29226ATP synthase, H+ transporting,1 . . . 8865/88 (73%)1e−33mitochondrial F0 complex,1 . . . 8878/88 (87%)subunit f, isoform 2 - Musmusculus (Mouse), 88 aa.


[0502] PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28E.
151TABLE 28EDomain Analysis of NOV28aIdentities/NOV28aSimilaritiesPfamMatchfor the MatchedExpectDomainRegionRegionValueNo Significant Matches Found to Publically Available Domains



Example 29

[0503] The NOV29 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 29A.
152TABLE 29ANOV29 Sequence AnalysisSEQ ID NO: 125789 bpNOV29a,GGCCGTTCCTGCGCTCTCCTTCGCCTGCGGGCCGGCACTGCTCACCTCTCGTCCAGGGACATGACGGCG141355-01DNA SequenceGCACGCCAGGCGCCGTTGCCACCCGGGATGGCGAGGCCCCCGAGCGCTCCCCGCCCTGCAGTCCGAGCTACGACCTCACGGGCAAGGTGATGCTTCTGGGAGACACAGGCGTCGGCAAAACATGTTTCCTGATCCAATTCAAAGACGGGGCCTTCCTGTCCGGAACCTTCATAGCCACCGTCGGCATAGACTTCAGGAACAAGGTGGTGACTCTCGATGGCGTGAGAGTGAAGCTGCAGATCTGGGACACCGCTGGGCAGGAACGGTTCCGAAGCGTCACCCATGCTTATTACAGAGATGCTCAGGCCTTGCTTCTGCTGTATGACATC~CCAACAAATCTTCTTTCGACAACATCAGGGCCTGGCTCACTGAGATTCATGAGTATGCCCAGAGGGACGTGGTGATCATGCTGCTAGGCAACAAGGCGGATATGAGCAGCGAAAGAGTGATCCGTTCCGAAGACGGAGAGACCTTGGCCAGGGAGTACGGTGTTCCCTTCCTGGAGACCAGCGCCAAGACTGGCATGAATGTGGAGTTAGCCTTTCTGGCCATCGCCAAGGAACTGAAATACCGGGCCGGGCATCAGGCGGATGAGCCCAGCTTCCAGATCCCAGACTATGTAGAGTCCCAGAAGAAGCGCTCCAGCTGCTGCTCCTTCATGTGAATCCCAGGGGGCAGAGAGGAGGCTCTGGAGGCACACAGGATGCAGCCTTCCCCCTCCORF Start: ATG at 61ORF Stop: TGA at 730SEQ ID NO: 126223aaMW at 248 14.9kDNOV29a,MTGTPGAVATRDGEAPERSPPCSPSYDLTGKVMLLGDTGVGKTCFLIQFKDGAFLSGTFIATVGIDFCG141355-01Protein SequenceRNKVVTVDGVRVKLQIWDTAGQERFRSVTHAYYRDAQALLLLYDITNXSSFDNIRAWLTEIHEYAQRDVVIMLLGNKADMSSERVIRSEDGETLAREYGVPFLETSAKTGMNVELAFLAIAKELKYRAGHQADEPSFQIRDYVESQKKRSSCCSFMSEQ ID NO: 127686 bpNOV29b,TCCAGGAACATGACGGGCACGCCAGGCGCCGTTGCCACCCGGGATCGCGAGGCCCCCGAGCGCTCCCCG141355-02DNA SequenceCGCCCTGCAGTCCGAGCTACGACCTCACGGGCAAGGTGATGCTTCTGGGAGACACAGGCGTCGGCAAAACATGTTTCCTGATCCAATTCAAAGACGGGGCCTTCCTGTCCGGAACCTTCATAGCCACCGTCGGCATAGACTTCAGGAACAAGGTGGTGACTGTGGATGGCGTGAGAGTGAAGCTGCAGATCTGGGACACCGCTGGGCAGGAACGGTTCCGAAGCGTCACCCATGCTTATTACAGAGATGCTCAGGCCTTGCTTCTGCTGTATGACATCACCAACAAATCTTCTTTCGACAACATCAGGGCCTGGCTCACTGAGATTCATGAGTATGCCCAGAGGGACGTGGTGATCATGCTGCTAGGCAACAAGGCGGATATGAGCAGCGAAAGAGTGATCCGTTCCGAAGACGGAGAGACCTTGGCCAGGGAGTACGGTGTTCCCTTCCTGGAGACCAGCGCCAAGACTGGCATGAATGTGGAGTTAGCCTTTCTGGCCATCGCCAAGGAACTGAAATACCGCGCCCGOCATCAGGCGGATGAGCCCAGCTTCCAGATCCGAGACTATGTAGAGTCCCAGAAGAAGCGCTCCAGCTGCTGCTCCTTCATGTGAATCCCORF Start: ATG at 10ORF Stop: TGA at 679SEQ ID NO: 128223 aaMW at 24814.9kDNOV29b,MTGTPGAVATRDGEAPERSPPCSPSYDLTGKVMLLGDTGVGKTCFLTQFKDGAFLSGTFIATVGIDFCG141355-02Protein SequenceRNRVVTVDGVRVKLQIWDTAGQERFRSVTHAYYRDAQALLLLYDITNKSSFDNIRAWLTEIHEYAQRDVVIMLLGNKADMSSERVIRSEDGETLAREYGVPFLETSAKTGMNVELAFLAIAKELKYRAGHQADEPSFQIRDYVESQKKRSSCCSFM


[0504] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 29B.
153TABLE 29BComparison of NOV29a against NOV29b.Identities/SimilaritiesProteinNOV29a Residues/for theSequenceMatch ResiduesMatched RegionNOV29b1 . . . 223223/223 (100%)1 . . . 223223/223 (100%)


[0505] Further analysis of the NOV29a protein yielded the following properties shown in Table 29C.
154TABLE 29CProtein Sequence Properties NOV29aPSort0.4500 probability located in cytoplasm; 0.3020analysis:probabilitylocated in microbody (peroxisome);0.1000 probability locatedin mitochondrial matrixspace; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0506] A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 29D.
155TABLE 29DGeneseq Results for NOV29aNOV29aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent#, Date]ResiduesMatched RegionValueAAM41696Human polypeptide SEQ ID1 . . . 223223/223 (100%)e−127NO 6627 - Homo sapiens,10 . . . 232 223/223 (100%)232 aa. [WO200153312-A1,26 JUL. 2001]AAU17119Novel signal transduction1 . . . 223222/223 (99%) e−126pathway protein, Seq ID 684 -4 . . . 226222/223 (99%) Homo sapiens,226 aa.[WO200154733-A1,02 AUG.2001]AAU17541Novel signal transduction2 . . . 223220/222 (99%) e−125pathway protein, Seq ID 1106 -1 . . . 222220/222 (99%) Homo sapiens,222 aa.[WO200154733-A1,02 AUG.2001]AAM39910Human polypeptide SEQ ID33 . . . 223 191/191 (100%)e−106NO 3055 - Homo sapiens,1 . . . 191191/191 (100%)191 aa. [WO200153312-A1,26 JUL. 2001]AAG67156Amino acid sequence of33 . . . 223 191/191 (100%)e−106human 32712 G-protein -1 . . . 191191/191 (100%)Homo sapiens, 191 aa.[W0200164887-A2,07 SEP. 2001]


[0507] In a BLAST search of public sequence datbases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29E.
156TABLE 29EPublic BLASTP Results for NOV29aNOV29aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ96AX2Ras-related protein Rab-37 -1 . . . 223 223/223 (100%)e−126Homo sapiens (Human),1 . . . 223 223/223 (100%)223 aa.Q9JKM7Ras-related protein Rab-37 -1 . . . 223209/223 (93%)e−118Mus musculus (Mouse), 223 aa.1 . . . 223215/223 (95%)CAC88255Sequence 13 from Patent33 . . . 223  191/191 (100%)e−106WO0164887 -1 . . . 191 191/191 (100%)Homo sapiens (Human),191 aa.Q9ULW5Ras-related protein Rab-26 -33 . . . 220 138/188 (73%)9e−80 Homo sapiens (Human),1 . . . 188166/188 (87%)190 aa.P51156Ras-related protein Rab-26 -33 . . . 220 138/188 (73%)8e−79 Rattus norvegicus (Rat),1 . . . 188165/188 (87%)190 aa.


[0508] PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29F.
157TABLE 29FDomain Analysis of NOV29aIdentities/SimilaritiesPfamNOV29a Matchfor theExpectDomainRegionMatched RegionValuearf21 . . . 19442/197 (21%)1.9e−05104/197 (53%) ras31 . . . 22393/206 (45%)6.2e−89164/206 (80%) 



Example 30

[0509] The NOV30 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 30A.
158TABLE 30ANOV30 Sequence AnalysisSEQ ID NO: 1291078 bpNOV30a,CAGATCCTCATTTCTTTTCCCTTCCTAGGTTTTAAAACATGAATCCTACACTCATCCTTGCTGCCTTCG142072-01DNA SequenceTTGCCTGGGAATTGCCTCAGCTACTCTAACATTTGATCACAGTTTAGAGGCACAGTGGACCAAGTGGAAGGCGATGCACAACAGATTATACGGCATGAATGAAGAAGGATGGAGGAGAGCAGTGTGCGAGAAGAACATGAAGATGATTGAACTGCACAATCAGGAATACACGGAAGGGAAACACAGCTTCACAATGGCCATGAACGCCTTTGGAGACATGACCAGTGAAGAATTCAGGCAGGTGATGAATGGCTTTCAAAACCGTAAGCCCACGAAGGGGAAAGTGTTCCAGGAACCTCTGTTTTATGAGGCCCCCAGATCTGTGGATTGGAGAGAGAAACGCTACGTGACTCCTGTGAAGAATCAGGGTCAGTGTGGTTCTTGTTGGGCTTTTAGTGCTACTGGTGCTCTTGAAGGACAGATGTTCCGGAAAACTCGGAGGCTTATCTCACTGAGTGAGCAGAATCTGGTAGACTGCTCTGGGCCTCAAGGCAATGAAGGCTCCAATGGTGGCCTAATGGATTATGCTTTCCAGTATGTTCAGGATAATGGAGGCCTGGACTCTGAGGAATCCTATCCATATGAGGCAACAGAAGAATCCTGTAAGTACAATCCCAAGTACTCTGTTGCTAATGACACCGGCTTTGTGGACATCCCTAAGCAGGAGAAGGCCCTGATGAAGGCAGTTGCAACTGTGGGGCCCATTTCTGTTGCTATTGATGCAGGTCATGAGTCCTTCCTGTTCTATAAAGAAGGCATTTATTTTGAGCCAGACTGTAGCAGTGAAGACATGGATCATGGTGTGCTGGTGGTTGGCTACGGATTTGAAAGCACAGAATCAGATAACAATAAATATTGGCTGGTGAAGAACAGCTGGGGTGAAGAATGGGGCATGGGTGGCTACGTAAAGATGGCCAAAGACCGGAGAAACCATTGTGGAATTGCCTCAGCAGCCAGCTACCCCACTGTGTGAGCTGGTGGACGGTGATGAGGAAGGACTTGACTGGGGATORF Start: ATO at 39ORF Stop: TGA at 1038SEQ ID NO: 130333 aaMW at 37563.9kDNOV3Oa,MNPTLILAAFCLGIASATLTFDHSLEAQWTKWKAMHNRLYGMNEEGWRRAVWEKNMKMIELHNQEYRCG142072-01Protein SequenceEGKHSFTNAHNAFGDMTSEEFRQVMNGFQNRKPRKGKVFQEPLFYEAPRSVDWREKGYVTPVKNQGQCGSCWAFSATGALEGQMFRKTGRLTSLSEQNLVDCSGPQGNEGCNGGLMDYAFQYVQDNGGLDSEESYPYEATEESCKYNPKYSVANDTGFVDIPKQEKALMKAVATVGFISVAIDAGHESFLFYKEGIYFEPDCSSEDMDHGVLVVGYGPESTESDNNKYWLVKNSWGEEWGMGGYVKMAKDRRNHCGIASAASYPTVSEQ ID NO: 131870 bpNOV3Ob,CCTGGGAATTGCCTCAGCTACTCTAACATTTGATCACAGTTTAGAGGCACAGTGGACCGAGTGGAAGCG142072-02DNA SequenceGCGATGCACAACAGATTATACGGCATGAATGAAGAAGGATGGAGGAGAGCAGTGTGGGAGAAGAACATGAAGATGATTGAACTGCACAATCAGGAATACAGGGAAGGGAAACACAGCTTCACAATGGCCATGAACGCCTTTGGAGACATCACCAGTGAAGAATTCAGGCAGGTGATGAATGGCTTTCAAAACCGTAAGCCCAGGAAGGGGAAAGTGTTCCGGAAAACTGGGAGGCTTATCTCACTGAGTGAGCAGAATCTGGTAGACTGCTCTGGGCCTCAAGGCAATGAAGGCTGCAATGGTGGCCTAATGGATTATGCTTTCCAGTATGTTCAGGATAATGGAGGCCTGGACTCTGAGGAATCCTATCCATATGAGGCAACAGAAGAATCCTGTAAGTACAATCCCAAGTATTCTGTTGCTAATGACACCGGCTTTGTGGACATCCCTAAGCACGAGAAGGCCCTGATGAAGGCAGTTGCAACTGTGGGGCCCATTTCTGTTGCTATTGATGCAGGTCATGAGTCCTTCCTGTTCTATAAAGAAGGCATTTATTTTGAGCCAGACTGTAGCAGTGAAGACATGGATCATGGTGTGCTGGTGGTTGGCTACGGATTTGAAAGCACAGAATCAGATAACAATAAATATTGGCTGGTGAAGAACAGCTGGGGTGAAGAATGCGGCATGGGTGGCTACGTAAAGATGGCCAAAGACCGGAGAAACCATTGTGGAATTGCCTCAGCAGCCAGCTACCCCACTGTGTGAGCTGGTGGACGGTCATGAGGAAGGACTTGACTGGGGATORF Start: at 2ORF Stop: TGA at 830SEQ ID NO: 1321276 aaMW at 31236.6kDNOV30b,LGIASATLTFDHSLEAQWTEWKAMHNRLYGMNEEGWRRAVWEKNMKMIELHNQEYREGKHSFTMAMNCG142072-02Protein SequenceAFGDMTSEEFRQVMNGFQNRKPRKGKVFRKTGRLISLSEQNLVDCSGPQGNEGCNGGLMDYAFQYVQDNGGLDSEESYPYEATEESCKYNPKYSVANDTGFVDIPKQEKALMKAVATVGPISVAIDAGHESFLFYKECIYFEPDCSSEDMDHGVLVVCYGFESTESDNNXYWLVKNSWGEEWGMGGYVKNAXDRRNHCGIASAASYPTV


[0510] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 30B.
159TABLE 30BComparison of NOV30a against NOV30b.Identities/SimilaritiesNOV30a Residues/for theProtein SequenceMatch ResiduesMatched RegionNOV30b12 . . . 333275/322 (85%) 1 . . . 276276/322 (85%)


[0511] Further analysis of the NOV30a protein yielded the following properties shown in Table 30C.
160TABLE 30CProtein Sequence Properties NOV30aPSort0.8200 probability located in outside; 0.1679 probabilityanalysis:located inmicrobody (peroxisome); 0.1000 probabilitylocated in endoplasmic reticulum(membrane); 0.1000probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 18 and 19analysis:


[0512] A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 30D.
161TABLE 30DGeneseq Results for NOV30aNOV30aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched Matched RegionValueABB77396Human cathepsin L - Homo1 . . . 333 333/333 (100%)0.0sapiens, 333 aa.1 . . . 333 333/333 (100%)[DE10050274-A1,18 APR. 2002]AAW47031Human procathepsin L - Homo1 . . . 333 333/333 (100%)0.0sapiens, 333 aa.1 . . . 333 333/333 (100%)[US5710014-A,20 JAN.1998]AAM93531Human polypeptide, SEQ1 . . . 333332/333 (99%)0.0ID NO: 3271 - Homo1 . . . 333332/333 (99%)sapiens, 333 aa.[EP1130094-A2,05 SEP. 2001]AAR28829Human procathepsin L -1 . . . 333332/333 (99%)0.0Homo sapiens,1 . . . 333332/333 (99%)333 aa. [WO9219756-A,12 NOV.1992]AAP82094pHu-16 sequence encoded1 . . . 333327/333 (98%)0.0human procathepsin L -1 . . . 333332/333 (99%)Homo sapiens, 333 aa.[USN7154692-N,11 FEB. 1988]


[0513] In a BLAST search of public sequence datbases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30E.
162TABLE 30EPublic BLASTP Results for NOV30aNOV30aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP07711Cathepsin L precursor1 . . . 333 333/333 (100%)0.0(EC 3.4.22.15)(Major1 . . . 333 333/333 (100%)excreted protein) (MEP) - Homosapiens (Human), 333 aa.Q9GKL8Cysteine protease -1 . . . 333320/333 (96%)0.0Cercopithecus aethiops1 . . . 333328/333 (98%)(Green monkey) (Grivet),333 aa.Q9GL24Cathepsin L (EC 3.4.22.15) -1 . . . 333270/334 (80%)e−166Canis familiaris (Dog),1 . . . 333299/334 (88%)333 aa.Q28944Cathepsin L precursor1 . . . 333263/334 (78%)e−162(EC 3.4.22.15) -1 . . . 334293/334 (86%)Sus scrofa (Pig), 334 aa.P25975Cathepsin L precursor1 . . . 333257/334 (76%)e−160(EC 3.4.22.15)-1 . . . 334291/334 (86%)Bos taurus (Bovine), 334 aa.


[0514] PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30F.
163TABLE 30FDomain Analysis of NOV30aIdentities/NOV30aSimilaritiesMatchfor theExpectPfam DomainRegionMatched RegionValuePeptidase_C1114 . . . 332129/337 (38%)1.8e−132201/337 (60%)



Example 31

[0515] The NOV31 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 31A.
164TABLE 31ANOV31 Sequence AnalysisSEQ ID NO: 133639 bpNOV31 a,CCTGTTTAATAAACAGATCTTGGCTTTGCAGATGCTGCCAGGAACCCCATACTATCAGCCATGGTCACG142102-01DNA SequenceACCCCACCGTGTTCTTCAACATGGCTGTCAATGATGAGCCCTTGTGCCACGTCTCCTTTGAGCTGTATGCAGACAAGTTTCCAAAGACAGCAGAAAACTTTCGTCCTCTGAGCACTGGAOAGAAAGGATTTCGTTACAAGGGTTTCTGCTTTTACAGAATTATTCCAGGOTTTATGTGGTTTATGTGTCAGGGCAGTGACTTCACACACCATAATGGCACTGGTGGCAAGTCCATCTATGGAGAGAAATTTGATGACGAGAACTTCATCCTGAAGCATACAGGTCCTGAACCCTCACATTCCCAAACCAATTACTTATCCATGGCAAATGCTGGACCCAACACAAATGGTTCCCAGTTTTTCCTCTGCACTGCCAAGACTGAGTGGTTGGATGGCACACATGTGGTCTTTGGCAAGGTGAAAGAAGGCATCAATATTGTGGAGGCCATGGAGCGCTTTGGATCTAGGAATGGCAAGACCAGcAGATCACCATTGTTGACTGTGGACAACTCTAATGAATTTAACTTGTGTTTTTTCTTTTTAAGATGGAGTTTCACTCTTGTTTCCCAGGCORF Start: ATG at 61ORF Stop: TAA at 580SEQ ID NO: 134173 aaMW at 19324.7kDNOV31 a,MVNPTVFFNMAVNDEPLCHVSFELYADKFPKTAENFRALSTGEKGFGYKGFCFYRIIPGFMWFMCQGCG142102-01Protein SequenceSDFTHHNGTGGKSIYGEKFDDENFILKHTGPEPSHSQTNYLSHANAGPNTNGSQFFLCTAKTEWLDGTHVVFGKVKEGINIVEAMERFGSRNGKTSKITIVDCGQL


[0516] Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.
165TABLE 31BProtein Sequence Properties NOV31aPSort0.6400 probability located in microbody (peroxisome); 0.6000analysis:probability located in plasma membrane; 0.4500 probabilitylocated in cytoplasm; 0.1000 probability located inmitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0517] A search of the NOV31 a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 31C.
166TABLE 31CGeneseq Results for NOV31aNOV31aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU01195Human cyclophilin A1 . . . 173144/174 (82%)2e−78protein - Homo sapiens, 1651 . . . 164152/174 (86%)aa. [WO200132876-A2,10 MAY 2001]AAW56028Calcineurin protein -1 . . . 173144/174 (82%)2e−78Mammalia, 165 aa.1 . . . 164152/174 (86%)[WO9808956-A2,05 MAR. 1998]AAG03831Human secreted protein, SEQ1 . . . 173144/174 (82%)3e−78ID NO: 7912 - Homo1 . . . 164152/174 (86%)sapiens, 165 aa.[EP1033401-A2,06 SEP. 2000]AAR13726Bovine cyclophilin - Bos2 . . . 173143/173 (82%)4e−78taurus, 163 aa.1 . . . 163151/173 (86%)[US5047512-A,10 SEP. 1991]AAG65275Haematopoietic stem cell2 . . . 173143/173 (82%)7e−78proliferation agent related1 . . . 163151/173 (86%)human protein #2 - Homosapiens, 164 aa.[JP2001163798-A,19 JUN. 2001]


[0518] In a BLAST search of public sequence datbases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.
167TABLE 31DPublic BLASTP Results for NOV31aNOV31aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueCAC39529Sequence 26 from Patent1 . . . 173144/174 (82%)5e−78WO0132876 - Homo sapiens1 . . . 164152/174 (86%)(Human), 165 aa.P04374Peptidyl-prolyl cis-trans2 . . . 173143/173 (82%)1e−77isomerase A (EC 5.2.1.8)1 . . . 163151/173 (86%)(PPIase) (Rotamase)(Cyclophilin A) (CyclosporinA-binding protein) - Bostaurus (Bovine), and, 163 aa.Q9BRU4Peptidylprolyl isomerase A1 . . . 173143/174 (82%)2e−77(cyclophilin A) - Homo1 . . . 164151/174 (86%)sapiens (Human), 165 aa.P05092Peptidyl-prolyl cis-trans2 . . . 173143/173 (82%)2e−77isomerase A (EC 5.2.1.8)1 . . . 163151/173 (86%)(PPIase) (Rotamase)(Cyclophilin A) (CyclosporinA-binding protein) - Homosapiens (Human),, 164 aa.Q96IX3Peptidylprolyl isomerase A1 . . . 173143/174 (82%)6e−77(cyclophilin A) - Homo1 . . . 164151/174 (86%)sapiens (Human), 165 aa.


[0519] PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.
168TABLE 31EDomain Analysis of NOV31aIdentities/NOV31aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValuepro_isomerase5 . . . 173101/187 (54%)2.7e−84147/187 (79%)



Example 32

[0520] The NOV32 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 32A.
169TABLE 32ANOV32 Sequence AnalysisSEQ ID NO:135651 bpNOV32a,CTTCCCTACCCTCCTCTCTCCCACACCACTGGCACCAGGCCCCGGACACCCGCTCTGCTGCAGGAGACG57760-01DNA SequenceATGGCTACTCATCACACGCTGTGGATGGGACTGGCCCTGCTGGGGGTGCTGGGCGACCTGCAGGCAGCACCGGAGGCCCAGGTCTCCGTGCAGCCCAACTTCCAGCAGGACAAGTTCCTGGGGCGCTGGTTCAGCGCGGGCCTCGCCTCCAACTCGAGCTGGCTCCGGGAGAAGAAGGCGGCGTTGTCCATGTGCAAGTCTGTGGTGGCCCCTGCCACGGATGGTGGCCTCAACCTGACCTCCACCTTCCTCAGGAAAAACCAGTGTGAGACCCGAACCATGCTGCTGCAGCCCGCGGGGTCCCTCGGCTCCTACAGCTACCCGAGTCCCCACTGGGGCAGCACCTACTCCGTGTCAGTGGTGGAGACCGACTACGACCAGTACGCGCTGCTGTACAGCCAGGGCAGCAAGGGCCCTGGCGAGGACTTCCGCATGGCCACCCTCTACAGCCGAACCCAGACCCCCAGGGCTGAGTTAAAGGAGAAATTCACCGCCTTCTGCAAGGCCCAGGGCTTCACAGAGGATACCATTGTCTTCCTGCCCCAAACCGATAAGTGCATGACGGAACAATAGAAGGGCGAATTORf Start: ATG at 68ORF Stop: TAG at 638SEQ ID NO: 136190 aaMW at 21028.6kDNOV32a,MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSCG57760-01Protein SequenceVVAPATDGGLNLTSTFLRKNQCETRTMLLQPAGSLGSYSYRSPHWGSTYSVSVVETDYDQYALLYSQGSKGPGEDFRMATLYSRTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQSEQ ID NO: 137487 bpNOV32b,CCGGACACCCGCTCTGCTGCAGGAGAATGGCTACTCATCACACGCTGTGGATGGGACTGGCCCTGCTCG57760-02DNA SequenceGGGGGTGCTGGGCGACCTGCAGGCAGCACCGGAGGCCCAGGTCTCCGTGCAGCCCAACTTACAGCAGCGCGTACTGGTGGAGACCGACTACGACCAGTACGCGCTGCTGTACAGCCAGGGCAGCAAGGGCCCTGGCGAGGACTTCCGCATGGCCACCCTCTACAGCCGAACCCAGACCCCCAGGGCTGAGTTAAAGGAGAAATTCACCGCCTTCTGCAAGGCCCAGGGCTTCACAGAGGATACCATTGTCTTCCTGCCCCAAACCGATAAGTGCATGACGGAACAATAGGACTCCCCAGGGCTGAAGCTCGGATCCCGGCCAGCCAGGTGACCCCCACGCTCTGGATGTCTCTGCTCCAACTCGAGCTGGCTCCGGGAGAAGAAGGCGGCGTTGTCCATGTGCAAGTCTGTGGTGGCCCCORF Start: ATG at 27ORF Stop: TAG at 354SEQ ID NO: 138109 aaMW at 12216.8kDNOV32b,MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNLQQRVLVETDYDQYALLYSQGSKGPGEDFRMATLCG57760-02Protein SequenceYSRTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ


[0521] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 32B.
170TABLE 32BComparison of NOV32a against NOV32b.NOV32aIdentities/Residues/Similarities forProteinMatchthe MatchedSequenceResiduesRegionNOV32b120 . . . 19070/71 (98%) 39 . . . 10971/71 (99%)


[0522] Further analysis of the NOV32a protein yielded the following properties shown in Table 32C.
171TABLE 32CProtein Sequence Properties NOV32aPSort0.3700 probability located in outside; 0.1900analysis:probability located in lysosome (lumen); 0.1507probability located in microbody (peroxisome);0.1000 probability located in endoplasmicreticulum (membrane)SignalPCleavage site between residues 23 and 24analysis:


[0523] A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 32D.
172TABLE 32DGeneseq Results for NOV32aNOV32aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAU31028Novel human secreted5 . . . 190156/191 (81%)7e−81protein #1519 - Homo32 . . . 222 159/191 (82%)sapiens, 222 aa.[WO200179449-A2,25 OCT. 2001]ABB57144Mouse ischaemic condition1 . . . 189137/189 (72%)2e−76related protein sequence SEQ1 . . . 189158/189 (83%)ID NO: 348 - Mus musculus,189 aa. [WO200188188-A2,22 NOV. 2001]AAY71471Human prostaglandin D21 . . . 137 137/137 (100%)6e−76synthase (PD2 synthase) -1 . . . 137 137/137 (100%)Homo sapiens, 137 aa.[WO200029576-A1,25 MAY 2000]ABG60136Human DITHP polypeptide1 . . . 188131/188 (69%)8e−74#194 - Homo sapiens, 21219 . . . 206 152/188 (80%)aa. [WO200220754-A2,14 MAR. 2002]AAB90661Xenopus cpl-1 protein, SEQ26 . . . 189  70/164 (42%)3e−39ID NO: 204 - Xenopus sp,21 . . . 183 113/164 (68%)184 aa. [WO200121658-A1,29 MAR. 2001]


[0524] In a BLAST search of public sequence datbases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32E.
173TABLE 32EPublic BLASTP Results for NOV32aNOV32aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueP41222Prostaglandin-H2 D-isomerase1 . . . 190 190/190 (100%)e−108precursor (EC 5.3.99.2)1 . . . 190 190/190 (100%)(Prostaglandin-D synthase)(Glutathione-independent PGDsynthetase) (Prostaglandin D2synthase) (PGD2 synthase)(PGDS2) (PGDS) (Beta-traceprotein) - Homo sapiens(Human), 190 aa.Q8WNM0Prostaglandin D2 synthase -1 . . . 190188/190 (98%)e−107Pongo pygmaeus (Orangutan),1 . . . 190188/190 (98%)190 aa.Q8WNM1Prostaglandin D2 synthase -1 . . . 190187/190 (98%)e−106Gorilla gorilla (gorilla), 190 aa.1 . . . 190188/190 (98%)Q9TUI1Prostaglandin D synthase -1 . . . 190179/190 (94%)e−102Macaca fuscata (Japanese1 . . . 190183/190 (96%)macaque), 190 aa.Q29562Prostaglandin-H2 D-isomerase1 . . . 189146/189 (77%)7e−83precursor (EC 5.3.99.2)1 . . . 189160/189 (84%)(Prostaglandin-D synthase)(Glutathione-independent PGDsynthetase) (Prostaglandin D2synthase) (PGD2 synthase)(PGDS2) - Ursus arctos (Brownbear) (Grizzly bear), 191 aa.


[0525] PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32F.
174TABLE 32FDomain Analysis of NOV32aIdentities/NOV32aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValuelipocalin38 . . . 18649/157 (31%)4.9e−42125/157 (80%) 



Example 33

[0526] The NOV33 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 33A.
175TABLE 33ANOV33 Sequence AnalysisSEQ ID NO: 1394620 bpNOV33a,TTTGGGAGATGTCTAAGTGATTTTTTTTTTTTTCCCGGAAGGCAAATGGCTGGCGTGGAAGCACAACCG59361-01DNA SequenceCCGCTTTCACTCTTCGAATTTGTGCTTAGCTCTTTTCTTGTACCTTGCCACTCGTGACCAACATGCTGTGATGCGACTCGTGACCIACATGCTGTGATGTGTGCCGAGGGAGGAATTGGTCAGCTACACAACCTGGATCTTACCACAGTTTGGATATGACTGAGGCTCTCCAATGGGCCAGATATCACTGGCGACGGCTGATCAGAGGTGCAACCAGGGATGATGATTCAGGGCCATACAACTATTCCTCGTTGCTCGCCTGTGGGCGCAAGTCCTCTCAGATCCCTAAACTGTCAGGAAGGCACCGGATTGTTGTTCCCCACATCCAGCCCTTCAAGGATGAGTATGAGAAGTTCTCCGGAGCCTATGTGAACAATCGAATACGAACAACAAAGTACACACTTCTGAATTTTGTGCCAAGAAATTTATTTGAACAATTTCACACAGCTCCCAATTTATATTTCCTGTTCCTAGTTGTCCTGAACTGGGTACCTTTGGTAGAAGCCTTCCAAAAGGAAATCACCATGTTGCCTCTGGTGGTGGTCCTTACAATTATCGCAATTAAAGATGGCCTGGAAGATTATCCGAAATACAAAATTGACAAACAGATCAATAATTTAATAACTAAAGTTTATAGTAGGAAAGAGAAAAAATACATTGACCGACGCTGGAAAGACGTTACTOTTGCGGACTTTATTCGCCTCTCCTGCAACCAGGTCATCCCTGCAGACATGGTACTACTCTTTTCCACTGATCCAGATGGAATCTGTCACATTGAGACTTCTGGTCTTGATGGAGAGAGCAATTTAAAACAGAGGCAGGTGGTTCGGGGATATGCAGAACAGGACTCTGAAGTTGATCCTGAGAAGTTTTCCAGTAGGATAGAATGTGAAAGCCCAAACAATGACCTCAGCAGATTCCGAGGCTTCCTAGAACATTCCAACAAAGAACGCGTGGGTCTCAGTAAAGAAAATTTGTTGCTTAGAGGATGCACCATTAGAAACACAGAGGCTGTTGTGGGCATTGTGGTTTATGCAGGCCATGAAACCAAAGCAATGCTGAACAACAGTGGGCCACGGTATAAGCGCAGCAAATTAGAAAGAAGAGCAAACACAGATGTCCTCTGGTGTGTCATGCTTCTGGTCATAATGTGCTTAACTGGCGCAGTACGTCATGGAATCTGGCTGAGCAGGTATGAAAAGATGCATTTTTTCAATGTTCCCGAGCCTGATGGACATATCATATCACCACTGTTGGCACGATTTTATATGTTTTGGACCATGATCATTTTGTTACAGGTCTTGATTCCTATTTCTCTCTATGTTTCCATCGAAATTGTGAAGCTTGGACAAATATATTTCATTCAAAGTGATGTGGATTTCTACAATGAAAAAATGGATTCTATTGTTCAGTGCCGAGCCCTGAACATCGCCGAGGATCTGGGACAGATTCAGTACCTCTTTTCCGATAAGACAGGAACCCTCACTGAGAATAAGATGGTTTTTCGAAGATGTAGTGTGGCAGGATTTGATTACTGCCATGAAGAAAATGCCAGGAGGTTGGAGTCCTATCAGGAAGCTGTCTCTGAAGATGAAGATTTTATAGACACAGTCAGTGGTTCCCTCAGCAATATGGCAAAACCGAGAGCCCCCAGCTGCAGGACAGTTCATAATGGGCCTTTGGGAAATAAGCCCTCAAATCATCTTGCTGGGAGCTCTTTTACTCTACGAAGTGGAGAAGGAGCCAGTGAAGTGCCTCATTCCAGACAGGCTGCTTTCAGTAGCCCCATTGAAACAGACGTGGTACCAGACACCAGGCTTTTAGACAAATTTAGTCAGATTACACCTCGGCTCTTTATGCCACTAGATGAGACCATCCAAAATCCACCAATGGAAACTTTGTACATTATCGACTTTTTCATTGCATTGGCAATTTGCAACACAGTAGTGGTTTCTGCTCCTAACCAACCCCGACAAAAGATCAGACACCCTTCACTGGGGGGGTTGCCCATTAAGTCTTTGGAAGAGATTAAAAGTCTTTTCCAGAGATGGTCTGTCCGAAGATCAAGTTCTCCATCGCTTAACAGTGGGAAAGAGCCATCTTCTGGAGTTCCAAACGCCTTTGTGAGCAGACTCCCTCTCTTTAGTCGAATGAAACCAGCTTCACCTGTGGAGGAAGAGGTCTCCCAGGTGTGTGAGAGCCCCCAGTGCTCCAGTAGCTCAGCTTGCTGCACAGAGACAGAGAAACAACACGGTGATGCAGGCCTCCTGAATGGCAAGGCAGAGTCCCTCCCTGGACAGCCATTGGCCTGCAACCTGTGTTATGAGGCCGAGAGCCCAGACGAAGCGGCCTTAGTGTATGCCGCCAGCGCTTACCAATGCACTTTACGGTCTCGGACACCAGAGCAGGTCATGGTCGACTTTNCTGCTTTGGGACCATTAACATTTCAACTCCTACACATCCTGCCCTTTGACTCAGTAAGAAAAAGAATGTCTGTTGTGGTCCGACACCCTCTTTCCAATCAAGTTGTGGTGTATACGAAAGGCGCTGATTCTGTCATCATGGAGTTACTGTCGGTGGCTTCCCCACATGGAGCAAGTCTGGAGAAACAACAGATGATAGTAAGGGAGAAAACCCAGAAGCACTTGGATGACTATGCCAAACAAGGCCTTCGTACTTTATGTATAGCAAAGAAGGTCATGAGTGACACTGAATATGCAGAGTGGCTCAGGAATCATTTTTTAGCTGAAACCAGCATTGACAACAGGGAAGAATTACTACTTGAATCTGCCATGAGGTTGGAGAACAAACTTACATTACTTGGTGCTACTGGCATTGAAGACCGTCTGCAGGAGGGAGTCCCTGAATCTATAGAAGCTCTTCACAAAGCGGGCATCAAGATCTGGATGCTGACAGGGGACAAGCAGGAGACAGCTGTCAACATACCTTATGCATGCAAACTACTGGAGCCAGATGACAACCTTTTTATCCTCAATACCCAAAGTAAAGATGCCTGTGGGATGCTGATGAGCACAATTTTGAAAGAACTTCAGAAGAAAACTCAAGCCCTGCCAGAGCAAGTGTCATTAAGTGAAGATTTACTTCAGCCTCCTGTCCCCCGGGACTCAGGGTTACGAGCTGGACTCATTATCACTGGGAAGACCCTGGAGTTTGCCCTGCAAGAAAGTCTGCAAAAGCAGTTCCTGGAACTGACATCTTGGTGTCAAGCTGTGGTCTGCTGCCGAGCCACACCGCTGCAGAAAAGTGAAGTGGTGAAATTGGTCCGCAGCCATCTCCAGGTGATGACCCTTGCTATTGGTGATGGTGCCAATGATGTTAGCATGATACAAGTGGCAGACATTGGGATAGGGGTCTCAGGTCAAGAAGGCATGCAGGCTGTGATGGCCAGTGACTTTGCCGTTTCTCAGTTCAAACATCTCAGCAAGCTCCTTCTTGTCCATGGACACTGGTGTTATACACGGCTTTCCAACATGATTCTCTATTTTTTCTATAAGAATGTGGCCTATGTGAACCTCCTTTTCTGGTACCAGTTCTTTTGTGGATTTTCAGGAACATCCATGACTGATTACTGGGTTTTGATCTTCTTCAACCTCCTCTTCACATCTGCCCCTCCTGTCATTTATGGTGTTTTGGAGAAAGATGPGTCTGCAGAGACCCTCATGCAACTGCCTGAACTTTACAGAAGTGGTCAGAAATCAGAGGCATACTTACCCCATACCTTCTGGATCACCTTATTGGATGCTTTTTATCAAAGCCTGGTCTGCTTCTTTGTGCCTTATTTTACCTACCAGGGCTCAGATACTGACATCTTTGCATTTGGAAACCCCCTGAACACAGCCGCTCTGTTCATCGTTCTCCTCCATCTGGTCATTGAAAGCAAGAGTTTGACTTGGATTCACTTGCTGGTCATCATTGGTAGCATCTTGTCTTATTTTTTATTTGCCATAGTTTTTGGAGCCATGTGTGTAACTTGCAACCCACCATCCAACCCTTACTGGATTATGCAGGAGCACATGCTGGATCCAGTATTCTACTTAGTTTGTATCCTCACGACGTCCATTGCTCTTCTGCCCAGGTTTGTATACAGAGTTCTTCAGGGATCCCTGTTTCCATCTCCAATTCTGAGAGCTAAGCACTTTGACAGACTAACTCCAGAGGAGAGGACTAAAGCTCTCAAGAAGTGGAGAGGGGCTGGAAAGATGAATCAAGTGACATCAAAGTATGCTAACCAATCAGCTGGCAAGTCAGGAAGAAGACCCATGCCTGGCCCTTCTGCTGTATTTGCAATGAAGTCAGCAAGTTCCTGTGCTATTGAGCAAGGAAACTTATCTCTGTGTGAAACTGCTTTACATCAAGGCTACTCTGAAACTAAGGCCTTTGAGATGGCTGGACCCTCCAAAGGTAAAGAAAGCTAGATACCCTCCTTGGAGTTGCAAGTATTCTTTCAAGGTTGGAAGAGGGATTTTGAAGAGGTATCTCTCCAAGCAAGAATGACTTGTTTTTCCATAAGGGACATGAGCATTTTACTAGGCORF Start: ATG at 223ORF Stop: TAG at 4501SEQ ID NO: 1401426 aaMW at 160265.91WNOV33a,MTEALQWARYHWRRLIRGATRDDDSGPYNYSSLLACGRKSSQIPKLSGRHRIVVPHIQPFKDEYEKFCG59361-01Protein SequenceSGAYVNNRIRTTKYTLLNFVPRNLFEQFHRAANLYFLFLVVLNWVPLVEAFQKEITMLPLVVVLTIIAIKDGLEDYRKYKIDKQINNLITKVYSRKEKKYIDRRWKDVTVGDFIRLSCNEVIPADMVLLFSTDPDGICHIETSGLDGESNLKQRQVVRGYAEQDSEVDPEKFSSRIECESPNNDLSRFRGFLEHSNKERVGLSKENLLLRGCTIRNTEAVVGIVVYAGHETKAMLNNSGPRYKRSKLERRANTDVLWCVMLLVIMCLTGAVGHGIWLSRYEKMHFFNVPEPDGHIISFLLAGFYMFWTMIILLQVLIPISLYVSIEIVKLGQIYFIQSDVDFYNEKMDSIVQCRALNIAEDLGQIQYLFSDKTGTLTENKMVFRRCSVAGFDYCHEENARRLESYQEAVSEDEDFIDTVSGSLSNMAKPRAPSCRTVHNGPLGNKPSNHLAGSSFTLGSGEGASEVPHSRQAAFSSPIETDVVPDTRLLDKFSQITPRLFMPLDETIQNPPMETLYIIDFFIALAICNTVVVSAPNQPRQKIRHPSLGGLPIKSLEEIKSLFQRWSVRRSSSPSLNSGKEPSSGVPNAFVSRLPLFSRMKPASPVEEEVSQVCESPQCSSSSACCTETEKQHGDAGLLNGKAESLPGQPLACNLCYEAESPDEAALVYAARAYQCTLRSRTPEQVMVDFXALGPLTFQLLHILPFDSVRKRMSVVVRHPLSNQVVVYTKGADSVIMELLSVASPDGASLEKQQMIVREKTQKHLDDYAKQGLRTLCIAKKVMSDTEYAEWLRNHFLAETSIDNREELLLESAMRLENKLTLLGATGIEDRLQEGVPESIEALHKAGIKIWMLTGDKQETAVNIAYACKLLEPDDKLFILNTQSKDACGMLMSTILKELQKKTQALPEQVSLSEDLLQPPVPRDSGLRAGLIITGKTLEFALQESLQKQFLELTSWCQAVVCCRATPLQKSEVVKLVRSHLQVMTLAIGDGANDVSMIQVADIGIGVSGQEGMQAVMASDFAVSQFKHLSKLLLVHGHWCYTRLSNNILYFFYKNVAYVNLLFWYQFFCGFSGTSMTDYWVLIFFNLLFTSAPPVIYGVLEKDVSAETLMQLPELYRSGQKSEAYLPHTFWITLLDAFYQSLVCFFVPYFTYQCSDTDIFAFGNPLNTAALFIVLLHLVIESKSLTWIHLLVIIGSILSYFLFAIVFGAMCVTCNPPSNPYWIMQEHMLDPVFYLVCILTTSIALLPRFVYRVLQGSLFPSPILRAKHFDRLTPEERTKALKKWRGAGKMNQVTSKYANQSAGKSGRRPMPGPSAVFAMKSASSCAIEQGNLSLCETALDQGYSETKAFEMAGPSKGKES


[0527]

176





TABLE 33B








Protein Sequence Properties NOV33a
















PSort
0.6471 probability located in mitochondrial inner membrane;


analysis:
0.6000 probability located in plasma membrane; 0.4000



probability located in Golgi body; 0.3377 probability



located in mitochondrial matrix space


SignalP
No Known Signal Sequence Predicted


analysis:










[0528] A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 33C.
177TABLE 33CGeneseq Results for NOV33aNOV33aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE01984Human ATPase-related1 . . . 14261422/1426 (99%)0.0protein #7 - Homo sapiens,1 . . . 14261423/1426 (99%)1426 aa.[WO200134778-A2,17 MAY 2001]AAE01982Human ATPase-related1 . . . 12521249/1252 (99%)0.0protein #5 - Homo sapiens,1 . . . 12521249/1252 (99%)1270 aa.[WO200134778-A2,17 MAY 2001]AAE01980Human ATPase-related1 . . . 10561053/1056 (99%)0.0protein #3 - Homo sapiens,1 . . . 10561054/1056 (99%)1056 aa.[WO200134778-A2,17 MAY 2001]AAE01978Human ATPase-related1 . . . 951  949/951 (99%)0.0protein #1 - Homo sapiens,1 . . . 951  949/951 (99%)972 aa. [WO200134778-A2,17 MAY 2001]AAB95253Human protein sequence753 . . . 1426  673/674 (99%)0.0SEQ ID NO: 17421 - Homo1 . . . 674  673/674 (99%)sapiens, 674 aa.[EP1074617-A2,07 FEB. 2001]


[0529] In a BLAST search of public sequence datbases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33D.
178TABLE 33DPublic BLASTP Results for NOV33aNOV33aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ96SR3CDNA FLJ14692 fis, clone753 . . . 1426  673/674 (99%)0.0NT2RP2005344, weakly1 . . . 674 673/674 (99%)similar to probablecalcium-transporting ATPase5 (EC 3.6.1.38) - Homosapiens (Human), 674 aa.O54827Potential73 . . . 1329692/1274 (54%)0.0phospholipid-transporting65 . . . 1318907/1274 (70%)ATPase VA (EC 3.6.3.1) -Mus musculus (Mouse),1508 aa.O60312Potential73 . . . 1377706/1315 (53%)0.0phospholipid-transporting61 . . . 1349922/1315 (69%)ATPase VC (EC 3.6.3.1)(ATPVC)(Aminophospholipidtranslocase VC) - Homosapiens (Human), 1499 aa.Q9P241Potential777 . . . 1426  649/650 (99%)0.0phospholipid-transporting1 . . . 650 650/650 (99%)ATPase VD (EC 3.6.3.1)(ATPVD) - Homo sapiens(Human), 650 aa (fragment).AAM20894P locus fat-associated163 . . . 1329 649/1194 (54%)0.0ATPase - Mus musculus 1 . . . 1164842/1194 (70%)(Mouse), 1354 aa(fragment).


[0530] PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33E.
179TABLE 33EDomain Analysis of NOV33aIdentities/Similarities forPfamNOV33a Matchthe MatchedExpectDomainRegionRegionValueHydrolase432 . . . 107738/653 (6%)0.17377/653 (58%)



Example 34

[0531] The NOV34 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 34A.
180TABLE 34ANOV34 Sequence AnalysisSEQ ID NO: 1413198bpNOV34a,TTTGGGGCTGAAGTTCCCTGTGGGAGGCTGTTTTCTGAGGCAGCTGAGTGTTTACAGCCACTCAGCCCG59444-01DNA SequenceCTGCTCTGCTCAGCTGAAGCAGAAAACAGAGACCTTTTGCATTACTTTGGTTCAAGAGCAAGACAGGACGCGACTGCATGAGACCATGGCTGAGACACCTACTCCTCCAGGCACTGAGGAACTCCAGGGCATTCTGTGGGTCTCATCGGAAGCCAGCACCTCTACCTGTTCCTCAGAAGATCGTGGCCACCTGGGAAGCCATCAGCCTGGGAAGGCAGCTGGTGCCTGAGTACTTCAACTTCGCCCATGATGTGTTGGATGTGTGGAGCGGCTGGAAGAGGCTGGACACCCCCCCCCAAATCCTGCCTTCTGGTGGGTCAATGGCACAGGAGCAGAGATCJAGTGGACATTTGAGGAGCTGGGGAAGCAGTCCAGGAAGGCAGCCAATGTGCTGGGGGGTGCATGCGGCCTCCAGCCTCGGGACAGAATGATGCTGGTACTCCCACGGCTCCCGGAGTGGTGGCTGGTCAGTGTGGCTTGCATGCGGACAGGGACTGTGATGATTCCGGGTGTGACTCAGCTGACAGAGAAGGACCTCAAGTACCGGCTGCACGCGTCCAGGGCCAAGTCCATTATCACCAGTGACTCCCTAGCTCCAAGGGTGGATGCCATCAGTGCCGAATGCCCCTCCCTCCAGACCAAGCTGCTGGTGTCAGACAGCAGTCGGCCAGGCTGGTTGAACTTCAGGGAACTCCTCCGGGAGGCTTCTACAGAGCACAACTGCATGAGGACAAAGAGTCGAGACCCGCTGGCCATCTACTTTACCAAGCGGGAACCACCGGGGGCCCCCAAGATGGTCGAGCACTCCCAGAGCAGCTACGGACTGGGTTTTGTGGCCAGCGGAAGACGGTGGGTGGCCTTGACCGAATCTGACATCTTCTGGAACACGACTGACACTGGCTGGGTGAAGGCAGCCTGGACTCTCTTCTCTGCCTGGCCTAATGGATCTTGCATTTTTGTGCATGAGCTGCCCCGAGTTGATGCCAAAGTTATCCTGAATACTCTCTCCAAATTCCCGATAACCACCCTCTGCTGTGTCCCAACCATCTTTCGGCTGCTTGTGCAGGAGGATCTGACCAGGTACCAGTTTCAGAGCTTCAGGCACTGTCTGACCGGAGGAGAGGCCCTCAACCCTGACGTGAGGGAGAAGTGGAAACACCAGACTGGTGTGGAGCTGTACGAAGGCTATGGCCAGTCTGAAACGGTTGTCATCTGTGCCAATCCAAAAGGCATGAAAATCAAGTCTGGATCCATGGGGAAGGCGTCCCCACCCTACGATGTGCAGATTGTGGATGATGAGGGCAACGTCCTGCCTCCTGGAGAAGAGGGGAATGTTGCCGTCCGTATCAGACCCACTCGGCCCTTCTGTTTCTTCAATTGCTATTTGGACAATCCTGAGAAGACAGCTGCATCAGAACAAGGGGACTTTTACATCACAGGGGACCGAGCTCGCATGGACAAGGATGGCTACTTTTGGTTCATGCGAAGAAACGACGATGTGATCAATTCTTCAAGCTACCGGATCGGGCCTGTTGAAGTGGAAAGTGCCCTGGCAGAGCATCCTGCTGTCCTGGAGTCGGCTGTGGTCAGCAGCCCAGACCCCATCAGGGGAGAGGTGGTAAAGGCATTTATAGTCCTTACTCCAGCCTACTCCTCTCATGACCCAGAGGCACTAACGCGGGAACTCCAGGAGCATGTGAAAAGGGTGACTGCTCCATACAAATACCCCAGGAAGGTGGCCTTTGTTTCAGAACTTGCCAAAGACGGTTTCTGGAAAGATCCAAAGGAGTAAATTGCCAAGTCAGGAGTGGGGGAAATGAGGTGCACCCCAGGAAGGCCCCGTAGACCTCCGAAGACTCCACAAGAAACTAATGGATCACTGGTCAGTCCCCATGGGGAGCATCATCTCTTCGACCCTAAAGATGTCAAAGGTGTGCAGCTTCCAAACGGCATCCCCAGGATCACTGGGCAATGCTGGAAAGAGCAAAAGAATATCATTGGCCCTGATCACATAGATGCTGCGCCGCCTAGCAAATGCTTGGTGGTTCGACATCTCCCTCTGTCTGGGGGCAGGCTCAGCATCTGCCCACTGGTCTCACTAAGAGCTTTCAGATTTCCCTCCATAGGACAGGTTACCATAGACTTCGGGCACTTGTGGGTACTCATTCTCTGCCAGTGGGAATGTAAAGGCTTCATCCTTTGTATGTAACCATPTGGCAAAAGTATGCAGGAACATAAAATAAAATATCCTTTAGCTCAGAAATTCTATCTTCGGGAGTCACCACAAAAGAAAAAAATCAAAATGCAGAAAATGTGTGATGCACTAAGATGATCACACAGCATTAAAACTAAAAAAAAAAAAGAAAAAATTAACAATTAACATCCAAACAACAAGGAAATGATTAACAAAATTGTAGTAGATTAACTCAATTACATATGATGTAGCCACTAAAATATTTGAGAGCAGTTTAGTATGTCTTGGGAAAAGTGTAAGCTATATTAATTTTAAAAATCAGAGCAAAAATATTCATACTGGAGAATCCCAACTCTGAAAAATAAAGGGAAAACTCTGGTTAATTGTAATCCTCCTGGAGATTGAGGAGGGAGGGAGAGAAAATAATGGATGGPAGTTTTTCTTCTTCCTTTTTCCATTACATTTCTGTATTTTCCAAGTTTTTGTACGAAGCACATATAACTATTTTAATGAAAAAGTTATGTTAAAGAAAGCATACTCTGCTTCATGTCTAGTTCTTCCTCCACATACTCATACATCAACCCCAAAGACTGCTGTATTATGTCTGTATTAGTCAGCATTCTCCAGAGAAGGAGAAGCAATAGGACATATATAGACATAGGAGAGGGGATTTATGATGGGAATTGGCTCACTCGATTTTGGA~GCTGAGAAGTTCCACAATCTACCATCTGCATGCTGGAGATCCAGGAAACCCCGTGGTATAATTCCATCTGAGTCCAAAGGCCTGGTATTTGTCATATGCCTCGGCTCCTCAAACTGCAGCAAACAAACTCTATGGAAGAGAAAAAAATGGGACTCCAGAGACTTGAAATCACAGCCACTTGTCAGATGCAGCCCCCAACTCAGCTGCACGAGCTTAGCCAAATTTCTAGTCCORF Start: ATG at 145ORF Stop: TAA at 1858SEQ ID NO: 142571 aaMW at 64041.6kDNOV34a,MRPWLRHLVLQALRNSRAFCGSHGKPAPLPVPQKIVATWEAISLGRQLVPEYFNFAHDVLDVWSRLEC059444-01Protein SequenceEAGHRPPNPAFWWVNGTGAEIKWTFEELGKQSRKAANVLGGACGLQPGDRIHLVLPRLPEWWLVSVACMRTGTVMIPGVTQLTEKDLKYRLQASRAKSIITSDSLAPRVDAISAECPSLQTKLLVSDSSRPGWLNFRELLREASTEHNCMRTKSRDPLAIYFTKREPPGAPKMVEHSQSSYGLGFVASCRRWVALTESDIFWNTTDTGWVKAAWTLFSAWPNGSCIFVHELPRVDAKVILNTLSKFPITTLCCVPTIFRLLVQEDLTRYQFQSLRHCLTGGEALNPDVREHWKNQTGVELYEGYGQSETVVICANPKGMKTKSGSMGKASPPYDVQIVDDEGNVLPPGEEGNVAVRIRPTRPFCFFNCYLDNPEKTAASEQGDFYITGDRARMDKDGYFWFMGRNDDVINSSSYRIGPVEVESALAEHPAVLESAVVSSPDPIRGEVVKAFIVLTPAYSSHDPEALTRELQEHVKRVTAPYKYPRKVAFVSELAKDGFWKDPKESEQ ID NO: 1431875 bpNOV34b,AGCTGAAGCAGAAAACAGAGACCTTTTGCATTACTTTGGTTCAAGAGCAAGACAGGAGGCGACTGCACG59444-02DNA SequenceTGAGACCATGGCTGAGACACCTAGTCCTCCAGGCACTGAGGAACTCCAGGGCATTCTGTGGGTCTCATGGGAAGCCAGCACCTCTACCTGTTCCTCAGAAGATCGTGGCCACCTGGGAAGCCATCAGCCTGGGAAGGCAGCTGGTGCCTGAGTACTTCAACTTCGCCCATGATGTGCTGGATGTGTGGAGTCAGCTCGAAGAGGCTGGACACCGCCCCCCAAATCCTGCCTTCTGGTGGGTCAATGGCACAGGAGCAGAGATCAAGTGGAGCTTTGAGGAGCTGGGGAAGCAGTCCAGGAAGGCAACCAATGTGCTGGGGGGTGCATGCGGCCTGCAGCCTGGGGACAGAATGATGCTGGTACTCCCACGGCTCCCGGAGTGGTGGCTGGTCAGTGTGGCTTCCATGCGGACAGGGACTGTGATGATTCCGGGTGTGACTCAGCTGACAGAGAAGGACCTCAAGTACCGGCTGCAGGCGTCCAGCGCCAAGTCCATTATCACCAGTGACTCCCTAGCTCCAAGGGTGGATGCCATCAGTGCCGAATGCCCCTCCCTCCAGACCAAACTGCTGGTGTCAGACAGCAGTCGGCCACCCTGGTTGAACTTCAGGGAACTCCTCCGCGAGGCTTCTACAGAGCACAACTGCGTGAGGACAAAGAGTCGAGACCCGCTGGCCATCTACTTTACCAGCGGAACCACCGGGGCCCCCAAGATGGTCGAGCACTCCCAGAGCAGCTACGGTCTGGGTTTTGTGCCCAGCGGAAGACGGTGGGTGGCCTTGACCGAATCTGACATCTTCTAGAACACGACTGACACTGGCTGGGTGAAGGCAGCCTGGACTCTCTTCTCTCCCTGGCCTAATGGATCTTGCATTTTTGTACATCAGCTGCCCCGAGTTGATGCCAAACTTATCCTGAATACTCTCTCCAAATTCCCGATAACCACCCTCTGCTGTGTCCCAACCATCTTTCGGCTGCTTGTGCAGGAGGATCTGACCAAATACCAGTTTCAGAGCCTGAGGCACTGTCTGACCGGACGAGAGGCCCTCAACCCTGACGTGACCGAGAGATGGAAACACCAGACTGGTGTGGAGCTGTACGAACGCTATGGCCAGTCTGAACGCATTGTCATCTCTGCCAATCCAAAAGGCATGAAAATCAAGTCTGGATCCATGGGGAAGGCGTCCCCACCCTACGATGTGCAGATTGTGGATGATGAGGGCAACGTCCTGCCTCCTGGAGAAGAGGGGAATGTTGCCGTCCGTATCACACCCACTCGGCCCTTCTGTTTCTTCAATTGCTATTTGGACAATCCTGAGAAGACAGCTGCATCAGAACAAGGGGACTTTTACATCACAGGGGACCGAGCTCGCATGGACAAGGATGGCTACTTTTGGTTCATCGGAAGAAACGACGATGTGATCAATTCTTCAAGCTACCGGATCGGGCCTGTTGAAGTGGAAAGTGCCCTGGCAGAGCATCCTGCTGTCCTGGAGTCGGCTGTGGTCAGCAGCCCAGACCCCATCAGGGGACACGTCGTAAAGGCATTTATAGTCCTTACTCCAGCCTACTCCTCTCATGACCCAGAGGCACTAACGCGGGAACTCCAGGAGCATGTGAAAAGGGTGACTGCTCCATACAAATACCCCAGGAAGGTGGCCTTTGTTTCAGAACTGCCAAAGACGGTTTCTGGAAAGATCCAAAGGAGTAAATTGCGAAGTCAGGAGTGGGGGAAATGAGATAACACCCCAGGAAGGCCCCGTAGACCTCCGAAGACTCCACAAGAAACTAATGGATCACTGGTCAGTCORF Start: ATG at 67ORF Stop: TGA at 1804SEQ ID NO: 144579 aaMW at 64699.3kDNOV34b,MRPWLRHLVLQALRNSRAFCGSHGKPAPLPVPQKIVATWEAISLGRQLVPEYFNFAHDVLDVWSQLECG59444-02Protein SequenceEAGHRPPNPAFWWVNGTGAEIKWSFEELGKQSRKAANVLGGACGLQPGDRMMLVLPRLPEWWLVSVACMRTGTVMIPGVTQLTEKDLKYRLQASRAKSIITSDSLAPRVDAISAECPSLQTKLLVSDSSRPGWLNFRELLREASTEHNCVRTKSRDPLAIYFTSGTTGAPKMVEHSQSSYGLGFVASGRRWVALTESDIFWNTTDTGWVKAAWTLFSAWPNGSCIFVHELPRVDAKVILNTLSKFPITTLCCVPTIFRLLVQEDLTRYQFQSLRHCLTGGEALNPDVREKWXHQTGVELYEGYGQSETVVICANPKGMKIKSGSMGKASPPYDVQIVDDEGNVLPPGEEGNVAVRIRPTRPFCFFNCYLDNPEKTAASEQGDFYITGDRAPMDKDGYFWFMGRNDDVINSSSYRIGPVEVESALAEHPAVLESAVVSSPDPIRGEVVKAFIVLTPAYSSHDPEALTRELQEHVKRVTAPYKYPRKVAFVSELPKTVSGKIQRSKLRSQEWGK


[0532] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 34B.
181TABLE 34BComparison of NOV34a against NOV34b.Identities/Similarities forProteinNOV34a Residues/the MatchedSequenceMatch ResiduesRegionNOV34b1 . . . 562541/562 (96%)1 . . . 561544/562 (96%)


[0533] Further analysis of the NOV34a protein yielded the following properties shown in Table 34C.
182TABLE 34CProtein Sequence Properties NOV34aPSort0.7862 probability located in mitochondrial matrix space;analysis:0.5877 probability located in microbody (peroxisome);0.4642 probability located in mitochondrial inner membrane;0.4642 probability located in mitochondrialintermembrane spaceSignalPCleavage site between residues 21 and 22analysis:


[0534] A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 34D.
183TABLE 34DGeneseq Results for NOV34aNOV34aIdentities/Residues/Similarities forGeneseqProtein/Organism/LengthMatchthe MatchedExpectIdentifier[Patent #, Date]ResiduesRegionValueAAE22093Human kidney specific renal41 . . . 562287/523 (54%)e−174cell carcinoma (KSRCC)32 . . . 552378/523 (71%)protein - Homo sapiens, 577aa. [WO200216595-A2,28 FEB. 2002]AAB43245Human ORFX ORF300950 . . . 562284/514 (55%)e−173polypeptide sequence SEQ 1 . . . 512373/514 (72%)ID NO: 6018 - Homo sapiens,537 aa. [WO200058473-A2,05 OCT. 2000]AAU23054Novel human enzyme336 . . . 562 224/227 (98%)e−130polypeptide #140 - Homo 2 . . . 228224/227 (98%)sapiens, 246 aa.[WO200155301-A2,02 AUG. 2001]ABB53263Human polypeptide #3 -47 . . . 562235/521 (45%)e−129Homo sapiens, 583 aa.43 . . . 559337/521 (64%)[WO200181363-A1,01 NOV. 2001]ABB53262Human polypeptide #2 -47 . . . 483198/439 (45%)e−114Homo sapiens, 480 aa.43 . . . 480295/439 (67%)[WO200181363-A1,01 NOV. 2001]


[0535] In a BLAST search of public sequence datbases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34E.
184TABLE 34EPublic BLASTP Results for NOV34aNOV34aIdentities/ProteinResidues/Similarities forAccessionMatchthe MatchedExpectNumberProtein/Organism/LengthResiduesPortionValueQ9NWV3CDNA FLJ20581 fis, clone 1 . . . 571570/571 (99%)0.0REC00491 - Homo sapiens 1 . . . 571571/571 (99%)(Human), 571 aa.O60363SA gene - Homo sapiens49 . . . 562317/515 (61%)0.0(Human), 578 aa.46 . . . 559407/515 (78%)Q13732SA SA gene product49 . . . 562317/515 (61%)0.0precursor - Homo sapiens46 . . . 559407/515 (78%)(Human), 578 aa.Q91WI1SA rat49 . . . 562313/515 (60%)0.0hypertension-associated46 . . . 559405/515 (77%)homolog (SA protein) - Musmusculus (Mouse), 578 aa.Q9Z2F3SA protein - Mus musculus49 . . . 562312/515 (60%)0.0(Mouse), 578 aa.46 . . . 559404/515 (77%)


[0536] PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34F.
185TABLE 34FDomain Analysis of NOV34aIdentities/Similarities forPfamNOV34a Matchthe MatchedExpectDomainRegionRegionValueAMP-binding91 . . . 23028/140 (20%)4.6e−1792/140 (66%)AMP-binding236 . . . 503 88/277 (32%)1.4e−67209/277 (75%) 



Example 35

[0537] The NOV35 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 35A.
186TABLE 35ANOV35 Sequence AnalysisSEQ ID NO: 145846bpNOV35a,ACCACCATGAATCCACTCCTGATCCTTACCTTTGTGGCAGCTGCTCTTGCTGCCCCCTTTGATGATGCG59482-01DNA SequenceATGACAGATCGTTGGGGGCTACAACTGTGAGGAGAATTCTGTCCCCTACCACGTGTGCCCTGAATTCTGGCTACCACTTCTGTGGTGGCTCCCTCATCAACGAACAGTGGGTGGTATCAGCAGGCCACTGCTACAGTCCCGCATCCAGGTGAGACTGGAGAGCACAACATCGAAGTCCTGGAGGGGAATATGAGCAGTTCATCAATGCAGCCAGATCATCCGCCACCCCCAATACGACAGGAAGACTCTGAACAAATCACATCATCTTAATCAAGCTCTCCTCACGTGCAGTAATCAACGCCCGCGTGTCCACCATCTCTCTGCCCACCGCCCCTCCAGCCACTGGCACGAAGTGCCTCATCTCTGGCTGGGGCAACACTGCGAGCTCTGGCGCCGACTACCCAGACGAGCTGCAGTGCCTGGACGCTCCTGTGCTGAGCCAGGCTAAGTGTGAAGCCTCCTACCATGGAAAGATTACCAGCAACATGTTCTGTGTGGGCTTCCTTGAGGGAGGCAAGGATTCATGTCAGGGTGATTCTGGTGGCCCTGTGGTCTGCAATGGACAGCTCCAAGGAGTTGTCTCCTGGGGTGATGGCTGTGCCCAGAAGAACAAGCCTGGAGTCTACACCAAGGTCTACAACTACGTGAAATGGATTAAGAACACCATAGCTGCCAACAGCTAAACCCCCCAGTATCTCTTCAGTCTCTATACCAATAAAGTGACGCTCGAGCCCTATAGTGAGTCGTATTAGGATGTGCCTTCACGTCGTCAGCATCGTORF Start: ATG at 7ORF Stop: TAA at 748SEQ ID NO: 146247 aaMW at 26557.8kDNOV35a,MNPLLILTFVAAALAAPFDDDDKIVGCYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVSAGHCYXSCG59482-01Protein SequenceRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIKNTIAANSSEQ ID NO: 147506 bpNOV35b,CATGAATCCACTCCTGATCCTTACCTTTGTGGCAGCTGCTCTAATCAACGCCCGCGTGTCCACCATCCG59482-02DNA SequenceTCTCTGCCCACCGCCCCTCCAGCCACTGGCACGAAGTGCCTCATCTCTGGCTGGGGCAACACTGCGAGCTCTGGCGCCGACTACCCAGACGAGCTGCAGTGCCTGGATGCTCCTGTGCTGAGCCAGCCTAAGTGTGAAGCCTCCTACCCTGGAAAGATTACCAGCAACATGTTCTGTGTGGGCTTCCTTGAGGGAGGCAAGGATTCATGTCAGGGTGATTCTGGTGGCCCTGTGGTCTGCAATGGACAGCTCCAACGAGTTGTCTCCTGGGGTGATGGCTGTGCCCAGAAGAACAAGCCTGGAGTCTACACCAAGGTCTACAACTATGTGAAATGGATTAAGAACACCATAGCTGCCAATAGCTAAAGCCCCCAGTATCTCTTCAGTCTCTATACCAATAAAGTGACCCTGTTCTCACAAAAAAAAAAAAAAAAAAACCCORF Start: ATG at 2ORF Stop: TAA at 431SEQ ID NO: 148143 aaMW at 14865.8kDNOV35b,MNPLLILTFVAAALINARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCCG59482-02Protein SequenceEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNRPCVYTKVYNYVKWIKNTIAANSSEQ ID NO 149837 bpNOV35c,GCAAQTGTGAATCGCCCTTCATGAATCCACTCCTGATCCTTACCTTTGTGGCAGCTGCTCTTGCTCCCG59482-03DNA SequenceCCCCTTTGATGATGATGACAAGATCGTTGGGGGCTACAACTGTGAGGAGAATTCTCTCCCCTACCAGGTGTCCCTGAATTCTGGCTACCACTTCTGTGGTGGCTCCCTCATCAACGAACAGTGGGTGGTATCAGCAGGCCACTGCTACAAGTCCCGCATCCAGGTGAGACTGGGAGAGCACAACATCGAAGTCCTGGAGCGGAATGAGCAGTTCATCATGCAGCCAAGATCATCCGCCACCCCCAATACGACAGGAAGGACTCTGAACAATGACATCATGTTAATCAAGCTCTCCTCACGTGCAGTAATCAACGCCCGCGTGTCCACCATCTCTCTGCCCACCGCCCCTCCAGCCACTGGCACGAAGTGCCTCATCTCTGGCTGGGGCAACACTGCGAGCTCTGGCGCCGACTACCCAGACGAGCTGCAGTGCCTGGACGCTCCTGTGCTGAGCCAGGCTAAGTGTGAAGCCTCCTACCCTGGAAAGATTACCAGCAACATGTTCTGTGTGGGCTTCCTTGAGGGAGGCAAG~ATTCATCTCAGGGTGATTCTGGTGGCCCTGTGGTCTGCAATGGACAGCTCCAAGGAGTTGTCTCCTCGGGTGATGGCTGTGCCCAGAAGAACAAGCCTGGAGTCTACACCAAGGTCTACAACTATGTGAAATGGATTAAGAACACCATAGCTGCCAATAGCTAAAGCCCCCAGTATCTCTTCAGTCTCTATACCAATAAAGTGACCCTGTTCCTCACAAAAAAAGGGCGATTCCAGAORF Start: ATG at 21ORF Stop: TAA at 762SEQ ID NO: 150247 aaMW at 26557.8kDNOV35c,MNPLLILTFVAAALAAPFDDDDKIVGGYNCEENSVPYQVSLNSGYHFCGGSLINEQWVVSAGHCYKSCG59482-03Protein SequenceRIQVRLGEHNIEVLECNEQFINAAXIIRHPQYDRKTLNNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLTSGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIKNTTAANS


[0538] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 35B.
187TABLE 35BComparison of NOV35a against NOV35b and NOV35c.Identities/Similarities forProteinNOV35a Residues/the MatchedSequenceMatch ResiduesRegionNOV35b106 . . . 247 131/142 (92%)2 . . . 143137/142 (96%)NOV35c1 . . . 247235/247 (95%)1 . . . 247235/247 (95%)


[0539] Further analysis of the NOV35a protein yielded the following properties shown in Table 35C.
188TABLE 35CProtein Sequence Properties NOV35aPSort0.5708 probability located in outside; 0.1000analysis:probability located in endoplasmic reticulum(membrane); 0.1000 probability located inendoplasmic reticulum (lumen); 0.1000probability located in lysosome (lumen)SignalPCleavage site between residues 16 and 17analysis:


[0540] A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 35D.
189TABLE 35DGeneseq Results for NOV35aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV35a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAB21321Human trypsinogen - Homo1 . . . 247247/247 (100%)e−147sapiens, 247 aa.1 . . . 247247/247 (100%)[WO200053776-A2,14 SEP. 2000]AAB21316Human trypsinogen - Homo1 . . . 241241/241 (100%)e−143sapiens, 241 aa.1 . . . 241241/241 (100%)[WO200053776-A2,14 SEP. 2000]AAW93488Human TRYI trypsinogen19 . . . 247229/229 (100%)e−137variant protein - Homo2 . . . 230229/229 (100%)sapiens, 230 aa.[WO9910503-A1,04 MAR. 1999]AAB98503Human trypsin serine23 . . . 247225/225 (100%)e−134protease catalytic domain -1 . . . 225225/225 (100%)Homo sapiens, 225 aa.[WO200129056-A1,26 APR. 2001]AAY31160Human trypsin serine24 . . . 247224/224 (100%)e−133protease protein domain -1 . . . 224224/224 (100%)Homo sapiens, 224 aa.[US5948892-A,07 SEP. 1999]


[0541] In a BLAST search of public sequence datbases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35E.
190TABLE 35EPublic BLASTP Results for NOV35aIdentities/ProteinSimilarities forAccessionNOV35a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueP07477Trypsin I precursor (EC1 . . . 247 247/247 (100%)e−1463.4.21.4) (Cationic1 . . . 247 247/247 (100%)trypsinogen) - Homo sapiens(Human), 247 aa.P07478Trypsin II precursor (EC1 . . . 247221/247 (89%)e−1303.4.21.4) (Anionic1 . . . 247236/247 (95%)trypsinogen) - Homo sapiens(Human), 247 aa.AAC80208TRYPSINOGEN C - Homo1 . . . 247219/247 (88%)e−129sapiens (Human), 247 aa.1 . . . 247230/247 (92%)AAC13322MESOTRYPSINOGEN -1 . . . 247214/247 (86%)e−127Homo sapiens (Human), 2471 . . . 247231/247 (92%)aa.AAH30260Protease, serine, 2 (trypsin 2) -1 . . . 239214/239 (89%)e−126Homo sapiens (Human),1 . . . 239228/239 (94%)239 aa.


