NUCLEAR PROTEIN TARGETING DEUBIQUITINASES AND METHODS OF USE

Abstract
Provided herein are fusion protein comprising: an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a nuclear protein. Also provided herein are methods of using the fusion proteins to treat a disease, including genetic diseases.
Description
1. FIELD

This disclosure relates to fusion proteins comprising an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a target nuclear protein. The disclosure further relates to therapeutic methods of using the same.


2. BACKGROUND

A subset of genetic diseases are associated with a decrease in the level of expression of a functional nuclear protein or a decrease in the stability of a nuclear protein. For example, haploinsufficiency genetic diseases are caused by the presence a single copy of a wild-type allele in heterozygous combination with a loss of function variant allele, wherein the level of functional protein expressed is insufficient to produce the standard phenotype. Haploinsufficiency can arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it produces little or no functional protein. Despite recent developments in gene therapy, there are still no curative treatments for these diseases, and treatment typically centers on the management of symptoms. Therefore, new treatments are needed for diseases, e.g., genetic diseases, that are associated with decreased functional nuclear protein expression or stability.


3. SUMMARY

Provided herein are, inter alia, engineered deubiquitinases (enDubs) that comprise a targeting moiety that specifically binds a nuclear target protein and a catalytic domain of a deubiquitinase. The targeting moiety directs that deubiquitinase catalytic domain to the specific target nuclear protein for deubiquitination. The fusion proteins described herein are particularly useful in methods of treating genetic diseases, particularly those associated with or caused by decreased expression or stability of a specific nuclear protein.


In one aspect, provided herein are fusion proteins comprising: an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease.


In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is BAP1, UCHL1, UCHL3, or UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is ATXN3 or ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is OTUB1 or OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1.


In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 423.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 423.


In some embodiments, the moiety that specifically binds a nuclear protein comprises an antibody, or functional fragment or functional variant thereof. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, a (VHH)2. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH or (VHH)2.


In some embodiments, the nuclear protein is a transcription factor. In some embodiments, the nuclear protein is chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin (NF1), and histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), histone acetyltransferase KAT6A (KAT6A), Small nuclear ribonucleoprotein G (SNRPG), U6 snRNA-associated Sm-like protein LSm2 (LSM2), or Nuclear protein 2 (NUPR2).


In some embodiments, the nuclear protein is a transcription factor. In some embodiments, the nuclear protein is chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin (NF1), and histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), and histone acetyltransferase KAT6A (KAT6A).


In some embodiments, the nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 221-248 or 424-426.


In some embodiments, the effector domain is directly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 427-436 or 249-367, or the amino acid sequence of any one of SEQ ID NOS: 427-436 or 249-367 comprising 1, 2, or 3 amino acid modifications. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 427-436, or the amino acid sequence of any one of SEQ ID NOS: 427-436 comprising 1, 2, or 3 amino acid modifications.


In some embodiments, the effector domain is operably connected either directly or indirectly to the C terminus of the targeting domain. In some embodiments, the effector moiety is operably connected either directly or indirectly to the N terminus of the targeting domain.


In some embodiments, the fusion protein further comprises a nuclear localization signal (NLS). In some embodiments, the NLS is a at the N terminus of the fusion protein. In some embodiments, the NLS comprises the amino acid sequence of any one of SEQ ID NOS: 249-367.


In one aspect, provided herein are nucleic acid molecules encoding a fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule.


In one aspect, provided herein are vectors comprising a nucleic acid molecule described herein (e.g., a nucleic acid molecule encoding a fusion protein described herein). In some embodiments, the vector is a plasmid or a viral vector.


In one aspect, provided herein are viral particles comprising a nucleic acid molecule described herein (e.g., a nucleic acid molecule encoding a fusion protein described herein).


In one aspect, provided herein are in vitro cell or population of cells comprising a fusion protein described herein, a nucleic acid molecule described herein, or a vector described herein.


In one aspect, provided herein are pharmaceutical compositions comprising a fusion protein described herein, a nucleic acid described herein, a vector described herein, or a viral particle described herein, and an excipient.


In one aspect, provided herein are methods of making a fusion protein described herein, comprising introducing into an in vitro cell or population of cells a nucleic acid molecule described herein, a vector described herein, or a viral particle described herein; culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein, isolating the fusion protein from the culture medium, and optionally purifying the fusion protein.


In one aspect, provided herein are methods of treating or preventing a disease in a subject comprising administering a fusion protein described herein, a nucleic acid molecule described herein, a vector described herein, a viral particle described herein, or a pharmaceutical composition described herein, to a subject in need thereof. In some embodiments, the subject is human.


In some embodiments, the disease is associated with decreased expression of a functional version of the nuclear protein relative to a non-diseased control. In some embodiments, the disease is associated with decreased stability of a functional version of the nuclear protein relative to a non-diseased control. In some embodiments, the disease is associated with increased ubiquitination of the nuclear protein relative to a non-diseased control. In some embodiments, the disease is associated with increased ubiquitination and degradation of the nuclear protein relative to a non-diseased control. In some embodiments, wherein the disease is a genetic disease.


In some embodiments, the disease is CHD2 encephalopathy, CDKL5 deficiency disorder, SETD5 syndrome, CAMTA1 syndrome, early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, Kabuki syndrome 1, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, fragile X syndrome, retinitis pigmentosa 13, Smith-Magenis syndrome, Rubinstein-Taybi syndrome, neurofibromatosis (e.g., type 1), Wiedmann-Steiner Syndrome, Sifrim-Hitz-Weiss Syndrome, Sotos Syndrome, MED13L Syndrome, SMC1A Syndrome, Nicolaides-Baraitser Syndrome, ARID1B-Related Disorder, White-Sutton Syndrome, KAT6B Disorder, Xia-Gibbs Syndrome, Menke-Hennekam Syndrome 2, IQSEC2-Related Disorder, TCF20-Related Disorder, Bainbridge-Ropers Syndrome, or KATA6 Syndrome.


In some embodiments, the target nuclear protein is CHD2 and the disease is childhood onset epileptic encephalopathy; the target nuclear protein is CHD2 and the disease is CHD2 encephalopathy; the target nuclear protein is RERE and the disease is 1p36 deletion syndrome; the target nuclear protein is CDKL5 and the disease is early infantile epileptic encephalopathy (e.g., type 2); the target nuclear protein is CDKL5 and the disease is CDKL5 deficiency disorder; the target nuclear protein is MECP2 and the disease is Rett syndrome; the target nuclear protein is KMT2D and the disease is Kabuki syndrome 1; the target nuclear protein is SETD5 and the disease is mental retardation autosomal dominant 23; the target nuclear protein is ZEB2 and the disease is Mowat-Wilson syndrome; the target nuclear protein is KMT2A, and the disease is Wiedmann-Steiner Syndrome; the target nuclear protein is CHD4, and the disease is Sifrim-Hitz-Weiss Syndrome; the target nuclear protein is NSD1, and the disease is Sotos Syndrome; the target nuclear protein is SMC1A, and the disease is SMC1A Syndrome; the target nuclear protein is SMARCA2, and the disease is Nicolaides-Baraitser Syndrome; the target nuclear protein is ARID1B, and the disease is ARID1B-Related Disorder; the target nuclear protein is POGZ, and the disease is White-Sutton Syndrome; the target nuclear protein is KAT6B, and the disease is KAT6B Disorder; the target nuclear protein is AHDC1, and the genetic disease is Xia-Gibbs Syndrome; the target nuclear protein is EP300, and the disease is Menke-Hennekam Syndrome 2; the target nuclear protein is IQSEC2, and the disease is IQSEC2-Related Disorder; the target nuclear protein is TCF20, and the disease is TCF20-Related Disorder; the target nuclear protein is ASXL3, and the disease is Bainbridge-Ropers Syndrome; the target nuclear protein is KAT6A, and the disease is KATA6 Syndrome; the target nuclear protein is MED13L, and the disease is MED13L Syndrome; the target nuclear protein is CAMTA1, and the disease is CAMTA1 Syndrome; the target nuclear protein is FMR1, and the disease is Fragile X syndrome; the target nuclear protein is PRPF8, and the disease is Retinitis pigmentosa 13; the target nuclear protein is RAI1, and the disease is Smith-Magenis Syndrome; the target nuclear protein is CREBBP, and the disease is Rubinstein-Taybi syndrome; or the target nuclear protein is NF1, and the disease is Neurofibromatosis (e.g., type 1).


In some embodiments, the disease is a haploinsufficiency disease. In some embodiments, the haploinsufficiency disease is selected from the group consisting of early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, Smith-Magenis syndrome, or neurofibromatosis (e.g., type 1).


In some embodiments, the fusion protein is administered at a therapeutically effective dose. In some embodiments, the fusion protein is administered systematically or locally. In some embodiments, the fusion protein is administered intravenously, subcutaneously, or intramuscularly.


In one aspect, provided herein are fusion proteins described herein, polynucleotides described herein, DNA described herein, RNA described herein, vectors described herein, viral particles described herein, and pharmaceutical compositions described herein for use as a medicament.


In one aspect, provided herein are fusion proteins described herein, polynucleotides described herein, DNA described herein, RNA described herein, vectors described herein, viral particles described herein, and pharmaceutical compositions described herein for use in treating or inhibiting a genetic disorder.


In one aspect, provided herein are fusion proteins comprising: (a) an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and (b) a targeting domain comprising a targeting moiety that specifically binds a nuclear protein.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease.


In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, and USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is selected from the group consisting of BAP1, UCHL1, UCHL3, and UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is selected from the group consisting of ATXN3 and ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is selected from the group consisting of OTUB1 and OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is selected from the group consisting of MINDY1, MINDY2, MINDY3, and MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1. In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220.


In some embodiments, the moiety that specifically binds a nuclear protein comprises an antibody, or functional fragment or functional variant thereof. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), or a VHH. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH.


In some embodiments, the nuclear protein is a transcription factor.


In some embodiments, the nuclear protein is selected from the group consisting of chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin (NF1), and histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), and histone acetyltransferase KAT6A (KAT6A).


In some embodiments, the nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-248.


In some embodiments, the effector domain is directly fused to the targeting domain. In some embodiments, the effector domain is indirectly fused to the targeting domain. In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins.


In some embodiments, the effector domain is fused to the C terminus of the targeting domain. In some embodiments, the effector moiety is fused to the N terminus of the targeting domain.


In some embodiments, the fusion protein further comprises a nuclear localization signal (NLS). In some embodiments, the NLS is a at the N terminus of the fusion protein.


In one aspect, provided herein are nucleic acid molecules encoding the fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule.


In one aspect, provided herein are vectors comprising a nucleic acid molecule described herein. In some embodiments, the vector is a plasmid or a viral vector.


In one aspect, provided herein are viral particles comprising a nucleic acid described herein.


In one aspect, described herein is an in vitro cell or population of cells comprising a fusion protein described herein, a nucleic acid molecule described herein, or a vector described herein.


In one aspect, provided herein are pharmaceutical compositions comprising a fusion protein described herein, a nucleic acid molecule described herein, a vector described herein, or a viral particle described herein, and an excipient.


In one aspect, provided herein are methods of making a fusion protein described herein, comprising (a) introducing into an in vitro cell or population of cells a nucleic acid described herein, a vector described herein, or a viral particle described herein; (b) culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein, (c) isolating the fusion protein from the culture medium, and (d) optionally purifying the fusion protein.


In one aspect, provided herein are methods of treating a disease in a subject comprising administering a fusion protein described herein, a nucleic acid described herein, a vector described herein, or a viral particle described herein, or a pharmaceutical composition described herein, to a subject in need thereof.


In some embodiments, the subject is human.


In some embodiments, the disease is associated with decreased expression of a functional version of the mitochondrial protein relative to a non-diseased control.


In some embodiments, the disease is associated with decreased stability of a functional version of the mitochondrial protein relative to a non-diseased control.


In some embodiments, the disease is associated with increased ubiquitination and degradation of the mitochondrial protein relative to a non-diseased control.


In some embodiments, the disease is a genetic disease.


In some embodiments, the disease is CHD2 encephalopathy, CDKL5 deficiency disorder, SETD5 syndrome, CAMTA1 syndrome, early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, Kabuki syndrome 1, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, fragile X syndrome, retinitis pigmentosa 13, Smith-Magenis syndrome, Rubinstein-Taybi syndrome, neurofibromatosis (e.g., type 1), Wiedmann-Steiner Syndrome, Sifrim-Hitz-Weiss Syndrome, Sotos Syndrome, MED13L Syndrome, SMC1A Syndrome, Nicolaides-Baraitser Syndrome, ARID1B-Related Disorder, White-Sutton Syndrome, KAT6B Disorder, Xia-Gibbs Syndrome, Menke-Hennekam Syndrome 2, IQSEC2-Related Disorder, TCF20-Related Disorder, Bainbridge-Ropers Syndrome, and KATA6 Syndrome.


In some embodiments, the disease is a haploinsufficiency disease. In some embodiments, the haploinsufficiency disease is selected from the group consisting of early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, Smith-Magenis syndrome, or neurofibromatosis (e.g., type 1).


In some embodiments, the fusion protein is administered at a therapeutically effective dose. In some embodiments, the fusion protein is administered systematically or locally. In some embodiments, the fusion protein is administered intravenously, subcutaneously, or intramuscularly.





4. BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1D provides a schematic representation of exemplary fusion proteins described herein. FIG. 1A is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus a VHH that specifically binds a nuclear target protein and the catalytic domain of a deubiquitinase. In this specific embodiment, the C-terminus of the VHH is directly connected to the N-terminus of the catalytic domain of the deubiquitinase. FIG. 1B is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus the catalytic domain of a deubiquitinase that specifically binds a nuclear target protein and a VHH that specifically binds a nuclear target protein. In this specific embodiment, the C-terminus of the catalytic domain of the deubiquitinase is directly connected to the N-terminus of the VHH. FIG. 1C is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus a VHH that specifically binds a nuclear target protein and the catalytic domain of a deubiquitinase. In this specific embodiment, the C-terminus of the VHH is indirectly connected to the N-terminus of the catalytic domain of the deubiquitinase through a peptide linker. FIG. 1D is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus the catalytic domain of a deubiquitinase that specifically binds a nuclear target protein and a VHH that specifically binds a nuclear target protein. In this specific embodiment, the C-terminus of the catalytic domain of the deubiquitinase is indirectly connected to the N-terminus of the VHH through a peptide linker.



FIG. 2 is a schematic representation of the assay utilized in Example 3, to screen the effect of targeted deubiquitination of different nuclear proteins on target protein expression.



FIG. 3 is a bar graph depicting the fold change in SNRPG protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).



FIG. 4 is a bar graph depicting the fold change in LSM2 protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).



FIG. 5 is a bar graph depicting the fold change in NUPR2 protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).





5. DETAILED DESCRIPTION
5.1 Overview

Ubiquitination is the process by which ubiquitin ligases mediate the addition of ubiquitin, a 76 amino acid regulatory protein, to a substrate protein. Ubiquitination generally starts by the attachment of a single ubiquitin molecule to a lysine amino acid residue of the substrate protein. Mevissen T. et al. Mechanisms of Deubiquitinase Specificity and Regulation Annual Review of Biochemistry 86:1, 159-192 (2017), the entire contents of which is incorporated by reference herein. These monoubiquitination events are abundant and serve various functions. Ubiquitin itself contains seven lysine residues, all of which can be ubiquitinated resulting in polyubiquitinated proteins. Komander, D. et al. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 (2009), the entire contents of which is incorporated by reference herein. Mono and polyubiquitination can have multiple effects on the substrate protein, including marking the substrate protein for degradation via the proteasome, altering the protein's cellular location, altering the protein's activity, and/or promoting or preventing normal protein interactions. See e.g., Hershko A. et al. The ubiquitin system. Annu Rev Biochem. 67:425-79 (1998); Nandi D, et al. The ubiquitin-proteasome system. J Biosci. March; 31(1):137-55 (2006), the entire contents of each of which is incorporated by reference herein. The effects of ubiquitination can be reversed or prevented by removing the ubiquitin protein(s) from the substrate protein. The removal of ubiquitin from a substrate protein is mediated by deubiquitinase (DUB) proteins. Id.


Numerous genetic diseases are associated with or caused by a decrease in the level of expression of a functional nuclear protein or the stability of the nuclear protein. For example, haploinsufficiency genetic diseases are caused by the presence a single copy of a wild-type allele in heterozygous combination with a loss of function variant allele, wherein the level of functional protein expressed is insufficient to produce the standard phenotype. See e.g., Johnson, A. et al, Causes and effects of haploinsufficiency. Biol Rev, 94: 1774-1785 (2019), the entire contents of which is incorporated by reference herein. Haploinsufficiency can arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it produces little or no functional protein. Other genetic disorders result from the ubiquitination and subsequent degradation of variant but functional proteins, resulting in a decrease in expression of the functional protein.


The present disclosure provides, inter alia, novel fusion proteins that comprise the catalytic domain (or functional fragment thereof) of a deubiquitinase and a targeting moiety, such as a VHH, that specifically binds to a target nuclear protein. In some embodiments, decreased expression of a functional version of the target nuclear protein or decreased stability of a functional version of the target nuclear protein is associated with a disease phenotype. As such, the fusion proteins described herein are particularly useful in the treatment of genetic diseases characterized by a decrease in the level of expression of a functional target nuclear protein or the stability of the target nuclear protein. Upon expression of the fusion protein by host cells, the catalytic domain of the deubiquitinase will be specifically targeted to the target nuclear protein and deubiquitinated, resulting in increased expression of the target nuclear protein, e.g., to a level sufficient to alleviate the disease phenotype.


5.2 Definitions

The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. For example, the Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 3rd ed., 1999, Academic Press; and the Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press, provide one of skill with a general dictionary of many of the terms used in this disclosure.


It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise.


It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, use of the term “including” as well as other forms, such as “include,” “includes,” and “included,” is not limiting.


It is understood that wherever aspects are described herein with the language “comprising,” otherwise analogous aspects described in terms of “consisting of” and/or “consisting essentially of” are also provided.


The term “and/or” where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. Thus, the term “and/or” as used in a phrase such as “A and/or B” herein is intended to include “A and B,” “A or B,” “A” (alone), and “B” (alone). Likewise, the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).


Units, prefixes, and symbols are denoted in their Système International de Unites (SI) accepted form. Numeric ranges are inclusive of the numbers defining the range. The headings provided herein are not limitations of the various aspects of the disclosure, which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification in its entirety.


As described herein, any concentration range, percentage range, ratio range or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated.


The terms “about” or “comprising essentially of” refer to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, “about” or “comprising essentially of” can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, “about” or “comprising essentially of” can mean a range of up to 20%. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the application and claims, unless otherwise stated, the meaning of “about” or “comprising essentially of” should be assumed to be within an acceptable error range for that particular value or composition.


As used herein, the term “catalytic domain” in reference to a deubiquitinase refers to an amino acid sequence, or a variant thereof, of a deubiquitinase that is capable of mediating deubiquitination of a target protein. The catalytic domain may comprise a naturally occurring amino acid sequence of a deubiquitinase or it may comprise a variant amino acid sequence of a naturally occurring deubiquitinase. The catalytic domain may comprise the minimum amino acid sequence of a deubiquitinase to mediate deubiquitination of a target protein. The catalytic domain may comprise more than the minimum amino acid sequence of a deubiquitinase to mediate deubiquitination of a target protein.


The terms “polynucleotide” and “nucleic acid sequence” are used interchangeably herein and refer to a polymer of DNA or RNA. The polynucleotide sequence can be single-stranded or double-stranded; contain natural, non-natural, or altered nucleotides; and contain a natural, non-natural, or altered internucleotide linkage, such as a phosphoroamidate linkage or a phosphorothioate linkage, instead of the phosphodiester found between the nucleotides of an unmodified polynucleotide sequence. Polynucleotide sequences include, but are not limited to, all polynucleotide sequences which are obtained by any means available in the art, including, without limitation, recombinant means, e.g., the cloning of polynucleotide sequences from a recombinant library or a cell genome, using ordinary cloning technology and polymerase chain reaction, and the like, and by synthetic means.


The terms “amino acid sequence” and “polypeptide” are used interchangeably herein and refer to a polymer of amino acids connected by one or more peptide bonds.


The term “functional variant” as used herein in reference to a protein or polypeptide refers to a protein that comprises at least one amino acid modification (e.g., a substitution, deletion, addition) compared to the amino acid sequence of a reference protein, that retains at least one particular function. In some embodiments, the reference protein is a wild type protein. For example, a functional variant of an IL-2 protein can refer to an IL-2 protein comprising an amino acid substitution as compared to a wild type IL-2 protein that retains the ability to bind the intermediate affinity IL-2 receptor but abrogates the ability of the protein to bind the high affinity IL-2 receptor. Not all functions of the reference wild type protein need be retained by the functional variant of the protein. In some instances, one or more functions are selectively reduced or eliminated.


The term “functional fragment” as used herein in reference to a protein or polypeptide refers to a fragment of a reference protein that retains at least one particular function. For example, a functional fragment of an anti-HER2 antibody can refer to a fragment of the anti-HER2 antibody that retains the ability to specifically bind the HER2 antigen. Not all functions of the reference protein need be retained by a functional fragment of the protein. In some instances, one or more functions are selectively reduced or eliminated.


As used herein, the term “modification,” with reference to a polynucleotide sequence, refers to a polynucleotide sequence that comprises at least one substitution, alteration, inversion, addition, or deletion of nucleotide compared to a reference polynucleotide sequence. Modifications can include non-naturally nucleotides. As used herein, the term “modification,” with reference to an amino acid sequence refers to an amino acid sequence that comprises at least one substitution, alteration, inversion, addition, or deletion of an amino acid residue compared to a reference amino acid sequence. Modifications can include the inclusion of non-naturally occurring amino acid residues.


As used herein, the term “derived from” with reference to an amino acid sequence refers to an amino acid sequence that has at least 80% sequence identity to a reference naturally occurring amino acid sequence. For example, a catalytic domain derived from a naturally occurring deubiquitinase means that the catalytic domain has an amino acid sequence with at least 80% sequence identity to the sequence of the deubiquitinase catalytic domain from which it is derived. The term “derived from” as used herein does not denote any specific process or method for obtaining the amino acid sequence. For example, the amino acid sequence can be chemically or recombinantly synthesized.


The term “fusion protein” and grammatical equivalents as used herein refers to a protein that comprises an amino acid sequence derived from at least two separate proteins. The amino acid sequence of the at least two separate proteins can be directly connected through a peptide bond; or can be operably connected through an amino acid linker. Therefore, the term fusion protein encompasses embodiments, wherein the amino acid sequence of e.g., Protein A is directly connected to the amino acid sequence of Protein B through a peptide bond (Protein A-Protein B), and embodiments, wherein the amino acid sequence of e.g., Protein A is operably connected to the amino acid sequence of Protein B through an amino acid linker (Protein A-linker-Protein B).


The term “fuse” and grammatical equivalents thereof as used herein refers to the operable connection of an amino acid sequence derived from one protein to the amino acid sequence derived from different protein. The term fuse encompasses both a direct connection of the two amino acid sequences through a peptide bond, and the indirect connection through an amino acid linker.


An “isolated antibody” refers to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that binds specifically to HER2 is substantially free of antibodies that bind specifically to antigens other than HER2). An isolated antibody that binds specifically to HER2 may, however, cross-react with other antigens, such as HER2 molecules from different species. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals. By comparison, an “isolated” nucleic acid refers to a nucleic acid composition of matter that is markedly different, i.e., has a distinctive chemical identity, nature and utility, from nucleic acids as they exist in nature. For example, an isolated DNA, unlike native DNA, is a freestanding portion of a native DNA and not an integral part of a larger structural complex, the chromosome, found in nature. Further, an isolated DNA, unlike native DNA, can be used as a PCR primer or a hybridization probe for, among other things, measuring gene expression and detecting biomarker genes or mutations for diagnosing disease or predicting the efficacy of a therapeutic. An isolated nucleic acid may also be purified so as to be substantially free of other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, using standard techniques well known in the art.


As used herein, the term “antibody” or “antibodies” are used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity (i.e. antigen binding fragments as defined herein). The term antibody thus includes, for example, include full-length antibodies, antigen-binding fragments of full-length antibodies, molecules comprising antibody CDRs, VH regions, and/or VL regions; and antibody-like scaffolds (e.g., fibronectins). Examples of antibodies include, without limitation, monoclonal antibodies, recombinantly produced antibodies, monospecific antibodies, multispecific antibodies (including bispecific antibodies), human antibodies, humanized antibodies, chimeric antibodies, immunoglobulins, synthetic antibodies, tetrameric antibodies comprising two heavy chain and two light chain molecules, an antibody light chain monomer, an antibody heavy chain monomer, an antibody light chain dimer, an antibody heavy chain dimer, an antibody light chain-antibody heavy chain pair, intrabodies, heteroconjugate antibodies, antibody-drug conjugates, single domain antibodies (e.g., VHH, (VHH)2), monovalent antibodies, single chain antibodies, single-chain Fvs (scFv; (scFv)2), camelized antibodies, affybodies, Fab fragments (e.g., Fab, single chain Fab (scFab), F(ab′)2 fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies (including, e.g., anti-anti-Id antibodies), diabodies, tribodies, and antibody-like scaffolds (e.g., fibronectins), Fc fusions (e.g., Fab-Fc, scFv-Fc, VHH-Fc, (scFv)2-Fc, (VHH)2-Fc, and antigen-binding fragments of any of the above, and conjugates or fusion proteins comprising any of the above. In certain embodiments, antibodies described herein refer to polyclonal antibody populations. In certain embodiments, antibodies described herein refer to monoclonal antibody populations. Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA or IgY), any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 or IgA2), or any subclass (e.g., IgG2a or IgG2b) of immunoglobulin (Ig) molecule. In certain embodiments, antibodies described herein are IgG antibodies, or a class (e.g., human IgG1 or IgG4) or subclass thereof. In a specific embodiment, the antibody is a humanized monoclonal antibody. In another specific embodiment, the antibody is a human monoclonal antibody.


The term “full-length antibody,” as used herein refers to an antibody having a structure substantially similar to a native antibody structure comprising two heavy chains and two light chains interconnected by disulfide bonds. In some embodiments, the two heavy chains comprise a substantially identical amino acid sequence; and the two light chains comprise a substantially identical amino acid sequence. Antibody chains may be substantially identical but not entirely identical if they differ due to post-translational modifications, such as C-terminal cleavage of lysine residues, alternative glycosylation patterns, etc.


The terms “antigen binding fragment” and “antigen binding domain” are used interchangeably herein and refer to one or more polypeptides, other than a full-length antibody, that is capable of specifically binding to antigen and comprises a portion of a full-length antibody (e.g., a VH, a VL). Exemplary antigen binding fragments include, but are not limited to, single domain antibodies (e.g., VHH, (VHH)2), single chain antibodies, single-chain Fvs (scFv; (scFv)2), camelized antibodies, affybodies, Fab fragments (e.g., Fab, single chain Fab (scFab), F(ab′)2 fragments, and disulfide-linked Fvs (sdFv). The antigen binding domain can be part of a larger protein, e.g., a full-length antibody.


The term “(scFv)2” as used herein refers to an antibody that comprises a first and a second scFv operably connected (e.g., via a linker). The first and second scFv can specifically bind the same or different antigens. In some embodiments, the first and second scFv are operably connected by an amino via an amino acid linker.


The term “(VHH)2” as used herein refers to an antibody that comprises a first and a second VHH operably connected (e.g., via a linker). The first and the second VHH can specifically bind the same or different antigens. In some embodiments, the first and second VHH are operably connected by an amino via an amino acid linker.


The term “Fab-Fc” as used herein refers to an antibody that comprises a Fab operably linked to an Fc domain or a subunit of an Fc domain. A full-length antibody described herein comprises two Fabs, one Fab operably connected to one Fc domain and the other Fab operably connected to a second Fc domain.


The term “scFv-Fc” as used herein refers to an antibody that comprises a scFv operably linked to an Fc domain or subunit of an Fc domain.


The term “VHH-Fc” as used herein refers to an antibody that comprises a VHH operably linked to an Fc domain or a subunit of an Fc domain.


The term “(scFv)2-Fc” as used herein refers to a (scFv)2 operably linked to an Fc domain or a subunit of an Fc domain.


The term “(VHH)2—Fc” as used herein refers to (VHH)2 operably linked to an Fc domain or a subunit of an Fc domain.


“Antibody-like scaffolds” are known in the art, for example, fibronectin and designed ankyrin repeat proteins (DARPins) have been used as alternative scaffolds for antigen-binding domains, see, e.g., Gebauer and Skerra, Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245-255 (2009) and Stumpp et al., Darpins: A new generation of protein therapeutics. Drug Discovery Today 13: 695-701 (2008). Exemplary antibody-like scaffold proteins include, but are not limited to, lipocalins (Anticalin), Protein A-derived molecules such as Z-domains of Protein A (Affibody), an A-domain (Avimer/Maxibody), a serum transferrin (trans-body); a designed ankyrin repeat protein (DARPin), VNAR fragments, a fibronectin (AdNectin), a C-type lectin domain (Tetranectin); a variable domain of a new antigen receptor beta-lactamase (VNAR fragments), a human gamma-crystallin or ubiquitin (Affilin molecules); a kunitz type domain of human protease inhibitors, microbodies such as the proteins from the knottin family, peptide aptamers and fibronectin (adnectin).