[0542] PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35F.
191TABLE 35FDomain Analysis of NOV35aIdentities/NOV35aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValuetrypsin24 . . . 239113/262 (43%)1.5e−111198/262 (76%)



Example 36

[0543] The NOV36 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 36A.
192TABLE 36ANOV36 Sequence AnalysisSEQ ID NO: 1513080 bpNOV36a,TTCCAGCCGGCAGGATGGAGGACGAGGAAGGCCCTGAGTATGGCAAACCTGACTTTGTGCTTTTGGACG59522-01DNA SequenceCCAAGTGACCATGGACGACTTCATGAGGAACCTGCAGCTCAGGTTCGAGAAGGGCCGCATCTACACCTACATCGGTGAGGTGCTGGTGTCCGTGAACCCCTACCAGGAGCTGCCCCTGTATGGGCCTGAAGCCATCGCCAGGTACCAGGGCCGTGAGCTCTATGAGCGGCCACCCCATCTCTATGCTGTGGCCGAACGCGCCTACAAGGCAATGAAGCACCGGTCCAGGGACACCTGCATCGTCATCTCAGGGGAGAGTGGGGCAGGGAAGACAGAAGCCAGTAAGCACATCATGCAGTACATCGCTGCTGTCACCAATCCTAGCCAGAGGGCTGAGGTGGAGAGGGTCAAGGACGTGCTGCTCAAGTCCACCTGTGTGCTGGAGGCCTTTGGCAATGCCCGCACCAACCGCAATCACAACTCCAGCCGCTTTGGCAAGTACATGGACATCAACTTTGACTTCAAGGGGGACCCGATCGGAGGACACATCCACAGCTACCTACTGGAGAAGTCTCGGGTCCTCAAGCAGCACGTGGGTGAAAGAAACTTCCACGCCTTCTACCAATTGCTGAGAGGCAGTGAGGACAAGCAGCTGCATGAACTGCACTTGGAGAGAAACCCTGCTGTATACAATTTCACACACCAGGGAGCAGGACTCAACATGACTGTCAGTGATGAGCAGAGCCACCAGGCAGTGACCGAGGCCATGAGGGTCATCGGCTTCAGTCCTGAAGAGGTGGAGTCTGTGCATCGCATCCTGGCTGCCATATTGCACCTGGGAAACATCGAGTTTGTGGAGACCGAGGAGGGTGGGCTGCAGAAGGAGGGCCTGGCAGTGGCCGAGGAGGCACTGGTGGACCATGTGGCTGAGCTGACGGCCACACCCCGGGACCTCGTGCTCCGCTCCCTGCTGGCTCGCACAGTTGCCTCGGGAGGCAGGGAACTCATAGAGAAGGGCCACACTGCACCTGAGGCCAGCTATGCCCGGGATGCCTGTGCCAAGGCAGTGTACCAGCGGCTGTTTGAGTGGGTGGTGAACAGGATCAACAGTGTCATGGAACCCCGGGGCCGGGATCCTCGGCGTGATGGCAAGGACACAGTCATTGGCGTGCTGGACATCTATGGCTTCGAGGTGTTTCCCGTCAACAGTTTCGAGCAGTTCTGCATCAACTACTGCAACGAGAAGCTCCAGCAGCTATTCATCCAGCTCATCCTGAAGCAGGAACAGGAAGAGTACGAGCGCGAGGGCATCACCTGGCAGAGCGTTGAGTATTTCAACAACGCCACCATTGTGGATCTGGTGGAGCGGCCCCACCGTGGCATCCTGCCCGTGCTGGACGAGGCCTGCAGCTCTGCTGGCACCATCACTGACCGAATCTTCCTGCAGACCCTCGACATGCACCACCGCCATCACCTACACTACACCAGCCGCCAGCTCTGCCCCACAGACAAGACCATGGAGTTTGGCCGAGACTTCCGGATCAAGCACTATGCAGCGGACGTCACGTACTCCGTGCAAGGCTTCATCGACAGAAACAGAGATTTCCTCTTCCAGGACTTCAAGCGGCTGCTGTACAACAGCACGGACCCCACTCTACGGGCCATGTGGCCGGACGGGCAGCAGGACATCACAGAGGTCACCAAGCGCCCCCTGACGGCTGGCACACTCTTCAAGACTCCATGGTGGCCCTGGTGGAGAACCTTGCCTCCAAGGAGCCCTTCTACGTCCGCTGCATCAAAGCCCAATGAGGACAAGGTAGCTGGGAAGCTGGATGAGAACCACTGTCGCCACCAGGTCGCATACCTAAGGCTGCTGCAGAATGTGAGGGTCCGCAGGGCTGGCTTCGCTTCCCGCCAGCCCTACTCTCGATTCCTGCTCAGGTACAAGATGACCTGTGAATACACATGGCCCAACCACCTGCTGGGCTCCGACAAGGCAGCCGTGAGCGCTCTCCTGCAGCAGCACGGGCTGCAGGGGGACGTCCACCTTTGGCCACAGCAGCTGTTCATCCGCTCACCCCGGACACTGGTCACACTGGAGCAGAGCCGAGCCCGCCTCATCCCCATCATTGTGCTGCTATTGCAGAAGGCATGGCGGGGCACCTTGGCGAGGTGGCGCTGCCGGAGGCTGAGGGCTATCTACACCATCATGCGCTGGTTCCGGAGACACAAGGTGCGGGCTCACCTAACTGAGCTGCAGCGGCGATTCCAGGCTGCAAGGCAGCCGCCACTCTACGGGCGTGACCTTGTGTGCCCGCTGCCCCCTGCTGTGCTGCAGCCCTTCCAGGACACCTGCCACGCACTCTTCTGCAGGTGGCGGCCCCCGCAGCTGGTGAAAGACATCCCCCCTTCAGACATGCCCCAGATCAAGGCCAAGGTGGCCGCCATCGGGGCCCTCCAAGGGCTTCGTCAGGACTGGGGCTGCCGACGGGCCTGGGCCCGAGACTACCTGTCCTCTGCCACTGACATTCCCACAGCATCAAGCCTGTTTGCTCAGCGACTAAAGACACTTCAGGACAAAGATGGCTTCGGATCTGTGCTCTTTTCAAGCCATGTCCGCAAGGTGAACCGCTTCCACAAGATCCGGAACCGGGCCCTCCTGCTCACAGACCAGCACCTCTACAAGCTGGACCCTGACCGGCAGTACCGGGTCATGCGGGCCGTGCCCCTTGAGGCGGTGACGGGGCTGAGCGTGACCAGCCGACGAGACCAGCTGGTGGTGCTGCACGCCCGCGCCCAGGACGACCTCGTGGTGTGCCTGCACCGCTCCCGGCCGCCATTGGACAACCGCGTTAAGGAGCTGGTGGGCGTGCTGGCCGCACACTGCCGCAGGGAGGGCCGCACCCTGGAGGTTCGCGTCTCCGACTGCATCCCACTAAGCCATCGCGGGGTCCGGCGCCTCATCTCCGTGGAGCCCAGGCCGGAGCAGCCAGAGCCCGATTTCCGCTGCGCTCGCGGCTCCTTCACCCTGCTCTGGCCCAGCCGCTGAGCGCCCCCACCCGCCGCACCCCGAORF Start: ATG at 15ORF Stop: TGA at 3054SEQ ID NO: 1521013 aaMW at 116O44.5kDNOV36a,MEDEEGPEYGKPDFVLLDQVTMEDFMRNLQLRFEKGRIYTYIGEVLVSVNPYQELPLYGPEAIARYQCG59522-01Protein SequenceGRELYERPPHLYAVANAAYXA(HRSRDTCIVISGESGAGKTEASKHIMQYIAAVTNPSPQRAEVERVKDVLLKSTCVLEAFGNARTNRNHNSSRFGKYMDINFDFKGDPIGGHIHSYLLEKSRVLKQHVGERNFHAFYQLLRGSEDKQLHELHLERNPAVYNFTHQGAGLNMTVSDEQSHQAVTEAMRVIGFSPEEVESVHRILAAILHLGNIEFVETEEGGLQKEGLAVAEEALVDHVAELTATPRDLVLRSLLARTVASGGRELIEKGHTAAEASYARDACAKAVYQRLFEWVVNRINSVMEPRGRDPRRDGKDTVIGVLDIYGFEVFPVNSFEQFCINYCNEKLQQLFIQLILKQEQEEYEREGITWQSVEYFNNATIVDLVERPHRGILAVLDEACSSAGTITDRIFLQTLDMHHRHHLHYTSRQLCPTDKTMEFGRDFRIKHYAGDVTYSVEGFIDFGEDFLFQDFKRLLYNSTDPTLRAMWPDGQQDITEVTKRPLTAGTLFKNSMVALVENLASKEPFYVRCIKPNEDKVAGKLDENHCRHQVAYLGLLENVRVRRAGFASRQPYSRFLLRYKMTCEYTWPNHLLGSDKAAVSALLEQHGLQGDVAFGHSKLFIRSPRTLVTLEQSRARLIPIIVLLLQKAWRGTLARWRCRRLRAIYTIMRWFRRHKVRAHLAELQRRFQAARQPPLYGRDLVWPLPPAVLQPFQDTCHALFCRWRARQLVKNIPPSDMPQIKAKVAAMGALQGLRQDWGCRRAWARDYLSSATDNPTASSLFAQRLKTLQDKDGFGAVLFSSHIRKVNRFHKIRNRALLLTDQHLYXLDPDRQYRVAVPLEAVTGLSVTSCGDQLVVLIJARGQDDLKSJCLHRSRPPLDNRVGELVGVLAAHCRREGRTLEVRVSDCIPLSHRGVRRLISVEPRPEQPEPDFRCARGSFTLLWPSRSEQ ID NO: 1533071 bpNOV36b,TTCCAGCCGGCAGGATGGAGGACGAGGAAGGCCCTGAGTATGGCGAACCTGACTTTGTGCTTTTGGACG59522-02DNA SequenceCCAGTGACCATGGAGGACTTCATGAGGAACCTGCAGCTCAGGTTCGAGAAAGGGCCGCATCTACACCTACATCGGTGAGGTGCTGGTGTCCGTGAACCCCTACCAGGAGCTGCCCCTGTATGGGCCTGAACACATCGCCAGGTACCAGGGCCGTGAGCTCTATGAGCGGCCACCCCATCTCTATGCTGTGGCCAACGCCGCCTACAAGGCAATGAAGTACCGGTCCAGGGACACCTGCATCGTCATCTCAGGGGAGAGTAGAACAGGGAAGACAGAAGCCAGTAAGCACATCATGCAGTACATCGCTGCTGTCACCAATCCAAGCCAGAGGGCTGAGGTGGAGAGGTCAAGGACGTGCTGCTCAAGTCCACCTGTGTGCTGGAGGCCTTTGGCAAGTGCCCGCACCAACCGCAATCACAACTCCAGCCGCTTTGGCAAGTACATGGACATCAACTTTGACTTCAAGGGGGACCCGATCGGAGGACGCATCCACAGCTACCTACTGGAGAAGTCTCGGGTCCTCAAGCAGCACGTGGGTGAAAGAAACTTCCACGCCTTCTACCAATTGCTGAGAGGCAGTGAGGACAAGCAGCTGCATGAACTGCACTTGGAGAGAAACCCTGCTGTATACAATTTCACACACCAGGGAGCAGGACTCAACATGACTGTGCACAGTGCCTTGGACAGTGATGAGCAGAGCCACCAGGCAGTGACCGAGGCCATGAGGGTCATCAACTTCAGTCCTGAAGAGGTGGAGTCTGTGCATCGCATCCTGGCTGCCATATTGCACCTGGGAAACATCGAGTTTGTGGAGACGGAGGAGGGTGGGCTGCAGAAGGAGCGCCTGGCACTGGCCGAGCAGGCACTGGTGGACCATGTGGCTGAGCTGACGGCCACACCCCGGGACCTCGTGCTCCGCTCCCTGCTGGCTCGCACAGTTGCCTCCGGACGCAGGGAACTCATAGAGAAGGGCCACACTGCAGCTGAGGCCAGCTATGCCCGAAATGCCTGTGCCAAGGCAGTGTACCAGCGGCTGTTTGAGTGGGTGGTGAACAGGATCAACAGTGTCATGGAACCCCGGGGCCGGGATCCTCGGCGTGATGGCAACGACACAGTCATTGGCGTGCTGGACATCTATGGCTTCGAGGTGTTTCCCGTCAACAGTTTCGAGCAGTTCTGCATCAACTACTGCAATGAGAAGCTGCAGCAGCTATTCATCCAGCTCATCCTGAAGCAGGAACAGGAAGAGTACGAGCGCGAGCGCATCACCTGGCAGAGCGTTGAGTATTTCAACAACGCCACCATTGTGGATCTGGTGGAGCGGCCCCACCGTGGCATCCTGGCCGTGCTGGACGAGGCCTGCAGCTCTGCTGGCACCATCACTGACCGAATCTTCCTGCAGACCCTGGACACGCACCACCGCCATCACCTACACTACACCAGCCGCCAGCTCTGCCCCACAGACAAGACCATGGAGTTTGGCCGAGACTTCCGGATCAAGCACTATGCAGGGCACGTCACGTACTCCGTGGAAGGCTTCATCGACAAGAACAGAGATTTCCTCTTCCAGGACTTCAAGCGGCTGCTGTACAACAGCACGGACCCCACTCTACGCGCCATGTGGCCGGACGGGCAGCAGGACATCACAGAGGTGACCAAGCGCCCCCTGACGGCTGGCACACTCTTCAAGAACTCCATGGTGGCCCTGGTGGAGAACCTTGCCTCCAAGGAGCCCTTCTACGTCCGCTGCATCAAGCCCAATGAGGACAAGGTAGCTGGGAAGCTGGATGAGAACCACTGTCGCCACCAGGTCGCATACCTGGGGCTGCTGGAGAATOTGAGGGTCCGCAGGGCTGGCTTCGCTTCCCGCCAGCCCTACTCTCGATTCCTGCTCAGGTACAAGATGACCTGTGAATACACATGGCCCAACCACCTCCTGGGCTCCGACAAGGCAGCCGTGAGCGCTCTCCTGGAGCACCACGGGCTGCAGGOGGACGTGGCCTTTGGCCACAGCAAGCTGTTCATCCGCTCACCCCGGACACTGGTCACACTGGAGCAGAGCCCAGCCCGCCTCATCCCCATCATTGTGCTGCTATTGCAGAAGGCATGGCGGGGCACCTTGGCGAGGTGGCGCTGCCGGAGGCTGAGGGCTATCTACACCATCATGCGCTGGTTCCGGAGACACAAGGTGCGGGCTCACCTGGCTGAGCTGCAGCGGCGATTCCAGACTGCAAGGCAGCCGCCACTCTACGGGCGTGACCTTCTGTGGCCGCTGCCCCCTGCTGTGCTGCAGCCCTTCCAGGACACCTGCCACGCACTCTTCTGCAGGTGGCGGGCCCGGCAGCTGGTGAAAAACATCCCCCCTTCAGACATCCCCCAGATCAAGGCCAAGCTGGCCGCCATGGGGCCCCTCCAAGGGCTTCGTCAGGACTGGGGCTGCCGACGGGCCTGGGCCCGAGACTACCTGTCCTCTGCCACTGACAATCCCACAGCATCAAGCCTGTTTGCTCAGCGACTAAAGACACTTCGGGACAAAGATGGCTTCGGGGCTGTGCTCTTTTCAAGCCATGTCCGCAAGGTGAACCGCTTCCACAAGATCCGGAACCGGGCCCTCCTGCTCACAGACCAGCACCTCTACAAGCTGGACCCTGACCGGCAGTACCGGGTGATGCGGGCCGTGCCCCTTGAGGCGGTGACGGGGCTGAGCGTGACCAGCGGAGGAGACCAGCTGGTGGTGCTGCACGCCCGCGGCCAGGACGACCTCGTGGTGTGCCTGCACCGCTCCCGGCCGCCATTGGACAACCGCGTTGGGGACCTGGTGGGCGTGCTGGCCGCACACTGCCAGGGGGAGGGCCGCACCCTGGAGGTTCGCGTCTCCGACTGCATCCCACTAAGCCATCGCGGGGTCCGGCGCCTCATCTCCGTGGACCCCAGGCCGGAGCAGCCAGAGCCCGATTTCCGCTGCGCTCGCGGCTCCTTCACCCTGCTCTGGCCCAGCCGCTGAORE Start: ATG at 15ORF Stop: TGA at 3069SEQ ID NO: 1541018 aaMW at 116483.8kDNOV36b,MEDEEGPEYGKPDFVLLDQVTMEDFMRNLQLRFEKGRIYTYIGEVLVSVNPYQELPLYGPEAIARYQCG59522-02Protein SequenceGRELYERPPHLYAVANAAYKAMKYRSRDTCIVISGESGAGKTEASKHIMQYIAAVTNPSQRAEVERVKDVLLKSTCVLEAFGNARTNRNHNSSRFGKYNDINFDFKGDPTGGRIHSYLLEKSRVLKQHVGERNFHAFYQLLRGSEDKQLHELHLERNPAVYNFTHQGAGLNMTVHSALDSDEQSHQAVTEAMRVIGFSPEEVESVHRILAAILHLGNIEFVETEEGGLQKEGLAVAEEALVDHVAELTATPRDLVLRSLLARTVASGGRELIEKGHTAAEASYARDACAKAVYQRLFEWVVNRINSVMEPRGRDPRRDGKDTVIGVLDIYGFEVFPVNSFEQFCINYCNEKLQQLFIQLILKQEQEEYEREGITWQSVEYFNNATIVDLVERPHRGILAVLDEACSSAGTITDRIFLQTLDTHHRHHLHYTSRQLCPTDKTMEFGRDFRIKHYAGDVTYSVEGFIDKNRDFLFQDFKRLLYNSTDPTLRAHWPDGQQDITEVTKRPLTAGTLFKNSMVALVENLASKEPFYVRCIKPNEDKVAGKLDENHCRHQVAYLGLLENVRVRRAGFASRQFYSRFLLRYKMTCEYTWPNHLLGSDKAAVSALLEQHOLQGDVAFGHSKLFIRSPRTLVTLEQSRARLIPITVLLLQKAWRGTLARWRCRRLRAIYTIMRWTRRHKVRAHLAELQRRFQAARQPPLYGRDLVWPLPPAVLQPFQDTCHALFCRWRARQLVKNIPPSDMPQIKAKVAAMGALQGLRQDWGCRRAWARDYLSSATDNPTASSLFAQRLKTLRDKDGRGAVLFSSHVRKVNRFHKIRNRALLLTDQHLYKLDPDRQYRVMRAVPLEAVTGLSVTSGGDQLVVLHARGQDDLVVCLHRSRPPLDNRVGELVGVLAAHCQGEGRTLEVRVSDCIPLSHRGVRRLISVEPRPEQPEPDFRCARGSFTLLWPSR


[0544] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 36B.
193TABLE 36BComparison of NOV36a against NOV36b.Identities/Similarities forProteinNOV36a Residues/the MatchedSequenceMatch ResiduesRegionNOV36b1 . . . 1013979/1018 (96%)1 . . . 1018982/1018 (96%)


[0545] Further analysis of the NOV36a protein yielded the following properties shown in Table 36C.
194TABLE 36CProtein Sequence Properties NOV36aPSort0.8800 probability located in nucleus; 0.3902analysis:probability located in microbody (peroxisome);0.2210 probability located in lysosome (lumen);0.1000 probability located in mitochondrialmatrix spaceSignalP analysis:No Known Signal Sequence Predicted


[0546] A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 36D.
195TABLE 36DGeneseq Results for NOV36aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV36a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAU23125Novel human enzyme1 . . . 10131009/1018 (99%) 0.0polypeptide #211 - Homo9 . . . 10261011/1018 (99%) sapiens, 1026 aa.[WO200155301-A2,02 AUG. 2001]AAU23128Novel human enzyme1 . . . 853 851/858 (99%)0.0polypeptide #214 - Homo9 . . . 866 851/858 (99%)sapiens, 909 aa.[WO200155301-A2,02 AUG. 2001]ABB71113Drosophila melanogaster8 . . . 1012503/1017 (49%) 0.0polypeptide SEQ ID NO6 . . . 1007686/1017 (66%) 40131 -Drosophilamelanogaster, 1011 aa.[WO200171042-A2,27 SEP. 2001]AAM80123Human protein SEQ ID NO243 . . . 1011 438/769 (56%)0.03769 - Homo sapiens, 7641 . . . 762 570/769 (73%)aa. [WO200157190-A2,09 AUG. 2001]AAM79139Human protein SEQ ID NO254 . . . 1011 434/758 (57%)0.01801 - Homo sapiens, 7531 . . . 751 564/758 (74%)aa. [WO200157190-A2,09 AUG. 2001]


[0547] In a BLAST search of public sequence datbases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36E.
196TABLE 36EPublic BLASTP Results for NOV36aIdentities/ProteinSimilarities forAccessionNOV36a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ63357Myosin I - Rattus norvegicus1 . . . 1011606/1011 (59%)0.0(Rat), 1006 aa.1 . . . 1004780/1011 (76%)A53933myosin I myr 4 - rat, 1006 aa.1 . . . 1011604/1011 (59%)0.01 . . . 1004778/1011 (76%)Q96RI6Unconventional myosin 1G33 . . . 646  612/619 (98%)0.0valine form - Homo sapiens1 . . . 619  612/619 (98%)(Human), 633 aa (fragment).Q96RI5Unconventional myosin 1G33 . . . 646  611/619 (98%)0.0methonine form - Homo1 . . . 619  612/619 (98%)sapiens (Human), 633 aa(fragment).Q23978Myosin IA (MIA) (Brush8 . . . 1012503/1017 (49%)0.0border myosin IA) (BBMIA) -6 . . . 1007686/1017 (66%)Drosophila melanogaster(Fruit fly), 1011 aa.


[0548] PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36F.
197TABLE 36FDomain Analysis of NOV36aNOV36aIdentities/PfamMatchSimilarities forExpectDomainRegionthe Matched RegionValuemyosin_head11 . . . 689305/747 (41%)8.1e−288531/747 (71%)



Example 37

[0549] The NOV37 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 37A.
198TABLE 37ANOV37 Sequence AnalysisSEQ ID NO: 1553807 bpNOV37a,ATGGCGGCGGCGGCGGCGAGCGGAGCTGGCGGGGCTGCCCGGCCCGGGACTGGGGGAGCCGGGCCCGCG89709-01DNA SequenceCGGGCCGCCTGCTGCCTCCGCCCGCGCCGGGGTCCCCAGCCGCCCCCGCTGCCGTGTCCCCTGCGGCCGGCCAGCCGCGTCCCCCAGCCCCGGCCTCCCGCGGACCCATGCCCGCCCGTATCGGCTACTACGAGATCGACCGCACCATCGGCAAGGGCAACTTCGCGGTGGTCAAGCGGGCCACGCCCTCGTACACCAAGGCCAAGGTTGCTATCAAGATCATAGATAAGACCCAGCTGGATGAAGAAAACTTGAAGAAGATTTTCCGGGAAGTTCAAATTATGAAGATGCTTTGCCACCCCCATATCATCAGGCTCTACCACGTTATGGAGACAGAACGGATGATTTATCTGGTGACAGAATATGCTAGTGGAGGGGAAATATTTGACCACCTGGTGGCCCATGGTAGAATGGCAGAAAAGGAGGCACGTCGGAAGTTCAAACAGATCGTCACAGCTGTCTATTTTTGTCACTGTCGGAACATTGTTCATCGTGATTTAAAAGCTGAAAATTTACTTCTGGATGCCAATCTGAATATCAAAATAGCAGATTTTGGTTTCAGTAACCTCTTCACTCCTGGCCAGCTCCTGAAGACCTGGTGTGGCAGCCCTCCCTATGCTGCACCTGAACTCTTTGAAGGAAAAGAATATGATGGGCCCAAAGTGGACATCTGGAGCCTTGGAGTTGTCCTCTACGTGCTTGTGTGCGGTGCCCTGCCATTTGATGGAAGCACACTGCAGAATCTGCGGGCCCGCGTGCTCAGTGGAAAGTTCCGCATCCCATTTTTTATGTCCACAGAATGTGAGCATTTGATCCGCCATATGTTGGTGTTAGATCCCAATAAGCGCCTCTCCATGGAGCAGATCTGCAAGCACAAGTGGATGAAGCTAGGGGACGCCGATCCCAACTTTGACAGGTTAATAGCTGAATGcCAAcAACTAAAGGAAGAAAGACAGGTCGACCCCCTGAATGAGGATGTCCTCTrGGCCATGGAGGACATGGGACTGCACAAAGAACAGACACTGCAGGCGGAGCAGGCAGGTACTGCTATGAACATCAGCGTTCCCCAGGTGCACCTGATCAACCCAGAGAACCAAATTGTGGACCCCGATGGGACACTGAATTTGGACAGTGATGAGGGTGAAGAGCCTTCCCCTGAAGCATTGGTGCGCTATTTGTCAATGAGGAGGCACACAGTGGGTGTGGCTGACCCACGCACGGAAGTTATGGAAGATCTGCAGAAGCTCCTACCTGGCTTTCCTGGAGTCAACCCCCAGGCTCCATTCCTGCAGGTGGCCCCTAATGTGAACTTCATGCACAACCTGTTGCCTATGCAAAACTTGCAACCAACCGGGCAACTTGAGTACAAGGAGCAGTCTCTCCTACAGCCGCCCACGCTACAGcTGTTGAATGGAATGGGCCCCCTTGGCCGGAGGCATCAGATGGAGGACCCAACATCCAACTGCATGCCCAGCAGCTGCTGAAGCGCCCACGGGGACCCPCTCCGCTTGTCACCATGACACCAOCAGTGCCAGCAGTTACCCCTGTGGACGAGGAGAGCTCAGACGGGGAGCCAGACCAGGAAGCTGTGCAGAGCTCACCTACAAGGACTCCAACACTCTGCACCTCCCTACGGAGCGTTTCTCCCCTGTGCGCcGGTTcTcAGATGGGGCTGCGAGCATCCAGGCCTTCAAAGCTCACCTCGAAAAAATGGGCAACAACAGCAGCATCAAACAGCTGCAGCAGGAGTGTGAGCAGCTGCAGAAGATGTACGGGGGGCAGATTGATGAAAGAACCCTGGAGAAGACCCAGCAGCAGCATATGTTATACCAGCAGGAGCAGCACCATCAAATTCTCCAGCAACAAATTCAAGACTCTATCTGTCCTCCTCAGCCATCTCCACCTCTTCAGGCTGCATGTGAAAATCAGCCAGCCCTCCTTACCCATCAGCTCCAGACGTTAGGATTCAGCCTTCAAGCCCACCCCCCAACCACCCCAACAACCCATCTCTTCAGGCAGCCCAGTAATAGTCCTCCCCCCATGAGCAGTGCCATGATCCAGCCTCACGGGGCTGCATCTTCTTCCCAGTTTCAAGGCTTACCTTCCCGCAGTGCAATCTTTCAGCAGCAACCTCAGAACTGTTCCTCTCCTCCCAACGTGGCACTAACCTGCTTGGGTATGCAGCAGCCTGCTCAGTCACAGCAGGTCACCATCCAAGTCCAAGAGCCTGTTGACATGCTCAGCAACATGCCAGGCACAGCTGCAGGCTCCAGTGGGCGCGGCATCTCCATCAGCCCCAGTGCTGGTCAGATGCAGATGCAGCACCGTACCAACCTGATGGCCACCCTCAGCTATGGGCACCGTCCCTTGTCCAAGCAGCTGAGTGCTGACAGTGCAGAGGCTCACAGTGCACATCAGCAGCCGCCACACTATACCACGTCGGCACTACAGCAGGCCCTGCTGTCTCCCACGCCGCCAGACTATACAAGACACCAGCAGGTACCCCACATCCTTCAAGGACTGCTTTCTCCCCGGCATTCGCTCACCGGCCACTCGGACATCCGGCTGCCCCCAACAGAGTTTGCACAGCTCATTAAAAGGCAGCAGCAACAACGGCAGCAGCAGCAGCAACAGCAGCAACAGCAAGAATACCAGGAACTGTTCAGGCACATGAACCAAGGGGATGCGGGGAGTCTGGCTCCCAGCCTTGGGGGACAGAGCATGACAGAGCGCCAGGCTTTATCTTATCAAAATGCTGACTCTTATCACCACACGATCCACAACAGCCACGATGCTTATGTACAGCTGGATAACTTGCCAGGAATGAGTCTCGTGGCTGGGAAAGCACTTAGCTCTGCCCGGATGTCGGATGCAGTTCTCAGTCAGTCTTCGCTCATGGGCAGCCAGCAGTTTCAGGATGGGGAAAATGAGGAATGTGGGGCAAGCCTGGGAGGTCATGAGCACCCAGACCTGAGTGATGGCAGCCAGCATTTAAACTCCTCTTGCTATCCATCTACGTGTATTACAGACATTCTGCTCAGCTACAAGCACCCCGAAGTCTCCTTCAGCATGGAGCAGGCAGGCGTGTAACAAGAAACAGAGAGAGAGCAAGAGGTCCCGAGTCCCCTCCTAGTCTTTCATCCTCAATTTGCACAGAGGAAAGCGGGTGCCCGGCATGGCCATCCTGATGTTGCTGGCGGGATCCCCATGCACCTTGTCCTTCTCCACTGATACTCGCAGCTCGGCTCCTGGACCCAAGATCCCTTGAGTGGAATTCTGCAGTGCAAGAGCCCTTCGTGGGAGCTGTCCCATGTTTCCATGGTCCCCAGTCTCCCCTCCACTTGGTCGGGTCACCAACTACTCACCAGAAGGGGGCTTACCAAGAAAGCCCTAAAAAGCTGTTGACTTATCTGCGCTTGTTCCAACTCTTATGCCCCCAACCTGCCCTACCACCACCACGCGCTCAGCCTGATGTGTTTACATGGTACTGTATGTATGGGAGAGCAGACTGCACCCTCCAGCAACAACAGATGAAAGCCAGTGAGCCTACTAACCGTGCCATCTTGCACAACTACACTTTAAAAAAACTCATTGCTTTGTATTGTAGTAACCAATATGTCCAGTATACGTTGAATGTATATGAACATACTTTCCTATTTCTGTTCTPTGAAAATGTCAGAAATATTTTTTTCTTTCTCATTTTATGTTGAACTAAAAAGGATTAAAAAAAAATCTCCORF Start: ATG at 1ORF Stop: TAA at 3157SEQ ID NO: 1561052 aaMW at 115587.7kDNOV37a,MAAAAASGAGGAAGAGTGGAGPAGRLLPPPAPGSPAAPAAVSPAAGQPRPPAPASRGPMPARIGYYECG89709-01Protein SequenceIDRTIGKGNFAVVKRATHLVTKAXVAIKIIDKTQLDEENLKRIFREVQIMKMLCHPHIIRLYQVMETERMIYLVTEYASGGEIFDHLVAHGRMAEKEARRKFKQIVTAVYFCHCRNIVHRDLKAENLLLDANLNIKIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVDIWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMSTECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFDRLIAECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQAEQAGTAMNISVPQVQLINPENQIVEPDGTLNLDSDEGEEPSPEALVRYLSMRRHTVGVADPRTEVMEDLQKLLPGFPGVNPQAPFLQVAPNVNFMHNLLPMQNLQPTGQLEYKEQSLLQPPTLQLLNGMGPLGRRASDGGANIQLHAQQLLKRPRGPSPLVTMTPAVPAVTPVDEESSDGEPDQEAVQSSTYKDSNTLHLPTERFSPVRRFSDGAASIQAFKAHLEKMGNNSSIKQLQQECEQLQKMYGGQIDERTLEKTQQQHMLYQQEQHHQILQQQIQDSICPPQPSPPLQAACENQPALLTHQLQRLRIQPSSPPPNHPNNHLFRQPSNSPPPMSSAMIQPHGAASSSQFQGLPSRSAIFQQQPENCSSPPNVALTCLGMQQPAQSQQVTIQVQEPVDMLSNMPGTAAGSSGRGISISPSACQMQMQHRTNLMATLSYGHRPLSKQLSADSAEAHSAHQQPPNYTTSALQQALLSPTPPDYTRHQQVPHILQGLLSPRHSLTGIISDIRLPPTEFAQLIKRQQQQRQQQQQQQQQQEYQELFRHMNQGDAGSLAPSLGGQSMTERQALSYQNADSYHHTIQNSDDAYVQLDNLPGMSLVAGKALSSARMSDAVLSQSSLMGSQQFQDGENEEcGAsLGGHEHFDLSDGSQHLNSSCYPSTC ITDILLSYKHPEVSFSMEQAGVSEQ ID NO: 1573987 bpNOV37b,ATGGCGGCGGCGGCGGCGAGCGGAGCTGGCGGGGCTGCCGGGGCCGGGACTGGGGGAGCCGGGCCCGCG89709-02DNA SequenceCGGGCCGCCTGCTGCCTCCGCCCGCGCCGGGGTCCCCAGCCGCCCCCGCTGCCGTGTCCCCTGCGGCCGGCCAGCCGCGTCCCCCACCCCCGGCCTCCCGCGGACCCATGCCCGCCCGTATCGGCTACTACGAGATCGACCGCACCATCGGCAAGGGCAACTTCGCGGTGGTCAAGCGGGCCACGCACCTCGTCACCAAGGCCAAGGTTGCTATCAAGATCATAGATAAGACCCAGCTGGATGAAGAAAACTTGAAGAAGATTTTCCGGGAAGTTCAAATTATGAAGATGCTTTGCCACCCCCATATCATCAGGCTCTACCAGGTTATGGAGACAGAACGGATGATTTATCTGGTGACAGAATATGCTAGTGGAGGGGAAATATTTGACCACCTGGTGGCCCATGGTACAATGGCACAAAAGGAGGCACGTCGGAAGTTCAAACAGATCGTCACAGCTGTCTATTTTTGTCACTGTCCGAACATTGTTCATCGTGATTTAAAAGCTGAAAATTTACTTCTGGATGCCAATCTGAATATCAAAATAGCAGATTTTGGTTTCAGTAACCTCTTCACTCCTCGGCAGCTGCTGAAGACCTGGTGTGGCAGCCCTCCCTATGCTGCACCTGAACTCTTTGAAGGAAAAGAATATGATGGGCCCAAAGTGGACATCTGGAGCCTTGGAGTTGTCCTCTACGTGCTTGTGTGCGGTGCCCTGCCATTTGATGGAAGCACAcTGCAGAATCTGCGGGCCCGCGTGCTGAGTGGAAAGTTCCGCATCCCATTTTTTATGTCCACAGAATGTGAGCATTTGATCCGCCATATGTTGGTGTTAGATCCCAATAAGCGCCTCTCCATGGAGCAGATcTGc~GCACAAGTCGATGAACCTAGCGGACGCCGATCCCAACTTTGACAGGTTAATAGCTGAATGCCAACAACTAAAGGAAGAAAGACAGGTGGACCCCCTGAATGAGGATGTCCTCTTGOCCATGGAGGACATGGGACTCGACAAAGAACAGACACTGCAGGCGGAGCACGCAGGTACTGCTATGAACATCAGCGTTCCCCAGGTGCAGCTGATCAACCCAGAGAACCAAATTGTGGAGCCGGATCGGACACTGAATTTGGACAGTGATGACCGTGAAGAGCCTTCCCCTGAAGCATTCCTGCGCTATTTGTCAATGAGGAGGCACACAGTGGGTGTGGCTGACCCACGCACGGAAGTTATGGAAGATCTGCAGAAGCTCCTACCTGGCTTTCCTGGAGTCAACCcCCAGGCTCCATTCCTGCAGGTGGCCCCTAATGTGAACTTCATGCACAACCTGTTGCCTATGCAAAACTTGCAACCAACCGGGCAACTTGAGTACAAGGACCAGTCTCTCCTACAGCCGCCCACGCTACAGCTGTTGAATGGAATGGGCCCCCTTGGCCGGAGGGCATCAGATGGAGGAGCCAACATCCAACTGCATGCCCAGCAGCTGCTGAAGCGCCCACGCGGACCCTCTCCGCTTGTCACCATGACACCA~CAGTGCCAGCAGTTACCCCTGTGGACGAGGAGAGCTCAGACCGGGAGCCAGACCAGGAAGCTGTGCAGAGCTCTACCTAcAAGGACTCCAACACTCTGCACCTCCCTACGGAGCGTTTCTCCCCTGTGCGCCGGTTCTCAGATGGGGCTGCGAGCATCCAGGCCTTCAAAGCTCACCTGCAAAAAATGGGCAACAACAGCAGCATCAAACAGCTGCAGCAGGAGTGTGAGCAGCTGCAGAAGATGTACGGGGGGCAGATTGATGAAAGAACCCTGGAGAAGACCCAGCAGCAGCATATGTTATACCAGCAGGAGCAGCACCATCAAATTCTCCAGCAACAAATTC~GACTCTATCTGTCCTCCTCAGCCATCTCCACCTCTTCAGGCTGCATGTGAAAATCAGCCAGCCCTCCTTACCCATCAGCTCCAGAGGTTAAGGATTCAGCCTTCAAGCCCACCCCCCAACCACCCCAACAACCATCTCTTCAGGCAGCCCAGTAATAGTCCTCCCCCCATGAGCAGTGCCATGATCCAGCCTCACOGGGCTGCATCTTCTTCCCAGTTTCAAGGCTTACCTTCCCGCAGTGCAATCTTTCAGCAGCAACCTGAGAACTGTTCCTCTCCTCCCAACGTGGCACTAACCTGCTTGGGTATGCAGCAGCCTGCTCAGTCACAGCAGGTCACCATCCAAGTCCAAGAGCCTGTTGACATGCTCAGCAACATGCCAGGCACAGCTGCAGGCTCCAGTGGGCGCGGCATCTCCATCAGCCCCAGTGCTGGTCAGATGCAGATGCAGCACCGTACCAACCTGATGGCCACCCTCAGCTATGGGCACCGTCCCTTGTCCAAGCAGCTGAGTGCTGACAGTGCAGACGCTCACAGCTTGAACGTGAATCGGTTCTCCCCTGCTAACTACGACCAGGCGCATTTACACCCCCATCTGTTTTCGGACCAGTCCCGGGGTTCCCCCAGCAGCTACAGCCCTTCAACAGGAGTGGGGTTCTCTCCAACCCAAGCCCTGAAAGTCCCTCCACTTGACCAATTCCCCACCTTCCCTCCCACTGCACATCAGCAGCCGCCACACTATACCACGTCGGCACTACAGCAGGCCCTGCTGTCTCCCACGCCGCCAGACTATACAAGACACcAGCAGGTACCCCACATCCTTCAAGGACTGCTTTCTCCCCGGCATTCGCTCACCGGCCACTCGGACATCCGGCTGCCCCCAACAGAGTTTGCACAGCTCATTAAAAGGCAGCAGCAACAACGGCAGCAGCAGCAGCAACAGCAGCAACAGCAAGAATACCAGGAACTGTTCAGGCACATGAACCAAGGGGATGCGGGGAGTCTGGCTCCCAGCCTTGGGGGACAGAGCATGACAGAGCGCCAGGCTTTATCTTATCAAAGTGCTGACTCTTATCACCACACGATCCAGAACAGCGACGATGCTTATGTACAGCTGGATAACTTCCCAGGAATGAGTCTCGTGGCTGGGAAAGCACTTAGCTCTCCCCGGATGTCGGATGCAGTTCTCAGTCAGTCTTCGCTCATGGGCAGCCAGCAGTTTCAGGATGGGGAAAATGAGGAATGTGGGGCAAGCCTGGGAGGTCATGAGCACCCAGACCTGAGTGATCGCAGCCAGCATTTAAACTCCTCTTGCTATCCATCTACGTGTATTACAGACATTCTGCTCAGCTACAAGCACCCCGAAGTCTCCTTCAGCATGGAGCAGGCAGGCGTGTAACAAGAAACAGAGAGAGAGCAAGAGGTCCCGAGTCCCCTCCTAGTCTTTCATCCTGAATTTGCACAGAGGAAAGCGGGTGCCCGGCATGGCCATCCTGATGTTGCTGGCGGGATCCCCATGCACCTTGTCCTTCTCCACTGATACTGGCAGCTCGGCTCCTGGACCCAAGATCCCTTGAGTGCAATTCTGCAGTGCAAGAGCCCTTCGTGAGAGCTGTCCCATGTTTCCATGGTCCCCAGTCTCCCCTCCACTTGGTGGGGTCACCAACTACTCACCAGAAGGGGGCTTACCAAGAAAGCCCTAAAAAGCTGTTGACTTATCTGCGCTTGTTCCAACTCTTATGCCCCCAACTGCCCTTACCACCACCACGCGCTCAGCCTGATGTGTTTACATGGTACTGTATGTATGGGAGAGCAGACTGCACCCTCCAGCAACAACAGATGAAAGCCAGTGAGCCTACTAACCGTGCCATCTTGCAAACTACACTTTAAAAAAAACTCATTGCTTTGTATTGTAGTAACCAATATGTGCAGTATACGTTGAATGTATATGAACATACTTTCCTATTTCTGTTCTTTGAAAATGTCAGAAATATTTTTTTCTTTCTCATTTTATGTTGAACTAAAAAGGATTAAAAAAAAAATCTCCORF Start: ATG at 1ORF Stop: TAA at 3337SEQ ID NO: 1581112 aaMW at 122094.8kDNOV37b,MAAAAASGAGGAAGAGTGGAGPAGRLLPPPAPGSPAAPAAVSPAAGQPRPPAPASRGPMPARIGYYECG89709-02Protein SequenceIDRTIGKGNFAVVKRATHLVTKAKVAIKIIDKTQLDEENLKKIFREVQIMKMLCHPHIIRLYQVMETERMIYLVTEYASGGEIFDHLVAHGRMAEKEARRKFKQIVTAVYFCHCRNIVHRDLKAENLLLDANLNIKIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVDIWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIFFFMSTECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFDRLIAECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQAEQAGTAMNISVPQVQLINPENQIVEPDGTLNLSKDEGEEPSPEALVRYLSMRRHTVGVADPRTEVMEDLQKLLPGFPGVNPQAPFLQVAPNVNFMHNLLPMQUDLSDGSQHLNSSCYPSTCITDILLSYKHPEVSFSMEQAGVSEQ ID NO: 1594889 bpNOV37c,TTGAACTGGGACAGAGGTCACAGCAGAGGTCACATTGGCGATTCGAGCGGCGGTCGGGGGTTGGCTTCG89709-03DNA SequenceTCGGTCGGGCATCCTGCGCCCCCCACTCGGGAAACGTGGCGGAGACTTCCAGGTTGGGGGCCCATCGAACGTTCCCACCGCCAGCTCCCGGAGGGGGGCACCCGGGAGCCAGCGCCTCAGGAACCGGGGCCCACGCGGGAAGGTCGAGCCCGCCGGTGAGGTCACGGTTGCCATGGCTCCGGGCAGTGACGCGCGTCGGCACGTGACCCGCGGTTGCCATGGAGCCGGGCGCCGGTCGGCGAAAGCGCCCCGCCTCCCCGAGTGACGTCCGCGGCCCCCCCTTTCCCGCCCCCCCTTGCCCCCTCCCCCGAGCCGGCTCCCCGCGGCCCCGGAGCTTTCACTGCACAACAAGATGGCGGCGGCGGCGGCGAGCGGAGCTGGCQGGGCTGCCGGGGCCGGGACTGGGGGAGCCGGGCCCGCGGGCCCCCTGCTGCCTCCGCCCGCGCCGGGGTCCCCAGCCGCCCCCGCTGCCGTGTCCCCTGCGGCCGGCCAGCCGCGTCCCCCAGCCCCGGCCTCCCGCCGACCCATGCCCGCCCGTATCGGCTACTACGAGATCGACCGCACCATCGGCAAGGGCAACTTCGCGGTGGTCAAGCGGGCCACGCACCTCGTCACCAAGGCCAAGGTTGCTATCAAGATCATAGATAAGACCCAGCTCGATGAAGAAAACTTGAAGAAGATTTTCCGGGAAGTTCAAATTATGAAGATGCTTTGCCACCCCCATATCATCACGCTCTACCAGGTTATGGAGACAGAACGGATGATTTATCTCGTGACAGAATATGCTAGTGGAGGGGAAATATTTGACCACCTGGTGGCCCATGGTAGAATGGCAGAAAAGGAGGCACGTCGGAAGTTCAAACAGATCGTCACAGCTGTCTATTTTTGTCACTGTCGGAACATTGTTCATCGTGATTTAAAAGCTGAAAATTTACTTCTGGATGCCAATCTGAATATCAAAATAGCAGATTTTGGTTTCAGTAACCTCTTCACTCCTGGGCAGCTGCTGAAGACCTGGTGTGGCAGCCCTCCCTATGCTGCACCTGAACTCTTTGAAGGAAAAGAATATGATGGGCCCAAAGTGGACATCTGGAGCCTTGGAGTTGTCCTCTACGTGCTTGTCTGCGGTGCCCTGCCATTTGATGGAAGCACACTGCAGAATCTGCGGGCCCGCGTGCTGAGTGGAAAGTTCCGCATCCCATTTTTTATGTCCACAGAATGTGAGCATTTGATCCGCCATATGTTGGTGTTAGATCCCAATAAGCGCCTCTCCATGGAGCAGATCTGCAAGCACAAGTGGATTAAGCTAGGGGACGCCCATCCCAACTTTGACAGGTTAATAGCTGAATGCCAACAACTAAACGAAGAAAGACACGTCGACCCCCTGAATGAGGATGTCCTCTTGGCCATGGAGGACATGGGACTGGACAAAGAACAGACACTCCAGGCGGAGCAGGCAGGTACTGCTATGAACATCAGCGTTCCCCAGGTGCAGCTGATCAACCCAGAGAACCAAATTGTGGAGCCCGATGGGACACTGAATTTGGACAGTGATGAGGGTGAAGAGCCTTCCCCTGAAGCATTGGTGCGCTATTTGTCAATGAGGAGGCACACAGTGGGTGTGGCTGACCCACCCACGGAAGTTATGGAAGATCTGCAGAAGCTCCTACCTGGCTTTCCTGGAGTCAACCCCCAGGCTCCATTCCTGCAGGTGGCCCCTAATGTGAACTTCATGCACAACCTGTTGCCTATGCAAAACTTGCAACCAACCGGGCAACTTGAGTACAAGGAGCAGTCTCTCCTACAGCCGCCCACGCTACAGCTGTTGAATGGAATGGGCCCCCTTGGCCGGAGCGCATCAGATGGAGGAGCCAACATCCAACTGCATGCCCAGCAGCTGCTGAAGCGCCCACGGGGACCCTCTCCGCTTGTCACCATGACACCAGCAGTGCCAGCAGTTACCCCTGTGGACGAGGAGAGCTCAGACGGGGAGCCAGACCAGGAAGCTGTGCAGAGCTCTACCTACAAGGACTCCAACACTCTGCACCTCCCTACGGAGCGTTTCTCCCCTGTGCGCCGGTTCTCAGATGGGGCTGCGAGCATCCAGGCCTTCAAAGCTCACCTGGAAAAAATGGGCAACAACAGCAGCATCAAACAGCTGCAGCAGGAGTGTGAGCAGCTGCAGAAGATGTACGGGGGGCAGATTGATGAAAGAACCCTGGAGAAGACCCAGCAGCAGCATATGTTATACCAGCAGGAGCAGCACCATCAAATTCTCCAGCAACAAATTCAAGACTCTATCTGTCCTCCTCAGCCATCTCCACCTCTTCAGGCTGCATGTGAAAATCAGCCAGCCCTCCTTACCCATCAGCTCCAGAGGTTAAGGATTCAGCCTTCAAGCCCACCCCCCATCCACCCCAACAACCATCTCTTCAGGCAGCCCAGTAATAGTCCTCCCCCCATGAGCAGTGCCATGATCCAGCCTCACGGGGCTGCATCTTCTTCCCAGTTTCAAGGCTTACCTTCCCGCAGTGCAATCTTTCAGCAGCAACCTGAGAACTGTTCCTCTCCTCCCAACGTGGCACTAACCTGCTTGGGTATGCAGCAGCCTGCTCAGTCACAGCAGGTCACCATCCAAGTCCAAGACCCTGTTGACATGCTCAGCAACATGCCAGGCACAGCTGCACGCTCCAGTGGGCGCGGCATCTCCATCAGCCCCAGTGCTGGTCAGATGCAGATGCAGCACCGTACCAACCTGATGGCCACCCTCAGCTATGGGCACCGTCCCTTGTCCAAGCAGCTGAGTGCTGACAGTGCAGAGGCTCACAGCTTGAACGTGAATCGGTTCTCCCCTGCTAACTACGACCAGGCGCATTTACACCCCCATCTGTTTTCGGACCAGTCCCGCGGTTCCCCCAGCAGCTACAGCCCTTCAACAGGAGTGGGGTTCTCTCCAACCCAAGCCCTGAAAGTCCCTCCACTTGACCAATTCCCCACCTTCCCTCCCAGTGCACATCAGCAGCCGCCACACTATACCACGTCGGCACTACAGCAGGCCCTGCTGTCTCCCACGCCGCCAGACTATACAAGACACCAGCAGGTACCCCACATCCTTCAAGGACTGCTTTCTCCCCGGCATTCGCTCACCGGCCACTCGGACATCCGGCTGCCCCCAACAGAGTTTGCACAGCTCATTAAAAGGCAGCAGCAACAACGGCAGCAGCAGCAGCAACAGCAGCAACAGCAAGAATACCAGGAACTCTTCAGGCACATGAACCAAGGGGATGCGGGGAGTCTGGCTCCCAGCCTTGGGGGACAGAGCATGACAGAGCGCCAGGCTTTATCTTATCAAAATGCTGACTCTTATCACCATCACACCAGCCCCCAGCATCTGCTACAAATCAGGGCACAAGAATGTGTCTCACAGGCTTCCTCACCCACCCCGCCCCACGGGTATGCTCACCAGCCGGCACTGATGCATTCAGAGAGCATGGAGGAGGACTGCTCGTGTGAGGGGGCCAAGGATGGCTTCCAAGACAGTAAGAGTTCAAGTACATTGACCAAAGGTTGCCATGACAGCCCTCTGCTCTTGAGTACCGGTGGACCTGGGGACCCTGAATCTTTGCTAGGAACTGTGAGTCATGCCCAAGAATTGGGGATACATCCCTATGGTCATCAGCCAACTGCTGCATTCAGTAAAAATAAGGTGCCCAGCAGAGAGCCTGTCATACGGAACTGCATGGATAGAAGTTCTCCAGGACAAGCAGTGGAGCTGCCGGATCACAATGGGCTCGGGTACCCAGCACGCCCCTCCGTCCATCAGCACCACAGGCCCCGGGCCCTCCAGAGACACCACACGATCCAGAACAGCGACGATGCTTATGTACAGCTGGATAACTTGCCAGGAATGAGTCTCGTGGCTGGGAAAGCACTTACCTCTGCCCGGATGTCGGATGCAGTTCTCAGTCAGTCTTCGCTCATGGGCAGCCAGCAGTTTCAGGATGGGGAAAATGAGGAATGTGGGGCAAGCCTGGGAGGTCATGAGCACCCAGACCTGAGTGATGGCAGCCAGCATTTAAACTCCTCTTGCTATCCATCTACGTGTATTACAGACATTCTGCTCAGCTACAAGCACCCCGAAGTCTCCTTCAGCATGGAGCAGCCAGGCGTGTAACAAGAAACAGAGAGAGAGCAAGAGGTCCCGAGTCCCCTCCTAGTCTTTCATCCTGAATTTGCACAGAGGAAAGCGGGTGCCCGGCATGOCCATCCTGATGTTGCTGGCGGGATCGCCATGCACCTTGTCCTTCTCCACTGATACTGGCACCTCGGCTCCTGGACCCAAGATCCCTTGAGTCGAATTCTGCAGTGCAAGAGCCCTTCGTGGGAGCTGTCCCATGTTTCCATGGTCCCCAGTCTCCCCTCCACTTGGTGGGGTCACCAACTACTCACCAGAAGGGGGCTTACCAAGAAAGCCCTAAAAAGCTGTTGACTTATCTGCGCTTGTTCCAACTCTTATGCCCCCAACCTGCCCTACCACCACCACGCGCTCAGCCTGTTGTGTTTACATGGTACTGTATGTATGGGAGAGCAGACTGCACCCTCCAGCAACAACAGATGAAAGCCAGTGAGCCTACTAACCGTGCCATCTTGCAAACTACACTTTAAAAAAAACTCATTGCTTTGTATTGTAGTAACCAATATGTGCAGTATACGTTGAATGTATATGAACATACTTTCCTATTTCTGTTCTTTGAAAGTGTCAGAAATATTTTTTTCTTTCTCATTTTATGTTGAACTAAAAAGGATTAAAAAAAAAATCTCCORF Start: ATG at 420ORF Stop: TAA at 4239SEQ ID NO: 1601273 aaMW at 139385.7kDNOV37c,MAAAAASGAGGAAGAGTGGAGPAGRLLPPPAPGSPAAPAAVSPAAGQPRPPAPASRGPMPARIGYYECG89709-03Protein SequenceIDRTIGKGNFAVVKRATHLVTKAKVAIKIIDKTQLDEENLKKIFREvQIMKMLCHPHIERLYQVMETERMIYLVTEYASGGEIFDHLVAHGRNAEKEARRKFKQIVTAVYFCNCRNIVHRDLKAENLLLDANLNIKIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVDIWSLGVVLYVLVCGALPEDGSTLQNLRARVLSGKFRIPFFMSTECEHLIRHMLVLDPNKRLSMEQICKHKTHKLGDADPNFDRLIAECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQAEQAGTAMNISVPQVQLINPENQIVEPDGTLNLDSDEGEEPSPEALVRYLSMRRHTVGVADPRTEVMEDLQKLLPGFPGVNPQAPFLQVAPNVNFMHNLLPMQNLQPTGQLEYKEQSLLQPPTLQLLNGMGPLGRRASDGGANIQLHAQQLLKRPRGPSPLVTNTPAVPAVTPVDEESSDGEPDQEAVQSSTYKDSNTLHLPTERFSPVRRFSDGAASIQAFKAHLEKMGNNSSIKQLQQECEQLQKMYGGQIDERTLEKTQQQHMLYQQEQHHQILQQQIQDSICPPQFSPFLQAACENQPALLTEQLQRLRIQPSSPPPNHPNNHLFRQPSNSPPPMSSAMIQPHGAASSSQFQGLPSRSAIFQQQPENCSSPPNVALTCLGMQQPAQSQQVTIQVQEPVDMLSNMPGTAAGSSGRGISISPSAGQMQMQHRTNLMATLSYGHRPLSKQLSADSAEAHSLNVNRFSPANYDQAHLHPHLFSDQSRGSPSSYSPSTGVGFSPTQALKVPPLDQFPTFPPSAHQQPPHYTTSALQQALLSPTPPDYTRHQQVPHILQGLLSPRHSLTGHSDIRLPPTEFAQLIKRQQQQRQQQQQQQQQQEYQELFRBMNQGDAGSLAPSLGGQSMTERQALSYQNADSYHHHTSPQHLLQIRAQECVSQASSPTPPHGYAHQPALMHSESMEEDCSCEGAKDGFQDSKSSSTLTKGCHDSPLLLSTGGPGDPESLLGTVSHAQELGIHPYGHQPTAAFSKNXVPSREPVIGNCMDRSSPGQAVELPDHNGLGYPARPSVHEHHRPRALQRHHTIQNSDDAYVQLDNLPGMSLVAGKALSSARMSDAVLSQSSLMGSQQFQDGENEECGASLGGHEHPDLSDGSQHLNSSCYPSTCITDILLSYKUPEVSFSMEQAGVSEQ ID NO: 1615033 bpNOV37d,TTGAACTGGGACACAGGTCACACCAGAGGTCACATTGGCGATTCGACCGGCGGTGCGGGGTTGGCTTCG89709-04DNA SequenceTGGGTCGGGCATCCTGCGCCCCCCACTCGGGAAAGGTGGCGGAGACTTCGAGGTTGGGGGCCCATCGAAGGTTCCCACCGCCAGCTCCCGGAGGGGGGCACCCGGGAGCCAGCGCCTCAGGAACCGGGGCCCACGCGGGAAGGTCGAGCCCGCCGGTGAGGTCACCGTTGCCATGGCTCCGGGCAGTGACGCGCGTCGGCACGTGACCCGCGGTTGCCATGGAGCCGGGCGCCGGTCGGCGAAAGCGCCCCGCCTCCCCGAGTGACGTCCGCGGCCCCCCCTTTCCCGCCCCCCCTTGCCCCCTCCCCCGAGCCGGCTCCCCGCGGCCCCGGAGGTTTCACTGCACAACAAGATGGCGGCGGCGGCGGCGAGCGGAGCTGGCGGGGCTGCCGGGGCCGGGACTGGGGGAGCCGGGCCCGCGGGCCGCCTGCTGCCTCCGCCCGCGCCGGGGTCCCCAGCCGCCCCCGCTGCCGTGTCCCCTGCGGCCGGCCAGCCGCGTCCCCCAGCCCCGGCCTCCCGCGGACCCATGCCCGCCCGTATCGGCTACTACGAGATCGACCGCACCATCGGCAAGGGCAACTTCGCGGTGGTCAAGCGGGCCACGCACCTCGTCACCAAGGCCAAGGTTGCTATCAAGATCATAGATAAGACCCAGCTGGATGAAGAAAACTTGAAGAAGATTTTCCGGGAAGTTCAAATTATGAAGATGCTTTGCCACCCCCATATCATCAGGCTCTACCAGGTTATGGAGACAGAACGGATGATTTATCTGGTGACAGAATATGCTAGTGGAGGGGAAATATTTGACCACCTGGTGGCCCATGGTAGAATGGCAGAAAAGGAGGCACGTCGGAAGTTCAAACAGATCGTCACAGCTGTCTATTTTTGTCACTGTCGGAACATTGTTCATCGTGATTTAAAACCTGAAAATTTACTTCTGGATGCCAATCTGAATATCAAAATAGCAGATTTTGGTTTCAGTAACCTCTTCACTCCTCGGCAGCTGCTGAAGACCTGGTGTGGCAGCCCTCCCTATGCTCCACCTGAACTCTTTGAAGGAAAAGAATATGATGGGCCCAAAGTGGACATCTGGACCCTTGGAGTTGTCCTCTACGTGCTTGTGTGCGGTGCCCTGCCATTTGATGGAAGCACACTGCAGAATCTGCGGGCCCGCGTGCTGAGTGGAAAGTTCCGCATCCCATTTTTTATGTCCACAGAATGTGAGCATTTGATCCGCCATATGTTGGTGTTAGATCCCAATAAGCGCCTCTCCATGGAGCAGATCTGCAAGCACAAGTGGATGAAGCTAGGGGACGCCGATCCCAACTTTGACAGGTTAATAGCTGAATGCCAACAACTAAAGGAAGAAAGACAGGTGGACCCCCTGAATGAGGATGTCCTCTTGGCCATGGAGGACATGGGACTGGACAAAGAACAGACACTGCAGTCATTAAGATCAOATGCCTATGATCACTATAGTGCAATCTACAGCCTGCTGTGTGATCGACATAAGAGACATAAAACCCTGCGTCTCGGAGCACTTCCTAGCATGCCCCOAGCCCTGGCCTTTCAAGCACCAGTCAATATCCAGGCGGAGCAGGCAGGTACTGCTATGAACATCAGCGTTCCCCAGGTGCAGCTGATCAACCCAGAGAACCAAATTGTGGAGCCGGATGGGACACTGAATTTGGACAGTGATGAGGGTGAAGAGCCTTCCCCTGAAGCATTGGTGCGCTATTTGTCAATGAGGAGCCACACAGTGGGTGTGGCTGACCCACGCACGGAAGTTATGGAAGATCTGCAGAAGCTCCTACCTGGCTTTCCTGGAGTCAACCCCCAGGCTCCATTCCTGCAGGTGGCCCCTAATGTGAACTTCATGCACAACCTGTTGCCTATGCAAAACTTGCAACCAACCGGGCAACTTGAGTACAAGGAGCAGTCTCTCCTACAGCCGCCCACGCTACAGCTGTTGAATGGAATGGGCCCCCTTGGCCGGAGGGCATCAGATGGAGGAGCCAACATCCAACTGCATGCCCAGCAGCTGCTGAAGCGCCCACGGGGACCCTCTCCGCTTGTCACCATGACACCAGCAGTGCCAGCAGTTACCCCTGTGGACGAGGAGAGCTCAGACGGGGAGCCAGACCAGGAAGCTGTGCAGAGCTCTACCTACAAGGACTCCAACACTCTGCACCTCCCTACGGAGCGTTTCTCCCCTGTGCGCCGGTTCTCAGATGGGGCTGCGAGCATCCAGGCCTTCAAAGCTCACCTGGAAAAAATGGGCAACAACAGCAGCATCAAACAGCTGCAGCAGGAGTGTGAGCAGCTGCAGAAGATGTACGGGGGGCAGATTGATGAAAGAACCCTGGAGAAGACCCAGCAGCAGCATATGTTATACCAGCAGGAGCAGCACCATCAAATTCTCCAGCAACAAATTCAAGACTCTATCTGTCCTCCTCAGCCATCTCCACCTCTTCAGGCTGCATGTGAAAATCAGCCAGCCCTCCTTACCCATCAGCTCCAGAGGTTAAGGATTCAGCCTTCAAGCCCACCCCCCAACCACCCCAACAACCATCTCTTCAGGCAGCCCAGTAATAGTCCTCCCCCCATGAGCAGTGCCATGATCCAGCCTCACGGGGCTGCATCTTCTTCCCAGTTTCAAGGCTTACCTTCCCGCACTCCAATCTTTCAGCAGCAACCTGAGAACTGTTCCTCTCCTCCCAACGTGGCACTAACCTGCTTGGGTATGCAGCAGCCTGCTCAGTCACAGCAGGTCACCATCCAAGTCCAAGAGCCTGTTGACATGCTCAGCAACATGCCAGGCACAGCTGCAGGCTCCAGTGGGCGCGGCATCTCCATCAGCCCCAGTGCTGGTCAGATGCAGATGCAGCACCGTACCAACCTGATGGCCACCCTCAGCTATGGGCACCGTCCCTTGTCCAAGCAGCTGAGTGCTGACAGTGCAGAGGCTCACAGCTTGAACGTGAATCGGTTCTCCCCTGCTAACTACGACCAGGCGCATTTACACCCCCATCTGTTTTCCGACCAGTCCCGGGGTTCCCCCAGCAGCTACAGCCCTTCAACAGGAGTGGGGTTCTCTCCAACCCAAGCCCTGAAAGTCCCTCCACTTGACCAATTCCCCACCTTCCCTCCCAGTGCACATCAGCAGCCGCCACACTATACCACGTCGGCACTACAGCAGGCCCTGCTGTCTCCCACGCCGCCAGACTATACAAGACACCAGCAGGTACCCCACATCCTTCAAGGACTGCTTTCTCCCCGGCATTCGCTCACCGGCCACTCGGACATCCGGCTGCCCCCAACAGAGTTTGCACAGCTCATTAAAAGGCAGCAGCAACAACGGCAGCAGCAGCAGCAACAGCAGCAACAGCAAGAATACCAGGAACTGTTCACGCACATGAACCAAGGGGATGCCGGGAGTCTGGCTCCCAGCCTTGGGGGACAGAGCATGACAGAGCGCCAGGCTTTATCTTATCAAAATGCTGACTCTTATCACCATCACACCAGCCCCCAGCATCTGCTACAAATCAGGGCACAAGAATGTGTCTCACAGGCTTCCTCACCCACCCCGCCCCACGGGTATGCTCACCAGCCGGCACTGATGCATTCAGAGAGCATGGAGGAGGACTGCTCGTGTGAGGGGGCCAAGGATCGCTTCCAAGACAGTAAGAGTTCAAGTACATTGACCAAAGGTTGCCATGACAGCCCTCTGCTCTTGAGTACCGGTGGACCTGGGGACCCTGAATCTTTGCTAGGAACTGTGAGTCATGCCCAAGAATTGGGGATACATCCCTATGGTCATCAGCCAACTGCTGCATTCAGTAAAAATAAGGTGCCCAGCAGAGAGCCTGTCATAGGGAACTGCATGGATAGAAGTTCTCCAGGACAAGCAGTGGAGCTGCCGGATCACAATGGGCTCGGGTACCCAGCACGCCCCTCCGTCCATGAGCACCACAGGCCCCGGGCCCTCCAGAGACACCACACGATCCAGAACAGCGACGATGCTTATGTACAGCTGGATAACTTGCCAGGAATGAGTCTCGTGGCTGGGAAAGCACTTAGCTCTGCCCGGATGTCGGATGCAGTTCTCAGTCAGTCTTCGCTCATGGGCAGCCAGCAGTTTCAGGATGGGGAAAATGAGGAATGTGGGGCAAGCCTGGGAGGTCATGAGCACCCAGACCTGAGTGATGGCAGCCAGCATTTAAACTCCTCTTGCTATCCATCTACGTGTATTACAGACATTCTGCTCAGCTACAAGCACCCCGAAGTCTCCTTCAGCATGGAGCAGGCAGGCGTGTAACAAGAAACAGAGAGAGAGCAAGAGGTCCCGAGTCCCCTCCTAGTCTTTCATCCTGAATTTGCACACAGGAAAGCGTGTGCCCGGCATGGCCATCCTGATGTTGCTGCCGGGATCCCCATGCACCTTGTCCTTCTCCACTGATACTGGCAGCTCGGCTCCTGCACCCAAGATACCTTGAGTGGAATTCTGCAGTGCAAGAGCCCTTCGTGGGAGCTGTCCCATGTTTCCATGGTCCCCAGTCTCCCCTCCACTTGGTGGGGTCACCAACTACTCACCACAAGGGGGCTTACCAACAAAGCCCTAAAAAGCTGTTGACTTATCTGCGCTTGTTCCAACTCTTATGCCCCCAACCTGCCCTACCACCACCACGCCCTCAGCCTGATGTGTTTACATGGTACTGTATGTATGGGAGAGCAGACTGCACCCTCCAGCAACAACAAATGAAAGCCAGTGAGCCTACTAACCGTGCCATCTTGCAAACTACACTTTAAAAAAAACTCATTGCTTTGTATTGTAGTAACCAATATGTGCAGTATACGTTGAATGTATATGAACATACTTTCCTATTTCTGTTCTTTGAAAATGTCAGAAATATTTTTTTCTTTCTCATTTTATGTTGAACTAAAAAGGATTAAAAAAAAAATCTCCORF Start: ATG at 420ORF Stop: TAA at 4383SEQ ID NO: 1621321 aaMW at 144850.0kDNOV37d,MAAAAASGAGGAAGAGTGGAGPAGRLLPPPAPGSPAAPAAVSPAAGQPRPPAPASRGPMPARIGYYECG89709-04Protein SequenceIDRTIGKGNFAXTVKRATHLVTKAKVAIKHDKTQLDEENLKKIFREVQIMKMLCHPHIIRLYQVMETERMIYLVTEYASGGEIFDHLVAHGRMAEKEARRKFKQIVTAVYFCHCRNTVHRDLKAENLLLDANLNIKIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVDIWSLCVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMSTECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFDRLIAECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQSLRSDAYDHYSAIYSLLCDRHKRHKTLRLGALPSMPRALAFQAPVNIQAEQAGTAMNISVPQVQLINPENQIVEPDGTLNLDSDEGEEPSPEALVRYLSMRRHTVGVADPRTEVMEDLQKLLPGFPGVNPQAPFLQVAPNVNFMHNLLPMQNLQPTGQLEYKEQSLLQPPTLQLLNGMGPLGRRASDGGANIQLHAQQLLKRPRGPSPLVTMTPAVPAVTPVDEESSDGEPDQEAVQSSTYKDSNTLHLFTERFSPVRRFSDGAASIQAFKAHLEKMGNNSSIKQLQQECEQLQKMYGGQIDERTLEKTQQQHMLYQQEQHHQILQQQIQDSICPPQPSPPLQAACENQPALLTHQLQRLRIQPSSPPPNHPNNHLFRQPSNSPPPMSSAMIQPHGAASSSQFQGLPSRSAIFQQQPENCSSPPNVALTCLGMQQPAQSQQVTIQVQEPVDMLSNMPGTAAGSSGRGISISPSAGQMQMQHRTNLMATLSYGHRPLSKQLSADSAEAHSLNVNRFSPANYDQAHLHPHLFSDQSRGSPSSYSPSTGVGBSPTQALKVPPLDQFPTFPPSAHQQPPHYTTSALQQALLSPTPPDYTRHQQVPHILQGLLSPRHSLTGHSDIRLPPTEFAQLIKRQQQQRQQQQQQQQQQEYQELFRHMNQGDAGSLAPSLGGQSMTERQALSYQNADSYHHHTSPQHLLQIRAQECVSQASSPTPPHGYAHQPALMHSESMEEDCSCEGAKDGFQDSKSSSTLTKGCHDSPLLLSTGGPGDPESLLGTVSHAQELGIHPYGHQPTAAFSKNKVPSREPVIGNCMDRSSPGQAVELPDHNCLGYPARFSVHEHHRPRALQRHHTIQNSDDAYVQLDNLPGMSLVAGKALSSARMSDAVLSQSSLMCSQQFQDGENEECGASLGGHEHPDLSDGSQHLNSSCYPSTCITDILLSYXHPEVSFSMEQAGVSEQ ID NO: 1633807 bpNOV37e,ATGGCGGCGGCGGCGGCGAGCGGAGCTGGCGGGGCTGCCGGGGCCGGGACTGGGGGAGCCGGGCCCGCG89709-01DNA SequenceCGGGCCGCCTGCTGCCTCCGCCCGCGCCGGGGTCCCCAGCCGCCCCCGCTGCCGTGTCCCCTGCGGCCGGCCAGCCGCGTCCCCCAGCCCCGGCCTCCCGCGGACCCATGCCCGCCCCTATCGGCTACTACGAGATCGACCGCACCATCGGCAAGGGCAACTTCGCGGTGGTCAAGCGGGCCACGCACCTCGTCACCAAGGCCAAGGTTGCTATCAAGATCATAGATAAGACCCAGCTGGATGAAQAAAACTTGAAGAAGATTTTCCGGGAAGTTCAAATTATGAAGATGCTTTGCCACCCCCATATCATCAGGCTCTACCAGGTTATGGAGACAGAACGGATGATTTATCTGGTCACAGAATATGCTAGTGGAGGCGAAATATTTCACCACCTGGTGGCCCATGGTAGAATGGCAGAAAAGGAGGCACGTCGGAAGTTCAAACAGATCGTCACAGCTGTCTATTTTTGTCACTGTCCGAACATTGTTCATCGTGATTTAAAAGCTGAAAATTTACTTCTGGATGCCAATCTGAATATCAAAATAGCAGATTTTGGTTTCAGTAACCTCTTCACTCCTGGGCAGCTACTGAAGACCTGGTGTGGCAGCCCTCCCTATGCTGCACCTGAACTCTTTGAAGGAAAAGAATATGATGGGCCCAAAGTGGACATCTGGAGCCTTGGAGTTGTCCTCTACGTGCTTGTGTGCGGTGCCCTGCCATTTCATGGAAGCACACTGCAGAATCTGCGGGCCCGCGTGCTGAGTGGAAAGTTCCGCATCCCATTTTTTATGTCCACAGAATGTGAGCATTTGATCCGCCATATGTTGGTGTTAGATCCCAATAAGCGCCTCTCCATGGAGCAGATCTGCAAGCACAAGTGGATGAGCTAGGGGACGCCGATCCCAACTTTGACAGGTTAATTAGCTGAATGCCAACAACTAAAGGAAGAAAGACAGGTGGACCCCCTGAATGAGGATGTCCTCTTGGCCATGGAGGACATGGGACTGGACAAAGAACAGACACTGCAGGCGGAGCAGGCAGGTACTGCTATGAACATCAGCGTTCCCCAGGTGCAGCTGATCAACCCAGAGAACCAAATTGTCGAGCCGGATGGGACACTGAATTTGGACAGTGATGAGGGTGAAGAGCCTTCCCCTGAAGCATTGGTGCGCTATTTGTCAATGAGGAGGCACACAGTGGGTGTGGCTGACCCACGCACGGAAGTTATGGAAGATCTGCAGAAGCTCCTACCTGGCTTTCCTGGAGTCAACCCCCAGGCTCCATTCCTGCAGGTGGCCCCTAATGTGAACTTCATGCACAACCTGTTGCCTATGCAAAACTTGCAACCAACCGGGCAACTTGAGTACAAGGAGCAGTCTCTCCTACAGCCGCCCACGCTACAGCTGTTGAATCCAATGGCCCCCCTTGGCCGGAGGGCATCAGATGGAGGAGCCAACATCCAACTCCATGCCCAGCAGCTGCTGAAGCGCCCACGGGGACCCTCTCCGCTTGTCACCATGACACCAGCAGTGCCAGCAGTTACCCCTGTGGACGAGGAGAGCTCAGACGGGGACCCAGACCACGAAGCTGTGCAGAGCTCTACCTACAAGGACTCCAACACTCTGCACCTCCCTACGGAGCGTTTCTCCCCTGTGCGCCGGTTCTCAGATGGGGCTGCGAGCATCCAGGCCTTCAAAGCTCACCTGGAAAAAATGCGCAACAACAGCAGCATCAAACAGCTGCAGCAGGAGTGTGAGCAGCTGCAGAAGATGTACGGGGGGCAGATTGATGAAAGAACCCTGGAGAAGACCCAGCAGCAGCATATGTTATACCAGCAGGAGCAGCACCATCAAATTCTCCAGCAACAAATTCAAGACTCTATCTGTCCTCCTCAGCCATCTCCACCTCTTCAGGCTGCATGTGAAAATCAGCCAGCCCTCCTTACCCATCAGCTCCAGAGGTTAAGGATTCAGCCTTCAAGCCCACCCCCCAACCACCCCAACAACCATcTCTTCAGOCAGCCCAGTAATAGTCCTCCCCCCATGAGCAGTGCCATGATCCAGCCTCACGGGGCTGCATCTTCTTCCCAGTTTCAAGGCTTACCTTCCCCCAGTGCTTCTTTCAGCAGCACCTGAGTAGTCTGTTCCTCTCCTCCCAACGTGGCACTAACCTGCTTGGGTATGCAGCAGCCTGCTCAGTCACAGCAGGTCACCATCCAAGTCCAAGAGCCTGTTGACATGCTCAGCAACATGCCAGCCACAGCTGCAGGCTCCAGTGGGCGCGGCATCTCCATCAGCCCCAGTGCTGGTCAGATGCAGATGCAGCACCGTACCAACCTGATGGCCACCCTCAGCTATGGGCACCGTCCCTTGTCCAAGCAGCTGAGTGCTGACTAAGTCCAGACTCACAGTGCACATCAGCAGCCGCCACACTATACCACGTCGGCACTACAGCAGGCCCTGCTGTCTCCCACGCCGCCAGACTATACAAGACACCAGCAGGTACCCCACATCCTTCAAGGACTCCTTTCTCCCCGGCATTCGCTCACCGGCCACTCGGACATCCGGCTGCCCCCAACAGAGTTTGCACAGCTCATTAACGCAGCAGCAAGACAACGGCAGCAGCAGCAGCAACAGCAGCAACAGCAAGAATACCAGGAACTGTTCAGGCACATGAACCAAGGGCATGCGGGGAGTCTGGCTCCCAGCCTTGGGGGACAGAGCATGACAGAGCGCCAGGCTTTATCTTATCAAAATGCTGACTCTTATCACCACACGATCCAGAACAGCGACGATGCTTATGTACAGCTAAATAACTTGCCAGGAATGAGTCTCGTGGCTGGGAAAGCACTTAGCTCTGCCCGGATGTCGGATGCAGTTCTCAGTCAGTCTTCGCTCATGGGCAGCCAGCAGTTTCAGGATGGGGAAAATGAGGAATGTGGGGCAAGCCTGGGAGGTCATGAGCACCCAGACCTGAGTGATGGCAGCCAGCATTTAAACTCCTCTTGCTATCCATCTACGTGTATTACAGACATTCTGCTCAGCTACAAGCACCCCGAAGTCTCCTTCAGCATAAAGCAGGCAGGCGTGTAACAGAAACAGAGAGACAGCAIXGAGGTCCCGAGTCCCCTCCTAGTCTTTCATCCTGGGTTTGCACAGAGGAAAGCGGGTGCCCGGCATGGCCATCCTGATGTTGCTGGCGGGATCCCCATGCACCTTGTCCTTCTCCACTGATACTGCCAGCTCGGCTCCTGGACCCAAGATCCCTTGAGTGGAGTTCTGCAGTGCAAGAGCCCTTCGTGGGAGCTGTCCCATGTTTCCATGGTCCCCAGTCTCCCCTCCACTTGGTGCGGTCACCAACTACTCACCAGAACGGGGCTTACCAAGAAAGCCCTAAAAAGCTGTTGACTTATCTGCGCTTGTTCCAACTCTTATGCCCCCAACCTGCCCTACCACCACCACGCGCTCAGCCTGATGTGTTTACATGGTACTGTATGTATGGGAGAGCAGACTGCACCCTCCAGCAACAACAGATGAAGCCAGTGAGCCTAACTAACCGTGCCATCTTGCAAACTACACTTTAAAAAAAACTCATTGCTTTGTATTGTAGTAACCAATATGTGCAGTATACGTTGAATGTATATGAACATACTTTCCTATTTCTGTTCTTTGAAAATGTCAGAAATATTTTTTTCTTTCTCATTTTATGTTGAACTAAAAGCATTAAAAAAAAAAAATCTCCORF Start: ATG at 1ORF Stop: TAA at 3157SEQ ID NO: 1641052 aaMW at 115587.7kDNOV37e,MAAAASGAGGAAGAGTGGAGPAGRLLPPPAPGSPAAPAAVSPAAGQRPRPPAPASRGPMPARIGYYECG89709-01Protein SequenceIDRTIGKGNFAVVKRATHLVTKAKVAIKIIDKTQLDEENLKKIFREVQIMKMLCHPHIIRLYQVMETERMIYLVTEYASGGEIFDHLVAHGRMAEKEARRKFKQIVTAVYFCHCRNIVHRDLKAENLLLDANLNIKIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVDIWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMSTECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFDRLIAECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQAEQAGTAMNISVPQVQLINPENQIVEPDGTLNLDSDEGEEPSPEALVRYLSMRRHTVGVADFRTEVMEDLQKLLPGFPGVNPQAPFLQVAPNVNFNTDLLPMQNLQPTGQLEYKEQSLLQPFTLQLLNGMGPLGRRASDGGANIQLHAQQLLKRPRGPSPLVTMTTAVPAVTPVDEESSDGEPDQEAVQSSTYKDSNTLHLPTERFSPVRRFSDGAASIQAFKAHLEKMGNNSSIKQLQQECEQLQKMYGGQIDERTLEKTQQQHMLYQQEQHHQILQQQTQDSICPPQPSPPLQAACENQPALLTHQLQRLRIQPSSPPPNHPNNHLFRQPSNSPPPMSSAMIQPHGAASSSQFQGLPSRSAIFQQQPENCSSPPNVALTCLGMQQPAQSQQVTIQVQEPVDMLSNMPGTAAGSSGRGISISPSAGQMQMQHRTNLMATLSYGHRPLSKQLSADSAEAHSAHQQPPHYTTSALQQALLSPTPPDYTRHQQVPHILQGLLSPRHSLTGHSDIRLPPTEFAQLIKRQQQQRQQQQQQQQQQEYQELFRHMNQGDAGSLAPSLGGQSMTERQALSYQNADSYHHTIQNSDDAYVQLDNLPGMSLVAGKALSSARMSDAVLSQSSLMGSQQFQDGENEECGASLGGHEHPDLSDGSQHLNSSCYPSTCITDILLSYKHPEVSFSMEQAGV


[0550] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 37B.
199TABLE 37BComparison of NOV37a against NOV37b through NOV37e.Identities/Similarities forProteinNOV37a Residues/the MatchedSequenceMatch ResiduesRegionNOV37b62 . . . 1052886/1051 (84%) 62 . . . 1112887/1051 (84%) NOV37c62 . . . 947 781/946 (82%)62 . . . 1007782/946 (82%)NOV37d62 . . . 947 781/994 (78%)62 . . . 1055782/994 (78%)NOV37e62 . . . 1052892/991 (90%)62 . . . 1052892/991 (90%)


[0551] Further analysis of the NOV37a protein yielded the following properties shown in Table 37C.
200TABLE 37CProtein Sequence Properties NOV37aPSort0.6000 probability located in endoplasmic reticulumanalysis:(membrane); 0.3000 probability located in microbody(peroxisome); 0.1000 probability located in mitochondrialinner membrane; 0.1000 probability located in plasmamembraneSignalPNo Known Signal Sequence Predictedanalysis:


[0552] A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 37D.
201TABLE 37DGeneseq Results for NOV37aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV37a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAB43286Human ORFX ORF305011 . . . 10521022/1102 (92%) 0.0polypeptide sequence SEQ 1 . . . 11021026/1102 (92%) ID NO: 6100 - Homosapiens, 1102 aa.[WO200058473-A2,05 OCT. 2000]AAE21712Human PKIN-7 protein -1 . . . 947940/1103 (85%) 0.0Homo sapiens, 1369 aa. 1 . . . 1103941/1103 (85%) [WO200218557-A2,07 MAR. 2002]AAB65626Novel protein kinase, SEQ59 . . . 947 821/996 (82%)0.0ID NO: 152 - Homo sapiens,1 . . . 985831/996 (83%)1251 aa.[WO200073469-A2,07 DEC. 2000]ABG08443Novel human diagnostic204 . . . 830 597/776 (76%)0.0protein #8434 - Homo43 . . . 818 603/776 (76%)sapiens, 1265 aa.[WO200175067-A2,11 OCT. 2001]AAB65631Novel protein kinase, SEQ51 . . . 368 202/318 (63%)e−115ID NO: 158 - Homo sapiens,7 . . . 319251/318 (78%)926 aa. [WO200073469-A2,07 DEC. 2000]


[0553] In a BLAST search of public sequence datbases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37E.
202TABLE 37EPublic BLASTP Results for NOV37aIdentities/ProteinSimilarities forAccessionNOV37a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ9Y2K2KIAA0999 protein - Homo6 . . . 947935/1050 (89%) 0.0sapiens (Human), 1371 aa56 . . . 1105937/1050 (89%) (fragment).Q9CYD55730525O22Rik protein -117 . . . 554 425/486 (87%)0.0Mus musculus (Mouse), 4871 . . . 486433/486 (88%)aa.BAA34501KIAA0781 protein - Homo22 . . . 368 210/347 (60%)e−117sapiens (Human), 950 aa2 . . . 343261/347 (74%)(fragment).BAB91442KIAA0781 protein - Homo51 . . . 368 203/318 (63%)e−116sapiens (Human), 346 aa5 . . . 317252/318 (78%)(fragment).Q9H0K1Hypothetical 103.9 kDa51 . . . 368 203/318 (63%)e−116protein (KIAA0781 protein) -7 . . . 319252/318 (78%)Homo sapiens (Human),926 aa.