As used herein, the term “CDR” or “complementarity determining region” means the noncontiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. These particular regions have been described by Kabat et al., J. Biol. Chem. 252, 6609-6616 (1977) and Kabat et al., Sequences of protein of immunological interest. (1991), all of which are herein incorporated by reference in their entireties. Unless otherwise specified, the term “CDR” is a CDR as defined by Kabat et al., J. Biol. Chem. 252, 6609-6616 (1977) and Kabat et al., Sequences of protein of immunological interest. (1991).


As used herein, the term “framework (FR) amino acid residues” refers to those amino acids in the framework region of an antibody variable region. The term “framework region” or “FR region” as used herein, includes the amino acid residues that are part of the variable region, but are not part of the CDRs (e.g., using the Kabat definition of CDRs).


As used herein, the term “heavy chain” when used in reference to an antibody can refer to any distinct type, e.g., alpha (α), delta (δ), epsilon (ε), gamma (γ), and mu (μ), based on the amino acid sequence of the constant domain, which give rise to IgA, IgD, IgE, IgG, and IgM classes of antibodies, respectively, including subclasses of IgG, e.g., IgG1, IgG2, IgG3, and IgG4.


As used herein, the term “light chain” when used in reference to an antibody can refer to any distinct type, e.g., kappa (κ) or lambda (λ) based on the amino acid sequence of the constant domains. Light chain amino acid sequences are well known in the art. In specific embodiments, the light chain is a human light chain.


As used herein, the terms “variable region” refers to a portion of an antibody, generally, a portion of a light or heavy chain, typically about the amino-terminal 110 to 120 amino acids or 110 to 125 amino acids in the mature heavy chain and about 90 to 115 amino acids in the mature light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of a particular antibody for its particular antigen. The variability in sequence is concentrated in those regions called complementarity determining regions (CDRs) while the more highly conserved regions in the variable domain are called framework regions (FR). Without wishing to be bound by any particular mechanism or theory, it is believed that the CDRs of the light and heavy chains are primarily responsible for the interaction and specificity of the antibody with antigen. In certain embodiments, the variable region is a human variable region. In certain embodiments, the variable region comprises rodent or murine CDRs and human framework regions (FRs). In particular embodiments, the variable region is a primate (e.g., non-human primate) variable region. In certain embodiments, the variable region comprises rodent or murine CDRs and primate (e.g., non-human primate) framework regions (FRs).


The terms “VL” and “VL domain” are used interchangeably to refer to the light chain variable region of an antibody.


The terms “VH” and “VH domain” are used interchangeably to refer to the heavy chain variable region of an antibody.


As used herein, the terms “constant region” and “constant domain” are interchangeable and are common in the art. The constant region is an antibody portion, e.g., a carboxyl terminal portion of a light and/or heavy chain which is not directly involved in binding of an antibody to antigen but which can exhibit various effector functions, such as interaction with an Fc receptor (e.g., Fc gamma receptor). The constant region of an immunoglobulin (Ig) molecule generally has a more conserved amino acid sequence relative to an immunoglobulin (Ig) variable domain.


The term “Fc region” as used herein refers to the C-terminal region of an immunoglobulin (Ig) heavy chain that comprises from N- to C-terminus at least a CH2 domain operably connected to a CH3 domain. In some embodiments, the Fc region comprises an immunoglobulin (Ig) hinge region operably connected to the N-terminus of the CH2 domain. Examples of proteins with engineered Fc regions can be found in Saunders 2019 (K. O. Saunders, “Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life,” 2019, Frontiers in Immunology, V. 10, Art. 1296, pp. 1-20, which is incorporated by reference herein).


As used herein, the term “EU numbering system” refers to the EU numbering convention for the constant regions of an antibody, as described in Edelman, G. M. et al., Proc. Natl. Acad. USA, 63, 78-85 (1969) and Kabat et al, Sequences of Proteins of Immunological Interest, U.S. Dept. Health and Human Services, 5th edition, 1991, each of which is herein incorporated by reference in its entirety.


As used herein, the term “Kabat numbering system” refers to the Kabat numbering convention for variable regions of an antibody, see e.g., Kabat et al, Sequences of Proteins of Immunological Interest, U.S. Dept. Health and Human Services, 5th edition, 1991. Unless otherwise noted, numbering of the variable regions of an antibody are denoted according to the Kabat numbering system.


As used herein, the terms “specifically binds,” refers to molecules that bind to an antigen (e.g., epitope or immune complex) as such binding is understood by one skilled in the art. For example, a molecule that specifically binds to an antigen can bind to other peptides or polypeptides, generally with lower affinity as determined by, e.g., immunoassays, BIAcore©, KinExA 3000 instrument (Sapidyne Instruments, Boise, ID), or other assays known in the art. In a specific embodiment, molecules that specifically bind to an antigen bind to the antigen with a KA that is at least 2 logs (e.g., factors of 10), 2.5 logs, 3 logs, 4 logs or greater than the KA when the molecules bind non-specifically to another antigen. The skilled worker will appreciate that an antibody, as described herein, can specifically bind to more than one antigen (e.g., via different regions of the antibody molecule). The term specifically binds includes molecules that are cross reactive with the same antigen of a different species. For example, an antigen binding domain that specifically binds human CD20 may be cross reactive with CD20 of another species (e.g., cynomolgus monkey, or murine), and still be considered herein to specifically bind human CD20.


“Affinity” refers to the strength of the sum total of non-covalent interactions between a single binding site of a molecule (e.g., a receptor) and its binding partner (e.g., a ligand). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair (e.g., an antigen binding moiety and an antigen, or a receptor and its ligand). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (KD), which is the ratio of dissociation and association rate constants (koff and kon, respectively). Thus, equivalent affinities may comprise different rate constants, as long as the ratio of the rate constants remains the same. Affinity can be measured by well-established methods known in the art, including those described herein. A particular method for measuring affinity is Surface Plasmon Resonance (SPR).


The determination of “percent identity” between two sequences (e.g., amino acid sequences or nucleic acid sequences) can be accomplished using a mathematical algorithm. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”). A specific, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin S & Altschul S F (1990) PNAS 87: 2264-2268, modified as in Karlin S & Altschul S F (1993) PNAS 90: 5873-5877, each of which is herein incorporated by reference in its entirety. Such an algorithm is incorporated into the BLASTN, BLASTP, BLASTX programs of Altschul S F et al., (1990) J Mol Biol 215: 403, which is herein incorporated by reference in its entirety. BLAST nucleotide searches can be performed with the NBLAST nucleotide program parameters set, e.g., for score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecule described herein. BLAST protein searches can be performed with the BLASTP program parameters set, e.g., default settings; to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul S F et al., (1997) Nuc Acids Res 25: 3389-3402, which is herein incorporated by reference in its entirety. Alternatively, PSI BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI Blast programs, the default parameters of the respective programs (e.g., of BLASTP and BLASTN) can be used (see, e.g., National Center for Biotechnology Information (NCBI) on the worldwide web, ncbi.nlm.nih.gov). Another specific, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4:11-17, which is herein incorporated by reference in its entirety. Such an algorithm is incorporated in the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted. As described above, the percent identity is based on the amino acid matches between the smaller of two proteins. Therefore, for example, using NCBI Basic Local Alignment Tool—BLASTP program on the default settings (Search Parameters: word size 3, expect value 0.05, hitlist 100, Gapcosts 11,1; Matrix BLOSUM62, Filter string: F; Genetic Code: 1; Window Size: 40; Threshold: 11; Composition Based Stats: 2; Karlin-Altschul Statistics: Lambda: 0.31293; 0.267; K: 0.132922; 0.041; H: 0.401809; 0.14; and Relative Statistics: Effective search space: 288906); the percent identity between SEQ ID NO: 80 and SEQ ID NO: 423 is 100% identity.


As used herein, the term “operably connected” refers to a linkage of polynucleotide sequence elements or amino acid sequence elements in a functional relationship. For example, a polynucleotide sequence is operably connected when it is placed into a functional relationship with another polynucleotide sequence. In some embodiments, a transcription regulatory polynucleotide sequence e.g., a promoter, enhancer, or other expression control element is operably-linked to a polynucleotide sequence that encodes a protein if it affects the transcription of the polynucleotide sequence that encodes the protein.


The terms “subject” and “patient” are used interchangeably herein and include any human or nonhuman animal. The term “nonhuman animal” includes, but is not limited to, vertebrates such as nonhuman primates, sheep, dogs, and rodents such as mice, rats and guinea pigs. In some embodiments, the subject is a human.


As used herein, the term “administering” refers to the physical introduction of a therapeutic agent (or a precursor of the therapeutic agent that is metabolized or altered within the body of the subject to produce the therapeutic agent in vivo) to a subject, using any of the various methods and delivery systems known to those skilled in the art. Exemplary routes of include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion. The term “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation. A therapeutic agent may be administered via a non-parenteral route, or orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.


A “therapeutically effective amount” or “therapeutically effective dose” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. The ability of a therapeutic agent to promote disease regression can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


The terms “disease,” “disorder,” and “syndrome” are used interchangeably herein.


As used herein, the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a disease and/or symptom(s) associated therewith or obtaining a desired pharmacologic and/or physiologic effect. It will be appreciated that, although not precluded, treating a disease does not require that the disease or symptoms associated therewith be completely eliminated. In some embodiments, the effect is therapeutic, i.e., without limitation, the effect partially or completely reduces, diminishes, abrogates, abates, alleviates, decreases the intensity of, or cures a disease and/or adverse symptom attributable to the disease. In some embodiments, the effect is preventative, i.e., the effect protects or prevents an occurrence or reoccurrence of a disease. To this end, the presently disclosed methods comprise administering a therapeutically effective amount of a compositions as described herein.


5.3 Fusion Proteins

In certain aspects, provided herein are fusion proteins that comprise an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a target cytosolic protein.


5.3.1 Effector Domain

In some embodiments, the effector domain comprises a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof. In some embodiments, the deubiquitinase is human. In some embodiments, the catalytic domain is derived from a naturally occurring deubiquitinase (e.g., a naturally occurring human deubiquitinase).


In some embodiments, the amino acid sequence of the effector domain comprises the amino acid sequence of a full length deubiquitinase. In some embodiments, the amino acid sequence of the effector domain comprises the amino acid sequence of a catalytic domain of a deubiquitinase and an additional amino acid sequence at the N-terminal, C-terminal, or N-terminal and C-terminal end of the catalytic domain.


In some embodiments, the catalytic domain comprises a naturally occurring amino acid sequence of a deubiquitinase. In some embodiments, the catalytic domain comprises a variant of a naturally occurring deubiquitinase. In some embodiments, the amino acid sequence of the catalytic domain of the fusion protein is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of a naturally occurring deubiquitinase. In some embodiments, the amino acid sequence of the catalytic domain of the fusion protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 amino acid modifications compared to the amino acid sequence of the catalytic domain of a naturally occurring deubiquitinase.


In some embodiments, the catalytic domain comprises the minimum amino acid sequence of a naturally occurring deubiquitinase sufficient to mediate deubiquitination of a target protein. In some embodiments, the catalytic domain comprises more than the minimum amino acid sequence of a naturally occurring deubiquitinase sufficient to mediate deubiquitination of a target protein.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease. In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the deubiquitinase is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumor protease (OTU), a MINDY protease, or a ZUFSP protease.


Exemplary deubiquitinases include, but are not limited to, USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, USP46, BAP1, UCHL1, UCHL3, UCHL5, ATXN3, ATXN3L, OTUB1, OTUB2, MINDY1, MINDY2, MINDY3, MINDY4, and ZUP1. Exemplary deubiquitinases for use in the present disclosure are also disclosed in Komander, D. et al. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 (2009), the entire contents of which is incorporated by reference herein.


In some embodiments, the deubiquitinase is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, and USP46.


In some embodiments, the deubiquitinase is BAP1, UCHL1, UCHL3, or UCHL5. In some embodiments, the deubiquitinase is ATXN3 or ATXN3L. In some embodiments, the deubiquitinase is OTUB1 or OTUB2. In some embodiments, the deubiquitinase is MINDY1, MINDY2, MINDY3, or MINDY4. In some embodiments, the deubiquitinase is ZUP1. In some embodiments, the deubiquitinase is a Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase is a deubiquitinase described in Table 1. In some embodiments, the amino acid sequence of the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of a deubiquitinase in Table 1. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a catalytic domain of a deubiquitinase in Table 1. In some embodiments, the effector domain comprises a functional fragment of a deubiquitinase in Table 1. In some embodiments, the effector domain deubiquitinase comprises a functional variant of deubiquitinase in Table 1. In some embodiments, the catalytic domain comprises a functional fragment of a catalytic domain of a deubiquitinase in Table 1. In some embodiments, the catalytic domain comprises a functional variant of a catalytic domain of a deubiquitinase in Table 1.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical any one of SEQ ID NOS: 1-112. In some embodiments, the deubiquitinase consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical any one of SEQ ID NOS: 1-112.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 1. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 2. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 3. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 4. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 5. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 6. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 7. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 8. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 9. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 10. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 11. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 12. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 13. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 14. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 15. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 16. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 17. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 18. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 19. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 20. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 21. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 22. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 23. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 24. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 25. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 26. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 27. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 28. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 29. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 30. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 31. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 32. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 33. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 34. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 35. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 36. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 37. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 38. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 39. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 40. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 41. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 42. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 43. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 44. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 45. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 46. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 47. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 48. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 49. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 50. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 51. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 52. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 53. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 54. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 55. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 56. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 57. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 58. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 59. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 60. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 61. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 62. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 63. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 64. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 65. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 66. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 67. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 68. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 69. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 70. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 71. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 72. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 73. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 74. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 75. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 76. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 77. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 78. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 79. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 80. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 81. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 82. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 83. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 84. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 85. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 86. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 87. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 88. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 89. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 90. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 91. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 92. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 93. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 94. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 95. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 96. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 97. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 98. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 99. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 100. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 101. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 102. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 103. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 104. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 105. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 106. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 107. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 108. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 109. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 110. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 111. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 112.


In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of any one of SEQ ID NOS: 1-112. In some embodiments, the amino acid sequence of the effector domain consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of any one of SEQ ID NOS: 1-112.