[0554] PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37F.
203TABLE 37FDomain Analysis of NOV37aIdentities/NOV37aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValuepkinase66 . . . 317106/291 (36%)4.7e−97219/291 (75%)



Example 38

[0555] The NOV38 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 38A.
204TABLE 38ANOV38 Sequence AnalysisSEQ ID NO: 1652927 bpNOV38a,CCGGGTGGGCTCCAGGCGGCCGGTCCCCGGCCTCCCCCCATGGCCACCGCCCCCTCTTATCCCGCCGCG90879-01DNA SequenceGGCTCCCTGGCTCTCCCGGGCCGGGGTCTCCTCCGCCCCCCGGCGGCCTAGAGCTGCAGTCGCCGCCACCGCTACTGCCCCAGATCCCGGCCCCGGGTTCCGGGGTCTCCTTTCACATCCAGATCGGGCTGACCCGCGAGTTCGTGCTGTTGCCCGCCGCCTCCGAGCTGGCTCATGTGCGCAGCTGGCCTGGTTCCATCGTGGACCAGAAGTTCCCTGAGTGTGGCTTCTACGGCCTTTACCACAAGATCCTGCTTTTACAGCATGACCCCACCTCGGCCAACCTCCTGCAGCTGGTGCGCTCGTCCGGAGACATCCACGAGGGCGTACCTGTGGAGGTGGTGCTGTCGGCCTCGGCCACCTTCGAGGACTTCCAGATCCGCCCGCACGCCCTCACGGTGCACTCCTATCGGGCGCCTGCCTTCTGTGATCACTGCGGGGAGATGCTCTTCGGCCTAGTGCGCCAGGGCCTCAAGTGCGATGGCTGCGGGCTGAACTACCACAAGCGCTGTGCCTTCAGCATCCCCAACAACTGTAGTGGGGCCCGCAAACGGCGCCTGTCATCCACGTCTCTGGCCAGTGGCCACTCGGTGCGCCTCGGCACCTCCGAGTCCCTGCCCTGCACGGCTGAAGAGCTCAGCCGTAGCACCACCGATCTCCTGCCTCGCCGTCCCCCGTCATCCTCTTCCTCCTCTTCTGCCTCATCGTATACGGGCCGCCCCATTGAGCTGGACTAGATGCTGCTCTCCAAGGTCAAGGTGCCGCACACCTTCCTCATCCACAGCTATACACGGCCCACCGTTTGCCAGGCTTGCAAGAAACTCCTCAAGGGCCTCTTCCGGCAGGGCCTGCAATGCAAAGACTGCAAGTTTAACTGTCACAAACGCTGCGCCACCCGCGTCCCTAATGACTGCCTGGGGGAGGCCCTTATCAATGGAGACCCCTCTGATGCCTCCGTCCCCACAGATGTGCCGATGGAGGAGGCCACCGATTTCAGCGAGGCTGACAAGAGCGCCCTCATGGATGAGTCAGAGGACTCCGGTGTCATCCCTGGCTCCCACTCAGAGAATGCGCTCCACGCCAGTCAGGAGGAGGAAGGCGAGGGAGGCTAGGCCCAGAGCTCCCTGGGGTACATCCCCCTAATGAGGGTGGTGCAATCGGTGCGACACACGACGCGGAAATCCAGCACCACGCTGCGGGAGGGTTGGGTGGTTCATTACAGCAACAAGGACACGCTGAGAAAGCGGCACTATTGGCGCCTGGACTGCAAGTGTATCACGCTCTTCCAGAACAACACCACCAACAGATACTATAAGGAATTCCGCTGTCAGATTCATCTCACGGTGCAGTCCGCCCAGAACTTCAGCCTTGTGCCGCCGGGCACCAACCCACACTGCTTTGAGATCGTCACTGCCAATGCCACCTACTTCGTGGGCGAGATGCCTGGCGGGACTCCGGGTGGGCCAAGTGGGCAGGGGGCTGAGGCCGCCCGGGGCTGGGAGACAGCCATCCGCCAGGCCCTGATGCCCGTCATCCTTCAGGACGCACCCAGCGCCCCAGGCCACGCGCCCCACAGACAAGCTTCTCTGAGCATCTCTGTGTCCGTCAGTCAGATCCAAGAGAATGTGGACATTGCCACTGTCTACCAGATCTTCCCTGACGACGTGCTGGGCTCAGGGCAGTTTGGAGTGGTCTATGGAGGGAAACACCGGAAGACAGGCCGGGACGTGGCAGTTAAGGTCATTGACAAACTGCGCTTCCCTACCAAGCAGGAGAGCCAGCTCCGGAATGAAGTGGCCATTCTGCAGAGCCTGCGGCATCCCGGGATCGTGAACCTGGAGTGCATGTTCGAGACGCCTGAGTGACTGTTTGTGGTGATGGAGAAGCTGCATGGGGACATGTTGGAGATGATCCTGTCCAGTGAGTAGGGCCGGCTGCCTGAGCGCCTCACCAAGTTCCTCATCACCCAGATCCTGGTGGCTTTCAGACACCTTCACTTCTAGTACATTGTCCACTGTGACTTGAAACCAGAAAACGTGTTGCTGGCATCAGCAGACCCATTTCCTCAGGTGAAGCTGTGTGACTTTGGCTTTGCTCGCATCATCGGCGAGAAGTCGTTCCGCCGCTCAGTGGTGGGCACGCCGGCCTACCTGGCACCCGAGCTGCTGCTCAACCAGGGCTACTACCGCTCGCTGGACATGTGGTCAGTGGGCGTGATCATGTACGTCAGCCTCAGCGGCACCTTCCCTTTCAACGAGGATGAGGACATCAATGACCAGATCCAGAACGCCGCCTTCATGTACCCCGCCAGCCCCTGGAGCCACATCTCAGCTTAAGCCATTGACCTCATCAACAACCTGCTGCAGGTGAAGATGCGCAAACGCTACAGCGTGGACAAATCTCTCAGCCACCCCTGGTTACAGGAGTACCAGACGTGGCTGGACCTCCGAOAGCTGGAGGGGAAGATGGGAGAGCGATACATCACGCATGAGAGTGACGACGCGCGCTGCGAGCAGTTTGCAGCAGAGCATCCGCTGCCTGGGTCTGGGCTGCCCACGGACAGGGATCTCGGTGGGGCCTGTCCACCACAGGACCACGACATGCAGGGGCTTACGGAGCGCATCAGTGTTCTCTGAGGTCCTGTGCCCTCGTCCAGCTGCTGCCCTCCACAGCGGTTCTTCACAGGATCCCAGCAATGAACTGTTCTAGGGAAAGTOGCTTCCTGCCCAAACTGGATTAGACACGTGGGGAGTGGGGTGGGGGGAGCTATTTCCAAGGCCCCTCCCTGTTTCCCCAGCAATTAAAACGGACTCATCTCTGGCCCCATGGCCTTGATCTCAAAAAAAAAAAAAAAAAAAAAORF Start: ATG at 40ORF Stop: TGA at 2701SEQ ID NO: 166887 aaMW at 97590.9kDNOV38a,MATAPSYPAGLPGSPGPGSPPPGGLELQSPPPLLPQIPAPGSGVSFHIQIGLTREFVLRLPAASELACG90879-01Protein SequenceHVKQLACSIVDQKFPECGFYGLYDKILLFKHDPTSANLLQLVRSSGDIQEGDLVEVVLSASATFEDFQTRPHALTVHSYRAPAFCDHCGEMLFGLVRQGLKCDGCGLNYHKRCAYSIPNNCSGARKRRLSSTSLASGHSVRLGTSESLPCTAEELSRSTTELLPRRPPSSSSSSSASSYTGRPIELDKMLLSKVKVFHTFLIHSYTRPTVCQACKKLLKGLFRQGLQCKDCKFNCHKRCATRVPNDCLGKRAINGDPSDASVPTDVPMEEATDFSEADKSALMDESEDSGVIPGSHSENALHASEEEEGEGGKAQSSLGYIPLMRVVQSVRHTTRRSSTTLREGWVVHYSNKDTLRKRHYWRLDCKCITLFQNNTTNRYYKEIPLSEILTVESAQNFSLVPPGTNPHCFEIVTANATYFVGEMPGGTPGGPSCQGAEAARGWETAIRQALMPVILQDAPSAPGKGPHRQASLSISVSNSQIQENVDIATVYQIFPDEVLGSGQFGVVYGGKHRKTGRDVATKVIDKLRFPTKQESQLRNEVAILQSLRHPGIVNLECMFETPEKVFVVMEKLHGDMLEMILSSEKGRLPERLTKULITQILVALRHLHFKNIVHCDLKPENVLLASALPFPQVKLCDFGFKHIGEKSFRRSVVGTPAYLAPEJVLLNQGYNRSLDMWSVGVINYVSLSGTFPFNEDEDINDQTQNAAFNYPASPWSHISAGAIDLIARLLQVKMRKRYSVDKSLSHPWLQEYQTWLDLRELEGKMGERYITHESDDARWEQFKGEHPLPGSGLPTDRDLGGACPPQDHDMQGLAERISVL


[0556] Further analysis of the NOV38a protein yielded the following properties shown in Table 38B.
205TABLE 38BProtein Sequence Properties NOV38aPSort0.9600 probability located in nucleus; 0.1000 probabilityanalysis:located in mitochondrial matrix space; 0.1000 probabilitylocated in lysosome (lumen); 0.0000 probability locatedin endoplasmic reticulum (membrane)SignalPNo Known Signal Sequence Predictedanalysis:


[0557] A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 38C.
206TABLE 38CGeneseq Results for NOV38aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV38a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueAAE22768Human protein kinase D21 . . . 887878/887 (98%)0.0(PKD2) - Homo sapiens, 8781 . . . 878878/887 (98%)aa. [WO200224947-A2,28 MAR. 2002]AAE22719Human kinase protein -1 . . . 887878/887 (98%)0.0Homo sapiens, 878 aa.1 . . . 878878/887 (98%)[WO200222795-A2,21 MAR. 2002]AAE11771Human kinase (PKIN)-51 . . . 887878/887 (98%)0.0protein - Homo sapiens, 8781 . . . 878878/887 (98%)aa. [WO200181555-A2,01 NOV. 2001]AAB65604Novel protein kinase, SEQ5 . . . 887872/884 (98%)0.0ID NO: 130 - Homo sapiens,104 . . . 978 872/884 (98%)978 aa. [WO200073469-A2,07 DEC. 2000]AAU17318Novel signal transduction58 . . . 887 820/830 (98%)0.0pathway protein, Seq ID 883 -1 . . . 821820/830 (98%)Homo sapiens, 821 aa.[WO200154733-A1,02 AUG. 2001]


[0558] In a BLAST search of public sequence datbases, the NOV38a protein was found to have homology to the proteins shown in the BLASTP data in Table 38D.
207TABLE 38DPublic BLASTP Results for NOV38aIdentities/ProteinSimilarities forAccessionNOV38a Residues/the MatchedExpectNumberProtein/Organism/LengthMatch ResiduesPortionValueQ9BZL6Protein kinase C, D2 type (EC1 . . . 887878/887 (98%)0.02.7.1.-) (nPKC-D2) (Protein1 . . . 878878/887 (98%)kinase D2) (ProteinHSPC187) - Homo sapiens(Human), 878 aa.Q15139Protein kinase C, mu type2 . . .887 626/918 (68%)0.0(EC 2.7.1.-) (nPKC-mu)19 . . . 912 719/918 (78%)(Protein kinase D) -Homo sapiens (Human), 912 aa.Q62101Protein kinase C, mu type2 . . . 887621/918 (67%)0.0(EC 2.7.1.-) (nPKC-mu)19 . . . 918 719/918 (77%)(Protein kinase D) - Musmusculus (Mouse), 918 aa.O94806Protein kinase C, nu type (EC8 . . . 855573/861 (66%)0.02.7.1.-) (nPKC-nu) (Protein20 . . . 871 665/861 (76%)kinase EPK2) - Homo sapiens(Human), 890 aa.T08777probable protein kinase C (EC346 . . . 887  542/542 (100%)0.02.7.1.-) mu - human, 542 aa1 . . . 542 542/542 (100%)(fragment).


[0559] PFam analysis predicts that the NOV38a protein contains the domains shown in the Table 38E.
208TABLE 38EDomain Analysis of NOV38aIdentities/NOV38aSimilarities forPfamMatchthe MatchedExpectDomainRegionRegionValueDAG_PE-bind139 . . . 18828/51 (55%)1.4e−1641/51 (80%)DAG_PE-bind265 . . . 31423/51 (45%)3.3e−2045/51 (88%)PH407 . . . 48719/81 (23%)2.2e−0858/81 (72%)pkinase560 . . . 81696/297 (32%) 3.4e−75200/297 (67%) 



Example 39

[0560] The NOV39 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 39A.
209TABLE 39ANOV39 Sequence AnalysisSEQ ID NO: 1672292 bpNOV39a,ATGCATACAGGAGGAGAGACTTCAGCATGCAAACCTTCATCTGTCCGGCTTGCACCGTCGTTCTCATCG96334-01DNA SequenceTCCATGCTGCTGGCCTTCAGATGGCTGCACAGATGCCCCACTCACACCAGTACAGTGACCGTCGCCAGCCGAGCATAAGTGACCAGCAGGTGTCTGCCTTACCATATTCTGACCAGATTCAGCAACCTCTAACTAACCAGGTGATGCCTGACATTGTCATGTTACAGAGGCGGATGCCCCAAACCTTCCGTGATCCAGCAACTGCTCCTCTGAGAAAACTCTCTGTGGACTTGATCAAAACATACAAGCATATTAATGAGGTTTACTATGCAAAAAAGAAGCGAAGACACCAACAGGGCCGGGGGGACGATTCCAGTCATAAGAAGGAGCGGAAGGTTTACAATGATGGTTACGATGATGATAACTATGATTATATTGTAAAAAACGGCOAAAAGTGGATGGATCGGTATGAAATCGACTCCTTAATAGGCAAAGGTTCATTTGGACAGGTTGTGAAAGCTTATGACAGAGTGGAGCAAGAATGGGTCCCCATTAAAATCATCAAGAACAAGAAAGCGTTTCTGAATCAAGCCCAGATAGAAGTGCGGCTGCTTGAGCTCATGAACAAACACGACACTGAAATGAAGTACTACATAGTGCATTTGAAACGCCACTTTATGTTTCGAAACCATCTCTGTTTAGTGTTTGAAATGCTGTCCTATAATCTCTATGATTTGTTGAGAAACACCAACTTCCGAOCGGTCTCTTTGAACCTAACACGAAAGTTTGCGCAACAGATGTGCACAGCATTGCTTTTTCTTGCGACTCCAGAACTTAGTATCATTCACTGTGACTTAAAGCCTGAGAACATCCTTCTTTGTAACCCCAAACGCAGTGCAATCAAGATAGTTGACTTTGGCAGTTCTTGTCAGTTGGGGCAGAGGATATACCAGTATATTCAGAGTCGCTTTTATCGGTCTCCAGAGGTGCTACTGGGAATGCCTTATGACCTTGCCATTOATATGTGGTCCCTCGGGTGTATTTTGGTTGAAATGCACACTGGAGAACCTCTGTTCAGTGGTGCCAATGAGGTAGATCAGATGAATAAAATACTGGAAGTTCTGGGTATTCCACCTGCTCATATTCTTGACCAAGCACCAAAAGCAAGAAAGTTCTTTGAGAATTTGCCAGATGGCACTTGGAACTPAAAGAAGACCAAAGATGGAAAACGGGAGTACAAACCACCAGGAACCCGTAAACTTCATAACATTCTTGGAGTGGAAACAGGAGGACCTGGTGGGCGACGTGCTGGGGAGTCAGGTCATACGGTCGCTGACTACTTGAAGTTCAAAGACCTCATTTTAAGGATGCTTGATTATGACCCCAAAACTCGAATTCAACCTTATTATGCTCTGCAGCACAGTTTCTTCAAGAAAACAGCTGATGAAGGTACAAATACAACTAATAGTCTATCTACAAGCCCCGCCATGGACCAGTCTCAGTCTTCGCGCACCACCTCCAGTACATCGTCAAGCTCAGGTGGCTCATCGGGGACAAGCAACAGTGGGAGAGCCCGGTCGGATCCGACGCACCAGCATCGGCACAGTGGTCGGCACTTCACAGCTGCCGTGCAGGCCATGGACTGCGAGACACACAGTCCCCAGGTGCGTCAGCAATTTCCTGCTCCTCTTGGTTGGTCAGGCACTGAAGCTCCTACACAGGTCACTGTTGAAACTCATCCTGTTCAAGAAACAACCTTTCATGTAGGCCCTCAACAGAATGCATTGCATCATCACCATGGTAACAGTTCCCATCACCATCACCACCACCACCACCATCACCACCACCATGGACAACAAGCCTTGGGTAACCGGACCACGCCAAGCGTCTACAATTCTCCAACGAATAGCTCCTCTACCCAAGATTCTATGGAGGTTGGCCACAGTCACCACTCCATGACATCCCTGTCTTCCTCAACGACTTCTTCCTCGACATCTTCCTCCTCTACTGGTAACCAAGGCAATCAGCCCTACCAGAATCGCCCAGTGGCTGCTAATACCTTGGACTTTGGACAGAATGGAGCTATGGACGTTAATTTGACCGTCTACTCCAATCCCCGCCAAGAGACTGGCATAGCTGGACATCCAACATACCAATTTTCTGCTAATACAGGTCCTGCACATTACATGACTGAAGGACATCTGACAATGAGGCAAGGGGCTGATAGAGAAGAGTCCCCCATGACAGGAGTTTGTGTGCAACAGAGTCCTGTAGCTAGCTCGTGAORF Start: ATG at 1ORF Stop: TGA at 2290SEQ ID NO: 168763 aaMW at 85606.2kDNOV39a,MHTGGETSACKPSSVRLAPSFSFHAAGLQMAAQMPHSHQYSDRRQPSISDQQVSALPYSDQIQQPLTCG96334-01Protein SequenceNQVMPDIVMLQRRMPQTFRDPATAPLRKLSVDLIKTYKHINEVYYAXKKRRHQQGRGDDSSHKKERKVYNDGYDDDNYDYIVKNGEKWMDRYEIDSLIGKGSFGQVVKAYDRVEQEWVAIKIIKNKKAFLNQAQIEVRLLELMNKHDTEMXYYIVHLKRHFMFRNHLCLVFEMLSYNLYDLLRNTNFRGVSLNLTRKFAQQMCTALLFLATPELSIIHCDLKPENILLCNPKRSAIKIVDFGSSCQLGQRIYQYIQSRTYRSPEVLLGMPYDLAIDMWSLGCILVEMHTGEPLFSGANEVDQMNKIVEVLGIPPAHILDQAPKARKFFENLPDGTWNLKKTKDGKREYKPPGTRKLHNILGVETGGPGGRRAGESGHTVADYLKFKDLILRMLDYDPKTRIQPYYALQHSFFKKTADEGThTSNSVSTSPAMEQSQSSGTTSSTSSSSGGSSGTSNSGRARSDPTHQHRHSGGHFTAAVQAMDCETHSPQVRQQFPAPLGWSGTEAPTQVTVETHPVQETTFHVGPQQNALHHHHGNSSHHHHHHHHHHHHHGQQALGNRTRPRVYNSPTNSSSTQDSMEVGHSHHSMTSLSSSTTSSSTSSSSTGNQGNQPYQNRPVAANTLDFGQNGAMDVNLTVYSNPRQETGIAGHPTYQFSANTGPAHYMTEGHLTMRQGADREESPMTGVCVQQSPVASSSEQ ID NO: 1691369 bpNOV39b,GACTTGAAAGAAGACGATGCATACAGGAGGAGACACTTCAGCATGCAAACCTTCATCTGTTCGGCTTCG96334-02DNA SequenceGCACCGTCATTTTCATTCCATGCTGCTCGCCTTCAGATCGCTGGACAGATGCCCCATTCACATCAGTACAGTGACCGTCGCCAGCCAAACATAAGTGACCAACAGGTTTCTGCCTTATCATATTCTGACCAGATTCAGCAACCTCTAACTAACCAGAGGCGGATGCCCCAAACCTTCCGTGACCCAGCAACTGCTCCCCTGAGAAAACTTTCTGTTGACTTGATCAAAACATACAAGCATATTAATGAOGAGTACAAACCACCAGGAACCCGTAAACTTCATAACATTCTTGGAGTGGAAACAGGAGGACCTGGTGGGCGACGTGCTGGGGAGTCAGGTCATACGGTCGCTCACTACTTGAAGTTCAAAGACCTCATTTTAAGGATGCTTGATTAPGACCCCAAAACTCGAATTCAACCTTATTATGCTCTGCAGCACAGTTTCTTCAAGAAAACAGCTGATGAAGGTACAAATACAAGTAATAGTGTATCTACAAGCCCCGCCATGGAGCAGTCTCAGTCTTCGGGCACCACCTCCAGTACATCGTCAAGCTCAGGTGGCTCATCGGGGACAAGCAACAGTGGGAGAGCCCGGTCCGATCCGACGCACCAGCATCGGCACAGTGGTGGGCACTTCACAGCTGCCGTGCAGGCCATGGACTGCCAGACACACAGTCCCCAGGTGCGTCAGCAATTTCCTGCTCCTCTTGGTTGGTCAGGCACTGAAGCTCCTACACAGGTCACTGTTGAAACTCATCCTGTTCAAGAAACAACCTTTCATGTAGGCCCTCAACAGAATGCATTGCATCATCACCATGGTAACAGTTCCCATCACCATCACCACCACCACCACCATCACCACCACCATGGACAACAAGCCTTGGGTAACCGGACCAGGCCAAGGGTCTACAATTCTCCAACGAATAGCTCCTCTACCCAAGATTCTATGGAGGTTGGCCACAGTCACCACTCCATGACATCCCTGTCTTCCTCAACGACTTCTTCCTCGACATCTTCCTCCTCTACTGGTAACCAAGGCAATCAGCCCTACCAGAATCGCCCAGTGGCTGCTAATACCTTGGACTTTGGACAGAATGGAGCTATGGACGTTAATTTGACCGTCTACTCCAATCCCCGCCAAGAGACTGGCATAGCTGGACATCCAACATACCAATTTTCTGCTAATACAGGTCCTGCACATTACATGACTGAAGGACATCTGACAATGAGGCAAGGGGCTGATAGAGAAGAGTCCCCCATGACAGGAGTTTGTGTGCAACAGAGTCCTGTAGCTAGCTCGTGAORF Start: ATG at 17ORF Stop: TGA at 1367SEQ ID NO: 170450 aaMW at 48984.0kDNOV39b,MHTGGETSACKPSSVRLAPSFSFHAAGLQMAGQMPHSHQYSDRRQPNISDQQVSALSYSDQIQQPLTCG96334-02Protein SequenceNQRPMPQTFRDPATAPLRKLSVDLIKTYKHINEEYKPPGTRKLHNILGVETGGPGGRRAGESGHTVADYLKFKDLILRMLDYDPKTRIQPYYALQHSFFKKTADEGTNTSNSVSTSPAMEQSQSSGTTSSTSSSSGGSSGTSNSGRARSDPTHQHRHSGGHFTAAVQAMDCETHSPQVRQQFPAPLGWSGTEAPTQVTVETHPVQETTFHVGFQQNALHHHHGNSSHHHHHHHHHHHHHGQQALGNRTRPRVYNSPTNSSSTQDSMEVGHSHHSMTSLSSSTTSSSTSSSSTGNQGNQPYQNRPVAANTLDFGQNGAMDVNLTVYSNPRQETGIAGHPTYQFSANTGPAHYMTEGHLTMRQGADREESPMTGVCVQQSPVASS


[0561] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 39B.
210TABLE 39BComparison of NOV39a against NOV39b.Identities/Similarities forProteinNOV39a Residues/the MatchedSequenceMatch ResiduesRegionNOV39b405 . . . 763267/359 (74%) 92 . . . 450268/359 (74%)


[0562] Further analysis of the NOV39a protein yielded the following properties shown in Table 39C.
211TABLE 39CProtein Sequence Properties NOV39aPSort0.9600 probability located in nucleus; 0.1736 probabilityanalysis:located in lysosome (lumen); 0.1198 probability locatedin microbody (peroxisome); 0.1000 probability located inmitochondrial matrix spaceSignalPNo Known Signal Sequence Predictedanalysis:


[0563] A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 39D.
212TABLE 39DGeneseq Results for NOV39aIdentities/Similarities forGeneseqProtein/Organism/LengthNOV39a Residues/the MatchedExpectIdentifier[Patent #, Date]Match ResiduesRegionValueABB57155Mouse ischaemic condition1 . . . 763756/763 (99%)0.0related protein sequence SEQ1 . . . 763758/763 (99%)ID NO: 377 - Mus musculus,763 aa. [WO200188188-A2,22 NOV. 2001]AAW41734Human TRAF-2 kinase -1 . . . 763756/763 (99%)0.0Homo sapiens, 763 aa.1 . . . 763758/763 (99%)[WO9801541-A1,15 JAN. 1998]AAU02221Human MNB, homologue of1 . . . 763755/763 (98%)0.0Drosphila minibrain mnb -1 . . . 763757/763 (98%)Homo sapiens, 763 aa.[US6251664-B1,26 JUN. 2001]AAU02222Rat Dyrk, a homologue of1 . . . 763753/763 (98%)0.0Drosphila minibrain mnb -1 . . . 763756/763 (98%)Rattus sp, 763 aa.[US6251664-B1,26 JUN. 2001]AAM93441Human polypeptide, SEQ ID69 . . . 574 376/509 (73%)0.0NO: 3082 - Homo sapiens,21 . . . 522 429/509 (83%)629 aa. [EP1130094-A2,05 SEP. 2001]


[0564] In a BLAST search of public sequence datbases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39E.
213TABLE 39EPublic BLASTP Results for NOV39aIdentities/NOV39aSimilaritiesProteinResidues/for theAccessionMatchMatchedNumberProtein/Organism/LengthResiduesPortionExpect ValueQ61214Dual-specificity1 . . . 763756/7630.0tyrosine-phosphorylation(99%)regulated kinase 1A (EC1 . . . 763758/7632.7.1.-) (Protein kinase(99%)minibrain homolog) (MNBH)(MP86) (Dual specificityYAK 1-related kinase) - Musmusculus (Mouse); 763 aa.Q13627Dual-specificity1 . . . 763756/7630.0tyrosine-phosphorylation(99%)regulated kinase 1A (EC1 . . . 763758/7632.7.1.-) (Protein kinase(99%)minibrain homolog) (MNBH)(HP86) (Dual specificityYAK 1-related kinase) -Homo sapiens (Human),763 aa.Q63470Dual-specificity1 . . . 763755/7630.0tyrosine-phosphorylation(98%)regulated kinase 1A (EC1 . . . 763758/7632.7.1.-) (Protein kinase(98%)minibrain homolog) (MNBH)(RP86) (Dual specificityYAK 1-related kinase) -Rattus norvegicus (Rat),763 aa.JC4898Down-syndrome-critical-1 . . . 763747/7630.0region protein - human, 754 aa.(97%)1 . . . 754749/763(97%)CAD30635Minibrain protein kinase -1 . . . 763729/7660.0(95%)Gallus gallus (Chicken),1 . . . 756739/766756 aa.(96%)


[0565] PFam analysis predicts that the NOV39a protein contains the domains shown in the Table 39F.
214TABLE 39FDomain Analysis of NOV39aPfamNOV39aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValuepkinase159 . . . 38084/235 (36%) 2.8e−51170/235 (72%) pkinase452 . . . 47910/31 (32%)2.7e−0522/31 (71%)



Example 40

[0566] The NOV40 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 40A.
215TABLE 40ANOV40 Sequence AnalysisSEQ ID NO: 1711186 bpNOV4a,GATGTCCGGCTGGAGCTGTCGCCTCCGCCGCCGCTGCTGCCGGTGCCGGTTGTGAGCGGGTCTCCAGCG96714-01DNA SequenceTCGGCTCCTCTGGGCGTCTCATGGCCTCTAGCAGCTCCCTGGTGCCCGACCGGCTGCGCCTGCCGCTCTGCTTCCTGGGTGTCTTTGTCTGCTATTTTTACTATCGGATCCTGCAGGAAAAGATAACAAGAGGAAAGTATGGGGAAGGAGCCAAGCAGGAGACGTTCACCTTTGCCTTAACTTTGGTCTTCATTCAATGTGTGATCAATGCTGTGTTTGCCAAGATCTTGATCCAGTTTTTTGACACTGCCACGGTGGATCGTACCCGGAGCTGGCTCTATGCTGCCTGTTCTATCTCCTATCTGGGTGCCATGGTCTCCAGCAATTCAGCACTACAGTTTGTCAACTACCCAACTCAGGTCCTTCGTAAATCCTGCAAGCCAATCCCAGTCATGCTCCTTGGGGTGACCCTCTTGAAGAAGAAGTACCCGTTGGCCAAGTACCTGTGTGTGCTGTTAATTGTGGCTGGAGTGGCCCTTTTCATGTACAAACCCAAGAAAGTTGTTGGGATAGAAGAACACACAGTCGGCTATGGAGAGCTACTCTTGCTATTATCGCTGACCCTCGATGGACTGACTGGTGTTTCCCAGGACCACATGCGGGCTCATTACCAAACAGGCTCCAACCACATGATGCTGAACATCAACCTTTGGTCGACATTGCTGCTGCGAATGGGAATCCTGTTCACTGGGGAGCTCTGGGAGTTCTTGAGCTTTGCTGAAAGGTACCCTGCCATCATCTATAACATCCTGCTCTTTGGGCTGACCAGTGCCCTGGGTCAGAGCTTCATCTTTATGACGCTTGTGTATTTTGGTCCCCTGACCTGCTCCATCATCACTACAACTCGAAAGTTCTTCACAATTTTGGCCTCTGTGATCCTCTTCGCCAATCCCATCAGCCCCATGCAGTGGGTGGGCACTGTGCTTGTGTTCCTGGGTCTTGGTCTTGATGCCAAGTTTGGGAAAGGACCTAAGAAGACATCCCACTAGGAAGAGAGAGACTACCTCCACATCAAGAATATTTAAGTTATTATCTCAAACAGTGACATCTCTTGGGAAAATGGACTTAATAGGAATATGGGACTGAGTTCCAGTCTTTTTTAATAAAATAAAATCAAGCORF Start: ATG at 88ORF Stop: TAG at 1054SEQ ID NO: 172322 aaMW at 35759.2kDNOV40a,MASSSSLVPDRLRLPLCFLGVFVCYFYYGILQEKITRGKYGEGAKQETFTFALTLVFIQCVINAVFACG96714-01Protein SequenceKILIQFFDTARVDRTRSWLYAACSISYLGAMVSSNSALQFVNYPTQVLGKSCKPIPVMLLGVTLLKXKYPLAKYLCVLLIVAGVALFMYKPKKVVGIEEHTVGYGELLLLLSLTLDGLTGVSQDHMRAHYQTGSNHMMLNINLWSTLLLGMGILFTGELWEFLSFAERYPAIIYNILLFGLTSALGQSFIFMTVVYFGPLTCSIITTTRKFFTILASVILFANPISPMQWVGTVLVFLGLGLDAKFGKGAKKTSHSEQ ID NO: 1731340 bpNOV40b,ATTNNAAGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAAC212778987 DNASequenceTAGAGAACCCACTGCTTACTCGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGCATCCACTAGTCCAGTGTGGTGGAATTCCACCATCGCCTCTAGCAGCTCCCTGGTGCCCGACCGGCTGCGCCTCCCCCTCTGCTTCCTGGGTGTCTTTGTCTGCTATTTTTACTATGGGATCCTGCAGGAAAAGATAACAAGAGGAAAGTATGCGGAAGGAGCCAAGCAGGAGACGTTCACCTTTGCCTTAACTTTGGTCTTCATTCAATGTGTGATCAATGCTGTGTTTGCCAAGATCTTGATCCAGTTTTTTGACACTGCCAGGGTGGATCGTACCCGGAGCTGGCTCTATGCTGCCTGTTCTATCTCCTATCTGGGTGCCATOGTCTCCAGCAATTCAGCACTACAGTTTGTCAACTACCCAACTCAGGTCCTTGGTAAATCCTGCAAGCCAATCCCAGTCATGCTCCTTGGGGTGACCCTCTTGAAGAAGAAGTACCCGTTCGCCAAGTACCTGTGTGTGCTGTTAATTGTGGCTGGAGTGGCCCTTTTCATGTACAAACCCAAGAAAGTTGTTGGGATAGAAGAACACACAGTCGGCTATGGACAGCTACTCTTGCTATTATCGCTGACCCTGGATGGACTGACTGGTGTTTCCCAGGACCACATGCGGGCTCATTACCAAACAGGCTCCAACCACATGATGCTGAACATCAACCTTTCCTCGACATTGCTGCTGGGAATGGGAATCCTGTTCACTGGGGAGCTCTGGGAGTTCTTGAGCTTTGCTGAAAGGTACCCTGCCATCATCTATAACATCCTGCTCTTTGGGCTGACCAGTGCCCTGGGTCAGAGCTTCATCTTTATGACGGTTGTGTATTTTGGTCCCCTGACCTGCTCCATCATCACTACAACTCGAAAGTTCTTCACAATTTTGGCCTCTGTGATCCTCTTCGCCAATCCCATCAGCCCCATGCAGTGGGTGGGCACTGTGCTTGTGTTCCTGGGTCTTGGTCTTGATGCCAAGTTTGGGAAAGGAGCTAAGAAGACATCCCACTAGGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGORF Start: at 119ORF Stop: TAG at 1166SEQ ID NO: 174349 aaMW at 38719.5kDNOV40b,GDPSWLAFKLKLGTELGSTSPVWWNSTMASSSSLVPDRLRLPLCFLGVFVCYFYYGILQEKITRGKY212778987Protein SequenceGEGAKQETFTFALTLVFIQCVINAVFAKILIQFFDTARVDRTRSWLYAACSISYLGAMVSSNSALQFVNYPTQVLGKSCKPIPVMLLGVTLLKKKYPLAKYLCVLLIVAGVALFMYKPKKVVGIEEHTVGYGELLLLLSLTLDGLTGVSQDHMRAHYQTGSNHMMLNINLWSTLLLGMGILFTGELWEFLSFAERYPAIIYNILLFGLTSALGQSFIFMTVVYFGPLTCSIITTTRKFFTILASVILFANPISPMQWVGTVLVFLGLGLDAKFGKGAKKTSHSEQ ID NO: 1751025 bpNOV40c,GGTCTCCAGTCGGCTCCTCTGGGCGTCTCATGGCCTCTAGCAGCTCCCTGGTGCCCGACCGGCTGCCCG96714-02DNA SequenceCCTGCCGCTCTGCTTCCTGGGTGTCTTTGTCTGCTATTTTTACTATGGGATCCTGCAGGAAAAGATAACAAGAGGAAAGTATGGGGAAGGAGCCAAGCAGGAGACGTTCACCTTTGCCTTAACTTTGGTCTTCATTCAATGTGTGATCAATGCTGTGTTTGCCAAGATCTTGATCCAGTTTTTTGACACTGCCAGGGTGGATCGTACCCGGAGCTGGCTCTATGCTGCCTGTTCTATCTCCTATCTGGGTCCCATGGTCTCCAGCAATTCAGCACTACAGTTTGTCACTACCCAACTCAGGTCCTTGGTAAATCCTGCAAGCCAATCCCATGTCATGCTCCTTGGGGTGACCCTCTTGAAGAAGAAGTACCCGTTGGCCAAGTACCTGTGTGTGCTGTTAATTGTGGCTGGAGTGGCCCTTTTCATGTACAAACCCAAGAAAGTTGTTGGGATAGAAGAACACACAGTCGGCTATGGAGAGCTACTCTTGCTATTATCGCTGACCCTGGATGGACTGACTGGTGTTTCCCAGGACCACATGCGGGCTCATTACCAAACAGCCTCCAACCACATGATGCTGAACATCAACCTTTGGTCGACATTGCTGCTGGGAATGGGAATCCTGTTCACTGGGGAGCTCTGGGAGTTCTTGAGCTTTGCTGAAAGGTACCCTGCCATCATCTATAACATCCTGCTCTTTCGGCTGACCAGTGCCCTGGGTCAGAGCTTCATCTTTATGACGGTTGTGTATTTTGGTCCCCTGACCTGCTCCATCATCACTACAACTCGAAAGTTCTTCACAATTTTGGCCTCTGTGATCCTCTTCGCCAATCCCATCAGCCCCATGCAGTGGGTGGGCACTGTGCTTGTGTTCCTGGGTCTTGGTCTTGATGCCAAGTTTGGGAAAGGAGCTAAGAAGACATCCCACTAGGAAGAGAGAGACTACCTCCACATCAAGORF Start: ATG at 30ORF Stop: TAG at 996SEQ ID NO: 176322 aaMW at 35759.2kDNOV4Oc,MASSSSLVPDRLRLPLCFLGVFVCYFYYGILQEKITRGKYGEGAKQETFTFALTLVFIQCVINAVFACG96714-02Protein SequenceKILIQFFDTARVDRTRSWLYAACSISYLGAMVSSNSALQFVNYPTQVLGKSCKPIPVMLLGVTLLKKKYPLAKYLCVLLIVAGVALFMYKPKKVVGIEEHTVGYGELLLSLTLDGLTGVSQDHHYERAHYQTGSNHMMLNINLWSTLLLGMGILFTGELWEFLSFAERYPAIIYNILLFGLTSALGQSFIFMTVVYFGPLTCSIITTTRKFFTILASVILFANPISPMQWVGTVLVFLGLGLDAXFGKGAKKTSHSEQ ID NO: 177975 bpNOV4Od,CCAGAATTCCACCATGGCCTCTAGCACCTCCCTGGTGCCCGACCGGCTGCGCCTGCCGCTCTGCTTC190235426 DNASequenceCTGGGTGTCTTTGTCTGCTATTTTTACTATGGGATCCTGCAGGAAAAGATAACAAGAGGAAAGTATGGGGAAGGAGCCAAGCAGGAGACGTTCACCTTTGCCTTAACTTTGGTCTTCATTCAATGTGTGATCAATGCTGTGTTTGCCAAGATCTGGTGGATCGTACCCGGAGCTGGCTCTATGCTGCCTGTTCTATCTCCTATCTGGGTGCCATGGTCTCCAGCAATTCAGCACTACAGTTTGTCAACTACCCAACTCAGGTCCTTGGTAAATCCTGCAAGCCAATCCCAGTCATGCTCCTTGGGGTGACCCTCTTGAAGAAGAAGTACCCGTTGGCCAAGTACCTGTGTGTGCTGTTAATTGTGCCTGGAGTGGCCCTTTTCATGTACAAACCCAAGAAAGTTGTTGGGATAGAAGAACACACAGTCGGCTATGGAGAGCTACTCTTGCTATTATCGCTGACCCTGGATGGACTGACTAGTGTTTCCCAGGACCACATGCGGGCTCATTACCAAACAGGCTCCAACCACATGATGCTGAACATCAACCTTTGGTCGACATTGCTGCTGGGAATGGGAATCCTGTTCACTGCGGAGCTCTGGGAGTTCTTGAGCTTTGCTGAAAGGTACCCTGCCATCATCTATAACATCCTGCTCTTTGGGCTGACCAGTGCCCTGGGTCAGAGCTTCATCTTTATGACGGTTGTGTATTTTGGTCCCCTGACCTGCTCCATCATCACTACAACTCGAAAGTTCTTCACAATTTTGGCCTCTGTGATCCTCTTCGCCAATCCCATCAGCCCCATGCAGTGGGTGGGCACTGTGCTTGTGTTCCTTGGTCTTGGTCTTGATGCCAAGTTTGGGAAAGGAGCTAAGAAGACATCCCACTAGGCGCCCCCTTTTTTCCTTORF Start: at 25ORF Stop: TAG at 955SEQ ID NO: 178310 aaMW at 34026.1kDNOV4Od,QLPGARPAAPAALLPGCLCLLFLLWDPAGKDNXRKVWGRSQAGDVELCLNFGLHSMCDQCCVCQDLV190235426Protein SequenceDRTRSWLYAACSISYLGAMVSSNSALQFVNYPTQVLGKSCKPIPVMLLGVTLLKKKYFLAKYLCVLLIVAGVALFNYKPKKVVGTEEHTVGYGELLLLLSLTLDGLTGVSQDHMRAHYQTGSNHMMLNTNLWSTLLLGMGILFTGELWEFLAFAERYPAIIYNILLFGLTSALGQSFIFMTVVYFGPLTCSIITTTRKFFTILASVILFANPISPMQWVGTVLVFLGLGLDAKFGKGAIKKTSHSEQ ID NO: 1791025 bpNOV40e,GGTCTCCAGTCGGCTCCTCTGGGCGTCTCATGGCCTCTAGCAGCTCCCTGGTGCCCGACCGGCTGCGCG96714-03DNA SequenceCCTGCCGCTCTGCTTCCTGGGTGTCTTTGTCTGCTATTTTTACTATGGGATCCTGCAGGAAAAGATAACAAGAGGAAAGTATGGGGAAGGAGCCAAGCAGGAGACGTTCACCTTTGCCTTAACTTTGGTCTTCATTCAATGTGTGATCAATGCTGTGTTTGCCAAGATCTTGATCCAGTTTTTTGACACTGCCACGGTGGATCGTACCCGGAGCTGGCTCTATGCTGCCTGTTCTATCTCCTATCTGGGTGCCATGGTCTCCAGCAATTCAGCACTACAGTTTGTCAACTACCCAACTCAGGTCCTTGGTAAATCCTGCAAGCCAATCCCAGTCATGCTCCTTGGGGTGACCCTCTTGAAGAAGAAGTACCCGTTGGCCAAGTACCTGTGTGTGCTGTTAATTGTGGCTGGAGTGGCCCTTTTCATGTACAAACCCAAGAAAGTTGTTGGGATAGAAGAACACACAGTCGGCTATGGAGAGCTACTCTTGCTATTATCGCTGACCCTGGATGGACTGACTGGTGTTTCCCAGGACCACATGCGGGCTCATTACCAAACAGGCTCCAACCACATGATGCTGAACATCAACCTTTGGTCGACATTGCTGCTGGGAATGGGAATCCTGTTCACTGGCGAGCTCTGGGAGTTCTTGAGCTTTGCTGAAAGGTACCCTGCCATCATCTATAACATCCTGCTCTTTGGGCTGACCAGTGCCCTGGGTCAGAGCTTCATCTTTATGACGGTTGTGTATTTTGGTCCCCTGACCTGCTCCATCATCACTACAACTCGAAAGTTCTTCACAATTTTGGCCTCTGTGATCCTCTTCGCCAATCCCATCAGCCCCATGCAGTCGGTGGGCACTGTGCTTGTGTTCCTGGGTCTTGGTCTTGATGCCAAGTTTCGGAAAGGAGCTAAGAAGACATCCCACTAGGAAGAGAGAGACTACCTCCACATCAAGORF Start: ATG at 30ORF Stop: TAG at 996SEQ ID NO: 180322 aaMW at 35759.2kDNOV40e,MASSSSLVPDRLRLPLCFLGVFVCYFYYGILQEKITRGKYGEGAKQETFTFALTLVFIQCVINAVFACG96714-03Protein SequenceKILIQFFDTARVDRTRSWLYAACSISYLGAMVSSNSALQFVNYPTQVLGKSCKPIPVMLLGVTLLKKKYPLAKYLCVLLIVALVALFMYKPKKVVGIEEHTVGYGELLLLLSLTLDGLTGVSQDHMRAHYQTGSNHMMLNINLWSTLLLGMGILFTGELWEFLSFAERYPAIIYNILLFGLTSALGQSFIFMTVVYFGPLTCSIITTTRKFFTILASVILFANPISPMQWVGTVLVFLGLGLDAKFGKGAKKTSH


[0567] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 40B.
216TABLE 40BComparison of NOV40a against NOV40b through NOV40e.ProteinNOV40a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV40b1 . . . 322284/322 (88%)28 . . . 349 284/322 (88%)NOV40c1 . . . 322284/322 (88%)1 . . . 322284/322 (88%)NOV40d81 . . . 322 204/242 (84%)69 . . . 310 204/242 (84%)NOV40e1 . . . 322284/322 (88%)1 . . . 322284/322 (88%)


[0568] Further analysis of the NOV40a protein yielded the following properties shown in Table 40C.
217TABLE 40CProtein Sequence Properties NOV40aPSort0.6850 probability located in endoplasmic reticulumanalysis:(membrane); 0.6400 probability located in plasmamembrane; 0.4600 probability located in Golgi body;0.1000 probability located in endoplasmic reticulum (lumen)SignalPCleavage site between residues 68 and 69analysis:


[0569] A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 40D.
218TABLE 40DGeneseq Results for NOV40aNOV40aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAB43476Human cancer associated1 . . . 322 322/322 (100%)0.0protein sequence SEQ ID51 . . . 372  322/322 (100%)NO:921 - Homo sapiens, 372aa. [WO200055350-A1,21 SEP. 2000]ABG25333Novel human diagnostic30 . . . 220 184/191 (96%) e−103protein #25324 - Homo114 . . . 304 187/191 (97%)sapiens, 846 aa.[WO200175067-A2,11 OCT. 2001]ABB61815Drosophila melanogaster8 . . . 317159/315 (50%)1e−84polypeptide SEQ ID NO3 . . . 316212/315 (66%)12237 - Drosophilamelanogaster, 338 aa.[WO200171042-A2,27 SEP. 2001]AAG04835Arabidopsis thaliana protein1 . . . 307114/315 (36%)3e−44fragment SEQ ID NO: 1012 -1 . . . 311171/315 (54%)Arabidopsis thaliana, 329 aa.[EP1033405-A2,06 SEP. 2000]AAG07182Arabidopsis thaliana protein12 . . . 307 101/302 (33%)5e−41fragment SEQ ID NO: 4238 -12 . . . 311 161/302 (52%)Arabidopsis thaliana, 332 aa.[EP1033405-A2,06 SEP 2000]


[0570] In a BLAST search of public sequence datbases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40E.
219TABLE 40EPublic BLASTP Results for NOV40aNOV40aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP78383UGTrel1 - Homo sapiens1 . . . 322 322/322 (100%)0.0(Human), 322 aa.1 . . . 322 322/322 (100%)Q96EW7Similar to UDP-galactose1 . . . 322321/322 (99%)0.0transporter related - Homo1 . . . 322321/322 (99%)sapiens (Human), 322 aa.CAD33236Putative endoplasmic1 . . . 322314/322 (97%)0.0reticulum nucleotide sugar34 . . . 355 320/322 (98%)transporter - Bos taurus(Bovine), 355 aa.P70639UGTrel1 - Rattus rattus1 . . . 322309/322 (95%)e−179(Black rat), 322 aa.1 . . . 322316/322 (97%)P97858UGTREL1 (Solute carrier1 . . . 322308/322 (95%)e−178family 35 (UDP-galactose1 . . . 322315/322 (97%)transporter), member 2) -Mus musculus (Mouse), 322aa.


[0571] PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40F.
220TABLE 40FDomain Analysis of NOV40aPfamNOV40aIdentities/SimilaritiesExpectDomainMatch Regionfor the Matched RegionValueDUF623 . . . 15625/140 (18%)0.04997/140 (69%)DUF6181 . . . 312 29/135 (21%)0.00691/135 (67%)



Example 41

[0572] The NOV41 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 41A.
221TABLE 41ANOV41 Sequence AnalysisSEQ ID NO: 1811650 bpNOV41a,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAAAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAACATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGCGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCACAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAACGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTCGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 182520 aaMW at 57293.0kDNOV41a,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAXMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYXPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFMSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNWITSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENIKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSMIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1831650 bpNOV41b,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGCCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGCGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTCGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTTTATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCACAACCTGAAGCAGCTGTCATTAGTAATGCGGAACATTATGATACTCTCTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGCAACAGTTGGORE Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 184520 aaMW at 57293.0kDNOV41b,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHNQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMTKHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1851650 bpNOV41c,CCTTCACACAOCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTCGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTCCCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTCGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTACGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTCCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAGGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 186520 aaMW at 57293.0kDNOV41c,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDNLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDHNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYCSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMXLREDTHHLTNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHI PSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1871593 bpNOV41d,CCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGAGA254869578 DNASequenceTCTATTTTCCTTCTCAATATGTTGATCAAGCAGACTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATACCATTCGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGACACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAaxAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGCAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTCGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTCGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1558SEQ ID NO: 188519 aaMW at 57161.8kDNOV41d,PGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSL254869578Protein SequenceCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIECIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYXPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENNKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1891650 bpNOV41e,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCACAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAACTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGCCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTCTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGCAGTTGGAGCAGTAGCTCTGCTAATTCGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCACTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGCCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTOAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCCGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTCAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 190520 aaMW at 57293.OkDNOV41e,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQHRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1911601 bpNOV41f,CACCGGTCTCACATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAA253174237 DNASequenceTTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAATATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTCCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAACGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTCGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTCCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGCCCGCAAGORF Start: at 1ORF Stop: TAA at 1588SEQ ID NO: 192529 aaMW at 58496.2kDNOV41f,HRSHMPGSLPLNAEACWPKDVGIVALETYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDRE253174237ProteinDINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYSequenceCGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKECNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENHKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHHHSEQ ID NO: 1931650 bpNOV41g,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGTGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTIGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTCGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACCCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTCGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 194520 aaMW at 57293.0kDNOV41g,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRCTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFHKASSELFSQKTKASLLVSNQMGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENHKLREDTHHLVNYIPQGSIDSLFEGTWYLTRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHI PSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1951608 bpNOV41h,CCTCGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGAGA256420363 DNASequenceTCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGCCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTCGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATCCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGCAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTCGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATCGAAATATGTACACATCTTCAGTATATGGTTCCCTTCCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAATACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTCCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1573SEQ ID NO: 196524 aaMW at 57847.5kDNOV41h,PGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSL256420363Protein SequenceCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNKKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMXASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENHKLREDTHHLVNYIPQGSDSLFEGTWYLVRXTDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHGHSEQ ID NO: 1971650 bpNOV41j,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGCAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTCTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGCGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCACTAGCTCTCCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAGATTTTACCTTGAATCAATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCCGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAATAATGGAAATTGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCTAGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGGTGACGTCCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 198520aaMW at 57293.0kDNOV41i,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAXMGFCTDREDINSCG97025-01ProteinLCNTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYCGTASequenceAVFNAWIEWSSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGTLRGTHMQHAYDFYKPDNLSEYPTVDGKLSTQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAWYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 1991612 bpNOV41j,ACATCATCACCACCATCACCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTG255667064 DNASequenceGGAATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGOACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGACGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATCAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 2ORF Stop: TAA at 1577SEQ ID NO: 200525 aaMW at 57984.6kDNOV41j,HHHHHHPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLCQAXMGFCTDR255667064ProteinEDINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACSequenceYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATFGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 2011650 bpNOV41k,CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGCG97025-01DNA SequenceATGTTGGGATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAATGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGATCGACACAACTAAGTGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGCTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACACTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGCGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATCACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGCGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 202520 aaMW at 57293.0kDNOV41k,MPGSLPLNAFiACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-01Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMSQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTNNMQHAYDFYKPDMLSEYPIVDGGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNFKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSGQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPKGSALDKITASLCDLKSRLDSRTGVAPDVFAENMHREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEGKKHRRTYARRPTPNDDTLDEGVGLVHSNVTATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 2031564 bpNOV41L,CATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTT228832739 DNASequenceGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGCAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGACGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAOGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAOGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAORF Start: ATG at 2ORF Stop: TAA at 1562SEQ ID NO: 204520 aaMW at 57293.0kDNOV41l,NPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINS228832739ProteinLCMTVVQNLMERTTHTHSYDCIGRLEVGTETDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTASequenceAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMXASSELFSQKTKASLASLCDLKSRLDSRTGVAPDVFAENNKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 2051650 bpNOV41m,+E,unc CCTTCACACAGCTCTTTCACCATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAACG97025-02DNA SequenceAAATATGATGGTGTAGATGCTGGGAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAOTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTCGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGCATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATCCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGGAAACTCTCCATACACTGCTACCTCAGTGCATTAGACCGCTGCTATTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATTTCGAGAAGGCATTTATGAAGOCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGACGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGATACTCTGTGAGGTGCAAGACTTCAGGGTGGGGTGGGCATGGGGTGGGGGTATGGGAACAGTTGGORF Start: ATG at 22ORF Stop: TAA at 1582SEQ ID NO: 206520 aaMW at 57293.0kDNOV41m,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAXMGFCTDREDINCG97025-02Protein SequenceSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPCSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLXTHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 2071564 bpNOV41n,CATGCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAACATGTGGGAATTGTTGCCCTTCG97025-03DNA SequenceGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGGAAAGTATACCATTGGCTTCGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGCCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAGGAATCGACACAACTAATGCATGCTATGGAaGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGCAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGCATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAACGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTCTTTTCTTATCGTTCTCGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCACAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAACACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAORF Start: ATG at 2ORF Stop: TAA at 1562SEQ ID NO: 208520 aaMW at 57293.0kDNOV41n,MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSCG97025-03Protein SequenceLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWTESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVXLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENNKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO: 2091612 bpNOV41o,ACATCATCACCACCATCACCCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGCG97025-04DNA SequenceGGAATTGTTGCCCTTGAGATCTATTTTCCTTCTCAATATGTTGATCAAGCAGAGTTGGAAAAATATGATGGTGTAGATGCTGCAAAGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATOGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAACACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGATGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTGGGATGGACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGCCCAAATGCTCCTTTAATTTTTGAACGAGGGCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTACACCGCTGCTACTCTGTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCCGATGTTCCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAACGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGTACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTCGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGGGTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATTAAGCTCAOAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCAGAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORE Start: at 2ORF Stop: TAA at 1577SEQ ID NO: 210525 aaMW at 57984.6kDNOV41o,HHHHHHPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDRCG97025-04Protein SequenceEDINSLCMTVVQNLMERNIThSYDCIGRLEVGTETHDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTCGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDHDFTLNDFGFMIFHSPYCKLVQKSLARHLLNDFLNDQNRDKNSIYSCLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNONMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHSEQ ID NO:2111608 bpNOV41p,CCTGGATCACTTCCTTTGAATGCAGAAGCTTGCTGGCCAAAAGATGTGGGAATTGTTGCCCTTGAGACG97025-05DNA SequenceGTATACCATTGGCTTGGGCCAGGCCAAGATGGGCTTCTGCACAGATAGAGAAGATATTAACTCTCTTTGCATGACTGTGGTTCAGAATCTTATGGAGAGAAATAACCTTTCCTATGATTGCATTGGGCGGCTGGAAGTTGGAACAGAGACAATCATCGACAAATCAAAGTCTGTGAAGACTAATTTGATGCAGCTGTTTGAAGAGTCTGGGAATACAGATATAGAAGGAATCGACACAACTAATGCATGCTATGGAGGCACAGCTGCTGTCTTCAATGCTGTTAACTGGATTGAGTCCAGCTCTTCGCATGCACGGTATGCCCTGGTAGTTGCAGGAGATATTGCTGTATATGCCACAGGAAATGCTAGACCTACAGGTGGAGTTGGAGCAGTAGCTCTGCTAATTGGGCCAAATGCTCCTTTAATTTTTGAACGAGGCCTTCGTGGGACACATATGCAACATGCCTATGATTTTTACAAGCCTGATATGCTATCTGAATATCCTATAGTAGATGGAAAACTCTCCATACAGTGCTACCTCAGTGCATTAGACCGCTGCTACTCTCTCTACTGCAAAAAGATCCATGCCCAGTGGCAGAAAGAGGGAAATGATAAAGATTTTACCTTGAATGATTTTGGCTTCATGATCTTTCACTCACCATATTGTAAACTGGTTCAGAAATCTCTAGCTCGGATGTTGCTGAATGACTTCCTTAATGACCAGAATAGAGATAAAAATAGTATCTATAGTGGCCTGGAAGCCTTTGGGGATGTTAAATTAGAAGACACCTACTTTGATAGAGATGTGGAGAAGGCATTTATGAAGGCTAGCTCTGAACTCTTCAGTCAGAAAACAAAGGCATCTTTACTTGTATCAAATCAAAATGGAAATATGPACACATCTTCAGTATATGGTTCCCTTGCATCTGTTCTAGCACAGTACTCACCTCAGCAATTAGCAGGGAAGAGAATTGGAGTGTTTTCTTATGGTTCTGGTTTGGCTGCCACTCTGTACTCTCTTAAAGTCACACAAGATGCTACACCGGCTTCTGCTCTTGATAAAATAACAGCAAGTTTATGTGATCTTAAATCAAGGCTTGATTCAAGAACTGGTGTGGCACCAGATGTCTTCGCTGAAAACATGAAGCTCAGAGAGGACACCCATCATTTGGTCAACTATATTCCCCAGGGTTCAATAGATTCACTCTTTGAAGGAACGTGGTACTTAGTTAGGGTGGATGAAAAGCACAGAAGAACTTACGCTCGGCGTCCCACTCCAAATGATGACACTTTGGATGAAGGAGTAGGACTTGTGCATTCAAACATAGCAACTGAGCATATTCCAAGCCCTGCCAAGAAAGTACCAAGACTCCCTGCCACAGCAGCACAACCTGAAGCAGCTGTCATTAGTAATGGGGAACATCATCACCACCATCACTAAGCGGCCGCACTCGAGCACCACCACCACCACCACORF Start: at 1ORF Stop: TAA at 1573SEQ ID NO: 212524 aaMW at 57847.5kDNOV41p,PGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCG97025-05Protein SequenceCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFGKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEHHHHHH


[0573] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 41B.
222TABLE 41BComparison of NOV41a against NOV41b through NOV41p.ProteinNOV41a Residues/Identities/SimilaritiesSequenceMatch Residuesfor the Matched RegionNOV41b1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41c1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41d2 . . . 520519/519 (100%)1 . . . 519519/519 (100%)NOV41e1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41f1 . . . 520520/520 (100%)5 . . . 524520/520 (100%)NOV41g1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41h2 . . . 520519/519 (100%)1 . . . 519519/519 (100%)NOV41i1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41j2 . . . 520519/519 (100%)7 . . . 525519/519 (100%)NOV41k1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41l1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41m1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41n1 . . . 520520/520 (100%)1 . . . 520520/520 (100%)NOV41o2 . . . 520519/519 (100%)7 . . . 525519/519 (100%)NOV41p2 . . . 520519/519 (100%)1 . . . 519519/519 (100%)


[0574] Further analysis of the NOV41a protein yielded the following properties shown in Table 41C.
223TABLE 41CProtein Sequence Properties NOV41aPSort0.3000 probability located in microbody (peroxisome); 0.3000analysis:probability located in nucleus; 0.1000 probability located inmitochondrial matrix space; 0.1000 probability located inlysosome (lumen)SignalPNo Known Signal Sequence Predictedanalysis:


[0575] A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 41D.
224TABLE 41DGeneseq Results for NOV41aNOV41aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent#, Date]ResiduesMatched RegionValueAAW32222Avian1 . . . 520438/522 (83%)0.03-hydroxy-2-methylglutaryl-1 . . . 522476/522 (90%)CoA synthase - Aves, 522 aa.[US5668001-A,16 SEP. 1997]AAM79853Human protein SEQ ID NO4 . . . 470315/467 (67%)0.03499 - Homo sapiens, 518 aa.51 . . . 517 387/467 (82%)[WO200157190-A2,09 AUG. 2001]AAM78869Human protein SEQ ID NO4 . . . 470315/467 (67%)0.01531 - Homo sapiens, 508 aa.41 . . . 507 387/467 (82%)[WO200157190-A2,09 AUG. 2001]ABB66034Drosophila melanogaster13 . . . 471 294/459 (64%)e−170polypeptide SEQ ID NO5 . . . 459353/459 (76%)24894 - Drosophilamelanogaster, 465 aa.[WO200171042-A2,27 SEP. 2001]ABB60545Drosophila melanogaster13 . . . 471 294/459 (64%)e−170polypeptide SEQ ID NO5 . . . 459353/459 (76%)8427 - Drosophilamelanogaster, 465 aa.[WO200171042-A2,27 SEP. 2001]


[0576] In a BLAST search of public sequence datbases, the NOV41 a protein was found to have homology to the proteins shown in the BLASTP data in Table 41E.
225TABLE 41EPublic BLASTP Results for NOV41aNOV41aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueQ01581Hydroxymethylglutaryl-CoA1 . . . 520 520/520 (100%)0.0synthase, cytoplasmic (EC1 . . . 520 520/520 (100%)4.1.3.5) (HMG-CoA synthase)(3-hydroxy-3-methylglutarylcoenzyme A synthase) -Homo sapiens (Human), 520aa.S27197hydroxymethylglutaryl-CoA1 . . . 518513/518 (99%)0.0synthase (EC 4.1.3.5),1 . . . 518514/518 (99%)cytosolic, fibroblast isoform -human, 520 aa.BAC04559CDNA FLJ38173 fis, clone1 . . . 520509/520 (97%)0.0FCBBF1000053, highly1 . . . 509509/520 (97%)similar toHYDROXYMETHYLGLUTARYL-COA SYNTHASE,CYTOPLASMIC(EC 4.1.3.5) - Homosapiens (Human), 509 aa.P17425Hydroxymethylglutaryl-CoA1 . . . 520493/520 (94%)0.0synthase, cytoplasmic (EC1 . . . 520508/520 (96%)4.1.3.5) (HMG-CoA synthase)(3-hydroxy-3-methylglutarylcoenzyme A synthase) -Rattus norvegicus (Rat), 520aa.P13704Hydroxymethylglutaryl-CoA1 . . . 520495/520 (95%)0.0synthase, cytoplasmic (EC1 . . . 520506/520 (97%)4.1.3.5) (HMG-CoA synthase)(3-hydroxy-3-methylglutarylcoenzyme A synthase) -Cricetulus griseus (Chinesehamster), 520 aa.


[0577] PFam analysis predicts that the NOV41a protein contains the domains shown in the Table 41F.
226TABLE 41FDomain Analysis of NOV41aIdentities/SimilaritiesNOV41afor thePfam DomainMatch RegionMatched RegionExpect ValueHMG_CoA_synt13 . . . 469334/461 (72%)0434/461 (94%)



Example 42

[0578] The NOV42 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 42A.
227TABLE 42ANOV42 Sequence AnalysisSEQ ID NO: 2131380 bpNOV42a,CAGCAGCATGCGGGGGTTGCTGGTGTTGAGTGTCCTGTTGGGGGCTGTCTTTGGCAAGGAGGACTTTCG97955-01DNA SequenceGTGGGGCATCAGGTGCTCCGAATCTCTGTAGCCGATGAGGCCGACAGGTACAGAATGAAGGAGCTGGAGGACCTGGAGCACCTGCAGCTGGACTTCTGGCGGGGGCCTGCCCACCCTGGCTCCCCCATCGACGTCCGAGTGCCCTTCCCCAGCATCCAGGCGGTCAAGATCTTTCTGGAGTCCCACGGCATCAGCTATGACACCATGATCGAGGACGTGCAGTCGCTGCTGGACGAGGAGCAGGAGCAGATGTTCGCCTTCCGGTCCCGGGCGCGCTCCACCGACACTTTTAACTACGCCACCTACCACACCCTGGAGGAGATCTATGACTTCCTCGACCTGCTGGTGGCGGAGAACCCGCACCTTGTCAGCAAGATCCAGATTGGCAACACCTATGAAGGGCGTCCCATTTATGTGCTGAAGTTCAGCACGGGGGGCAGTAAGCGTCCAGCCATCTGGATCGACACGGGCATCCATTCCCGGGAGTGGGTCACCCAGGCCAGTGGGGTCTGGTTTGCAAAGAAGATCACTCAAGACTATGGGCAGGATGCAGCTTTCACCGCCATTCTCGACACCTTGGACATCTTCCTGGAGATCGTCACCAACCCTGATGGCTTTGCCTTCACGCACAGCACGAATCGCATGTGGCGCAAGACTCGGTCCCACACAGCAGGCTCCCTCTGTATTGGCGTGGACCCCAACAGGAACTGGGACGCTGGCTTTGGGTTGTCCGGAGCCAGCAGTAACCCCTGCTCGGAGACTTACCACGGCAAGTTTGCCAATTCCGAAGTGGAGGTCAAGTCCATTGTAGACTTTGTGAAGGACCATGGGAACATCAAGGCCTTCATCTCCATCCACAGCTACTCCCAGCTCCTCATGTATCCCTATGGCTACAAAACAGAACCAGTCCCTGACCAGGATGAGCTGGATCAGCTTTCCAAGGCTGCTGTGACAGCCCTGGCCTCTCTCTACGGGACCAAGTTCAACTATGGCAGCATCATCAAGGCAATTTATCAAGCCAGTGGAAGCACTATTGACTGGACCTACAGCCAGGGCATCAAGTACTCCTTCACCTTCGACCTCCGGGACACTGGCCGCTATGGCTTCCTGCTGCCAGCCTCCCAGATCATCCCCACAGCCAAGGAGACGTGGCTGGCGCTTCTGACCATCATGGAGCACACCCTGAATCACCCCTACTGAGCTGACCCTTTGACACCCTTCTTGTCCTCCTCTCTGGCCCCATCCAGGCAACCAAATAAAGTTTGACTGTACCAGGAACAGAATCCTGGGGCTTGCAAAAAAAAAAAAAAAAAORF Start: ATG at 8ORF Stop: TGA at 1265SEQ ID NO: 214419 aaMW at 47139.7kDNOV42a,MRGLLVLSVLLGAVFGKEDFVGHQVLRISVADEAQVQKVKELEDLEHLQLDFWRCPAHPGSPIDVRVCG97955-01Protein SequencePFPSIQAVKIFLESHGISYETMIEDVQSLLDEEQEQMFAFRSRARSTDTFNYATYHTLEEIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTGGSKRPAIWIDTGIHSREWVTQASGVWFAKKITQDYGQDAAFTAILDTLDIFLEIVTNPDGFAFTHSTNRMWRKTRSHTAGSLCIGVDPNRNWDAGFGLSGASSNPCSETYHGKFANSEVEVKSTVDFVKDHGNIKAFISIHSYSOLLMYPYGYKTEPVPDODELDOLSKAAVTALASLYGTKFNYGSIIKAIYQASGSTIDWTYSQGIKYSFTFELRDTGRYGFLLPASQTIPTAKETWLALLTIMEHTLNHPYSEQ ID NO: 215821 bpNOV42b,GACCTTCCCTCCCGGCAGCAGCATGCGCGGGTTGCTGGTGTTGAGTGTCCTGTTGGGGGCTGTCTTTCG97955-03DNA SequenceGGCAAGGAGGACTTTGTGGGGCATCAGGTGCTCCGAATCTCTGTAGCCGATGAGCCCCAGGTACAGAAGGTGAAGGAGCTGGAGGACCTGGAGCACCTGCAGCTGGACTTCTGGCGGGGGCCTGCCCACCCTGCCTCCCCCATCGACGTCCGAGTGCCCTTCCCCAGCATCCAGGCGGTCAAGATCTTTCTGGAGTCCCACGGCATCAGCTATCAGACCATGATCGAGGACGTGCAGTCGCTTCTGGACGAGGAGCAGGAGCACATGTTCGCCTTCCGGTCCCGGGCGCGCTCCACCGACACTTTTAACTACGCCACCTACCACACCCTGGAGGAGATCTATGACTTCCTGGACCTGCTGGTGGCGGAGAACCCGCACCTTGTCAGCAAGATCCAGATTGGCAACACCTATGAAGGGCGTCCCATTTATGTGCTGAAGATCAAGCCAGTGGAAGCACTATTGACTGGACCTACAGCCAGGGCATCAAGTACTCCTTCACCTTCGAGCTCCGGGACACTGOGCGCTATGGCTTCCTGCTGCCAGCCTCCCAGATCATCCCCACAGCCAAGGAGACGTGGCTGGCGCTTCTGACCATCATGGAGCACACCCTGAATCACCCCTACTGACCTGACCCTTTGACACCCTTCTTGTCCTCCTCTCTGGCCCCATCCAGGCAACCAAATATAGTTTGAGTGTACCAGGAACAGAATCCTGGGGCTTGCAGGAAAAAAAAAAAGAAAAAAAAAAAAAAAAORF Start: ATG at 23ORF Stop: TGA at 656SEQ ID NO: 216211 aaMW at 23626.7kDNOV42b,MRGLLVLSVLLGAVEGKEDFVGHQVLRISVADEAQVQKVKELEDLEHLQLDFWRGPAHPGSPIDVRVCG97955-03Protein SequencePFPSIQAVRIFLESHGISYETMIEDVQSLLDEEQEQMFAFRSRARSTDTFNYATYHTLEEIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKIKPVEALLTGPTARASSTPSPSSSGTLGAMASCCQPPRSSPQPRRRGWRFSEQ ID NO:2171279 bpNOV42c,CACCGGATCCACCATGCGGGGGTTGCTGGTGTTGAGTGTCCTGTTGGGGGCTGTCTTTGGCAAGGAG308559628 DNASequenceGACTTTGTGGGGCATCAGGTGCTCCGAATCTCTGTAGCCGATGAGGCCCAGGTACAGAAGGTGAAGGAGCTGGAGGACCTGGAGCACCTGCAGCTGGACTTCTGGCGGGGGCCTGCCCACCCTGGCTCCCCCATCGACGTCCGAGTGCCCTTCCCCAGCATCCAGGCGGTCAAGATCTTTCTGGAGTCCCACGGCATCAGCTATGAGACCATGATCGAGGACGTGCAGTCGCTGCTGGACGACGAGCAGGAGCAGATGTTCGCCTTCCGGTCCCGGGCGCGCTCCACCGACACTTTTAACTACGCCACCTACCACACCCTGGAGGAGATCTATGACTTCCTGGACCTGCTGGTGGCGGAGAACCCGCACCTTGTCAGCAAGATCCAGATTGGCAACACCTATGAAGGGCGTCCCATTTACGTGCTCAAGTTCAGCACCCCGGGCAGTAAGCGTCCAGCCATCTGGATCGACACGGGCATCCATTCCCGGGAGTGGGTCACCCAGGCCAGTGGGGTCTGGTTTGCAAAGAACATCACTCAAGACTACGGGCAGGATGCAGCTTTCACCGCCATTCTCGACACCTTGGACATCTTCCTGGAGATCGTCACCAACCCTGATGQCTTTGCCTTCACGCACAGCACGAATCGCATGTGGCGCAAGACTCGGTCCCACACAGCAGGCTCCCTCTGTATTGGCGTGGACCCCAACAGGAACTGGGACGCTGGCTTTGGGTTGTCCGGAGCCAGCAGTAACCCCTGCTCGGAGACTTACCACGGCAAGTTTGCCATTTCCGAAGTGGAGGTCAAGTCCATTGTAGACTTTGTGAAGGACCATGGGAACATCAAGGCCTTCATCTCCATCCACAGCTACTCCCAGCTCCTCATGTATCCCTATGGCTACAAAACAGAACCAGTCCCTGACCACGATGAGCTGCATCAGCTTTCCAAGGCTGCTGTGACAGCCCTGGCCTCTCTCTACGGGACCAAGTTCAACTATGGCAGCATCATCAAGGCAATTTATCAAGCCAGTGGAAGCACTATTGACTGGACCTACAGCCAGGGCATCAAGTACTCCTTCACCTTCGAGCTCCGGGACACTGGGCGCTATGGCTTCCTGCTGCCAGCCTCCCAGATCATCCCCACAGCCAACGAGACGTGGCTGGCGCTTCTGACCATCATGGAGCACACCCTGAATCACCCCTACCTCGAGGGCORF Start: at 2ORF Stop: end of sequenceSEQ ID NO: 218426 aaMW at 47785.4kDNOV42c,TGSTNRGLLVLSVLLGAVFGKEDFVGHQVLRISVADEAQVQKXTKELEDLEHLQLDFWRGPAHPGSPI308559628Protein SequenceDVRVPFPSIQAVKIFLESHGISYETMIEDVQSLLDEEQEQIGFAFRSRAGSTDTFNYATYHTLEEIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTGGSKRPAIWIKDTGIHSREWVTQASGVWFAKKITQDYGQDAAFTAILDTLDIFLEIVTNPDGFAFTHSTNRMWRKTRSHTAGSLCIGVDRPNRNWDAGFGLSGASSNPCSETYHGKFANSEVEVKSIVDFVKDHGNIKAFISIHSYGSQLLMYPYGYKTEPVPDQDELDQLSKAAVTALASLYGTKFWYGSIIKAIYQASGSTIDWTYSQGTKYSFTFELRDTGRYGFLLPASQIHIPTAKETWLALLTIMEHTLNHPYLEGSEQ ID NO: 2191290 bpNOV42d,CTCATGAACACGAAGGCAGCAGCATGCGGGGGTTGCTGGTGTTGAGTGTCCTGTTGGGGGCTGTCTTCG97955-02DNA SequenceTGGCAAGGAGGACTTTGTGGCGCATCAGGTGCTCCGAATCTCTGTAGCCGATGAGGCCCAGGTACAGAAGGTGAAGGAGCTGGAGGACCTGGAGCACCTGCAGCTGGACTTCTGGCGGGGGCCTGCCCACCCCGGCTCCCCCATCGACGTCCGAGTGCCCTTCCCCAGCATCCAGGCGGTCAAGATCTTTCTGGAGTCCCACGGCATCAGCTATGAGACCATGATCGAGGACGTGCAGTCGCTGCTGGACGAGGAGCAGGAGCAGATGTTCGCCTTCCGGTCCCGGGCGCGCTCCACCGACACTTTTAACTACGCCACCTACCACACCCTGGAGGAGATCTATGACTTCCTGGACCTGCTGGTGGCGGAGAACCCGCACCTTGTCAGCAAGATCCAGATTGGCAACACCTATGAACGGCGTCCCATTTACGTGCTGAAGTTCAGCACGGGGGGCAGTATGCGTCCAGCCATCTGGATCGACACGGGCATCCATTCCCGGGAGTGGGTCACCCAGGCCAGTGGGGTCTGGTTTGCATAGAAGATCACTCAAGACTACGGGCAGGATGCAGCTTTCACCGCCATTCTCGACACCTTGGACATCTTCCTGAGATCGTCACCACCCTGATGGCTTTGCCTTCACGCACAGCACGTATCGCATGTCTGCGCAATGACTCGGTCCCACACAGCAGGCTCCCTCTGTATTGGCGTGGACCCCAACAGGAACTGGGACGCTGGCTTTGGGTTGTCCGGAGCCAGCAGTAACCCCTGCTCGGAGACTTACCACGGCAAGTTTGCCAYTTCCGAAGTGGAGGTCAAGTCCATTGTAGACTTTGTGAAGGACCATGGGAACATCAAGGCCTTCATCTCCATCCACAGCTACTCCCAGCTCCTCATGTATCCCTATGGCTACAAAACAGAACCAGTCCCTGACCAGGATGAGCTGGATCAGCTTTCCAAGGCTGCTGTGACAGCCCTGGCCTCTCTCTACGGGACCAAGTTCGACTATGGCAGCATCATCAAGGCAATTTATCAAGCCAGTGGAAGCACTATTGACTGGACCTACAGCCAGGGCATCAAGTACTCCTTCACCTTCGAGCTCCGGGACACTGGGCGCTATGGCTTCCTGCTGCCAGCCTCCCAGATCATCCCCACAGCCAAGGAGACCTGGCTGGCGCTTCTGACCATCATGGAGCACACCCTGAATCACCCCTACTAGCCGCACTORF Start: ATG at 24ORF Stop: TAG at 1281SEQ ID NO: 220419 aaMW at 47139.7kDNOV42d,MRGLLVLSVLLGAVFGKEDFVGHQVLRISVADEAQVQKVKELEDLEHLQLDGFWRGPAHPSPIDRVRCG97955-02Protein SequenceVPFPSIQAXTKIFLESHGISYETMIEDVQSLLDEEQEQMEAFRSRARSTDTFNYATYHTLEIYGDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTGGSKRPAIWIDTGIHSREWVTQASGVWFAKKIPTQDYGQDAAFTAILDTLDIFLEIVTNPDGFAFTIiSTNRMWRKTRSHTAGSLCIGVDPNRNWDAGFGLSGASSNPCSETYIIGKFANSEVEVKSIVDFVKDHGNIKAFISIHSYSQLLMYPYGYKTEPVPDQDELDQLSKAAVTALASLYGTKFNYGSIIKAIGYQASGSTIDWTYSQGIKYSFTFELRDTGRYGFLLPASQIIPTAKETWLALLTIMEHTLNHPY


[0579] Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 42B.
228TABLE 42BComparison of NOV42a against NOV42b through NOV42d.Identities/NOV42a Residues/SimilaritiesProtein SequenceMatch Residuesfor the Matched RegionNOV42b17 . . . 161145/145 (100%)17 . . . 161145/145 (100%)NOV42c17 . . . 419403/403 (100%)21 . . . 423403/403 (100%)NOV42d17 . . . 419403/403 (100%)17 . . . 419403/403 (100%)


[0580] Further analysis of the NOV42a protein yielded the following properties shown in Table 42C.
229TABLE 42CProtein Sequence Properties NOV42aPSort analysis:0.4323 probability located in outside;0.2367 probability located in microbody(peroxisome); 0.1000 probability located inendoplasmic reticulum (membrane); 0.1000probability located in endoplasmic reticulum(lumen)SignalP analysis:Cleavage site between residues 17 and 18


[0581] A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 42D.
230TABLE 42DGeneseq Results for NOV42aNOV42aIdentities/Residues/SimilaritiesGeneseqProtein/Organism/LengthMatchfor theExpectIdentifier[Patent #, Date]ResiduesMatched RegionValueAAY28915Human regulatory protein1 . . . 419 419/419 (100%)0.0HRGP-1 - Homo sapiens, 419 aa.1 . . . 419 419/419 (100%)[WO9933870-A2, 08 JUL. 1999]AAR97618Human carboxypeptidase A1 -1 . . . 419 419/419 (100%)0.0Homo sapiens, 419 aa.1 . . . 419 419/419 (100%)[WO9616179-A1, 30 MAY 1996]AAW01504Wild-type human pancreatic1 . . . 419418/419 (99%)0.0carboxypeptidase 1 - Homo sapiens,1 . . . 419419/419 (99%)419 aa. [WO9513095-A2, 18 MAY 1995]AAW01509Human pancreatic carboxypeptidase1 . . . 419417/419 (99%)0.01 variant (T268G,A) - Synthetic,1 . . . 419418/419 (99%)419 aa. [WO9513095-A2,18 MAY 1995]AAW01508Human pancreatic carboxypeptidase1 . . . 419417/419 (99%)0.01 variant (I255A) - Synthetic,1 . . . 419418/419 (99%)419 aa. [WO9513095-A2,18 MAY 1995]


[0582] In a BLAST search of public sequence datbases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42E.
231TABLE 42EPublic BLASTP Results for NOV42aNOV42aIdentities/ProteinResidues/SimilaritiesAccessionMatchfor theExpectNumberProtein/Organism/LengthResiduesMatched PortionValueP15085Carboxypeptidase A11 . . . 419 419/419 (100%)0.0precursor (EC 3.4.17.1) -1 . . . 419 419/419 (100%)Homo sapiens (Human), 419 aa.CAA02810SEQUENCE 1 FROM1 . . . 419418/419 (99%)0.0PATENT WO9513095 -1 . . . 419419/419 (99%)unidentified, 419 aa(fragment).Q9TV85Carboxypeptidase A11 . . . 419362/419 (86%)0.0(EC 3.4.17.1) - Sus1 . . . 419385/419 (91%)scrofa (Pig), 419 aa.P00731Carboxypeptidase A11 . . . 419350/419 (83%)0.0precursor (EC 3.4.17.1) -1 . . . 419382/419 (90%)Rattus norvegicus (Rat),419 aa.P00730Carboxypeptidase A1 . . . 419343/419 (81%)0.0precursor (EC 3.4.17.1) -1 . . . 419385/419 (91%)Bos taurus (Bovine), 419 aa.


[0583] PFam analysis predicts that the NOV42a protein contains the domains shown in the Table 42F.
232TABLE 42FDomain Analysis of NOV42aIdentities/SimilaritiesNOV42afor thePfam DomainMatch RegionMatched RegionExpect ValuePropep_M1424 . . . 10148/82 (59%)8e-4274/82 (90%)Zn_carbOpept122 . . . 402 156/304 (51%)  5e-166271/304 (89%) 



Example B

[0584] Sequencing Methodology and Identification of NOVX Clones


[0585] 1. GeneCalling™ Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., “Gene expression analysis by transcript profiling coupled to a gene database query” Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.


[0586] 2. SeqCalling™ Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0587] 3. PathCalling™ Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.


[0588] The laboratory screening was performed using the methods summarized below:


[0589] cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, Calif.) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.S. Pat. Nos. 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).


[0590] Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.


[0591] Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106′ and YULH (U.S. Pat. Nos. 6,057,101 and 6,083,693).


[0592] 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.


[0593] 5. Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain—amygdala, brain—cerebellum, brain—hippocampus, brain—substantia nigra, brain—thalamus, brain—whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma—Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least,95% over 50 bp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.


[0594] 6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.


[0595] The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.



Example C

[0596] Quantitative Expression Analysis of Clones in Various Cells and Tissues


[0597] The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune/autoinflammatory diseases), Panel CNSD.01 (containing samples from normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).


[0598] RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.


[0599] First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.


[0600] In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 μg of total RNA were performed in a volume of 20 μl and incubated for 60 minutes at 42 ° C. This reaction can be scaled up to 50 μg of total RNA in a final volume of 100 μl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.


[0601] Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration=250 nM, primer melting temperature (Tm) range=58°-60° C., primer optimal Tm=59° C., maximum primer difference=2° C., probe does not have 5′G, probe Tm must be 10° C. greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, Tex., USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5′ and 3′ ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200 nM.


[0602] PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate (Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48° C. for 30 minutes followed by amplification/PCR cycles as follows: 95° C. 10 min, then 40 cycles of 90° C. for 15 seconds, 60° C. for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.


[0603] When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1× TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95° C. 10 min, then 40 cycles of 95° C. for 15 seconds, 60° C. for 1 minute. Results were analyzed and processed as described previously.


[0604] Panels 1, 1.1, 1.2, and 1.3D


[0605] The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.


[0606] In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:


[0607] ca.=carcinoma,


[0608] *=established from metastasis,


[0609] met=metastasis,


[0610] s cell var=small cell variant,


[0611] non-s=non-sm=non-small,


[0612] squam=squamous,


[0613] pl. eff=pl effusion=pleural effusion,


[0614] glio=glioma,


[0615] astro=astrocytoma, and


[0616] neuro=neuroblastoma.


[0617] General_Screening_panel_v1.4, v1.5 and v1.6


[0618] The plates for Panels 1.4, v1.5 and v1.6 include two control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4, v1.5 and v1.6 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panels 1.4, v1.5 and v1.6 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4, v1.5 and v1.6 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.


[0619] Panels 2D, 2.2, 2.3 and 2.4


[0620] The plates for Panels 2D, 2.2, 2.3 and 2.4 generally include two control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI) or from Ardais or Clinomics. The tissues are derived from human malignancies and in cases where indicated many malignant tissues have “matched margins” obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted “NAT” in the results below. The tumor tissue and the “matched margins” are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI/CHTN/Ardais/Clinomics). Unmatched RNA samples from tissues without malignancy (normal tissues) were also obtained from Ardais or Clinomics. This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, Calif.), Research Genetics, and Invitrogen. General oncology screening panel_v2.4 is an updated version of Panel 2D.


[0621] HASS Panel v 1.0


[0622] The HASS panel v 1.0 plates are comprised of 93 cDNA samples and two controls. Specifically, 81 of these samples are derived from cultured human cancer cell lines that had been subjected to serum starvation, acidosis and anoxia for different time periods as well as controls for these treatments, 3 samples of human primary cells, 9 samples of malignant brain cancer (4 medulloblastomas and 5 glioblastomas) and 2 controls. The human cancer cell lines are obtained from ATCC (American Type Culture Collection) and fall into the following tissue groups: breast cancer, prostate cancer, bladder carcinomas, pancreatic cancers and CNS cancer cell lines. These cancer cells are all cultured under standard recommended conditions. The treatments used (serum starvation, acidosis and anoxia) have been previously published in the scientific literature. The primary human cells were obtained from Clonetics (Walkersville, Md.) and were grown in the media and conditions recommended by Clonetics. The malignant brain cancer samples are obtained as part of a collaboration (Henry Ford Cancer Center) and are evaluated by a pathologist prior to CuraGen receiving the samples. RNA was prepared from these samples using the standard procedures. The genomic and chemistry control wells have been described previously.


[0623] ARDAIS Panel v 1.0


[0624] The plates for ARDAIS panel v 1.0 generally include 2 control wells and 22 test samples composed of RNA isolated from human tissue procured by surgeons working in close cooperation with Ardais Corporation. The tissues are derived from human lung malignancies (lung adenocarcinoma or lung squamous cell carcinoma) and in cases where indicated many malignant samples have “matched margins” obtained from noncancerous lung tissue just adjacent to the tumor. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated “NAT”, for normal adjacent tissue) in the results below. The tumor tissue and the “matched margins” are evaluated by independent pathologists (the surgical pathologists and again by a pathologist at Ardais). Unmatched malignant and non-malignant RNA samples from lungs were also obtained from Ardais. Additional information from Ardais provides a gross histopathological assessment of tumor differentiation grade and stage. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical state of the patient.


[0625] Panels 3D and 3.1


[0626] The plates of Panels 3D and 3.1 are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines used in the scientific literature. Oncology_cell_line_screening_panel_v3.2 is an updated version of Panel 3. The cell lines in panel 3D, 3.1, 1.3D and oncology_cell_line_screening_panel_v3.2 are of the most common cell lines used in the scientific literature.


[0627] Panels 4D, 4R, and 4.1D


[0628] Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, Calif.) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, Calif.). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, Pa.).


[0629] Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, Md.) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, IL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/mi. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.


[0630] Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco/Life Technologies, Rockville, Md.), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2μg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 μg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2×106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5×10 5M) (Gibco), and 10 mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.


[0631] Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions. Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, Utah), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×105M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 μg/ml for 6 and 12-14 hours.


[0632] CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and plated at 106 cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5 μg/ml anti-CD28 (Pharmingen) and 3ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.


[0633] To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 106 cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 μg/ml or anti-CD40 (Pharmingen) at approximately 10 μg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24, 48 and 72 hours.


[0634] To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10 μg/ml anti-CD28 (Pharmingen) and 2 μg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, Md.) were cultured at 105-106cells/ml in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 μg/ml) were used to direct to Th1, while IL-4 (5 ng/ml) and anti-IFN gamma (1 μg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 ng/mi). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (1 μg/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.