In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 1. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 2. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 3. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 4. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 5. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 6. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 7. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 8. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 9. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 10. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 11. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 12. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 13. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 14. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 15. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 16. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 17. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 18. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 19. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 20. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 21. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 22. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 23. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 24. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 25. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 26. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 27. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 28. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 29. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 30. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 31. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 32. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 33. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 34. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 35. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 36. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 37. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 38. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 39. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 40. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 41. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 42. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 43. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 44. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 45. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 46. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 47. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 48. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 49. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 50. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 51. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 52. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 53. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 54. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 55. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 56. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 57. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 58. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 59. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 60. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 61. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 62. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 63. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 64. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 65. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 66. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 67. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 68. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 69. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 70. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 71. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 72. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 73. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 74. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 75. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 76. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 77. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 78. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 79. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 80. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 81. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 82. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 83. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 84. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 85. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 86. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 87. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 88. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 89. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 90. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 91. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 92. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 93. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 94. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 95. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 96. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 97. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 98. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 99. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 100. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 101. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 102. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 103. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 104. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 105. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 106. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 107. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 108. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 109. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 110. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 111. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 112.


In some embodiments, the catalytic domain is derived from a deubiquitinase that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 1. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 2. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 3. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 4. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 5. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 6. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 7. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 8. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 9. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 10. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 11. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 12. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 13. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 14. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 15. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 16. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 17. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 18. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 19. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 20. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 21. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 22. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 23. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 24. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 25. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 26. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 27. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 29. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 30. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 31. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 32. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 33. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 34. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 35. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 36. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 37. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 38. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 39. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 40. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 41. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 42. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 43. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 44. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 45. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 46. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 47. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 48. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 49. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 50. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 51. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 52. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 53. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 54. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 55. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 56. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 57. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 58. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 59. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 60. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 61. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 62. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 63. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 64. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 65. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 66. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 67. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 68. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 69. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 70. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 71. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 72. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 73. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 74. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 75. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 76. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 77. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 78. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 79. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 80. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 81. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 82. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 83. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 84. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 85. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 86. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 87. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 88. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 89. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 90. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 91. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 92. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 93. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 94. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 95. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 96. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 97. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 98. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 99. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 100. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 101. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 102. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 102. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 104. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 105. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 106. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 107. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 108. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 109. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 110. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 111. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 423. In some embodiments, the catalytic domain consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 113. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 114. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 115. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 116. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 117. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 118. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 119. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 120. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 121. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 122. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 123. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 124. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 125. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 126. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 127. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 128. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 129. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 130. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 131. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 132. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 133. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 134. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 135. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 136. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 137. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 138. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 139. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 140. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 141. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 142. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 143. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 144. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 145. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 146. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 147. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 148. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 149. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 150. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 151. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 152. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 153. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 154. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 155. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 156. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 157. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 158. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 159. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 160. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 161. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 162. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 163. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 164. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 165. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 166. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 167. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 168. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 169. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 170. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 171. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 172. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 173. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 174. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 175. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 176. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 177. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 178. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 179. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 180. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 181. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 182. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 183. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 184. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 185. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 186. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 187. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 188. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 189. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 190. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 191. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 192. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 193. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 194. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 195. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 196. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 197. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 198. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 199. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 200. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 201. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 202. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 203. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 204. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 205. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 206. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 207. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 208. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 209. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 210. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 211. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 212. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 213. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 214. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 215. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 216. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 217. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 218. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 219. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 220. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 423.


Table 1 below describes, the amino acid sequence of exemplary human deubiquitinases and exemplary catalytic domains of the exemplary human deubiquitinases. The catalytic domains are exemplary. A person of ordinary skill in the art could readily determine a sufficient amino acid sequence of a human deubiquitinase to mediate deubiquitination (e.g., a catalytic domain). Any of the human deubiquitinases (functional fragment or variants thereof) may be used to derive a catalytic domain for use in a fusion protein described herein.









TABLE 1







The amino acid sequence of exemplary human deubiquitinases and exemplary catalytic


domains of the same












SEQ

SEQ
Exemplary Catalytic Domains


Description
ID NO
Amino Acid Sequence
ID NO
(Amino Acid Sequence)














UBP27_HUMAN
1
MCKDYVYDKDIEQIAKEEQGEA
113
SSFTIGLRGLINLGNTCEMN


Ubiquitin

LKLQASTSTEVSHQQCSVPGLG

CIVQALTHTPILRDFFLSDR


carboxyl-

EKFPTWETTKPELELLGHNPRR

HRCEMPSPELCLVCEMSSLF


terminal

RRITSSFTIGLRGLINLGNTCF

RELYSGNPSPHVPYKLLHLV


hydrolase 27

MNCIVQALTHTPILRDFFLSDR

WIHARHLAGYRQQDAHEFLI




HRCEMPSPELCLVCEMSSLFRE

AALDVLHRHCKGDDVGKAAN




LYSGNPSPHVPYKLLHLVWIHA

NPNHCNCIIDQIFTGGLQSD




RHLAGYRQQDAHEFLIAALDVL

VTCQACHGVSTTIDPCWDIS




HRHCKGDDVGKAANNPNHCNCI

LDLPGSCTSFWPMSPGRESS




IDQIFTGGLQSDVTCQACHGVS

VNGESHIPGITTLTDCLRRF




TTIDPCWDISLDLPGSCTSFWP

TRPEHLGSSAKIKCGSCQSY




MSPGRESSVNGESHIPGITTLT

QESTKQLTMNKLPVVACFHF




DCLRRFTRPEHLGSSAKIKCGS

KRFEHSAKQRRKITTYISFP




CQSYQESTKQLTMNKLPVVACE

LELDMTPEMASSKESRMNGQ




HFKRFEHSAKQRRKITTYISFP

LQLPTNSGNNENKYSLFAVV




LELDMTPFMASSKESRMNGQLQ

NHQGTLESGHYTSFIRHHKD




LPTNSGNNENKYSLFAVVNHQG

QWFKCDDAVITKASIKDVLD




TLESGHYTSFIRHHKDQWEKCD

SEGYLLFYHKQVLEHESEKV




DAVITKASIKDVLDSEGYLLFY

KEMNTQAY




HKQVLEHESEKVKEMNTQAY







UBP48_HUMAN
2
MAPRLQLEKAAWRWAETVRPEE
114
NSFHNIDDPNCERRKKNSFV


Ubiquitin

VSQEHIETAYRIWLEPCIRGVC

GLTNLGATCYVNTFLQVWEL


carboxyl-

RRNCKGNPNCLVGIGEHIWLGE

NLELRQALYLCPSTCSDYML


terminal

IDENSFHNIDDPNCERRKKNSF

GDGIQEEKDYEPQTICEHLQ


hydrolase 48

VGLTNLGATCYVNTFLQVWELN

YLFALLQNSNRRYIDPSGFV




LELRQALYLCPSTCSDYMLGDG

KALGLDTGQQQDAQEFSKLE




IQEEKDYEPQTICEHLQYLFAL

MSLLEDTLSKQKNPDVRNIV




LQNSNRRYIDPSGFVKALGLDT

QQQFCGEYAYVTVCNQCGRE




GQQQDAQEFSKLFMSLLEDTLS

SKLLSKFYELELNIQGHKQL




KQKNPDVRNIVQQQFCGEYAYV

TDCISEFLKEEKLEGDNRYE




TVCNQCGRESKLLSKFYELELN

CENCQSKQNATRKIRLLSLP




IQGHKQLTDCISEFLKEEKLEG

CTLNLQLMRFVEDRQTGHKK




DNRYFCENCQSKQNATRKIRLL

KLNTYIGFSEILDMEPYVEH




SLPCTLNLQLMRFVEDRQTGHK

KGGSYVYELSAVLIHRGVSA




KKLNTYIGFSEILDMEPYVEHK

YSGHYIAHVKDPQSGEWYKF




GGSYVYELSAVLIHRGVSAYSG

NDEDIEKMEGKKLQLGIEED




HYIAHVKDPQSGEWYKENDEDI

LAEPSKSQTRKPKCGKGTHC




EKMEGKKLQLGIEEDLAEPSKS

SRNAYMLVYRLQT




QTRKPKCGKGTHCSRNAYMLVY






RLQTQEKPNTTVQVPAFLQELV






DRDNSKFEEWCIEMAEMRKQSV






DKGKAKHEEVKELYQRLPAGAE






PYEFVSLEWLQKWLDESTPTKP






IDNHACLCSHDKLHPDKISIMK






RISEYAADIFYSRYGGGPRLTV






KALCKECVVERCRILRLKNQLN






EDYKTVNNLLKAAVKGSDGFWV






GKSSLRSWRQLALEQLDEQDGD






AEQSNGKMNGSTLNKDESKEER






KEEEELNENEDILCPHGELCIS






ENERRLVSKEAWSKLQQYFPKA






PEFPSYKECCSQCKILEREGEE






NEALHKMIANEQKTSLPNLFQD






KNRPCLSNWPEDTDVLYIVSQF






FVEEWRKFVRKPTRCSPVSSVG






NSALLCPHGGLMFTFASMTKED






SKLIALIWPSEWQMIQKLFVVD






HVIKITRIEVGDVNPSETQYIS






EPKLCPECREGLLCQQQRDLRE






YTQATIYVHKVVDNKKVMKDSA






PELNVSSSETEEDKEEAKPDGE






KDPDFNQSNGGTKRQKISHQNY






IAYQKQVIRRSMRHRKVRGEKA






LLVSANQTLKELKIQIMHAFSV






APFDQNLSIDGKILSDDCATLG






TLGVIPESVILLKADEPIADYA






AMDDVMQVCMPEEGFKGTGLLG






H







UBP3_HUMAN
3
MECPHLSSSVCIAPDSAKEPNG
115
TAICATGLRNLGNTCEMNAI


Ubiquitin

SPSSWCCSVCRSNKSPWVCLTC

LQSLSNIEQFCCYFKELPAV


carboxyl-

SSVHCGRYVNGHAKKHYEDAQV

ELRNGKTAGRRTYHTRSQGD


terminal

PLTNHKKSEKQDKVQHTVCMDC

NNVSLVEEFRKTLCALWQGS


hydrolase 3

SSYSTYCYRCDDFVVNDTKLGL

QTAFSPESLFYVVWKIMPNF




VQKVREHLQNLENSAFTADRHK

RGYQQQDAHEFMRYLLDHLH




KRKLLENSTLNSKLLKVNGSTT

LELQGGENGVSRSAILQENS




AICATGLRNLGNTCEMNAILQS

TLSASNKCCINGASTVVTAI




LSNIEQFCCYFKELPAVELRNG

FGGILQNEVNCLICGTESRK




KTAGRRTYHTRSQGDNNVSLVE

FDPFLDLSLDIPSQFRSKRS




EFRKTLCALWQGSQTAFSPESL

KNQENGPVCSLRDCLRSFTD




FYVVWKIMPNERGYQQQDAHEF

LEELDETELYMCHKCKKKQK




MRYLLDHLHLELQGGENGVSRS

STKKFWIQKLPKVLCLHLKR




AILQENSTLSASNKCCINGAST

FHWTAYLRNKVDTYVEFPLR




VVTAIFGGILQNEVNCLICGTE

GLDMKCYLLEPENSGPESCL




SRKFDPFLDLSLDIPSQFERSKR

YDLAAVVVHHGSGVGSGHYT




SKNQENGPVCSLRDCLRSFTDL

AYATHEGRWFHENDSTVTLT




EELDETELYMCHKCKKKQKSTK

DEETVVKAKAYILFYVEHQ




KFWIQKLPKVLCLHLKRFHWTA






YLRNKVDTYVEFPLRGLDMKCY






LLEPENSGPESCLYDLAAVVVH






HGSGVGSGHYTAYATHEGRWFH






FNDSTVTLTDEETVVKAKAYIL






FYVEHQAKAGSDKL







U17LB_HUMAN
4
QLAPREKLPLSSRRPAAVGAGL
116
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