[0635] The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5×105 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5×105 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10 ng/ml and ionomycin at 1 μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 μM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5×10−5M (Gibco), and 10 mM Hepes (Gibco). CCD1 106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.


[0636] For these cell lines and blood cells, RNA was prepared by lysing approximately 107 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at −20° C. overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 μl of RNAse-free water and 35 μl buffer (Promega) 5 μl DTT, 7 μl RNAsin and 8μl DNAse were added. The tube was incubated at 37° C. for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at −80° C.


[0637] AI_comprehensive Panel_v1.0


[0638] The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, Md.). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.


[0639] Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.


[0640] Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.


[0641] Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.


[0642] Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.


[0643] In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:


[0644] Al=Autoimmunity


[0645] Syn=Synovial


[0646] Normal=No apparent disease


[0647] Rep22 /Rep20=individual patients


[0648] RA=Rheumatoid arthritis


[0649] Backus=From Backus Hospital


[0650] OA=Osteoarthritis


[0651] (SS) (BA) (MF)=Individual patients


[0652] Adj=Adjacent tissue


[0653] Match control=adjacent tissues


[0654] −M=Male


[0655] −F=Female


[0656] COPD=Chronic obstructive pulmonary disease


[0657] Panels 5D and 51


[0658] The plates for Panel SD and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.


[0659] In the Gestational Diabetes study subjects are young (18-40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:


[0660] Patient 2 Diabetic Hispanic, overweight, not on insulin


[0661] Patient 7-9 Nondiabetic Caucasian and obese (BMI>30)


[0662] Patient 10 Diabetic Hispanic, overweight, on insulin


[0663] Patient 11 Nondiabetic African American and overweight


[0664] Patient 12 Diabetic Hispanic on insulin


[0665] Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr. 2, 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:


[0666] Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose


[0667] Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated


[0668] Donor 2 and 3 AD: Adipose, Adipose Differentiated


[0669] Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.


[0670] Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.


[0671] In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:


[0672] GO Adipose=Greater Omentum Adipose


[0673] SK=Skeletal Muscle


[0674] UT=Uterus


[0675] PL=Placenta


[0676] AD=Adipose Differentiated


[0677] AM=Adipose Midway Differentiated


[0678] U=Undifferentiated Stem Cells


[0679] Panel CNSD.01


[0680] The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0681] Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and “Normal controls”. Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.


[0682] In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:


[0683] PSP=Progressive supranuclear palsy


[0684] Sub Nigra=Substantia nigra


[0685] Glob Palladus=Globus palladus


[0686] Temp Pole=Temporal pole


[0687] Cing Gyr=Cingulate gyrus


[0688] BA 4=Brodman Area 4


[0689] Panel CNS_Neurodegeneration_V1.0


[0690] The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at −80° C. in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.


[0691] Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from “Normal controls” who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0=no evidence of plaques, 3=severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a “control” region within AD patients. Not all brain regions are represented in all cases.


[0692] In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:


[0693] AD=Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy


[0694] Control=Control brains; patient not demented, showing no neuropathology


[0695] Control (Path)=Control brains; pateint not demented but showing sever AD-like pathology


[0696] SupTemporal Ctx=Superior Temporal Cortex


[0697] Inf Temporal Ctx=Inferior Temporal Cortex


[0698] A. CG105324-01: Human Nuclear Orphan Receptor LXR-Alpha Like Gene


[0699] Expression of gene CG105324-01 was assessed using the primer-probe set Ag4284, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB, AC and AD.
233TABLE AAProbe Name Ag4284StartSEQPrimersSequencesLengthPositionID NoForward5'-ccttctcagtc22260221tgttccacttc-3'ProbeTET-5'-agccatc23304222cggccaagaaaacaga-3'-TAMRAReverse5'-tgactgttct22327223gtccccatattt-3'


[0700]

234





TABLE AB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4284,



Tissue Name
Run 222181958














Adipose
4.2



Melanoma* Hs688(A).T
1.4



Melanoma* Hs688(B).T
0.9



Melanoma* M14
1.7



Melanoma* LOXIMVI
0.9



Melanoma* SK-MEL-5
0.1



Squamous cell carcinoma SCC-4
1.2



Testis Pool
2.8



Prostate ca.* (bone met) PC-3
4.4



Prostate Pool
1.3



Placenta
2.1



Uterus Pool
0.8



Ovarian ca. OVCAR-3
3.0



Ovarian ca. SK-OV-3
2.6



Ovarian ca. OVCAR-4
1.2



Ovarian ca. OVCAR-5
36.3



Ovarian ca. IGROV-1
5.3



Ovarian ca. OVCAR-8
2.2



Ovary
1.4



Breast ca. MCF-7
2.1



Breast ca. MDA-MB-231
3.8



Breast ca. BT 549
1.1



Breast ca. T47D
100.0



Breast ca. MDA-N
1.0



Breast Pool
3.4



Trachea
1.5



Lung
3.1



Fetal Lung
5.7



Lung ca. NCI-N417
0.7



Lung ca. LX-1
7.6



Lung ca. NCI-H146
1.0



Lung ca. SHP-77
2.6



Lung ca. A549
7.4



Lung ca. NCI-H526
1.6



Lung ca. NCI-H23
1.3



Lung ca. NCI-H460
3.0



Lung ca. HOP-62
2.1



Lung ca. NCI-H522
2.8



Liver
2.0



Fetal Liver
4.8



Liver ca. HepG2
5.1



Kidney Pool
4.1



Fetal Kidney
4.0



Renal ca. 786-0
1.4



Renal ca. A498
1.6



Renal ca. ACHN
3.4



Renal ca. UO-31
4.7



Renal ca. TK-10
4.9



Bladder
4.8



Gastric ca. (liver met.) NCI-N87
18.7



Gastric ca. KATO III
4.5



Colon ca. SW-948
3.4



Colon ca. SW480
9.5



Colon ca.* (SW480 met) SW620
6.6



Colon ca. HT29
19.6



Colon ca. HCT-116
7.8



Colon ca. CaCo-2
17.8



Colon cancer tissue
8.4



Colon ca. SW1116
1.9



Colon ca. Colo-205
4.4



Colon ca. SW-48
6.7



Colon Pool
2.8



Small Intestine Pool
2.8



Stomach Pool
3.1



Bone Marrow Pool
1.4



Fetal Heart
1.2



Heart Pool
1.0



Lymph Node Pool
2.8



Fetal Skeletal Muscle
1.6



Skeletal Muscle Pool
1.4



Spleen Pool
7.0



Thymus Pool
5.3



CNS cancer (glio/astro) U87-MG
4.7



CNS cancer (glio/astro) U-118-MG
2.7



CNS cancer (neuro; met) SK-N-AS
2.3



CNS cancer (astro) SF-539
1.1



CNS cancer (astro) SNB-75
2.2



CNS cancer (glio) SNB-19
3.6



CNS cancer (glio) SF-295
3.7



Brain (Amygdala) Pool
1.2



Brain (cerebellum)
2.0



Brain (fetal)
2.1



Brain (Hippocampus) Pool
1.9



Cerebral Cortex Pool
2.7



Brain (Substantia nigra) Pool
2.8



Brain (Thalamus) Pool
2.9



Brain (whole)
1.2



Spinal Cord Pool
2.7



Adrenal Gland
3.3



Pituitary gland Pool
0.3



Salivary Gland
0.6



Thyroid (female)
1.7



Pancreatic ca. CAPAN2
12.5



Pancreas Pool
4.5











[0701]

235





TABLE AC










Panel 5 Islet











Rel. Exp. (%)




Ag4284,



Tissue Name
Run 181325887














97457_Patient-02go_adipose
99.3



97476_Patient-07sk_skeletal muscle
35.1



97477_Patient-07ut_uterus
12.2



97478_Patient-07pl_placenta
43.2



99167_Bayer Patient 1
94.6



97482_Patient-08ut_uterus
8.0



97483_Patient-08pl_placenta
8.5



97486_Patient-09sk_skeletal muscle
3.5



97487_Patient-09ut_uterus
18.0



97488_Patient-09pl_placenta
51.4



97492_Patient-10ut_uterus
22.4



97493_Patient-10pl_placenta
45.4



97495_Patient-11go_adipose
24.5



97496_Patient-11sk_skeletal muscle
8.1



97497_Patient-11ut_uterus
11.9



97498_Patient-11pl_placenta
14.9



97500_Patient-12go_adipose
100.0



97501_Patient-12sk_skeletal muscle
17.3



97502_Patient-12ut_uterus
12.3



97503_Patient-12pl_placenta
43.8



94721_Donor 2 U - A_Mesenchymal
0.0



Stem Cells



94722_Donor 2 U - B_Mesenchymal
0.0



Stem Cells



94723_Donor 2 U - C_Mesenchymal
7.8



Stem Cells



94709_Donor 2 AM - A_adipose
12.8



94710_Donor 2 AM - B_adipose
20.9



94711_Donor 2 AM - C_adipose
3.5



94712_Donor 2 AD - A_adipose
39.5



94713_Donor 2 AD - B_adipose
23.0



94714_Donor 2 AD - C_adipose
33.9



94742_Donor 3 U - A_Mesenchymal
0.0



Stem Cells



94743_Donor 3 U - B_Mesenchymal
11.3



Stem Cells



94730_Donor 3 AM - A_adipose
17.2



94731_Donor 3 AM - B_adipose
8.4



94732_Donor 3 AM - C_adipose
11.7



94733_Donor 3 AD - A_adipose
21.6



94734_Donor 3 AD - B_adipose
4.2



94735_Donor 3 AD - C_adipose
15.6



77138_Liver_HepG2untreated
58.6



73556_Heart_Cardiac stromal cells
3.1



(primary)



81735_Small Intestine
50.3



72409_Kidney_Proximal Convoluted
3.5



Tubule



82685_Small intestine_Duodenum
13.6



90650_Adrenal_Adrenocortical
7.1



adenoma



72410_Kidney_HRCE
26.8



72411_Kidney_HRE
16.8



73139_Uterus_Uterine smooth
8.5



muscle cells











[0702]

236





TABLE AD










Panel 5D











Rel. Exp. (%)




Ag4284,



Tissue Name
Run 181457563














97457_Patient-02go_adipose
10.4



97476_Patient-07sk_skeletal muscle
5.1



97477_Patient-07ut_uterus
2.1



97478_Patient-07pl_placenta
8.4



97481_Patient-08sk_skeletal muscle
23.0



97482_Patient-08ut_uterus
0.8



97483_Patient-08pl_placenta
3.3



97486_Patient-09sk_skeletal muscle
0.5



97487_Patient-09ut_uterus
1.5



97488_Patient-09pl_placenta
9.9



97492_Patient-10ut_uterus
2.1



97493_Patient-10pl_placenta
12.7



97495_Patient-11go_adipose
3.2



97496_Patient-11sk_skeletal muscle
2.1



97497_Patient-11ut_uterus
1.8



97498_Patient-11pl_placenta
10.8



97500_Patient-12go_adipose
14.3



97501_Patient-12sk_skeletal muscle
4.5



97502_Patient-12ut_uterus
1.6



97503_Patient-12pl_placenta
3.3



94721_Donor 2 U - A_Mesenchymal
3.0



Stem Cells



94722_Donor 2 U - B_Mesenchymal
2.0



Stem Cells



94723_Donor 2 U - C_Mesenchymal
1.3



Stem Cells



94709_Donor 2 AM - A_adipose
5.5



94710_Donor 2 AM - B_adipose
3.7



94711_Donor 2 AM - C_adipose
2.1



94712_Donor 2 AD - A_adipose
5.1



94713_Donor 2 AD - B_adipose
7.8



94714_Donor 2 AD - C_adipose
9.7



94742_Donor 3 U - A_Mesenchymal
0.8



Stem Cells



94743_Donor 3 U - B_Mesenchymal
1.0



Stem Cells



94730_Donor 3 AM - A_adipose
5.1



94731_Donor 3 AM - B_adipose
3.1



94732_Donor 3 AM - C_adipose
4.1



94733_Donor 3 AD - A_adipose
7.3



94734_Donor 3 AD - B_adipose
7.3



94735_Donor 3 AD - C_adipose
3.7



77138_Liver_HepG2untreated
7.7



73556_Heart_Cardiac stromal cells
2.0



(primary)



81735_Small Intestine
8.7



72409_Kidney_Proximal Convoluted
1.7



Tubule



82685_Small intestine_Duodenum
100.0



90650_Adrenal_Adrenocortical adenoma
6.5



72410_Kidney_HRCE
4.2



72411_Kidney_HRE
23.3



73139_Uterus_Uterine smooth muscle
1.9



cells











[0703] General_screening_panel_v1.4 Summary: Ag4284 Highest expression of this gene is detected in a breast cancer T47D cell line (CT=29.9). Moderate to low levels of expression of this gene is also seen in some cell lines derived from pancreatic, brain, colon, liver, lung, breast and ovarian cancers. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of these cancers.


[0704] In addition, moderate to low levels of expression of this gene is also seen in pancrease, adipose and stomach. This gene codes for a nuclear orphan receptor LXR-alpha. LXRalpha is thought to play a major role in the control of cholesterol catabolism by regulating the expression of cholesterol 7alpha-hydroxylase, the rate- limiting enzyme of bile acid synthesis. LXR is part of networks that include other nuclear hormone such as FXR, PPAR, and RXR proteins and play critical roles in lipid metabolism by virtue of their transcriptional regulation of the genes that control sterol metabolic pathways. Some of the major downstream targets of these regulatory networks involve members of the ABC transporter family, including ABCA1, ABCG1, ABCG5, ABCG8, MDR3/Mdr2, and SPGP/BSEP. (Niesor et al., 2001, Curr Pharm Des 7(4):231-59, PMID: 1125-4888; Fitzgerald et al., J Mol Med May 2002;80(5):271-81, PMID: 12021839). In GeneCalling studies done at Curagen, it was found that LXRA is up-regulated in obese and/or diabetic patients and the SHR model of Syndrome X. Reduction in LXRA activity would limit lipid production and thus improve obesity and/or diabetes. Therefore, therapeutic modulation of the LXR encoded by this gene may be useful in the treatment of metabolic related diseases such as obesity and diabetes.


[0705] Panel 5 Islet Summary: Ag4284 Low but significant levels of expression of this gene is seen only in adipose sample derived from a Hispanic diabetic patient on insulin (CT=34.5). Therefore, expression of this gene may be used to distinguish this sample from other samples used in this panel.


[0706] LXR alpha has several important roles in adipocyte function. New studies show that this nuclear receptor increases basal glucose uptake and glycogen synthesis in 3T3-L1 adipocytes. In addition, LXR alpha increases cholesterol synthesis and release of nonesterified fatty acids. Finally, treatment of mice with an LXR alpha agonist results in increased serum levels of glycerol and nonesterified fatty acids (NEFA), consistent with increased lipolysis within adipose tissue. High serum levels of NEFA are believed to contribute to the pathogenesis of Type 2 diabetes (Ross et al., 2002, Mol Cell Biol. 22(16):5989-99, PMID: 12138207; Boden G, Shulman GI, 2002, Eur J Clin Invest. 32 Suppl 3:14-23, PMID: 12028371). These findings demonstrate new metabolic roles for LXR alpha. 5 Thus, an antagonist of LXR alpha may decrease circulating levels of NEFA and therefore could be beneficial in the treatment of Type 2 diabetes.


[0707] Panel 5D Summary: Ag4284 Highest expression of this gene is detected in small intestine (CT=30.4). Moderate to low levels of expression of this gene is also seen in adipose, skeletal muscle, small intestine, and placenta of both diabetic and non-diabetic patients. In addition, moderate levels of expression of this gene are also seen in kidney. Please see panel 1.4 for further discussion on the utility of this gene.


[0708] B. CG105355-01: Human Aryl Hydrocarbon Receptor Like Gene


[0709] Expression of gene CG105355-01 was assessed using the primer-probe set Ag4285, described in Table BA. Results of the RTQ-PCR runs are shown in Tables BB, BC, BD, BE, BF, BG and BH.
237TABLE BAProbe Name Ag4285StartSEQPrimersSequencesLengthPositionID NoForward5′-caggatttcatccgttaagtca-3′223505224ProbeTET-5′-tgtctctgaagtcaacctcaccagaa-2635282253′-TAMRAReverse5′-acatcagacacatgcagaatga-3′223575226


[0710]

238





TABLE BB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4285, Run



Tissue Name
222182745














Adipose
11.7



Melanoma* Hs688(A).T
4.2



Melanoma* Hs688(B).T
8.5



Melanoma* M14
16.0



Melanoma* LOXIMVI
2.8



Melanoma* SK-MEL-5
14.1



Squamous cell carcinoma SCC-4
13.5



Testis Pool
1.7



Prostate ca.* (bone met) PC-3
17.1



Prostate Pool
2.6



Placenta
4.6



Uterus Pool
3.8



Ovarian ca. OVCAR-3
2.3



Ovarian ca. SK-OV-3
4.2



Ovarian ca. OVCAR-4
1.5



Ovarian ca. OVCAR-5
26.8



Ovarian ca. IGROV-1
2.6



Ovarian ca. OVCAR-8
0.5



Ovary
3.9



Breast ca. MCF-7
7.5



Breast ca. MDA-MB-231
17.1



Breast ca. BT 549
55.9



Breast ca. T47D
37.6



Breast ca. MDA-N
7.6



Breast Pool
5.4



Trachea
9.0



Lung
1.6



Fetal Lung
45.1



Lung ca. NCI-N417
0.0



Lung ca. LX-1
7.3



Lung ca. NCI-H146
0.8



Lung ca. SHP-77
4.1



Lung ca. A549
10.4



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
26.4



Lung ca. NCI-H460
7.6



Lung ca. HOP-62
10.4



Lung ca. NCI-H522
0.1



Liver
0.2



Fetal Liver
5.0



Liver ca. HepG2
7.9



Kidney Pool
6.1



Fetal Kidney
10.6



Renal ca. 786-0
8.5



Renal ca. A498
3.9



Renal ca. ACHN
2.7



Renal ca. UO-31
11.5



Renal ca. TK-10
12.2



Bladder
11.8



Gastric ca. (liver met.) NCI-N87
38.4



Gastric ca. KATO III
87.7



Colon ca. SW-948
5.1



Colon ca. SW480
6.0



Colon ca.* (SW480 met) SW620
4.5



Colon ca. HT29
5.4



Colon ca. HCT-116
6.4



Colon ca. CaCo-2
12.6



Colon cancer tissue
16.8



Colon ca. SW1116
0.7



Colon ca. Colo-205
0.7



Colon ca. SW-48
2.6



Colon Pool
6.2



Small Intestine Pool
3.3



Stomach Pool
3.9



Bone Marrow Pool
3.3



Fetal Heart
3.0



Heart Pool
3.1



Lymph Node Pool
4.8



Fetal Skeletal Muscle
2.8



Skeletal Muscle Pool
0.8



Spleen Pool
4.7



Thymus Pool
3.3



CNS cancer (glio/astro) U87-MG
24.8



CNS cancer (glio/astro) U-118-MG
40.1



CNS cancer (neuro; met) SK-N-AS
4.7



CNS cancer (astro) SF-539
2.0



CNS cancer (astro) SNB-75
13.4



CNS cancer (glio) SNB-19
2.5



CNS cancer (glio) SF-295
100.0



Brain (Amygdala) Pool
1.1



Brain (cerebellum)
0.7



Brain (fetal)
0.7



Brain (Hippocampus) Pool
1.3



Cerebral Cortex Pool
1.4



Brain (Substantia nigra) Pool
0.8



Brain (Thalamus) Pool
1.8



Brain (whole)
0.7



Spinal Cord Pool
1.4



Adrenal Gland
2.5



Pituitary gland Pool
0.4



Salivary Gland
0.4



Thyroid (female)
2.8



Pancreatic ca. CAPAN2
7.6



Pancreas Pool
6.2











[0711] Table BC. General Screening Panel v1.5
239TABLE BDOncology_cell_line_screening_panel_v3.2Rel. Exp. (%)Ag4285, RunTissue Name25918069394905_Daoy_Medulloblastoma/3.0Cerebellum_sscDNA94906_TE671_Medulloblastom/0.0Cerebellum_sscDNA94907_D283 Med_Medulloblastoma/2.6Cerebellum_sscDNA94908_PFSK-1_Primitive Neuroectodermal/1.8Cerebellum_sscDNA94909_XF-498_CNS_sscDNA33.294910_SNB-78_CNS/glioma_sscDNA0.094911_SF-268_CNS/glioblastoma_sscDNA2.294912_T98G_Glioblastoma_sscDNA45.796776_SK-N-SH_Neuroblastoma0.0(metastasis)_sscDNA94913_SF-295_CNS/glioblastoma_sscDNA44.1132565_NT2 pool_sscDNA0.494914_Cerebellum_sscDNA3.496777_Cerebellum_sscDNA0.394916_NCI-H292_Mucoepidermoid18.7lung carcinoma_sscDNA94917_DMS-114_Small cell lung cancer0.1sscDNA94918_DMS-79_Small cell lung cancer/17.9neuroendocrine_sscDNA94919_NCI-H146_Small cell lung cancer/5.0neuroendocrine_sscDNA94920_NCI-H526_Small cell lung cancer/0.3neuroendocrine_sscDNA94921_NCI-N417_Small cell lung cancer/0.3neuroendocrine_sscDNA94923_NCI-H82_Small cell lung cancer/1.1neuroendocrine_sscDNA94924_NCI-H157_Squamous cell lung37.4cancer (metastasis)_sscDNA94925_NCI-H1155_Large cell lung3.2cancer/neuroendocrine_sscDNA94926_NCI-H1299_Large cell lung4.4cancer/neuroendocrine_sscDNA94927_NCI-H727_Lung carcinoid_sscDNA32.894928_NCI-UMC-11_Lung carcinoid_sscDNA5.194929_LX-1_Small cell lung cancer_sscDNA8.094930_Colo-205_Colon cancer_sscDNA4.794931_KM12_Colon cancer_sscDNA51.494932_KM20L2_Colon cancer_sscDNA4.894933_NCI-H716_Colon cancer_sscDNA35.494935_SW-48_Colon adenocarcinoma_sscDNA20.394936_SW1116_Colon adenocarcinoma_sscDNA2.394937_LS 174T_Colon adenocarcinoma_sscDNA20.394938_SW-948_Colon adenocarcinoma_sscDNA7.794939_SW-480_Colon adenocarcinoma_sscDNA15.294940_NCI-SNU-5_Gastric carcinoma_sscDNA4.3112197_KATO III_Stomach_sscDNA66.094943_NCI-SNU-16_Gastric carcinoma_sscDNA3.694944_NCI-SNU-1_Gastric carcinoma_sscDNA17.294946_RF-1_Gastric adenocarcinoma_sscDNA0.594947_RF-48_Gastric adenocarcinoma_sscDNA0.396778_MKN-45_Gastric carcinoma_sscDNA100.094949_NCI-N87_Gastric carcinoma_sscDNA13.394951_OVCAR-5_Ovarian carcinoma_sscDNA3.994952_RL95-2_Uterine carcinoma_sscDNA17.294953_HelaS3_Cervical adenocarcinoma6.7sscDNA94954_Ca Ski_Cervical epidermoid6.7carcinoma (metastasis)_sscDNA94955_ES-2_Ovarian clear cell3.0carcinoma_sscDNA94957_Ramos/6 h stim_Stimulated with3.7PMA/ionomycin 6 h_sscDNA94958_Ramos/14 h stim_Stimulated with2.6PMA/ionomycin 14 h_sscDNA94962_MEG-01_Chronic myelogenous10.7leukemia (megokaryoblast)_sscDNA94963_Raji_Burkitt's lymphoma_sscDNA0.094964_Daudi_Burkitt's lymphoma0.0sscDNA94965_U266_B-cell plasmacytoma/0.0myeloma_sscDNA94968_CA46_Burkitt's lymphoma_sscDNA0.094970_RL_non-Hodgkin's B-cell0.5lymphoma_sscDNA94972_JM1_pre-B-cell lymphoma/0.0leukemia_sscDNA94973_Jurkat_T cell leukemia_sscDNA0.094974_TF-1_Erythroleukemia_sscDNA12.294975_HUT 78_T-cell lymphoma_sscDNA10.694977_U937_Histiocytic lymphoma6.3sscDNA94980_KU-812_Myelogenous leukemia2.5sscDNA94981_769-P_Clear cell renal2.7carcinoma_sscDNA94983_Caki-2_Clear cell renal11.0carcinoma_sscDNA94984_SW 839_Clear cell renal10.5carcinoma_sscDNA94986_G401_Wilms' tumor_sscDNA0.0126768_293 cells_sscDNA2.094987_Hs766T_Pancreatic carcinoma9.2(LN metastasis)_sscDNA94988_CAPAN-1_Pancreatic18.6adenocarcinoma (liver metastasis)sscDNA94989_SU86.86_Pancreatic carcinoma47.0(liver metastasis)_sscDNA94990_BxPC-3_Pancreatic19.6adenocarcinoma_sscDNA94991_HPAC_Pancreatic17.6adenocarcinoma_sscDNA94992_MIA PaCa-2_Pancreatic0.8carcinoma_sscDNA94993_CFPAC-1_Pancreatic ductal40.3adenocarcinoma_sscDNA94994_PANC-1_Pancreatic epithelioid15.2ductal carcinoma_sscDNA94996_T24_Bladder carcinma3.8transitional cell)_sscDNA94997_5637_Bladder carcinoma_sscDNA37.194998_HT-1197_Bladder7.5carcinoma_sscDNA94999_UM-UC-3_Bladder carcinma0.3(transitional cell)_sscDNA95000_A204_Rhabdomyosarcoma_sscDNA20.295001_HT-1080_Fibrosarcoma_sscDNA19.395002_MG-63_Osteosarcoma15.9(bone)_sscDNA95003_SK-LMS-1_Leiomyosarcoma25.7(vulva)_sscDNA95004_SJRH30_Rhabdomyosarcoma0.0(met to bone marrow)_sscDNA95005_A431_Epidermoid19.8carcinoma_sscDNA95007_WM266-4_Melanoma_sscDNA10.1112195_DU145_Prostate_sscDNA3.795012_MDA-MB-468_Breast11.6adenocarcinoma_sscDNA112196_SSC-4_Tongue_sscDNA14.7112194_SSC-9_Tongue_sscDNA12.4112191_SSC-15_Tongue_sscDNA36.195017_CAL 27_Squamous cell carcinoma48.6of tongue_sscDNA


[0712]

240





TABLE BE










Panel 4.1D









Rel. Exp. (%)



Ag4285, Run


Tissue Name
223211035











Secondary Th1 act
10.6


Secondary Th2 act
14.9


Secondary Tr1 act
17.1


Secondary Th1 rest
2.1


Secondary Th2 rest
6.0


Secondary Tr1 rest
4.1


Primary Th1 act
14.4


Primary Th2 act
21.6


Primary Tr1 act
23.5


Primary Th1 rest
4.3


Primary Th2 rest
3.3


Primary Tr1 rest
11.5


CD45RA CD4 lymphocyte act
21.2


CD45RO CD4 lymphocyte act
21.0


CD8 lymphocyte act
13.0


Secondary CD8 lymphocyte rest
12.6


Secondary CD8 lymphocyte act
6.0


CD4 lymphocyte none
6.9


2ry Th1/Th2/Tr1_anti-CD95 CH11
7.1


LAK cells rest
27.2


LAK cells IL-2
2.8


LAK cells IL-2 + IL-12
7.1


LAK cells IL-2 + IFN gamma
8.1


LAK cells IL-2 + IL-18
11.1


LAK cells PMA/ionomycin
100.0


NK Cells IL-2 rest
12.4


Two Way MLR 3 day
17.3


Two Way MLR 5 day
14.1


Two Way MLR 7 day
12.2


PBMC rest
13.7


PBMC PWM
27.9


PBMC PHA-L
18.3


Ramos (B cell) none
2.9


Ramos (B cell) ionomycin
4.2


B lymphocytes PWM
38.7


B lymphocytes CD40L and IL-4
61.6


EOL-1 dbcAMP
35.8


EOL-1 dbcAMP PMA/ionomycin
60.3


Dendritic cells none
29.7


Dendritic cells LPS
71.2


Dendritic cells anti-CD40
54.7


Monocytes rest
50.0


Monocytes LPS
54.7


Macrophages rest
28.1


Macrophages LPS
16.2


HUVEC none
5.7


HUVEC starved
11.1


HUVEC IL-1beta
8.0


HUVEC IFN gamma
29.7


HUVEC TNF alpha + IFN gamma
8.5


HUVEC TNF alpha + IL4
4.4


HUVEC IL-11
7.9


Lung Microvascular EC none
7.0


Lung Microvascular EC TNFalpha + IL-1beta
3.2


Microvascular Dermal EC none
10.5


Microsvasular Dermal EC TNFalpha + IL-1beta
3.7


Bronchial epithelium TNFalpha + IL1beta
14.8


Small airway epithelium none
8.4


Small airway epithelium TNFalpha + IL-1beta
18.0


Coronery artery SMC rest
12.2


Coronery artery SMC TNFalpha + IL-1beta
14.7


Astrocytes rest
16.5


Astrocytes TNFalpha + IL-1beta
23.0


KU-812 (Basophil) rest
1.4


KU-812 (Basophil) PMA/ionomycin
26.1


CCD1106 (Keratinocytes) none
16.0


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
16.5


Liver cirrhosis
10.4


NCI-H292 none
14.7


NCI-H292 IL-4
22.5


NCI-H292 IL-9
31.4


NCI-H292 IL-13
22.2


NCI-H292 IFN gamma
29.5


HPAEC none
7.6


HPAEC TNF alpha + IL-1 beta
9.6


Lung fibroblast none
9.2


Lung fibroblast TNF alpha + IL-1 beta
21.9


Lung fibroblast IL-4
16.0


Lung fibroblast IL-9
10.9


Lung fibroblast IL-13
8.9


Lung fibroblast IFN gamma
16.5


Dermal fibroblast CCD1070 rest
14.8


Dermal fibroblast CCD1070 TNF alpha
32.5


Dermal fibroblast CCD1070 IL-1 beta
15.6


Dermal fibroblast IFN gamma
9.2


Dermal fibroblast IL-4
89.5


Dermal Fibroblasts rest
13.7


Neutrophils TNFa + LPS
1.8


Neutrophils rest
3.9


Colon
2.9


Lung
27.5


Thymus
14.0


Kidney
6.0










[0713]

241





TABLE BF










Panel 5 Islet









Rel. Exp. (%)



Ag4285, Run


Tissue Name
182400679











97457_Patient-02go_adipose
1.8


97476_Patient-07sk_skeletal muscle
15.9


97477_Patient-07ut_uterus
3.3


97478_Patient-07pl_placenta
87.7


99167_Bayer Patient 1
2.9


97482_Patient-08ut_uterus
5.4


97483_Patient-08pl_placenta
72.2


97486_Patient-09sk_skeletal muscle
2.4


97487_Patient-09ut_uterus
13.6


97488_Patient-09pl_placenta
46.0


97492_Patient-10ut_uterus
11.0


97493_Patient-10pl_placenta
100.0


97495_Patient-11go_adipose
21.8


97496_Patient-11sk_skeletal muscle
4.7


97497_Patient-11ut_uterus
13.8


97498_Patient-11pl_placenta
14.1


97500_Patient-12go_adipose
21.6


97501_Patient-12sk_skeletal muscle
7.3


97502_Patient-12ut_uterus
10.6


97503_Patient-12pl_placenta
41.5


94721_Donor 2 U - A_Mesenchymal Stem Cells
12.6


94722_Donor 2 U - B_Mesenchymal Stem Cells
5.7


94723_Donor 2 U - C_Mesenchymal Stem Cells
12.3


94709_Donor 2 AM - A_adipose
14.7


94710_Donor 2 AM - B_adipose
10.7


94711_Donor 2 AM - C_adipose
6.5


94712_Donor 2 AD - A_adipose
29.9


94713_Donor 2 AD - B_adipose
29.3


94714_Donor 2 AD - C_adipose
38.2


94742_Donor 3 U - A_Mesenchymal Stem Cells
7.2


94743_Donor 3 U - B_Mesenchymal Stem Cells
12.7


94730_Donor 3 AM - A_adipose
26.1


94731_Donor 3 AM - B_adipose
13.3


94732_Donor 3 AM - C_adipose
13.8


94733_Donor 3 AD - A_adipose
50.3


94734_Donor 3 AD - B_adipose
12.0


94735_Donor 3 AD - C_adipose
39.8


77138_Liver_HepG2untreated
66.0


73556_Heart_Cardiac stromal cells (primary)
0.0


81735_Small Intestine
17.3


72409_Kidney_Proximal Convoluted Tubule
19.5


82685_Small intestine_Duodenum
1.2


90650_Adrenal_Adrenocortical adenoma
4.5


72410_Kidney_HRCE
28.7


72411_Kidney_HRE
10.0


73139_Uterus_Uterine smooth muscle cells
5.3










[0714]

242





TABLE BG










Panel 5D









Rel. Exp. (%)



Ag4285, Run


Tissue Name
181457564











97457_Patient-02go_adipose
14.5


97476_Patient-07sk_skeletal muscle
10.6


97477_Patient-07ut_uterus
3.1


97478_Patient-07pl_placenta
61.6


97481_Patient-08sk_skeletal muscle
12.7


97482_Patient-08ut_uterus
5.1


97483_Patient-08pl_placenta
62.9


97486_Patient-09sk_skeletal muscle
2.1


97487_Patient-09ut_uterus
7.1


97488_Patient-09pl_placenta
34.9


97492_Patient-10ut_uterus
5.7


97493_Patient-10pl_placenta
100.0


97495_Patient-11go_adipose
13.9


97496_Patient-11sk_skeletal muscle
2.4


97497_Patient-11ut_uterus
8.5


97498_Patient-11pl_placenta
32.3


97500_Patient-12go_adipose
12.1


97501 _Patient-12sk_skeletal muscle
6.3


97502_Patient-12ut_uterus
6.5


97503_Patient-12pl_placenta
25.9


94721_Donor 2 U - A_Mesenchymal Stem Cells
8.8


94722_Donor 2 U - B_Mesenchymal Stem Cells
7.6


94723_Donor 2 U - C_Mesenchymal Stem Cells
7.6


94709_Donor 2 AM - A_adipose
9.9


94710_Donor 2 AM - B_adipose
9.5


94711_Donor 2 AM - C_adipose
7.3


94712_Donor 2 AD - A_adipose
22.1


94713_Donor 2 AD - B_adipose
28.9


94714_Donor 2 AD - C_adipose
37.9


94742_Donor 3 U - A_Mesenchymal Stem Cells
7.5


94743_Donor 3 U - B_Mesenchymal Stem Cells
8.7


94730_Donor 3 AM - A_adipose
22.7


94731_Donor 3 AM - B_adipose
9.8


94732_Donor 3 AM - C_adipose
14.2


94733_Donor 3 AD - A_adipose
34.4


94734_Donor 3 AD - B_adipose
19.3


94735_Donor 3 AD - C_adipose
32.8


77138_Liver_HepG2untreated
46.0


73556_Heart_Cardiac stromal cells (primary)
8.3


81735_Small Intestine
9.7


72409_Kidney_Proximal Convoluted Tubule
18.0


82685_Small intestine_Duodenum
5.1


90650_Adrenal_Adrenocortical adenoma
2.4


72410_Kidney_HRCE
16.2


72411_Kidney_HRE
11.3


73139_Uterus_Uterine smooth muscle cells
4.2










[0715]

243





TABLE BH










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag4285, Run



Tissue Name
260280467














Colon cancer 1
12.7



Colon cancer NAT 1
6.0



Colon cancer 2
63.3



Colon cancer NAT 2
8.6



Colon cancer 3
59.5



Colon cancer NAT 3
25.3



Colon malignant cancer 4
59.9



Colon normal adjacent tissue 4
6.7



Lung cancer 1
84.7



Lung NAT 1
5.3



Lung cancer 2
43.2



Lung NAT 2
14.0



Squamous cell carcinoma 3
51.4



Lung NAT 3
5.5



metastatic melanoma 1
27.5



Melanoma 2
6.4



Melanoma 3
8.4



metastatic melanoma 4
43.5



metastatic melanoma 5
49.0



Bladder cancer 1
3.2



Bladder cancer NAT 1
0.0



Bladder cancer 2
17.7



Bladder cancer NAT 2
0.5



Bladder cancer NAT 3
0.8



Bladder cancer NAT 4
3.1



Prostate adenocarcinoma 1
20.4



Prostate adenocarcinoma 2
2.0



Prostate adenocarcinoma 3
4.8



Prostate adenocarcinoma 4
24.5



Prostate cancer NAT 5
5.8



Prostate adenocarcinoma 6
1.6



Prostate adenocarcinoma 7
5.2



Prostate adenocarcinoma 8
1.5



Prostate adenocarcinoma 9
13.2



Prostate cancer NAT 10
0.6



Kidney cancer 1
15.4



Kidney NAT 1
7.6



Kidney cancer 2
100.0



Kidney NAT 2
7.0



Kidney cancer 3
21.0



Kidney NAT 3
2.5



Kidney cancer 4
8.9



Kidney NAT 4
2.0











[0716] General_screening_panelv1.4 Summary: Ag4285 Highest expression of this gene is detected in brain cancer SF-295 cell line (CT=23). High levels of expression of this gene is also seen in number of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers.


[0717] This gene codes for aryl hydrocarbon receptor (AhR). AhR is a ligand-activated nuclear transcription factor that mediates responses to toxic halogenated aromatic toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polynuclear aromatic hydrocarbons, combustion products, and numerous phytochemicals such as flavonoids and indole-3-carbinol (13C). The nuclear AhR complex is a heterodimer containing the AhR and AhR nuclear translocator (Arnt) proteins, and the molecular mechanism of AhR action is associated with binding of the heterodimer to dioxin responsive elements (DREs) in regulatory regions of Ah-responsive genes. TCDD, a ‘xenodioxin’, is a multi-site carcinogen in several species and possibly in humans, whereas natural AhR ligands including I3C and flavonoids tend to protect against cancer. Both TCDD and phytochemicals inhibit estrogen-induced breast and endometrial cancers (Safe S., 2001, Toxicol Lett 120(1-3):1-7, PMID: 11323156). Thus, therapeutic modulation of the expression or function of AhR may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0718] Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. AhR is a member of the PAS (Per-Ahr-Sim) superfamily of transcription factors having functions in development and detoxification (Wilson C L, Safe S., 1998, Toxicol Pathol 26(5):657-71, PMID: 9789953). It forms an active complex with ARNT (a nuclear translocator) that crosses the nuclear membrane and binds DNA. In addition, TCDD is a known activating ligand for AhR that initiates expression of multiple genes, including CYP1B1 and glutathione S-transferase. Studies using AhR −/− MEFs have indicated that constitutive AhR activity is required for basal expression of CYP1B1 and suppression of lipogenesis in subconfluent cultures. Activation of AhR suppresses PPAR gamma and adipogenesis. AhR is a constitutive inhibitor of triglyceride synthesis, and as an early regulator of adipocyte differentiation (Alexander et al., 1998, J Cell Sci 111 (Pt 22):3311-22, PMID: 9788873). Furthermore, using CuraGen's GeneCalling™ method of differential gene expression, this gene was found to be up-regulated by 1.9 fold in the adipose tissues of human gestational diabetics relative to normal pregnant females. Furthermore, the mouse ortholog of this gene was found to have altered expression in a mouse model of dietary-induced obesity. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0719] Interestingly, this gene is expressed at much higher levels in fetal (CTs=24-27) when compared to adult lung and liver (CTs=29-31). This observation suggests that expression of this gene can be used to distinguish fetal from adult lung and liver. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance growth or development of these tissues in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of lung and liver related diseases.


[0720] In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0721] General_screening_panel_v1.5 Summary: Ag4285 Highest expression of this gene is detected in brain cancer SF-295 cell line (CT=22.6). Consistent with expression pattern seen in panel 1.4, high levels of expression of this gene is seen in number of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. In addition, moderate levels of expression of this gene are also seen in tissues with endocrine/metabolic functions and also in all the regions of central nervous system. Please see panel 1.4 for further discussion on the utility of this gene.


[0722] Oncology_cell_line_screening_panel_v3.2 Summary: Ag4285 Highest expression of this gene is detected in gastric cancer MKN-45 cell line (CT=25.8). In addition, high to moderate levels of expression of this gene is seen in number of cell lines derived from tongue, prostate, vulva, epidermoid, bone, fibrosarcoma, rhabdomyosarcoma, bladder, pancreatic, Wilm tumor, renal, B- and T-cell lymphomas and leukemia, cervical, gastric, colon, lung and brain. Therefore, therapeutic modulation of this gene may be useful in the treatment of these cancers. Please see panel 1.4 for further discussion on the utility of this gene.


[0723] Panel 4.1D Summary: Ag4285 Highest expression of this gene is detected PMA/ionomycin treated LAK cells (CT=27.5). This gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0724] Panel 5 Islet Summary: Ag4285 Highest expression of this gene is detected in placenta (CTs=28). In addition, significant expression of this gene is also seen in all the tissues with metabolic/endocrine functions. These results are consistent with the expression pattern seen in panel 1.4 and 1.5. Please see panel 1.4 for further discussion on the utility of this gene.


[0725] Panel 5D Summary: Ag4285 Highest expression of this gene is detected in placenta (CTs=28). In addition, significant expression of this gene is also seen in all the tissues with metabolic/endocrine functions. These results are consistent with the expression pattern seen in panels 5 Islet, 1.4 and 1.5. Please see panel 1.4 for further discussion on the utility of this gene.


[0726] general oncology screening panel_v2.4 Summary: Ag4285 Highest expression of this gene is detected in kidney cancer 2 (CT=24.4). High expression of this gene is also seen 5 in melanoma and normal and cancer samples derived from colon, lung, bladder, prostate and kidney. Interestingly, expression of this gene is higher in cancer samples as compared to corresponding normal adjacent samples. Therefore, expression of this gene may be used as diagnostic marker for the detection of melanoma, colon, lung, bladder, prostate and kidney cancers. Please see panel 1.4 for further discussion on the utility of this gene.


[0727] C. CG105521-01: Stearoyl CoA Desaturase-Like Gene


[0728] Expression of gene CG105521-01 was assessed using the primer-probe set Ag4290, described in Table CA. Results of the RTQ-PCR runs are shown in Tables CB, CC, CD, CE, CF and CG.
244TABLE CAProbe Name Ag4290StartSEQPrimersSequencesLengthPositionID NoForward5′-tctgctgagtaaggaacacgat-2241122273′ProbeTET-5′-tcaagattctaaagctcaa304136228ttcaagtgaca-3′-TAMRAReverse5′-tccggactcttgatcagatct-3′214182229


[0729]

245





TABLE CB










AI_comprehensive panel_v1.0











Rel. Exp. (%)




Ag4290, Run



Tissue Name
248389291














110967 COPD-F
0.3



110980 COPD-F
0.3



110968 COPD-M
0.3



110977 COPD-M
0.7



110989 Emphysema-F
2.1



110992 Emphysema-F
0.7



110993 Emphysema-F
0.6



110994 Emphysema-F
0.1



110995 Emphysema-F
2.5



110996 Emphysema-F
0.4



110997 Asthma-M
0.7



111001 Asthma-F
0.4



111002 Asthma-F
1.0



111003 Atopic Asthma-F
2.2



111004 Atopic Asthma-F
1.8



111005 Atopic Asthma-F
1.2



111006 Atopic Asthma-F
0.3



111417 Allergy-M
0.8



112347 Allergy-M
0.0



112349 Normal Lung-F
0.0



112357 Normal Lung-F
10.9



112354 Normal Lung-M
2.8



112374 Crohns-F
0.7



112389 Match Control Crohns-F
2.3



112375 Crohns-F
0.5



112732 Match Control Crohns-F
3.2



112725 Crohns-M
0.5



112387 Match Control Crohns-M
0.2



112378 Crohns-M
0.0



112390 Match Control Crohns-M
2.7



112726 Crohns-M
1.9



112731 Match Control Crohns-M
1.7



112380 Ulcer Col-F
0.8



112734 Match Control Ulcer Col-F
4.8



112384 Ulcer Col-F
1.6



112737 Match Control Ulcer Col-F
0.8



112386 Ulcer Col-F
0.0



112738 Match Control Ulcer Col-F
4.3



112381 Ulcer Col-M
0.0



112735 Match Control Ulcer Col-M
0.7



112382 Ulcer Col-M
2.0



112394 Match Control Ulcer Col-M
0.0



112383 Ulcer Col-M
0.7



112736 Match Control Ulcer Col-M
2.8



112423 Psoriasis-F
1.3



112427 Match Control Psoriasis-F
2.2



112418 Psoriasis-M
0.1



112723 Match Control Psoriasis-M
1.0



112419 Psoriasis-M
0.4



112424 Match Control Psoriasis-M
1.0



112420 Psoriasis-M
1.4



112425 Match Control Psoriasis-M
1.5



104689 (MF) OA Bone-Backus
39.2



104690 (MF) Adj “Normal” Bone-Backus
14.8



104691 (MF) OA Synovium-Backus
5.6



104692 (BA) OA Cartilage-Backus
3.3



104694 (BA) OA Bone-Backus
27.0



104695 (BA) Adj “Normal” Bone-Backus
100.0



104696 (BA) OA Synovium-Backus
31.2



104700 (SS) OA Bone-Backus
10.8



104701 (SS) Adj “Normal” Bone-Backus
20.9



104702 (SS) OA Synovium-Backus
50.3



117093 OA Cartilage Rep7
0.5



112672 OA Bone5
3.4



112673 OA Synovium5
1.2



112674 OA Synovial Fluid cells5
0.6



117100 OA Cartilage Rep14
0.1



112756 OA Bone9
6.4



112757 OA Synovium9
0.5



112758 OA Synovial Fluid Cells9
0.4



117125 RA Cartilage Rep2
0.0



113492 Bone2 RA
2.3



113493 Synovium2 RA
1.0



113494 Syn Fluid Cells RA
2.7



113499 Cartilage4 RA
2.9



113500 Bone4 RA
4.5



113501 Synovium4 RA
3.7



113502 Syn Fluid Cells4 RA
1.7



113495 Cartilage3 RA
2.9



113496 Bone3 RA
3.7



113497 Synovium3 RA
1.2



113498 Syn Fluid Cells3 RA
4.5



117106 Normal Cartilage Rep20
0.1



113663 Bone3 Normal
0.0



113664 Synovium3 Normal
0.0



113665 Syn Fluid Cells3 Normal
0.1



117107 Normal Cartilage Rep22
0.0



113667 Bone4 Normal
0.2



113668 Synovium4 Normal
0.2



113669 Syn Fluid Cells4 Normal
0.5











[0730]

246





TABLE CC










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4290, Run



Tissue Name
249266040














AD 1 Hippo
12.8



AD 2 Hippo
23.3



AD 3 Hippo
8.1



AD 4 Hippo
7.1



AD 5 Hippo
22.8



AD 6 Hippo
68.3



Control 2 Hippo
28.1



Control 4 Hippo
18.6



Control (Path) 3 Hippo
8.2



AD 1 Temporal Ctx
15.3



AD 2 Temporal Ctx
27.5



AD 3 Temporal Ctx
4.6



AD 4 Temporal Ctx
20.7



AD 5 Inf Temporal Ctx
100.0



AD 5 Sup Temporal Ctx
34.4



AD 6 Inf Temporal Ctx
55.9



AD 6 Sup Temporal Ctx
46.3



Control 1 Temporal Ctx
4.3



Control 2 Temporal Ctx
20.0



Control 3 Temporal Ctx
14.2



Control 3 Temporal Ctx
10.5



Control (Path) 1 Temporal Ctx
20.4



Control (Path) 2 Temporal Ctx
24.1



Control (Path) 3 Temporal Ctx
5.1



Control (Path) 4 Temporal Ctx
17.7



AD 1 Occipital Ctx
12.5



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
6.7



AD 4 Occipital Ctx
25.3



AD 5 Occipital Ctx
17.0



AD 6 Occipital Ctx
24.7



Control 1 Occipital Ctx
3.7



Control 2 Occipital Ctx
30.8



Control 3 Occipital Ctx
18.3



Control 4 Occipital Ctx
17.7



Control (Path) 1 Occipital Ctx
37.4



Control (Path) 2 Occipital Ctx
12.6



Control (Path) 3 Occipital Ctx
7.8



Control (Path) 4 Occipital Ctx
8.7



Control 1 Parietal Ctx
6.7



Control 2 Parietal Ctx
27.0



Control 3 Parietal Ctx
16.7



Control (Path) 1 Parietal Ctx
25.7



Control (Path) 2 Parietal Ctx
25.2



Control (Path) 3 Parietal Ctx
7.5



Control (Path) 4 Parietal Ctx
22.5











[0731]

247





TABLE CD










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4290, Run



Tissue Name
222183058














Adipose
1.9



Melanoma* Hs688(A).T
0.4



Melanoma* Hs688(B).T
0.7



Melanoma* M14
5.8



Melanoma* LOXIMVI
0.8



Melanoma* SK-MEL-5
38.7



Squamous cell carcinoma SCC-4
6.0



Testis Pool
0.6



Prostate ca.* (bone met) PC-3
3.3



Prostate Pool
2.3



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
10.2



Ovarian ca. SK-OV-3
0.7



Ovarian ca. OVCAR-4
0.4



Ovarian ca. OVCAR-5
23.8



Ovarian ca. IGROV-1
11.8



Ovarian ca. OVCAR-8
3.6



Ovary
1.1



Breast ca. MCF-7
14.0



Breast ca. MDA-MB-231
4.0



Breast ca. BT 549
100.0



Breast ca. T47D
47.6



Breast ca. MDA-N
6.8



Breast Pool
0.1



Trachea
0.7



Lung
0.2



Fetal Lung
0.7



Lung ca. NCI-N417
0.3



Lung ca. LX-1
12.4



Lung ca. NCI-H146
1.7



Lung ca. SHP-77
4.8



Lung ca. A549
12.6



Lung ca. NCI-H526
1.3



Lung ca. NCI-H23
24.0



Lung ca. NCI-H460
6.4



Lung ca. HOP-62
3.9



Lung ca. NCI-H522
2.9



Liver
1.5



Fetal Liver
15.0



Liver ca. HepG2
25.7



Kidney Pool
0.1



Fetal Kidney
0.2



Renal ca. 786-0
9.2



Renal ca. A498
13.3



Renal ca. ACHN
11.7



Renal ca. UO-31
5.2



Renal ca. TK-10
15.8



Bladder
0.4



Gastric ca. (liver met.) NCI-N87
3.9



Gastric ca. KATO III
1.7



Colon ca. SW-948
0.8



Colon ca. SW480
4.6



Colon ca.* (SW480 met) SW620
5.0



Colon ca. HT29
10.4



Colon ca. HCT-116
15.7



Colon ca. CaCo-2
11.7



Colon cancer tissue
3.3



Colon ca. SW1116
1.4



Colon ca. Colo-205
9.7



Colon ca. SW-48
6.6



Colon Pool
0.1



Small Intestine Pool
0.1



Stomach Pool
0.2



Bone Marrow Pool
0.1



Fetal Heart
0.1



Heart Pool
0.0



Lymph Node Pool
0.2



Fetal Skeletal Muscle
1.3



Skeletal Muscle Pool
0.0



Spleen Pool
0.2



Thymus Pool
0.3



CNS cancer (glio/astro) U87-MG
27.9



CNS cancer (glio/astro) U-118-MG
0.5



CNS cancer (neuro; met) SK-N-AS
4.2



CNS cancer (astro) SF-539
3.7



CNS cancer (astro) SNB-75
0.9



CNS cancer (glio) SNB-19
9.4



CNS cancer (glio) SF-295
5.8



Brain (Amygdala) Pool
7.2



Brain (cerebellum)
4.8



Brain (fetal)
2.8



Brain (Hippocampus) Pool
7.3



Cerebral Cortex Pool
8.4



Brain (Substantia nigra) Pool
9.0



Brain (Thalamus) Pool
11.9



Brain (whole)
5.2



Spinal Cord Pool
12.6



Adrenal Gland
3.0



Pituitary gland Pool
0.1



Salivary Gland
0.2



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
31.2



Pancreas Pool
0.2











[0732]

248





TABLE CE










Panel 4.1D









Rel. Exp. (%)



Ag4290, Run


Tissue Name
248386497











Secondary Th1 act
9.8


Secondary Th2 act
10.5


Secondary Tr1 act
3.0


Secondary Th1 rest
1.0


Secondary Th2 rest
0.6


Secondary Tr1 rest
1.0


Primary Th1 act
3.5


Primary Th2 act
21.5


Primary Tr1 act
19.9


Primary Th1 rest
0.3


Primary Th2 rest
0.5


Primary Tr1 rest
1.1


CD45RA CD4 lymphocyte act
3.6


CD45RO CD4 lymphocyte act
7.4


CD8 lymphocyte act
4.2


Secondary CD8 lymphocyte rest
5.4


Secondary CD8 lymphocyte act
2.2


CD4 lymphocyte none
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.2


LAK cells rest
18.9


LAK cells IL-2
5.1


LAK cells IL-2 + IL-12
0.6


LAK cells IL-2 + IFN gamma
0.5


LAK cells IL-2 + IL-18
0.5


LAK cells PMA/ionomycin
22.2


NK Cells IL-2 rest
6.2


Two Way MLR 3 day
1.2


Two Way MLR 5 day
0.9


Two Way MLR 7 day
1.1


PBMC rest
0.1


PBMC PWM
2.5


PBMC PHA-L
7.9


Ramos (B cell) none
8.8


Ramos (B cell) ionomycin
24.3


B lymphocytes PWM
4.1


B lymphocytes CD40L and IL-4
4.8


EOL-1 dbcAMP
16.5


EOL-1 dbcAMP PMA/ionomycin
0.9


Dendritic cells none
44.1


Dendritic cells LPS
9.5


Dendritic cells anti-CD40
4.4


Monocytes rest
0.1


Monocytes LPS
1.3


Macrophages rest
4.9


Macrophages LPS
0.4


HUVEC none
19.6


HUVEC starved
29.1


HUVEC IL-1beta
27.5


HUVEC IFN gamma
9.9


HUVEC TNF alpha + IFN gamma
8.5


HUVEC TNF alpha + IL4
7.8


HUVEC IL-11
14.7


Lung Microvascular EC none
10.4


Lung Microvascular EC TNFalpha + IL-1beta
2.5


Microvascular Dermal EC none
1.5


Microsvasular Dermal EC TNFalpha + IL-1beta
2.8


Bronchial epithelium TNFalpha + IL1beta
25.0


Small airway epithelium none
14.6


Small airway epithelium TNFalpha + IL-1beta
100.0


Coronery artery SMC rest
11.8


Coronery artery SMC TNFalpha + IL-1beta
11.9


Astrocytes rest
4.9


Astrocytes TNFalpha + IL-1beta
1.6


KU-812 (Basophil) rest
18.6


KU-812 (Basophil) PMA/ionomycin
22.2


CCD1106 (Keratinocytes) none
50.0


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
11.5


Liver cirrhosis
7.0


NCI-H292 none
45.7


NCI-H292 IL-4
24.7


NCI-H292 IL-9
31.9


NCI-H292 IL-13
43.5


NCI-H292 IFN gamma
15.0


HPAEC none
5.6


HPAEC TNF alpha + IL-1 beta
17.4


Lung fibroblast none
47.0


Lung fibroblast TNF alpha + IL-1 beta
10.3


Lung fibroblast IL-4
12.7


Lung fibroblast IL-9
22.5


Lung fibroblast IL-13
6.0


Lung fibroblast IFN gamma
21.2


Dermal fibroblast CCD1070 rest
2.3


Dermal fibroblast CCD1070 TNF alpha
6.3


Dermal fibroblast CCD1070 IL-1 beta
2.2


Dermal fibroblast IFN gamma
17.8


Dermal fibroblast IL-4
37.1


Dermal Fibroblasts rest
21.6


Neutrophils TNFa + LPS
0.0


Neutrophils rest
0.0


Colon
0.1


Lung
1.0


Thymus
0.4


Kidney
1.2










[0733]

249





TABLE CF










Panel 5 Islet









Rel. Exp. (%)



Ag4290, Run


Tissue Name
271406443











97457_Patient-02go_adipose
6.3


97476_Patient-07sk_skeletal muscle
0.9


97477_Patient-07ut_uterus
0.1


97478_Patient-07pl_placenta
0.3


99167_Bayer Patient 1
7.2


97482_Patient-08ut_uterus
0.1


97483_Patient-08pl_placenta
0.4


97486_Patient-09sk_skeletal muscle
0.3


97487_Patient-09ut_uterus
0.2


97488_Patient-09pl_placenta
0.1


97492_Patient-10ut_uterus
0.2


97493_Patient-10pl_placenta
0.3


97495_Patient-11go_adipose
0.7


97496_Patient-11sk_skeletal muscle
0.0


97497_Patient-11ut_uterus
0.3


97498_Patient-11pl_placenta
0.3


97500_Patient-12go_adipose
2.6


97501_Patient-12sk_skeletal muscle
0.2


97502_Patient-12ut_uterus
0.4


97503_Patient-12pl_placenta
0.3


94721_Donor 2 U - A_Mesenchymal Stem Cells
7.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
4.7


94723_Donor 2 U - C_Mesenchymal Stem Cells
3.8


94709_Donor 2 AM - A_adipose
11.3


94710_Donor 2 AM - B_adipose
9.9


94711_Donor 2 AM - C_adipose
7.0


94712_Donor 2 AD - A_adipose
39.0


94713_Donor 2 AD - B_adipose
54.7


94714_Donor 2 AD - C_adipose
51.4


94742_Donor 3 U - A_Mesenchymal Stem Cells
0.0


94743_Donor 3 U - B_Mesenchymal Stem Cells
5.5


94730_Donor 3 AM - A_adipose
11.8


94731_Donor 3 AM - B_adipose
5.7


94732_Donor 3 AM - C_adipose
6.4


94733_Donor 3 AD - A_adipose
51.1


94734_Donor 3 AD - B_adipose
33.9


94735_Donor 3 AD - C_adipose
48.0


77138_Liver_HepG2untreated
100.0


73556_Heart_Cardiac stromal cells (primary)
1.2


81735_Small Intestine
0.7


72409_Kidney_Proximal Convoluted Tubule
6.0


82685_Small intestine_Duodenum
0.4


90650_Adrenal_Adrenocortical adenoma
4.7


72410_Kidney_HRCE
25.2


72411_Kidney_HRE
17.4


73139_Uterus_Uterine smooth muscle cells
8.5










[0734]

250





TABLE CG










Panel 5D









Rel. Exp. (%)



Ag4290, Run


Tissue Name
182304009











97457_Patient-02go_adipose
8.5


97476_Patient-07sk_skeletal muscle
0.9


97477_Patient-07ut_uterus
0.1


97478_Patient-07pl_placenta
0.5


97481_Patient-08sk_skeletal muscle
2.2


97482_Patient-08ut_uterus
0.1


97483_Patient-08pl_placenta
0.3


97486_Patient-09sk_skeletal muscle
0.1


97487_Patient-09ut_uterus
0.1


97488_Patient-09pl_placenta
0.1


97492_Patient-10ut_uterus
0.3


97493_Patient-10pl_placenta
0.3


97495_Patient-11go_adipose
0.7


97496_Patient-11sk_skeletal muscle
0.0


97497_Patient-11ut_uterus
0.3


97498_Patient-11pl_placenta
0.4


97500_Patient-12go_adipose
3.4


97501_Patient-12sk_skeletal muscle
0.6


97502_Patient-12ut_uterus
0.4


97503_Patient-12pl_placenta
0.2


94721_Donor 2 U - A_Mesenchymal Stem Cells
7.3


94722_Donor 2 U - B_Mesenchymal Stem Cells
5.0


94723_Donor 2 U - C_Mesenchymal Stem Cells
5.4


94709_Donor 2 AM - A_adipose
14.8


94710_Donor 2 AM - B_adipose
7.1


94711_Donor 2 AM - C_adipose
5.4


94712_Donor 2 AD - A_adipose
41.8


94713_Donor 2 AD - B_adipose
48.6


94714_Donor 2 AD - C_adipose
52.9


94742_Donor 3 U - A_Mesenchymal Stem Cells
4.7


94743_Donor 3 U - B_Mesenchymal Stem Cells
6.6


94730_Donor 3 AM - A_adipose
11.8


94731_Donor 3 AM - B_adipose
6.1


94732_Donor 3 AM - C_adipose
6.5


94733_Donor 3 AD - A_adipose
54.3


94734_Donor 3 AD - B_adipose
36.9


94735_Donor 3 AD - C_adipose
51.8


77138_Liver_HepG2untreated
100.0


73556_Heart_Cardiac stromal cells (primary)
0.9


81735_Small Intestine
0.8


72409_Kidney_Proximal Convoluted Tubule
5.4


82685_Small intestine_Duodenum
0.5


90650_Adrenal_Adrenocortical adenoma
4.3


72410_Kidney_HRCE
23.2


72411_Kidney_HRE
21.6


73139_Uterus_Uterine smooth muscle cells
5.4










[0735] AI_comprehensive panel_v1.0 Summary: Ag4290 Highest expression of this gene is detected in normal bone (CT=27). Moderate levels of expression of this gene are also seen in samples derived from osteoarthritic (OA) bone and adjacent bone as well as OA cartilage, and OA synovium samples. Moderate to low levels of expression of this gene is also seen in cartilage, bone, synovium and synovial fluid samples from rheumatoid arthritis patients. Low level expression is also detected in samples derived from normal lung samples, emphysema, atopic asthma, asthma, Crohn's disease (normal matched control and diseased), ulcerative colitis(normal matched control and diseased), and psoriasis (normal matched control and diseased). Therefore, therapeutic modulation of this gene product may ameliorate symptoms/conditions associated with autoimmune and inflammatory disorders including psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis


[0736] CNS_neurodegeneration_v1.0 Summary: Ag4290 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slightly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0737] General_screening_panel_v1.4 Summary: Ag4290 Highest expression of this gene is detected in breast cancer BT 549 cell line (CT=22). High levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0738] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, fetal skeletal muscle, heart, liver and the gastrointestinal tract. This gene codes for Stearoyl-CoA desaturase (SCD). SCD is an iron-containing enzyme that catalyzes a rate-limiting step in the synthesis of unsaturated fatty acids by insertion of a cis-double bond in the Delta9 position of fatty acid substrates. It is regulated by both SREBP and C/EBPalpha, which are transcription factors that have been shown to be essential in adipose differentiation and lipogenesis. SCD is a key enzyme in the synthesis of unsaturated fatty acids that are being stored as triglycerides (TG), and the induction of TG synthesis is highly dependent on the expression of SCD. Using CuraGen's GeneCalling method of differential gene expression, SCD is found to be up-regulated in two genetic models of obesity. In addition, recently, SCD1 is shown to play a role in leptin-mediated weight loss. Obese mice treated with leptin lose weight and have decreased levels of SCD1 in their livers. Therefore, an antagonist for SCD to inhibit SCD directly may be an effective therapeutic for obesity and diabetes.


[0739] Interestingly, this gene is expressed at much higher levels in fetal (CTs=25-29) when compared to adult liver, lung and skeletal muscle (CTs=28-35). This observation suggests that expression of this gene can be used to distinguish these fetal from adult tissues. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance growth or development of these tissues in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of liver, lung and skeletal muscle related diseases.


[0740] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0741] References:


[0742] 1. Miyazaki et al., 2001, J Lipid Res. 42(7):1018-24. PMID: 11441127.


[0743] 2. Kim et al., 2000, J Lipid Res. 41(8):1310-6. PMID: 10946019


[0744] 3. Kim et al., 1998, Cell. 93(5):693-704. PMID: 9630215.


[0745] 4. Miyazaki et al., 2000, J Biol Chem. 275(39):30132-8. PMID: 10899171.


[0746] 5. Kim Y C, Ntambi J M., 1999, Biochem Biophys Res Commun. 266(1):1-4. Review. PMID: 10581155.


[0747] 6. Miyazaki et al., 2001, J Biol Chem. 276(42):39455-61. PMFD: 11500518.


[0748] 7. Cohen et al., 2002, Science. 297(5579):240-3. PMID: 12114623


[0749] Panel 4.1D Summary: Ag4290 Highest expression of this gene is detected in TNFalpha+IL-1beta treated small airway epithelium (CT=27). Expression of this gene is higher in cytokine stimulated than in resting small airway epithelium. Therefore, expression of this gene may be used to distinguish between these two samples.


[0750] In addition, moderate to low levels of expression of this gene is also seen in activated polarized, naive and memory T cells, LAK cells, NK cells, PWM/PHA-L stimulated PBMC, Ramos B cells, B lymphocytes, eosinophils, monocytes, macrophages, endothelial cells, bronchial epithelium, coronery artery SMC, astrocytes, basophils, mucoepidermoid cells, lung and dermal fibroblasts and normal tissues represented by kidney and lung. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0751] Panel 5 Islet Summary: Ag4290 Highest expression of this gene is detected in liver HepG2 cell line (CT=28.3). Moderate to low levels of expression of this gene is also seen in adipose, islet cells, mesenchymal stem cells and kidney. Interestingly, expression of this gene is induced in differentiated adipose cells. Therefore, expression of this gene may be used as a marker for differentiation. Please see panel 1.4 for further discussion on the utility of this gene.


[0752] Panel 5D Summary: Ag4290 Highest expression of this gene is detected in liver HepG2 cell line (CT=28.3). Moderate to low levels of expression of this gene is also seen in 5 adipose, islet cells, mesenchymal stem cells and kidney. Interestingly, expression of this gene is induced in differentiated adipose. This expression pattern is in agreement with expression seen in panel 5 Islet. Please see panels 1.4 and 5 Islet for further discussion on the utility of this gene.


[0753] D. CG107234-02 and CG107234-03: HYDROLASE Like Gene


[0754] Expression of full-length physical clone CG107234-02 and full-length physical clone CG107234-03 was assessed using the primer-probe set Ag6935, described in Table DA. Results of the RTQ-PCR runs are shown in Table DB.
251TABLE DAProbe Name Ag6935StartPrimersSequencesLengthPositionSEQ ID NoForward5′-tactgactcgacctcccaaaat-3′22685230ProbeTET-5′-cgagcctctggtctctgt26712321tcagaacc-3′-TAMRAReverse5′-ctgatgaagtcaatgctgttct24745232ct-3′


[0755]

252





TABLE DB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag6935, Run



Tissue Name
278388839














Adipose
4.4



Melanoma* Hs688(A).T
2.8



Melanoma* Hs688(B).T
5.4



Melanoma* M14
1.6



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
2.7



Squamous cell carcinoma SCC-4
10.2



Testis Pool
4.7



Prostate ca.* (bone met) PC-3
8.0



Prostate Pool
6.2



Placenta
1.2



Uterus Pool
0.9



Ovarian ca. OVCAR-3
2.2



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
8.2



Ovarian ca. OVCAR-5
10.3



Ovarian ca. IGROV-1
1.4



Ovarian ca. OVCAR-8
2.9



Ovary
18.6



Breast ca. MCF-7
22.8



Breast ca. MDA-MB-231
10.9



Breast ca. BT 549
12.8



Breast ca. T47D
2.4



Breast ca. MDA-N
0.0



Breast Pool
1.5



Trachea
6.0



Lung
8.7



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
1.1



Lung ca. A549
0.0



Lung ca. NCI-H526
1.1



Lung ca. NCI-H23
100.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
3.2



Lung ca. NCI-H522
4.8



Liver
1.2



Fetal Liver
1.0



Liver ca. HepG2
2.1



Kidney Pool
12.0



Fetal Kidney
3.1



Renal ca. 786-0
0.0



Renal ca. A498
6.3



Renal ca. ACHN
1.2



Renal ca. UO-31
4.3



Renal ca. TK-10
2.1



Bladder
0.9



Gastric ca. (liver met.) NCI-N87
2.1



Gastric ca. KATO III
2.5



Colon ca. SW-948
0.0



Colon ca. SW480
6.6



Colon ca.* (SW480 met) SW620
1.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
1.3



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.6



Colon Pool
2.1



Small Intestine Pool
8.0



Stomach Pool
2.7



Bone Marrow Pool
0.6



Fetal Heart
5.5



Heart Pool
5.2



Lymph Node Pool
2.2



Fetal Skeletal Muscle
3.2



Skeletal Muscle Pool
2.3



Spleen Pool
5.9



Thymus Pool
2.0



CNS cancer (glio/astro) U87-MG
11.5



CNS cancer (glio/astro) U-118-MG
3.3



CNS cancer (neuro; met) SK-N-AS
1.0



CNS cancer (astro) SF-539
1.0



CNS cancer (astro) SNB-75
6.8



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
3.4



Brain (Amygdala) Pool
7.1



Brain (cerebellum)
20.2



Brain (fetal)
5.5



Brain (Hippocampus) Pool
7.2



Cerebral Cortex Pool
6.1



Brain (Substantia nigra) Pool
4.0



Brain (Thalamus) Pool
15.4



Brain (whole)
10.3



Spinal Cord Pool
5.1



Adrenal Gland
1.0



Pituitary gland Pool
0.0



Salivary Gland
6.1



Thyroid (female)
9.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.0











[0756] General_screening_panel_v1.6 Summary: Ag6935 Expression of this gene is highest to a sample derived from a lung cancer cell line (CT=32). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of lung cancer.


[0757] E. CG113144-02: CtBP (D-Isomer Specific 2-Hydroxyacid Dehydrogenase)-Like Gene


[0758] Expression of gene CG1 13144-02 was assessed using the primer-probe sets Ag5052 and Ag5078, described in Tables EA and EB. Results of the RTQ-PCR runs are shown in Tables EC, ED and EE.
253TABLE EAProbe Name Ag5052StartPrimersSequencesLengthPositionSEQ ID NoForward5′-cagggaggacctggagaag-3′19222233ProbeTET-5′-ttcaaagccctccgcat23241234catcgt-3′-TAMRAReverse5′-cttgatgtcgatgttgtcaaa22279235a-3′


[0759]

254





TABLE EB










Probe Name Ag5078














Start



Primers
Sequences
Length
Position
SEQ ID No





Forward
5′-catgagaaggtcctgaacga-3′
20
163
236


Probe
TET-5′-gccctgatgtaccacacc
26
193
237



atcactct-3′-TAMRA


Reverse
5′-aacttctccaggtcctccct-3′
20
223
238










[0760]

255





TABLE EC










Oncology_cell_line_screening_panel_v3.1










Rel. Exp. (%)
Rel. Exp. (%)



Ag5052, Run
Ag5078,


Tissue Name
225138920
Run 225061085












Daoy Medulloblastoma/Cerebellum
11.5
8.2


TE671 Medulloblastom/Cerebellum
19.5
14.1


D283 Med Medulloblastoma/
76.8
74.7


Cerebellum


PFSK-1 Primitive
47.0
38.7


Neuroectodermal/Cerebellum


XF-498_CNS
39.8
26.1


SNB-78_CNS/glioma
28.1
30.8


SF-268_CNS/glioblastoma
15.2
16.4


T98G_Glioblastoma
32.1
33.9


SK-N-SH_Neuroblastoma
45.1
55.1


(metastasis)


SF-295_CNS/glioblastoma
35.6
31.2


Cerebellum
37.1
39.5


Cerebellum
37.1
73.2


NCI-H292_Mucoepidermoid
56.6
60.7


lung ca.


DMS-114_Small cell lung
16.7
18.9


cancer


DMS-79_Small cell lung
31.9
34.6


cancer/neuroendocrine


NCI-H146_Small cell lung
39.8
54.3


cancer/neuroendocrine


NCI-H526_Small cell lung
93.3
90.8


cancer/neuroendocrine


NCI-N417_Small cell lung
13.5
14.3


cancer/neuroendocrine


NCI-H82_Small cell lung
20.0
24.1


cancer/neuroendocrine


NCI-H157_Squamous cell lung
28.7
33.4


cancer (metastasis)


NCI-H1155_Large cell lung
55.5
85.3


cancer/neuroendocrine


NCI-H1299_Large cell lung
51.4
72.7


cancer/neuroendocrine


NCI-H727_Lung carcinoid
40.6
34.4


NCI-UMC-11_Lung carcinoid
42.0
46.7


LX-1_Small cell lung cancer
38.7
42.6


Colo-205_Colon cancer
35.8
44.4


KM12_Colon cancer
52.1
73.7


KM20L2_Colon cancer
28.7
36.9


NCI-H716_Colon cancer
73.7
100.0


SW-48_Colon adenocarcinoma
30.6
37.1


SW1116_Colon adenocarcinoma
15.9
16.8


LS 174T_Colon adenocarcinoma
46.7
65.1


SW-948_Colon adenocarcinoma
16.8
22.2


SW-480_Colon adenocarcinoma
21.5
29.9


NCI-SNU-5_Gastric ca.
40.3
36.1


KATO III_Stomach
37.4
33.2


NCI-SNU-16_Gastric ca.
29.3
32.8


NCI-SNU-1_Gastric ca.
28.9
34.9


RF-1_Gastric adenocarcinoma
19.2
27.7


RF-48_Gastric adenocarcinoma
24.5
31.2


MKN-45_Gastric ca.
20.6
25.9


NCI-N87_Gastric ca.
21.9
21.0


OVCAR-5_Ovarian ca.
16.3
17.6


RL95-2_Uterine carcinoma
18.3
22.5


HelaS3_Cervical adenocarcinoma
21.3
28.9


Ca Ski_Cervical epidermoid
46.3
64.2


carcinoma (metastasis)


ES-2_Ovarian clear cell
17.4
23.0


carcinoma


Ramos/6 h stim_Stimulated
27.2
36.9


with PMA/ionomycin 6 h


Ramos/14 h stim_Stimulated
23.0
19.6


with PMA/ionomycin 14 h


MEG-01_Chronic myelogenous
29.9
30.6


leukemia (megokaryoblast)


Raji_Burkitt's lymphoma
10.9
12.9


Daudi_Burkitt's lymphoma
26.4
39.0


U266_B-cell plasmacytoma/
24.3
34.2


myeloma


CA46_Burkitt's lymphoma
24.3
30.1


RL_non-Hodgkin's B-cell
19.5
17.9


lymphoma


JM1_pre-B-cell lymphoma/
23.7
33.7


leukemia


Jurkat_T cell leukemia
54.0
55.9


TF-1_Erythroleukemia
46.3
62.4


HUT 78_T-cell lymphoma
52.9
76.8


U937_Histiocytic lymphoma
64.2
50.3


KU-812_Myelogenous leukemia
30.1
26.8


769-P_Clear cell renal ca.
33.0
30.8


Caki-2_Clear cell renal ca.
20.6
25.9


SW 839_Clear cell renal ca.
26.2
32.1


G401_Wilms' tumor
16.0
24.7


Hs766T_Pancreatic ca. (LN
35.4
46.0


metastasis)


CAPAN-1_Pancreatic
11.0
15.1


adenocarcinoma


(liver metastasis)


SU86.86_Pancreatic carcinoma
49.7
49.0


(liver metastasis)


BxPC-3_Pancreatic
24.3
28.7


adenocarcinoma


HPAC_Pancreatic adenocarcinoma
55.5
66.0


MIA PaCa-2_Pancreatic ca.
10.8
6.3


CFPAC-1_Pancreatic ductal
100.0
94.6


adenocarcinoma


PANC-1_Pancreatic epithelioid
37.6
30.8


ductal ca.


T24_Bladder ca. (transitional
18.7
17.0


cell)


5637_Bladder ca.
9.5
10.9


HT-1197_Bladder ca.
18.7
15.7


UM-UC-3_Bladder ca.
10.9
10.0


(transitional cell)


A204_Rhabdomyosarcoma
21.2
18.0


HT-1080_Fibrosarcoma
21.9
20.3


MG-63_Osteosarcoma (bone)
22.7
20.3


SK-LMS-1_Leiomyosarcoma (vulva)
36.3
31.6


SJRH30_Rhabdomyosarcoma
32.1
34.2


(met to bone marrow)


A431_Epidermoid ca.
22.5
22.5


WM266-4_Melanoma
16.0
19.1


DU 145_Prostate
40.9
36.1


MDA-MB-468_Breast
15.0
12.0


adenocarcinoma


SSC-4_Tongue
21.8
25.3


SSC-9_Tongue
26.6
31.4


SSC-15_Tongue
18.2
28.1


CAL 27_Squamous cell ca. of
22.2
20.6


tongue










[0761]

256





TABLE ED










Panel 4.1D









Rel. Exp. (%)



Ag5052, Run


Tissue Name
223784810











Secondary Th1 act
71.2


Secondary Th2 act
81.8


Secondary Tr1 act
54.7


Secondary Th1 rest
25.3


Secondary Th2 rest
48.0


Secondary Tr1 rest
27.0


Primary Th1 act
0.0


Primary Th2 act
71.7


Primary Tr1 act
81.8


Primary Th1 rest
27.7


Primary Th2 rest
28.5


Primary Tr1 rest
48.6


CD45RA CD4 lymphocyte act
43.5


CD45RO CD4 lymphocyte act
69.7


CD8 lymphocyte act
55.1


Secondary CD8 lymphocyte rest
82.9


Secondary CD8 lymphocyte act
28.9


CD4 lymphocyte none
19.6


2ry Th1/Th2/Tr1_anti-CD95 CH11
62.0


LAK cells rest
54.0


LAK cells IL-2
54.7


LAK cells IL-2 + IL-12
24.0


LAK cells IL-2 + IFN gamma
38.7


LAK cells IL-2 + IL-18
37.1


LAK cells PMA/ionomycin
27.0


NK Cells IL-2 rest
95.9


Two Way MLR 3 day
47.6


Two Way MLR 5 day
56.6


Two Way MLR 7 day
38.2


PBMC rest
24.1


PBMC PWM
62.0


PBMC PHA-L
45.7


Ramos (B cell) none
77.9


Ramos (B cell) ionomycin
98.6


B lymphocytes PWM
45.4


B lymphocytes CD40L and IL-4
57.0


EOL-1 dbcAMP
62.0


EOL-1 dbcAMP PMA/ionomycin
64.6


Dendritic cells none
44.4


Dendritic cells LPS
33.9


Dendritic cells anti-CD40
59.5


Monocytes rest
45.1


Monocytes LPS
56.6


Macrophages rest
51.4


Macrophages LPS
10.7


HUVEC none
34.4


HUVEC starved
56.6


HUVEC IL-1beta
43.8


HUVEC IFN gamma
33.9


HUVEC TNF alpha + IFN gamma
28.3


HUVEC TNF alpha + IL4
34.6


HUVEC IL-11
30.4


Lung Microvascular EC none
72.2


Lung Microvascular EC TNFalpha + IL-1beta
39.0


Microvascular Dermal EC none
31.9


Microsvasular Dermal EC TNFalpha + IL-1beta
27.2


Bronchial epithelium TNFalpha + IL1beta
33.2


Small airway epithelium none
14.5


Small airway epithelium TNFalpha + IL-1beta
36.9


Coronery artery SMC rest
27.4


Coronery artery SMC TNFalpha + IL-1beta
30.1


Astrocytes rest
22.2


Astrocytes TNFalpha + IL-1beta
24.7


KU-812 (Basophil) rest
41.5


KU-812 (Basophil) PMA/ionomycin
46.0


CCD1106 (Keratinocytes) none
51.4


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
43.8


Liver cirrhosis
14.2


NCI-H292 none
56.6


NCI-H292 IL-4
56.3


NCI-H292 IL-9
72.7


NCI-H292 IL-13
57.4


NCI-H292 IFN gamma
49.0


HPAEC none
28.7


HPAEC TNF alpha + IL-1 beta
45.7


Lung fibroblast none
48.6


Lung fibroblast TNF alpha + IL-1 beta
33.0


Lung fibroblast IL-4
64.2


Lung fibroblast IL-9
59.0


Lung fibroblast IL-13
69.7


Lung fibroblast IFN gamma
100.0


Dermal fibroblast CCD1070 rest
52.9


Dermal fibroblast CCD1070 TNF alpha
72.7


Dermal fibroblast CCD1070 IL-1 beta
32.8


Dermal fibroblast IFN gamma
24.7


Dermal fibroblast IL-4
51.1


Dermal Fibroblasts rest
36.3


Neutrophils TNFa + LPS
2.8


Neutrophils rest
12.1


Colon
15.4


Lung
29.9


Thymus
42.6


Kidney
25.9










[0762]

257





TABLE EE










Panel 5 Islet









Rel. Exp. (%)



Ag5052, Run


Tissue Name
306350412











97457_Patient-02go_adipose
8.3


97476_Patient-07sk_skeletal muscle
0.0


97477_Patient-07ut_uterus
15.8


97478_Patient-07pl_placenta
8.8


99167_Bayer Patient 1
41.2


97482_Patient-08ut_uterus
6.6


97483_Patient-08pl_placenta
5.8


97486_Patient-09sk_skeletal muscle
6.8


97487_Patient-09ut_uterus
5.5


97488_Patient-09pl_placenta
9.9


97492_Patient-10ut_uterus
10.2


97493_Patient-10pl_placenta
36.3


97495_Patient-11go_adipose
7.6


97496_Patient-11sk_skeletal muscle
11.7


97497_Patient-11ut_uterus
21.5


97498_Patient-11pl_placenta
13.9


97500_Patient-12go_adipose
12.9


97501_Patient-12sk_skeletal muscle
46.7


97502_Patient-12ut_uterus
22.2


97503_Patient-12pl_placenta
33.9


94721_Donor 2 U - A_Mesenchymal Stem Cells
51.1


94722_Donor 2 U - B_Mesenchymal Stem Cells
40.6


94723_Donor 2 U - C_Mesenchymal Stem Cells
37.9


94709_Donor 2 AM - A_adipose
63.3


94710_Donor 2 AM - B_adipose
34.2


94711_Donor 2 AM - C_adipose
23.0


94712_Donor 2 AD - A_adipose
67.4


94713_Donor 2 AD - B_adipose
91.4


94714_Donor 2 AD - C_adipose
55.9


94742_Donor 3 U - A_Mesenchymal Stem Cells
26.1


94743_Donor 3 U - B_Mesenchymal Stem Cells
17.1


94730_Donor 3 AM - A_adipose
65.1


94731_Donor 3 AM - B_adipose
86.5


94732_Donor 3 AM - C_adipose
69.7


94733_Donor 3 AD - A_adipose
68.8


94734_Donor 3 AD - B_adipose
100.0


94735_Donor 3 AD - C_adipose
28.9


77138_Liver_HepG2untreated
69.3


73556_Heart_Cardiac stromal cells (primary)
11.0


81735_Small Intestine
24.8


72409_Kidney_Proximal Convoluted Tubule
27.4


82685_Small intestine_Duodenum
17.4


90650_Adrenal_Adrenocortical adenoma
4.4


72410_Kidney_HRCE
41.8


72411_Kidney_HRE
22.5


73139_Uterus_Uterine smooth muscle cells
28.1










[0763] Oncology_cell_line_screening_panel_v3.1 Summary: Ag5052/Ag5078 Two experiments with two different probe primer sets show this gene to be ubiquitously expressed on this panel. Highest expression is seen in a colon and pancreatic cancer cell lines (CTs=26-27).


[0764] Panel 4.1D Summary: Ag5052 Highest expression is seen in IFN-gamma treated lung fibroblasts (CT=27). This gene is also expressed at moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in Oncology_cell_line_screening_panel_v3.1 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0765] Panel 5 Islet Summary: Ag5052 Highest expression of this gene is seen in adipose (CT=30). This gene is widely expressed on this panel, with expression in many metabolic samples, including those from adipose, skeletal muscle and placenta. This expression profile suggests that this gene product may be involved in the pathogenesis and/or treatment of metabolic disorders including obesity and diabetes.


[0766] F. CG125197-03: LYSOPHOSPHOLIPASE-Like Gene


[0767] Expression of gene CG125197-03 was assessed using the primer-probe set Ag5957, described in Table FA. Results of the RTQ-PCR runs are shown in Table FB.
258TABLE FAProbe Name Ag5957StartSEQPrimersSequencesLengthPositionID NoForward5′-agggttttctcagtgccacg-3′20366239ProbeTET-5′-tggttcccctgatgttt25401240ggtcctct-3′-TAMRAReverse5′-acattggctggattcaccaat-3′21447241


[0768]

259





TABLE FB










Panel 5 Islet









Rel. Exp. (%)



Ag5957, Run


Tissue Name
247937701











97457_Patient-02go_adipose
22.4


97476_Patient-07sk_skeletal muscle
22.8


97477_Patient-07ut_uterus
24.7


97478_Patient-07pl_placenta
46.7


99167_Bayer Patient 1
12.8


97482_Patient-08ut_uterus
12.2


97483_Patient-08pl_placenta
69.7


97486_Patient-09sk_skeletal muscle
6.8


97487_Patient-09ut_uterus
21.0


97488_Patient-09pl_placenta
47.3


97492_Patient-10ut_uterus
17.1


97493_Patient-10pl_placenta
60.3


97495_Patient-11go_adipose
11.5


97496_Patient-11sk_skeletal muscle
15.8


97497_Patient-11ut_uterus
19.1


97498_Patient-11pl_placenta
50.7


97500_Patient-12go_adipose
11.1


97501_Patient-12sk_skeletal muscle
29.1


97502_Patient-12ut_uterus
10.1


97503_Patient-12pl_placenta
18.7


94721_Donor 2 U - A_Mesenchymal Stem Cells
5.7


94722_Donor 2 U - B_Mesenchymal Stem Cells
4.2


94723_Donor 2 U - C_Mesenchymal Stem Cells
6.3


94709_Donor 2 AM - A_adipose
10.9


94710_Donor 2 AM - B_adipose
5.1


94711_Donor 2 AM - C_adipose
4.7


94712_Donor 2 AD - A_adipose
6.4


94713_Donor 2 AD - B_adipose
10.3


94714_Donor 2 AD - C_adipose
10.8


94742_Donor 3 U - A_Mesenchymal Stem Cells
5.2


94743_Donor 3 U - B_Mesenchymal Stem Cells
3.1


94730_Donor 3 AM - A_adipose
9.4


94731_Donor 3 AM - B_adipose
5.8


94732_Donor 3 AM - C_adipose
8.1


94733_Donor 3 AD - A_adipose
25.7


94734_Donor 3 AD - B_adipose
9.7


94735_Donor 3 AD - C_adipose
13.2


77138_Liver_HepG2untreated
55.9


73556_Heart_Cardiac stromal cells (primary)
22.7


81735_Small Intestine
19.6


72409_Kidney_Proximal Convoluted Tubule
39.0


82685_Small intestine_Duodenum
21.3


90650_Adrenal_Adrenocortical adenoma
10.2


72410_Kidney_HRCE
100.0


72411_Kidney_HRE
53.6


73139_Uterus_Uterine smooth muscle cells
18.6










[0769] Panel 5 Islet Summary: Ag5957 Highest expression of this gene is seen in a kidney cell line (CT=-33).


[0770] G. CG134439-01: FLJ20837 FIS, CLONE ADKA02602 Like Gene


[0771] Expression of gene CG134439-01 was assessed using the primer-probe set Ag7405, described in Table GA.
260TABLE GAProbe Name Ag7405StartSEQPrimersSequencesLengthPositionID NoForward5′-tgaacccgtatgttcatttcct-3′22579242ProbeTET-5′-atggagtctctctctgtc26632243gcccaggc-3′-TAMRAReverse5′-aagatcgtgccactgcact-3′19661244


[0772] H. CG137109-01: Phospholipid-Transporting ATPase-Like Gene


[0773] Expression of gene CG137109-01 was assessed using the primer-probe set Ag4917, described in Table HA. Results of the RTQ-PCR runs are shown in Table HB.
261TABLE HAProbe Name Ag4917StartSEQPrimersSequencesLengthPositionID NoForward5′-gcagttccagaaacagcattat-3′22596245ProbeTET-5′-caaacagttgccaatttg26620246gacactct-3′-TAMRAReverse5′-ctggttgctggcattctattac-3′22653247


[0774]

262





TABLE HB










Panel 4.1D









Rel. Exp. (%)



Ag4917, Run


Tissue Name
223458643











Secondary Th1 act
80.7


Secondary Th2 act
100.0


Secondary Tr1 act
92.7


Secondary Th1 rest
27.9


Secondary Th2 rest
44.1


Secondary Tr1 rest
29.3


Primary Th1 act
38.2


Primary Th2 act
57.8


Primary Tr1 act
53.2


Primary Th1 rest
22.8


Primary Th2 rest
16.2


Primary Tr1 rest
59.9


CD45RA CD4 lymphocyte act
29.5


CD45RO CD4 lymphocyte act
54.3


CD8 lymphocyte act
37.9


Secondary CD8 lymphocyte rest
38.2


Secondary CD8 lymphocyte act
32.8


CD4 lymphocyte none
33.2


2ry Th1/Th2/Tr1_anti-CD95 CH11
44.8


LAK cells rest
29.3


LAK cells IL-2
21.2


LAK cells IL-2 + IL-12
38.4


LAK cells IL-2 + IFN gamma
23.7


LAK cells IL-2 + IL-18
39.2


LAK cells PMA/ionomycin
39.2


NK Cells IL-2 rest
70.7


Two Way MLR 3 day
41.8


Two Way MLR 5 day
34.6


Two Way MLR 7 day
33.0


PBMC rest
24.8


PBMC PWM
32.1


PBMC PHA-L
33.7


Ramos (B cell) none
24.0


Ramos (B cell) ionomycin
41.5


B lymphocytes PWM
33.9


B lymphocytes CD40L and IL-4
41.2


EOL-1 dbcAMP
39.5


EOL-1 dbcAMP PMA/ionomycin
42.6


Dendritic cells none
27.5


Dendritic cells LPS
23.3


Dendritic cells anti-CD40
33.0


Monocytes rest
32.5


Monocytes LPS
40.6


Macrophages rest
32.1


Macrophages LPS
18.9


HUVEC none
17.7


HUVEC starved
20.6


HUVEC IL-1beta
20.3


HUVEC IFN gamma
36.1


HUVEC TNF alpha + IFN gamma
20.6


HUVEC TNF alpha + IL4
17.7


HUVEC IL-11
16.2


Lung Microvascular EC none
49.0


Lung Microvascular EC TNFalpha + IL-1beta
27.0


Microvascular Dermal EC none
24.7


Microsvasular Dermal EC TNFalpha + IL-1beta
16.4


Bronchial epithelium TNFalpha + IL1beta
23.8


Small airway epithelium none
9.7


Small airway epithelium TNFalpha + IL-1beta
34.6


Coronery artery SMC rest
19.9


Coronery artery SMC TNFalpha + IL-1beta
19.5


Astrocytes rest
10.1


Astrocytes TNFalpha + IL-1beta
6.8


KU-812 (Basophil) rest
33.2


KU-812 (Basophil) PMA/ionomycin
85.3


CCD1106 (Keratinocytes) none
28.1


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
18.2


Liver cirrhosis
11.3


NCI-H292 none
17.8


NCI-H292 IL-4
18.9


NCI-H292 IL-9
32.5


NCI-H292 IL-13
24.0


NCI-H292 IFN gamma
12.7


HPAEC none
14.4


HPAEC TNF alpha + IL-1 beta
36.3


Lung fibroblast none
23.2


Lung fibroblast TNF alpha + IL-1 beta
14.9


Lung fibroblast IL-4
17.8


Lung fibroblast IL-9
28.9


Lung fibroblast IL-13
17.7


Lung fibroblast IFN gamma
24.0


Dermal fibroblast CCD1070 rest
24.3


Dermal fibroblast CCD1070 TNF alpha
82.4


Dermal fibroblast CCD1070 IL-1 beta
22.5


Dermal fibroblast IFN gamma
11.8


Dermal fibroblast IL-4
28.5


Dermal Fibroblasts rest
18.9


Neutrophils TNFa + LPS
20.9


Neutrophils rest
45.4


Colon
6.4


Lung
11.7


Thymus
70.2


Kidney
20.3










[0775] Panel 4.1D Summary: Ag4917 Highest expression of this gene is seen in chronically activated Th2 cells (CT=27). This gene is also expressed at moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0776] I. CG137330-01: TGF-BETA Receptor Type I Precursor-Like Gene


[0777] Expression of gene CG137330-01 was assessed using the primer-probe set Ag7001, described in Table IA. Results of the RTQ-PCR runs are shown in Tables IB and IC.
263TABLE IAProbe Name Ag7001StartSEQPrimersSequencesLengthPositionID NoForward5′-cttccaactactggtttaccat24407248tg-3′ProbeTET-5′-agttctcgcaattgttct26432249ctgaacaa-3′-TAMRAReverse5′-tttgccaatgctttcttgtaac-3′22463250


[0778]

264





TABLE IB










General_screening_panel_v1.6











Rel. Exp. (%)




Ag7001, Run



Tissue Name
283147426














Adipose
2.9



Melanoma* Hs688(A).T
45.7



Melanoma* Hs688(B).T
50.0



Melanoma* M14
27.0



Melanoma* LOXIMVI
5.6



Melanoma* SK-MEL-5
85.3



Squamous cell carcinoma SCC-4
7.9



Testis Pool
85.9



Prostate ca.* (bone met) PC-3
26.8



Prostate Pool
5.7



Placenta
44.4



Uterus Pool
3.5



Ovarian ca. OVCAR-3
32.3



Ovarian ca. SK-OV-3
76.3



Ovarian ca. OVCAR-4
21.3



Ovarian ca. OVCAR-5
27.4



Ovarian ca. IGROV-1
20.7



Ovarian ca. OVCAR-8
7.3



Ovary
8.5



Breast ca. MCF-7
8.1



Breast ca. MDA-MB-231
88.3



Breast ca. BT 549
61.1



Breast ca. T47D
22.2



Breast ca. MDA-N
27.2



Breast Pool
12.2



Trachea
8.4



Lung
0.9



Fetal Lung
24.0



Lung ca. NCI-N417
11.3



Lung ca. LX-1
12.8



Lung ca. NCI-H146
23.2



Lung ca. SHP-77
74.7



Lung ca. A549
59.9



Lung ca. NCI-H526
14.8



Lung ca. NCI-H23
25.5



Lung ca. NCI-H460
26.8



Lung ca. HOP-62
14.0



Lung ca. NCI-H522
24.0



Liver
0.0



Fetal Liver
7.9



Liver ca. HepG2
12.7



Kidney Pool
39.8



Fetal Kidney
18.6



Renal ca. 786-0
25.5



Renal ca. A498
5.3



Renal ca. ACHN
6.0



Renal ca. UO-31
14.6



Renal ca. TK-10
34.6



Bladder
27.4



Gastric ca. (liver met.) NCI-N87
27.2



Gastric ca. KATO III
70.7



Colon ca. SW-948
6.6



Colon ca. SW480
96.6



Colon ca.* (SW480 met) SW620
10.2



Colon ca. HT29
5.2



Colon ca. HCT-116
22.7



Colon ca. CaCo-2
29.3



Colon cancer tissue
29.7



Colon ca. SW1116
2.6



Colon ca. Colo-205
3.8



Colon ca. SW-48
0.8



Colon Pool
14.1



Small Intestine Pool
11.1



Stomach Pool
9.5



Bone Marrow Pool
3.1



Fetal Heart
13.7



Heart Pool
11.1



Lymph Node Pool
16.2



Fetal Skeletal Muscle
3.8



Skeletal Muscle Pool
3.1



Spleen Pool
7.8



Thymus Pool
10.9



CNS cancer (glio/astro) U87-MG
79.0



CNS cancer (glio/astro) U-118-MG
54.0



CNS cancer (neuro; met) SK-N-AS
27.0



CNS cancer (astro) SF-539
25.9



CNS cancer (astro) SNB-75
94.6



CNS cancer (glio) SNB-19
7.1



CNS cancer (glio) SF-295
68.8



Brain (Amygdala) Pool
6.4



Brain (cerebellum)
31.2



Brain (fetal)
100.0



Brain (Hippocampus) Pool
13.3



Cerebral Cortex Pool
8.7



Brain (Substantia nigra) Pool
5.6



Brain (Thalamus) Pool
9.4



Brain (whole)
9.5



Spinal Cord Pool
14.3



Adrenal Gland
8.1



Pituitary gland Pool
14.8



Salivary Gland
4.2



Thyroid (female)
2.9



Pancreatic ca. CAPAN2
5.4



Pancreas Pool
1.9











[0779]

265





TABLE IC










Panel 4.1D









Rel. Exp. (%)



Ag7001, Run


Tissue Name
282263186











Secondary Th1 act
11.2


Secondary Th2 act
22.8


Secondary Tr1 act
3.7


Secondary Th1 rest
4.1


Secondary Th2 rest
0.0


Secondary Tr1 rest
8.5


Primary Th1 act
0.0


Primary Th2 act
6.0


Primary Tr1 act
15.3


Primary Th1 rest
0.0


Primary Th2 rest
0.0


Primary Tr1 rest
0.0


CD45RA CD4 lymphocyte act
17.8


CD45RO CD4 lymphocyte act
21.0


CD8 lymphocyte act
3.4


Secondary CD8 lymphocyte rest
3.8


Secondary CD8 lymphocyte act
0.0


CD4 lymphocyte none
3.5


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0


LAK cells rest
7.6


LAK cells IL-2
12.6


LAK cells IL-2 + IL-12
0.0


LAK cells IL-2 + IFN gamma
0.0


LAK cells IL-2 + IL-18
5.6


LAK cells PMA/ionomycin
18.7


NK Cells IL-2 rest
33.4


Two Way MLR 3 day
0.0


Two Way MLR 5 day
0.0


Two Way MLR 7 day
3.6


PBMC rest
1.5


PBMC PWM
7.2


PBMC PHA-L
5.1


Ramos (B cell) none
7.7


Ramos (B cell) ionomycin
3.4


B lymphocytes PWM
2.2


B lymphocytes CD40L and IL-4
3.3


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
8.5


Dendritic cells LPS
3.2


Dendritic cells anti-CD40
6.5


Monocytes rest
0.0


Monocytes LPS
5.8


Macrophages rest
0.0


Macrophages LPS
9.0


HUVEC none
2.9


HUVEC starved
6.9


HUVEC IL-1beta
8.3


HUVEC IFN gamma
8.5


HUVEC TNF alpha + IFN gamma
3.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
0.0


Lung Microvascular EC none
23.5


Lung Microvascular EC TNFalpha + IL-1beta
9.2


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
0.0


Bronchial epithelium TNFalpha + IL1beta
21.5


Small airway epithelium none
20.3


Small airway epithelium TNFalpha + IL-1beta
100.0


Coronery artery SMC rest
20.0


Coronery artery SMC TNFalpha + IL-1beta
29.9


Astrocytes rest
11.7


Astrocytes TNFalpha + IL-1beta
27.4


KU-812 (Basophil) rest
12.1


KU-812 (Basophil) PMA/ionomycin
8.1


CCD1106 (Keratinocytes) none
24.1


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
8.4


Liver cirrhosis
4.2


NCI-H292 none
4.8


NCI-H292 IL-4
9.0


NCI-H292 IL-9
35.4


NCI-H292 IL-13
3.1


NCI-H292 IFN gamma
6.2


HPAEC none
0.0


HPAEC TNF alpha + IL-1 beta
3.9


Lung fibroblast none
5.1


Lung fibroblast TNF alpha + IL-1 beta
16.6


Lung fibroblast IL-4
7.1


Lung fibroblast IL-9
9.3


Lung fibroblast IL-13
2.6


Lung fibroblast IFN gamma
16.7


Dermal fibroblast CCD1070 rest
37.9


Dermal fibroblast CCD1070 TNF alpha
68.3


Dermal fibroblast CCD1070 IL-1 beta
38.7


Dermal fibroblast IFN gamma
11.9


Dermal fibroblast IL-4
11.6


Dermal Fibroblasts rest
11.2


Neutrophils TNFa + LPS
6.2


Neutrophils rest
44.8


Colon
0.0


Lung
6.3


Thymus
3.3


Kidney
11.1










[0780] General_screening_panel_v1.6 Summary: Ag7001 Highest expression is seen in fetal brain (CT=32.3). This gene is prominently expressed in the cancer cell lines on this panel and may be involved in cellular growth and/or proliferation.


[0781] Panel 4.1D Summary: Ag7001 Highest expression is seen in TNF-a and IL-1b treated small airway epithelium (CT=33.8). Therefore, modulation of the expression or activity of the protein encoded by this gene through the application of small molecule therapeutics may be useful in the treatment of asthma, COPD, and emphysema.


[0782] J. CG137339-01: Epidermal Growth Factor Receptor Precursor-Like Gene


[0783] Expression of gene CG137339-01 was assessed using the primer-probe sets Ag1333 and Ag7280, described in Tables JA and JB. Results of the RTQ-PCR runs are shown in Tables JC, JD, JE, JF, JG, JH, JI, JJ and JK.
266TABLE JAProbe Name Ag1333StartSEQPrimersSequencesLengthPositionID NoForward5′-ggactatgtccgggaacacaa-3′212418251ProbeTET-5′-atattggctcccagtacct302444252gctcaactggt-3′-TAMRAReverse5′-tcatgccctttgcgatctg-3′192479253


[0784]

267





TABLE JB










Probe Name Ag7280














Start
SEQ


Primers
Sequences
Length
Position
ID No





Forward
5′-ctccataaatgctacgaatatt
28
1233
254



aaacac-3′


Probe
TET-5′-ctccatcagtggcgatct
25
1275
255



ccacatc-3′-TAMRA


Reverse
5′-gaaaactgaccacccctaaatg-3′
22
1310
256










[0785]

268





TABLE JC










Ardais Panel v.1.0











Rel. Exp. (%)




Ag1333, Run



Tissue Name
263526730














136799_Lung cancer(362)
6.3



136800_Lung NAT(363)
3.4



136813_Lung cancer(372)
11.2



136814_Lung NAT(373)
1.7



136815_Lung cancer(374)
0.0



136816_Lung NAT(375)
46.0



136791_Lung cancer(35A)
0.0



136795_Lung cancer(35E)
100.0



136797_Lung cancer(360)
3.9



136794_lung NAT(35D)
0.0



136818_Lung NAT(377)
2.5



136787_lung cancer(356)
1.5



136788_lung NAT(357)
5.3



136804_Lung cancer(369)
13.3



136805_Lung NAT(36A)
2.1



136806_Lung cancer(36B)
8.2



136807_Lung NAT(36C)
1.5



136789_lung cancer(358)
8.7



136802_Lung cancer(365)
12.9



136803_Lung cancer(368)
10.8



136811_Lung cancer(370)
1.8



136810_Lung NAT(36F)
16.2











[0786]

269





TABLE JD










General_screening_panel_v1.4











Rel. Exp. (%)




Ag1333, Run



Tissue Name
208579660














Adipose
8.7



Melanoma* Hs688(A).T
8.5



Melanoma* Hs688(B).T
9.3



Melanoma* M14
2.5



Melanoma* LOXIMVI
19.3



Melanoma* SK-MEL-5
2.1



Squamous cell carcinoma SCC-4
96.6



Testis Pool
4.4



Prostate ca.* (bone met) PC-3
52.5



Prostate Pool
4.3



Placenta
100.0



Uterus Pool
3.0



Ovarian ca. OVCAR-3
17.4



Ovarian ca. SK-OV-3
38.7



Ovarian ca. OVCAR-4
11.5



Ovarian ca. OVCAR-5
50.0



Ovarian ca. IGROV-1
4.1



Ovarian ca. OVCAR-8
8.2



Ovary
6.4



Breast ca. MCF-7
0.1



Breast ca. MDA-MB-231
25.7



Breast ca. BT 549
36.3



Breast ca. T47D
35.6



Breast ca. MDA-N
0.1



Breast Pool
7.7



Trachea
13.3



Lung
4.5



Fetal Lung
14.9



Lung ca. NCI-N417
0.6



Lung ca. LX-1
2.5



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
2.0



Lung ca. A549
22.4



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
3.5



Lung ca. NCI-H460
11.8



Lung ca. HOP-62
4.7



Lung ca. NCI-H522
1.5



Liver
11.1



Fetal Liver
19.3



Liver ca. HepG2
4.4



Kidney Pool
12.2



Fetal Kidney
4.9



Renal ca. 786-0
45.7



Renal ca. A498
42.0



Renal ca. ACHN
59.0



Renal ca. UO-31
47.3



Renal ca. TK-10
50.7



Bladder
9.4



Gastric ca. (liver met.) NCI-N87
29.1



Gastric ca. KATO III
26.4



Colon ca. SW-948
3.6



Colon ca. SW480
12.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
5.2



Colon ca. HCT-116
15.1



Colon ca. CaCo-2
14.5



Colon cancer tissue
5.6



Colon ca. SW1116
13.3



Colon ca. Colo-205
1.4



Colon ca. SW-48
0.5



Colon Pool
11.3



Small Intestine Pool
5.2



Stomach Pool
5.2



Bone Marrow Pool
5.4



Fetal Heart
1.1



Heart Pool
3.8



Lymph Node Pool
10.1



Fetal Skeletal Muscle
3.6



Skeletal Muscle Pool
4.0



Spleen Pool
2.1



Thymus Pool
9.5



CNS cancer (glio/astro) U87-MG
33.2



CNS cancer (glio/astro) U-118-MG
37.6



CNS cancer (neuro; met) SK-N-AS
22.4



CNS cancer (astro) SF-539
7.5



CNS cancer (astro) SNB-75
11.2



CNS cancer (glio) SNB-19
3.9



CNS cancer (glio) SF-295
9.2



Brain (Amygdala) Pool
1.3



Brain (cerebellum)
6.6



Brain (fetal)
6.6



Brain (Hippocampus) Pool
3.3



Cerebral Cortex Pool
3.0



Brain (Substantia nigra) Pool
2.6



Brain (Thalamus) Pool
3.1



Brain (whole)
4.6



Spinal Cord Pool
2.2



Adrenal Gland
6.9



Pituitary gland Pool
0.4



Salivary Gland
8.3



Thyroid (female)
3.5



Pancreatic ca. CAPAN2
27.9



Pancreas Pool
12.9











[0787]

270





TABLE JE










HASS Panel v1.0












Rel. Exp. (%)
Rel. Exp. (%)




Ag1333, Run
Ag1333, Run



Tissue Name
247736608
248469481















MCF-7 C1
0.0
0.0



MCF-7 C2
0.0
0.0



MCF-7 C3
0.0
0.0



MCF-7 C4
0.0
0.0



MCF-7 C5
0.0
0.0



MCF-7 C6
0.1
0.1



MCF-7 C7
0.4
0.4



MCF-7 C9
0.5
0.3



MCF-7 C10
0.0
0.0



MCF-7 C11
0.0
0.0



MCF-7 C12
0.1
0.0



MCF-7 C13
0.4
0.3



MCF-7 C15
0.2
0.1



MCF-7 C16
0.2
0.2



MCF-7 C17
0.1
0.1



T24 D1
0.7
0.6



T24 D2
0.9
0.8



T24 D3
0.8
0.7



T24 D4
1.4
1.3



T24 D5
0.6
0.5



T24 D6
2.4
1.8



T24 D7
3.4
3.3



T24 D9
1.3
1.1



T24 D10
0.6
0.6



T24 D11
0.3
0.3



T24 D12
1.0
1.0



T24 D13
2.0
1.8



T24 D15
0.7
0.8



T24 D16
0.4
0.4



T24 D17
0.6
0.5



CAPaN B1
2.7
2.3



CAPaN B2
1.7
1.6



CAPaN B3
0.5
0.4



CAPaN B4
1.4
1.2



CAPaN B5
1.2
1.0



CAPaN B6
1.9
1.4



CAPaN B7
1.3
1.4



CAPaN B8
1.2
1.1



CAPaN B9
2.2
2.4



CAPaN B10
2.3
2.5



CAPaN B11
1.7
1.4



CAPaN B12
1.8
1.5



CAPaN B13
2.0
1.5



CAPaN B14
1.3
1.4



CAPaN B15
2.8
2.5



CAPaN B16
1.9
1.6



CAPaN B17
2.5
2.0



U87-MG F1 (B)
0.7
0.6



U87-MG F2
0.4
0.4



U87-MG F3
0.4
0.4



U87-MG F4
0.7
0.7



U87-MG F5
2.4
2.3



U87-MG F6
1.2
1.3



U87-MG F7
3.3
3.3



U87-MG F8
2.0
1.9



U87-MG F9
2.3
2.2



U87-MG F10
1.5
1.4



U87-MG F11
0.8
1.0



U87-MG F12
1.9
1.6



U87-MG F13
3.3
3.1



U87-MG F14
2.6
2.6



U87-MG F15
3.4
4.1



U87-MG F16
1.9
1.7



U87-MG F17
2.2
2.2



LnCAP A1
0.9
0.8



LnCAP A2
0.7
0.6



LnCAP A3
0.2
0.2



LnCAP A4
1.3
1.1



LnCAP A5
0.6
0.5



LnCAP A6
0.6
0.5



LnCAP A7
5.2
4.9



LnCAP A8
3.7
4.1



LnCAP A9
3.2
3.2



LnCAP A10
0.4
0.4



LnCAP A11
0.5
0.5



LnCAP A12
0.1
0.1



LnCAP A13
0.6
0.5



LnCAP A14
0.3
0.3



LnCAP A15
0.6
0.5



LnCAP A16
1.2
1.0



LnCAP A17
0.9
0.4



Primary Astrocytes
0.8
0.6



Primary Renal Proximal
0.2
0.2



Tubule Epithelial cell A2



Primary melanocytes A5
0.1
0.1



126443 - 341 medullo
0.0
0.0



126444 - 487 medullo
0.1
0.1



126445 - 425 medullo
0.0
0.0



126446 - 690 medullo
0.2
0.2



126447 - 54 adult glioma
3.8
3.1



126448 - 245 adult glioma
100.0
100.0



126449 - 317 adult glioma
42.0
35.8



126450 - 212 glioma
1.2
0.8



126451 - 456 glioma
61.6
52.9











[0788]

271





TABLE JF










Panel 1











Rel. Exp. (%)




Ag1333, Run



Tissue Name
132087533














Endothelial cells
0.0



Endothelial cells (treated)
0.0



Pancreas
0.2



Pancreatic ca. CAPAN 2
2.1



Adrenal gland
1.0



Thyroid
1.7



Salivary gland
0.9



Pituitary gland
0.0



Brain (fetal)
0.5



Brain (whole)
2.5



Brain (amygdala)
0.0



Brain (cerebellum)
3.8



Brain (hippocampus)
1.6



Brain (substantia nigra)
0.7



Brain (thalamus)
0.3



Brain (hypothalamus)
0.0



Spinal cord
0.3



glio/astro U87-MG
2.6



glio/astro U-118-MG
2.1



astrocytoma SW1783
1.5



neuro*; met SK-N-AS
1.4



astrocytoma SF-539
0.7



astrocytoma SNB-75
0.4



glioma SNB-19
1.5



glioma U251
0.6



glioma SF-295
0.9



Heart
0.0



Skeletal muscle
0.0



Bone marrow
0.0



Thymus
5.4



Spleen
0.1



Lymph node
0.3



Colon (ascending)
0.5



Stomach
1.6



Small intestine
0.5



Colon ca. SW480
0.3



Colon ca.* SW620 (SW480 met)
0.0



Colon ca. HT29
0.7



Colon ca. HCT-116
12.9



Colon ca. CaCo-2
2.5



Colon ca. HCT-15
1.3



Colon ca. HCC-2998
0.6



Gastric ca. * (liver met) NCI-N87
1.3



Bladder
4.8



Trachea
1.6



Kidney
0.3



Kidney (fetal)
0.7



Renal ca. 786-0
6.7



Renal ca. A498
8.0



Renal ca. RXF 393
5.4



Renal ca. ACHN
8.8



Renal ca. UO-31
5.0



Renal ca. TK-10
22.4



Liver
1.7



Liver (fetal)
0.4



Liver ca. (hepatoblast) HepG2
0.1



Lung
5.2



Lung (fetal)
1.9



Lung ca. (small cell) LX-1
0.0



Lung ca. (small cell) NCI-H69
0.0



Lung ca. (s. cell var.) SHP-77
4.0



Lung ca. (large cell)NCI-H460
26.4



Lung ca. (non-sm. cell) A549
2.0



Lung ca. (non-s. cell) NCI-H23
0.1



Lung ca. (non-s. cell) HOP-62
0.0



Lung ca. (non-s. cl) NCI-H522
0.0



Lung ca. (squam.) SW 900
5.4



Lung ca. (squam.) NCI-H596
0.0



Mammary gland
6.5



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
4.2



Breast ca.* (pl. ef) T47D
0.4



Breast ca. BT-549
24.3



Breast ca. MDA-N
0.0



Ovary
1.6



Ovarian ca. OVCAR-3
2.0



Ovarian ca. OVCAR-4
1.7



Ovarian ca. OVCAR-5
5.2



Ovarian ca. OVCAR-8
3.4



Ovarian ca. IGROV-1
0.6



Ovarian ca. (ascites) SK-OV-3
3.2



Uterus
1.6



Placenta
22.7



Prostate
1.4



Prostate ca.* (bone met) PC-3
100.0



Testis
4.9



Melanoma Hs688(A).T
0.3



Melanoma* (met) Hs688(B).T
0.4



Melanoma UACC-62
0.0



Melanoma M14
0.0



Melanoma LOX IMVI
3.5



Melanoma* (met) SK-MEL-5
0.1



Melanoma SK-MEL-28
0.0











[0789]

272





TABLE JG










Panel 1.2










Rel. Exp. (%)
Rel. Exp. (%)



Ag1333, Run
Ag1333, Run


Tissue Name
133088120
133705801












Endothelial cells
0.7
0.9


Heart (Fetal)
1.3
1.3


Pancreas
0.7
0.8


Pancreatic ca. CAPAN2
8.8
7.6


Adrenal Gland
8.6
17.8


Thyroid
3.4
2.9


Salivary gland
10.7
11.5


Pituitary gland
1.3
1.3


Brain (fetal)
2.0
2.3


Brain (whole)
3.6
4.3


Brain (amygdala)
2.3
2.9


Brain (cerebellum)
2.4
2.4


Brain (hippocampus)
3.8
3.9


Brain (thalamus)
1.4
1.7


Cerebral Cortex
22.1
24.7


Spinal cord
1.2
2.3


glio/astro U87-MG
12.5
12.0


glio/astro U-118-MG
9.3
10.0


astrocytoma SW1783
5.4
2.6


neuro*; met SK-N-AS
9.9
18.0


astrocytoma SF-539
2.8
2.1


astrocytoma SNB-75
0.7
0.5


glioma SNB-19
7.3
6.0


glioma U251
3.8
3.5


glioma SF-295
3.3
3.1


Heart
9.9
12.7


Skeletal Muscle
3.4
3.5


Bone marrow
0.1
0.1


Thymus
2.5
2.0


Spleen
1.0
1.2


Lymph node
1.5
1.6


Colorectal Tissue
3.1
2.8


Stomach
8.2
8.1


Small intestine
2.4
3.1


Colon ca. SW480
4.8
5.1


Colon ca.* SW620 (SW480 met)
0.0
0.0


Colon ca. HT29
5.1
4.7


Colon ca. HCT-116
2.5
2.9


Colon ca. CaCo-2
2.3
2.9


Colon ca. Tissue (ODO3866)
2.7
3.0


Colon ca. HCC-2998
3.2
3.0


Gastric ca.* (liver met) NCI-N87
10.7
9.6


Bladder
15.1
17.0


Trachea
6.4
7.3


Kidney
2.5
3.4


Kidney (fetal)
5.6
6.3


Renal ca. 786-0
14.6
14.0


Renal ca. A498
40.9
41.5


Renal ca. RXF 393
22.1
16.4


Renal ca. ACHN
29.9
24.5


Renal ca. UO-31
18.4
13.4


Renal ca. TK-10
20.2
17.8


Liver
6.3
7.8


Liver (fetal)
5.2
5.7


Liver ca. (hepatoblast) HepG2
3.0
2.7


Lung
3.5
4.7


Lung (fetal)
4.3
4.9


Lung ca. (small cell) LX-1
1.2
1.1


Lung ca. (small cell) NCI-H69
0.0
0.0


Lung ca. (s. cell var.) SHP-77
0.5
0.4


Lung ca. (large cell)NCI-H460
38.4
25.7


Lung ca. (non-sm. cell) A549
6.9
6.1


Lung ca. (non-s. cell) NCI-H23
1.4
1.1


Lung ca. (non-s. cell) HOP-62
8.2
6.5


Lung ca. (non-s. cl) NCI-H522
2.6
2.7


Lung ca. (squam.) SW 900
12.2
11.4


Lung ca. (squam.) NCI-H596
0.0
0.0


Mammary gland
13.9
13.0


Breast ca.* (pl. ef) MCF-7
0.0
0.0


Breast ca.* (pl. ef) MDA-MB-231
12.3
10.7


Breast ca.* (pl. ef) T47D
1.2
1.5


Breast ca. BT-549
26.2
24.8


Breast ca. MDA-N
0.0
0.1


Ovary
11.3
11.9


Ovarian ca. OVCAR-3
8.5
8.4


Ovarian ca. OVCAR-4
19.3
16.4


Ovarian ca. OVCAR-5
24.3
0.1


Ovarian ca. OVCAR-8
22.7
22.2


Ovarian ca. IGROV-1
6.0
6.7


Ovarian ca. (ascites) SK-OV-3
23.0
20.7


Uterus
3.7
4.8


Placenta
100.0
100.0


Prostate
6.1
5.1


Prostate ca.* (bone met) PC-3
64.6
50.7


Testis
1.5
1.5


Melanoma Hs688(A).T
2.2
2.0


Melanoma* (met) Hs688(B).T
0.9
1.2


Melanoma UACC-62
1.1
1.2


Melanoma M14
0.3
0.4


Melanoma LOX IMVI
2.5
2.0


Melanoma* (met) SK-MEL-5
1.2
1.1










[0790]

273





TABLE JH










Panel 1.3D











Rel. Exp. (%)




Ag1333, Run



Tissue Name
146087249














Liver adenocarcinoma
69.3



Pancreas
1.2



Pancreatic ca. CAPAN 2
22.4



Adrenal gland
3.6



Thyroid
3.8



Salivary gland
3.4



Pituitary gland
0.5



Brain (fetal)
2.0



Brain (whole)
3.3



Brain (amygdala)
3.0



Brain (cerebellum)
1.2



Brain (hippocampus)
3.8



Brain (substantia nigra)
0.5



Brain (thalamus)
1.7



Cerebral Cortex
36.9



Spinal cord
2.5



glio/astro U87-MG
49.0



glio/astro U-118-MG
67.8



astrocytoma SW1783
37.4



neuro*; met SK-N-AS
36.9



astrocytoma SF-539
14.0



astrocytoma SNB-75
34.6



glioma SNB-19
11.3



glioma U251
10.2



glioma SF-295
12.9



Heart (fetal)
7.0



Heart
1.7



Skeletal muscle (fetal)
100.0



Skeletal muscle
2.3



Bone marrow
0.1



Thymus
2.8



Spleen
1.3



Lymph node
2.4



Colorectal
12.8



Stomach
5.5



Small intestine
2.0



Colon ca. SW480
30.6



Colon ca.* SW620(SW480 met)
0.0



Colon ca. HT29
6.9



Colon ca. HCT-116
11.8



Colon ca. CaCo-2
20.7



Colon ca. tissue(ODO3866)
11.0



Colon ca. HCC-2998
7.0



Gastric ca.* (liver met) NCI-N87
52.1



Bladder
9.9



Trachea
9.5



Kidney
1.9



Kidney (fetal)
3.4



Renal ca. 786-0
53.6



Renal ca. A498
84.1



Renal ca. RXF 393
21.3



Renal ca. ACHN
78.5



Renal ca. UO-31
50.3



Renal ca. TK-10
43.5



Liver
1.8



Liver (fetal)
3.6



Liver ca. (hepatoblast) HepG2
5.6



Lung
4.5



Lung (fetal)
6.9



Lung ca. (small cell) LX-1
2.9



Lung ca. (small cell) NCI-H69
0.0



Lung ca. (s. cell var.) SHP-77
3.5



Lung ca. (large cell)NCI-H460
4.7



Lung ca. (non-sm. cell) A549
12.5



Lung ca. (non-s. cell) NCI-H23
3.3



Lung ca. (non-s. cell) HOP-62
5.9



Lung ca. (non-s. cl) NCI-H522
1.8



Lung ca. (squam.) SW 900
15.4



Lung ca. (squam.) NCI-H596
0.0



Mammary gland
15.5



Breast ca.* (pl. ef) MCF-7
0.2



Breast ca.* (pl. ef) MDA-MB-231
89.5



Breast ca.* (pl. ef) T47D
2.6



Breast ca. BT-549
66.0



Breast ca. MDA-N
0.2



Ovary
43.5



Ovarian ca. OVCAR-3
18.3



Ovarian ca. OVCAR-4
7.3



Ovarian ca. OVCAR-5
54.3



Ovarian ca. OVCAR-8
37.1



Ovarian ca. IGROV-1
5.7



Ovarian ca.* (ascites) SK-OV-3
41.2



Uterus
3.8



Placenta
95.3



Prostate
4.7



Prostate ca.* (bone met)PC-3
32.1



Testis
2.5



Melanoma Hs688(A).T
17.8



Melanoma* (met) Hs688(B).T
24.3



Melanoma UACC-62
0.3



Melanoma M14
0.6



Melanoma LOX IMVI
4.4



Melanoma* (met) SK-MEL-5
1.9



Adipose
10.7











[0791]

274





TABLE JI










Panel 2.2










Rel. Exp. (%)
Rel. Exp. (%)



Ag1333, Run
Ag1333, Run


Tissue Name
174923444
184372565












Normal Colon
15.2
15.2


Colon cancer (OD06064)
73.2
29.1


Colon Margin (OD06064)
29.7
0.0


Colon cancer (OD06159)
6.7
6.6


Colon Margin (OD06159)
37.1
18.6


Colon cancer (OD06297-04)
7.7
9.5


Colon Margin (OD06297-05)
52.5
23.0


CC Gr.2 ascend colon
11.1
10.3


(ODO3921)


CC Margin (ODO3921)
7.3
5.0


Colon cancer metastasis
2.3
1.7


(OD06104)


Lung Margin (OD06104)
5.1
7.1


Colon mets to lung
9.7
5.3


(OD04451-01)


Lung Margin (OD04451-02)
32.3
10.4


Normal Prostate
14.1
17.7


Prostate Cancer (OD04410)
6.3
11.9


Prostate Margin (OD04410)
11.6
30.6


Normal Ovary
27.4
16.3


Ovarian cancer (OD06283-03)
10.2
7.4


Ovarian Margin (OD06283-07)
6.7
4.1


Ovarian Cancer 064008
17.1
22.4


Ovarian cancer (OD06145)
15.3
9.5


Ovarian Margin (OD06145)
19.5
12.4


Ovarian cancer (OD06455-03)
19.5
15.9


Ovarian Margin (OD06455-07)
20.2
0.0


Normal Lung
12.6
8.8


Invasive poor diff. lung
4.2
3.5


adeno (ODO4945-01


Lung Margin (ODO4945-03)
27.5
11.0


Lung Malignant Cancer
12.8
4.6


(OD03126)


Lung Margin (OD03126)
13.4
38.4


Lung Cancer (OD05014A)
14.1
40.9


Lung Margin (OD05014B)
33.7
15.0


Lung cancer (OD06081)
21.8
14.2


Lung Margin (OD06081)
25.3
12.4


Lung Cancer (OD04237-01)
5.6
2.8


Lung Margin (OD04237-02)
25.9
15.4


Ocular Melanoma Metastasis
0.9
1.4


Ocular Melanoma Margin
29.7
29.1


(Liver)


Melanoma Metastasis
0.0
0.1


Melanoma Margin (Lung)
40.3
27.5


Normal Kidney
9.2
10.4


Kidney Ca, Nuclear
33.4
22.8


grade 2 (OD04338)


Kidney Margin (OD04338)
21.2
74.7


Kidney Ca Nuclear
18.2
12.2


grade 1/2 (OD04339)


Kidney Margin (OD04339)
16.7
13.5


Kidney Ca, Clear cell
45.1
46.3


type (OD04340)


Kidney Margin (OD04340)
17.7
8.7


Kidney Ca, Nuclear
2.1
3.3


grade 3 (OD04348)


Kidney Margin (OD04348)
67.8
14.0


Kidney malignant cancer
13.5
9.5


(OD06204B)


Kidney normal adjacent
13.8
11.3


tissue (OD06204E)


Kidney Cancer (OD04450-01)
72.7
35.8


Kidney Margin (OD04450-03)
21.3
29.5


Kidney Cancer 8120613
10.0
14.9


Kidney Margin 8120614
20.6
12.2


Kidney Cancer 9010320
10.4
12.2


Kidney Margin 9010321
16.2
9.0


Kidney Cancer 8120607
43.5
28.1


Kidney Margin 8120608
4.7
6.3


Normal Uterus
45.4
21.0


Uterine Cancer 064011
7.9
12.5


Normal Thyroid
2.8
6.9


Thyroid Cancer 064010
21.2
38.4


Thyroid Cancer A302152
20.4
24.3


Thyroid Margin A302153
6.9
16.4


Normal Breast
50.7
25.5


Breast Cancer (OD04566)
4.3
0.8


Breast Cancer 1024
17.0
13.4


Breast Cancer (OD04590-01)
5.8
0.0


Breast Cancer Mets (OD04590-03)
12.6
8.5


Breast Cancer Metastasis
2.3
2.6


(OD04655-05)


Breast Cancer 064006
7.7
6.0


Breast Cancer 9100266
5.6
5.6


Breast Margin 9100265
14.2
8.1


Breast Cancer A209073
7.5
6.8


Breast Margin A2090734
27.0
27.4


Breast cancer (OD06083)
19.3
7.6


Breast cancer node
5.0
7.5


metastasis (OD06083)


Normal Liver
55.5
58.2


Liver Cancer 1026
13.3
14.1


Liver Cancer 1025
100.0
100.0


Liver Cancer 6004-T
54.0
49.7


Liver Tissue 6004-N
17.8
14.0


Liver Cancer 6005-T
27.4
16.0


Liver Tissue 6005-N
73.7
39.5


Liver Cancer 064003
35.6
16.0


Normal Bladder
17.3
19.5


Bladder Cancer 1023
4.5
4.1


Bladder Cancer A302173
29.7
19.5


Normal Stomach
36.3
31.0


Gastric Cancer 9060397
5.8
7.3


Stomach Margin 9060396
7.4
6.4


Gastric Cancer 9060395
14.4
11.5


Stomach Margin 9060394
30.1
15.2


Gastric Cancer 064005
9.5
10.8










[0792]

275





TABLE JJ










Panel 4.1D












Rel. Exp. (%)
Rel. Exp. (%)




Ag1333, Run
Ag7280, Run



Tissue Name
268700632
296559388















Secondary Th1 act
0.0
0.0



Secondary Th2 act
0.0
0.0



Secondary Tr1 act
0.0
0.0



Secondary Th1 rest
0.0
0.0



Secondary Th2 rest
0.0
0.0



Secondary Tr1 rest
0.0
0.0



Primary Th1 act
0.0
0.0



Primary Th2 act
0.0
0.0



Primary Tr1 act
0.0
0.0



Primary Th1 rest
0.0
0.0



Primary Th2 rest
0.0
0.0



Primary Tr1 rest
0.0
0.0



CD45RA CD4
19.1
0.0



lymphocyte act



CD45RO CD4
0.0
0.0



lymphocyte act



CD8 lymphocyte act
0.0
0.0



Secondary CD8
0.0
0.0



lymphocyte rest



Secondary CD8
0.0
0.0



lymphocyte act



CD4 lymphocyte none
0.0
0.0



2ry
0.0
0.0



Th1/Th2/Tr1_anti-



CD95 CH11



LAK cells rest
0.0
0.0



LAK cells IL-2
0.0
0.0



LAK cells
0.0
0.0



IL-2 + IL-12



LAK cells IL-2 + IFN
0.0
0.0



gamma



LAK cells IL-2 + IL-18
0.0
0.0



LAK cells
0.0
0.0



PMA/ionomycin



NK Cells IL-2 rest
0.0
0.0



Two Way MLR 3 day
0.0
0.0



Two Way MLR 5 day
0.0
0.0



Two Way MLR 7 day
0.0
0.0



PBMC rest
0.0
0.0



PBMC PWM
0.0
0.0



PBMC PHA-L
0.0
0.0



Ramos (B cell) none
0.2
0.0



Ramos (B cell)
0.9
0.0



ionomycin



B lymphocytes PWM
0.0
0.0



B lymphocytes
0.0
0.0



CD40L and IL-4



EOL-1 dbcAMP
0.0
0.0



EOL-1 dbcAMP
0.0
0.0



PMA/ionomycin



Dendritic cells none
0.0
0.0



Dendritic cells LPS
0.0
0.0



Dendritic cells
0.0
0.0



anti-CD40



Monocytes rest
0.0
0.0



Monocytes LPS
0.0
0.0



Macrophages rest
0.0
0.0



Macrophages LPS
0.0
0.0



HUVEC none
1.5
0.0



HUVEC starved
1.6
0.0



HUVEC IL-1beta
1.7
0.0



HUVEC IFN gamma
1.3
0.0



HUVEC TNF alpha +
0.8
8.2



IFN gamma



HUVEC TNF alpha + IL4
1.3
0.0



HUVEC IL-11
0.5
0.0



Lung Microvascular
5.1
14.5



EC none



Lung Microvascular
4.1
0.0



EC TNFalpha +



IL-1beta



Microvascular Dermal
1.0
0.0



EC none



Microsvasular Dermal
1.5
0.0



EC TNFalpha +



IL-1beta



Bronchial epithelium
80.7
26.6



TNFalpha + IL1beta



Small airway
21.3
0.0



epithelium none



Small airway
80.7
66.0



epithelium TNFalpha +



IL-1beta



Coronery artery SMC
21.8
8.0



rest



Coronery artery SMC
26.4
11.0



TNFalpha + IL-1beta



Astrocytes rest
1.4
0.0



Astrocytes TNFalpha +
3.4
0.0



IL-1beta



KU-812 (Basophil)
0.0
0.0



rest



KU-812 (Basophil)
0.1
0.0



PMA/ionomycin



CCD1106
90.8
100.0



(Keratinocytes) none



CCD1106
54.3
50.0



(Keratinocytes)



TNFalpha + IL-1beta



Liver cirrhosis
10.1
0.0



NCI-H292 none
48.0
46.3



NCI-H292 IL-4
62.4
53.6



NCI-H292 IL-9
100.0
24.7



NCI-H292 IL-13
62.0
47.3



NCI-H292 IFN gamma
23.2
31.2



HPAEC none
0.7
7.6



HPAEC TNF alpha +
6.5
0.0



IL-1 beta



Lung fibroblast none
50.3
11.0



Lung fibroblast TNF
29.9
31.0



alpha + IL-1 beta



Lung fibroblast IL-4
17.6
17.7



Lung fibroblast IL-9
36.9
0.0



Lung fibroblast IL-13
10.9
0.0



Lung fibroblast IFN
28.3
0.0



gamma



Dermal fibroblast
31.6
0.0



CCD1070 rest



Dermal fibroblast
52.9
10.1



CCD1070 TNF alpha



Dermal fibroblast
29.5
18.2



CCD1070 IL-1 beta



Dermal fibroblast IFN
20.2
48.6



gamma



Dermal fibroblast IL-4
95.9
35.4



Dermal Fibroblasts rest
58.2
15.1



Neutrophils
0.0
0.0



TNFa + LPS



Neutrophils rest
0.0
0.0



Colon
1.1
0.0



Lung
1.0
0.0



Thymus
2.1
0.0



Kidney
7.9
0.0











[0793]

276





TABLE JK










general oncology screening panel_v_2.4












Rel. Exp. (%)
Rel. Exp. (%)




Ag1333, Run
Ag1333, Run



Tissue Name
258052150
258689219















Colon cancer 1
6.5
9.4



Colon NAT 1
3.0
2.3



Colon cancer 2
9.6
8.4



Colon NAT 2
4.1
3.8



Colon cancer 3
16.7
16.3



Colon NAT 3
10.3
12.3



Colon malignant cancer 4
11.7
11.0



Colon NAT 4
5.1
4.2



Lung cancer 1
10.5
13.0



Lung NAT 1
1.2
1.1



Lung cancer 2
45.1
45.1



Lung NAT 2
1.8
1.9



Squamous cell carcinoma 3
20.2
20.7



Lung NAT 3
0.6
0.5



Metastatic melanoma 1
8.6
11.1



Melanoma 2
6.7
6.9



Melanoma 3
4.7
6.4



Metastatic melanoma 4
29.1
27.5



Metastatic melanoma 5
32.1
25.9



Bladder cancer 1
0.2
0.5



Bladder NAT 1
0.0
0.0



Bladder cancer 2
2.5
3.1



Bladder NAT 2
0.1
0.2



Bladder NAT 3
0.3
0.7



Bladder NAT 4
3.3
3.1



Prostate adenocarcinoma 1
6.3
11.3



Prostate adenocarcinoma 2
3.1
1.2



Prostate adenocarcinoma 3
10.4
9.4



Prostate adenocarcinoma 4
8.5
8.1



Prostate NAT 5
2.7
2.8



Prostate adenocarcinoma 6
3.9
3.5



Prostate adenocarcinoma 7
2.7
3.9



Prostate adenocarcinoma 8
1.7
1.3



Prostate adenocarcinoma 9
9.2
10.7



Prostate NAT 10
1.1
1.5



Kidney cancer 1
18.4
21.0



Kidney NAT 1
3.8
3.6



Kidney cancer 2
100.0
100.0



Kidney NAT 2
8.5
8.6



Kidney cancer 3
20.0
21.3



Kidney NAT 3
2.2
2.8



Kidney cancer 4
16.8
16.4



Kidney NAT 4
2.9
3.4











[0794] Ardais Panel v.1.0 Summary: Ag1333 Highest expression is seen in a lung cancer sample (CT=20.13). In addition, this gene is overexpressed in lung cancer when compared to expression in the NAT. Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker of lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of lung cancer.


[0795] General_screening_panel_v1.4 Summary: Ag1333 Highest expression of this gene is seen in placenta (CT=21.4). This gene is widely expressed in this panel, with high levels of expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0796] Among tissues with metabolic function, this gene is expressed at high levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0797] This gene is also expressed at high levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0798] HASS Panel v1.0 Summary: Ag1333 Two experiments with same probe and primer sets are in excellent agreement with highest expression of this gene seen in adult glioma samples (CTs=20.9). In addition, the expression of this gene is induced in LnCAP, T24 and MCF7 cells by a reduction of oxygen concentration compared to the normally low level of gene expression seen in these cell lines. This suggests that expression of this gene may also be increased in hypoxic regions of bladder, breast and prostate cancers.


[0799] This gene is also expressed at a low level in medulloblastoma samples and at a moderate level in glioma samples. It may thus be used as marker and modulation of the protein encoded by this gene through the use of antibodies or small molecule drugs may be used for therapy.


[0800] Panel 1 Summary: AG1333 Highest expression is seen in a prostate cancer cell line (CT=19). In addition, this gene is expressed in many samples on this panel. Please see Panel 1.4 for discussion of utility of this gene.


[0801] Panel 1.2 Summary: Ag1333 Two experiments with the same probe and primer produce results that are in excellent agreement, with highest expression in placenta (CTs=24-25). The results in this panel are consistent with Panel 1.4. Please see that panel for further discussion of utility of this gene.


[0802] Panel 1.3D Summary: Ag1333 Highest expression of this gene is seen in skeletal muscle (CT=26). In addition, this gene is expressed at much higher levels in fetal skeletal muscle when compared to adult skeletal muscle (CT=31). This observation suggests that expression of this gene can be used to distinguish fetal from adult skeletal muscle. In addition, the relative overexpression of this gene in fetal skeletal muscle suggests that the protein product may enhance muscular growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of muscle related diseases. More specifically, treatment of weak or dystrophic muscle with the protein encoded by this gene could restore muscle mass or function.


[0803] Overall, expression in this panel is consistent with expression on panel 1.4, with prominenet expression in the cancer cell lines on this panel. Please see Panel 1.4 for discussion of utility of this gene.


[0804] Panel 2.2 Summary: Ag1333 Two experiments with the same probe and primer produce results that are in excellent agreement. Highest expression of this gene is seen in a liver cancer (CTs=25-29). This gene is widely expressed in this panel, with higher levels of expression in kidney cancer than in the NAT, consistent with Panel 2.4. Please see that panel for discussion of utility of this gene.


[0805] Panel 4.1D Summary: Ag1333 Expression of this gene is highest in IL-9 treated NCI—H292 cells (CT=26.5). Expression of this gene appears to be associated with clusters of samples derived from treated and untreated keratinoyctes, lung and dermal fibroblasts, and HPAECS. Thus, this gene may be involved in inflammatory conditions of the lung and/or skin.


[0806] general oncology screening panel_v2.4 Summary: Ag1333 Two experiments with the same probe and primer set produce results that are in excellent agreement. Highest expression is seen in a sample derived from kidney cancer (CTs=26). In addition, this gene is overexpressed in kidney and lung cancers when compared to expression in the normal adjacent tissue. Prominent expression is also detected in melanoma. Thus, expression of this gene could be used as a marker of these cancers and modulation of the expression or function may be useful in their treatment.


[0807] K. CG138130-01: cGMP-Stimulated 3′,5′-cyclic Nucleotide Phosphodiesterase-Like Gene


[0808] Expression of gene CG138130-01 was assessed using the primer-probe set Ag4203, described in Table KA. Results of the RTQ-PCR runs are shown in Table KB.
277TABLE KAProbe Name Ag4203SEQStartIDPrimersSequencesLengthPositionNoForward5′-caccagatctttgctcctttc-3′213234257ProbeTET-5′-accctttgggtctccagg263270258atcctcat-3′-TAMRAReverse5′-gctcactcagatgtctcacctt-3′223304259


[0809]

278





TABLE KB










Panel 5 Islet









Rel. Exp. (%)



Ag4203, Run


Tissue Name
174269008











97457_Patient-02go_adipose
59.0


97476_Patient-07sk_skeletal muscle
33.2


97477_Patient-07ut_uterus
39.0


97478_Patient-07pl_placenta
10.7


99167_Bayer Patient 1
19.1


97482_Patient-08ut_uterus
15.8


97483_Patient-08pl_placenta
4.5


97486_Patient-09sk_skeletal muscle
5.7


97487_Patient-09ut_uterus
23.0


97488_Patient-09pl_placenta
9.4


97492_Patient-10ut_uterus
23.0


97493_Patient-10pl_placenta
25.5


97495_Patient-11go_adipose
17.1


97496_Patient-11sk_skeletal muscle
12.9


97497_Patient-11ut_uterus
42.9


97498_Patient-11pl_placenta
2.1


97500_Patient-12go_adipose
100.0


97501_Patient-12sk_skeletal muscle
46.3


97502_Patient-12ut_uterus
35.6


97503_Patient-12pl_placenta
3.3


94721_Donor 2 U - A_Mesenchymal Stem Cells
0.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
0.0


94723_Donor 2 U - C_Mesenchymal Stem Cells
0.0


94709_Donor 2 AM - A_adipose
0.0


94710_Donor 2 AM - B_adipose
0.0


94711_Donor 2 AM - C_adipose
0.0


94712_Donor 2 AD - A_adipose
0.0


94713_Donor 2 AD - B_adipose
0.0


94714_Donor 2 AD - C_adipose
0.0


94742_Donor 3 U - A_Mesenchymal Stem Cells
1.3


94743_Donor 3 U - B_Mesenchymal Stem Cells
0.0


94730_Donor 3 AM - A_adipose
0.0


94731_Donor 3 AM - B_adipose
0.0


94732_Donor 3 AM - C_adipose
0.9


94733_Donor 3 AD - A_adipose
0.0


94734_Donor 3 AD - B_adipose
0.0


94735_Donor 3 AD - C_adipose
0.0


77138_Liver_HepG2untreated
0.0


73556_Heart_Cardiac stromal cells (primary)
77.9


81735_Small Intestine
22.2


72409_Kidney_Proximal Convoluted Tubule
0.0


82685_Small intestine_Duodenum
1.4


90650_Adrenal_Adrenocortical adenoma
6.4


72410_Kidney_HRCE
1.5


72411_Kidney_HRE
0.0


73139_Uterus_Uterine smooth muscle cells
1.4










[0810] Panel 5 Islet Summary: Ag4203 Highest expression is seen in adipose (CT=32), with low but significant expression seen in other metabolic tissues, including skeletal muscle and placenta. Thus, this gene product may be involved in the pathogenesis and/or treatment of metabolic disease, including obesity and diabetes.


[0811] L. CG138372-02: MALEYLACETOACETATE ISOMERASE


[0812]


[0813] Expression of full-length physical clone CG138372-02 was assessed using the primer-probe set Ag5913, described in Table LA. Results of the RTQ-PCR runs are shown in Tables LB, LC and LD.
279TABLE LAProbe Name Ag5913SEQStartIDPrimersSequencesLengthPositionNoForward5′-gccaacagttttctaaggactt23145260c-3′ProbeTET-5′-attccatcaatcttcagg26192261gttggcac-3′-TAMRAReverse5′-acagacaggtttgactggtgaa23222262t-3′


[0814]

280





TABLE LB










General_screening_panel_v1.5










Rel. Exp. (%)
Rel. Exp. (%)



Ag5913, Run
Ag5913, Run


Tissue Name
247608924
259048761












Adipose
1.8
2.4


Melanoma* Hs688(A).T
3.7
4.6


Melanoma* Hs688(B).T
3.7
3.9


Melanoma* M14
12.6
13.5


Melanoma* LOXIMVI
7.3
4.8


Melanoma* SK-MEL-5
44.8
33.2


Squamous cell carcinoma SCC-4
7.4
6.2


Testis Pool
5.2
6.2


Prostate ca.* (bone met) PC-3
35.6
27.7


Prostate Pool
3.3
4.5


Placenta
2.5
2.5


Uterus Pool
0.7
1.2


Ovarian ca. OVCAR-3
18.8
21.2


Ovarian ca. SK-OV-3
8.1
9.0


Ovarian ca. OVCAR-4
7.2
10.7


Ovarian ca. OVCAR-5
75.3
68.3


Ovarian ca. IGROV-1
8.6
7.5


Ovarian ca. OVCAR-8
13.8
12.3


Ovary
1.1
2.6


Breast ca. MCF-7
40.3
36.9


Breast ca. MDA-MB-231
44.1
33.7


Breast ca. BT 549
13.2
10.4


Breast ca. T47D
14.4
14.7


Breast ca. MDA-N
14.8
14.5


Breast Pool
2.4
2.4


Trachea
4.0
4.2


Lung
0.9
0.2


Fetal Lung
2.0
3.4


Lung ca. NCI-N417
11.6
9.9


Lung ca. LX-1
40.1
45.4


Lung ca. NCI-H146
11.2
10.3


Lung ca. SHP-77
22.2
31.0


Lung ca. A549
27.0
29.1


Lung ca. NCI-H526
5.1
7.3


Lung ca. NCI-H23
13.6
11.2


Lung ca. NCI-H460
4.8
7.5


Lung ca. HOP-62
7.3
7.6


Lung ca. NCI-H522
9.2
11.7


Liver
19.1
21.9


Fetal Liver
16.5
7.3


Liver ca. HepG2
9.9
14.4


Kidney Pool
2.9
3.2


Fetal Kidney
3.4
2.4


Renal ca. 786-0
15.4
9.9


Renal ca. A498
4.1
4.7


Renal ca. ACHN
14.5
22.2


Renal ca. UO-31
9.7
12.9


Renal ca. TK-10
15.6
19.3


Bladder
4.0
4.4


Gastric ca. (liver met.) NCI-N87
13.2
16.8


Gastric ca. KATO III
41.8
41.5


Colon ca. SW-948
8.1
7.5


Colon ca. SW480
56.3
54.7


Colon ca.* (SW480 met) SW620
19.3
31.9


Colon ca. HT29
8.2
10.3


Colon ca. HCT-116
24.0
21.5


Colon ca. CaCo-2
19.6
12.6


Colon cancer tissue
5.8
7.6


Colon ca. SW1116
7.6
11.7


Colon ca. Colo-205
12.2
8.5


Colon ca. SW-48
7.0
9.2


Colon Pool
2.0
1.9


Small Intestine Pool
2.0
1.6


Stomach Pool
1.7
1.5


Bone Marrow Pool
1.4
1.1


Fetal Heart
1.4
1.3


Heart Pool
1.0
1.3


Lymph Node Pool
2.1
0.3


Fetal Skeletal Muscle
2.0
2.3


Skeletal Muscle Pool
13.5
14.9


Spleen Pool
1.9
5.6


Thymus Pool
4.2
3.5


CNS cancer (glio/astro) U87-MG
100.0
100.0


CNS cancer (glio/astro) U-118-MG
16.5
18.7


CNS cancer (neuro; met) SK-N-AS
19.2
19.9


CNS cancer (astro) SF-539
4.9
4.4


CNS cancer (astro) SNB-75
25.9
21.3


CNS cancer (glio) SNB-19
6.9
7.1


CNS cancer (glio) SF-295
8.0
10.4


Brain (Amygdala) Pool
3.2
2.2


Brain (cerebellum)
4.3
4.9


Brain (fetal)
0.8
1.1


Brain (Hippocampus) Pool
2.5
1.8


Cerebral Cortex Pool
1.6
2.8


Brain (Substantia nigra) Pool
3.5
1.7


Brain (Thalamus) Pool
2.3
4.4


Brain (whole)
5.7
3.3


Spinal Cord Pool
5.5
7.9


Adrenal Gland
5.6
4.5


Pituitary gland Pool
1.7
0.9


Salivary Gland
5.3
5.1


Thyroid (female)
4.1
3.4


Pancreatic ca. CAPAN2
28.5
29.5


Pancreas Pool
2.5
4.7










[0815]

281





TABLE LC










Panel 5 Islet










Rel. Exp. (%)
Rel. Exp. (%)



Ag5913, Run
Ag5913, Run


Tissue Name
247624441
259234351












97457_Patient-02go_adipose
47.6
23.0


97476_Patient-07sk_skeletal muscle
19.8
3.2


97477_Patient-07ut_uterus
0.0
8.5


97478_Patient-07pl_placenta
11.3
14.7


99167_Bayer Patient 1
90.8
43.2


97482_Patient-08ut_uterus
0.0
6.6


97483_Patient-08pl_placenta
11.0
18.0


97486_Patient-09sk_skeletal muscle
3.6
8.4


97487_Patient-09ut_uterus
12.2
6.3


97488_Patient-09pl_placenta
20.2
7.3


97492_Patient-10ut_uterus
3.4
2.5


97493_Patient-10pl_placenta
74.7
5.1


97495_Patient-11go_adipose
18.4
6.8


97496_Patient-11sk_skeletal muscle
65.5
18.7


97497_Patient-11ut_uterus
57.0
2.6


97498_Patient-11pl_placenta
16.4
10.2


97500_Patient-12go_adipose
59.5
32.1


97501_Patient-12sk_skeletal muscle
100.0
40.6


97502_Patient-12ut_uterus
5.3
8.9


97503_Patient-12pl_placenta
8.8
6.4


94721_Donor 2 U - A_Mesenchymal
37.6
24.8


Stem Cells


94722_Donor 2 U - B_Mesenchymal
11.2
23.3


Stem Cells


94723_Donor 2 U - C_Mesenchymal
33.9
4.8


Stem Cells


94709_Donor 2 AM - A_adipose
27.9
9.3


94710_Donor 2 AM - B_adipose
4.8
30.1


94711_Donor 2 AM - C_adipose
11.8
3.8


94712_Donor 2 AD - A_adipose
23.5
12.8


94713_Donor 2 AD - B_adipose
5.6
38.2


94714_Donor 2 AD - C_adipose
55.9
20.9


94742_Donor 3 U - A_Mesenchymal
12.2
11.2


Stem Cells


94743_Donor 3 U - B_Mesenchymal
23.3
10.3


Stem Cells


94730_Donor 3 AM - A_adipose
40.9
21.2


94731_Donor 3 AM - B_adipose
0.0
13.6


94732_Donor 3 AM - C_adipose
9.1
13.0


94733_Donor 3 AD - A_adipose
25.2
17.4


94734_Donor 3 AD - B_adipose
23.8
0.0


94735_Donor 3 AD - C_adipose
0.0
26.6


77138_Liver_HepG2untreated
65.5
100.0


73556_Heart_Cardiac stromal
40.1
19.3


cells (primary)


81735_Small Intestine
55.5
15.7


72409_Kidney_Proximal Convoluted
26.2
19.1


Tubule


82685_Small intestine_Duodenum
0.0
7.1


90650_Adrenal_Adrenocortical
30.6
16.4


adenoma


72410_Kidney_HRCE
95.9
53.6


72411_Kidney_HRE
26.4
43.8


73139_Uterus_Uterine smooth
0.0
8.5


muscle cells










[0816]

282





TABLE LD










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag5913, Run



Tissue Name
260316171














Colon cancer 1
15.1



Colon NAT 1
11.5



Colon cancer 2
8.7



Colon NAT 2
10.6



Colon cancer 3
21.3



Colon NAT 3
19.9



Colon malignant cancer 4
100.0



Colon NAT 4
10.4



Lung cancer 1
51.4



Lung NAT 1
0.0



Lung cancer 2
25.2



Lung NAT 2
0.0



Squamous cell carcinoma 3
20.6



Lung NAT 3
0.0



Metastatic melanoma 1
7.1



Melanoma 2
2.3



Melanoma 3
2.2



Metastatic melanoma 4
11.9



Metastatic melanoma 5
15.2



Bladder cancer 1
2.1



Bladder NAT 1
0.0



Bladder cancer 2
0.9



Bladder NAT 2
0.0



Bladder NAT 3
0.9



Bladder NAT 4
0.0



Prostate adenocarcinoma 1
3.1



Prostate adenocarcinoma 2
1.5



Prostate adenocarcinoma 3
22.1



Prostate adenocarcinoma 4
14.6



Prostate NAT 5
5.4



Prostate adenocarcinoma 6
4.7



Prostate adenocarcinoma 7
4.8



Prostate adenocarcinoma 8
3.6



Prostate adenocarcinoma 9
13.0



Prostate NAT 10
0.6



Kidney cancer 1
13.9



Kidney NAT 1
6.7



Kidney cancer 2
63.7



Kidney NAT 2
13.4



Kidney cancer 3
16.8



Kidney NAT 3
0.7



Kidney cancer 4
9.7



Kidney NAT 4
5.8











[0817] General_screening_panel_v1.5 Summary: Ag5913 Two experiments with the same probe and primer set produce results that are in excellent agreement. Highest expression is seen in a brain cancer cell line (CTs=30).


[0818] This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0819] Among tissues with metabolic function, this gene is expressed at low but significant levels in adrenal gland, skeletal muscle, and adult and fetal liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0820] Panel 5 Islet Summary: Ag5913 Low but significant expression is seen in a liver cell line and skeletal muscle.


[0821] general oncology screening panel_v2.4 Summary: Ag5913 Highest expression is seen in a colon cancer (CT=32.5). In addition, this gene is overexpressed in colon, kidney, and lung cancers when compared to expression in the normal adjacent tissue. Thus, expression of this gene could be used as a marker of these cancers and modulation of the function of this gene product may be useful in the treatment of these cancers.


[0822] M. CG138461-01: Novel Intracellular Nitroreductase-Like Gene


[0823] Expression of gene CG138461-01 was assessed using the primer-probe set Ag4962, described in Table MA. Results of the RTQ-PCR runs are shown in Tables MB and MC.
283TABLE MAProbe Name Ag4962SEQStartIDPrimersSequencesLengthPositionNoForward5′-gggtcacagacctcaagaaac-215092633′ProbeTET-5′-tggatactgcccctattt27557264tgattctca-3′-TAMRAReverse5′-gcgaaaccatgtacttgtttg-215882653′


[0824]

284





TABLE MB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag4962, Run



Tissue Name
228903674














Adipose
0.1



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.1



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.2



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
2.5



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
0.6



Lung
0.0



Fetal Lung
0.4



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
1.7



Fetal Liver
2.8



Liver ca. HepG2
0.1



Kidney Pool
0.0



Fetal Kidney
0.4



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
1.7



Gastric ca. (liver met.) NCI-N87
0.2



Gastric ca. KATO III
3.3



Colon ca. SW-948
0.9



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.2



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
6.6



Colon cancer tissue
2.3



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.8



Colon ca. SW-48
3.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.1



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.1



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.1



Spinal Cord Pool
0.0



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.2



Thyroid (female)
100.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.1











[0825]

285





TABLE MC










Panel 4.1D











Rel. Exp. (%)




Ag4962, Run



Tissue Name
223691582














Secondary Th1 act
0.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
0.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte rest
0.0



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
0.0



2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0



LAK cells rest
0.0



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
0.0



Two Way MLR 3 day
0.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
0.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
0.0



B lymphocytes CD40L and IL-4
0.0



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.0



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
0.0



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC
0.0



TNFalpha + IL-1beta



Bronchial epithelium TNFalpha +
0.2



IL1beta



Small airway epithelium none
0.2



Small airway epithelium
0.6



TNFalpha + IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha +
0.0



IL-1beta



Astrocytes rest
0.0



Astrocytes TNFalpha + IL-1beta
0.2



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
0.0



CCD1106 (Keratinocytes)
0.0



TNFalpha + IL-1beta



Liver cirrhosis
1.9



NCI-H292 none
0.4



NCI-H292 IL-4
0.4



NCI-H292 IL-9
0.4



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.1



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
0.0



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF alpha
0.0



Dermal fibroblast CCD1070 IL-1
0.0



beta



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.0



Dermal Fibroblasts rest
0.0



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
13.2



Lung
0.7



Thymus
0.0



Kidney
100.0











[0826] General_screening'panel'v1.5 Summary: Ag4962 Expression of this gene is restricted to the thyroid (CT=26.5). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel, and as a marker of thyroid tissue. Modulation of the expression or function of this protein may be useful in the treatment of thyroidopathies.


[0827] Panel 4.1D Summary: Ag4962 This gene is only expressed at detectable levels in the kidney (CT=30. 1). Thus, expression of this gene could be used to differentiate the kidney-derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0828] N. CG138529-01: SA PROTEIN (Medium-Chain Acyl-CoA Synthetase)-Like Gene


[0829] Expression of gene CG138529-01 was assessed using the primer-probe set Ag4963, described in Table NA. Results of the RTQ-PCR runs are shown in Tables NB, NC, ND and NE.
286TABLE NAProbe Name Ag4963StartSEQPrimersSequencesLengthPositionID NoForward5′-aagatccaatggccatattctt-227572663′ProbeTET-5′-caagggtacaacaggagc26782267tcccaaaa-3′-TAMRAReverse5′-cccaaaccatactgggaatact-228142683′


[0830]

287





TABLE NB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4963, Run



Tissue Name
224735225














AD 1 Hippo
2.4



AD 2 Hippo
27.0



AD 3 Hippo
7.9



AD 4 Hippo
7.4



AD 5 Hippo
100.0



AD 6 Hippo
50.3



Control 2 Hippo
3.8



Control 4 Hippo
5.8



Control (Path) 3 Hippo
5.0



AD 1 Temporal Ctx
8.2



AD 2 Temporal Ctx
36.1



AD 3 Temporal Ctx
0.0



AD 4 Temporal Ctx
55.9



AD 5 Inf Temporal Ctx
90.1



AD 5 Sup Temporal Ctx
37.9



AD 6 Inf Temporal Ctx
62.0



AD 6 Sup Temporal Ctx
55.5



Control 1 Temporal Ctx
5.5



Control 2 Temporal Ctx
15.8



Control 3 Temporal Ctx
17.1



Control 3 Temporal Ctx
3.9



Control (Path) 1 Temporal Ctx
58.2



Control (Path) 2 Temporal Ctx
55.1



Control (Path) 3 Temporal Ctx
3.7



Control (Path) 4 Temporal Ctx
11.5



AD 1 Occipital Ctx
3.1



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
0.0



AD 4 Occipital Ctx
40.3



AD 5 Occipital Ctx
2.1



AD 6 Occipital Ctx
8.4



Control 1 Occipital Ctx
0.0



Control 2 Occipital Ctx
20.0



Control 3 Occipital Ctx
27.2



Control 4 Occipital Ctx
4.0



Control (Path) 1 Occipital Ctx
46.3



Control (Path) 2 Occipital Ctx
7.4



Control (Path) 3 Occipital Ctx
0.0



Control (Path) 4 Occipital Ctx
3.7



Control 1 Parietal Ctx
6.3



Control 2 Parietal Ctx
24.5



Control 3 Parietal Ctx
19.5



Control (Path) 1 Parietal Ctx
44.4



Control (Path) 2 Parietal Ctx
37.6



Control (Path) 3 Parietal Ctx
4.2



Control (Path) 4 Parietal Ctx
30.6











[0831]

288





TABLE NC










General_screening_panel_v1.5










Rel. Exp. (%)
Rel. Exp. (%)



Ag4963, Run
Ag4963, Run


Tissue Name
228903693
244628523












Adipose
46.7
40.6


Melanoma* Hs688(A).T
2.1
1.8


Melanoma* Hs688(B).T
3.3
2.2


Melanoma* M14
0.0
0.0


Melanoma* LOXIMVI
0.0
0.0


Melanoma* SK-MEL-5
0.8
0.0


Squamous cell carcinoma SCC-4
5.6
1.9


Testis Pool
15.0
13.0


Prostate ca.* (bone met) PC-3
2.2
2.3


Prostate Pool
2.3
5.1


Placenta
1.6
0.7


Uterus Pool
3.4
4.0


Ovarian ca. OVCAR-3
5.2
5.3


Ovarian ca. SK-OV-3
3.3
3.3


Ovarian ca. OVCAR-4
3.5
1.6


Ovarian ca. OVCAR-5
3.4
3.2


Ovarian ca. IGROV-1
10.3
4.6


Ovarian ca. OVCAR-8
0.7
0.4


Ovary
9.7
3.3


Breast ca. MCF-7
19.1
11.1


Breast ca. MDA-MB-231
4.7
2.3


Breast ca. BT 549
13.0
7.9


Breast ca. T47D
1.4
0.0


Breast ca. MDA-N
0.0
0.0


Breast Pool
12.7
10.6


Trachea
6.4
4.7


Lung
3.0
1.1


Fetal Lung
46.7
48.0


Lung ca. NCI-N417
0.0
0.8


Lung ca. LX-1
1.0
0.1


Lung ca. NCI-H146
0.0
0.0


Lung ca. SHP-77
24.8
1.1


Lung ca. A549
1.8
2.4


Lung ca. NCI-H526
0.0
0.0


Lung ca. NCI-H23
0.0
0.0


Lung ca. NCI-H460
0.0
11.5


Lung ca. HOP-62
3.3
0.5


Lung ca. NCI-H522
6.9
10.3


Liver
0.0
0.0


Fetal Liver
10.4
7.6


Liver ca. HepG2
9.5
2.3


Kidney Pool
18.0
16.7


Fetal Kidney
100.0
100.0


Renal ca. 786-0
4.5
4.2


Renal ca. A498
5.8
4.8


Renal ca. ACHN
1.0
2.7


Renal ca. UO-31
11.0
8.2


Renal ca. TK-10
6.5
5.3


Bladder
17.3
14.4


Gastric ca. (liver met.) NCI-N87
41.8
26.6


Gastric ca. KATO III
2.9
3.5


Colon ca. SW-948
2.0
0.0


Colon ca. SW480
1.9
0.9


Colon ca.* (SW480 met) SW620
0.0
0.0


Colon ca. HT29
1.6
0.2


Colon ca. HCT-116
16.3
8.4


Colon ca. CaCo-2
24.7
15.0


Colon cancer tissue
0.6
0.0


Colon ca. SW1116
0.0
0.0


Colon ca. Colo-205
0.0
0.0


Colon ca. SW-48
0.0
0.0


Colon Pool
13.5
9.0


Small Intestine Pool
7.0
2.6


Stomach Pool
12.9
7.9


Bone Marrow Pool
6.7
6.7


Fetal Heart
28.3
21.0


Heart Pool
6.5
5.9


Lymph Node Pool
15.7
12.9


Fetal Skeletal Muscle
3.5
1.4


Skeletal Muscle Pool
4.2
6.0


Spleen Pool
9.3
3.6


Thymus Pool
29.9
31.9


CNS cancer (glio/astro) U87-MG
3.1
1.9


CNS cancer (glio/astro) U-118-MG
9.3
4.3


CNS cancer (neuro; met) SK-N-AS
0.0
1.2


CNS cancer (astro) SF-539
2.0
0.8


CNS cancer (astro) SNB-75
6.0
5.3


CNS cancer (glio) SNB-19
9.9
6.7


CNS cancer (glio) SF-295
7.2
8.0


Brain (Amygdala) Pool
10.2
4.3


Brain (cerebellum)
16.5
11.6


Brain (fetal)
17.9
16.6


Brain (Hippocampus) Pool
7.6
4.6


Cerebral Cortex Pool
7.5
3.8


Brain (Substantia nigra) Pool
3.0
5.9


Brain (Thalamus) Pool
11.7
9.2


Brain (whole)
4.6
8.5


Spinal Cord Pool
7.3
4.4


Adrenal Gland
29.9
14.1


Pituitary gland Pool
12.7
6.3


Salivary Gland
0.7
0.6


Thyroid (female)
5.4
4.0


Pancreatic ca. CAPAN2
20.2
23.0


Pancreas Pool
24.0
16.6










[0832]

289





TABLE ND










Panel 4.1D











Rel. Exp. (%)




Ag4963, Run



Tissue Name
223691584














Secondary Th1 act
5.4



Secondary Th2 act
9.6



Secondary Tr1 act
5.1



Secondary Th1 rest
0.0



Secondary Th2 rest
0.0



Secondary Tr1 rest
12.4



Primary Th1 act
13.0



Primary Th2 act
0.0



Primary Tr1 act
8.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
5.2



CD45RA CD4 lymphocyte act
15.1



CD45RO CD4 lymphocyte act
10.9



CD8 lymphocyte act
7.0



Secondary CD8 lymphocyte rest
11.2



Secondary CD8 lymphocyte act
0.0



CD4 lymphocyte none
1.7



2ry Th1/Th2/Tr1_anti-CD95 CH11
12.5



LAK cells rest
4.5



LAK cells IL-2
12.1



LAK cells IL-2 + IL-12
4.5



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
19.9



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
15.8



Two Way MLR 3 day
7.1



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
5.2



PBMC PWM
8.2



PBMC PHA-L
15.2



Ramos (B cell) none
7.6



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
12.9



B lymphocytes CD40L and IL-4
32.8



EOL-1 dbcAMP
10.2



EOL-1 dbcAMP PMA/ionomycin
0.0



Dendritic cells none
0.0



Dendritic cells LPS
0.0



Dendritic cells anti-CD40
0.0



Monocytes rest
5.2



Monocytes LPS
0.0



Macrophages rest
4.0



Macrophages LPS
0.0



HUVEC none
3.6



HUVEC starved
0.0



HUVEC IL-1beta
6.9



HUVEC IFN gamma
62.4



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
16.4



Lung Microvascular EC none
0.0



Lung Microvascular EC TNFalpha +
12.5



IL-1beta



Microvascular Dermal EC none
25.5



Microsvasular Dermal EC
41.2



TNFalpha + IL-1beta



Bronchial epithelium TNFalpha +
26.2



IL1beta



Small airway epithelium none
0.0



Small airway epithelium
90.8



TNFalpha + IL-1beta



Coronery artery SMC rest
10.6



Coronery artery SMC TNFalpha +
5.3



IL-1beta



Astrocytes rest
44.1



Astrocytes TNFalpha + IL-1beta
33.7



KU-812 (Basophil) rest
7.5



KU-812 (Basophil) PMA/ionomycin
40.1



CCD1106 (Keratinocytes) none
36.1



CCD1106 (Keratinocytes)
21.5



TNFalpha + IL-1beta



Liver cirrhosis
8.8



NCI-H292 none
15.3



NCI-H292 IL-4
23.5



NCI-H292 IL-9
14.2



NCI-H292 IL-13
31.4



NCI-H292 IFN gamma
5.3



HPAEC none
22.8



HPAEC TNF alpha + IL-1 beta
5.8



Lung fibroblast none
18.4



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
14.0



Lung fibroblast IL-9
4.9



Lung fibroblast IL-13
6.3



Lung fibroblast IFN gamma
4.3



Dermal fibroblast CCD1070 rest
4.8



Dermal fibroblast CCD1070 TNF
5.3



alpha



Dermal fibroblast CCD1070 IL-1
5.1



beta



Dermal fibroblast IFN gamma
4.5



Dermal fibroblast IL-4
5.0



Dermal Fibroblasts rest
14.5



Neutrophils TNFa + LPS
0.0



Neutrophils rest
4.2



Colon
16.2



Lung
61.1



Thymus
100.0



Kidney
43.5











[0833]

290





TABLE NE










Panel 5 Islet










Rel. Exp. (%)
Rel. Exp. (%)



Ag4963, Run
Ag4963, Run


Tissue Name
233698024
245232951












97457_Patient-02go_adipose
81.8
74.7


97476_Patient-07sk
39.5
52.1


skeletal muscle


97477_Patient-07ut_uterus
0.0
98.6


97478_Patient-07pl_placenta
0.0
27.4


99167_Bayer Patient 1
42.3
45.7


97482_Patient-08ut_uterus
16.2
20.6


97483_Patient-08pl_placenta
9.8
40.9


97486_Patient-09sk
0.0
0.0


skeletal muscle


97487_Patient-09ut_uterus
14.6
28.1


97488_Patient-09pl_placenta
0.0
0.0


97492_Patient-10ut_uterus
0.0
36.6


97493_Patient-10pl_placenta
15.2
60.3


97495_Patient-11go_adipose
10.2
23.8


97496_Patient-11sk
0.0
8.2


skeletal muscle


97497_Patient-11ut_uterus
10.7
23.7


97498_Patient-11pl_placenta
5.5
12.8


97500_Patient-12go_adipose
31.9
100.0


97501_Patient-12sk
54.3
75.8


skeletal muscle


97502_Patient-12ut_uterus
18.0
55.1


97503_Patient-12pl_placenta
0.0
38.7


94721_Donor 2 U -
0.0
27.9


A_Mesenchymal Stem Cells


94722_Donor 2 U -
0.0
0.0


B_Mesenchymal Stem Cells


94723_Donor 2 U -
0.0
0.0


C_Mesenchymal Stem Cells


94709_Donor 2 AM - A_adipose
13.2
0.0


94710_Donor 2 AM - B_adipose
13.7
0.0


94711_Donor 2 AM - C_adipose
4.5
0.0


94712_Donor 2 AD - A_adipose
16.0
0.0


94713_Donor 2 AD - B_adipose
15.7
0.0


94714_Donor 2 AD - C_adipose
12.4
0.0


94742_Donor 3 U -
11.0
0.0


A_Mesenchymal Stem Cells


94743_Donor 3 U -
16.6
0.0


B_Mesenchymal Stem Cells


94730_Donor 3 AM - A_adipose
14.0
31.6


94731_Donor 3 AM - B_adipose
0.0
0.0


94732_Donor 3 AM - C_adipose
11.0
14.5


94733_Donor 3 AD - A_adipose
16.7
42.6


94734_Donor 3 AD - B_adipose
0.0
0.0


94735_Donor 3 AD - C_adipose
9.7
19.3


77138_Liver_HepG2untreated
61.1
72.2


73556_Heart_Cardiac stromal
11.0
0.0


cells (primary)


81735_Small Intestine
77.9
76.8


72409_Kidney_Proximal
8.2
0.0


Convoluted Tubule


82685_Small intestine_Duodenum
0.0
0.0


90650_Adrenal_Adrenocortical
0.0
0.0


adenoma


72410_Kidney_HRCE
100.0
0.0


72411_Kidney_HRE
0.0
31.6


73139_Uterus_Uterine smooth
0.0
0.0


muscle cells










[0834] CNS_neurodegeneration_v1.0 Summary: Ag4963 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene appears to be slightly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0835] General_screening_panel_v1.5 Summary: Ag4963 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression in fetal kidney (CT=30). This gene is homologous to the SA protein that is also expressed in human kidney and may play a role in blood pressure regulation in rodent models of genetic hypertension (Samani NJ. Biochem Biophys Res Commun March 15, 1994; 199(2):862-8). In addition, this gene appears to be overexpressed in fetal lung (CTs=30) when compared to expression in the adult counterpart (CT=35). Thus, expression of this gene could be used to differentiate between the fetal and adult source of this tissue. In addition, modulation of the expression or function of this gene may be useful in the treatment of diseases of this organ.