QNMGNTCYVNASLQCLTYTPPL

CLTYTPPLANYMLSREHSQT


carboxyl-

ANYMLSREHSQTCHRHKGCMLC

CHRHKGCMLCTMQAHITRAL


terminal

TMQAHITRALHNPGHVIQPSQA

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

LAAGFHRGKQEDAHEFLMFTVD

KQEDAHEFLMFTVDAMKKAC


like protein 11

AMKKACLPGHKQVDHHSKDTTL

LPGHKQVDHHSKDTTLIHQI




IHQIFGGYWRSQIKCLHCHGIS

FGGYWRSQIKCLHCHGISDT




DTFDPYLDIALDIQAAQSVQQA

FDPYLDIALDIQAAQSVQQA




LEQLVKPEELNGENAYHCGVCL

LEQLVKPEELNGENAYHCGV




QRAPASKTLTLHTSAKVLILVL

CLQRAPASKTLTLHTSAKVL




KRFSDVTGNKIAKNVQYPECLD

ILVLKRFSDVTGNKIAKNVQ




MQPYMSQTNTGPLVYVLYAVLV

YPECLDMQPYMSQTNTGPLV




HAGWSCHNGHYFSYVKAQEGQW

YVLYAVLVHAGWSCHNGHYF




YKMDDAEVTASSITSVLSQQAY

SYVKAQEGQWYKMDDAEVTA




VLFYIQKSEWERHSESVSRGRE

SSITSVLSQQAYVLFYIQKS




PRALGAEDTDRRATQGELKRDH






PCLQAPELDEHLVERATQESTL






DHWKFLQEQNKTKPEFNVRKVE






GTLPPDVLVIHQSKYKCGMKNH






HPEQQSSLLNLSSTTPTHQESM






NTGTLASLRGRARRSKGKNKHS






KRALLVCQ







UBP1_HUMAN
5
MPGVIPSESNGLSRGSPSKKNR
117
LPFVGLNNLGNTCYLNSILQ


Ubiquitin

LSLKFFQKKETKRALDFTDSQE

VLYFCPGFKSGVKHLENIIS


carboxyl-

NEEKASEYRASEIDQVVPAAQS

RKKEALKDEANQKDKGNCKE


terminal

SPINCEKRENLLPFVGLNNLGN

DSLASYELICSLQSLIISVE


hydrolase 1

TCYLNSILQVLYFCPGFKSGVK

QLQASFLLNPEKYTDELATQ




HLENIISRKKEALKDEANQKDK

PRRLLNTLRELNPMYEGYLQ




GNCKEDSLASYELICSLQSLII

HDAQEVLQCILGNIQETCQL




SVEQLQASFLLNPEKYTDELAT

LKKEEVKNVAELPTKVEEIP




QPRRLLNTLRELNPMYEGYLQH

HPKEEMNGINSIEMDSMRHS




DAQEVLQCILGNIQETCQLLKK

EDFKEKLPKGNGKRKSDTEF




EEVKNVAELPTKVEEIPHPKEE

GNMKKKVKLSKEHQSLEENQ




MNGINSIEMDSMRHSEDEKEKL

RQTRSKRKATSDTLESPPKI




PKGNGKRKSDTEFGNMKKKVKL

IPKYISENESPRPSQKKSRV




SKEHQSLEENQRQTRSKRKATS

KINWLKSATKQPSILSKFCS




DTLESPPKIIPKYISENESPRP

LGKITTNQGVKGQSKENECD




SQKKSRVKINWLKSATKQPSIL

PEEDLGKCESDNTTNGCGLE




SKFCSLGKITTNQGVKGQSKEN

SPGNTVTPVNVNEVKPINKG




ECDPEEDLGKCESDNTTNGCGL

EEQIGFELVEKLFQGQLVLR




ESPGNTVTPVNVNEVKPINKGE

TRCLECESLTERREDFQDIS




EQIGFELVEKLFQGQLVLRTRC

VPVQEDELSKVEESSEISPE




LECESLTERREDFQDISVPVQE

PKTEMKTLRWAISQFASVER




DELSKVEESSEISPEPKTEMKT

IVGEDKYFCENCHHYTEAER




LRWAISQFASVERIVGEDKYFC

SLLEDKMPEVITIHLKCFAA




ENCHHYTEAERSLLEDKMPEVI

SGLEFDCYGGGLSKINTPLL




TIHLKCFAASGLEFDCYGGGLS

TPLKLSLEEWSTKPTNDSYG




KINTPLLTPLKLSLEEWSTKPT

LFAVVMHSGITISSGHYTAS




NDSYGLFAVVMHSGITISSGHY

VKVTDLNSLELDKGNFVVDQ




TASVKVTDLNSLELDKGNFVVD

MCEIGKPEPLNEEEARGVVE




QMCEIGKPEPLNEEEARGVVEN

NYNDEEVSIRVGGNTQPSKV




YNDEEVSIRVGGNTQPSKVLNK

LNKKNVEAIGLLGGQKSKAD




KNVEAIGLLGGQKSKADYELYN

YELYNKASNPDKVASTAFAE




KASNPDKVASTAFAENRNSETS

NRNSETSDTTGTHESDRNKE




DTTGTHESDRNKESSDQTGINI

SSDQTGINISGFENKISYVV




SGFENKISYVVQSLKEYEGKWL

QSLKEYEGKWLLEDDSEVKV




LEDDSEVKVTEEKDELNSLSPS

TEEKDFLNSLSPSTSPTSTP




TSPTSTPYLLFYKKL

YLLFYKKI





UBP40_HUMAN
6
MFGDLFEEEYSTVSNNQYGKGK
118
FTNLSGIRNQGGTCYLNSLL


Ubiquitin

KLKTKALEPPAPREFTNLSGIR

QTLHFTPEFREALESLGPEE


carboxyl-

NQGGTCYLNSLLQTLHFTPEER

LGLFEDKDKPDAKVRIIPLQ


terminal

EALFSLGPEELGLFEDKDKPDA

LQRLFAQLLLLDQEAASTAD


hydrolase 40

KVRIIPLQLQRLFAQLLLLDQE

LTDSFGWTSNEEMRQHDVQE




AASTADLTDSFGWTSNEEMRQH

LNRILFSALETSLVGTSGHD




DVQELNRILFSALETSLVGTSG

LIYRLYHGTIVNQIVCKECK




HDLIYRLYHGTIVNQIVCKECK

NVSERQEDFLDLTVAVKNVS




NVSERQEDFLDLTVAVKNVSGL

GLEDALWNMYVEEEVEDCDN




EDALWNMYVEEEVEDCDNLYHC

LYHCGTCDRLVKAAKSAKLR




GTCDRLVKAAKSAKLRKLPPEL

KLPPELTVSLLRENEDFVKC




TVSLLRENEDEVKCERYKETSC

ERYKETSCYTFPLRINLKPF




YTFPLRINLKPFCEQSELDDLE

CEQSELDDLEYIYDLESVII




YIYDLFSVIIHKGGCYGGHYHV

HKGG




YIKDVDHLGNWQFQEEKSKPDV

CYGGHYHVYIKDVDHLGNWQ




NLKDLQSEEEIDHPLMILKAIL

FQEEKSKPDVNLKDLQSEEE




LEENNLIPVDQLGQKLLKKIGI

IDHPLMILKAILLEENNLIP




SWNKKYRKQHGPLRKFLQLHSQ

VDQLGQKLLKKIGISWNKKY




IFLLSSDESTVRLLKNSSLQAE

RKQHGPLRKFLQLHSQIFLL




SDFQRNDQQIFKMLPPESPGLN

SSDESTVRLLKNSSLQAESD




NSISCPHWEDINDSKVQPIREK

FQRNDQQIFKMLPPESPGLN




DIEQQFQGKESAYMLFYRKSQL

NSISCPHWEDINDSKVQPIR




QRPPEARANPRYGVPCHLLNEM

EKDIEQQFQGKESAYMLFYR




DAANIELQTKRAECDSANNTFE

KSQLQRPPEARANPRYGVPC




LHLHLGPQYHFFNGALHPVVSQ

HLLNEMDAANIELQTKRAEC




TESVWDLTEDKRKTLGDLRQSI

DSANNTFELHLHLGPQYHFF




FQLLEFWEGDMVLSVAKLVPAG

NGALHPVVSQTESVWDLTED




LHIYQSLGGDELTLCETEIADG

KRKTLGDLRQSIFQLLEFWE




EDIFVWNGVEVGGVHIQTGIDC

GDMVLSVAKLVPAGLHIYQS




EPLLLNVLHLDTSSDGEKCCQV

LGGDELTLCETEIADGEDIF




IESPHVFPANAEVGTVLTALAI

VWNGVEVGGVHIQTGIDCEP




PAGVIFINSAGCPGGEGWTAIP

LLLNVLHLDTSSDGEKCCQV




KEDMRKTFREQGLRNGSSILIQ

IESPHVEPANAEVGTVLTAL




DSHDDNSLLTKEEKWVTSMNEI

AIPAGVIFINSAGCPGGEGW




DWLHVKNLCQLESEEKQVKISA

TAIPKEDMRKTFREQGLRNG




TVNTMVEDIRIKAIKELKLMKE

SSILIQDSHDDNSLLTKEEK




LADNSCLRPIDRNGKLLCPVPD

WVTSMNEIDWLHVKNLCQLE




SYTLKEAELKMGSSLGLCLGKA

SEEKQVKISATVNTMVEDIR




PSSSQLFLFFAMGSDVQPGTEM

IKAIKELKLMKELADNSCLR




EIVVEETISVRDCLKLMLKKSG

PIDRNGKLLCPVPDSYTLKE




LQGDAWHLRKMDWCYEAGEPLC

AELKMGSSLGLCLGKAPSSS




EEDATLKELLICSGDTLLLIEG

QLFLFFAMGSDVQPGTEMEI




QLPPLGELKVPIWWYQLQGPSG

VVEETISVRDCLKLMLKKSG




HWESHQDQTNCTSSWGRVWRAT

LQGDAWHLRKMDWCYEAGEP




SSQGASGNEPAQVSLLYLGDIE

LCEEDATLKELLICSGDTLL




ISEDATLAELKSQAMTLPPFLE

LIEGQLPPLGFLKVPIWWYQ




FGVPSPAHLRAWTVERKRPGRL

LQGPSGHWESHQDQTNCTSS




LRTDRQPLREYKLGRRIEICLE

WGRVWRATSSQGASGNEPAQ




PLQKGENLGPQDVLLRTQVRIP

VSLLYLGDIEISEDATLAEL




GERTYAPALDLVWNAAQGGTAG

KSQAMTLPPFLEFGVPSPAH




SLRQRVADFYRLPVEKIEIAKY

LRAWTVERKRPGRLLRTDRQ




FPEKFEWLPISSWNQQITKRKK

PLREYKLGRRIEICLEPLQK




KKKQDYLQGAPYYLKDGDTIGV

GENLGPQDVLLRTQVRIPGE




KNLLIDDDDDESTIRDDTGKEK

RTYAPALDLVWNAAQGGTAG




QKQRALGRRKSQEALHEQSSYI

SLRQRVADFYRLPVEKIEIA




LSSAETPARPRAPETSLSIHVG

KYFPEKFEWLPISSWNQQIT




SFR

KRKKKKKQDYLQGAPYYLKD






GDTIGVKNLLIDDDDDESTI






RDDTGKEKQKQRALGRRKSQ





UBP7_HUMAN
7
MNHQQQQQQQKAGEQQLSEPED
119
TGYVGLKNQGATCYMNSLLQ


Ubiquitin

MEMEAGDTDDPPRITQNPVING

TLFFTNQLRKAVYMMPTEGD


carboxyl-

NVALSDGHNTAEEDMEDDTSWR

DSSKSVPLALQRVFYELQHS


terminal

SEATFQFTVERFSRLSESVLSP

DKPVGTKKLTKSFGWETLDS


hydrolase 7

PCFVRNLPWKIMVMPRFYPDRP

FMQHDVQELCRVLLDNVENK




HQKSVGFFLQCNAESDSTSWSC

MKGTCVEGTIPKLFRGKMVS




HAQAVLKIINYRDDEKSFSRRI

YIQCKEVDYRSDRREDYYDI




SHLFFHKENDWGESNEMAWSEV

QLSIKGKKNIFESFVDYVAV




TDPEKGFIDDDKVTFEVFVQAD

EQLDGDNKYDAGEHGLQEAE




APHGVAWDSKKHTGYVGLKNQG

KGVKFLTLPPVLHLQLMREM




ATCYMNSLLQTLFFTNQLRKAV

YDPQTDQNIKINDRFEFPEQ




YMMPTEGDDSSKSVPLALQRVE

LPLDEFLQKTDPKDPANYIL




YELQHSDKPVGTKKLTKSEGWE

HAVLVHSGDNHGGHYVVYLN




TLDSFMQHDVQELCRVLLDNVE

PKGDGKWCKFDDDVVSRCTK




NKMKGTCVEGTIPKLFRGKMVS

EEAIEHNYGGHDDDLSVRHC




YIQCKEVDYRSDRREDYYDIQL

TNAYMLVYIRE




SIKGKKNIFESFVDYVAVEQLD






GDNKYDAGEHGLQEAEKGVKFL






TLPPVLHLQLMREMYDPQTDQN






IKINDRFEFPEQLPLDEFLQKT






DPKDPANYILHAVLVHSGDNHG






GHYVVYLNPKGDGKWCKFDDDV






VSRCTKEEAIEHNYGGHDDDLS






VRHCTNAYMLVYIRESKLSEVL






QAVTDHDIPQQLVERLQEEKRI






EAQKRKERQEAHLYMQVQIVAE






DQFCGHQGNDMYDEEKVKYTVE






KVLKNSSLAEFVQSLSQTMGFP






QDQIRLWPMQARSNGTKRPAML






DNEADGNKTMIELSDNENPWTI






FLETVDPELAASGATLPKEDKD






HDVMLFLKMYDPKTRSLNYCGH






IYTPISCKIRDLLPVMCDRAGF






IQDTSLILYEEVKPNLTERIQD






YDVSLDKALDELMDGDIIVFQK






DDPENDNSELPTAKEYFRDLYH






RVDVIFCDKTIPNDPGFVVTLS






NRMNYFQVAKTVAQRLNTDPML






LQFFKSQGYRDGPGNPLRHNYE






GTLRDLLQFFKPRQPKKLYYQQ






LKMKITDFENRRSFKCIWLNSQ






FREEEITLYPDKHGCVRDLLEE






CKKAVELGEKASGKLRLLEIVS






YKIIGVHQEDELLECLSPATSR






TFRIEEIPLDQVDIDKENEMLV






TVAHFHKEVEGTEGIPFLLRIH






QGEHFREVMKRIQSLLDIQEKE






FEKFKFAIVMMGRHQYINEDEY






EVNLKDFEPQPGNMSHPRPWLG






LDHENKAPKRSRYTYLEKAIKI






HN







U17L5_HUMAN
8
MEDDSLYLRGEWQFNHESKLTS
120
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 5

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLAKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLAK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QPNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







U17LL_HUMAN
9
MEEDSLYLGGEWQFNHESKLTS
121
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSNRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 21

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKMLTLLTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KMLTLLTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QPNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







U17LA_HUMAN
10
MEDDSLYLGGEWQFNHFSKLTS
122
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYKPPLANYMLFREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KPPLSSRRPAAVGAGLQNMGNT

HIPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYKPPLANYMLF

KQEDAHEFLMFTVDAMRKAC


like protein 10

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDRHSKDTTLIHQI




TRALHIPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMRKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDRHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHNSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFPDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHNSAKVLILVLKRFPDV

YVLYAVLVHAGWSCHNGHYS




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYSSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGV




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGV

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRRVEGTVPPD






VLVIHQSKYKCRMKNHHPEQQS






SLLNLSSTTPTDQESMNTGTLA






SLRGRTRRSKGKNKHSKRALLV






CQ







UBP41_HUMAN
11
MDGVLFRAHQCQYVHPCVHVYV
123
WGLVGLHNIGQTCCLNSLIQ


Putative

TVGLMDPLCERKEKASKQEREN

VFVMNVDFARILKRITVPRG


ubiquitin

PLAHLAAWGLVGLHNIGQTCCL

ADEQRRSVPFQMLLLLEKMQ


carboxyl-

NSLIQVFVMNVDFARILKRITV

DSRQKAVWPLELAYCLQKYN


terminal

PRGADEQRRSVPFQMLLLLEKM

VPLFVQHDAAQLYLKLWNLI


hydrolase 41

QDSRQKAVWPLELAYCLQKYNV

KDQIADVHLVERLQALYMIR




PLFVQHDAAQLYLKLWNLIKDQ

MKDSLICLDCAMESSRNSSM




IADVHLVERLQALYMIRMKDSL

LTLRLSFFDVDSKPLKTLED




ICLDCAMESSRNSSMLTLRLSF

ALHCFFQPRELSSKSKCFCE




FDVDSKPLKTLEDALHCFFQPR

NCGKKTRGKQVLKLTHLPQT




ELSSKSKCFCENCGKKTRGKQV

LTIHLMRESIRNSQTRKICH




LKLTHLPQTLTIHLMRESIRNS

SLYFPQSLDESQILPMKRES




QTRKICHSLYFPQSLDESQILP

CDAEEQSGGQYELFAVIAHV




MKRESCDAEEQSGGQYELFAVI

GMADSGHYCVYIRNAVDGKW




AHVGMADSGHYCVYIRNAVDGK

FCENDSNICLVSWEDIQCTY




WFCENDSNICLVSWEDIQCTYG

GNPNYHW




NPNYHW







UBP38_HUMAN
12
MDKILEGLVSSSHPLPLKRVIV
124
SETGKTGLINLGNTCYMNSV


Ubiquitin

RKVVESAEHWLDEAQCEAMEDL

IQALFMATDERRQVLSLNLN


carboxyl-

TTRLILEGQDPFQRQVGHQVLE

GCNSLMKKLQHLFAFLAHTQ


terminal

AYARYHRPEFESFENKTFVLGL

REAYAPRIFFEASRPPWFTP


hydrolase 38

LHQGYHSLDRKDVAILDYIHNG

RSQQDCSEYLRELLDRLHEE




LKLIMSCPSVLDLFSLLQVEVL

EKILKVQASHKPSEILECSE




RMVCERPEPQLCARLSDLLTDF

TSLQEVASKAAVLTETPRTS




VQCIPKGKLSITFCQQLVRTIG

DGEKTLIEKMFGGKLRTHIR




HFQCVSTQERELREYVSQVTKV

CLNCRSTSQKVEAFTDLSLA




SNLLQNIWKAEPATLLPSLQEV

FCPSSSLENMSVQDPASSPS




FASISSTDASFEPSVALASLVQ

IQDGGLMQASVPGPSEEPVV




HIPLQMITVLIRSLTTDPNVKD

YNPTTAAFICDSLVNEKTIG




ASMTQALCRMIDWLSWPLAQHV

SPPNEFYCSENTSVPNESNK




DTWVIALLKGLAAVQKFTILID

ILVNKDVPQKPGGETTPSVT




VTLLKIELVENRLWFPLVRPGA

DLLNYFLAPEILTGDNQYYC




LAVLSHMLLSFQHSPEAFHLIV

ENCASLQNAEKTMQITEEPE




PHVVNLVHSFKNDGLPSSTAFL

YLILTLLRFSYDQKYHVRRK




VQLTELIHCMMYHYSGFPDLYE

ILDNVSLPLVLELPVKRITS




PILEAIKDFPKPSEEKIKLILN

FSSLSESWSVDVDFTDLSEN




QSAWTSQSNSLASCLSRLSGKS

LAKKLKPSGTDEASCTKLVP




ETGKTGLINLGNTCYMNSVIQA

YLLSSVVVHSGISSESGHYY




LEMATDERRQVLSLNLNGCNSL

SYARNITSTDSSYQMYHQSE




MKKLQHLFAFLAHTQREAYAPR

ALALASSQSHLLGRDSPSAV




IFFEASRPPWFTPRSQQDCSEY

FEQDLENKEMSKEWFLENDS




LRFLLDRLHEEEKILKVQASHK

RVTFTSFQSVQKITSREPKD




PSEILECSETSLQEVASKAAVL

TAYVLLYKKQH




TETPRTSDGEKTLIEKMEGGKL






RTHIRCLNCRSTSQKVEAFTDL






SLAFCPSSSLENMSVQDPASSP






SIQDGGLMQASVPGPSEEPVVY






NPTTAAFICDSLVNEKTIGSPP






NEFYCSENTSVPNESNKILVNK






DVPQKPGGETTPSVTDLLNYEL






APEILTGDNQYYCENCASLQNA






EKTMQITEEPEYLILTLLRESY






DQKYHVRRKILDNVSLPLVLEL






PVKRITSFSSLSESWSVDVDET






DLSENLAKKLKPSGTDEASCTK






LVPYLLSSVVVHSGISSESGHY






YSYARNITSTDSSYQMYHQSEA






LALASSQSHLLGRDSPSAVFEQ






DLENKEMSKEWFLENDSRVTFT






SFQSVQKITSRFPKDTAYVLLY






KKQHSTNGLSGNNPTSGLWING






DPPLQKELMDAITKDNKLYLQE






QELNARARALQAASASCSERPN






GFDDNDPPGSCGPTGGGGGGGF






NTVGRLVF







UBP43_HUMAN
13
MDLGPGDAAGGGPLAPRPRRRR
125
RPPGAQGLKNHGNTCFMNAV


Ubiquitin

SLRRLESRELLALGSRSRPGDS

VQCLSNTDLLAEFLALGRYR


carboxyl-

PPRPQPGHCDGDGEGGFACAPG

AAPGRAEVTEQLAALVRALW


terminal

PVPAAPGSPGEERPPGPQPQLQ

TREYTPQLSAEFKNAVSKYG


hydrolase 43

LPAGDGARPPGAQGLKNHGNTC

SQFQGNSQHDALEFLLWLLD




FMNAVVQCLSNTDLLAEFLALG

RVHEDLEGSSRGPVSEKLPP




RYRAAPGRAEVTEQLAALVRAL

EATKTSENCLSPSAQLPLGQ




WTREYTPQLSAEFKNAVSKYGS

SFVQSHFQAQYRSSLTCPHC




QFQGNSQHDALEFLLWLLDRVH

LKQSNTFDPFLCVSLPIPLR




EDLEGSSRGPVSEKLPPEATKT

QTRFLSVTLVFPSKSQRELR




SENCLSPSAQLPLGQSFVQSHF

VGLAVPILSTVAALRKMVAE




QAQYRSSLTCPHCLKQSNTEDP

EGGVPADEVILVELYPSGFQ




FLCVSLPIPLRQTRFLSVTLVE

RSFFDEEDLNTIAEGDNVYA




PSKSQRFLRVGLAVPILSTVAA

FQVPPSPSQGTLSAHPLGLS




LRKMVAEEGGVPADEVILVELY

ASPRLAAREGQRFSLSLHSE




PSGFQRSFFDEEDLNTIAEGDN

SKVLILFCNLVGSGQQASRF




VYAFQVPPSPSQGTLSAHPLGL

GPPFLIREDRAVSWAQLQQS




SASPRLAAREGQRFSLSLHSES

ILSKVRHLMKSEAPVQNLGS




KVLILFCNLVGSGQQASRFGPP

LFSIRVVGLSVACSYLSPKD




FLIREDRAVSWAQLQQSILSKV

SRPLCHWAVDRVLHLRRPGG




RHLMKSEAPVQNLGSLESIRVV

PPHVKLAVEWDSSVKERLFG




GLSVACSYLSPKDSRPLCHWAV

SLQEERAQDADSVWQQQQAH




DRVLHLRRPGGPPHVKLAVEWD

QQHSCTLDECFQFYTKEEQL




SSVKERLFGSLQEERAQDADSV

AQDDAWKCPHCQVLQQGMVK




WQQQQAHQQHSCTLDECFQFYT

LSLWTLPDILIIHLKRFCQV




KEEQLAQDDAWKCPHCQVLQQG

GERRNKLSTLVKFPLSGLNM




MVKLSLWTLPDILIIHLKRFCQ

APHVAQRSTSPEAGLGPWPS




VGERRNKLSTLVKFPLSGLNMA

WKQPDCLPTSYPLDFLYDLY




PHVAQRSTSPEAGLGPWPSWKQ

AVCNHHGNLQGGHYTAYCRN




PDCLPTSYPLDFLYDLYAVCNH

SLDGQWYSYDDSTVEPLRED




HGNLQGGHYTAYCRNSLDGQWY

EVNTRGAYILFYQKRN




SYDDSTVEPLREDEVNTRGAYI






LFYQKRNSIPPWSASSSMRGST






SSSLSDHWLLRLGSHAGSTRGS






LLSWSSAPCPSLPQVPDSPIFT






NSLCNQEKGGLEPRRLVRGVKG






RSISMKAPTTSRAKQGPFKTMP






LRWSFGSKEKPPGASVELVEYL






ESRRRPRSTSQSIVSLLTGTAG






EDEKSASPRSNVALPANSEDGG






RAIERGPAGVPCPSAQPNHCLA






PGNSDGPNTARKLKENAGQDIK






LPRKFDLPLTVMPSVEHEKPAR






PEGQKAMNWKESFQMGSKSSPP






SPYMGFSGNSKDSRRGTSELDR






PLQGTLTLLRSVERKKENRRNE






RAEVSPQVPPVSLVSGGLSPAM






DGQAPGSPPALRIPEGLARGLG






SRLERDVWSAPSSLRLPRKASR






APRGSALGMSQRTVPGEQASYG






TFQRVKYHTLSLGRKKTLPESS






F







UBP2_HUMAN
14
MSQLSSTLKRYTESARYTDAHY
126
SAQGLAGLRNLGNTCEMNSI


Ubiquitin

AKSGYGAYTPSSYGANLAASLL

LQCLSNTRELRDYCLQRLYM


carboxyl-

EKEKLGFKPVPTSSFLTRPRTY

RDLHHGSNAHTALVEEFAKL


terminal

GPSSLLDYDRGRPLLRPDITGG

IQTIWTSSPNDVVSPSEFKT


hydrolase 2

GKRAESQTRGTERPLGSGLSGG

QIQRYAPRFVGYNQQDAQEF




SGFPYGVTNNCLSYLPINAYDQ

LRFLLDGLHNEVNRVTLRPK




GVTLTQKLDSQSDLARDESSLR

SNPENLDHLPDDEKGRQMWR




TSDSYRIDPRNLGRSPMLARTR

KYLEREDSRIGDLFVGQLKS




KELCTLQGLYQTASCPEYLVDY

SLTCTDCGYCSTVEDPEWDL




LENYGRKGSASQVPSQAPPSRV

SLPIAKRGYPEVTLMDCMRL




PEIISPTYRPIGRYTLWETGKG

FTKEDVLDGDEKPTCCRCRG




QAPGPSRSSSPGRDGMNSKSAQ

RKRCIKKFSIQRFPKILVLH




GLAGLRNLGNTCEMNSILQCLS

LKRFSESRIRTSKLTTFVNF




NTRELRDYCLQRLYMRDLHHGS

PLRDLDLREFASENTNHAVY




NAHTALVEEFAKLIQTIWTSSP

NLYAVSNHSGTTMGGHYTAY




NDVVSPSEFKTQIQRYAPRFVG

CRSPGTGEWHTENDSSVTPM




YNQQDAQEFLRFLLDGLHNEVN

SSSQVRTSDAYLLFYELAS




RVTLRPKSNPENLDHLPDDEKG






RQMWRKYLEREDSRIGDLFVGQ






LKSSLTCTDCGYCSTVEDPFWD






LSLPIAKRGYPEVTLMDCMRLF






TKEDVLDGDEKPTCCRCRGRKR






CIKKFSIQRFPKILVLHLKRES






ESRIRTSKLTTFVNFPLRDLDL






REFASENTNHAVYNLYAVSNHS






GTTMGGHYTAYCRSPGTGEWHT






FNDSSVTPMSSSQVRTSDAYLL






FYELASPPSRM







UBP45_HUMAN
15
MRVKDPTKALPEKAKRSKRPTV
127
LSVRGITNLGNTCFFNAVMQ


Ubiquitin

PHDEDSSDDIAVGLTCQHVSHA

NLAQTYTLTDLMNEIKESST


carboxyl-

ISVNHVKRAIAENLWSVCSECL

KLKIFPSSDSQLDPLVVELS


terminal

KERRFYDGQLVLTSDIWLCLKC

RPGPLTSALFLFLHSMKETE


hydrolase 45

GFQGCGKNSESQHSLKHFKSSR

KGPLSPKVLFNQLCQKAPRE




TEPHCIIINLSTWIIWCYECDE

KDFQQQDSQELLHYLLDAVR




KLSTHCNKKVLAQIVDFLQKHA

TEETKRIQASILKAFNNPTT




SKTQTSAFSRIMKLCEEKCETD

KTADDETRKKVKAYGKEGVK




EIQKGGKCRNLSVRGITNLGNT

MNFIDRIFIGELTSTVMCEE




CFFNAVMQNLAQTYTLTDLMNE

CANISTVKDPFIDISLPIIE




IKESSTKLKIFPSSDSQLDPLV

ERVSKPLLWGRMNKYRSLRE




VELSRPGPLTSALFLFLHSMKE

TDHDRYSGNVTIENIHQPRA




TEKGPLSPKVLENQLCQKAPRF

AKKHSSSKDKSQLIHDRKCI




KDFQQQDSQELLHYLLDAVRTE

RKLSSGETVTYQKNENLEMN




ETKRIQASILKAFNNPTTKTAD

GDSLMFASLMNSESRLNESP




DETRKKVKAYGKEGVKMNFIDR

TDDSEKEASHSESNVDADSE




IFIGELTSTVMCEECANISTVK

PSESESASKQTGLFRSSSGS




DPFIDISLPIIEERVSKPLLWG

GVQPDGPLYPLSAGKLLYTK




RMNKYRSLRETDHDRYSGNVTI

ETDSGDKEMAEAISELRLSS




ENIHQPRAAKKHSSSKDKSQLI

TVTGDQDEDRENQPLNISNN




HDRKCIRKLSSGETVTYQKNEN

LCFLEGKHLRSYSPQNAFQT




LEMNGDSLMFASLMNSESRLNE

LSQSYITTSKECSIQSCLYQ




SPTDDSEKEASHSESNVDADSE

FTSMELLMGNNKLLCENCTK




PSESESASKQTGLFRSSSGSGV

NKQKYQEETSFAEKKVEGVY




QPDGPLYPLSAGKLLYTKETDS

TNARKQLLISAVPAVLILHL




GDKEMAEAISELRLSSTVTGDQ

KRFHQAGLSLRKVNRHVDEP




DFDRENQPLNISNNLCFLEGKH

LMLDLAPFCSATCKNASVGD




LRSYSPQNAFQTLSQSYITTSK

KVLYGLYGIVEHSGSMREGH




ECSIQSCLYQFTSMELLMGNNK

YTAYVKVRTPSRKLSEHNTK




LLCENCTKNKQKYQEETSFAEK

KKNVPGLKAADNESAGQWVH




KVEGVYTNARKQLLISAVPAVL

VSDTYLQVVPESRALSAQAY




ILHLKRFHQAGLSLRKVNRHVD

LLFYERVL




FPLMLDLAPFCSATCKNASVGD






KVLYGLYGIVEHSGSMREGHYT






AYVKVRTPSRKLSEHNTKKKNV






PGLKAADNESAGQWVHVSDTYL






QVVPESRALSAQAYLLFYERVL







UBP32_HUMAN
16
MGAKESRIGELSYEEALRRVTD
128
TEKGATGLSNLGNTCEMNSS


Ubiquitin

VELKRLKDAFKRTCGLSYYMGQ

IQCVSNTQPLTQYFISGRHL


carboxyl-

HCFIREVLGDGVPPKVAEVIYC

YELNRTNPIGMKGHMAKCYG


terminal

SFGGTSKGLHENNLIVGLVLLT

DLVQELWSGTQKNVAPLKLR


hydrolase 32

RGKDEEKAKYIFSLESSESGNY

WTIAKYAPRENGFQQQDSQE




VIREEMERMLHVVDGKVPDTLR

LLAFLLDGLHEDLNRVHEKP




KCFSEGEKVNYEKERNWLELNK

YVELKDSDGRPDWEVAAEAW




DAFTFSRWLLSGGVYVTLTDDS

DNHLRRNRSIVVDLFHGQLR




DTPTFYQTLAGVTHLEESDIID

SQVKCKTCGHISVREDPENE




LEKRYWLLKAQSRTGREDLETF

LSLPLPMDSYMHLEITVIKL




GPLVSPPIRPSLSEGLENAFDE

DGTTPVRYGLRLNMDEKYTG




NRDNHIDFKEISCGLSACCRGP

LKKQLSDLCGLNSEQILLAE




LAERQKFCFKVEDVDRDGVLSR

VHGSNIKNFPQDNQKVRLSV




VELRDMVVALLEVWKDNRTDDI

SGFLCAFEIPVPVSPISASS




PELHMDLSDIVEGILNAHDTTK

PTQTDFSSSPSTNEMFTLTT




MGHLTLEDYQIWSVKNVLANEF

NGDLPRPIFIPNGMPNTVVP




LNLLFQVCHIVLGLRPATPEEE

CGTEKNFTNGMVNGHMPSLP




GQIIRGWLERESRYGLQAGHNW

DSPFTGYIIAVHRKMMRTEL




FIISMQWWQQWKEYVKYDANPV

YFLSSQKNRPSLFGMPLIVP




VIEPSSVLNGGKYSFGTAAHPM

CTVHTRKKDLYDAVWIQVSR




EQVEDRIGSSLSYVNTTEEKES

LASPLPPQEASNHAQDCDDS




DNISTASEASETAGSGELYSAT

MGYQYPFTLRVVQKDGNSCA




PGADVCFARQHNTSDNNNQCLL

WCPWYRFCRGCKIDCGEDRA




GANGNILLHLNPQKPGAIDNQP

FIGNAYIAVDWDPTALHLRY




LVTQEPVKATSLTLEGGRLKRT

QTSQERVVDEHESVEQSRRA




PQLIHGRDYEMVPEPVWRALYH

QAEPINLDSCLRAFTSEEEL




WYGANLALPRPVIKNSKTDIPE

GENEMYYCSKCKTHCLATKK




LELFPRYLLFLRQQPATRTQQS

LDLWRLPPILIIHLKRFQFV




NIWVNMGNVPSPNAPLKRVLAY

NGRWIKSQKIVKFPRESFDP




TGCFSRMQTIKEIHEYLSQRLR

SAFLVPRDPALCQHKPLTPQ




IKEEDMRLWLYNSENYLTLLDD

GDELSEPRILAREVKKVDAQ




EDHKLEYLKIQDEQHLVIEVRN

SSAGEEDVLLSKSPSSLSAN




KDMSWPEEMSFIANSSKIDRHK

IISSPKGSPSSSRKSGTSCP




VPTEKGATGLSNLGNTCEMNSS

SSKNSSPNSSPRTLGRSKGR




IQCVSNTQPLTQYFISGRHLYE

LRLPQIGSKNKLSSSKENLD




LNRTNPIGMKGHMAKCYGDLVQ

ASKENGAGQICELADALSRG




ELWSGTQKNVAPLKLRWTIAKY

HVLGGSQPELVTPQDHEVAL




APRENGFQQQDSQELLAFLLDG

ANGFLYEHEACGNGYSNGQL




LHEDLNRVHEKPYVELKDSDGR

GNHSEEDSTDDQREDTRIKP




PDWEVAAEAWDNHLRRNRSIVV

IYNLYAISCHSGILGGGHYV




DLFHGQLRSQVKCKTCGHISVR

TYAKNPNCKWYCYNDSSCKE




FDPFNFLSLPLPMDSYMHLEIT

LHPDEIDTDSAYILFYEQQG




VIKLDGTTPVRYGLRLNMDEKY

IDYAQFLPKTDGKKMADTSS




TGLKKQLSDLCGLNSEQILLAE

MDEDFESDYKKYCVLQ




VHGSNIKNFPQDNQKVRLSVSG






FLCAFEIPVPVSPISASSPTQT






DESSSPSTNEMFTLTTNGDLPR






PIFIPNGMPNTVVPCGTEKNFT






NGMVNGHMPSLPDSPFTGYIIA






VHRKMMRTELYFLSSQKNRPSL






FGMPLIVPCTVHTRKKDLYDAV






WIQVSRLASPLPPQEASNHAQD






CDDSMGYQYPFTLRVVQKDGNS






CAWCPWYRFCRGCKIDCGEDRA






FIGNAYIAVDWDPTALHLRYQT






SQERVVDEHESVEQSRRAQAEP






INLDSCLRAFTSEEELGENEMY






YCSKCKTHCLATKKLDLWRLPP






ILIIHLKRFQFVNGRWIKSQKI






VKFPRESEDPSAFLVPRDPALC






QHKPLTPQGDELSEPRILAREV






KKVDAQSSAGEEDVLLSKSPSS






LSANIISSPKGSPSSSRKSGTS






CPSSKNSSPNSSPRTLGRSKGR






LRLPQIGSKNKLSSSKENLDAS






KENGAGQICELADALSRGHVLG






GSQPELVTPQDHEVALANGFLY






EHEACGNGYSNGQLGNHSEEDS






TDDQREDTRIKPIYNLYAISCH






SGILGGGHYVTYAKNPNCKWYC






YNDSSCKELHPDEIDTDSAYIL






FYEQQGIDYAQFLPKTDGKKMA






DTSSMDEDFESDYKKYCVLQ







U17L6_HUMAN
17
MEDDSLYLRGEWQFNHFSKLTS
129
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 6

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGEH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA






EVTASSITSVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGS






ED







UBP42_HUMAN
18
MTIVDKASESSDPSAYQNQPGS
130
RVGAGLQNLGNTCFANAALQ


Ubiquitin

SEAVSPGDMDAGSASWGAVSSL

CLTYTPPLANYMLSHEHSKT


carboxyl-

NDVSNHTLSLGPVPGAVVYSSS

CHAEGFCMMCTMQAHITQAL


terminal

SVPDKSKPSPQKDQALGDGIAP

SNPGDVIKPMEVINEMRRIA


hydrolase 42

PQKVLFPSEKICLKWQQTHRVG

RHFREGNQEDAHEFLQYTVD




AGLQNLGNTCFANAALQCLTYT

AMQKACLNGSNKLDRHTQAT




PPLANYMLSHEHSKTCHAEGFC

TLVCQIFGGYLRSRVKCLNC




MMCTMQAHITQALSNPGDVIKP

KGVSDTFDPYLDITLEIKAA




MFVINEMRRIARHFREGNQEDA

QSVNKALEQFVKPEQLDGEN




HEFLQYTVDAMQKACLNGSNKL

SYKCSKCKKMVPASKRFTIH




DRHTQATTLVCQIFGGYLRSRV

RSSNVLTLSLKRFANFTGGK




KCLNCKGVSDTFDPYLDITLEI

IAKDVKYPEYLDIRPYMSQP




KAAQSVNKALEQFVKPEQLDGE

NGEPIVYVLYAVLVHTGENC




NSYKCSKCKKMVPASKRFTIHR

HAGHYFCYIKASNGLWYQMN




SSNVLTLSLKRFANFTGGKIAK

DSIVSTSDIRSVLSQQAYVL




DVKYPEYLDIRPYMSQPNGEPI

FYIRSHDVKNGGE




VYVLYAVLVHTGENCHAGHYFC






YIKASNGLWYQMNDSIVSTSDI






RSVLSQQAYVLFYIRSHDVKNG






GELTHPTHSPGQSSPRPVISQR






VVTNKQAAPGFIGPQLPSHMIK






NPPHLNGTGPLKDTPSSSMSSP






NGNSSVNRASPVNASASVQNWS






VNRSSVIPEHPKKQKITISIHN






KLPVRQCQSQPNLHSNSLENPT






KPVPSSTITNSAVQSTSNASTM






SVSSKVTKPIPRSESCSQPVMN






GKSKLNSSVLVPYGAESSEDSD






EESKGLGKENGIGTIVSSHSPG






QDAEDEEATPHELQEPMTLNGA






NSADSDSDPKENGLAPDGASCQ






GQPALHSENPFAKANGLPGKLM






PAPLLSLPEDKILETERLSNKL






KGSTDEMSAPGAERGPPEDRDA






EPQPGSPAAESLEEPDAAAGLS






STKKAPPPRDPGTPATKEGAWE






AMAVAPEEPPPSAGEDIVGDTA






PPDLCDPGSLTGDASPLSQDAK






GMIAEGPRDSALAEAPEGLSPA






PPARSEEPCEQPLLVHPSGDHA






RDAQDPSQSLGAPEAAERPPAP






VLDMAPAGHPEGDAEPSPGERV






EDAAAPKAPGPSPAKEKIGSLR






KVDRGHYRSRRERSSSGEPARE






SRSKTEGHRHRRRRTCPRERDR






QDRHAPEHHPGHGDRLSPGERR






SLGRCSHHHSRHRSGVELDWVR






HHYTEGERGWGREKFYPDRPRW






DRCRYYHDRYALYAARDWKPFH






GGREHERAGLHERPHKDHNRGR






RGCEPARERERHRPSSPRAGAP






HALAPHPDRESHDRTALVAGDN






CNLSDRFHEHENGKSRKRRHDS






VENSDSHVEKKARRSEQKDPLE






EPKAKKHKKSKKKKKSKDKHRD






RDSRHQQDSDLSAACSDADLHR






HKKKKKKKKRHSRKSEDFVKDS






ELHLPRVTSLETVAQFRRAQGG






FPLSGGPPLEGVGPFREKTKHL






RMESRDDRCRLFEYGQGKRRYL






ELGR







U17L7_HUMAN
19
MEDDSLYLGGDWQFNHFSKLTS
131
AVGAGLQKIGNTFYVNVSLQ


Inactive

SRLDAAFAEIQRTSLSEKSPLS

CLTYTLPLSNYMLSREDSQT


ubiquitin

SETREDLCDDLAPVARQLAPRE

CHLHKCCMFCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQKIGNT

HSPGHVIQPSQVLAAGFHRG


terminal

FYVNVSLQCLTYTLPLSNYMLS

EQEDAHEFLMFTVDAMKKAC


hydrolase 17-

REDSQTCHLHKCCMFCTMQAHI

LPGHKQLDHHSKDTTLIHQI


like protein 7

TWALHSPGHVIQPSQVLAAGFH

FGAYWRSQIKYLHCHGVSDT




RGEQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQLDHHSKDTTLIHQIFG

LEQLVKPKELNGENAYHCGL




AYWRSQIKYLHCHGVSDTEDPY

CLQKAPASKTLTLPTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVTGNKLAKNVQ




PKELNGENAYHCGLCLQKAPAS

YPKCRDMQPYMSQQNTGPLV




KTLTLPTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKLAKNVQYPKCRDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SGITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASGITSVLSQQAYVLFYIQ

EDTDRPATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

VPEL




EDTDRPATQGELKRDHPCLQVP






ELDEHLVERATQESTLDHWKFP






QEQNKTKPEFNVRKVEGTLPPN






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSTKPTDQESMNTGTLA






SLQGSTRRSKGNNKHSKRSLLV






CQ







U17LH_HUMAN
20
MEDDSLYLGGEWQFNHESKLTS
132
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 17

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

ASITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTAASITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