[0836] Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal liver, skeletal muscle and fetal and adult and fetal skeletal heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0837] This gene is also expressed at low but significant levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0838] Panel 4.1D Summary: Ag4963 Highest expression of this gene is seen in the thymus (CT=32.4). Low but significant expression is also seen in IFN-gamma treated KUVECs, IL-13 and IL-14 treated NCI—H292 cells, untreated IHPAECs and lung fibroblasts, normal lung and kidney. Thus, this gene product may play an important role in T cell development. Therapeutic modulation of the expression or function of this gene may be utilized to modulate immune function (T cell development) and be important for organ transplant, AIDS treatment or post chemotherapy immune reconstitution.


[0839] Panel 5 Islet Summary: Ag4963 Two experiments with the same probe and primer show this gene expressed at low levels in adipose and a kidney cell line (CTs=34.5).


[0840] O. CG138563-01: CHOLINE/ETHANOLAMINE KINASE-Like Gene


[0841] Expression of gene CG138563-01 was assessed using the primer-probe sets Ag4972 and Ag5937, described in Tables OA and OB. Results of the RTQ-PCR runs are shown in Tables OC, OD and OE.
291TABLE OAProbe Name Ag4972StartSEQPrimersSequencesLengthPositionID NoForward5′-22777269ggagcggtacctaaaacagatc-3′ProbeTET-5′-25813270aactggcctccctgagatgaacctg-3′-TAMRAReverse5′-22844271tctcatccttcaggctgtacat-3′


[0842]

292





TABLE OB










Probe Name Ag5937














Start
SEQ


Primers
Sequences
Length
Position
ID No





Forward
5′-
22
842
272



agatgtacagcctgaaggatga-



3′


Probe
TET-5′-
25
926
273



acatccaggaaggtaggagaaggca-



3′-TAMRA


Reverse
5′-tgaggttctgctcactccaga-
21
989
274



3′










[0843]

293





TABLE OC










General_screening_panel_v1.5










Rel. Exp. (%)
Rel. Exp. (%)



Ag4972, Run
Ag5937, Run


Tissue Name
228926672
247834840












Adipose
13.7
11.3


Melanoma* Hs688(A).T
19.5
17.8


Melanoma* Hs688(B).T
18.2
18.2


Melanoma* M14
44.4
57.4


Melanoma* LOXIMVI
15.6
16.6


Melanoma* SK-MEL-5
35.6
25.2


Squamous cell carcinoma SCC-4
9.2
16.4


Testis Pool
20.6
17.8


Prostate ca.* (bone met) PC-3
36.1
49.0


Prostate Pool
21.8
26.6


Placenta
23.0
15.1


Uterus Pool
13.6
10.4


Ovarian ca. OVCAR-3
15.3
14.2


Ovarian ca. SK-OV-3
59.5
55.5


Ovarian ca. OVCAR-4
13.4
7.4


Ovarian ca. OVCAR-5
41.8
64.2


Ovarian ca. IGROV-1
17.6
10.4


Ovarian ca. OVCAR-8
14.4
9.7


Ovary
10.6
11.7


Breast ca. MCF-7
22.1
48.0


Breast ca. MDA-MB-231
28.3
32.3


Breast ca. BT 549
35.1
63.7


Breast ca. T47D
5.3
6.2


Breast ca. MDA-N
11.4
12.3


Breast Pool
24.1
25.2


Trachea
22.8
29.9


Lung
9.0
13.2


Fetal Lung
37.9
37.4


Lung ca. NCI-N417
3.0
3.3


Lung ca. LX-1
25.5
31.0


Lung ca. NCI-H146
6.3
7.4


Lung ca. SHP-77
25.9
50.0


Lung ca. A549
16.4
18.7


Lung ca. NCI-H526
4.3
3.6


Lung ca. NCI-H23
40.1
54.7


Lung ca. NCI-H460
23.3
28.9


Lung ca. HOP-62
25.7
16.0


Lung ca. NCI-H522
47.0
82.4


Liver
2.5
1.9


Fetal Liver
19.9
20.0


Liver ca. HepG2
17.7
23.7


Kidney Pool
32.3
47.6


Fetal Kidney
27.4
37.9


Renal ca. 786-0
32.8
50.0


Renal ca. A498
6.3
6.3


Renal ca. ACHN
19.6
18.0


Renal ca. UO-31
27.2
39.5


Renal ca. TK-10
26.8
31.0


Bladder
54.7
86.5


Gastric ca. (liver met.)
100.0
78.5


NCI-N87


Gastric ca. KATO III
44.8
59.5


Colon ca. SW-948
12.6
9.8


Colon ca. SW480
28.1
32.8


Colon ca.* (SW480 met)
17.4
23.3


SW620


Colon ca. HT29
6.1
8.6


Colon ca. HCT-116
28.5
44.4


Colon ca. CaCo-2
34.2
63.3


Colon cancer tissue
22.1
27.2


Colon ca. SW1116
8.4
7.0


Colon ca. Colo-205
6.9
5.7


Colon ca. SW-48
7.5
5.3


Colon Pool
10.4
27.0


Small Intestine Pool
21.0
27.0


Stomach Pool
13.8
15.5


Bone Marrow Pool
8.8
9.7


Fetal Heart
23.2
23.2


Heart Pool
11.0
11.0


Lymph Node Pool
22.1
38.7


Fetal Skeletal Muscle
9.2
5.5


Skeletal Muscle Pool
22.7
27.7


Spleen Pool
39.5
48.3


Thymus Pool
40.9
61.6


CNS cancer (glio/astro)
46.7
36.9


U87-MG


CNS cancer (glio/astro)
48.0
90.8


U-118-MG


CNS cancer (neuro; met)
23.0
15.3


SK-N-AS


CNS cancer (astro) SF-539
14.6
25.5


CNS cancer (astro) SNB-75
33.0
46.0


CNS cancer (glio) SNB-19
16.0
12.8


CNS cancer (glio) SF-295
56.6
90.8


Brain (Amygdala) Pool
12.7
13.5


Brain (cerebellum)
82.9
100.0


Brain (fetal)
39.5
51.1


Brain (Hippocampus) Pool
11.2
12.9


Cerebral Cortex Pool
9.5
17.1


Brain (Substantia nigra)
12.4
19.1


Pool


Brain (Thalamus) Pool
15.3
16.4


Brain (whole)
11.3
19.2


Spinal Cord Pool
14.3
12.3


Adrenal Gland
28.3
31.6


Pituitary gland Pool
10.5
11.2


Salivary Gland
14.6
15.1


Thyroid (female)
11.4
9.0


Pancreatic ca. CAPAN2
26.2
37.4


Pancreas Pool
34.6
31.9










[0844]

294





TABLE OD










Oncology_cell_line_screening_panel_v3.1











Rel. Exp. (%)




Ag4972, Run



Tissue Name
225061002














Daoy
9.0



Medulloblastoma/Cerebellum



TE671
9.6



Medulloblastom/Cerebellum



D283 Med
31.0



Medulloblastoma/Cerebellum



PFSK-1 Primitive
19.5



Neuroectodermal/Cerebellum



XF-498_CNS
28.9



SNB-78_CNS/glioma
18.6



SF-268_CNS/glioblastoma
10.6



T98G_Glioblastoma
39.2



SK-N-SH_Neuroblastoma
36.9



(metastasis)



SF-295_CNS/glioblastoma
24.7



Cerebellum
100.0



Cerebellum
72.7



NCI-H292_Mucoepidermoid
25.5



lung ca.



DMS-114_Small cell lung
9.7



cancer



DMS-79_Small cell lung
21.2



cancer/neuroendocrine



NCI-H146_Small cell lung
19.3



cancer/neuroendocrine



NCI-H526_Small cell lung
26.6



cancer/neuroendocrine



NCI-N417_Small cell lung
11.0



cancer/neuroendocrine



NCI-H82_Small cell lung
11.0



cancer/neuroendocrine



NCI-H157_Squamous cell lung
19.9



cancer (metastasis)



NCI-H1155_Large cell lung
69.7



cancer/neuroendocrine



NCI-H1299_Large cell lung
20.7



cancer/neuroendocrine



NCI-H727_Lung carcinoid
37.6



NCI-UMC-11_Lung carcinoid
61.6



LX-1_Small cell lung cancer
15.7



Colo-205_Colon cancer
17.8



KM12_Colon cancer
39.8



KM20L2_Colon cancer
6.1



NCI-H716_Colon cancer
80.1



SW-48_Colon adenocarcinoma
24.1



SW1116_Colon adenocarcinoma
14.4



LS 174T_Colon adenocarcinoma
19.8



SW-948_Colon adenocarcinoma
31.2



SW-480_Colon adenocarcinoma
17.6



NCI-SNU-5_Gastric ca.
19.9



KATO III_Stomach
23.5



NCI-SNU-16_Gastric ca.
14.7



NCI-SNU-1_Gastric ca.
30.8



RF-1_Gastric adenocarcinoma
22.5



RF-48_Gastric adenocarcinoma
20.3



MKN-45_Gastric ca.
24.7



NCI-N87_Gastric ca.
21.6



OVCAR-5_Ovarian ca.
9.2



RL95-2_Uterine carcinoma
22.4



HelaS3_Cervical adenocarcinoma
22.2



Ca Ski_Cervical epidermoid carcinoma
71.2



(metastasis)



ES-2_Ovarian clear cell carcinoma
10.3



Ramos/6 h stim_Stimulated with
37.9



PMA/ionomycin 6 h



Ramos/14 h stim_Stimulated with
16.0



PMA/ionomycin 14 h



MEG-01_Chronic myelogenous
18.0



leukemia (megokaryoblast)



Raji_Burkitt's lymphoma
19.2



Daudi_Burkitt's lymphoma
40.1



U266_B-cell plasmacytoma/myeloma
10.1



CA46_Burkitt's lymphoma
9.3



RL_non-Hodgkin's B-cell lymphoma
6.5



JM1_pre-B-cell lymphoma/leukemia
12.7



Jurkat_T cell leukemia
23.2



TF-1_Erythroleukemia
31.4



HUT 78_T-cell lymphoma
56.6



U937_Histiocytic lymphoma
17.4



KU-812_Myelogenous leukemia
28.3



769-P_Clear cell renal ca.
12.2



Caki-2_Clear cell renal ca.
35.4



SW 839_Clear cell renal ca.
32.1



G401_Wilms' tumor
14.8



Hs766T_Pancreatic ca. (LN metastasis)
29.7



CAPAN-1_Pancreatic adenocarcinoma
21.3



(liver metastasis)



SU86.86_Pancreatic carcinoma (liver
39.5



metastasis)



BxPC-3_Pancreatic adenocarcinoma
26.2



HPAC_Pancreatic adenocarcinoma
83.5



MIA PaCa-2_Pancreatic ca.
5.3



CFPAC-1_Pancreatic ductal
84.1



adenocarcinoma



PANC-1_Pancreatic epithelioid ductal
27.2



ca.



T24_Bladder ca. (transitional cell)
30.1



5637_Bladder ca.
14.4



HT-1197_Bladder ca.
61.6



UM-UC-3_Bladder ca. (transitional
7.4



cell)



A204_Rhabdomyosarcoma
12.6



HT-1080_Fibrosarcoma
24.3



MG-63_Osteosarcoma (bone)
10.1



SK-LMS-1_Leiomyosarcoma (vulva)
27.5



SJRH30_Rhabdomyosarcoma (met to
22.7



bone marrow)



A431_Epidermoid ca.
59.5



WM266-4_Melanoma
20.4



DU 145_Prostate
30.1



MDA-MB-468_Breast adenocarcinoma
17.9



SSC-4_Tongue
12.2



SSC-9_Tongue
12.4



SSC-15_Tongue
19.8



CAL 27_Squamous cell ca. of tongue
33.4











[0845]

295





TABLE OE










Panel 5 Islet










Rel. Exp. (%)
Rel. Exp. (%)



Ag4972, Run
Ag5937, Run


Tissue Name
240188657
247837926












97457_Patient-02go_adipose
44.4
56.3


97476_Patient-07sk
13.2
30.6


skeletal muscle


97477_Patient-07ut_uterus
11.0
12.2


97478_Patient-07pl_placenta
22.5
20.7


99167_Bayer Patient 1
57.8
37.1


97482_Patient-08ut_uterus
10.1
9.7


97483_Patient-08pl_placenta
21.3
12.2


97486_Patient-09sk
2.6
3.2


skeletal muscle


97487_Patient-09ut_uterus
13.5
27.2


97488_Patient-09pl_placenta
14.2
19.3


97492_Patient-10ut_uterus
16.2
38.7


97493_Patient-10pl_placenta
53.2
42.6


97495_Patient-11go_adipose
20.9
28.5


97496_Patient-11sk
14.7
14.0


skeletal muscle


97497_Patient-11ut_uterus
18.2
36.9


97498_Patient-11pl_placenta
10.8
23.2


97500_Patient-12go_adipose
49.3
40.3


97501_Patient-12sk
46.7
38.7


skeletal muscle


97502_Patient-12ut_uterus
21.3
23.7


97503_Patient-12pl_placenta
20.6
18.6


94721_Donor 2 U -
18.0
18.8


A_Mesenchymal Stem Cells


94722_Donor 2 U -
11.7
10.4


B_Mesenchymal Stem Cells


94723_Donor 2 U -
23.8
15.8


C_Mesenchymal Stem Cells


94709_Donor 2 AM - A_adipose
25.5
15.5


94710_Donor 2 AM - B_adipose
11.7
8.5


94711_Donor 2 AM - C_adipose
10.8
5.0


94712_Donor 2 AD - A_adipose
22.5
20.7


94713_Donor 2 AD - B_adipose
17.0
15.2


94714_Donor 2 AD - C_adipose
17.8
18.9


94742_Donor 3 U -
9.6
5.0


A_Mesenchymal Stem Cells


94743_Donor 3 U -
12.5
21.3


B_Mesenchymal Stem Cells


94730_Donor 3 AM - A_adipose
14.1
25.0


94731_Donor 3 AM - B_adipose
9.9
10.4


94732_Donor 3 AM - C_adipose
17.0
8.7


94733_Donor 3 AD - A_adipose
27.5
16.6


94734_Donor 3 AD - B_adipose
4.7
3.0


94735_Donor 3 AD - C_adipose
17.1
11.2


77138_Liver_HepG2untreated
26.2
39.2


73556_Heart_Cardiac stromal
24.3
43.2


cells (primary)


81735_Small Intestine
41.8
59.0


72409_Kidney_Proximal
15.6
25.9


Convoluted Tubule


82685_Small intestine_Duodenum
5.4
21.9


90650_Adrenal_Adrenocortical
12.8
7.0


adenoma


72410_Kidney_HRCE
100.0
100.0


72411_Kidney_HRE
40.3
66.4


73139_Uterus_Uterine smooth
13.5
22.7


muscle cells










[0846] General_screening_panel_v1.5 Summary: Ag4972/Ag5937 Two experiments with two different probe and primer sets produce results that are in very good agreement. Highest expression of this gene is seen in a gastric cancer cell line (CT=26) and the cerebellum (CT=29). This gene encodes a homolog of ethanolaamine kinase that catalyzes the first step of PtdEtn biosynthesis, an abundant phospholipid in eukaryotic cell membranes. This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0847] Among tissues with metabolic function, this gene is expressed at moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0848] In addition, this gene is expressed at much higher levels in fetal liver tissue (CTs=29-3 1) when compared to expression in the adult counterpart (CTs=32-35). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue. In addition, therapeutic modulation of this gene may be useful in the treatment of diseases of this tissue.


[0849] This gene is also expressed at high to moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0850] Oncology_cell_line_screening_panel_3.1 Summary: Ag4972 Highest expression of this gene is seen in the cerebellum (CT=29), consistent with expression in Panel 1.5. In addition, this gene is widely expressed in the cancer cell line samples on this panel.


[0851] Panel 5 Islet Summary: Ag4972/Ag5937 Two experiments with two different probe and primer sets produce results that are in very good agreement. Highest expression of this gene is seen in kidney (CTs=29-32). This gene is widely expressed on this panel, consistent with expression in the other panels. Moderate levels of expression are seen in metabolic tissues, including adipose, placenta and skeletal muscle. Please see Panel 1.5 for discussion of utility of this gene in metabolic disease.


[0852] P. CG140041-01: Pyridoxal-Dependent Decarboxylase-Like Gene


[0853] Expression of gene CG140041-01 was assessed using the primer-probe set Ag4979, described in Table PA.
296TABLE PAProbe Name Ag4979StartSEQPrimersSequencesLengthPositionID NoForward5′-211732275tgctggactcctgaagaagtt-3′ProbeTET-5′-271768276tgacctaacctttaaaataggccctga-3′-TAMRAReverse5′-gacataaaggcagctcttcatg-2218042773′


[0854] Q. CG140061-01: IMP Dehydrogenase-Like Gene


[0855] Expression of gene CG140061-01 was assessed using the primer-probe set Ag4980, described in Table QA. Results of the RTQ-PCR runs are shown in Tables QB and QC.
297TABLE QAProbe Name Ag4980StartSEQPrimersSequencesLengthPositionID NoForward5′-221533278gtactcaggggagctcaagttt-3′ProbeTET-5′-231562279agaccatgtcggcccagatcaag-3′-TAMRAReverse5′-221609280ctcatcacagctgcttctcata-3′


[0856]

298





TABLE QB










General screening_panel v1.4











Rel. Exp. (%)




Ag4980, Run



Tissue Name
218306194














Adipose
0.0



Melanoma* Hs688(A).T
9.8



Melanoma* Hs688(B).T
9.0



Melanoma* M14
2.1



Melanoma* LOXIMVI
4.8



Melanoma* SK-MEL-5
2.7



Squamous cell carcinoma
6.5



SCC-4



Testis Pool
100.0



Prostate ca.* (bone met) PC-3
79.6



Prostate Pool
2.5



Placenta
18.2



Uterus Pool
0.0



Ovarian ca. OVCAR-3
14.1



Ovarian ca. SK-OV-3
27.5



Ovarian ca. OVCAR-4
5.8



Ovarian ca. OVCAR-5
76.3



Ovarian ca. IGROV-1
9.9



Ovarian ca. OVCAR-8
4.3



Ovary
8.0



Breast ca. MCF-7
63.3



Breast ca. MDA-MB-231
14.5



Breast ca. BT 549
23.2



Breast ca. T47D
87.7



Breast ca. MDA-N
1.9



Breast Pool
7.2



Trachea
6.2



Lung
0.0



Fetal Lung
8.3



Lung ca. NCI-N417
1.7



Lung ca. LX-1
29.9



Lung ca. NCI-H146
1.2



Lung ca. SHP-77
3.0



Lung ca. A549
17.1



Lung ca. NCI-H526
1.1



Lung ca. NCI-H23
11.6



Lung ca. NCI-H460
6.2



Lung ca. HOP-62
3.4



Lung ca. NCI-H522
17.9



Liver
0.0



Fetal Liver
1.6



Liver ca. HepG2
8.3



Kidney Pool
23.8



Fetal Kidney
3.4



Renal ca. 786-0
12.6



Renal ca. A498
11.7



Renal ca. ACHN
4.4



Renal ca. UO-31
6.0



Renal ca. TK-10
15.1



Bladder
8.0



Gastric ca. (liver met.) NCI-N87
45.7



Gastric ca. KATO III
14.4



Colon ca. SW-948
3.6



Colon ca. SW480
9.4



Colon ca.* (SW480 met) SW620
9.3



Colon ca. HT29
5.4



Colon ca. HCT-116
19.5



Colon ca. CaCo-2
22.7



Colon cancer tissue
2.1



Colon ca. SW1116
2.6



Colon ca. Colo-205
1.4



Colon ca. SW-48
3.1



Colon Pool
7.1



Small Intestine Pool
5.6



Stomach Pool
4.9



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
4.3



Lymph Node Pool
10.7



Fetal Skeletal Muscle
1.3



Skeletal Muscle Pool
3.3



Spleen Pool
4.6



Thymus Pool
6.2



CNS cancer (glio/astro) U87-MG
7.2



CNS cancer (glio/astro)
11.2



U-118-MG



CNS cancer (neuro; met)
19.8



SK-N-AS



CNS cancer (astro) SF-539
3.6



CNS cancer (astro) SNB-75
15.9



CNS cancer (glio) SNB-19
8.3



CNS cancer (glio) SF-295
7.3



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
6.2



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
1.1



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
1.7



Brain (whole)
2.6



Spinal Cord Pool
0.0



Adrenal Gland
28.1



Pituitary gland Pool
0.0



Salivary Gland
4.7



Thyroid (female)
4.0



Pancreatic ca. CAPAN2
33.9



Pancreas Pool
13.6











[0857]

299





TABLE QC










Panel 4.1D











Rel. Exp. (%)




Ag4980, Run



Tissue Name
223693388














Secondary Th1 act
0.0



Secondary Th2 act
3.0



Secondary Tr1 act
5.7



Secondary Th1 rest
9.2



Secondary Th2 rest
7.6



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
0.0



Primary Tr1 act
4.8



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
3.6



CD45RA CD4 lymphocyte act
3.0



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte
3.1



rest



Secondary CD8 lymphocyte
0.0



act



CD4 lymphocyte none
0.0



2ry Thl/Th2/Trl_anti-CD95
6.3



CH11



LAK cells rest
0.0



LAK cells IL-2
6.7



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
0.0



LAK cells IL-2 + IL-18
0.0



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
17.0



Two Way MLR 3 day
4.0



Two Way MLR 5 day
0.0



Two Way MLR 7 day
0.0



PBMC rest
0.0



PBMC PWM
0.0



PBMC PHA-L
3.1



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
4.0



B lymphocytes CD40L and
3.8



IL-4



EOL-1 dbcAMP
0.0



EOL-1 dbcAMP
0.0



PMA/ionomycin



Dendritic cells none
0.0



Dendritic cells LPS
5.4



Dendritic cells anti-CD40
0.0



Monocytes rest
0.0



Monocytes LPS
4.2



Macrophages rest
0.0



Macrophages LPS
0.0



HUVEC none
8.9



HUVEC starved
8.6



HUVEC IL-1beta
5.9



HUVEC IFN gamma
8.1



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
7.1



HUVEC IL-11
6.9



Lung Microvascular EC none
22.8



Lung Microvascular EC TNFalpha +
13.6



IL-1beta



Microvascular Dermal EC none
9.5



Microsvasular Dermal EC TNFalpha +
5.0



IL-1beta



Bronchial epithelium TNFalpha +
37.9



IL1beta



Small airway epithelium none
7.6



Small airway epithelium TNFalpha +
17.8



IL-1beta



Coronery artery SMC rest
0.0



Coronery artery SMC TNFalpha +
9.6



IL-1beta



Astrocytes rest
4.2



Astrocytes TNFalpha + IL-lbeta
10.0



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
0.0



CCD1106 (Keratinocytes) none
21.9



CCD1106 (Keratinocytes) TNFalpha +
33.9



IL-1beta



Liver cirrhosis
0.0



NCI-H292 none
78.5



NCI-H292 IL-4
100.0



NCI-H292 IL-9
81.2



NCI-H292 IL-13
80.7



NCI-H292 IFN gamma
44.1



HPAEC none
10.2



HPAEC TNF alpha + IL-1 beta
25.5



Lung fibroblast none
18.9



Lung fibroblast TNF alpha + IL-1
7.0



beta



Lung fibroblast IL-4
5.3



Lung fibroblast IL-9
19.1



Lung fibroblast IL-13
7.1



Lung fibroblast IFN gamma
8.6



Dermal fibroblast CCD1070 rest
26.8



Dermal fibroblast CCD1070 TNF
21.2



alpha



Dermal fibroblast CCD1070 IL-1
13.2



beta



Dermal fibroblast IFN gamma
9.9



Dermal fibroblast IL-4
23.5



Dermal Fibroblasts rest
7.3



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.0



Lung
0.0



Thymus
8.2



Kidney
25.5











[0858] General_screening_panel_v1.4 Summary: Ag4980 Highest expression of this gene is seen in testis (CT=33). Low but significant levels of expression are seen in cell lines derived from pancreatic, breast, ovarian, lung, and gastric cancer cell lines. This gene encodes a homologue of inosine-5-prime-monophosphate dehydrogenase (IMPD-1) that is the rate-limiting enzyme in the de novo synthesis of guanine nucleotides. Inhibition of this enzyme has been shown to exhibit anticancer activities against tumor cell lines (Jager W. Curr Med Chem April 2002;9(7):781-6). Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of these cancers.


[0859] Panel 4.1D Summary: Ag4980 Expression of this transcript is expressed exclusively in NC—-H292 cells stimulated by IL-4 (CT=34.9). This cell line is derived from a human airway epithelial cell line that produces mucins. Mucus overproduction is an important feature of bronchial asthma and chronic obstructive pulmonary disease samples. The expression of the transcript in this mucoepidermoid cell line that is often used as a model for airway epithelium (NCI—H292 cells) suggests that this transcript may be important in the proliferation or activation of airway epithelium. Therefore, therapeutics designed with the protein encoded by the transcript may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.


[0860] R. CG140335-01: UREA TRANSPORTER ISOFORM UTA-3-Like Gene


[0861] Expression of gene CG140335-01 was assessed using the primer-probe set Ag5021, described in Table RA. Results of the RTQ-PCR runs are shown in Tables RB and RC.
300TABLE RAProbe Name Ag5021SEQStartIDPrimersSequencesLengthPositionNoForward5′-ctttctagtgccttgaattcca-3′22660281ProbeTET-5′-26690282aagtgggacctcccggtcttcactct-3′-TAMRAReverse5′-ggtacaaggtgactgcaatgtt-3′22723283


[0862]

301





TABLE RB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5021, Run



Tissue Name
228941110














Adipose
38.4



Melanoma* Hs688(A).T
22.1



Melanoma* Hs688(B).T
3.7



Melanoma* M14
0.4



Melanoma* LOXIMVI
1.6



Melanoma* SK-MEL-5
1.9



Squamous cell carcinoma
1.1



SCC-4



Testis Pool
30.1



Prostate ca.* (bone met) PC-3
1.4



Prostate Pool
12.7



Placenta
0.9



Uterus Pool
2.6



Ovarian ca. OVCAR-3
4.0



Ovarian ca. SK-OV-3
13.6



Ovarian ca. OVCAR-4
1.7



Ovarian ca. OVCAR-5
1.0



Ovarian ca. IGROV-1
11.7



Ovarian ca. OVCAR-8
1.7



Ovary
1.2



Breast ca. MCF-7
1.5



Breast ca. MDA-MB-231
3.4



Breast ca. BT 549
3.9



Breast ca. T47D
0.0



Breast ca. MDA-N
0.5



Breast Pool
4.3



Trachea
5.7



Lung
0.9



Fetal Lung
5.9



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.5



Lung ca. SHP-77
0.0



Lung ca. A549
0.5



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.5



Lung ca. NCI-H460
0.9



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.7



Liver
0.8



Fetal Liver
2.0



Liver ca. HepG2
0.0



Kidney Pool
4.9



Fetal Kidney
100.0



Renal ca. 786-0
0.0



Renal ca. A498
0.2



Renal ca. ACHN
0.0



Renal ca. UO-31
0.4



Renal ca. TK-10
1.9



Bladder
13.2



Gastric ca. (liver met.) NCI-N87
1.1



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.9



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
2.4



Colon ca. CaCo-2
29.9



Colon cancer tissue
1.7



Colon ca. SW1116
0.4



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
6.1



Small Intestine Pool
1.8



Stomach Pool
1.9



Bone Marrow Pool
0.9



Fetal Heart
0.0



Heart Pool
1.4



Lymph Node Pool
1.9



Fetal Skeletal Muscle
0.5



Skeletal Muscle Pool
2.9



Spleen Pool
5.4



Thymus Pool
22.8



CNS cancer (glio/astro) U87-MG
7.7



CNS cancer (glio/astro)
13.7



U-118-MG



CNS cancer (neuro; met)
1.5



SK-N-AS



CNS cancer (astro) SF-539
0.4



CNS cancer (astro) SNB-75
2.7



CNS cancer (glio) SNB-19
20.2



CNS cancer (glio) SF-295
7.7



Brain (Amygdala) Pool
3.5



Brain (cerebellum)
3.2



Brain (fetal)
9.6



Brain (Hippocampus) Pool
2.2



Cerebral Cortex Pool
4.6



Brain (Substantia nigra) Pool
4.5



Brain (Thalamus) Pool
6.5



Brain (whole)
4.7



Spinal Cord Pool
1.0



Adrenal Gland
2.0



Pituitary gland Pool
0.6



Salivary Gland
2.4



Thyroid (female)
1.2



Pancreatic ca. CAPAN2
0.6



Pancreas Pool
2.2











[0863]

302





TABLE RC










Panel 4.1D











Rel. Exp. (%)




Ag5021, Run



Tissue Name
223740344














Secondary Th1 act
2.1



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
6.7



Secondary Th2 rest
0.0



Secondary Tr1 rest
2.7



Primary Th1 act
7.9



Primary Th2 act
0.0



Primary Tr1 act
0.0



Primary Th1 rest
0.0



Primary Th2 rest
0.0



Primary Tr1 rest
5.3



CD45RA CD4 lymphocyte act
4.7



CD45RO CD4 lymphocyte act
4.6



CD8 lymphocyte act
0.0



Secondary CD8 lymphocyte
2.4



rest



Secondary CD8 lymphocyte
1.4



act



CD4 lymphocyte none
0.0



2ry Thl/Th2/Trl_anti-CD95
0.0



CH11



LAK cells rest
4.8



LAK cells IL-2
0.0



LAK cells IL-2 + IL-12
0.0



LAK cells IL-2 + IFN gamma
4.7



LAK cells IL-2 + IL-18
2.6



LAK cells PMA/ionomycin
0.0



NK Cells IL-2 rest
10.6



Two Way MLR 3 day
2.5



Two Way MLR 5 day
2.1



Two Way MLR 7 day
5.4



PBMC rest
0.0



PBMC PWM
2.3



PBMC PHA-L
21.0



Ramos (B cell) none
0.0



Ramos (B cell) ionomycin
0.0



B lymphocytes PWM
5.7



B lymphocytes CD40L and
2.6



IL-4



EOL-1 dbcAMP
2.0



EOL-1 dbcAMP
6.1



PMA/ionomycin



Dendritic cells none
0.0



Dendritic cells LPS
1.7



Dendritic cells anti-CD40
2.7



Monocytes rest
0.0



Monocytes LPS
0.0



Macrophages rest
4.2



Macrophages LPS
0.0



HUVEC none
0.0



HUVEC starved
0.0



HUVEC IL-1beta
0.0



HUVEC IFN gamma
0.0



HUVEC TNF alpha + IFN gamma
0.0



HUVEC TNF alpha + IL4
0.0



HUVEC IL-11
0.0



Lung Microvascular EC none
2.1



Lung Microvascular EC TNFalpha +
1.4



IL-1beta



Microvascular Dermal EC none
0.0



Microsvasular Dermal EC
0.0



TNFalpha + IL-lbeta



Bronchial epithelium TNFalpha +
2.4



IL1beta



Small airway epithelium none
0.0



Small airway epithelium
0.0



TNFalpha + IL-lbeta



Coronery artery SMC rest
2.9



Coronery artery SMC TNFalpha +
7.5



IL-1beta



Astrocytes rest
2.3



Astrocytes TNFalpha + IL-lbeta
5.1



KU-812 (Basophil) rest
0.0



KU-812 (Basophil) PMA/ionomycin
1.2



CCD1106 (Keratinocytes) none
1.9



CCD1106 (Keratinocytes)
0.0



TNFalpha + IL-lbeta



Liver cirrhosis
6.6



NCI-H292 none
4.6



NCI-H292 IL-4
2.6



NCI-H292 IL-9
2.2



NCI-H292 IL-13
0.0



NCI-H292 IFN gamma
0.0



HPAEC none
0.0



HPAEC TNF alpha + IL-1 beta
0.0



Lung fibroblast none
4.5



Lung fibroblast TNF alpha + IL-1
0.0



beta



Lung fibroblast IL-4
2.2



Lung fibroblast IL-9
0.0



Lung fibroblast IL-13
0.0



Lung fibroblast IFN gamma
0.0



Dermal fibroblast CCD1070 rest
0.0



Dermal fibroblast CCD1070 TNF
3.9



alpha



Dermal fibroblast CCD1070 IL-1
0.0



beta



Dermal fibroblast IFN gamma
0.0



Dermal fibroblast IL-4
0.4



Dermal Fibroblasts rest
2.7



Neutrophils TNFa + LPS
0.0



Neutrophils rest
3.3



Colon
66.4



Lung
0.0



Thymus
50.7



Kidney
100.0











[0864] General_screening_panel_v1.5 Summary: Ag5021 highest expression of this gene, a Putative Urea Transporter, is seen in Fetal Kidney (CT=29.3). In addition, this gene appears to be overexpressed in fetal kidney when compared to expression in the adult counterpart. Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of diseases of this organ.


[0865] Panel 4.1D Summary: Ag5021 Highest expression of this gene is seen in the kidney (CT=31), consistent with Panel 1.5 and the characterization of this protein as a novel urea transporter. Moderate levels of expression are also seen in thymus and colon. Thus, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0866] S. CG140355-01: PEPTIDYLPROLYL ISOMERASE A-Like Gene


[0867] Expression of gene CG140355-01 was assessed using the primer-probe set Ag5022, described in Table SA.
303TABLE SAProbe Name Ag5022SEQStartIDPrimersSequencesLengthPositionNoForward5′-accccaccaagttcttcaat-3′2035284ProbeTET-5′-catctccatccagctgtt2669285tgcagaca-3′-TAMRAReverse5′-ttttctgctgtctttggaaact-22952863′


[0868] T. CG140696-01 and CG140696-02: AAA ATPase Superfamily-Like Gene


[0869] Expression of gene CG140696-01 and variant CG140696-02 was assessed using the primer-probe set Ag5037, described in Table TA. Results of the RTQ-PCR runs are shown in Tables TB and TC.
304TABLE TAProbe Name Ag5037SEQStartIDPrimersSequencesLengthPositionNoForward5′-ttgaacaccttcgaccataatc-226362873′ProbeTET-5′-ccctcagaacgactgctg26663288aaacctct-3′-TAMRAReverse5′-attctcgcatctcactgttcat-227052893′


[0870]

305





TABLE TB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5037, Run



Tissue Name
228967211














Adipose
9.4



Melanoma* Hs688(A).T
7.4



Melanoma* Hs688(B).T
7.4



Melanoma* M14
3.3



Melanoma* LOXIMVI
1.8



Melanoma* SK-MEL-5
35.6



Squamous cell carcinoma
9.2



SCC-4



Testis Pool
48.0



Prostate ca.* (bone met) PC-3
44.8



Prostate Pool
8.9



Placenta
0.5



Uterus Pool
3.4



Ovarian ca. OVCAR-3
51.8



Ovarian ca. SK-OV-3
3.7



Ovarian ca. OVCAR-4
11.7



Ovarian ca. OVCAR-5
44.4



Ovarian ca. IGROV-1
3.8



Ovarian ca. OVCAR-8
1.4



Ovary
7.5



Breast ca. MCF-7
11.0



Breast ca. MDA-MB-231
1.6



Breast ca. BT 549
58.2



Breast ca. T47D
48.6



Breast ca. MDA-N
3.4



Breast Pool
11.4



Trachea
14.3



Lung
1.8



Fetal Lung
22.8



Lung ca. NCI-N417
6.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
1.6



Lung ca. SHP-77
95.3



Lung ca. A549
10.7



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
50.0



Lung ca. NCI-H460
12.2



Lung ca. HOP-62
1.9



Lung ca. NCI-H522
87.7



Liver
0.2



Fetal Liver
12.1



Liver ca. HepG2
0.0



Kidney Pool
13.0



Fetal Kidney
44.8



Renal ca. 786-0
29.9



Renal ca. A498
6.8



Renal ca. ACHN
13.3



Renal ca. UO-31
10.5



Renal ca. TK-10
44.8



Bladder
4.9



Gastric ca. (liver met.) NCI-N87
15.8



Gastric ca. KATO III
32.5



Colon ca. SW-948
0.9



Colon ca. SW480
10.2



Colon ca.* (SW480 met) SW620
3.8



Colon ca. HT29
0.2



Colon ca. HCT-116
7.0



Colon ca. CaCo-2
1.0



Colon cancer tissue
3.8



Colon ca. SW1116
3.0



Colon ca. Colo-205
0.7



Colon ca. SW-48
0.0



Colon Pool
12.3



Small Intestine Pool
9.7



Stomach Pool
6.6



Bone Marrow Pool
4.3



Fetal Heart
3.5



Heart Pool
4.6



Lymph Node Pool
3.9



Fetal Skeletal Muscle
10.9



Skeletal Muscle Pool
3.1



Spleen Pool
4.6



Thymus Pool
11.3



CNS cancer (glio/astro) U87-MG
15.8



CNS cancer (glio/astro)
83.5



U-118-MG



CNS cancer (neuro; met)
100.0



SK-N-AS



CNS cancer (astro) SF-539
11.7



CNS cancer (astro) SNB-75
46.3



CNS cancer (glio) SNB-19
2.8



CNS cancer (glio) SF-295
20.9



Brain (Amygdala) Pool
21.3



Brain (cerebellum)
54.7



Brain (fetal)
16.2



Brain (Hippocampus) Pool
24.5



Cerebral Cortex Pool
27.7



Brain (Substantia nigra) Pool
24.5



Brain (Thalamus) Pool
31.0



Brain (whole)
17.3



Spinal Cord Pool
29.5



Adrenal Gland
9.2



Pituitary gland Pool
5.2



Salivary Gland
2.2



Thyroid (female)
27.5



Pancreatic ca. CAPAN2
30.1



Pancreas Pool
11.1











[0871]

306





TABLE TC










Panel 4.1D











Rel. Exp. (%)




Ag5037, Run



Tissue Name
223737388














Secondary Th1 act
2.0



Secondary Th2 act
0.0



Secondary Tr1 act
0.0



Secondary Th1 rest
0.6



Secondary Th2 rest
3.6



Secondary Tr1 rest
0.0



Primary Th1 act
0.0



Primary Th2 act
2.1



Primary Tr1 act
2.6



Primary Th1 rest
4.1



Primary Th2 rest
3.0



Primary Tr1 rest
0.0



CD45RA CD4 lymphocyte act
2.8



CD45RO CD4 lymphocyte act
0.0



CD8 lymphocyte act
2.1



Secondary CD8 lymphocyte
2.0



rest



Secondary CD8 lymphocyte
0.0



act



CD4 lymphocyte none
1.8



2ry Thl/Th2/Trl_anti-CD95
0.0



CH11



LAK cells rest
9.2



LAK cells IL-2
2.6



LAK cells IL-2 + IL-12
3.8



LAK cells IL-2 + IFN gamma
1.9



LAK cells IL-2 + IL-18
2.1



LAK cells PMA/ionomycin
2.0



NK Cells IL-2 rest
1.1



Two Way MLR 3 day
3.6



Two Way MLR 5 day
5.2



Two Way MLR 7 day
1.9



PBMC rest
0.0



PBMC PWM
1.1



PBMC PHA-L
7.0



Ramos (B cell) none
71.2



Ramos (B cell) ionomycin
100.0



B lymphocytes PWM
2.6



B lymphocytes CD40L and
5.6



IL-4



EOL-1 dbcAMP
2.0



EOL-1 dbcAMP
0.0



PMA/ionomycin



Dendritic cells none
7.4



Dendritic cells LPS
2.4



Dendritic cells anti-CD40
5.6



Monocytes rest
0.5



Monocytes LPS
0.0



Macrophages rest
6.8



Macrophages LPS
1.7



HUVEC none
3.2



HUVEC starved
5.0



HUVEC IL-1beta
7.9



HUVEC IFN gamma
4.7



HUVEC TNF alpha + IFN gamma
1.0



HUVEC TNF alpha + IL4
2.1



HUVEC IL-11
2.1



Lung Microvascular EC none
21.6



Lung Microvascular EC TNFalpha +
4.2



IL-1beta



Microvascular Dermal EC none
1.5



Microsvasular Dermal EC TNFalpha +
0.0



IL-lbeta



Bronchial epithelium TNFalpha +
1.1



IL1beta



Small airway epithelium none
5.3



Small airway epithelium TNFalpha +
3.2



IL-lbeta



(Coronery artery SMC rest
4.3



Coronery artery SMC TNFalpha +
5.4



IL-1beta



Astrocytes rest
5.6



Astrocytes TNFalpha + IL-1beta
3.6



KU-812 (Basophil) rest
3.2



KU-812 (Basophil) PMA/ionomycin
1.2



CCD1106 (Keratinocytes) none
5.4



CCD1106 (Keratinocytes) TNFalpha +
2.7



IL-lbeta



Liver cirrhosis
6.9



NCI-H292 none
39.0



NCI-H292 IL-4
29.3



NCI-H292 IL-9
60.7



NCI-H292 IL-13
36.6



NCI-H292 IFN gamma
28.1



HPAEC none
2.1



HPAEC TNF alpha + IL-1 beta
3.1



Lung fibroblast none
8.8



Lung fibroblast TNF alpha + IL-1
3.7



beta



Lung fibroblast IL-4
0.0



Lung fibroblast IL-9
2.2



Lung fibroblast IL-13
8.4



Lung fibroblast IFN gamma
1.1



Dermal fibroblast CCD1070 rest
2.4



Dermal fibroblast CCD1070 TNF
3.6



alpha



Dermal fibroblast CCD1070 IL-1
3.6



beta



Dermal fibroblast IFN gamma
13.1



Dermal fibroblast IL-4
16.7



Dermal Fibroblasts rest
18.2



Neutrophils TNFa + LPS
0.0



Neutrophils rest
0.0



Colon
0.9



Lung
5.9



Thymus
6.6



Kidney
54.3











[0872] General_screening_panel_v1.5 Summary: Ag5037 Highest expression of this gene is seen in a brain cancer cell line (CT=29.4). This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0873] Among tissues with metabolic function, this gene is expressed at low but significant levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal heart and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0874] In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=31.5) when compared to expression in the adult counterpart (CT=35.2). Thus, expression of this gene may be used to differentiate between the fetal and adult source of these tissue.


[0875] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0876] Panel 4.1D Summary: Ag5037 Highest expression is seen in a sample derived from ionomycin treated Ramos B cells (CT=30). This gene is widely expressed in this panel with prominent expression also seen in untreated Ramos cells and in a cluster of treated and untreated samples derived from the NCI—H292 cell line.


[0877] U. CG140747-01: Dual Specificity Phosphatase-Like Gene


[0878] Expression of gene CG140747-01 was assessed using the primer-probe set Ag5038, described in Table UA. Results of the RTQ-PCR runs are shown in Tables UB and UC.
307TABLE UAProbe Name Ag5038SEQStartIDPrimersSequencesLengthPositionNoForward5′-cctggacatatggagcaagat-2116722903′ProbeTET-5′-actcctgcacagcccagc261697291ctgaacta-3′-TAMRAReverse5′-gttgcacatccctgagtcttt-2117262923′


[0879]

308





TABLE UB










General_screening_panel_v1.5











Rel. Exp (%)




Ag5038, Run



Tissue Name
228966907














Adipose
22.2



Melanoma* Hs688(A).T
11.4



Melanoma* Hs688(B).T
10.9



Melanoma* M14
40.6



Melanoma* LOXIMVI
20.2



Melanoma* SK-MEL-5
32.3



Squamous cell carcinoma SCC-4
5.0



Testis Pool
18.3



Prostate ca.* (bone met) PC-3
11.2



Prostate Pool
9.9



Placenta
10.7



Uterus Pool
12.7



Ovarian ca. OVCAR-3
30.8



Ovarian ca. SK-OV-3
54.3



Ovarian ca. OVCAR-4
12.7



Ovarian ca. OVCAR-5
20.3



Ovarian ca. IGROV-1
15.3



Ovarian ca. OVCAR-8
6.7



Ovary
7.9



Breast ca. MCF-7
8.1



Breast ca. MDA-MB-231
28.1



Breast ca. BT 549
31.4



Breast ca. T47D
15.8



Breast ca. MDA-N
8.7



Breast Pool
4.6



Trachea
14.7



Lung
2.4



Fetal Lung
83.5



Lung ca. NCI-N417
2.8



Lung ca. LX-1
24.0



Lung ca. NCI-H146
9.6



Lung ca. SHP-77
13.3



Lung ca. A549
17.4



Lung ca. NCI-H526
11.7



Lung ca. NCI-H23
22.5



Lung ca. NCI-H460
7.3



Lung ca. HOP-62
12.0



Lung ca. NCI-H522
16.8



Liver
1.7



Fetal Liver
12.9



Liver ca. HepG2
8.1



Kidney Pool
17.9



Fetal Kidney
20.4



Renal ca. 786-0
28.7



Renal ca. A498
24.7



Renal ca. ACHN
33.9



Renal ca. UO-31
20.7



Renal ca. TK-10
37.6



Bladder
21.9



Gastric ca. (liver met.) NCI-N87
32.1



Gastric ca. KATO III
29.9



Colon ca. SW-948
4.3



Colon ca. SW480
31.0



Colon ca.* (SW480 met) SW620
21.8



Colon ca. HT29
7.1



Colon ca. HCT-116
23.5



Colon ca. CaCo-2
36.3



Colon cancer tissue
9.7



Colon ca. SW1116
3.7



Colon ca. Colo-205
7.1



Colon ca. SW-48
5.9



Colon Pool
13.9



Small Intestine Pool
10.3



Stomach Pool
6.5



Bone Marrow Pool
7.3



Fetal Heart
39.8



Heart Pool
11.3



Lymph Node Pool
11.5



Fetal Skeletal Muscle
40.3



Skeletal Muscle Pool
100.0



Spleen Pool
33.9



Thymus Pool
42.0



CNS cancer (glio/astro) U87-MG
15.6



CNS cancer (glio/astro) U-118-MG
32.5



CNS cancer (neuro; met) SK-N-AS
64.6



CNS cancer (astro) SF-539
16.6



CNS cancer (astro) SNB-75
34.2



CNS cancer (glio) SNB-19
16.8



CNS cancer (glio) SF-295
49.3



Brain (Amygdala) Pool
12.4



Brain (cerebellum)
46.0



Brain (fetal)
41.2



Brain (Hippocampus) Pool
16.6



Cerebral Cortex Pool
23.3



Brain (Substantia nigra) Pool
14.7



Brain (Thalamus) Pool
22.5



Brain (whole)
19.2



Spinal Cord Pool
15.8



Adrenal Gland
14.8



Pituitary gland Pool
5.0



Salivary Gland
5.9



Thyroid (female)
5.4



Pancreatic ca. CAPAN2
12.0



Pancreas Pool
16.7











[0880]

309





TABLE UC










Panel 4.1D









Rel. Exp. (%)



Ag5038, Run


Tissue Name
223742477











Secondary Th1 act
5.8


Secondary Th2 act
5.4


Secondary Tr1 act
5.7


Secondary Th1 rest
3.4


Secondary Th2 rest
5.6


Secondary Tr1 rest
3.1


Primary Th1 act
3.2


Primary Th2 act
5.7


Primary Tr1 act
4.4


Primary Th1 rest
3.8


Primary Th2 rest
2.3


Primary Tr1 rest
11.6


CD45RA CD4 lymphocyte act
4.5


CD45RO CD4 lymphocyte act
7.5


CD8 lymphocyte act
4.5


Secondary CD8 lymphocyte rest
6.2


Secondary CD8 lymphocyte act
2.5


CD4 lymphocyte none
6.6


2ry Th1/Th2/Tr1_anti-CD95 CH11
5.4


LAK cells rest
5.8


LAK cells IL-2
7.1


LAK cells IL-2 + IL-12
3.6


LAK cells IL-2 + IFN gamma
4.7


LAK cells IL-2 + IL-18
5.6


LAK cells PMA/ionomycin
1.6


NK Cells IL-2 rest
11.6


Two Way MLR 3 day
8.2


Two Way MLR 5 day
4.6


Two Way MLR 7 day
4.2


PBMC rest
5.7


PBMC PWM
3.5


PBMC PHA-L
5.1


Ramos (B cell) none
4.8


Ramos (B cell) ionomycin
7.7


B lymphocytes PWM
5.3


B lymphocytes CD40L and IL-4
10.4


EOL-1 dbcAMP
10.2


EOL-1 dbcAMP PMA/ionomycin
2.9


Dendritic cells none
3.5


Dendritic cells LPS
3.4


Dendritic cells anti-CD40
4.0


Monocytes rest
26.2


Monocytes LPS
8.2


Macrophages rest
5.6


Macrophages LPS
1.3


HUVEC none
3.7


HUVEC starved
7.2


HUVEC IL-1beta
11.0


HUVEC IFN gamma
5.9


HUVEC TNF alpha + IFN gamma
3.5


HUVEC TNF alpha + IL4
5.1


HUVEC IL-11
5.8


Lung Microvascular EC none
7.7


Lung Microvascular EC TNFalpha + IL-1beta
5.2


Microvascular Dermal EC none
4.4


Microsvasular Dermal EC TNFalpha + IL-1beta
5.3


Bronchial epithelium TNFalpha + IL1beta
3.1


Small airway epithelium none
1.6


Small airway epithelium TNFalpha + IL-1beta
4.2


Coronery artery SMC rest
2.9


Coronery artery SMC TNFalpha + IL-1beta
3.2


Astrocytes rest
1.4


Astrocytes TNFalpha + IL-1beta
1.1


KU-812 (Basophil) rest
1.1


KU-812 (Basophil) PMA/ionomycin
1.0


CCD1106 (Keratinocytes) none
3.8


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
2.6


Liver cirrhosis
2.3


NCI-H292 none
2.7


NCI-H292 IL-4
4.1


NCI-H292 IL-9
5.0


NCI-H292 IL-13
5.0


NCI-H292 IFN gamma
2.7


HPAEC none
4.8


HPAEC TNF alpha + IL-1 beta
19.9


Lung fibroblast none
6.1


Lung fibroblast TNF alpha + IL-1 beta
6.7


Lung fibroblast IL-4
1.4


Lung fibroblast IL-9
2.7


Lung fibroblast IL-13
1.6


Lung fibroblast IFN gamma
2.0


Dermal fibroblast CCD1070 rest
2.4


Dermal fibroblast CCD1070 TNF alpha
8.1


Dermal fibroblast CCD1070 IL-1 beta
1.4


Dermal fibroblast IFN gamma
1.8


Dermal fibroblast IL-4
6.0


Dermal Fibroblasts rest
2.4


Neutrophils TNFa + LPS
13.5


Neutrophils rest
100.0


Colon
0.9


Lung
3.1


Thymus
14.1


Kidney
4.4










[0881] General_screening_panel_v1.5 Summary: Ag5038 Highest expression is seen in skeletal muscle (CT=26). In addition, moderate levels of expression are seen in pancreas, thyroid, adrenal, pituitary, adipose, fetal skeletal muscle and adult and fetal liver and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0882] In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=26.3) when compared to expression in the adult counterpart (CT=31.4). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0883] High to moderate levels of expression of this gene are also seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0884] This gene is also expressed at low but significant levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0885] Panel 4.1D Summary: Ag5038 Widespread expression of this gene is seen in this panel with highest expression of this gene seen in resting neutrophils (CT=25). This expression is reduced in neutrophils activated by TNF-alpha+LPS. This expression profile suggests that the protein encoded by this gene is produced by resting neutrophils but not by activated neutrophils. Therefore, the gene product may reduce activation of these inflammatory cells and be useful as a protein therapeutic to reduce or eliminate the symptoms in patients with Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis. In addition, small molecule or antibody antagonistsof this gene product may be effective in increasing the immune response in patients with AIDS or other immunodeficiencies.


[0886] V. CG141137-01: Long-Chain Acyl-coA Thioesterase 2-Like Gene


[0887] Expression of gene CG141137-01 was assessed using the primer-probe set Ag5044, described in Table VA. Results of the RTQ-PCR runs are shown in Tables VB, VC and VD.
310TABLE VAProbe Name Ag5044StartSEQPrimersSequencesLengthPositionID NoForward5′-cattctaaggcccaggtagatg-2211532933′ProbeTET-5′-caaacacctgggaggtac261203294ccagaaaa-3′-TAMRAReverse5′-cgcattacaatttagggaaagc-2212312953′


[0888]

311





TABLE VB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag5044, Run



Tissue Name
224757508














AD 1 Hippo
17.9



AD 2 Hippo
21.2



AD 3 Hippo
10.3



AD 4 Hippo
3.2



AD 5 hippo
95.9



AD 6 Hippo
38.2



Control 2 Hippo
14.1



Control 4 Hippo
4.8



Control (Path) 3 Hippo
0.0



AD 1 Temporal Ctx
7.7



AD 2 Temporal Ctx
34.2



AD 3 Temporal Ctx
5.1



AD 4 Temporal Ctx
14.4



AD 5 Inf Temporal Ctx
100.0



AD 5 SupTemporal Ctx
38.4



AD 6 Inf Temporal Ctx
55.9



AD 6 Sup Temporal Ctx
77.4



Control 1 Temporal Ctx
3.9



Control 2 Temporal Ctx
30.8



Control 3 Temporal Ctx
18.7



Control 4 Temporal Ctx
10.4



Control (Path) 1 Temporal Ctx
75.3



Control (Path) 2 Temporal Ctx
21.9



Control (Path) 3 Temporal Ctx
4.2



Control (Path) 4 Temporal Ctx
32.3



AD 1 Occipital Ctx
18.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
3.3



AD 4 Occipital Ctx
10.0



AD 5 Occipital Ctx
18.8



AD 6 Occipital Ctx
44.1



Control 1 Occipital Ctx
4.2



Control 2 Occipital Ctx
68.8



Control 3 Occipital Ctx
24.3



Control 4 Occipital Ctx
5.1



Control (Path) 1 Occipital Ctx
72.2



Control (Path) 2 Occipital Ctx
19.3



Control (Path) 3 Occipital Ctx
0.0



Control (Path) 4 Occipital Ctx
16.7



Control 1 Parietal Ctx
5.9



Control 2 Parietal Ctx
35.1



Control 3 Parietal Ctx
31.0



Control (Path) 1 Parietal Ctx
88.3



Control (Path) 2 Parietal Ctx
23.7



Control (Path) 3 Parietal Ctx
4.5



Control (Path) 4 Parietal Ctx
38.7











[0889]

312





TABLE VC










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5044, Run



Tissue Name
228969278














Adipose
0.0



Melanoma* Hs688(A).T
2.4



Melanoma* Hs688(B).T
1.7



Melanoma* M14
0.3



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.2



Squamous cell carcinoma SCC-4
0.7



Testis Pool
1.4



Prostate ca.* (bone met) PC-3
1.5



Prostate Pool
0.8



Placenta
1.8



Uterus Pool
0.3



Ovarian ca. OVCAR-3
6.2



Ovarian ca. SK-OV-3
6.5



Ovarian ca. OVCAR-4
1.0



Ovarian ca. OVCAR-5
23.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
100.0



Ovary
1.7



Breast ca. MCF-7
24.5



Breast ca. MDA-MB-231
3.5



Breast ca. BT 549
2.6



Breast ca. T47D
10.4



Breast ca. MDA-N
0.0



Breast Pool
1.7



Trachea
1.2



Lung
0.4



Fetal Lung
1.7



Lung ca. NCI-N417
0.2



Lung ca. LX-1
4.1



Lung ca. NCI-H146
0.8



Lung ca. SHP-77
0.4



Lung ca. A549
1.5



Lung ca. NCI-H526
1.2



Lung ca. NCI-H23
1.5



Lung ca. NCI-H460
2.4



Lung ca. HOP-62
0.8



Lung ca. NCI-H522
3.6



Liver
0.7



Fetal Liver
1.6



Liver ca. HepG2
0.0



Kidney Pool
4.2



Fetal Kidney
1.7



Renal ca. 786-0
0.0



Renal ca. A498
0.7



Renal ca. ACHN
1.1



Renal ca. UO-31
0.7



Renal ca. TK-10
1.1



Bladder
1.2



Gastric ca. (liver met.) NCI-N87
5.6



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
12.1



Colon ca.* (SW480 met) SW620
3.9



Colon ca. HT29
1.5



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
1.8



Colon cancer tissue
0.8



Colon ca. SW1116
0.0



Colon ca. Colo-205
3.6



Colon ca. SW-48
2.1



Colon Pool
1.6



Small Intestine Pool
0.6



Stomach Pool
0.3



Bone Marrow Pool
0.3



Fetal Heart
0.9



Heart Pool
0.9



Lymph Node Pool
1.1



Fetal Skeletal Muscle
0.7



Skeletal Muscle Pool
1.9



Spleen Pool
0.2



Thymus Pool
0.9



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.7



CNS cancer (neuro; met) SK-N-AS
1.3



CNS cancer (astro) SF-539
0.5



CNS cancer (astro) SNB-75
3.1



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
5.0



Brain (cerebellum)
26.2



Brain (fetal)
5.9



Brain (Hippocampus) Pool
5.3



Cerebral Cortex Pool
6.8



Brain (Substantia nigra) Pool
4.0



Brain (Thalamus) Pool
7.3



Brain (whole)
6.1



Spinal Cord Pool
1.7



Adrenal Gland
1.3



Pituitary gland Pool
0.4



Salivary Gland
0.3



Thyroid (female)
1.2



Pancreatic ca. CAPAN2
12.0



Pancreas Pool
1.8











[0890]

313





TABLE VD










Panel 4.1D









Rel. Exp. (%)



Ag5044, Run


Tissue Name
223785177











Secondary Th1 act
0.5


Secondary Th2 act
0.7


Secondary Tr1 act
1.0


Secondary Th1 rest
0.3


Secondary Th2 rest
0.0


Secondary Tr1 rest
0.0


Primary Th1 act
0.0


Primary Th2 act
0.4


Primary Tr1 act
2.0


Primary Th1 rest
0.0


Primary Th2 rest
0.0


Primary Tr1 rest
0.7


CD45RA CD4 lymphocyte act
1.2


CD45RO CD4 lymphocyte act
1.8


CD8 lymphocyte act
2.3


Secondary CD8 lymphocyte rest
2.0


Secondary CD8 lymphocyte act
1.6


CD4 lymphocyte none
0.3


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.2


LAK cells rest
0.9


LAK cells IL-2
1.5


LAK cells IL-2 + IL-12
1.0


LAK cells IL-2 + IFN gamma
1.2


LAK cells IL-2 + IL-18
1.1


LAK cells PMA/ionomycin
1.1


NK Cells IL-2 rest
2.1


Two Way MLR 3 day
2.3


Two Way MLR 5 day
1.4


Two Way MLR 7 day
1.7


PBMC rest
0.5


PBMC PWM
0.5


PBMC PHA-L
0.8


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
0.0


B lymphocytes PWM
1.5


B lymphocytes CD40L and IL-4
0.4


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
2.1


Dendritic cells LPS
0.5


Dendritic cells anti-CD40
1.5


Monocytes rest
0.0


Monocytes LPS
0.2


Macrophages rest
5.0


Macrophages LPS
0.6


HUVEC none
0.0


HUVEC starved
0.3


HUVEC IL-1beta
0.2


HUVEC IFN gamma
1.2


HUVEC TNF alpha + IFN gamma
0.3


HUVEC TNF alpha + IL4
0.5


HUVEC IL-11
0.5


Lung Microvascular EC none
0.7


Lung Microvascular EC TNFalpha + IL-1beta
2.1


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
1.0


Bronchial epithelium TNFalpha + IL1beta
0.0


Small airway epithelium none
0.0


Small airway epithelium TNFalpha + IL-1beta
0.0


Coronery artery SMC rest
0.0


Coronery artery SMC TNFalpha + IL-1beta
0.2


Astrocytes rest
0.6


Astrocytes TNFalpha + IL-1beta
0.8


KU-812 (Basophil) rest
0.2


KU-812 (Basophil) PMA/ionomycin
1.3


CCD1106 (Keratinocytes) none
1.9


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
1.0


Liver cirrhosis
0.2


NCI-H292 none
4.4


NCI-H292 IL-4
5.1


NCI-H292 IL-9
6.4


NCI-H292 IL-13
3.3


NCI-H292 IFN gamma
3.2


HPAEC none
0.4


HPAEC TNF alpha + IL-1 beta
0.0


Lung fibroblast none
0.2


Lung fibroblast TNF alpha + IL-1 beta
0.8


Lung fibroblast IL-4
1.7


Lung fibroblast IL-9
0.4


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
0.7


Dermal fibroblast CCD1070 rest
0.7


Dermal fibroblast CCD1070 TNF alpha
4.0


Dermal fibroblast CCD1070 IL-1 beta
1.1


Dermal fibroblast IFN gamma
3.3


Dermal fibroblast IL-4
0.2


Dermal Fibroblasts rest
2.0


Neutrophils TNFa + LPS
0.3


Neutrophils rest
2.9


Colon
7.3


Lung
8.2


Thymus
25.7


Kidney
100.0










[0891] CNS_neurodegeneration_v1.0 Summary: Ag5044 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at moderate levels in the brain. Please see Panel 1.5 for discussion of utility of this gene in the central nervous system.


[0892] General_screening_panel_v1.5 Summary: Ag5044 Highest expression of this gene is seen in an ovarian cancer cell line (CT=30). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of ovarian cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of ovarian cancer.


[0893] This gene is also expressed at low but significant levels in all regions of the CNS examined, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0894] Panel 4.1D Summary: Ag5044 Highest expression of this gene is seen in kidney (CT=30.5). Thus, expression of this gene could be used to differentiate the kidney-derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0895] W. CG141240-01: ATP Synthase F Chain, Mitochondrial-Like Gene


[0896] Expression of gene CG141240-01 was assessed using the primer-probe set Ag5045, described in Table WA. Results of the RTQ-PCR runs are shown in Tables WB and WC.
314TABLE WAProbe Name Ag5045StartSEQPrimersSequencesLengthPositionID NoForward5′-gcagggtacatgctcttcatc-212532963′ProbeTET-5′-cctttcctacaaggagct26279297caagcacg-3′-TAMRAReverse5′-gagtgcagagcatgtcttcttc-223262983′


[0897]

315





TABLE WB










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5045, Run



Tissue Name
228969281














Adipose
24.3



Melanoma* Hs688(A).T
1.2



Melanoma* Hs688(B).T
1.9



Melanoma* M14
7.9



Melanoma* LOXIMVI
16.3



Melanoma* SK-MEL-5
33.0



Squamous cell carcinoma SCC-4
6.9



Testis Pool
12.4



Prostate ca.* (bone met) PC-3
40.9



Prostate Pool
10.2



Placenta
0.9



Uterus Pool
5.8



Ovarian ca. OVCAR-3
80.1



Ovarian ca. SK-OV-3
21.8



Ovarian ca. OVCAR-4
1.6



Ovarian ca. OVCAR-5
61.6



Ovarian ca. IGROV-1
11.7



Ovarian ca. OVCAR-8
15.8



Ovary
4.7



Breast ca. MCF-7
59.9



Breast ca. MDA-MB-231
45.4



Breast ca. BT 549
28.3



Breast ca. T47D
5.0



Breast ca. MDA-N
7.1



Breast Pool
13.2



Trachea
10.9



Lung
5.6



Fetal Lung
17.6



Lung ca. NCI-N417
4.0



Lung ca. LX-1
39.2



Lung ca. NCI-H146
5.7



Lung ca. SHP-77
21.5



Lung ca. A549
27.9



Lung ca. NCI-H526
4.1



Lung ca. NCI-H23
32.1



Lung ca. NCI-H460
30.6



Lung ca. HOP-62
24.8



Lung ca. NCI-H522
54.3



Liver
0.0



Fetal Liver
15.9



Liver ca. HepG2
10.5



Kidney Pool
32.3



Fetal Kidney
100.0



Renal ca. 786-0
16.7



Renal ca. A498
4.6



Renal ca. ACHN
18.9



Renal ca. UO-31
9.0



Renal ca. TK-10
23.2



Bladder
24.0



Gastric ca. (liver met.) NCI-N87
30.8



Gastric ca. KATO III
22.8



Colon ca. SW-948
5.6



Colon ca. SW480
21.6



Colon ca.* (SW480 met) SW620
42.3



Colon ca. HT29
9.3



Colon ca. HCT-116
75.3



Colon ca. CaCo-2
28.7



Colon cancer tissue
13.0



Colon ca. SW1116
8.1



Colon ca. Colo-205
5.9



Colon ca. SW-48
4.8



Colon Pool
12.6



Small Intestine Pool
16.8



Stomach Pool
14.2



Bone Marrow Pool
21.0



Fetal Heart
12.9



Heart Pool
5.9



Lymph Node Pool
25.0



Fetal Skeletal Muscle
7.2



Skeletal Muscle Pool
7.2



Spleen Pool
12.9



Thymus Pool
28.5



CNS cancer (glio/astro) U87-MG
33.0



CNS cancer (glio/astro) U-118-MG
29.1



CNS cancer (neuro; met) SK-N-AS
57.0



CNS cancer (astro) SF-539
8.0



CNS cancer (astro) SNB-75
31.0



CNS cancer (glio) SNB-19
15.2



CNS cancer (glio) SF-295
93.3



Brain (Amygdala) Pool
2.6



Brain (cerebellum)
7.9



Brain (fetal)
14.6



Brain (Hippocampus) Pool
2.2



Cerebral Cortex Pool
6.9



Brain (Substantia nigra) Pool
3.3



Brain (Thalamus) Pool
8.0



Brain (whole)
1.3



Spinal Cord Pool
6.7



Adrenal Gland
0.0



Pituitary gland Pool
1.5



Salivary Gland
1.4



Thyroid (female)
2.3



Pancreatic ca. CAPAN2
25.2



Pancreas Pool
28.7











[0898]

316





TABLE WC










Panel 4.1D









Rel. Exp. (%)



Ag5045, Run


Tissue Name
223784809











Secondary Th1 act
11.2


Secondary Th2 act
11.8


Secondary Tr1 act
15.6


Secondary Th1 rest
9.7


Secondary Th2 rest
8.5


Secondary Tr1 rest
12.2


Primary Th1 act
8.1


Primary Th2 act
12.9


Primary Tr1 act
13.0


Primary Th1 rest
8.5


Primary Th2 rest
9.2


Primary Tr1 rest
5.8


CD45RA CD4 lymphocyte act
11.1


CD45RO CD4 lymphocyte act
12.7


CD8 lymphocyte act
18.7


Secondary CD8 lymphocyte rest
6.4


Secondary CD8 lymphocyte act
11.3


CD4 lymphocyte none
4.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
15.8


LAK cells rest
12.0


LAK cells IL-2
8.4


LAK cells IL-2 + IL-12
5.8


LAK cells IL-2 + IFN gamma
10.7


LAK cells IL-2 + IL-18
21.6


LAK cells PMA/ionomycin
9.2


NK Cells IL-2 rest
22.5


Two Way MLR 3 day
18.6


Two Way MLR 5 day
12.0


Two Way MLR 7 day
7.6


PBMC rest
2.3


PBMC PWM
12.6


PBMC PHA-L
11.7


Ramos (B cell) none
26.4


Ramos (B cell) ionomycin
26.6


B lymphocytes PWM
13.5


B lymphocytes CD40L and IL-4
32.5


EOL-1 dbcAMP
23.7


EOL-1 dbcAMP PMA/ionomycin
20.0


Dendritic cells none
1.6


Dendritic cells LPS
9.1


Dendritic cells anti-CD40
8.5


Monocytes rest
17.2


Monocytes LPS
27.5


Macrophages rest
6.0


Macrophages LPS
2.8


HUVEC none
3.2


HUVEC starved
4.8


HUVEC IL-1beta
2.5


HUVEC IFN gamma
12.3


HUVEC TNF alpha + IFN gamma
6.0


HUVEC TNF alpha + IL4
2.6


HUVEC IL-11
3.3


Lung Microvascular EC none
12.7


Lung Microvascular EC TNFalpha + IL-1beta
5.9


Microvascular Dermal EC none
3.6


Microsvasular Dermal EC TNFalpha + IL-1beta
4.6


Bronchial epithelium TNFalpha + IL1beta
8.7


Small airway epithelium none
1.0


Small airway epithelium TNFalpha + IL-1beta
1.9


Coronery artery SMC rest
5.4


Coronery artery SMC TNFalpha + IL-1beta
4.7


Astrocytes rest
5.5


Astrocytes TNFalpha + IL-1beta
4.5


KU-812 (Basophil) rest
17.6


KU-812 (Basophil) PMA/ionomycin
19.6


CCD1106 (Keratinocytes) none
5.4


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
2.1


Liver cirrhosis
0.6


NCI-H292 none
7.9


NCI-H292 IL-4
14.0


NCI-H292 IL-9
12.5


NCI-H292 IL-13
12.2


NCI-H292 IFN gamma
6.2


HPAEC none
7.3


HPAEC TNF alpha + IL-1 beta
7.4


Lung fibroblast none
5.4


Lung fibroblast TNF alpha + IL-1 beta
2.2


Lung fibroblast IL-4
5.3


Lung fibroblast IL-9
6.0


Lung fibroblast IL-13
3.9


Lung fibroblast IFN gamma
1.4


Dermal fibroblast CCD1070 rest
8.9


Dermal fibroblast CCD1070 TNF alpha
12.9


Dermal fibroblast CCD1070 IL-1 beta
4.0


Dermal fibroblast IFN gamma
7.2


Dermal fibroblast IL-4
6.2


Dermal Fibroblasts rest
3.0


Neutrophils TNFa + LPS
2.5


Neutrophils rest
10.4


Colon
3.1


Lung
5.3


Thymus
30.4


Kidney
100.0










[0899] General_screening_panel_v1.5 Summary: Ag5045 This gene is widely expressed in this panel, with highest expression in kidney (CT=29.4). This gene is widely expressed in this panel, with moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0900] Among tissues with metabolic function, this gene is expressed at moderate to low levels in adipose, pancreas, thyroid, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0901] This gene is also expressed at low but significant levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0902] Panel 4.1D Summary: Ag5045 Highest expression of this gene is seen in the kidney (CT=30.1). This gene is widely expressed at low but significant levels in many samples on this panel, including samples derived from B cells, T cells and lung and dermal fibroblasts. Thus, expression of this gene could be used to differentiate the kidney-derived sample from other samples on this panel and as a marker of kidney tissue. In addition, therapeutic targeting of the expression or function of this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.


[0903] X. CG141355-01 and CG141355-02: GTPASE RAB37-Like Gene


[0904] Expression of gene CG141355-01 and full-length physical clone CG141355-02 was assessed using the primer-probe set Ag5048, described in Table XA. Results of the RTQ-PCR runs are shown in Tables XB, XC and XD. Please note that CG141355-02 represents a full-length physical clone of the CG141355-01 gene, validating the prediction of the gene sequence.
317TABLE XAProbe Name Ag5048StartSEQPrimersSequencesLengthPositionID NoForward5′-atcgccaaggaactgaaatac-216192993′ProbeTET-5′-agcccagcttccagatc24662300cgagact-3′-TAMRAReverse5′-cgcttcttctgggactctaca22686301t-3′


[0905]

318





TABLE XB










General_screening panel_v1.5











Rel. Exp. (%)




Ag5048, Run



Tissue Name
228969347














Adipose
3.5



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
1.5



Squamous cell carcinoma SCC-4
0.4



Testis Pool
0.6



Prostate ca.* (bone met) PC-3
2.7



Prostate Pool
4.6



Placenta
3.1



Uterus Pool
2.0



Ovarian ca. OVCAR-3
0.8



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
52.9



Ovarian ca. IGROV-1
0.9



Ovarian ca. OVCAR-8
0.6



Ovary
2.2



Breast ca. MCF-7
3.5



Breast ca. MDA-MB-231
3.9



Breast ca. BT 549
0.4



Breast ca. T47D
2.4



Breast ca. MDA-N
0.0



Breast Pool
3.8



Trachea
7.6



Lung
0.2



Fetal Lung
12.1



Lung ca. NCI-N417
0.0



Lung ca. LX-1
6.5



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
46.3



Lung ca. NCI-H526
0.5



Lung ca. NCI-H23
6.2



Lung ca. NCI-H460
0.3



Lung ca. HOP-62
6.0



Lung ca. NCI-H522
6.5



Liver
4.5



Fetal Liver
13.2



Liver ca. HepG2
2.7



Kidney Pool
4.8



Fetal Kidney
0.5



Renal ca. 786-0
0.4



Renal ca. A498
2.6



Renal ca. ACHN
0.0



Renal ca. UO-31
0.2



Renal ca. TK-10
3.4



Bladder
2.9



Gastric ca. (liver met.) NCI-N87
5.0



Gastric ca. KATO III
0.8



Colon ca. SW-948
0.2



Colon ca. SW480
2.0



Colon ca.* (SW480 met) SW620
5.2



Colon ca. HT29
2.0



Colon ca. HCT-116
18.3



Colon ca. CaCo-2
100.0



Colon cancer tissue
8.0



Colon ca. SW1116
0.6



Colon ca. Colo-205
2.0



Colon ca. SW-48
4.9



Colon Pool
3.4



Small Intestine Pool
1.4



Stomach Pool
1.6



Bone Marrow Pool
2.5



Fetal Heart
0.8



Heart Pool
2.3



Lymph Node Pool
3.0



Fetal Skeletal Muscle
0.6



Skeletal Muscle Pool
1.7



Spleen Pool
14.6



Thymus Pool
8.4



CNS cancer (glio/astro) U87-MG
0.6



CNS cancer (glio/astro) U-118-MG
1.0



CNS cancer (neuro; met) SK-N-AS
0.2



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.3



CNS cancer (glio) SNB-19
0.9



CNS cancer (glio) SF-295
0.2



Brain (Amygdala) Pool
9.0



Brain (cerebellum)
95.3



Brain (fetal)
0.8



Brain (Hippocampus) Pool
6.7



Cerebral Cortex Pool
22.1



Brain (Substantia nigra) Pool
12.0



Brain (Thalamus) Pool
10.8



Brain (whole)
11.6



Spinal Cord Pool
6.2



Adrenal Gland
2.5



Pituitary gland Pool
0.4



Salivary Gland
0.9



Thyroid (female)
0.6



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
3.9











[0906]

319





TABLE XC










Panel 4.1D









Rel. Exp. (%)



Ag5048, Run


Tissue Name
223785397











Secondary Th1 act
3.2


Secondary Th2 act
5.3


Secondary Tr1 act
7.4


Secondary Th1 rest
68.3


Secondary Th2 rest
73.2


Secondary Tr1 rest
82.9


Primary Th1 act
4.7


Primary Th2 act
6.5


Primary Tr1 act
8.1


Primary Th1 rest
44.4


Primary Th2 rest
82.4


Primary Tr1 rest
47.0


CD45RA CD4 lymphocyte act
6.9


CD45RO CD4 lymphocyte act
9.8


CD8 lymphocyte act
8.4


Secondary CD8 lymphocyte rest
5.8


Secondary CD8 lymphocyte act
32.3


CD4 lymphocyte none
10.4


2ry Th1/Th2/Tr1_anti-CD95 CH11
100.0


LAK cells rest
4.1


LAK cells IL-2
10.2


LAK cells IL-2 + IL-12
2.3


LAK cells IL-2 + IFN gamma
7.2


LAK cells IL-2 + IL-18
8.0


LAK cells PMA/ionomycin
2.0


NK Cells IL-2 rest
54.7


Two Way MLR 3 day
2.8


Two Way MLR 5 day
2.9


Two Way MLR 7 day
15.2


PBMC rest
16.8


PBMC PWM
0.1


PBMC PHA-L
3.0


Ramos (B cell) none
2.0


Ramos (B cell) ionomycin
3.7


B lymphocytes PWM
1.6


B lymphocytes CD40L and IL-4
9.0


EOL-1 dbcAMP
21.6


EOL-1 dbcAMP PMA/ionomycin
0.8


Dendritic cells none
1.3


Dendritic cells LPS
0.6


Dendritic cells anti-CD40
0.6


Monocytes rest
19.1


Monocytes LPS
0.4


Macrophages rest
2.0


Macrophages LPS
0.0


HUVEC none
0.0


HUVEC starved
0.0


HUVEC IL-1beta
0.2


HUVEC IFN gamma
0.1


HUVEC TNF alpha + IFN gamma
0.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
1.0


Lung Microvascular EC none
0.7


Lung Microvascular EC TNFalpha + IL-1beta
0.1


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
0.0


Bronchial epithelium TNFalpha + IL1beta
0.0


Small airway epithelium none
0.2


Small airway epithelium TNFalpha + IL-1beta
0.0


Coronery artery SMC rest
0.0


Coronery artery SMC TNFalpha + IL-1beta
0.0


Astrocytes rest
0.0


Astrocytes TNFalpha + IL-1beta
0.0


KU-812 (Basophil) rest
10.2


KU-812 (Basophil) PMA/ionomycin
15.6


CCD1106 (Keratinocytes) none
0.1


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
0.0


Liver cirrhosis
0.6


NCI-H292 none
0.2


NCI-H292 IL-4
0.3


NCI-H292 IL-9
0.4


NCI-H292 IL-13
0.6


NCI-H292 IFN gamma
0.3


HPAEC none
0.5


HPAEC TNF alpha + IL-1 beta
0.1


Lung fibroblast none
1.0


Lung fibroblast TNF alpha + IL-1 beta
0.5


Lung fibroblast IL-4
0.1


Lung fibroblast IL-9
0.0


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
0.0


Dermal fibroblast CCD1070 rest
3.4


Dermal fibroblast CCD1070 TNF alpha
65.1


Dermal fibroblast CCD1070 IL-1 beta
0.7


Dermal fibroblast IFN gamma
0.9


Dermal fibroblast IL-4
3.0


Dermal Fibroblasts rest
0.5


Neutrophils TNFa + LPS
10.8


Neutrophils rest
42.3


Colon
3.0


Lung
2.9


Thymus
15.2


Kidney
2.0










[0907]

320





TABLE XD










Panel 5 Islet









Rel. Exp. (%)



Ag5048, Run


Tissue Name
306067452











97457_Patient-02go_adipose
0.0


97476_Patient-07sk_skeletal muscle
0.0


97477_Patient-07ut_uterus
9.5


97478_Patient-07pl_placenta
12.0


99167_Bayer Patient 1
49.7


97482_Patient-08ut_uterus
11.0


97483_Patient-08pl_placenta
3.0


97486_Patient-09sk_skeletal muscle
15.4


97487_Patient-09ut_uterus
8.3


97488_Patient-09pl_placenta
10.8


97492_Patient-10ut_uterus
3.8


97493_Patient-10pl_placenta
10.7


97495_Patient-11go_adipose
8.7


97496_Patient-11sk_skeletal muscle
19.1


97497_Patient-11ut_uterus
33.7


97498_Patient-11pl_placenta
8.2


97500_Patient-12go_adipose
18.7


97501_Patient-12sk_skeletal muscle
23.7


97502_Patient-12ut_uterus
16.6


97503_Patient-12pl_placenta
19.6


94721_Donor 2 U - A_Mesenchymal Stem Cells
5.0


94722_Donor 2 U - B_Mesenchymal Stem Cells
0.0


94723_Donor 2 U - C_Mesenchymal Stem Cells
7.7


94709_Donor 2 AM - A_adipose
2.5


94710_Donor 2 AM - B_adipose
2.4


94711_Donor 2 AM - C_adipose
100.0


94712_Donor 2 AD - A_adipose
9.2


94713_Donor 2 AD - B_adipose
4.2


94714_Donor 2 AD - C_adipose
6.4


94742_Donor 3 U - A_Mesenchymal Stem Cells
7.4


94743_Donor 3 U - B_Mesenchymal Stem Cells
4.7


94730_Donor 3 AM - A_adipose
7.5


94731_Donor 3 AM - B_adipose
6.2


94732_Donor 3 AM - C_adipose
4.5


94733_Donor 3 AD - A_adipose
0.0


94734_Donor 3 AD - B_adipose
0.0


94735_Donor 3 AD - C_adipose
2.3


77138_Liver_HepG2untreated
18.7


73556_Heart_Cardiac stromal cells (primary)
2.7


81735_Small Intestine
8.3


72409_Kidney_Proximal Convoluted Tubule
13.3


82685_Small intestine_Duodenum
10.9


90650_Adrenal_Adrenocortical adenoma
5.6


72410_Kidney_HRCE
0.0


72411_Kidney_HRE
0.0


73139_Uterus_Uterine smooth muscle cells
2.6










[0908] General_screening_panel_v1.5 Summary: Ag5048 Highest expression is seen in cerebellum and a colon cancer cell line (CTs=27). Prominent expression is also seen in a single ovarian cancer and lung cancer cell line. Thus, expression of this gene could be used to differentiate between the cerebellar and colon cancer cell line sample and other samples on this panel. In addition, this gene may be involved in ovarian, lung, and colon cancers as well as CNS disorders that have the cerebellum as the site of pathology, such as autism and the ataxias.


[0909] Panel 4.1D Summary: Ag5048 Prominent levels of expression are seen in resting primary and secondary T cells, resting neutrophils, TNF-a treated dermal fibroblasts, and resting NK cells. This gene encodes a putative Rab37 molecule that may play an important role in mast cell degranulation. (Masuda ES. FEBS Lett Mar. 17, 2000;470(1):61-4). Thus, based on the expression profile of this protein and the homology to Rab37, modulation of the expression or function of this protein may be useful as a therapeutic intervention in the treatment of allergy, asthma, arthritis, psoriasis, IBD, and lupus, as well as any T-cell mediated disease.


[0910] Panel 5 Islet Summary: Ag5048 Detectable expression of this gene is limited to a single adipose sample (CT=34) in this panel.


[0911] Y. CG142072-02: CATHEPSIN L PRECURSOR


[0912] Expression of full-length physical clone CG142072-02 was assessed using the primer-probe set Ag7053, described in Table YA. Results of the RTQ-PCR runs are shown in Table YB.
321TABLE YAProbe Name Ag7053StartSEQPrimersSequencesLengthPositionID NoForward5′-agttttccggaacactttcc-3′20576302ProbeTET-5′-tttgaaagccattcatca26614303cctgcctg-3′-TAMRAReverse5′-tttggagacatgaccagtgaa-216453043′


[0913]

322





TABLE YB










General screening panel v1.6











Rel. Exp. (%)




Ag7053, Run



Tissue Name
282273864














Adipose
1.2



Melanoma* Hs688(A).T
5.1



Melanoma* Hs688(B).T
5.4



Melanoma* M14
1.7



Melanoma* LOXIMVI
6.1



Melanoma* SK-MEL-5
36.3



Squamous cell carcinoma SCC-4
0.7



Testis Pool
1.5



Prostate ca.* (bone met) PC-3
4.3



Prostate Pool
0.9



Placenta
4.9



Uterus Pool
0.4



Ovarian ca. OVCAR-3
2.6



Ovarian ca. SK-OV-3
16.7



Ovarian ca. OVCAR-4
0.7



Ovarian ca. OVCAR-5
3.7



Ovarian ca. IGROV-1
2.8



Ovarian ca. OVCAR-8
2.7



Ovary
1.1



Breast ca. MCF-7
3.3



Breast ca. MDA-MB-231
6.7



Breast ca. BT 549
100.0



Breast ca. T47D
0.4



Breast ca. MDA-N
0.6



Breast Pool
1.6



Trachea
0.8



Lung
0.8



Fetal Lung
1.1



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.1



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.8



Lung ca. A549
19.2



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
10.7



Lung ca. NCI-H460
21.9



Lung ca. HOP-62
0.8



Lung ca. NCI-H522
1.3



Liver
0.6



Fetal Liver
3.4



Liver ca. HepG2
0.8



Kidney Pool
2.7



Fetal Kidney
1.1



Renal ca. 786-0
8.2



Renal ca. A498
6.6



Renal ca. ACHN
1.2



Renal ca. UO-31
2.7



Renal ca. TK-10
5.1



Bladder
2.4



Gastric ca. (liver met.) NCI-N87
3.3



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.3



Colon ca. HT29
0.2



Colon ca. HCT-116
3.3



Colon ca. CaCo-2
1.6



Colon cancer tissue
6.9



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.1



Colon ca. SW-48
0.1



Colon Pool
1.6



Small Intestine Pool
0.7



Stomach Pool
1.2



Bone Marrow Pool
0.3



Fetal Heart
0.8



Heart Pool
0.5



Lymph Node Pool
1.5



Fetal Skeletal Muscle
0.3



Skeletal Muscle Pool
0.3



Spleen Pool
1.4



Thymus Pool
0.9



CNS cancer (glio/astro) U87-MG
21.2



CNS cancer (glio/astro) U-118-MG
25.3



CNS cancer (neuro; met) SK-N-AS
0.5



CNS cancer (astro) SF-539
8.1



CNS cancer (astro) SNB-75
62.9



CNS cancer (glio) SNB-19
2.5



CNS cancer (glio) SF-295
9.1



Brain (Amygdala) Pool
0.8



Brain (cerebellum)
1.3



Brain (fetal)
0.4



Brain (Hippocampus) Pool
1.1



Cerebral Cortex Pool
0.8



Brain (Substantia nigra) Pool
0.8



Brain (Thalamus) Pool
1.1



Brain (whole)
0.8



Spinal Cord Pool
1.0



Adrenal Gland
1.4



Pituitary gland Pool
0.4



Salivary Gland
0.9



Thyroid (female)
0.8



Pancreatic ca. CAPAN2
1.7



Pancreas Pool
0.5











[0914] General_screening_panel_v1.6 Summary: Ag7053 Highest expression of this gene is detected in breast cancer BT 549 cell line (CT=27.2). High to moderate levels of expression of this gene is also seen in number of cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0915] Among tissues with metabolic or endocrine function, this gene is expressed at moderate to low levels in pancreas, adipose, adrenal gland, thyroid, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0916] In addition, this gene is expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0917] Z. CG142102-01: PEPTIDYLPIROLYL ISOMERASE A-Like Gene


[0918] Expression of gene CG142102-01 was assessed using the primer-probe set Ag7410, described in Table ZA.
323TABLE ZAProbe Name Ag7410StartSEQPrimersSequencesLengthPositionID NoForward5′-ctgaaccctcacattcccaa-3′20353305ProbeTET-5′-ccaattacttatccatgg26374306caaatgct-3′-TAMRAReverse5′-tcttggcagtgcagaggaa-3′19427307


[0919] AA. CG57760-02: Prostaglandin-H12 D-isomerase Precursor


[0920] Expression of full-length physical clone CG57760-02 was assessed using the primer-probe set Ag7019, described in Table AAA. Results of the RTQ-PCR runs are shown in Table AAB.
324TABLE AAAProbe Name Ag7019StartSEQPrimersSequencesLengthPositionID NoForward5′-caacttacagcagcgcgta-3′19122308ProbeTET-5′-agaccgactacgaccag24148309tacgcgc-3′-TAMRAReverse5′-ttgctgccctggctgta-3′17177310


[0921]

325





TABLE AAB










General_screening_panel_v1.6











Rel.Exp. (%)




Ag7019, Run



Tissue Name
282273670














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
36.6



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
0.0



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
0.0



Liver ca. HepG2
0.0



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
0.0



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
29.3



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
24.8



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
79.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
100.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
27.4



Brain (whole)
0.0



Spinal Cord Pool
39.2



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
0.0











[0922] General_screening_panel_v1.6 Summary: Ag7410 Highest expression of this gene is seen in brain (hippocampus; CT=100.0) and brain (amygdala; CT=79.0). In addition, this gene is also expressed at moderate levels a colon cancer cell line (CT=29.3); in brain (thalamus; CT=27.4); in spinal cord (CT=39.2); and a CNS cancer line (CT=24.8). Modulation of this gene product may be useful in the treatment of neurological pathologies and cancer.


[0923] AB. CG59361-01: POTENTIAL PHOSPHOLIPID-TRANSPORTING ATPASE VA-Like Gene


[0924] Expression of gene CG59361-01 was assessed using the primer-probe set Ag733, described in Table ABA. Results of the RTQ-PCR runs are shown in Table ABB.
326TABLE ABAProbe Name Ag733StartSEQPrimersSequencesLengthPositionID NoForward5′-ccctgcagacatggtactactc-3′22789311ProbeTET-5′-tccactgatccagatgga26814312atctgtca-3′-TAMRAReverse5′-ccatcaagaccagaagtctcaa22842313-3′


[0925]

327





TABLE ABB










Panel 1.2











Rel. Exp. (%)




Ag733, Run



Tissue Name
115165150














Endothelial cells
1.6



Heart (Fetal)
0.2



Pancreas
3.3



Pancreatic ca. CAPAN 2
1.0



Adrenal Gland
2.5



Thyroid
2.5



Salivary gland
5.3



Pituitary gland
3.7



Brain (fetal)
0.9



Brain (whole)
1.0



Brain (amygdala)
0.6



Brain (cerebellum)
0.4



Brain (hippocampus)
1.0



Brain (thalamus)
0.7



Cerebral Cortex
0.9



Spinal cord
1.4



glio/astro U87-MG
1.9



glio/astro U-118-MG
1.6



astrocytoma SW1783
1.0



neuro*; met SK-N-AS
3.3



astrocytoma SF-539
1.4



astrocytoma SNB-75
0.8



glioma SNB-19
0.5



glioma U251
0.6



glioma SF-295
2.2



Heart
2.1



Skeletal Muscle
0.9



Bone marrow
0.5



Thymus
0.4



Spleen
0.9



Lymph node
2.0



Colorectal Tissue
0.2



Stomach
4.5



Small intestine
1.0



Colon ca. SW480
0.0



Colon ca.* SW620 (SW480 met)
0.4



Colon ca. HT29
0.0



Colon ca. HCT-116
0.5



Colon ca. CaCo-2
2.4



Colon ca. Tissue (ODO3866)
0.4



Colon ca. HCC-2998
0.9



Gastric ca.* (liver met) NCI-N87
5.7



Bladder
4.1



Trachea
100.0



Kidney
2.1



Kidney (fetal)
3.2



Renal ca. 786-0
1.1



Renal ca. A498
1.7



Renal ca. RXF 393
0.6



Renal ca. ACHN
0.7



Renal ca. UO-31
2.1



Renal ca. TK-10
0.7



Liver
1.7



Liver (fetal)
0.7



Liver ca. (hepatoblast) HepG2
0.0



Lung
8.2



Lung (fetal)
3.5



Lung ca. (small cell) LX-1
0.8



Lung ca. (small cell) NCI-H69
0.2



Lung ca. (s. cell var.) SHP-77
0.3



Lung ca. (large cell) NCI-H460
1.4



Lung ca. (non-sm. cell) A549
0.9



Lung ca. (non-s. cell) NCI-H23
1.2



Lung ca. (non-s. cell) HOP-62
4.2



Lung ca. (non-s. cl) NCI-H522
1.7



Lung ca. (squam.) SW 900
2.1



Lung ca. (squam.) NCI-H596
0.1



Mammary gland
1.7



Breast ca.* (pl. ef) MCF-7
0.0



Breast ca.* (pl. ef) MDA-MB-231
1.9



Breast ca.* (pl. ef) T47D
1.0



Breast ca. BT-549
0.8



Breast ca. MDA-N
1.1



Ovary
0.5



Ovarian ca. OVCAR-3
0.8



Ovarian ca. OVCAR-4
0.9



Ovarian ca. OVCAR-5
4.4



Ovarian ca. OVCAR-8
0.6



Ovarian ca. IGROV-1
1.1



Ovarian ca. (ascites) SK-OV-3
3.6



Uterus
1.4



Placenta
10.1



Prostate
0.8



Prostate ca.* (bone met) PC-3
0.3



Testis
1.8



Melanoma Hs688(A).T
1.0



Melanoma* (met) Hs688(B).T
2.8



Melanoma UACC-62
1.2



Melanoma M14
0.7



Melanoma LOX IMVI
0.4



Melanoma* (met) SK-MEL-5
2.2











[0926] Panel 1.2 Summary: Ag733 Highest expression is seen in trachea (CT=23.5). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker of this tissue.


[0927] Moderate to low levels of expression are seen in metabolic tissues, including skeletal muscle, thyroid, adrenal, pancreas, and adult and fetal liver and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0928] This gene is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0929] This gene is widely expressed in this panel, with moderate expression also seen in the cancer cell lines on this panel. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0930] AC. CG59444-01: SA Protein-Like Gene


[0931] Expression of gene CG59444-01 was assessed using the primer-probe set Ag3441, described in Table ACA. Results of the RTQ-PCR runs are shown in Tables ACB, ACC and ACD.
328TABLE ACAProbe Name Ag3441StartPrimersSequencesLengthPositionSEQ ID NoForward5′-caccctacgatgtgcagatt-2013373143′ProbeTET-5′-caacgtcctgcctcctg251371315gagaagag-3′-TAMRAReverse5′-gatacggacggcaacattc-3′191398316


[0932]

329





TABLE ACB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag3441, Run



Tissue Name
210374767














AD 1 Hippo
20.3



AD 2 Hippo
52.9



AD 3 Hippo
5.8



AD 4 Hippo
23.3



AD 5 hippo
9.5



AD 6 Hippo
100.0



Control 2 Hippo
26.8



Control 4 Hippo
68.8



Control (Path) 3 Hippo
6.7



AD 1 Temporal Ctx
26.6



AD 2 Temporal Ctx
44.8



AD 3 Temporal Ctx
5.3



AD 4 Temporal Ctx
36.9



AD 5 Inf Temporal Ctx
17.8



AD 5 SupTemporal Ctx
31.4



AD 6 Inf Temporal Ctx
53.2



AD 6 Sup Temporal Ctx
44.8



Control 1 Temporal Ctx
13.7



Control 2 Temporal Ctx
17.0



Control 3 Temporal Ctx
19.5



Control 4 Temporal Ctx
19.6



Control (Path) 1 Temporal Ctx
24.1



Control (Path) 2 Temporal Ctx
21.8



Control (Path) 3 Temporal Ctx
10.0



Control (Path) 4 Temporal Ctx
17.7



AD 1 Occipital Ctx
6.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
1.7



AD 4 Occipital Ctx
16.2



AD 5 Occipital Ctx
5.6



AD 6 Occipital Ctx
23.5



Control 1 Occipital Ctx
1.4



Control 2 Occipital Ctx
16.2



Control 3 Occipital Ctx
10.3



Control 4 Occipital Ctx
10.7



Control (Path) 1 Occipital Ctx
29.7



Control (Path) 2 Occipital Ctx
4.4



Control (Path) 3 Occipital Ctx
1.2



Control (Path) 4 Occipital Ctx
8.7



Control 1 Parietal Ctx
10.8



Control 2 Parietal Ctx
16.3



Control 3 Parietal Ctx
8.4



Control (Path) 1 Parietal Ctx
28.3



Control (Path) 2 Parietal Ctx
11.3



Control (Path) 3 Parietal Ctx
3.1



Control (Path) 4 Parietal Ctx
27.0











[0933]

330





TABLE ACC










Panel 4D









Rel. Exp. (%)



Ag3441, Run


Tissue Name
166397101











Secondary Th1 act
0.0


Secondary Th2 act
0.5


Secondary Tr1 act
0.0


Secondary Th1 rest
0.0


Secondary Th2 rest
0.0


Secondary Tr1 rest
0.0


Primary Th1 act
0.0


Primary Th2 act
0.0


Primary Tr1 act
0.0


Primary Th1 rest
0.0


Primary Th2 rest
0.0


Primary Tr1 rest
0.0


CD45RA CD4 lymphocyte act
0.0


CD45RO CD4 lymphocyte act
0.0


CD8 lymphocyte act
0.0


Secondary CD8 lymphocyte rest
0.0


Secondary CD8 lymphocyte act
0.0


CD4 lymphocyte none
0.1


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0


LAK cells rest
0.2


LAK cells IL-2
0.0


LAK cells IL-2 + IL-12
0.0


LAK cells IL-2 + IFN gamma
0.0


LAK cells IL-2 + IL-18
0.0


LAK cells PMA/ionomycin
0.0


NK Cells IL-2 rest
0.0


Two Way MLR 3 day
0.0


Two Way MLR 5 day
0.0


Two Way MLR 7 day
0.0


PBMC rest
0.0


PBMC PWM
0.0


PBMC PHA-L
0.0


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
0.0


B lymphocytes PWM
0.0


B lymphocytes CD40L and IL-4
0.3


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
3.9


Dendritic cells LPS
0.7


Dendritic cells anti-CD40
5.0


Monocytes rest
0.1


Monocytes LPS
0.2


Macrophages rest
0.8


Macrophages LPS
0.4


HUVEC none
0.0


HUVEC starved
0.0


HUVEC IL-1beta
0.0


HUVEC IFN gamma
0.0


HUVEC TNF alpha + IFN gamma
0.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
0.0


Lung Microvascular EC none
0.0


Lung Microvascular EC TNFalpha + IL-1beta
0.0


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
0.0


Bronchial epithelium TNFalpha + IL1beta
0.0


Small airway epithelium none
0.0


Small airway epithelium TNFalpha + IL-1beta
0.0


Coronery artery SMC rest
0.0


Coronery artery SMC TNFalpha + IL-1beta
0.0


Astrocytes rest
0.0


Astrocytes TNFalpha + IL-1beta
0.0


KU-812 (Basophil) rest
0.0


KU-812 (Basophil) PMA/ionomycin
0.0


CCD1106 (Keratinocytes) none
0.0


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
0.0


Liver cirrhosis
25.7


Lupus kidney
13.3


NCI-H292 none
0.0


NCI-H292 IL-4
0.0


NCI-H292 IL-9
0.0


NCI-H292 IL-13
0.1


NCI-H292 IFN gamma
0.0


HPAEC none
0.0


HPAEC TNF alpha + IL-1 beta
0.0


Lung fibroblast none
0.1


Lung fibroblast TNF alpha + IL-1 beta
0.0


Lung fibroblast IL-4
0.0


Lung fibroblast IL-9
0.0


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
0.0


Dermal fibroblast CCD1070 rest
0.0


Dermal fibroblast CCD1070 TNF alpha
0.0


Dermal fibroblast CCD1070 IL-1 beta
0.0


Dermal fibroblast IFN gamma
0.0


Dermal fibroblast IL-4
0.0


IBD Colitis 2
0.2


IBD Crohn's
0.8


Colon
6.7


Lung
1.1


Thymus
100.0


Kidney
0.9










[0934]

331





TABLE ACD










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag3441, Run



Tissue Name
267143302














Colon cancer 1
0.4



Colon cancer NAT 1
0.7



Colon cancer 2
0.0



Colon cancer NAT 2
0.7



Colon cancer 3
0.0



Colon cancer NAT 3
3.1



Colon malignant cancer 4
4.1



Colon normal adjacent tissue 4
0.7



Lung cancer 1
0.8



Lung NAT 1
1.1



Lung cancer 2
1.2



Lung NAT 2
0.8



Squamous cell carcinoma 3
3.0



Lung NAT 3
0.8



metastatic melanoma 1
4.2



Melanoma 2
0.3



Melanoma 3
0.9



metastatic melanoma 4
4.8



metastatic melanoma 5
2.4



Bladder cancer 1
0.4



Bladder cancer NAT 1
0.0



Bladder cancer 2
0.2



Bladder cancer NAT 2
0.0



Bladder cancer NAT 3
0.0



Bladder cancer NAT 4
0.4



Prostate adenocarcinoma 1
15.4



Prostate adenocarcinoma 2
0.8



Prostate adenocarcinoma 3
2.2



Prostate adenocarcinoma 4
1.0



Prostate cancer NAT 5
0.7



Prostate adenocarcinoma 6
0.7



Prostate adenocarcinoma 7
1.1



Prostate adenocarcinoma 8
0.0



Prostate adenocarcinoma 9
6.6



Prostate cancer NAT 10
0.0



Kidney cancer 1
16.7



Kidney NAT 1
3.8



Kidney cancer 2
100.0



Kidney NAT 2
13.0



Kidney cancer 3
70.2



Kidney NAT 3
9.3



Kidney cancer 4
52.9



Kidney NAT 4
21.9











[0935] CNS_neurodegeneration_v1.0 Summary: Ag3441 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene is found to be slightly upregulated in the temporal cortex of Alzheimer's disease patients. Therefore, therapeutic modulation of the expression or function of this gene may decrease neuronal death and be of use in the treatment of this disease.


[0936] Panel 4D Summary: Ag3441 Highest expression of this gene is detected in thymus. This gene could therefore play an important role in T cell development. Small molecule therapeutics, or antibody therapeutics designed against the protein encoded for by this gene could be utilized to modulate immune function (T cell development) and be important for organ transplant, AIDS treatment or post chemotherapy immune reconstitiution.


[0937] In addition, moderate to low levels of expression of this gene is also detected in dendritic cells, colon, lung, normal and lupus kidney and liver cirrhosis. Therefore, therapeutic modulation of this gene may be useful in the treatment of autoimmune and inflammatory diseases that affect colon, lung and kidney, such as psoriasis, allergy, asthma, inflammatory bowel disease, rheumatoid arthritis and osteoarthritis general oncology screening panel_V2.4 Summary: Ag3441 Highest expression of this gene is detected in kidney cancer 2 (CT=28.8). Moderate to low levels of expression of this gene is also seen in metastatic melanoma, prostate and kidney cancers. Interestingly, expression of this gene is higher in kidney cancer samples than in the adjacent normal samples. Thus, expression of this gene may be used as marker to detect kidney cancer. In addition, therapeutic modulation of this gene may be useful in the treatment of kidney cancers.


[0938] AD. CG59482-02: Trypsin I Precursor
332TABLE ADAProbe Name Ag7118StartPrimersSequencesLengthPositionSEQ ID NoForward5′-gctaagtgtgaagcctcctacc-221943173′ProbeTET-5′-agcccacacagaacatgtt29223318gctggtaatc-3′-TAMRAReverse5′-gaatccttgcctccctca-3′18256319


[0939]

333





TABLE ADB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag7118, Run



Tissue Name
296423773














AD 1 Hippo
13.1



AD 2 Hippo
13.3



AD 3 Hippo
4.8



AD 4 Hippo
5.0



AD 5 hippo
51.4



AD 6 Hippo
32.5



Control 2 Hippo
34.2



Control 4 Hippo
5.8



Control (Path) 3 Hippo
2.4



AD 1 Temporal Ctx
10.2



AD 2 Temporal Ctx
37.9



AD 3 Temporal Ctx
6.5



AD 4 Temporal Ctx
17.1



AD 5 Inf Temporal Ctx
77.9



AD 5 Sup Temporal Ctx
22.1



AD 6 Inf Temporal Ctx
30.1



AD 6 Sup Temporal Ctx
51.8



Control 1 Temporal Ctx
4.5



Control 2 Temporal Ctx
59.9



Control 3 Temporal Ctx
17.1



Control 4 Temporal Ctx
9.0



Control (Path) 1 Temporal Ctx
65.1



Control (Path) 2 Temporal Ctx
40.9



Control (Path) 3 Temporal Ctx
8.1



Control (Path) 4 Temporal Ctx
24.5



AD 1 Occipital Ctx
11.3



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
6.7



AD 4 Occipital Ctx
12.9



AD 5 Occipital Ctx
17.6



AD 6 Occipital Ctx
39.8



Control 1 Occipital Ctx
2.7



Control 2 Occipital Ctx
100.0



Control 3 Occipital Ctx
12.7



Control 4 Occipital Ctx
2.3



Control (Path) 1 Occipital Ctx
73.7



Control (Path) 2 Occipital Ctx
7.0



Control (Path) 3 Occipital Ctx
2.9



Control (Path) 4 Occipital Ctx
15.5



Control 1 Parietal Ctx
7.4



Control 2 Parietal Ctx
29.3



Control 3 Parietal Ctx
23.5



Control (Path) 1 Parietal Ctx
74.2



Control (Path) 2 Parietal Ctx
15.1



Control (Path) 3 Parietal Ctx
10.6



Control (Path) 4 Parietal Ctx
27.5











[0940]

334





TABLE ADC










General_screening_panel_v1.6











Rel. Exp. (%)




Ag7118, Run



Tissue Name
296433067














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.2



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
0.0



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
0.1



Liver ca. HepG2
0.0



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
18.4



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
0.0



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
100.0











[0941]

335





TABLE ADD










Panel 4.1D









Rel. Exp. (%)



Ag7118, Run


Tissue Name
296417626











Secondary Th1 act
0.0


Secondary Th2 act
1.3


Secondary Tr1 act
0.0


Secondary Th1 rest
4.3


Secondary Th2 rest
13.6


Secondary Tr1 rest
4.3


Primary Th1 act
0.0


Primary Th2 act
2.2


Primary Tr1 act
0.8


Primary Th1 rest
1.2


Primary Th2 rest
0.0


Primary Tr1 rest
0.8


CD45RA CD4 lymphocyte act
12.4


CD45RO CD4 lymphocyte act
11.7


CD8 lymphocyte act
2.6


Secondary CD8 lymphocyte rest
0.0


Secondary CD8 lymphocyte act
4.1


CD4 lymphocyte none
2.3


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0


LAK cells rest
0.0


LAK cells IL-2
15.6


LAK cells IL-2 + IL-12
0.0


LAK cells IL-2 + IFN gamma
1.5


LAK cells IL-2 + IL-18
1.6


LAK cells PMA/ionomycin
8.7


NK Cells IL-2 rest
82.9


Two Way MLR 3 day
32.3


Two Way MLR 5 day
4.5


Two Way MLR 7 day
2.9


PBMC rest
2.5


PBMC PWM
0.9


PBMC PHA-L
0.0


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
0.0


B lymphocytes PWM
0.0


B lymphocytes CD40L and IL-4
10.7


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
0.0


Dendritic cells LPS
0.0


Dendritic cells anti-CD40
0.0


Monocytes rest
3.8


Monocytes LPS
1.3


Macrophages rest
0.0


Macrophages LPS
1.2


HUVEC none
31.9


HUVEC starved
36.1


HUVEC IL-1beta
38.4


HUVEC IFN gamma
10.6


HUVEC TNF alpha + IFN gamma
10.8


HUVEC TNF alpha + IL4
16.4


HUVEC IL-11
13.6


Lung Microvascular EC none
21.8


Lung Microvascular EC TNFalpha + IL-1beta
6.0


Microvascular Dermal EC none
1.8


Microsvasular Dermal EC TNFalpha + IL-1beta
0.6


Bronchial epithelium TNFalpha + IL1beta
17.4


Small airway epithelium none
3.0


Small airway epithelium TNFalpha + IL-1beta
11.6


Coronery artery SMC rest
15.2


Coronery artery SMC TNFalpha + IL-1beta
16.7


Astrocytes rest
0.0


Astrocytes TNFalpha + IL-1beta
0.0


KU-812 (Basophil) rest
0.0


KU-812 (Basophil) PMA/ionomycin
0.0


CCD1106 (Keratinocytes) none
100.0


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
16.4


Liver cirrhosis
8.4


NCI-H292 none
0.0


NCI-H292 IL-4
0.0


NCI-H292 IL-9
0.0


NCI-H292 IL-13
0.0


NCI-H292 IFN gamma
1.3


HPAEC none
15.5


HPAEC TNF alpha + IL-1 beta
62.0


Lung fibroblast none
2.4


Lung fibroblast TNF alpha + IL-1 beta
2.2


Lung fibroblast IL-4
3.7


Lung fibroblast IL-9
3.7


Lung fibroblast IL-13
0.0


Lung fibroblast IFN gamma
6.9


Dermal fibroblast CCD1070 rest
47.0


Dermal fibroblast CCD1070 TNF alpha
42.6


Dermal fibroblast CCD1070 IL-1 beta
16.0


Dermal fibroblast IFN gamma
1.1


Dermal fibroblast IL-4
4.4


Dermal Fibroblasts rest
6.3


Neutrophils TNFa + LPS
0.0


Neutrophils rest
1.6


Colon
29.3


Lung
0.0


Thymus
13.6


Kidney
7.5










[0942] CNS_neurodegeneration_v1.0 Summary: Ag7l18 This panel confirms the expression of this gene at low levels in the brain in an independent group of individuals. This gene appears to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.


[0943] General_screening_panel_v1.6 Summary: Ag7118 Highest expression of this gene, a putative trypsin, is seen in the pancreas (CT=17). Thus, expression of this gene could be used to differentiate between this gene and other genes on this panel and as a marker of this organ. In addition, therapeutic modulation of the trypsin encoded by this gene may be useful in the treatment of pancrease related diseases including pancreatitis.


[0944] Panel 4.1D Summary: Ag7118 Highest expression is seen in untreated keratinocytes (CT=32.6). Therefore, modulation of the expression or activity of the protein encoded by this transcript through the application of small molecule therapeutics may be useful in the treatment of psoriasis and wound healing.


[0945] In addition, low to moderate levels of this gene is also detected in cytokine treated dermal fibroblasts, HPAEC, resting and activated HUVEC cells, IL2-treated resting NK cells, and 2 way MLR. Therefore, therapeutic modulation of the trypsin encoded by this gene may be useful in the treatment of autoimmune and inflammatory diseases that involve endothelial cells, such as lupus erythematosus, asthma, emphysema, Crohn's disease, ulcerative colitis, rheumatoid arthritis, osteoarthritis, and psoriasis.


[0946] AE. CG89709-01 and CG89709-02 and CG89709-03 and CG89709-04: Protein Kinase-Like Gene


[0947] Expression of gene CG89709-01 and variants CG89709-02, CG89709-03, and CG89709-04 was assessed using the primer-probe set Ag5763, described in Table AEA. Results of the RTQ-PCR runs are shown in Tables AEB, AEC and AED.
336TABLE AEAProbe Name Ag5763StartPrimersSequencesLengthPositionSEQ ID NoForward5′-atggcagccagcattaaa-3′193047320ProbeTET-5′-tccatctacgtgtattaca293078321gacattctgc-3′-TAMRAReverse5′-agacttcggggtgcttgtag-3′203111322


[0948]

337





TABLE AEB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag5763, Run



Tissue Name
249286625














AD 1 Hippo
17.0



AD 2 Hippo
35.8



AD 3 Hippo
6.2



AD 4 Hippo
8.9



AD 5 hippo
71.2



AD 6 Hippo
53.2



Control 2 Hippo
36.3



Control 4 Hippo
16.6



Control (Path) 3 Hippo
8.2



AD 1 Temporal Ctx
28.3



AD 2 Temporal Ctx
41.8



AD 3 Temporal Ctx
8.8



AD 4 Temporal Ctx
43.5



AD 5 Inf Temporal Ctx
84.7



AD 5 Sup Temporal Ctx
45.1



AD 6 Inf Temporal Ctx
58.6



AD 6 Sup Temporal Ctx
58.6



Control 1 Temporal Ctx
6.6



Control 2 Temporal Ctx
40.6



Control 3 Temporal Ctx
18.4



Control 4 Temporal Ctx
10.9



Control (Path) 1 Temporal Ctx
68.8



Control (Path) 2 Temporal Ctx
36.9



Control (Path) 3 Temporal Ctx
5.1



Control (Path) 4 Temporal Ctx
37.1



AD 1 Occipital Ctx
20.0



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
7.9



AD 4 Occipital Ctx
29.7



AD 5 Occipital Ctx
20.6



AD 6 Occipital Ctx
48.6



Control 1 Occipital Ctx
4.4



Control 2 Occipital Ctx
75.3



Control 3 Occipital Ctx
21.3



Control 4 Occipital Ctx
9.5



Control (Path) 1 Occipital Ctx
100.0



Control (Path) 2 Occipital Ctx
14.4



Control (Path) 3 Occipital Ctx
4.1



Control (Path) 4 Occipital Ctx
17.8



Control 1 Parietal Ctx
9.1



Control 2 Parietal Ctx
49.3



Control 3 Parietal Ctx
18.7



Control (Path) 1 Parietal Ctx
85.9



Control (Path) 2 Parietal Ctx
14.3



Control (Path) 3 Parietal Ctx
3.6



Control (Path) 4 Parietal Ctx
54.0











[0949]

338





TABLE AEC










General_screening_panel_v1.5











Rel. Exp. (%)




Ag5763, Run



Tissue Name
246263911














Adipose
7.2



Melanoma* Hs688(A).T
11.3



Melanoma* Hs688(B).T
12.5



Melanoma* M14
8.1



Melanoma* LOXIMVI
8.5



Melanoma* SK-MEL-5
10.9



Squamous cell carcinoma SCC-4
6.9



Testis Pool
13.2



Prostate ca.* (bone met) PC-3
6.6



Prostate Pool
4.8



Placenta
15.9



Uterus Pool
9.3



Ovarian ca. OVCAR-3
8.9



Ovarian ca. SK-OV-3
14.3



Ovarian ca. OVCAR-4
10.3



Ovarian ca. OVCAR-5
18.4



Ovarian ca. IGROV-1
9.5



Ovarian ca. OVCAR-8
5.2



Ovary
7.7



Breast ca. MCF-7
3.6



Breast ca. MDA-MB-231
17.0



Breast ca. BT 549
15.9



Breast ca. T47D
1.1



Breast ca. MDA-N
4.0



Breast Pool
14.5



Trachea
9.2



Lung
3.8



Fetal Lung
18.6



Lung ca. NCI-N417
3.6



Lung ca. LX-1
5.5



Lung ca. NCI-H146
5.7



Lung ca. SHP-77
10.4



Lung ca. A549
9.0



Lung ca. NCI-H526
7.4



Lung ca. NCI-H23
19.2



Lung ca. NCI-H460
7.9



Lung ca. HOP-62
5.3



Lung ca. NCI-H522
8.0



Liver
2.6



Fetal Liver
14.3



Liver ca. HepG2
9.8



Kidney Pool
19.3



Fetal Kidney
8.9



Renal ca. 786-0
7.7



Renal ca. A498
0.9



Renal ca. ACHN
7.6



Renal ca. UO-31
7.3



Renal ca. TK-10
9.1



Bladder
9.8



Gastric ca. (liver met.) NCI-N87
15.5



Gastric ca. KATO III
46.3



Colon ca. SW-948
3.3



Colon ca. SW480
13.0



Colon ca.* (SW480 met) SW620
7.9



Colon ca. HT29
3.2



Colon ca. HCT-116
9.7



Colon ca. CaCo-2
28.9



Colon cancer tissue
4.8



Colon ca. SW1116
1.5



Colon ca. Colo-205
1.9



Colon ca. SW-48
2.0



Colon Pool
13.3



Small Intestine Pool
15.8



Stomach Pool
6.8



Bone Marrow Pool
5.5



Fetal Heart
6.6



Heart Pool
6.0



Lymph Node Pool
15.6



Fetal Skeletal Muscle
5.7



Skeletal Muscle Pool
18.8



Spleen Pool
7.8



Thymus Pool
11.8



CNS cancer (glio/astro) U87-MG
5.1



CNS cancer (glio/astro) U-118-MG
20.7



CNS cancer (neuro; met) SK-N-AS
3.7



CNS cancer (astro) SF-539
6.7



CNS cancer (astro) SNB-75
18.9



CNS cancer (glio) SNB-19
7.9



CNS cancer (glio) SF-295
16.0



Brain (Amygdala) Pool
22.5



Brain (cerebellum)
100.0



Brain (fetal)
20.6



Brain (Hippocampus) Pool
26.1



Cerebral Cortex Pool
25.5



Brain (Substantia nigra) Pool
21.3



Brain (Thalamus) Pool
36.9



Brain (whole)
20.7



Spinal Cord Pool
16.6



Adrenal Gland
10.2



Pituitary gland Pool
5.3



Salivary Gland
4.1



Thyroid (female)
5.4



Pancreatic ca. CAPAN2
12.8



Pancreas Pool
20.2











[0950]

339





TABLE AED










Panel 5 Islet









Rel. Exp. (%)



Ag5763, Run


Tissue Name
243564954











97457_Patient-02go_adipose
23.3


97476_Patient-07sk_skeletal muscle
27.4


97477_Patient-07ut_uterus
17.2


97478_Patient-07pl_placenta
43.8


99167_Bayer Patient 1
64.6


97482_Patient-08ut_uterus
11.3


97483_Patient-08pl_placenta
56.6


97486_Patient-09sk_skeletal muscle
14.8


97487_Patient-09ut_uterus
36.9


97488_Patient-09pl_placenta
21.0


97492_Patient-10ut_uterus
31.6


97493_Patient-10pl_placenta
100.0


97495_Patient-11go_adipose
24.8


97496_Patient-11sk_skeletal muscle
28.5


97497_Patient-11ut_uterus
43.2


97498_Patient-11pl_placenta
34.4


97500_Patient-12go_adipose
37.6


97501_Patient-12sk_skeletal muscle
57.8


97502_Patient-12ut_uterus
34.4


97503_Patient-12pl_placenta
40.1


94721_Donor 2 U - A_Mesenchymal Stem Cells
17.9


94722_Donor 2 U - B_Mesenchymal Stem Cells
21.6


94723_Donor 2 U - C_Mesenchymal Stem Cells
27.5


94709_Donor 2 AM - A_adipose
19.6


94710_Donor 2 AM - B_adipose
15.4


94711_Donor 2 AM - C_adipose
9.1


94712_Donor 2 AD - A_adipose
37.4


94713_Donor 2 AD - B_adipose
40.9


94714_Donor 2 AD - C_adipose
39.8


94742_Donor 3 U - A_Mesenchymal Stem Cells
11.7


94743_Donor 3 U - B_Mesenchymal Stem Cells
33.0


94730_Donor 3 AM - A_adipose
42.9


94731_Donor 3 AM - B_adipose
11.5


94732_Donor 3 AM - C_adipose
25.5


94733_Donor 3 AD - A_adipose
73.7


94734_Donor 3 AD - B_adipose
20.9


94735_Donor 3 AD - C_adipose
46.3


77138_Liver_HepG2untreated
40.9


73556_Heart_Cardiac stromal cells (primary)
7.9


81735_Small Intestine
40.6


72409_Kidney_Proximal Convoluted Tubule
11.8


82685_Small intestine_Duodenum
15.7


90650_Adrenal_Adrenocortical adenoma
8.1


72410_Kidney_HRCE
40.9


72411_Kidney_HRE
18.4


73139_Uterus_Uterine smooth muscle cells
11.1










[0951] CNS_neurodegeneration_v1.0 Summary: Ag5763 This panel confirms the expression of this gene at significant levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.5 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.


[0952] General_screening_panel_v1.5 Summary: Ag5763 Highest expression of this gene is detected in brain (cerebellum) (CT=26.4). High levels of expression of this gene is also seen in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0953] Moderate levels of expression of this gene is also seen in cluster of cancer cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0954] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0955] This gene codes for a novel protein kinase. In PathCalling screening at Curagen, this gene was identified as an interactor of estrogen-related nuclear receptor beta 2 (ERRB2). ERRB2, in turn, interacts with FOXO1A (FKHR), an important transcriptional factor in metabolism. This result suggests that the novel protein kinase may control the phosphorylation state of ERRB2 and FKHR and therefore, their activity. Therefore, inhibition of this gene would impair excessive activities of ERRB2 and FHKR, known to be associated with diabetic condition. Thus, an antagonist of the protein kinase encoded by this gene would be beneficial for the treatment of diabetes.


[0956] Panel 5 Islet Summary: Ag5763 Highest expression of this gene is detected in placenta (CT=29.9). In addition, consistent with panel 1.5 this gene is widely expressed in metabolic tissues. Please see panel 1.5 for further discussion on the utility of this gene.


[0957] AF. CG90879-01: Protein Kinase D2-Like Gene


[0958] Expression of gene CG90879-01 was assessed using the primer-probe sets Ag805 and Ag3770, described in Tables AFA and AFB. Results of the RTQ-PCR runs are shown in Tables AFC, AFD, AFE, AFF and AFG.
340TABLE AFAProbe Name Ag805StartPrimersSequencesLengthPositionSEQ ID NoForward5′-ccttcgaggacttccagatc-204283233′ProbeTET-5′-acgccctcacggtgcac23455324tcctat-3′-TAMRAReverse5′-actaggccgaagagcatctc-205083253′


[0959]

341





TABLE AFB










Probe Name Ag3770














Start



Primers
Sequences
Length
Position
SEQ ID No





Forward
5′-atccaagagaatgtggacattg-
22
1681
326



3′


Probe
TET-5′-accagatcttccctgacg
26
1712
327



aagtgctg-3′-TAMRA


Reverse
5′-ctccatagaccactccaaactg-
22
1747
328



3′










[0960]

342





TABLE AFC










CNS_neurodegeneration_v1.0










Rel. Exp. (%)
Rel. Exp. (%)



Ag3770, Run
Ag805, Run


Tissue Name
211175147
224758713












AD 1 Hippo
41.5
27.4


AD 2 Hippo
32.8
17.0


AD 3 Hippo
29.9
14.1


AD 4 Hippo
24.5
6.8


AD 5 Hippo
54.0
59.5


AD 6 Hippo
100.0
100.0


Control 2 Hippo
27.9
10.9


Control 4 Hippo
57.8
36.1


Control (Path) 3 Hippo
23.2
4.8


AD 1 Temporal Ctx
47.0
24.7


AD 2 Temporal Ctx
22.7
9.1


AD 3 Temporal Ctx
25.5
9.2


AD 4 Temporal Ctx
21.2
4.4


AD 5 Inf Temporal Ctx
94.0
57.8


AD 5 Sup Temporal Ctx
60.7
52.9


AD 6 Inf Temporal Ctx
95.3
67.4


AD 6 Sup Temporal Ctx
96.6
54.0


Control 1 Temporal Ctx
20.2
4.3


Control 2 Temporal Ctx
40.3
22.1


Control 3 Temporal Ctx
28.5
8.6


Control 3 Temporal Ctx
18.3
14.7


Control (Path) 1
61.1
20.3


Temporal Ctx


Control (Path) 2
36.3
17.4


Temporal Ctx


Control (Path) 3
23.3
17.7


Temporal Ctx


Control (Path) 4
26.1
13.8


Temporal Ctx


AD 1 Occipital Ctx
34.2
18.8


AD 2 Occipital Ctx (Missing)
0.0
0.0


AD 3 Occipital Ctx
33.2
19.2


AD 4 Occipital Ctx
23.2
8.6


AD 5 Occipital Ctx
44.1
29.9


AD 6 Occipital Ctx
62.9
13.8


Control 1 Occipital Ctx
25.3
8.3


Control 2 Occipital Ctx
32.1
25.7


Control 3 Occipital Ctx
22.7
12.2


Control 4 Occipital Ctx
22.7
14.8


Control (Path) 1
80.1
54.7


Occipital Ctx


Control (Path) 2
17.8
15.0


Occipital Ctx


Control (Path) 3
18.2
6.0


Occipital Ctx


Control (Path) 4
22.2
15.4


Occipital Ctx


Control 1 Parietal Ctx
33.7
9.1


Control 2 Parietal Ctx
53.2
36.3


Control 3 Parietal Ctx
10.9
12.1


Control (Path) 1 Parietal Ctx
54.3
31.9


Control (Path) 2 Parietal Ctx
24.3
11.3


Control (Path) 3
22.5
6.4


Parietal Ctx


Control (Path) 4
37.4
22.2


Parietal Ctx










[0961]

343





TABLE AFD










General screening_panel_v1.4











Rel. Exp. (%)




Ag3770, Run



Tissue Name
218982439














Adipose
4.5



Melanoma* Hs688(A).T
7.9



Melanoma* Hs688(B).T
8.8



Melanoma* M14
15.7



Melanoma* LOXIMVI
19.1



Melanoma* SK-MEL-5
7.8



Squamous cell carcinoma SCC-4
16.7



Testis Pool
3.3



Prostate ca.* (bone met) PC-3
13.6



Prostate Pool
7.5



Placenta
12.7



Uterus Pool
3.6



Ovarian ca. OVCAR-3
16.2



Ovarian ca. SK-OV-3
37.4



Ovarian ca. OVCAR-4
12.7



Ovarian ca. OVCAR-5
30.6



Ovarian ca. IGROV-1
22.1



Ovarian ca. OVCAR-8
12.1



Ovary
6.0



Breast ca. MCF-7
22.1



Breast ca. MDA-MB-231
20.6



Breast ca. BT 549
24.1



Breast ca. T47D
58.6



Breast ca. MDA-N
4.3



Breast Pool
8.1



Trachea
9.7



Lung
2.2



Fetal Lung
25.7



Lung ca. NCI-N417
2.2



Lung ca. LX-1
16.3



Lung ca. NCI-H146
4.5



Lung ca. SHP-77
10.3



Lung ca. A549
19.2



Lung ca. NCI-H526
4.1



Lung ca. NCI-H23
8.5



Lung ca. NCI-H460
4.2



Lung ca. HOP-62
7.9



Lung ca. NCI-H522
13.3



Liver
1.1



Fetal Liver
5.8



Liver ca. HepG2
6.4



Kidney Pool
13.2



Fetal Kidney
7.8



Renal ca. 786-0
11.9



Renal ca. A498
12.3



Renal ca. ACHN
13.8



Renal ca. UO-31
18.7



Renal ca. TK-10
15.8



Bladder
23.0



Gastric ca. (liver met.) NCI-N87
100.0



Gastric ca. KATO III
42.9



Colon ca. SW-948
13.6



Colon ca. SW480
33.2



Colon ca.* (SW480 met) SW620
13.1



Colon ca. HT29
18.6



Colon ca. HCT-116
48.0



Colon ca. CaCo-2
28.5



Colon cancer tissue
15.5



Colon ca. SW1116
7.4



Colon ca. Colo-205
7.2



Colon ca. SW-48
6.9



Colon Pool
8.7



Small Intestine Pool
9.5



Stomach Pool
7.2



Bone Marrow Pool
2.5



Fetal Heart
5.8



Heart Pool
3.6



Lymph Node Pool
8.1



Fetal Skeletal Muscle
3.9



Skeletal Muscle Pool
3.3



Spleen Pool
12.6



Thymus Pool
16.2



CNS cancer (glio/astro) U87-MG
16.8



CNS cancer (glio/astro) U-118-MG
23.3



CNS cancer (neuro; met) SK-N-AS
26.2



CNS cancer (astro) SF-539
8.5



CNS cancer (astro) SNB-75
15.9



CNS cancer (glio) SNB-19
20.6



CNS cancer (glio) SF-295
50.7



Brain (Amygdala) Pool
1.9



Brain (cerebellum)
2.8



Brain (fetal)
4.1



Brain (Hippocampus) Pool
2.3



Cerebral Cortex Pool
1.9



Brain (Substantia nigra) Pool
2.5



Brain (Thalamus) Pool
2.3



Brain (whole)
2.6



Spinal Cord Pool
1.7



Adrenal Gland
4.8



Pituitary gland Pool
3.1



Salivary Gland
4.4



Thyroid (female)
7.6



Pancreatic ca. CAPAN2
22.1



Pancreas Pool
8.0











[0962]

344





TABLE AFE










Panel 1.3D











Rel. Exp. (%)




Ag805, Run



Tissue Name
167966906














Liver adenocarcinoma
80.1



Pancreas
12.5



Pancreatic ca. CAPAN 2
25.7



Adrenal gland
6.1



Thyroid
14.9



Salivary gland
10.2



Pituitary gland
21.2



Brain (fetal)
11.7



Brain (whole)
6.0



Brain (amygdala)
7.6



Brain (cerebellum)
2.6



Brain (hippocampus)
3.1



Brain (substantia nigra)
6.3



Brain (thalamus)
3.6



Cerebral Cortex
8.1



Spinal cord
7.7



glio/astro U87-MG
19.3



glio/astro U-118-MG
11.2



astrocytoma SW1783
18.4



neuro*; met SK-N-AS
27.4



astrocytoma SF-539
23.5



astrocytoma SNB-75
44.4



glioma SNB-19
55.9



glioma U251
33.0



glioma SF-295
67.8



Heart (fetal)
41.8



Heart
11.9



Skeletal muscle (fetal)
38.4



Skeletal muscle
7.9



Bone marrow
19.6



Thymus
97.9



Spleen
37.4



Lymph node
55.9



Colorectal
9.3



Stomach
13.2



Small intestine
13.9



Colon ca. SW480
48.3



Colon ca.* SW620(SW480 met)
42.6



Colon ca. HT29
33.4



Colon ca. HCT-116
24.1



Colon ca. CaCo-2
42.9



Colon ca. tissue(ODO3866)
21.8



Colon ca. HCC-2998
46.7



Gastric ca.* (liver met) NCI-N87
82.9



Bladder
18.2



Trachea
20.9



Kidney
19.9



Kidney (fetal)
100.0



Renal ca. 786-0
22.5



Renal ca. A498
30.8



Renal ca. RXF 393
72.2



Renal ca. ACHN
41.8



Renal ca. UO-31
26.1



Renal ca. TK-10
25.0



Liver
11.3



Liver (fetal)
9.7



Liver ca. (hepatoblast) HepG2
15.3



Lung
36.6



Lung (fetal)
27.9



Lung ca. (small cell) LX-1
27.5



Lung ca. (small cell) NCI-H69
20.3



Lung ca. (s. cell var.) SHP-77
35.6



Lung ca. (large cell) NCI-H460
3.8



Lung ca. (non-sm. cell) A549
47.3



Lung ca. (non-s. cell) NCI-H23
13.4



Lung ca. (non-s. cell) HOP-62
21.0



Lung ca. (non-s. cl) NCI-H522
24.8



Lung ca. (squam.) SW 900
40.3



Lung ca. (squam.) NCI-H596
16.7



Mammary gland
31.4



Breast ca.* (pl. ef) MCF-7
26.2



Breast ca.* (pl. ef) MDA-MB-231
19.1



Breast ca.* (pl. ef) T47D
34.4



Breast ca. BT-549
13.3



Breast ca. MDA-N
6.7



Ovary
33.9



Ovarian ca. OVCAR-3
17.1



Ovarian ca. OVCAR-4
48.6



Ovarian ca. OVCAR-5
75.8



Ovarian ca. OVCAR-8
10.9



Ovarian ca. IGROV-1
11.7



Ovarian ca.* (ascites) SK-OV-3
52.5



Uterus
20.2



Placenta
4.6



Prostate
14.3



Prostate ca.* (bone met)PC-3
14.7



Testis
6.8



Melanoma Hs688(A).T
7.0



Melanoma* (met) Hs688(B).T
7.3



Melanoma UACC-62
31.6



Melanoma M14
8.5



Melanoma LOX IMVI
46.0



Melanoma* (met) SK-MEL-5
7.2



Adipose
13.6











[0963]

345





TABLE AFF










Panel 4.1D










Rel. Exp. (%)
Rel. Exp. (%)



Ag3770, Run
Ag805, Run


Tissue Name
170069171
169990844












Secondary Th1 act
52.1
33.4


Secondary Th2 act
100.0
73.7


Secondary Tr1 act
67.4
40.9


Secondary Th1 rest
41.8
30.1


Secondary Th2 rest
81.2
58.6


Secondary Tr1 rest
57.0
47.3


Primary Th1 act
41.2
19.8


Primary Th2 act
62.0
35.8


Primary Tr1 act
50.0
41.5


Primary Th1 rest
61.1
40.1


Primary Th2 rest
48.0
30.8


Primary Tr1 rest
62.0
33.9


CD45RA CD4 lymphocyte act
28.3
25.3


CD45RO CD4 lymphocyte act
49.3
36.6


CD8 lymphocyte act
55.1
48.6


Secondary CD8 lymphocyte rest
33.2
37.9


Secondary CD8 lymphocyte act
39.5
40.3


CD4 lymphocyte none
24.0
43.8


2ry Th1/Th2/Tr1_anti-CD95 CH11
57.4
45.4


LAK cells rest
30.6
19.5


LAK cells IL-2
52.1
33.7


LAK cells IL-2 + IL-12
42.9
39.2


LAK cells IL-2 + IFN gamma
50.7
45.7


LAK cells IL-2 + IL-18
61.6
34.4


LAK cells PMA/ionomycin
16.8
7.7


NK Cells IL-2 rest
77.4
67.4


Two Way MLR 3 day
54.0
100.0


Two Way MLR 5 day
36.3
35.4


Two Way MLR 7 day
37.9
33.0


PBMC rest
33.7
23.0


PBMC PWM
41.5
32.8


PBMC PHA-L
36.6
33.4


Ramos (B cell) none
47.0
48.0


Ramos (B cell) ionomycin
42.9
39.8


B lymphocytes PWM
14.6
14.2


B lymphocytes CD40L and IL-4
59.5
34.9


EOL-1 dbcAMP
25.2
17.3


EOL-1 dbcAMP PMA/ionomycin
57.0
54.7


Dendritic cells none
12.2
6.9


Dendritic cells LPS
10.2
10.4


Dendritic cells anti-CD40
9.6
8.4


Monocytes rest
22.7
20.3


Monocytes LPS
28.5
24.7


Macrophages rest
11.3
11.5


Macrophages LPS
31.0
31.6


HUVEC none
29.5
30.6


HUVEC starved
37.9
40.9


HUVEC IL-1beta
51.8
52.1


HUVEC IFN gamma
58.2
39.2


HUVEC TNF alpha + IFN gamma
35.8
48.0


HUVEC TNF alpha + IL4
29.7
39.2


HUVEC IL-11
26.8
24.5


Lung Microvascular EC none
75.3
68.8


Lung Microvascular EC
59.0
74.7


TNFalpha + IL-1beta


Microvascular Dermal EC none
28.9
35.6


Microsvasular Dermal EC
57.4
66.9


TNFalpha + IL-1beta


Bronchial epithelium
29.9
33.9


TNFalpha + IL1beta


Small airway epithelium none
10.1
13.5


Small airway epithelium
36.6
30.1


TNFalpha + IL-1beta


Coronery artery SMC rest
17.0
13.8


Coronery artery SMC
13.0
9.6


TNFalpha + IL-1beta


Astrocytes rest
20.3
15.9


Astrocytes TNFalpha + IL-1beta
24.8
14.5


KU-812 (Basophil) rest
24.5
16.6


KU-812 (Basophil) PMA/ionomycin
23.5
42.9


CCD1106 (Keratinocytes) none
28.7
28.1


CCD1106 (Keratinocytes)
56.3
55.5


TNFalpha + IL-1beta


Liver cirrhosis
7.9
8.4


NCI-H292 none
32.3
27.2


NCI-H292 IL-4
34.9
28.9


NCI-H292 IL-9
53.2
23.0


NCI-H292 IL-13
35.6
35.6


NCI-H292 IFN gamma
46.3
47.6


HPAEC none
34.9
31.9


HPAEC TNF alpha + IL-1 beta
57.8
53.6


Lung fibroblast none
10.7
11.5


Lung fibroblast
18.9
18.0


TNF alpha + IL-1 beta


Lung fibroblast IL-4
7.6
7.9


Lung fibroblast IL-9
14.3
12.2


Lung fibroblast IL-13
10.7
5.0


Lung fibroblast IFN gamma
15.0
16.3


Dermal fibroblast CCD1070 rest
12.5
13.6


Dermal fibroblast CCD1070 TNF alpha
42.9
40.1


Dermal fibroblast CCD1070 IL-1 beta
11.5
11.3


Dermal fibroblast IFN gamma
9.4
8.7


Dermal fibroblast IL-4
16.6
13.3


Dermal Fibroblasts rest
11.4
8.5


Neutrophils TNFa + LPS
8.7
13.7


Neutrophils rest
54.0
81.2


Colon
15.2
12.0


Lung
34.2
20.9


Thymus
56.6
56.3


Kidney
15.8
5.6










[0964]

346





TABLE AFG










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag3770, Run



Tissue Name
267820395














Colon cancer 1
33.9



Colon NAT 1
21.2



Colon cancer 2
26.4



Colon NAT 2
12.2



Colon cancer 3
64.6



Colon NAT 3
27.5



Colon malignant cancer 4
39.8



Colon NAT 4
7.4



Lung cancer 1
39.5



Lung NAT 1
6.7



Lung cancer 2
84.7



Lung NAT 2
7.6



Squamous cell carcinoma 3
64.2



Lung NAT 3
2.2



Metastatic melanoma 1
29.3



Melanoma 2
34.2



Melanoma 3
12.9



Metastatic melanoma 4
66.9



Metastatic melanoma 5
59.9



Bladder cancer 1
2.5



Bladder NAT 1
0.0



Bladder cancer 2
7.7



Bladder NAT 2
0.0



Bladder NAT 3
0.9



Bladder NAT 4
4.1



Prostate adenocarcinoma 1
38.7



Prostate adenocarcinoma 2
6.9



Prostate adenocarcinoma 3
13.5



Prostate adenocarcinoma 4
42.3



Prostate NAT 5
12.3



Prostate adenocarcinoma 6
5.0



Prostate adenocarcinoma 7
7.7



Prostate adenocarcinoma 8
2.5



Prostate adenocarcinoma 9
24.3



Prostate NAT 10
4.0



Kidney cancer 1
41.8



Kidney NAT 1
18.6



Kidney cancer 2
100.0



Kidney NAT 2
22.7



Kidney cancer 3
31.2



Kidney NAT 3
13.2



Kidney cancer 4
27.7



Kidney NAT 4
15.4











[0965] CNS_neurodegeneration_v1.0 Summary: Ag805/Ag3770 Two experiments with different probe and primer sets produce results that are in excellent agreement. These panels confirm the expression of this gene at low levels in the brain in an independent group of individuals. This gene appears to be slightly down-regulated in the temporal cortex of Alzheimer's disease patients. Therefore, up-regulation of this gene or its protein product, or treatment with specific agonists for this receptor may be of use in reversing the dementia, memory loss, and neuronal death associated with this disease.


[0966] General_screening_panel_v1.4 Summary: Ag3770 Highest expression of this gene is seen in a gastric cancer cell line (CT=26.7). This gene is widely expressed in this panel, with high to moderate expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[0967] Among tissues with metabolic function, this gene is expressed at moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[0968] In addition, this gene is expressed at much higher levels in fetal lung tissue (CT=28.5) when compared to expression in the adult counterpart (CT=32). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.


[0969] This gene is also expressed at moderate to low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0970] Panel 1.3D Summary: Ag805 Highest expression is in fetal kidney (CT=29.2). This gene is widely expressed in this panel, with moderate to low expression in many samples on this panel. Please see Panel 1.4 for further discussion of expression and utility of this gene.


[0971] Panel 4.1D Summary: Ag805/Ag3770 Two experiments with different probe and primer sets are in good agreements with highest expression of this gene seen in activated secondary Th2 cells and 2 way MLR (CTs=27.6-28). This gene is also expressed at moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[0972] general oncology screening panel_v2.4 Summary: Ag3770 Highest expression is seen in a kidney cancer (CT=29.5). In addition, this gene is more highly expressed in lung, colon and kidney cancer than in the corresponding normal adjacent tissue. Prominent expression is seen in prostate cancer and melanoma as well. Thus, expression of this gene could be used as a marker of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of lung, colon, prostate, melanoma and kidney cancer.


[0973] AG. CG96334-02: DUAL-SPECIFICITY TYROSINE-PHOSPHORYLATION REGULATED KINASE 1A-Like Gene


[0974] Expression of gene CG96334-02 was assessed using the primer-probe set Ag7413, described in Table AGA. Results of the RTQ-PCR runs are shown in Tables AGB, AGC and AGD.
347TABLE AGAProbe Name Ag7413StartPrimersSequencesLengthPositionSEQ ID NoForward5′-aagcatattaatgaggagtacaa26302329acc-3′ProbeTET-5′-aggaacccgtaaacttcat30331330aacattcttgg-3′-TAMRAReverse5′-ccaccaggtcctcctgttt-3′19366331


[0975]

348





TABLE AGB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag7413, Run



Tissue Name
305064633














AD 1 Hippo
15.9



AD 2 Hippo
13.1



AD 3 Hippo
6.8



AD 4 Hippo
5.8



AD 5 Hippo
100.0



AD 6 Hippo
36.3



Control 2 Hippo
25.9



Control 4 Hippo
14.0



Control (Path) 3 Hippo
11.7



AD 1 Temporal Ctx
18.8



AD 2 Temporal Ctx
41.5



AD 3 Temporal Ctx
3.6



AD 4 Temporal Ctx
13.9



AD 5 Inf Temporal Ctx
76.8



AD 5 Sup Temporal Ctx
28.5



AD 6 Inf Temporal Ctx
40.3



AD 6 Sup Temporal Ctx
43.2



Control 1 Temporal Ctx
3.8



Control 2 Temporal Ctx
51.8



Control 3 Temporal Ctx
12.5



Control 3 Temporal Ctx
11.3



Control (Path) 1 Temporal Ctx
33.0



Control (Path) 2 Temporal Ctx
31.4



Control (Path) 3 Temporal Ctx
4.8



Control (Path) 4 Temporal Ctx
25.0



AD 1 Occipital Ctx
16.6



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
5.2



AD 4 Occipital Ctx
13.2



AD 5 Occipital Ctx
45.4



AD 6 Occipital Ctx
21.9



Control 1 Occipital Ctx
3.0



Control 2 Occipital Ctx
55.9



Control 3 Occipital Ctx
15.0



Control 4 Occipital Ctx
6.2



Control (Path) 1 Occipital Ctx
73.7



Control (Path) 2 Occipital Ctx
6.4



Control (Path) 3 Occipital Ctx
3.5



Control (Path) 4 Occipital Ctx
12.4



Control 1 Parietal Ctx
5.8



Control 2 Parietal Ctx
26.8



Control 3 Parietal Ctx
23.2



Control (Path) 1 Parietal Ctx
92.0



Control (Path) 2 Parietal Ctx
11.2



Control (Path) 3 Parietal Ctx
1.9



Control (Path) 4 Parietal Ctx
27.5











[0976]

349





TABLE AGC










General_screening_panel_v1.6











Rel. Exp. (%)




Ag7413, Run



Tissue Name
306067377














Adipose
9.3



Melanoma* Hs688(A).T
15.3



Melanoma* Hs688(B).T
22.5



Melanoma* M14
38.2



Melanoma* LOXIMVI
35.6



Melanoma* SK-MEL-5
50.0



Squamous cell carcinoma SCC-4
11.4



Testis Pool
22.2



Prostate ca.* (bone met) PC-3
55.5



Prostate Pool
11.8



Placenta
11.4



Uterus Pool
5.4



Ovarian ca. OVCAR-3
46.0



Ovarian ca. SK-OV-3
42.9



Ovarian ca. OVCAR-4
11.3



Ovarian ca. OVCAR-5
25.2



Ovarian ca. IGROV-1
6.9



Ovarian ca. OVCAR-8
6.7



Ovary
11.9



Breast ca. MCF-7
24.7



Breast ca. MDA-MB-231
22.7



Breast ca. BT 549
55.1



Breast ca. T47D
30.6



Breast ca. MDA-N
12.5



Breast Pool
34.4



Trachea
24.3



Lung
10.4



Fetal Lung
77.9



Lung ca. NCI-N417
6.7



Lung ca. LX-1
34.2



Lung ca. NCI-H146
12.5



Lung ca. SHP-77
29.3



Lung ca. A549
21.2



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
36.9



Lung ca. NCI-H460
27.7



Lung ca. HOP-62
13.2



Lung ca. NCI-H522
37.9



Liver
0.0



Fetal Liver
37.6



Liver ca. HepG2
15.6



Kidney Pool
33.9



Fetal Kidney
48.6



Renal ca. 786-0
24.5



Renal ca. A498
15.2



Renal ca. ACHN
10.7



Renal ca. UO-31
16.8



Renal ca. TK-10
24.1



Bladder
18.7



Gastric ca. (liver met.) NCI-N87
3.1



Gastric ca. KATO III
40.9



Colon ca. SW-948
5.0



Colon ca. SW480
40.9



Colon ca.* (SW480 met) SW620
23.8



Colon ca. HT29
15.9



Colon ca. HCT-116
30.4



Colon ca. CaCo-2
49.7



Colon cancer tissue
12.9



Colon ca. SW1116
6.4



Colon ca. Colo-205
5.8



Colon ca. SW-48
0.0



Colon Pool
27.5



Small Intestine Pool
30.1



Stomach Pool
14.3



Bone Marrow Pool
12.2



Fetal Heart
46.3



Heart Pool
17.0



Lymph Node Pool
35.8



Fetal Skeletal Muscle
28.7



Skeletal Muscle Pool
10.2



Spleen Pool
8.6



Thymus Pool
26.6



CNS cancer (glio/astro) U87-MG
32.8



CNS cancer (glio/astro) U-118-MG
40.3



CNS cancer (neuro; met) SK-N-AS
47.0



CNS cancer (astro) SF-539
32.8



CNS cancer (astro) SNB-75
100.0



CNS cancer (glio) SNB-19
11.9



CNS cancer (glio) SF-295
71.2



Brain (Amygdala) Pool
7.9



Brain (cerebellum)
42.0



Brain (fetal)
36.6



Brain (Hippocampus) Pool
17.2



Cerebral Cortex Pool
20.6



Brain (Substantia nigra) Pool
11.3



Brain (Thalamus) Pool
26.6



Brain (whole)
30.6



Spinal Cord Pool
10.0



Adrenal Gland
24.5



Pituitary gland Pool
7.1



Salivary Gland
6.5



Thyroid (female)
2.4



Pancreatic ca. CAPAN2
15.5



Pancreas Pool
7.6











[0977]

350





TABLE AGP










Panel 4.1D









Rel. Exp. (%)



Ag7413, Run


Tissue Name
305065274











Secondary Th1 act
71.7


Secondary Th2 act
93.3


Secondary Tr1 act
36.6


Secondary Th1 rest
17.1


Secondary Th2 rest
28.7


Secondary Tr1 rest
12.9


Primary Th1 act
12.9


Primary Th2 act
68.8


Primary Tr1 act
56.3


Primary Th1 rest
6.8


Primary Th2 rest
10.6


Primary Tr1 rest
10.4


CD45RA CD4 lymphocyte act
58.6


CD45RO CD4 lymphocyte act
95.3


CD8 lymphocyte act
8.8


Secondary CD8 lymphocyte rest
47.3


Secondary CD8 lymphocyte act
7.6


CD4 lymphocyte none
28.1


2ry Th1/Th2/Tr1_anti-CD95 CH11
20.3


LAK cells rest
35.4


LAK cells IL-2
19.8


LAK cells IL-2 + IL-12
2.7


LAK cells IL-2 + IFN gamma
18.3


LAK cells IL-2 + IL-18
9.5


LAK cells PMA/ionomycin
65.1


NK Cells IL-2 rest
72.7


Two Way MLR 3 day
60.3


Two Way MLR 5 day
13.2


Two Way MLR 7 day
15.0


PBMC rest
22.8


PBMC PWM
13.4


PBMC PHA-L
21.5


Ramos (B cell) none
23.5


Ramos (B cell) ionomycin
41.8


B lymphocytes PWM
20.2


B lymphocytes CD40L and IL-4
56.3


EOL-1 dbcAMP
56.6


EOL-1 dbcAMP PMA/ionomycin
23.7


Dendritic cells none
28.3


Dendritic cells LPS
18.4


Dendritic cells anti-CD40
5.8


Monocytes rest
16.0


Monocytes LPS
68.3


Macrophages rest
11.8


Macrophages LPS
23.5


HUVEC none
27.9


HUVEC starved
30.6


HUVEC IL-1beta
35.1


HUVEC IFN gamma
31.9


HUVEC TNF alpha + IFN gamma
26.6


HUVEC TNF alpha + IL4
16.6


HUVEC IL-11
36.1


Lung Microvascular EC none
45.4


Lung Microvascular EC TNFalpha + IL-1beta
12.5


Microvascular Dermal EC none
16.0


Microsvasular Dermal EC TNFalpha + IL-1beta
7.8


Bronchial epithelium TNFalpha + IL1beta
17.6


Small airway epithelium none
4.0


Small airway epithelium TNFalpha + IL-1beta
21.3


Coronery artery SMC rest
16.4


Coronery artery SMC TNFalpha + IL-1beta
14.2


Astrocytes rest
9.9


Astrocytes TNFalpha + IL-1beta
22.8


KU-812 (Basophil) rest
60.3


KU-812 (Basophil) PMA/ionomycin
96.6


CCD1106 (Keratinocytes) none
32.3


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
16.0


Liver cirrhosis
27.2


NCI-H292 none
36.1


NCI-H292 IL-4
46.3


NCI-H292 IL-9
51.4


NCI-H292 IL-13
46.7


NCI-H292 IFN gamma
44.8


HPAEC none
15.7


HPAEC TNF alpha + IL-1 beta
34.2


Lung fibroblast none
37.6


Lung fibroblast TNF alpha + IL-1 beta
31.0


Lung fibroblast IL-4
19.1


Lung fibroblast IL-9
57.4


Lung fibroblast IL-13
9.2


Lung fibroblast IFN gamma
22.8


Dermal fibroblast CCD1070 rest
52.5


Dermal fibroblast CCD1070 TNF alpha
94.0


Dermal fibroblast CCD1070 IL-1 beta
21.8


Dermal fibroblast IFN gamma
25.9


Dermal fibroblast IL-4
36.1


Dermal Fibroblasts rest
25.7


Neutrophils TNFa + LPS
41.2


Neutrophils rest
100.0


Colon
14.6


Lung
8.4


Thymus
39.2


Kidney
49.3










[0978] CNS_neurodegeneration_v1.0 Summary: Ag7413 This gene is expressed at low levels in the CNS. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[0979] General_screening_panel_v1.6 Summary: Ag7413 Detectable expression of this gene is limited to two brain cancer cell line samples. Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of brain cancer.


[0980] Panel 4.1D Summary: Ag7413 Highest expression of this gene is seen in resting neutrophils (CT=32.9). Low but significant expression is seen in many samples on this panel, including samples derived from T cells, LAK cells, LPS stimulated monocytes and macrohpages, lung and dermal fibroblasts, and normal kidney and thymus. Therefore, therapeutic modulation of this gene or its protein product may be useful in the treatment of autoimmune and inflammatory diseases such as lupus erythematosus, asthma, emphysema, Crohn's disease, ulcerative colitis, rheumatoid arthritis, osteoarthritis, and psoriasis. In addition, small molecule or antibody antagonists of this gene product may be effective in increasing the immune response in patients with AIDS or other immunodeficiencies.


[0981] AH. CG96714-01: UDP-Galactose Transporter Related Isozyme 1-Like Gene


[0982] Expression of gene CG96714-01 was assessed using the primer-probe set Ag4074, described in Table AHA. Results of the RTQ-PCR runs are shown in Tables AHB and AHC.
351TABLE AHAProbe Name Ag4074StartPrimersSequencesLengthPositionSEQ ID NoForward5′-aaggtaccctgccatcatctat-3′22789332ProbeTET-5′-acatcctgctctttgggctg26812333accagt-3′-TAMRAReverse5′-caaccgtcataaagatgaagct-3′22850334


[0983]

352





TABLE AHB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4074, Run



Tissue Name
218906368














Adipose
2.8



Melanoma* Hs688(A).T
13.7



Melanoma* Hs688(B).T
16.5



Melanoma* M14
19.8



Melanoma* LOXIMVI
29.9



Melanoma* SK-MEL-5
27.0



Squamous cell carcinoma SCC-4
18.6



Testis Pool
3.9



Prostate ca.* (bone met) PC-3
82.9



Prostate Pool
2.6



Placenta
5.6



Uterus Pool
1.1



Ovarian ca. OVCAR-3
31.0



Ovarian ca. SK-OV-3
27.4



Ovarian ca. OVCAR-4
11.0



Ovarian ca. OVCAR-5
48.6



Ovarian ca. IGROV-1
28.7



Ovarian ca. OVCAR-8
12.7



Ovary
2.5



Breast ca. MCF-7
23.7



Breast ca. MDA-MB-231
30.6



Breast ca. BT 549
8.0



Breast ca. T47D
100.0



Breast ca. MDA-N
5.6



Breast Pool
0.0



Trachea
7.6



Lung
1.3



Fetal Lung
8.5



Lung ca. NCI-N417
5.2



Lung ca. LX-1
14.2



Lung ca. NCI-H146
9.3



Lung ca. SHP-77
25.9



Lung ca. A549
29.1



Lung ca. NCI-H526
8.4



Lung ca. NCI-H23
18.6



Lung ca. NCI-H460
21.9



Lung ca. HOP-62
15.9



Lung ca. NCI-H522
34.9



Liver
2.7



Fetal Liver
11.7



Liver ca. HepG2
12.2



Kidney Pool
4.8



Fetal Kidney
7.7



Renal ca. 786-0
6.7



Renal ca. A498
5.9



Renal ca. ACHN
9.8



Renal ca. UO-31
10.7



Renal ca. TK-10
20.2



Bladder
10.8



Gastric ca. (liver met.) NCI-N87
38.7



Gastric ca. KATO III
62.9



Colon ca. SW-948
12.2



Colon ca. SW480
16.6



Colon ca.* (SW480 met) SW620
16.0



Colon ca. HT29
9.2



Colon ca. HCT-116
55.5



Colon ca. CaCo-2
71.7



Colon cancer tissue
11.0



Colon ca. SW1116
6.1



Colon ca. Colo-205
11.5



Colon ca. SW-48
6.3



Colon Pool
4.3



Small Intestine Pool
3.1



Stomach Pool
2.6



Bone Marrow Pool
1.9



Fetal Heart
7.5



Heart Pool
3.2



Lymph Node Pool
4.4



Fetal Skeletal Muscle
4.9



Skeletal Muscle Pool
9.0



Spleen Pool
3.1



Thymus Pool
4.3



CNS cancer (glio/astro) U87-MG
43.8



CNS cancer (glio/astro) U-118-MG
25.5



CNS cancer (neuro; met) SK-N-AS
30.6



CNS cancer (astro) SF-539
16.4



CNS cancer (astro) SNB-75
21.3



CNS cancer (glio) SNB-19
25.3



CNS cancer (glio) SF-295
44.1



Brain (Amygdala) Pool
4.9



Brain (cerebellum)
9.4



Brain (fetal)
6.3



Brain (Hippocampus) Pool
4.5



Cerebral Cortex Pool
5.8



Brain (Substantia nigra) Pool
5.4



Brain (Thalamus) Pool
7.2



Brain (whole)
0.0



Spinal Cord Pool
3.8



Adrenal Gland
5.6



Pituitary gland Pool
3.6



Salivary Gland
5.2



Thyroid (female)
6.3



Pancreatic ca. CAPAN2
6.4



Pancreas Pool
3.9











[0984]

353





TABLE AHC










Panel 5D









Rel. Exp. (%)



Ag4074, Run


Tissue Name
172166872











97457_Patient-02go_adipose
15.4


97476_Patient-07sk_skeletal muscle
9.3


97477_Patient-07ut_uterus
10.7


97478_Patient-07pl_placenta
36.3


97481_Patient-08sk_skeletal muscle
8.8


97482_Patient-08ut_uterus
8.4


97483_Patient-08pl_placenta
43.5


97486_Patient-09sk_skeletal muscle
7.9


97487_Patient-09ut_uterus
8.5


97488_Patient-09pl_placenta
16.5


97492_Patient-10ut_uterus
14.2


97493_Patient-10pl_placenta
58.6


97495_Patient-11go_adipose
8.8


97496_Patient-11sk_skeletal muscle
29.5


97497_Patient-11ut_uterus
17.1


97498_Patient-11pl_placenta
39.5


97500_Patient-12go_adipose
17.9


97501_Patient-12sk_skeletal muscle
72.7


97502_Patient-12ut_uterus
17.6


97503_Patient-12pl_placenta
26.4


94721_Donor 2 U - A_Mesenchymal Stem Cells
36.6


94722_Donor 2 U - B_Mesenchymal Stem Cells
22.5


94723_Donor 2 U - C_Mesenchymal Stem Cells
27.5


94709_Donor 2 AM - A_adipose
100.0


94710_Donor 2 AM - B_adipose
62.4


94711_Donor 2 AM - C_adipose
39.8


94712_Donor 2 AD - A_adipose
37.9


94713_Donor 2 AD - B_adipose
58.2


94714_Donor 2 AD - C adipose
42.9


94742_Donor 3 U - A_Mesenchymal Stem Cells
27.4


94743_Donor 3 U - B_Mesenchymal Stem Cells
24.5


94730_Donor 3 AM - A_adipose
88.3


94731_Donor 3 AM - B_adipose
45.1


94732_Donor 3 AM - C_adipose
60.7


94733_Donor 3 AD - A_adipose
88.3


94734_Donor 3 AD - B_adipose
43.2


94735_Donor 3 AD - C_adipose
79.6


77138_Liver_HepG2untreated
93.3


73556_Heart_Cardiac stromal cells (primary)
40.3


81735_Small Intestine
23.7


72409_Kidney_Proximal Convoluted Tubule
19.2


82685_Small intestine_Duodenum
40.6


90650_Adrenal_Adrenocortical adenoma
10.4


72410_Kidney_HRCE
49.3


72411_Kidney_HRE
49.0


73139_Uterus_Uterine smooth muscle cells
21.9










[0985] General_screening_panel_v1.4 Summary: Ag4074 Highest expression of this gene is detected in breast cancer T47D cell line (CT=26). High levels of expression of this gene is also seen in cluster of cell lines derived from pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers. Thus, expression of this gene could be used as a marker to detect the presence of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of pancreatic, gastric, colon, lung, liver, renal, breast, ovarian, prostate, squamous cell carcinoma, melanoma and brain cancers.


[0986] Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.


[0987] In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, therapeutic modulation of this gene product may be useful in the treatment of central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.


[0988] Panel 5D Summary: Ag4074 Highest expression of this gene is detected in adipose (CT-30). Consistent with expression seen in panel 1.4, this gene shows ubiquitous expression in this panel. Please see panel 1.4 for further discussion on the utility of this gene.


[0989] AI. CG97025-01: HMG-CoA Synthase-Like Gene


[0990] Expression of gene CG97025-01 was assessed using the primer-probe set Ag4087, described in Table AIA. Results of the RTQ-PCR runs are shown in Tables AIB, AIC, AID, AIE, AIF, AIG and AIH.
354TABLE AIAProbe Name Ag4087StartPrimersSequencesLengthPositionSEQ ID NoForward5′-ttcagtatatggttcccttgca-3′221062335ProbeTET-5′-tgttctagcacagtactcac271086336ctcagca-3′-TAMRAReverse5′-actccaattctcttccctgcta-3′221115337


[0991]

355





TABLE AIB










CNS_neurodegeneration_v1.0











Rel. Exp. (%)




Ag4087, Run



Tissue Name
214295439














AD 1 Hippo
8.4



AD 2 Hippo
19.2



AD 3 Hippo
2.3



AD 4 Hippo
4.7



AD 5 hippo
38.2



AD 6 Hippo
100.0



Control 2 Hippo
27.2



Control 4 Hippo
8.7



Control (Path) 3 Hippo
2.8



AD 1 Temporal Ctx
5.7



AD 2 Temporal Ctx
27.5



AD 3 Temporal Ctx
2.2



AD 4 Temporal Ctx
17.9



AD 5 Inf Temporal Ctx
54.0



AD 5 Sup Temporal Ctx
13.5



AD 6 Inf Temporal Ctx
72.7



AD 6 Sup Temporal Ctx
87.7



Control 1 Temporal Ctx
3.4



Control 2 Temporal Ctx
25.9



Control 3 Temporal Ctx
10.2



Control 4 Temporal Ctx
5.8



Control (Path) 1 Temporal Ctx
54.0



Control (Path) 2 Temporal Ctx
49.7



Control (Path) 3 Temporal Ctx
2.3



Control (Path) 4 Temporal Ctx
23.0



AD 1 Occipital Ctx
5.5



AD 2 Occipital Ctx (Missing)
0.0



AD 3 Occipital Ctx
2.5



AD 4 Occipital Ctx
15.6



AD 5 Occipital Ctx
50.7



AD 6 Occipital Ctx
22.5



Control 1 Occipital Ctx
1.4



Control 2 Occipital Ctx
29.9



Control 3 Occipital Ctx
10.0



Control 4 Occipital Ctx
4.2



Control (Path) 1 Occipital Ctx
82.4



Control (Path) 2 Occipital Ctx
10.6



Control (Path) 3 Occipital Ctx
1.1



Control (Path) 4 Occipital Ctx
9.2



Control 1 Parietal Ctx
3.5



Control 2 Parietal Ctx
18.7



Control 3 Parietal Ctx
14.7



Control (Path) 1 Parietal Ctx
72.2



Control (Path) 2 Parietal Ctx
23.2



Control (Path) 3 Parietal Ctx
1.8



Control (Path) 4 Parietal Ctx
23.2











[0992]

356





TABLE AIC










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4087, Run



Tissue Name
219430028














Adipose
2.3



Melanoma* Hs688(A).T
3.2



Melanoma* Hs688(B).T
8.8



Melanoma* M14
18.6



Melanoma* LOXIMVI
4.4



Melanoma* SK-MEL-5
21.6



Squamous cell carcinoma SCC-4
39.5



Testis Pool
6.2



Prostate ca.* (bone met) PC-3
6.8



Prostate Pool
0.6



Placenta
1.3



Uterus Pool
2.0



Ovarian ca. OVCAR-3
80.7



Ovarian ca. SK-OV-3
26.6



Ovarian ca. OVCAR-4
7.1



Ovarian ca. OVCAR-5
31.4



Ovarian ca. IGROV-1
58.6



Ovarian ca. OVCAR-8
3.5



Ovary
11.4



Breast ca. MCF-7
17.9



Breast ca. MDA-MB-231
12.9



Breast ca. BT 549
38.7



Breast ca. T47D
55.9



Breast ca. MDA-N
7.9



Breast Pool
2.4



Trachea
3.8



Lung
1.2



Fetal Lung
9.9



Lung ca. NCI-N417
22.4



Lung ca. LX-1
16.8



Lung ca. NCI-H146
28.5



Lung ca. SHP-77
36.6



Lung ca. A549
25.2



Lung ca. NCI-H526
25.7



Lung ca. NCI-H23
16.7



Lung ca. NCI-H460
4.5



Lung ca. HOP-62
23.0



Lung ca. NCI-H522
9.2



Liver
1.3



Fetal Liver
100.0



Liver ca. HepG2
50.7



Kidney Pool
6.0



Fetal Kidney
8.8



Renal ca. 786-0
31.0



Renal ca. A498
4.1



Renal ca. ACHN
20.9



Renal ca. UO-31
18.6



Renal ca. TK-10
24.7



Bladder
17.6



Gastric ca. (liver met.) NCI-N87
23.3



Gastric ca. KATO III
79.6



Colon ca. SW-948
14.2



Colon ca. SW480
10.7



Colon ca.* (SW480 met) SW620
9.5



Colon ca. HT29
20.4



Colon ca. HCT-116
24.8



Colon ca. CaCo-2
63.3



Colon cancer tissue
5.0



Colon ca. SW1116
3.3



Colon ca. Colo-205
10.2



Colon ca. SW-48
7.9



Colon Pool
2.8



Small Intestine Pool
3.2



Stomach Pool
2.7



Bone Marrow Pool
1.2



Fetal Heart
4.1



Heart Pool
1.5



Lymph Node Pool
2.9



Fetal Skeletal Muscle
0.2



Skeletal Muscle Pool
2.4



Spleen Pool
4.4



Thymus Pool
3.3



CNS cancer (glio/astro) U87-MG
10.4



CNS cancer (glio/astro) U-118-MG
8.7



CNS cancer (neuro; met) SK-N-AS
19.3



CNS cancer (astro) SF-539
42.9



CNS cancer (astro) SNB-75
26.1



CNS cancer (glio) SNB-19
51.8



CNS cancer (glio) SF-295
11.4



Brain (Amygdala) Pool
11.3



Brain (cerebellum)
3.3



Brain (fetal)
52.5



Brain (Hippocampus) Pool
17.7



Cerebral Cortex Pool
17.8



Brain (Substantia nigra) Pool
15.9



Brain (Thalamus) Pool
26.2



Brain (whole)
14.9



Spinal Cord Pool
13.2



Adrenal Gland
23.0



Pituitary gland Pool
1.2



Salivary Gland
0.8



Thyroid (female)
2.1



Pancreatic ca. CAPAN2
56.6



Pancreas Pool
4.9











[0993]

357





TABLE AID










Panel 3D









Rel. Exp. (%)



Ag4087, Run


Tissue Name
184795547











Daoy- Medulloblastoma
3.3


TE671- Medulloblastoma
8.3


D283 Med- Medulloblastoma
10.4


PFSK-1- Primitive Neuroectodermal
4.9


XF-498- CNS
4.4


SNB-78- Glioma
4.8


SF-268- Glioblastoma
4.1


T98G- Glioblastoma
6.9


SK-N-SH- Neuroblastoma (metastasis)
2.0


SF-295- Glioblastoma
2.1


Cerebellum
5.8


Cerebellum
1.7


NCI-H292- Mucoepidermoid lung carcinoma
13.9


DMS-114- Small cell lung cancer
4.5


DMS-79- Small cell lung cancer
100.0


NCI-H146- Small cell lung cancer
57.0


NCI-H526- Small cell lung cancer
54.3


NCI-N417- Small cell lung cancer
34.9


NCI-H82- Small cell lung cancer
10.9


NCI-H157- Squamous cell lung cancer (metastasis)
2.4


NCI-H1155- Large cell lung cancer
7.9


NCI-H1299- Large cell lung cancer
4.1


NCI-H727- Lung carcinoid
11.2


NCI-UMC-11- Lung carcinoid
76.8


LX-1- Small cell lung cancer
13.0


Colo-205- Colon cancer
17.4


KM12- Colon cancer
9.1


KM20L2- Colon cancer
5.6


NCI-H716- Colon cancer
10.6


SW-48- Colon adenocarcinoma
7.5


SW1116- Colon adenocarcinoma
2.4


LS 174T- Colon adenocarcinoma
11.4


SW-948- Colon adenocarcinoma
1.0


SW-480- Colon adenocarcinoma
6.7


NCI-SNU-5- Gastric carcinoma
1.2


KATO III- Gastric carcinoma
28.3


NCI-SNU-16- Gastric carcinoma
1.7


NCI-SNU-1- Gastric carcinoma
70.2


RF-1- Gastric adenocarcinoma
11.5


RF-48- Gastric adenocarcinoma
8.5


MKN-45- Gastric carcinoma
11.4


NCI-N87- Gastric carcinoma
8.6


OVCAR-5- Ovarian carcinoma
1.5


RL95-2- Uterine carcinoma
2.2


HelaS3- Cervical adenocarcinoma
1.2


Ca Ski- Cervical epidermoid carcinoma
26.2


(metastasis)


ES-2- Ovarian clear cell carcinoma
1.5


Ramos- Stimulated with PMA/ionomycin 6 h
37.9


Ramos- Stimulated with PMA/ionomycin 14 h
24.8


MEG-01- Chronic myelogenous leukemia
10.1


(megokaryoblast)


Raji- Burkitt's lymphoma
6.7


Daudi- Burkitt's lymphoma
22.5


U266- B-cell plasmacytoma
9.6


CA46- Burkitt's lymphoma
10.4


RL- non-Hodgkin's B-cell lymphoma
7.5


JM1- pre-B-cell lymphoma
7.1


Jurkat- T cell leukemia
37.4


TF-1- Erythroleukemia
31.6


HUT 78- T-cell lymphoma
5.3


U937- Histiocytic lymphoma
5.3


KU-812- Myelogenous leukemia
20.4


769-P- Clear cell renal carcinoma
4.5


Caki-2- Clear cell renal carcinoma
5.7


SW 839- Clear cell renal carcinoma
4.6


G401- Wilms' tumor
5.0


Hs766T- Pancreatic carcinoma (LN metastasis)
2.6


CAPAN-1- Pancreatic adenocarcinoma
17.0


(liver metastasis)


SU86.86- Pancreatic carcinoma (liver metastasis)
20.0


BxPC-3- Pancreatic adenocarcinoma
15.0


HPAC- Pancreatic adenocarcinoma
80.1


MIA PaCa-2- Pancreatic carcinoma
1.2


CFPAC-1- Pancreatic ductal adenocarcinoma
24.7


PANC-1- Pancreatic epithelioid ductal carcinoma
4.2


T24- Bladder carcinma (transitional cell)
4.2


5637- Bladder carcinoma
6.0


HT-1197- Bladder carcinoma
14.8


UM-UC-3- Bladder carcinma (transitional cell)
1.8


A204- Rhabdomyosarcoma
0.9


HT-1080- Fibrosarcoma
9.3


MG-63- Osteosarcoma
2.6


SK-LMS-1- Leiomyosarcoma (vulva)
6.3


SJRH30- Rhabdomyosarcoma (met to bone marrow)
5.1


A431- Epidermoid carcinoma
6.9


WM266-4- Melanoma
1.0


DU 145- Prostate carcinoma (brain metastasis)
0.7


MDA-MB-468- Breast adenocarcinoma
9.8


SCC-4- Squamous cell carcinoma of tongue
1.6


SCC-9- Squamous cell carcinoma of tongue
0.2


SCC-15- Squamous cell carcinoma of tongue
0.5


CAL 27- Squamous cell carcinoma of tongue
7.5










[0994]

358





TABLE AIE










Panel 4.1D









Rel. Exp. (%)



Ag4087, Run


Tissue Name
184793001











Secondary Th1 act
34.2


Secondary Th2 act
32.8


Secondary Tr1 act
27.0


Secondary Th1 rest
10.0


Secondary Th2 rest
13.4


Secondary Tr1 rest
10.3


Primary Th1 act
26.6


Primary Th2 act
68.8


Primary Tr1 act
66.9


Primary Th1 rest
8.2


Primary Th2 rest
2.7


Primary Tr1 rest
10.7


CD45RA CD4 lymphocyte act
24.1


CD45RO CD4 lymphocyte act
55.5


CD8 lymphocyte act
33.0


Secondary CD8 lymphocyte rest
37.1


Secondary CD8 lymphocyte act
15.6


CD4 lymphocyte none
1.4


2ry Th1/Th2/Tr1_anti-CD95 CH11
8.1


LAK cells rest
32.3


LAK cells IL-2
40.3


LAK cells IL-2 + IL-12
11.7


LAK cells IL-2 + IFN gamma
10.5


LAK cells IL-2 + IL-18
13.3


LAK cells PMA/ionomycin
83.5


NK Cells IL-2 rest
33.7


Two Way MLR 3 day
10.9


Two Way MLR 5 day
10.6


Two Way MLR 7 day
10.7


PBMC rest
2.0


PBMC PWM
27.0


PBMC PHA-L
19.6


Ramos (B cell) none
45.1


Ramos (B cell) ionomycin
68.8


B lymphocytes PWM
25.2


B lymphocytes CD40L and IL-4
22.1


EOL-1 dbcAMP
8.4


EOL-1 dbcAMP PMA/ionomycin
18.4


Dendritic cells none
28.9


Dendritic cells LPS
20.9


Dendritic cells anti-CD40
7.5


Monocytes rest
4.0


Monocytes LPS
26.4


Macrophages rest
13.0


Macrophages LPS
5.8


HUVEC none
19.3


HUVEC starved
34.6


HUVEC IL-1beta
27.0


HUVEC IFN gamma
21.0


HUVEC TNF alpha + IFN gamma
20.2


HUVEC TNF alpha + IL4
17.9


HUVEC IL-11
12.8


Lung Microvascular EC none
23.3


Lung Microvascular EC TNFalpha + IL-1beta
19.9


Microvascular Dermal EC none
5.1


Microsvasular Dermal EC TNFalpha + IL-1beta
11.1


Bronchial epithelium TNFalpha + IL1beta
40.9


Small airway epithelium none
16.0


Small airway epithelium TNFalpha + IL-1beta
100.0


Coronery artery SMC rest
2.5


Coronery artery SMC TNFalpha + IL-1beta
3.7


Astrocytes rest
4.3


Astrocytes TNFalpha + IL-1beta
5.5


KU-812 (Basophil) rest
39.8


KU-812 (Basophil) PMA/ionomycin
95.3


CCD1106 (Keratinocytes) none
79.6


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
59.0


Liver cirrhosis
4.8


NCI-H292 none
10.2


NCI-H292 IL-4
12.5


NCI-H292 IL-9
18.4


NCI-H292 IL-13
14.8


NCI-H292 IFN gamma
9.2


HPAEC none
4.8


HPAEC TNF alpha + IL-1 beta
24.5


Lung fibroblast none
17.7


Lung fibroblast TNF alpha + IL-1 beta
3.9


Lung fibroblast IL-4
18.3


Lung fibroblast IL-9
20.2


Lung fibroblast IL-13
11.7


Lung fibroblast IFN gamma
10.0


Dermal fibroblast CCD1070 rest
4.4


Dermal fibroblast CCD1070 TNF alpha
19.6


Dermal fibroblast CCD1070 IL-1 beta
3.7


Dermal fibroblast IFN gamma
6.7


Dermal fibroblast IL-4
30.4


Dermal Fibroblasts rest
13.9


Neutrophils TNFa + LPS
3.3


Neutrophils rest
1.4


Colon
2.6


Lung
4.0


Thymus
4.0


Kidney
5.3










[0995]

359





TABLE AIF










Panel 5 Islet









Rel.Exp. (%)



Ag4087, Run


Tissue Name
186511156











97457_Patient-02go_adipose
1.8


97476_Patient-07sk_skeletal muscle
2.3


97477_Patient-07ut_uterus
3.6


97478_Patient-07pl_placenta
5.5


99167_Bayer Patient 1
13.8


97482_Patient-08ut_uterus
1.3


97483_Patient-08pl_placenta
4.5


97486_Patient-09sk_skeletal muscle
0.4


97487_Patient-09ut_uterus
3.0


97488_Patient-09pl_placenta
3.5


97492_Patient-10ut_uterus
2.7


97493_Patient-10pl_placenta
12.6


97495_Patient-11go_adipose
2.2


97496_Patient-11sk_skeletal muscle
2.9


97497_Patient-11ut_uterus
4.5


97498_Patient-11pl_placenta
3.3


97500_Patient-12go_adipose
5.2


97501_Patient-12sk_skeletal muscle
6.2


97502_Patient-12ut_uterus
4.7


97503_Patient-12pl_placenta
6.2


94721_Donor 2 U - A_Mesenchymal Stem Cells
7.9


94722_Donor 2 U - B_Mesenchymal Stem Cells
5.0


94723_Donor 2 U - C_Mesenchymal Stem Cells
9.5


94709_Donor 2 AM - A_adipose
10.6


94710_Donor 2 AM - B_adipose
7.2


94711_Donor 2 AM - C_adipose
2.6


94712_Donor 2 AD - A_adipose
14.0


94713_Donor 2 AD - B_adipose
13.7


94714_Donor 2 AD - C_adipose
14.8


94742_Donor 3 U - A_Mesenchymal Stem Cells
7.2


94743_Donor 3 U - B_Mesenchymal Stem Cells
8.5


94730_Donor 3 AM - A_adipose
12.9


94731_Donor 3 AM - B_adipose
7.9


94732_Donor 3 AM - C_adipose
7.7


94733_Donor 3 AD - A_adipose
28.9


94734_Donor 3 AD - B_adipose
5.6


94735_Donor 3 AD - C_adipose
23.8


77138_Liver_HepG2untreated
100.0


73556_Heart_Cardiac stromal cells (primary)
2.9


81735_Small Intestine
10.3


72409_Kidney_Proximal Convoluted Tubule
8.8


82685_Small intestine_Duodenum
1.8


90650_Adrenal_Adrenocortical adenoma
10.2


72410_Kidney_HRCE
42.6


72411_Kidney_HRE
38.2


73139_Uterus_Uterine smooth muscle cells
4.7










[0996]

360





TABLE AIG










Panel 5D









Rel. Exp. (%)



Ag4087, Run


Tissue Name
172774941











97457_Patient-02go_adipose
1.7


97476_Patient-07sk_skeletal muscle
2.1


97477_Patient-07ut_uterus
1.2


97478_Patient-07pl_placenta
4.4


97481_Patient-08sk_skeletal muscle
1.9


97482_Patient-08ut_uterus
1.9


97483_Patient-08pl_placenta
2.6


97486_Patient-09sk_skeletal muscle
0.8


97487_Patient-09ut_uterus
2.0


97488_Patient-09pl_placenta
3.1


97492_Patient-10ut_uterus
1.6


97493_Patient-10pl_placenta
8.5


97495_Patient-11go_adipose
2.1


97496_Patient-11sk_skeletal muscle
2.2


97497_Patient-11ut_uterus
3.5


97498_Patient-11pl_placenta
4.4


97500_Patient-12go_adipose
3.3


97501_Patient-12sk_skeletal muscle
3.5


97502_Patient-12ut_uterus
3.6


97503_Patient-12pl_placenta
4.5


94721_Donor 2 U - A_Mesenchymal Stem Cells
7.4


94722_Donor 2 U - B_Mesenchymal Stem Cells
5.5


94723_Donor 2 U - C_Mesenchymal Stem Cells
4.7


94709_Donor 2 AM - A_adipose
11.1


94710_Donor 2 AM - B_adipose
4.7


94711_Donor 2 AM - C_adipose
4.3


94712_Donor 2 AD - A_adipose
9.1


94713_Donor 2 AD - B_adipose
16.0


94714_Donor 2 AD - C_adipose
12.2


94742_Donor 3 U - A_Mesenchymal Stem Cells
5.6


94743_Donor 3 U - B_Mesenchymal Stem Cells
6.0


94730_Donor 3 AM - A_adipose
9.5


94731_Donor 3 AM - B_adipose
5.9


94732_Donor 3 AM - C_adipose
7.0


94733_Donor 3 AD - A_adipose
23.7


94734_Donor 3 AD - B_adipose
11.6


94735_Donor 3 AD - C_adipose
14.7


77138_Liver_HepG2untreated
100.0


73556_Heart_Cardiac stromal cells (primary)
1.3


81735_Small Intestine
4.1


72409_Kidney_Proximal Convoluted Tubule
4.7


82685_Small intestine_Duodenum
9.1


90650_Adrenal_Adrenocortical adenoma
5.7


72410_Kidney_HRCE
22.1


72411_Kidney_HRE
34.9


73139_Uterus_Uterine smooth muscle cells
4.2










[0997]

361





TABLE AIH










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag4087, Run



Tissue Name
268389980














Colon cancer 1
50.0



Colon NAT 1
16.2



Colon cancer 2
26.8



Colon NAT 2
11.3



Colon cancer 3
52.1



Colon NAT 3
31.6



Colon malignant cancer 4
81.8



Colon NAT 4
12.1



Lung cancer 1
12.6



Lung NAT 1
1.2



Lung cancer 2
95.9



Lung NAT 2
2.2



Squamous cell carcinoma 3
66.0



Lung NAT 3
5.4



Metastatic melanoma 1
11.3



Melanoma 2
8.1



Melanoma 3
10.3



Metastatic melanoma 4
40.1



Metastatic melanoma 5
31.0



Bladder cancer 1
1.1



Bladder NAT 1
0.0



Bladder cancer 2
1.6



Bladder NAT 2
0.3



Bladder NAT 3
0.3



Bladder NAT 4
2.2



Prostate adenocarcinoma 1
14.6



Prostate adenocarcinoma 2
2.1



Prostate adenocarcinoma 3
12.1



Prostate adenocarcinoma 4
19.6



Prostate NAT 5
3.7



Prostate adenocarcinoma 6
3.2



Prostate adenocarcinoma 7
4.7



Prostate adenocarcinoma 8
2.7



Prostate adenocarcinoma 9
14.3



Prostate NAT 10
1.8



Kidney cancer 1
15.7



Kidney NAT 1
10.2



Kidney cancer 2
100.0



Kidney NAT 2
23.8



Kidney cancer 3
15.1



Kidney NAT 3
5.1



Kidney cancer 4
14.1



Kidney NAT 4
8.2











[0998] CNS_neurodegeneration_v1.0 Summary: Ag4087 This panel does not show differential expression of this gene in Alzheimer's disease. However, this profile confirms the expression of this gene at high to moderate levels in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.


[0999] General_screening_panel_v1.4 Summary: Ag4087 Highest expression of this gene is seen in fetal liver (CT=22.8). In addition, this gene is expressed at higher levels in fetal lung(CT=26) when compared to expression in the adult counterparts (CTs=29). Conversely, this gene is more highly expressed in skeletal muscle (CT=28) when compared to expression in the fetal tissue (CT=32). Thus, expression of this gene could be used to differentiate between the fetal and adult sources of these tissues.


[1000] This gene is widely expressed in this panel, with high levels of expression seen in brain, colon, gastric, lung, breast, ovarian, and melanoma cancer cell lines. This expression profile suggests a role for this gene product in cell survival and proliferation. Modulation of this gene product may be useful in the treatment of cancer.


[1001] Among tissues with metabolic function, this gene is expressed at high to moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic function and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.


[1002] This gene codes for cytosolic HMG CoA synthase. Using CuraGen's GeneCalling TM method of differential gene expression, expression of this gene was found to be up-regulated in two different rodent models of obesity. HMG CoA synthase is an enzyme in the cholesterol biosynthetic pathway and provides substrate for production of LXR alpha activators (ligands). LXRalpha is a nuclear receptor that is abundantly expressed in tissues associated with lipid metabolism. Under high cholesterol conditions, LXR alpha is activated. It in turn, up-regulates transcription of sterol regulatory element-binding protein 1c, the master regulator of genes involved in fatty acid synthesis. Increased production of LXRalpha ligands may lead to increased fatty acid synthesis and triglyceride formation and an increase in adipose mass. Therefore, therapeutic modulation of this gene may be useful in the treatment of obesity.


[1003] This gene is also expressed at high levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.


[1004] Panel 3D Summary: Ag4087 Highest expression is seen in a lung cancer cell line (CT=26) with high to moderate levels of expression in all samples on this panel. This expression is in agreement with expression in 1.4.


[1005] Panel 4.1D Summary: Ag4087 Highest expression is seen in TNF-a and IL-1 beta treated small airway epithelium (CT=26). This gene is also expressed at moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.4 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.


[1006] Panel 5 Islet Summary: Ag4087 Highest expression is seen in a liver cell line (CT=27.8). In addition this cytosolic HMG CoA synthase has widespread tissue expression including adipose, skeletal muscle, and islets of Langerhans. Recently, it has been shown that upregulation of HMG CoA synthase is associated with the insulin secretory response of islet beta cells to high glucose (Flamez et al., 2002, Diabetes 51(7):2018-24, PMID: 12086928). Thus, pharmacologic activation of this gene may be a treatment to enhance insulin secretion in Type 2 diabetes.


[1007] Panel 5D Summary: Ag4087 Highest expression is seen in a liver cell line (CT=27.5). In addition this cytosolic HMG CoA synthase has widespread tissue expression including adipose, skeletal muscle, and islets of Langerhans.


[1008] general oncology screening panel_v2.4 Summary: AG4087 Highest expression is seen in a kidney cancer (CT=27). ). In addition, this gene is more highly expressed in lung and colon cancer than in the corresponding normal adjacent tissue. Thus, expression of this gene could be used as a marker of these cancers. Furthermore, therapeutic modulation of the expression or function of this gene product may be useful in the treatment of lung, colon and kidney cancer.


[1009] 5 AJ. CG97955-03: Carboxypeptidase A1


[1010] Expression of full-length physical clone CG97955-03 was assessed using the primer-probe set Ag4135, described in Table AJA. Results of the RTQ-PCR runs are shown in Tables AJB, AJC and AJD.
362TABLE AJAProbe Name Ag4135StartSEQPrimersSequencesLengthPositionID NoForward5'-ccctggaggagat-22393338ctatgactt-3'ProbeTET-5'-agaacccgc-25435339accttgtcagcaagat-3'-TAMRAReverse5'-cttcataggtgtt-22461340gccaatctg-3'


[1011]

363





TABLE AJB










General_screening_panel_v1.4











Rel. Exp. (%)




Ag4135, Run



Tissue Name
220967144














Adipose
0.0



Melanoma* Hs688(A).T
0.0



Melanoma* Hs688(B).T
0.0



Melanoma* M14
0.0



Melanoma* LOXIMVI
0.0



Melanoma* SK-MEL-5
0.0



Squamous cell carcinoma SCC-4
0.0



Testis Pool
0.0



Prostate ca.* (bone met) PC-3
0.0



Prostate Pool
0.0



Placenta
0.0



Uterus Pool
0.0



Ovarian ca. OVCAR-3
0.0



Ovarian ca. SK-OV-3
0.0



Ovarian ca. OVCAR-4
0.0



Ovarian ca. OVCAR-5
0.0



Ovarian ca. IGROV-1
0.0



Ovarian ca. OVCAR-8
0.0



Ovary
0.0



Breast ca. MCF-7
0.0



Breast ca. MDA-MB-231
0.0



Breast ca. BT 549
0.0



Breast ca. T47D
0.0



Breast ca. MDA-N
0.0



Breast Pool
0.0



Trachea
0.0



Lung
0.0



Fetal Lung
0.0



Lung ca. NCI-N417
0.0



Lung ca. LX-1
0.0



Lung ca. NCI-H146
0.0



Lung ca. SHP-77
0.0



Lung ca. A549
0.0



Lung ca. NCI-H526
0.0



Lung ca. NCI-H23
0.0



Lung ca. NCI-H460
0.0



Lung ca. HOP-62
0.0



Lung ca. NCI-H522
0.0



Liver
0.0



Fetal Liver
1.8



Liver ca. HepG2
0.0



Kidney Pool
0.0



Fetal Kidney
0.0



Renal ca. 786-0
0.0



Renal ca. A498
0.0



Renal ca. ACHN
0.0



Renal ca. UO-31
0.0



Renal ca. TK-10
0.0



Bladder
85.3



Gastric ca. (liver met.) NCI-N87
0.0



Gastric ca. KATO III
0.0



Colon ca. SW-948
0.0



Colon ca. SW480
0.0



Colon ca.* (SW480 met) SW620
0.0



Colon ca. HT29
0.0



Colon ca. HCT-116
0.0



Colon ca. CaCo-2
0.0



Colon cancer tissue
0.0



Colon ca. SW1116
0.0



Colon ca. Colo-205
0.0



Colon ca. SW-48
0.0



Colon Pool
0.0



Small Intestine Pool
0.0



Stomach Pool
0.0



Bone Marrow Pool
0.0



Fetal Heart
0.0



Heart Pool
0.0



Lymph Node Pool
0.0



Fetal Skeletal Muscle
0.0



Skeletal Muscle Pool
0.0



Spleen Pool
0.0



Thymus Pool
0.0



CNS cancer (glio/astro) U87-MG
0.0



CNS cancer (glio/astro) U-118-MG
0.0



CNS cancer (neuro; met) SK-N-AS
0.0



CNS cancer (astro) SF-539
0.0



CNS cancer (astro) SNB-75
0.0



CNS cancer (glio) SNB-19
0.0



CNS cancer (glio) SF-295
0.0



Brain (Amygdala) Pool
0.0



Brain (cerebellum)
0.0



Brain (fetal)
0.0



Brain (Hippocampus) Pool
0.0



Cerebral Cortex Pool
0.0



Brain (Substantia nigra) Pool
0.0



Brain (Thalamus) Pool
0.0



Brain (whole)
0.0



Spinal Cord Pool
0.0



Adrenal Gland
0.0



Pituitary gland Pool
0.0



Salivary Gland
0.0



Thyroid (female)
0.0



Pancreatic ca. CAPAN2
0.0



Pancreas Pool
100.0











[1012]

364





TABLE AJC










Panel 4.1D









Rel. Exp. (%)



Ag4135, Run


Tissue Name
172859879











Secondary Th1 act
0.0


Secondary Th2 act
0.0


Secondary Tr1 act
0.0


Secondary Th1 rest
0.0


Secondary Th2 rest
0.0


Secondary Tr1 rest
0.0


Primary Th1 act
0.0


Primary Th2 act
0.0


Primary Tr1 act
0.0


Primary Th1 rest
3.1


Primary Th2 rest
0.0


Primary Tr1 rest
0.0


CD45RA CD4 lymphocyte act
0.0


CD45RO CD4 lymphocyte act
0.0


CD8 lymphocyte act
0.0


Secondary CD8 lymphocyte rest
0.0


Secondary CD8 lymphocyte act
0.0


CD4 lymphocyte none
0.0


2ry Th1/Th2/Tr1_anti-CD95 CH11
0.0


LAK cells rest
0.0


LAK cells IL-2
0.0


LAK cells IL-2 + IL-12
0.0


LAK cells IL-2 + IFN gamma
0.0


LAK cells IL-2 + IL-18
0.0


LAK cells PMA/ionomycin
0.0


NK Cells IL-2 rest
0.0


Two Way MLR 3 day
0.0


Two Way MLR 5 day
0.0


Two Way MLR 7 day
0.0


PBMC rest
0.0


PBMC PWM
0.0


PBMC PHA-L
0.0


Ramos (B cell) none
0.0


Ramos (B cell) ionomycin
0.0


B lymphocytes PWM
0.0


B lymphocytes CD40L and IL-4
0.0


EOL-1 dbcAMP
0.0


EOL-1 dbcAMP PMA/ionomycin
0.0


Dendritic cells none
0.0


Dendritic cells LPS
0.0


Dendritic cells anti-CD40
0.0


Monocytes rest
0.0


Monocytes LPS
0.0


Macrophages rest
0.0


Macrophages LPS
0.0


HUVEC none
0.0


HUVEC starved
0.0


HUVEC IL-1beta
0.0


HUVEC IFN gamma
0.0


HUVEC TNF alpha + IFN gamma
0.0


HUVEC TNF alpha + IL4
0.0


HUVEC IL-11
0.0


Lung Microvascular EC none
0.0


Lung Microvascular EC TNFalpha + IL-1beta
0.0


Microvascular Dermal EC none
0.0


Microsvasular Dermal EC TNFalpha + IL-1beta
0.0


Bronchial epithelium TNFalpha + IL1beta
0.0


Small airway epithelium none
0.0


Small airway epithelium TNFalpha + IL-1beta
0.0


Coronery artery SMC rest
0.0


Coronery artery SMC TNFalpha + IL-1beta
0.0


Astrocytes rest
2.8


Astrocytes TNFalpha + IL-1beta
2.8


KU-812 (Basophil) rest
0.0


KU-812 (Basophil) PMA/ionomycin
0.0


CCD1106 (Keratinocytes) none
0.0


CCD1106 (Keratinocytes) TNFalpha + IL-1beta
0.0


Liver cirrhosis
0.0


NCI-H292 none
0.0


NCI-H292 IL-4
0.0


NCI-H292 IL-9
0.0


NCI-H292 IL-13
0.0


NCI-H292 IFN gamma
0.0


HPAEC none
0.0


HPAEC TNF alpha + IL-1 beta
0.0


Lung fibroblast none
5.7


Lung fibroblast TNF alpha + IL-1 beta
0.0


Lung fibroblast IL-4
3.1


Lung fibroblast IL-9
2.3


Lung fibroblast IL-13
3.0


Lung fibroblast IFN gamma
0.0


Dermal fibroblast CCD1070 rest
0.0


Dermal fibroblast CCD1070 TNF alpha
0.0


Dermal fibroblast CCD1070 IL-1 beta
0.0


Dermal fibroblast IFN gamma
0.0


Dermal fibroblast IL-4
0.0


Dermal Fibroblasts rest
0.0


Neutrophils TNFa + LPS
0.0


Neutrophils rest
0.0


Colon
0.0


Lung
2.8


Thymus
100.0


Kidney
0.0










[1013]

365





TABLE AJD










general oncology screening panel_v_2.4











Rel. Exp. (%)




Ag4135, Run



Tissue Name
268390081














Colon cancer 1
0.0



Colon cancer NAT 1
0.0



Colon cancer 2
1.9



Colon cancer NAT 2
0.0



Colon cancer 3
0.0



Colon cancer NAT 3
0.0



Colon malignant cancer 4
9.5



Colon normal adjacent tissue 4
0.0



Lung cancer 1
0.0



Lung NAT 1
0.0



Lung cancer 2
16.2



Lung NAT 2
0.0



Squamous cell carcinoma 3
0.0



Lung NAT 3
0.0



metastatic melanoma 1
0.0



Melanoma 2
0.0



Melanoma 3
0.0



metastatic melanoma 4
17.9



metastatic melanoma 5
15.7



Bladder cancer 1
1.9



Bladder cancer NAT 1
0.0



Bladder cancer 2
0.0



Bladder cancer NAT 2
0.0



Bladder cancer NAT 3
0.0



Bladder cancer NAT 4
0.0



Prostate adenocarcinoma 1
100.0



Prostate adenocarcinoma 2
11.9



Prostate adenocarcinoma 3
1.8



Prostate adenocarcinoma 4
7.3



Prostate cancer NAT 5
8.4



Prostate adenocarcinoma 6
4.1



Prostate adenocarcinoma 7
6.6



Prostate adenocarcinoma 8
0.0



Prostate adenocarcinoma 9
56.3



Prostate cancer NAT 10
0.0



Kidney cancer 1
0.0



Kidney NAT 1
4.7



Kidney cancer 2
0.0



Kidney NAT 2
17.1



Kidney cancer 3
0.0



Kidney NAT 3
1.7



Kidney cancer 4
0.0



Kidney NAT 4
7.1











[1014] General_screening_panel_v1.4 Summary: Ag4135 Expression of this putative carboxypeptidase is highest in pancreas and bladder (CTs=20). Low but significant levels of expression are seen in adipose, testis, spleen, adult and fetal skeletal muscle, colon cancer tissue, fetal kidney, fetal liver, fetal lung, placenta, and a squamous cell carcinoma cell line. Therefore, therapeutic modulation of this gene may be useful in the treatment of diseases that affect these tissues including pancreatitis.


[1015] In addition, this gene is more highly expressed in fetal liver (CT=26) than in the adult counterpart (CT=40). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue. In addition, the relative overexpression of this gene in fetal tissue suggests that the protein product may enhance liver growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the carboxypeptidase encoded by this gene could be useful in treatment of liver related diseases.


[1016] Panel 4.1D Summary: Ag4135 This gene is expressed at significant levels only in the thymus (CT=33) in both runs. The protein encoded for by this gene could therefore play an important role in T cell development. Small molecule therapeutics, or antibody therapeutics designed against the carboxypeptidase encoded for by this gene could be utilized to modulate immune function (T cell development) and be important for organ transplant, AIDS treatment or post chemotherapy immune reconstitution.


[1017] general oncology screening panel_v2.4 Summary: Ag4135 Expression of this gene is restricted to a sample derived from a prostate cancer (CT=32.6). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of prostate cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of prostate cancer.



Example D

[1018] Identification of Single Nucleotide Polymorphisms in NOVX Nucleic Acid Sequences


[1019] Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a “cSNP” to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.


[1020] SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.


[1021] Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraTools™ program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.


[1022] The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderbom et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).


[1023] Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.
366TABLE SN1PEPTIDYLPROLYL ISOMERASE A -likeProtein. CG142102-01 (NOV31a)NucleotidesAmino AcidsVariantPositionInitialModifiedPositionInitialModified13379649521GA154ArgHis13379648560TC167IleThr


[1024]

367





TABLE SN2










SA protein-like Protein CG59444-01 (NOV34a)










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380147
338
G
A
65
Arg
Gln


13380148
891
A
T
249
Gly
Gly










[1025]

368





TABLE SN3










Potential phospholipid-transporting ATPase


VA -like Protein CG59361-01 (NOV33a)










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13377654
733
C
T
171
Arg
Cys


13380152
3845
T
C
1208
Leu
Pro


13380151
3884
C
T
1221
Ser
Leu










[1026]

369





TABLE SN4










MYOSIN 1G VALINE FORM-like


protein CG59522-02 (NOV36b)










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13380146
375
G
T
121
Ala
Ser










[1027]

370





TABLE SN5










Protein kinase D2 -like protein CG90879-01 (NOV38a).










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified





13380159
2189
G
T
717
Arg
Leu


13380158
2204
G
A
722
Gly
Asp










[1028]

371





TABLE SN6










Carboxypeptidase A1-like protein CG97955-03 (NOV42c).










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380153
311
C
T
97
Leu
Leu


13380154
327
A
G
102
Glu
Gly










[1029]

372





TABLE SN7










Novel SNPs for HYDROLASE like-like


Protein CG107234-02 (NOV4b)










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380137
150
A
G
46
Asn
Ser


13380139
448
C
A
145
Asn
Lys










[1030]

373





TABLE SN8










CtBP (D-isomer specific 2-hydroxyacid dehydrogenase)-like


protein CG113144-02 (NOV5a).










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380136
8
A
G
0










[1031]

374





TABLE SN9










cGMF-stimulated 3′,5′-cyclic nucleotide phosphodiesterase-like


protein CG138130-01 (NOV13a).










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380145
2667
A
G
846
Ala
Ala


13380144
2721
C
T
864
Tyr
Tyr










[1032]

375





TABLE SN10










MALEYLACETOACETATE ISOMERASE -like


protein CG138372-02 (NOV14a)










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13378194
111
G
A
32
Glu
Lys


13376309
141
G
A
42
Gly
Arg










[1033]

376





TABLE SN11










CHOLINE/ETHANOLAMINE KINASE-like


protein CG138563-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380141
733
G
A
216
Glu
Lys










[1034]

377





TABLE SN12










Protein-tyrosine kinase ryk - Like -like protein CG138848-01










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380138
1568
T
C
493
Leu
Ser










[1035]

378





TABLE SN13










Pyridoxal-dependent decarboxylase-like protein CG140041-01.










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13375791
1193
C
T
366
Arg
Trp


13375803
1285
G
A
396
Gln
Gln


13375802
1318
C
T
407
Ala
Ala










[1036]

379





TABLE SN14










ATP SYNTHASE B CHAIN, MITOCHONDRIAL-like


protein CG140612-02.










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13380164
858
T
C
0










[1037]

380





TABLE SN15










Dual specificity phosphatase -like protein CG140747-01.










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















13379681
1502
C
T
482
Ser
Leu










[1038]

381





TABLE SN16










Human Stearoyl CoA Desaturase L-like protein CG105521-01.










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















cgsp:13380102
272
T
C
13
Ser
Pro


cgsp:13380103
463
C
A
76
Ile
Ile


cgsp:13379380
905
A
C
224
Leu
Met


hsnp:rs2958475
1104
C
T
290
Leu
Pro


hsnp:rs1054412
1232
A
G
333
Ala
Thr


cgsp:13380105
2466
G
A
UTR
N/A
N/A


cgsp:13380108
2974
T
C
UTR
N/A
N/A


cgsp:13380109
2981
T
C
UTR
N/A
N/A


cgsp:13380110
3046
T
G
UTR
N/A
N/A


cgsp:13380111
3153
T
C
UTR
N/A
N/A


cgsp:13380112
3338
G
A
UTR
N/A
N/A


cgsp:13380113
3441
T
C
UTR
N/A
N/A


cgsp:13380114
3646
G
A
UTR
N/A
N/A


cgsp:13380116
3791
A
G
UTR
N/A
N/A


cgsp:13380117
3856
C
T
UTR
N/A
N/A


cgsp:13380118
3869
A
C
UTR
N/A
N/A


cgsp:13380119
3915
T
A
UTR
N/A
N/A


cgsp:13380120
3943
A
G
UTR
N/A
N/A


cgsp:13380121
3963
T
C
UTR
N/A
N/A


cgsp:13380122
4023
A
G
UTR
N/A
N/A


cgsp:13380123
4033
T
C
UTR
N/A
N/A


cgsp:13380124
4042
A
G
UTR
N/A
N/A


cgsp:13380099
4061
G
A
UTR
N/A
N/A


cgsp:13380098
4073
G
A
UTR
N/A
N/A


cgsp:13380125
4103
G
A
UTR
N/A
N/A


cgsp:13380127
4174
A
G
UTR
N/A
N/A


cgsp:13380097
4229
G
A
UTR
N/A
N/A


cgsp:13380128
4309
A
T
UTR
N/A
N/A


cgsp:13380071
4574
C
A
UTR
N/A
N/A










[1039]

382





TABLE 17










Human aryl hydrocarbon receptor-like protein CG105355-01.










Nucleotides
Amino Acids













Variant
Position
Initial
Modified
Position
Initial
Modified
















1
757
A
G
48
Asp
Gly


2
869
T
C
85
Val
Val


3
1132
A
G
173
Gln
Arg


4
2028
G
A
472
Ala
Thr


5
2275
G
A
554
Arg
Lys











Example E

[1040] Method of Use for NOVX-Related Polypeptides and Polynucleotides


[1041] The present invention is partially based on the identification of biological macromolecules differentially modulated in a pathologic state, disease, or an abnormal condition or state, and/or based on novel associations of proteins and polypeptides and the nucleic acids that encode them, as identified in a yeast 2-hybrid screen using a cDNA library or one-by-one matrix reactions. Among the pathologies or diseases of present interest include metabolic diseases including those related to endocrinologic disorders, cancers, various tumors and neoplasias, inflammatory disorders, central nervous system disorders, and similar abnormal conditions or states. Important metabolic disorders with which the biological macromolecules are associated include obesity and diabetes mellitus, especially obesity and Type II diabetes. It is believed that obesity predisposes a subject to Type II diabetes. In very significant embodiments of the present invention, the biological macromolecules implicated in these pathologies and conditions are proteins and polypeptides, and in such cases the present invention is related as well to the nucleic acids that encode them. Methods that may be employed to identify relevant biological macromolecules include any procedures that detect differential expression of nucleic acids encoding proteins and polypeptides associated with the disorder, as well as procedures that detect the respective proteins and polypeptides themselves. Significant methods that have been employed by the present inventors, include GeneCalling® technology and SeqCalling™ technology, disclosed respectively, in U.S. Pat. No. 5,871,697, and in U.S. Ser. No. 09/417,386, filed Oct. 13, 1999, each of which is incorporated herein by reference in its entirety. GeneCalling® is also described in Shimkets, et al., Nature Biotechnology 17:198-803 (1999).


[1042] The invention provides polypeptides and nucleotides encoded thereby that have been identified as having novel associations with a disease or pathology, or an abnormal state or condition, in a mammal. Included in the invention are nucleic acid sequences and their encoded polypeptides. The sequences are collectively referred to as “obesity and/or diabetes nucleic acids” or “obesity and/or diabetes polynucleotides” and the corresponding encoded polypeptide is referred to as an “obesity and/or diabetes polypeptide” or “obesity and/or diabetes protein”. For example, an obesity and/or diabetes nucleic acid according to the invention is a nucleic acid including an obesity and/or diabetes nucleic acid, and an obesity and/or diabetes polypeptide according to the invention is a polypeptide that includes the amino acid sequence of an obesity and/or diabetes polypeptide. Unless indicated otherwise, “obesity and/or diabetes” is meant to refer to any of the sequences having novel associations disclosed herein.


[1043] The present invention identifies a set of proteins and polypeptides, including naturally occurring polypeptides, precursor forms or proproteins, or mature forms of the polypeptides or proteins, which are implicated as targets for therapeutic agents in the treatment of various diseases, pathologies, abnormal states and conditions. A target may be employed in any of a variety of screening methodologies in order to identify candidate therapeutic agents which interact with the target and in so doing exert a desired or favorable effect. The candidate therapeutic agent is identified by screening a large collection of substances or compounds in an important embodiment of the invention. Such a collection may comprise a combinatorial library of substances or compounds in which, in at least one subset of substances or compounds, the individual members are related to each other by simple structural variations based on a particular canonical or basic chemical structure. The variations may include, by way of nonlimiting example, changes in length or identity of a basic framework of bonded atoms; changes in number, composition and disposition of ringed structures, bridge structures, alicyclic rings, and aromatic rings; and changes in pendent or substituents atoms or groups that are bonded at particular positions to the basic framework of bonded atoms or to the ringed structures, the bridge structures, the alicyclic structures, or the aromatic structures.


[1044] A polypeptide or protein described herein, and that serves as a target in the screening procedure, includes the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, e.g., the full-length gene product, encoded by the corresponding gene. The naturally occurring polypeptide also includes the polypeptide, precursor or proprotein encoded by an open reading frame described herein. A “mature” form of a polypeptide or protein arises as a result of one or more naturally occurring processing steps as they may occur within the cell, including a host cell. The processing steps occur as the gene product arises, e.g., via cleavage of the amino-terminal methionine residue encoded by the initiation codon of an open reading frame, or the proteolytic cleavage of a signal peptide or leader sequence. Thus, a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an amino-terminal signal sequence from residue 1 to residue M is cleaved, includes the residues from residue M+1 to residue N remaining. A “mature” form of a polypeptide or protein may also arise from non-proteolytic post-translational modification. Such non-proteolytic processes include, e.g., glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or the combination of any of them.


[1045] As used herein, “identical” residues correspond to those residues in a comparison between two sequences where the equivalent nucleotide base or amino acid residue in an alignment of two sequences is the same residue. Residues are alternatively described as “similar” or “positive” when the comparisons between two sequences in an alignment show that residues in an equivalent position in a comparison are either the same amino acid or a conserved amino acid as defined below.


[1046] As used herein, a “chemical composition” relates to a composition including at least one compound that is either synthesized or extracted from a natural source. A chemical compound may be the product of a defined synthetic procedure. Such a synthesized compound is understood herein to have defined properties in terms of molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as electropherographic or spectroscopic characterizations, and the like. A compound extracted from a natural source is advantageously analyzed by chemical and physical methods in order to provide a representation of its defined properties, including its molecular formula, molecular structure relating the association of bonded atoms to each other, physical properties such as electropherographic or spectroscopic characterizations, and the like.


[1047] As used herein, a “candidate therapeutic agent” is a chemical compound that includes at least one substance shown to bind to a target biopolymer. In important embodiments of the invention, the target biopolymer is a protein or polypeptide, a nucleic acid, a polysaccharide or proteoglycan, or a lipid such as a complex lipid. The method of identifying compounds that bind to the target effectively eliminates compounds with little or no binding affinity, thereby increasing the potential that the identified chemical compound may have beneficial therapeutic applications. In cases where the “candidate therapeutic agent” is a mixture of more than one chemical compound, subsequent screening procedures may be carried out to identify the particular substance in the mixture that is the binding compound, and that is to be identified as a candidate therapeutic agent.


[1048] As used herein, a “pharmaceutical agent” is provided by screening a candidate therapeutic agent using models for a disease state or pathology in order to identify a candidate exerting a desired or beneficial therapeutic effect with relation to the disease or pathology. Such a candidate that successfully provides such an effect is termed a pharmaceutical agent herein. Nonlimiting examples of model systems that may be used in such screens include particular cell lines, cultured cells, tissue preparations, whole tissues, organ preparations, intact organs, and nonhuman mammals. Screens employing at least one system, and preferably more than one system, may be employed in order to identify a pharmaceutical agent. Any pharmaceutical agent so identified may be pursued in further investigation using human subjects.


[1049] A. NOV 41: Human Cytosolic HMG CoA Synthase-Like Proteins


[1050] The following sections describe the study design(s) and the techniques used to identify the Cytosolic HMG CoA synthase—encoded NOV41 protein, and any variants thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for obesity and/or diabetes.


[1051] A large number of mouse strains have been identified that differ in body mass and composition. The AKR and NZB strains are obese, the SWR, C57L and C57BL/6 strains are of average weight whereas the SM/J and Cast/Ei strains are lean. Understanding the gene expression differences in the major metabolic tissues from these strains will elucidate the pathophysiologic basis for obesity. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for body weight and related traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1052] Cytoplasmic HMG CoA synthase mediates an early step in cholesterol biosynthesis. This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA Reductase. See generally, Carlsson et al., 2001 Am J Physiol Endocrinol Metab. 281(4):E772-81; Lopez et al., 2001 Mol Cell Biochem. 217(1-2):57-66; Olivier et al., 2000 Biochim Biophys Acta. 1529(1-3):89-102; Mascaro et al., 2000 Biochem J. 350 Pt 3:785-90; Sato et al., 2000 J Biol Chem. 275(17):12497-502; Mascaro et al., 2000 Arch Biochem Biophys. 374(2):286-92; Scharnagl et al., 1995 J Lipid Res. 36(3):622-7; and Royo et al., 1993 Biochem J. 289 (Pt 2):557-60.


[1053] NOV41 Expression


[1054] A gene fragment of the mouse cytosolic HMG CoA synthase was initially found to be up-regulated by 7 fold in the liver of the NZB mouse relative to the SMJ mouse strain using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed mouse gene fragment migrating, at approximately 312.1 nucleotides in length (FIGS. 1A and 1B.—vertical line) was definitively identified as a component of the mouse Cytosolic HMG CoA synthase cDNA (in the graphs, the abscissa is measured in lengths of nucleotides and the ordinate is measured as signal response). The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the rat Cytosolic HMG CoA synthase are ablated when a gene-specific primer (see below) competes with primers in the linker-adaptors during the PCR amplification. The peaks at 312.1 nt in length are ablated in the sample from both the NZB and SMJ mice. The direct sequence of the 312 nucleotide-long gene fragment and the gene-specific primers used for competitive PC are indicated in italic. The gene-specific primers at the 5′ and 3′ ends of the fragment are in bold. This result was confirmed by competitive PCR.


[1055] Biochemistry


[1056] Cytosolic HMG CoA synthase condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA Reductase. This condensation reaction occurs above the diversion point to farnesoic acid in the cholesterol biosynthetic pathway.


[1057] The reaction proceeds as follows:


acetyl-CoA+H2O+acetoacetyl-CoA=(S)-3-hydroxy-3-methylglutaryl-CoA+CoA


[1058] Rationale for use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics


[1059] HMG CoA synthase is up-regulated 7-fold in a genetic model of obesity characterized by apparent LXRα activation (adipose induction of ApoE, malic enzyme, ATP citrate lyase, FAS, SCD), thus HMG CoA synthase provides the substrate for LXRa ligands.


[1060] Inhibition of this enzyme may be a treatment for the prevention or treatment of obesity.


[1061] Taken in total, the data indicates that an inhibitor of the human Cytosolic HMG CoA synthase enzyme would be beneficial in the treatment of obesity and/or diabetes.


[1062] B. NOV 3: Human Stearoyl CoA Desaturase—Like Proteins


[1063] The following sections describe the study design(s) and the techniques used to identify the stearoyl CoA desaturase—encoded NOV3 protein, and any variants thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for obesity and/or diabetes.


[1064] Stearoyl CoA desaturase (SCD) utilizes O2 and electrons from reduced cytochrome b5 to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates, including palmitoyl-CoA and stearoyl-CoA at the position of the 9th carbon (“delta-9 desaturase”). Stearoyl CoA desaturase expression is regulated by both SREBP and C/EBPalpha, transcription factors that are essential in adipose differentiation and lipogenesis. SCD is a key enzyme in the synthesis of unsaturated fatty acids that are being stored as triglycerides (TG), and the induction of TG synthesis is highly dependent on the expression of SCD. Recently it was shown that mice lacking SCD1 are lean and hypermetabolic, while ob/ob mice with a mutation in SCD1 are less obese then regular ob/ob mice, indicating that SCD1 is an important component in the metabolic actions of leptin. While in rodents there are two SCD genes, SCD1 and SCD2, there is only one SCD gene in human.


[1065] SCD2 is up-regulated in two genetic models of obesity. In adipose tissue of the obese NZB/BINJ mice, SCD2 was up-regulated compared to the lean SM/J mice. In visceral adipose from the Spontaneous Hypertensive Rats (SHR), SCD2 was also up-regulated when compared to subcutaneous adipose from the same strain. Moreover, our data from the diet-induced obesity model showed that for all 4 standard deviations of obese mice (SD1, SD4, SD7 and hyperglycemic SD7) on a high fat diet, SCD1 was down-regulated in brown adipose. In white adipose, SCD1 was up-regulated in the moderately obese SD1 mice, while it was down-regulated in white adipose of severely obese mice (SD7). This suggests that down-regulation of SCD is a compensatory mechanism in response to the high fat diet, which manifests itself earlier in brown adipose and thus, may be protective. Therefore, an antagonist for SCD to inhibit SCD directly may be an effective therapeutic for obesity.


[1066] The spontaneously hypertensive rat (SHR) is a strain exhibiting features of the human Metabolic Syndrome X. The phenotypic features include obesity, hyperglycemia, hypertension, dyslipidemia and dysfibrinolysis. Tissues were removed from adult male rats and a control strain (Wistar—Kyoto) to identify the gene expression differences that underlie the pathologic state in the SHR and in animals treated with various anti-hyperglycemic agents such as troglitizone. Tissues included sub-cutaneous adipose, visceral adipose and liver.


[1067] A large number of mouse strains have been identified that differ in body mass and composition. The AKR and NZB strains are obese, the SWR, C57L and C57BL/6 strains are of average weight whereas the SM/J and Cast/Ei strains are lean. Understanding the gene expression differences in the major metabolic tissues from these strains will elucidate the pathophysiologic basis for obesity. These specific strains of rat were chosen for differential gene expression analysis because quantitative trait loci (QTL) for body weight and related traits had been reported in published genetic studies. Tissues included whole brain, skeletal muscle, visceral adipose, and liver.


[1068] Bone marrow-derived human mesenchymal stem cells have the capacity to differentiate into muscle, adipose, cartilage and bone. Culture conditions have been established that permit the differentiation in vitro along the pathway to adipose, cartilage and bone. Understanding the gene expression changes that accompany these distinct differentiation processes would be of considerable biologic value. Regulation of adipocyte differentiation would have importance in the treatment of obesity, diabetes and hypertension. Human mesenchymal stem cells from 3 donors were obtained and differentiated in vitro according to published methods. RNA from samples of the undifferentiated, mid-way differentiated and fully differentiated cells was isolated for analysis of differential gene expression. See generally, Miyazaki et al., 2001 J Lipid Res. 42(7):1018-24; Kim et al. 2000 J Lipid Res. 41(8):1310-6; Kim et al. 1998 Cell. 93(5):693-704; Miyazaki et al. 2000 J Biol Chem. 275(39):30132-8; Kim et al. 1999 Biochem Biophys Res Commun. 266(1):1-4; Miyazaki et al. 2001 J Biol Chem. 276(42):39455-61; Bene et al. 2001 Biochem Biophys Res Commun 284(5):1194-8; and Cohen et al. 2002 Science 297(5579):240-3.


[1069] The predominant cause for obesity in clinical populations is excess caloric intake. This so-called diet-induced obesity (DIO) is mimicked in animal models by feeding high fat diets of greater than 40% fat content. The DIO study was established to identify the gene expression changes contributing to the development and progression of diet-induced obesity. In addition, the study design seeks to identify the factors that lead to the ability of certain individuals to resist the effects of a high fat diet and thereby prevent obesity. The sample groups for the study had body weights+1 S.D., +4 S.D. and +7 S.D. of the chow-fed controls (See Table E1). In addition, the biochemical profile of the +7 S.D. mice revealed a further stratification of these animals into mice that retained a normal glycemic profile in spite of obesity and mice that demonstrated hyperglycemia. Tissues examined included hypothalamus, brainstem, liver, retroperitoneal white adipose tissue (WAT), epididymal WAT, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle) and soleus muscle (slow twitch skeletal muscle). The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.


[1070] NOV3 Expression


[1071] A fragment of the rat Stearoyl CoA Desaturase 2 gene was initially found to be up-regulated by 1.9 fold in the visceral adipose relative to subcutaneous adipose of the Spntaneous Hypertensive rats (SHR) using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed rat gene fragment migrating, at approximately 373.6 nucleotides in length was definitively identified as a component of the rat Stearoyl CoA Desaturase 2 cDNA. The method of comparative PCR was used for conformation of the gene assessment. The electropherographic peaks corresponding to the gene fragment of the rat Stearoyl CoA Desaturase 2 are ablated when a gene-specific primer competes with primers in the linker-adaptors during the PCR amplification. The peaks at 373.6 nt in length are ablated in the sample from both the visceral and subcutaneous adipose. The difference in gene expression in SHR visceral vs subcutaneous adipose is +1.9 fold.


[1072] A gene fragment of mouse Stearoyl CoA Desaturase 2 was also found to be up-regulated by 1.9 fold in the adipose tissue of NZB/BINJ obese mice relative to SM/J lean mice using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed mouse gene fragment migrating, at approximately 94 nucleotides in length was definitively identified as a component of the mouse Stearoyl CoA Desaturase 2 cDNA. The method of comparative PCR was used for conformation of the gene assessment. The electropherographic peaks corresponding to the gene fragment of mouse Stearoyl CoA Desaturase 2 are ablated when a gene-specific primer competes with primers in the linker-adaptors during the PCR amplification. The peaks at 94 nt in length are ablated in the sample from both the NZB/BINJ obese and SM/J lean mice. The difference in gene expression in B/BINJ (obese) vs SM'J (lean) adipose is +1.9 fold.


[1073] A gene fragment of human Stearoyl CoA Desaturase was also found to be up-regulated by 2-4 fold in differentiated adipocytes relative to midway differentiated adipocytes using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed human gene fragment migrating, at approximately 443 nucleotides in length was definitively identified as a component of the human Stearoyl CoA Desaturase cDNA. The method of comparative PCR was used for conformation of the gene assessment. The electropherographic peak corresponding to the gene fragment of human Stearoyl CoA Desaturase is ablated when a gene-specific primer competes with primers in the linker-adaptors during the PCR amplification. The peak at 443 nt in length is ablated in the sample from the fully differentiated adipocytes from donor 2. The difference in gene expression in differentiated adipocytes vs midway differentiated adipocytes is +3.9 fold.


[1074] A gene fragment of mouse Stearoyl CoA Desaturase 1 was also found to be down-regulated by 2 fold in brown adipose tissue of obese hyperinsulinemic ngsd7 mice relative to normal weight (chow-fed) mice using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed mouse gene fragment migrating, at approximately 94 nucleotides in length was definitively identified as a component of the mouse Stearoyl CoA Desaturase 1 cDNA. The method of comparative PCR was used for conformation of the gene assessment. The electropherographic peaks corresponding to the gene fragment of mouse Stearoyl CoA Desaturase 1 are ablated when a gene-specific primer competes with primers in the linker-adaptors during the PCR amplification. The peak at 94 nt in length is ablated in the sample from the obese hyperinsulinemic ngsd7 mice. The difference in gene expression in sd7-brown adipose vs chow-brown adipose is −2 fold.


[1075] Summary of GeneCalling Results: Up-regulation of stearoyl CoA desaturase is associated with obesity in 2 genetic models of rodent obesity, a diet-induced obesity model, and adipose differentiation.


[1076] Biochemistry


[1077] Stearoyl CoA desaturase (also known as Delta-9 desaturase) utilizes O2 and electrons from reduced cytochrome b5 to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates, including palmitoyl-CoA and stearoyl-CoA. Iron acts as a cofactor for the reaction:


Stearoyl-CoA+NADPH+O2→Oleoyl-CoA+NADP++2 H20


[1078] Pathways Relevant to the Etiology and Pathogenesis of Obesity and/or Diabetes


[1079] PathCalling screening identified an interaction between SCD and CREB3, a poorly characterized general transcriptional factor. It has been shown in the literature that CREB3 interacts with a cytosolic protein known as HCFC1 (host cell factor C1). This interaction prevents nuclear translocation of CREB3, thus interfering with its transcriptional activity. Similar to HCFC1, SCD may inhibit CREB3 functions by trapping this transcriptional factor in cytoplasm. The significance of this interaction remains to be elucidated.


[1080] Rationale for Use of the Human Stearoyl CoA Desaturase Gene as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics


[1081] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Stearoyl CoA Desaturase would be beneficial in the treatment of obesity and/or diabetes.


[1082] Stearoyl CoA desaturase (SCD) is a key enzyme in the synthesis of unsaturated fatty acids that are being stored as triglyceride molecules and induction of triglyceride synthesis is highly dependent on SCD expression. In our GeneCalling studies, we have found that SCD2 is upregulated in “bad” (i.e. visceral and obese) fat. In addition, SCD1 is upregulated in white adipose of moderately obese mice, whereas it is downregulated in white adipose of extremely obese mice. Furthermore, expression of the SCD gene is downregulated in all stages of obesity in brown adipose tissue, known for a higher level of energy utilization versus storage. This suggests that down-regulation of SCD is a compensatory mechanism in response to a high fat diet, which manifests itself earlier in brown adipose and thus, may be protective.


[1083] Mice deficient in SCD1 have very low levels of triglyceride synthesis in the liver, which is reflected in low levels of triglycerides in the VLDL and LDL lipoprotein fractions (Miyazaki et al., 2000; Miyazaki et al., 2001). There are other reports of SCD1 deficient mice that are leaner and have hypermetabolism (Cohen et al., 2002). In addition, transcription of the SCD gene is regulated by SREBP as well as C/EBPalpha, transcription factors that have been shown to be essential in adipose differentiation and lipogenesis (Bene et al., 2001). Moreover, antidiabetic thiazolidinediones downregulate SCD1 in cultured primary adipocytes (Kim et al., 2000). Taken together, these findings suggest that an antagonist for SCD to inhibit SCD directly may be an effective therapeutic for obesity.


[1084] C. NOV2: Human Aryl Hydrocarbon Receptor—Like Proteins


[1085] The following sections describe the study design(s) and the techniques used to identify the human Aryl Hydrocarbon Receptor—encoded NOV2 protein, and any variants thereof, as being suitable as diagnostic markers, targets for an antibody therapeutic and targets for a small molecule drugs for obesity and/or diabetes.


[1086] The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor. 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a known activating ligand that initiates expression of multiple genes, including CYP1B1 and glutathione S-transferase. The Aryl Hydrocarbon Receptor forms a heterodimer with ARNT, a nuclear translocator, to form an active complex that crosses the nuclear membrane and binds to DNA. As a result of activation of ABR, PPAR-γ can become suppressed and GLUT4 expression becomes down regulated in adipose tissue. These actions are of biological importance in the development of insulin resistance and of diabetes.


[1087] The Aryl Hydrocarbon Receptor is a member of the PAS (Per-Ahr-Sim) superfamily of transcription factors having functions in development and detoxification. Only recently has any member of this family been associated with obesity and diabetes.


[1088] Gestational diabetes complicates 4% of pregnancies and is a prognostic factor in the development of Type II diabetes. In addition, offspring of women who develop gestational diabetes are at increased risk of becoming obese and developing diabetes. Thus, the differences in gene expression from the metabolic tissues of gestational diabetics and non-diabetic should reveal underlying differences related to the pathophysiology of diabetes. Because many women deliver by C-section this patient population provides an opportunity to examine gene expression changes in surgical material from normals, gestational diabetics treated by diet alone and gestational diabetics treated with insulin. These patients, generally, do not suffer from confounding medical conditions and are not exposed to drugs that may influence gene expression. In this IRB-approved study, clinical information and samples were obtained from sub-cutaneous adipose, skeletal muscle, visceral adipose (omentum) and smooth muscle (uterus) from women giving birth by non-emergency C-section. Maternal and cord blood were also obtained for genotype analysis. The body mass index spanned a wide range in this patient population. Those patients meeting the diagnostic criteria for gestational diabetes were treated with either dietary modification and/or insulin therapy.


[1089] See generally, Ma 2001 Curr Drug Metab.: 149-64; Safe 2001 Toxicol Lett. 120(1-3):1-7; Ema 2001 Seikagaku. 73(2):81-8; Delescluse et al. 2000 Toxicology. 153(1-3):73-82; Gu et al 2000 Annu Rev Pharmacol Toxicol. 40:519-61; Schwarz et al. 2000 Toxicol Lett. 112-113:69-77; Okino et al. 2000 Vitam Horm. 59:241-64; Crews et al. 1999 Curr Opin Genet Dev. 9(5):580-7; Safe et al. 1998 Toxicol Lett. 102-103:343-7; Gonzalez et al. 1998 Drug Metab Dispos. 26(12):1194-8; Lahvis et al., 1998 Biochem Pharmacol. 56(7):781-7; Holder et al. 2000 Hum Mol Genet. 9(1):101-8; Seidel et al, 2000 Toxicol.Sci. 55 :107-115 ; and Allen et al. 2001 Drug Metab.Dispos. 29:1074-1079.


[1090] The predominant cause for obesity in clinical populations is excess caloric intake. This so-called diet-induced obesity (DIO) is mimicked in animal models by feeding high fat diets of greater than 40% fat content. The DIO study was established to identify the gene expression changes contributing to the development and progression of diet-induced obesity. In addition, the study design seeks to identify the factors that lead to the ability of certain individuals to resist the effects of a high fat diet and thereby prevent obesity. The sample groups for the study had body weights +1 S.D., +4 S.D. and +7 S.D. of the chow-fed controls (below). In addition, the biochemical profile of the +7 S.D. mice revealed a further stratification of these animals into mice that retained a normal glycemic profile in spite of obesity and mice that demonstrated hyperglycemia. Tissues examined included hypothalamus, brainstem, liver, retroperitoneal white adipose tissue (WAT), epididymal WAT, brown adipose tissue (BAT), gastrocnemius muscle (fast twitch skeletal muscle) and soleus muscle (slow twitch skeletal muscle). The differential gene expression profiles for these tissues should reveal genes and pathways that can be used as therapeutic targets for obesity.


[1091] A gene fragment of the human Aryl Hydrocarbon Receptor was initially found to be up-regulated by 1.9 fold in the adipose tissues of human gestational diabetics relative to normal pregnant females using CuraGen's GeneCalling™ method of differential gene expression. A differentially expressed human gene fragment migrating, at approximately 131 nucleotides in length was definitively identified as a component of the human Aryl Hydrocarbon Receptor cDNA. The method of competitive PCR was used for conformation of the gene assessment. The chromatographic peaks corresponding to the gene fragment of the human Aryl Hydrocarbon Receptor are ablated when a gene-specific primer competes with primers in the linker-adaptors during the PCR amplification. The peaks at 131 nt in length are ablated in the sample from both the gestational diabetics and normal patients.


[1092] Additionally, gene fragments corresponding to the mouse orthologue of AHR and two AHR-binding proteins, ARNT (AHR nuclear transporter) and AIP (AHR interacting protein) were found to have altered expression in a mouse model of dietary-induced obesity. The altered expression of these genes in the animal model support the role of the Aryl Hydrocarbon Receptor in the pathogenesis of obesity and/or diabetes.


[1093] Pathways Relevant to Obesity and/or Diabetes


[1094] Alterations in expression of the human Aryl Hydrocarbon Receptor and associated gene products function in the etiology and pathogenesis of obesity and/or diabetes, based on the unique findings of these discovery studies in conjunction with what has been reported in the literature. The outcome of inhibiting the action of the human Aryl Hydrocarbon Receptor would be a reduction of Insulin Resistance, a major problem in obesity and/or diabetes.


[1095] In gestational diabetes, a polymeric complex comprising aryl hydrocarbon receptor, a heat shock protein (HSP) such as HSP90 and AHR-interacting protein (AIP) is upregulated. The aryl hydrocarbon receptor and AIP are translocated to the nucleus and interact with ARNT. This complex causes increased gene expression of factors that inhibit GLUT 4 and PPARγ, resulting in insulin resistance.


[1096] Rationale for use as a Diagnostic and/or Target for Small Molecule Drugs and Antibody Therapeutics


[1097] The following is a summary of the findings from the discovery studies, supplementary investigations and assays that also incorporates knowledge in the scientific literature. Taken in total, the data indicates that an inhibitor/antagonist of the human Aryl Hydrocarbon Receptor would be beneficial in the treatment of obesity and/or diabetes:


[1098] a) Aryl Hydrocarbon was upregulated 1.9 fold in sub-cutaneous adipose from gestational diabetics. TCDD, an AHR agonist, suppresses PPAR-γ. Conversely TZDs activate PPAR-γ.


[1099] b) AHR activation decreases GLUT4 expression in adipose.


[1100] c) The clinical rise may represent a compensatory response.


[1101] d) No dysregulation of toxification genes (CYP1A1, CYP1A2, or CYP1B).


[1102] e) Upregulated in obese, hyperglycemic mouse liver and adipose. AHR nuclear translocator (ARNT) and AHR interacting protein (AIP) are also upregulated.



Example F

[1103] NOV35b (CG59482-02 Alignment with Trypsinogen


[1104] Table F1 shows a ClustW alignment of the CG59482-02 splice variant with trypsinogen (TRY1_HUMAN). The signal sequence extends from 1-15 and the propeptide sequence extends from 16-23 of SEQ ID NO: 341 (indicated by arrows). These two sequence fragments would normally be cleaved away from the mature protein. The residues in which form the catalytic triad are indicate by a “#” beneath the sequence.


[1105] Crystalographic data is also presented.


[1106]
FIG. 1 shows the x-ray crystal structure of trypsin 1 at a 2.2 Å resolution (Gaboriaud, C. et. al, Jol. Mol. Biol., 1996, 259:995-1010)(PDB code 1TRN). The sequences absent in the CG59482-02 splice variant are indicated by small arrows. The view in FIG. 1 shows the active site facing outward with a diisopropyl-phosphofluoridate inhibitor in the active site (indicated by large arrows).


[1107]
FIG. 2 shows the three residues which form the catalytic triad of the active site (indicated by arrowheads).


[1108] The mechanism for catalytic triad formation is shown in FIG. 3. The pKa for the serine hydroxyl is usually about 13, which makes it a poor nucleophile. The aspartate, histidine and serine are arranged in a charge relay system of hydrogen bonds which helps to lower this pKa which makes the sidechain more reactive. The carboxyl side chain on aspartate attracts a proton from histidine, which in turn, abstracts a proton from the hydroxyl of serine allowing it to react with and then cleave the polypeptide substrate.


[1109] Since the CG59482-02 splice variant is missing the Asp107 and His63, the resulting protein cannot form a catalytic triad and therefore would be enzymatically inactive. It is unclear from this stucture what effects the sequence deletion would have upon substrate binding since a small protease inhibitor is shown in the binding site. However, in one embodiment a polypeptide is much larger and has specific interactions with the deleted portions of CG59482-02 (assuming that the protein folded into a similar structure).



Other Embodiments

[1110] Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.


Claims
  • 1. An isolated polypeptide comprising the mature form of an amino acid sequenced selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.
  • 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.
  • 3. An isolated polypeptide comprising an amino acid sequence which is at least 95% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.
  • 4. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.
  • 5. The polypeptide of claim 1 wherein said polypeptide is naturally occurring.
  • 6. A composition comprising the polypeptide of claim 1 and a carrier.
  • 7. A kit comprising, in one or more containers, the composition of claim 6.
  • 8. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic comprises the polypeptide of claim 1.
  • 9. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to an antibody that binds immunospecifically to the polypeptide; and (c) determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount of polypeptide in said sample.
  • 10. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the expression of said polypeptide in the sample of step (a) to the expression of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease, wherein an alteration in the level of expression of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease.
  • 11. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: (a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
  • 12. The method of claim 11 wherein the agent is a cellular receptor or a downstream effector.
  • 13. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; (b) contacting the cell with a composition comprising a candidate substance; and (c) determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a potential therapeutic agent.
  • 14. A method for screening for a modulator of activity of or of latency or predisposition to a pathology associated with the polypeptide of claim 1, said method comprising: (a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein said test animal recombinantly expresses the polypeptide of claim 1;(b) measuring the activity of said polypeptide in said test animal after administering the compound of step (a); and (c) comparing the activity of said polypeptide in said test animal with the activity of said polypeptide in a control animal not administered said polypeptide, wherein a change in the activity of said polypeptide in said test animal relative to said control animal indicates the test compound is a modulator activity of or latency or predisposition to, a pathology associated with the polypeptide of claim 1.
  • 15. The method of claim 14, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.
  • 16. A method for modulating the activity of the polypeptide of claim 1, the method comprising contacting a cell sample expressing the polypeptide of claim 1 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
  • 17. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
  • 18. The method of claim 17, wherein the subject is a human.
  • 19. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110 or a biologically active fragment thereof.
  • 20. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.
  • 21. The nucleic acid molecule of claim 20, wherein the nucleic acid molecule is naturally occurring.
  • 22. A nucleic acid molecule, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.
  • 23. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 110.
  • 24. An isolated nucleic acid molecule comprising a nucleic acid selected from the group consisting of 2n-1, wherein n is an integer between 1 and 110.
  • 25. The nucleic acid molecule of claim 20, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110, or a complement of said nucleotide sequence.
  • 26. A vector comprising the nucleic acid molecule of claim 20.
  • 27. The vector of claim 26, further comprising a promoter operably linked to said nucleic acid molecule.
  • 28. A cell comprising the vector of claim 26.
  • 29. An antibody that immunospecifically binds to the polypeptide of claim 1.
  • 30. The antibody of claim 29, wherein the antibody is a monoclonal antibody.
  • 31. The antibody of claim 29, wherein the antibody is a humanized antibody.
  • 32. A method for determining the presence or amount of the nucleic acid molecule of claim 20 in a sample, the method comprising: (a) providing said sample; (b) introducing said sample to a probe that binds to said nucleic acid molecule; and (c) determining the presence or amount of said probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample.
  • 33. The method of claim 32 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
  • 34. The method of claim 33 wherein the cell or tissue type is cancerous.
  • 35. A method for determining the presence of or predisposition to a disease associated with altered levels of expression of the nucleic acid molecule of claim 20 in a first mammalian subject, the method comprising: a) measuring the level of expression of the nucleic acid in a sample from the first mammalian subject; and b) comparing the level of expression of said nucleic acid in the sample of step (a) to the level of expression of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of expression of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
  • 36. A method of producing the polypeptide of claim 1, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.
  • 37. The method of claim 36 wherein the cell is a bacterial cell.
  • 38. The method of claim 36 wherein the cell is an insect cell.
  • 39. The method of claim 36 wherein the cell is a yeast cell.
  • 40. The method of claim 36 wherein the cell is a mammalian cell.
  • 41. A method of producing the polypeptide of claim 2, the method comprising culturing a cell under conditions that lead to expression of the polypeptide, wherein said cell comprises a vector comprising an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 110.
  • 42. The method of claim 41 wherein the cell is a bacterial cell.
  • 43. The method of claim 41 wherein the cell is an insect cell.
  • 44. The method of claim 41 wherein the cell is a yeast cell.
  • 45. The method of claim 41 wherein the cell is a mammalian cell.
RELATED APPLICATIONS

[0001] This application claims priority to provisional patent applications U.S. Ser. No. 60/318120, filed Sep. 7, 2001; U.S. Ser. No. 60/318430, filed Sep. 10, 2001; U.S. Ser. No. 60/322781, filed Sep. 17, 2001; U.S. Ser. No. 60/318184, filed Sep. 7, 2001; U.S. Ser. No. 60/361663, filed Mar. 5, 2002; U.S. Ser. No. 60/396412, filed Jul. 17, 2002; U.S. Ser. No. 60/322636, filed Sep. 17, 2001; U.S. Ser. No. 60/322817, filed Sep. 17, 2001; U.S. Ser. No. 60/322816, filed Sep. 17, 2001; U.S. Ser. No. 60/323519, filed Sep. 19, 2001; U.S. Ser. No. 60/323631, filed Sep. 20, 2001; U.S. Ser. No. 60/377908, filed May 3, 2002; U.S. Ser. No. 60/381483, filed May 17, 2002; U.S. Ser. No. 60/323636, filed Sep. 20, 2001; U.S. Ser. No. 60/324969, filed Sep. 25, 2001; U.S. Ser. No. 60/383863, filed May 29, 2002; U.S. Ser. No. 60/325091, filed Sep. 25, 2001; U.S. Ser. No. 60/324990, filed Sep. 26, 2001; U.S. Ser. No. 60/341144, filed Dec. 14, 2001; U.S. Ser. No. 60/359599, filed Feb. 26, 2002; U.S. Ser. No. 60/393332, filed Jul. 2, 2002; and U.S. Ser. No. 60/403517, filed Aug. 13, 2002; each of which is incorporated herein by reference in its entirety.

Provisional Applications (22)
Number Date Country
60318120 Sep 2001 US
60318430 Sep 2001 US
60322781 Sep 2001 US
60318184 Sep 2001 US
60361663 Mar 2002 US
60396412 Jul 2002 US
60322636 Sep 2001 US
60322817 Sep 2001 US
60322816 Sep 2001 US
60323519 Sep 2001 US
60323631 Sep 2001 US
60377908 May 2002 US
60381483 May 2002 US
60323636 Sep 2001 US
60324969 Sep 2001 US
60383863 May 2002 US
60325091 Sep 2001 US
60324990 Sep 2001 US
60341144 Dec 2001 US
60359599 Feb 2002 US
60393332 Jul 2002 US
60403517 Aug 2002 US