UBP13_HUMAN
21
MQRRGALFGMPGGSGGRKMAAG
133
YGPGYTGLKNLGNSCYLSSV


Ubiquitin

DIGELLVPHMPTIRVPRSGDRV

MQAIFSIPEFQRAYVGNLPR


carboxyl-

YKNECAFSYDSPNSEGGLYVCM

IFDYSPLDPTQDENTQMTKL


terminal

NTFLAFGREHVERHERKTGQSV

GHGLLSGQYSKPPVKSELIE


hydrolase 13

YMHLKRHVREKVRGASGGALPK

QVMKEEHKPQQNGISPRMEK




RRNSKIFLDLDTDDDLNSDDYE

AFVSKSHPEFSSNRQQDAQE




YEDEAKLVIFPDHYEIALPNIE

FELHLVNLVERNRIGSENPS




ELPALVTIACDAVLSSKSPYRK

DVFRELVEERIQCCQTRKVR




QDPDTWENELPVSKYANNLTQL

YTERVDYLMQLPVAMEAATN




DNGVRIPPSGWKCARCDLRENL

KDELIAYELTRREAEANRRP




WLNLTDGSVLCGKWFFDSSGGN

LPELVRAKIPESACLQAFSE




GHALEHYRDMGYPLAVKLGTIT

PENVDDFWSSALQAKSAGVK




PDGADVYSFQEEEPVLDPHLAK

TSRFASFPEYLVVQIKKFTF




HLAHFGIDMLHMHGTENGLQDN

GLDWVPKKFDVSIDMPDLLD




DIKLRVSEWEVIQESGTKLKPM

INHLRARGLQPGEEELPDIS




YGPGYTGLKNLGNSCYLSSVMQ

PPIVIPDDSKDRLMNQLIDP




AIFSIPEFQRAYVGNLPRIFDY

SDIDESSVMQLAEMGFPLEA




SPLDPTQDENTQMTKLGHGLLS

CRKAVYFTGNMGAEVAFNWI




GQYSKPPVKSELIEQVMKEEHK

IVHMEEPDFAEPLTMPGYGG




PQQNGISPRMFKAFVSKSHPEF

AASAGASVEGASGLDNQPPE




SSNRQQDAQEFFLHLVNLVERN

EIVAIITSMGFQRNQAIQAL




RIGSENPSDVFRELVEERIQCC

RATNNNLERALDWIFSHPEF




QTRKVRYTERVDYLMQLPVAME

EEDSDEVIEMENNANANIIS




AATNKDELIAYELTRREAEANR

EAKPEGPRVKDGSGTYELFA




RPLPELVRAKIPFSACLQAFSE

FISHMGTSTMSGHYICHIKK




PENVDDFWSSALQAKSAGVKTS

EGRWVIYNDHKVCASERPPK




RFASFPEYLVVQIKKFTFGLDW

DLGYMYFYRRIPS




VPKKFDVSIDMPDLLDINHLRA






RGLQPGEEELPDISPPIVIPDD






SKDRLMNQLIDPSDIDESSVMQ






LAEMGFPLEACRKAVYFTGNMG






AEVAFNWIIVHMEEPDFAEPLT






MPGYGGAASAGASVEGASGLDN






QPPEEIVAIITSMGFQRNQAIQ






ALRATNNNLERALDWIFSHPEF






EEDSDEVIEMENNANANIISEA






KPEGPRVKDGSGTYELFAFISH






MGTSTMSGHYICHIKKEGRWVI






YNDHKVCASERPPKDLGYMYFY






RRIPS







UBP11_HUMAN
22
MAVAPRLFGGLCFRERDQNPEV
134
KGQPGICGLTNLGNTCEMNS


Ubiquitin

AVEGRLPISHSCVGCRRERTAM

ALQCLSNVPQLTEYFLNNCY


carboxyl-

ATVAANPAAAAAAVAAAAAVTE

LEELNERNPLGMKGEIAEAY


terminal

DREPQHEELPGLDSQWRQIENG

ADLVKQAWSGHHRSIVPHVE


hydrolase 11

ESGRERPLRAGESWELVEKHWY

KNKVGHFASQFLGYQQHDSQ




KQWEAYVQGGDQDSSTFPGCIN

ELLSFLLDGLHEDLNRVKKK




NATLFQDEINWRLKEGLVEGED

EYVELCDAAGRPDQEVAQEA




YVLLPAAAWHYLVSWYGLEHGQ

WQNHKRRNDSVIVDTFHGLF




PPIERKVIELPNIQKVEVYPVE

KSTLVCPDCGNVSVTFDPFC




LLLVRHNDLGKSHTVQFSHTDS

YLSVPLPISHKRVLEVFFIP




IGLVLRTARERELVEPQEDTRL

MDPRRKPEQHRLVVPKKGKI




WAKNSEGSLDRLYDTHITVLDA

SDLCVALSKHTGISPERMMV




ALETGQLIIMETRKKDGTWPSA

ADVESHRFYKLYQLEEPLSS




QLHVMNNNMSEEDEDEKGQPGI

ILDRDDIFVYEVSGRIEAIE




CGLTNLGNTCEMNSALQCLSNV

GSREDIVVPVYLRERTPARD




PQLTEYFLNNCYLEELNERNPL

YNNSYYGLMLFGHPLLVSVP




GMKGEIAEAYADLVKQAWSGHH

RDRFTWEGLYNVLMYRLSRY




RSIVPHVFKNKVGHFASQFLGY

VTKPNSDDEDDGDEKEDDEE




QQHDSQELLSELLDGLHEDLNR

DKDDVPGPSTGGSLRDPEPE




VKKKEYVELCDAAGRPDQEVAQ

QAGPSSGVTNRCPFLLDNCL




EAWQNHKRRNDSVIVDTFHGLF

GTSQWPPRRRRKQLFTLQTV




KSTLVCPDCGNVSVTFDPFCYL

NSNGTSDRTTSPEEVHAQPY




SVPLPISHKRVLEVFFIPMDPR

IAIDWEPEMKKRYYDEVEAE




RKPEQHRLVVPKKGKISDLCVA

GYVKHDCVGYVMKKAPVRLQ




LSKHTGISPERMMVADVESHRF

ECIELFTTVETLEKENPWYC




YKLYQLEEPLSSILDRDDIFVY

PSCKQHQLATKKLDLWMLPE




EVSGRIEAIEGSREDIVVPVYL

ILIIHLKRFSYTKESREKLD




RERTPARDYNNSYYGLMLFGHP

TLVEFPIRDLDESEFVIQPQ




LLVSVPRDRFTWEGLYNVLMYR

NESNPELYKYDLIAVSNHYG




LSRYVTKPNSDDEDDGDEKEDD

GMRDGHYTTFACNKDSGQWH




EEDKDDVPGPSTGGSLRDPEPE

YFDDNSVSPVNENQIESKAA




QAGPSSGVTNRCPFLLDNCLGT

YVLFYQRQD




SQWPPRRRRKQLFTLQTVNSNG






TSDRTTSPEEVHAQPYIAIDWE






PEMKKRYYDEVEAEGYVKHDCV






GYVMKKAPVRLQECIELFTTVE






TLEKENPWYCPSCKQHQLATKK






LDLWMLPEILIIHLKRFSYTKE






SREKLDTLVEFPIRDLDESEFV






IQPQNESNPELYKYDLIAVSNH






YGGMRDGHYTTFACNKDSGQWH






YFDDNSVSPVNENQIESKAAYV






LFYQRQDVARRLLSPAGSSGAP






ASPACSSPPSSEFMDVN







U17L1_HUMAN
23
MGDDSLYLGGEWQFNHESKLTS
135
AVGAGLQNMGNTCYENASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


carboxyl-

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


hydrolase 17-

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


like protein 1

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHCKDTTLIHQI




TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHCKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTFDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRESDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHDGHYF




AGNKLAKNVQYPECLDMQPYMS

SYVKAQEVQWYKMDDAEVTV




QQNTGPLVYVLYAVLVHAGWSC

CSIISVLSQQAYVLFYIQKS




HDGHYFSYVKAQEVQWYKMDDA






EVTVCSIISVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGA






EDTDRRAKQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVGKVEGTLPPN






ALVIHQSKYKCGMKNHHPEQQS






SLLNLSSTTRTDQESMNTGTLA






SLQGRTRRAKGKNKHSKRALLV






CQ







UBP14_HUMAN
24
MPLYSVTVKWGKEKFEGVELNT
136
ASAMELPCGLTNLGNTCYMN


Ubiquitin

DEPPMVFKAQLFALTGVQPARQ

ATVQCIRSVPELKDALKRYA


carboxyl-

KVMVKGGTLKDDDWGNIKIKNG

GALRASGEMASAQYITAALR


terminal

MTLLMMGSADALPEEPSAKTVE

DLFDSMDKTSSSIPPIILLQ


hydrolase 14

VEDMTEEQLASAMELPCGLTNL

FLHMAFPQFAEKGEQGQYLQ




GNTCYMNATVQCIRSVPELKDA

QDANECWIQMMRVLQQKLEA




LKRYAGALRASGEMASAQYITA

IEDDSVKETDSSSASAATPS




ALRDLFDSMDKTSSSIPPIILL

KKKSLIDQFFGVEFETTMKC




QFLHMAFPQFAEKGEQGQYLQQ

TESEEEEVTKGKENQLQLSC




DANECWIQMMRVLQQKLEAIED

FINQEVKYLFTGLKLRLQEE




DSVKETDSSSASAATPSKKKSL

ITKQSPTLQRNALYIKSSKI




IDQFFGVEFETTMKCTESEEEE

SRLPAYLTIQMVRFFYKEKE




VTKGKENQLQLSCFINQEVKYL

SVNAKVLKDVKFPLMLDMYE




FTGLKLRLQEEITKQSPTLQRN

LCTPELQEKMVSFRSKFKDL




ALYIKSSKISRLPAYLTIQMVR

EDKKVNQQPNTSDKKSSPQK




FFYKEKESVNAKVLKDVKFPLM

EVKYEPESFADDIGSNNCGY




LDMYELCTPELQEKMVSERSKE

YDLQAVLTHQGRSSSSGHYV




KDLEDKKVNQQPNTSDKKSSPQ

SWVKRKQDEWIKEDDDKVSI




KEVKYEPESFADDIGSNNCGYY

VTPEDILRLSGGGDWHIAYV




DLQAVLTHQGRSSSSGHYVSWV

LLYGPRR




KRKQDEWIKEDDDKVSIVTPED






ILRLSGGGDWHIAYVLLYGPRR






VEIMEEESEQ







Q13107|UBP4_
25
MAEGGGCRERPDAETQKSELGP
137
SHIQPGLCGLGNLGNTCEMN


HUMAN

LMRTTLQRGAQWYLIDSRWEKQ

SALQCLSNTAPLTDYELKDE


Ubiquitin

WKKYVGFDSWDMYNVGEHNLEP

YEAEINRDNPLGMKGEIAEA


carboxyl-

GPIDNSGLESDPESQTLKEHLI

YAELIKQMWSGRDAHVAPRM


terminal

DELDYVLVPTEAWNKLLNWYGC

FKTQVGRFAPQFSGYQQQDS


hydrolase 4

VEGQQPIVRKVVEHGLFVKHCK

QELLAFLLDGLHEDLNRVKK




VEVYLLELKLCENSDPTNVLSC

KPYLELKDANGRPDAVVAKE




HFSKADTIATIEKEMRKLENIP

AWENHRLRNDSVIVDTFHGL




AERETRLWNKYMSNTYEQLSKL

FKSTLVCPECAKVSVTFDPF




DNTVQDAGLYQGQVLVIEPQNE

CYLTLPLPLKKDRVMEVELV




DGTWPRQTLQSKSSTAPSRNFT

PADPHCRPTQYRVTVPLMGA




TSPKSSASPYSSVSASLIANGD

VSDLCEALSRLSGIAAENMV




STSTCGMHSSGVSRGGSGESAS

VADVYNHRFHKIFQMDEGLN




YNCQEPPSSHIQPGLCGLGNLG

HIMPRDDIFVYEVCSTSVDG




NTCFMNSALQCLSNTAPLTDYF

SECVTLPVYFRERKSRPSST




LKDEYEAEINRDNPLGMKGEIA

SSASALYGQPLLLSVPKHKL




EAYAELIKQMWSGRDAHVAPRM

TLESLYQAVCDRISRYVKQP




FKTQVGRFAPQFSGYQQQDSQE

LPDEFGSSPLEPGACNGSRN




LLAFLLDGLHEDLNRVKKKPYL

SCEGEDEEEMEHQEEGKEQL




ELKDANGRPDAVVAKEAWENHR

SETEGSGEDEPGNDPSETTQ




LRNDSVIVDTFHGLFKSTLVCP

KKIKGQPCPKRLFTFSLVNS




ECAKVSVTFDPFCYLTLPLPLK

YGTADINSLAADGKLLKLNS




KDRVMEVFLVPADPHCRPTQYR

RSTLAMDWDSETRRLYYDEQ




VTVPLMGAVSDLCEALSRLSGI

ESEAYEKHVSMLQPQKKKKT




AAENMVVADVYNHRFHKIFQMD

TVALRDCIELFTTMETLGEH




EGLNHIMPRDDIFVYEVCSTSV

DPWYCPNCKKHQQATKKEDL




DGSECVTLPVYFRERKSRPSST

WSLPKILVVHLKRFSYNRYW




SSASALYGQPLLLSVPKHKLTL

RDKLDTVVEFPIRGLNMSEF




ESLYQAVCDRISRYVKQPLPDE

VCNLSARPYVYDLIAVSNHY




FGSSPLEPGACNGSRNSCEGED

GAMGVGHYTAYAKNKLNGKW




EEEMEHQEEGKEQLSETEGSGE

YYFDDSNVSLASEDQIVTKA




DEPGNDPSETTQKKIKGQPCPK

AYVLFYQRRD




RLFTFSLVNSYGTADINSLAAD






GKLLKLNSRSTLAMDWDSETRR






LYYDEQESEAYEKHVSMLQPQK






KKKTTVALRDCIELFTTMETLG






EHDPWYCPNCKKHQQATKKEDL






WSLPKILVVHLKRFSYNRYWRD






KLDTVVEFPIRGLNMSEFVCNL






SARPYVYDLIAVSNHYGAMGVG






HYTAYAKNKLNGKWYYFDDSNV






SLASEDQIVTKAAYVLFYQRRD






DEFYKTPSLSSSGSSDGGTRPS






SSQQGFGDDEACSMDTN







UBP26_HUMAN
26
MAALFLRGFVQIGNCKTGISKS
138
KICHGLPNLGNTCYMNAVLQ


Ubiquitin

KEAFIEAVERKKKDRLVLYFKS

SLLSIPSFADDLLNQSFPWG


carboxyl-

GKYSTFRLSDNIQNVVLKSYRG

KIPLNALTMCLARLLFFKDT


terminal

NQNHLHLTLQNNNGLFIEGLSS

YNIEIKEMLLLNLKKAISAA


hydrolase 26

TDAEQLKIFLDRVHQNEVQPPV

AEIFHGNAQNDAHEFLAHCL




RPGKGGSVFSSTTQKEINKTSF

DQLKDNMEKLNTIWKPKSEF




HKVDEKSSSKSFEIAKGSGTGV

GEDNFPKQVFADDPDTSGES




LQRMPLLTSKLTLTCGELSENQ

CPVITNFELELLHSIACKAC




HKKRKRMLSSSSEMNEEFLKEN

GQVILKTELNNYLSINLPQR




NSVEYKKSKADCSRCVSYNREK

IKAHPSSIQSTEDLFFGAEE




QLKLKELEENKKLECESSCIMN

LEYKCAKCEHKTSVGVHSES




ATGNPYLDDIGLLQALTEKMVL

RLPRILIVHLKRYSLNEFCA




VFLLQQGYSDGYTKWDKLKLFF

LKKNDQEVIISKYLKVSSHC




ELFPEKICHGLPNLGNTCYMNA

NEGTRPPLPLSEDGEITDFQ




VLQSLLSIPSFADDLLNQSFPW

LLKVIRKMTSGNISVSWPAT




GKIPLNALTMCLARLLFFKDTY

KESKDILAPHIGSDKESEQK




NIEIKEMLLLNLKKAISAAAEI

KGQTVFKGASRRQQQKYLGK




FHGNAQNDAHEFLAHCLDQLKD

NSKPNELESVYSGDRAFIEK




NMEKLNTIWKPKSEFGEDNEPK

EPLAHLMTYLEDTSLCQFHK




QVFADDPDTSGFSCPVITNFEL

AGGKPASSPGTPLSKVDFQT




ELLHSIACKACGQVILKTELNN

VPENPKRKKYVKTSKFVAFD




YLSINLPQRIKAHPSSIQSTED

RIINPTKDLYEDKNIRIPER




LFFGAEELEYKCAKCEHKTSVG

FQKVSEQTQQCDGMRICEQA




VHSFSRLPRILIVHLKRYSLNE

PQQALPQSFPKPGTQGHTKN




FCALKKNDQEVIISKYLKVSSH

LLRPTKLNLQKSNRNSLLAL




CNEGTRPPLPLSEDGEITDFQL

GSNKNPRNKDILDKIKSKAK




LKVIRKMTSGNISVSWPATKES

ETKRNDDKGDHTYRLISVVS




KDILAPHIGSDKESEQKKGQTV

HLGKTLKSGHYICDAYDFEK




FKGASRRQQQKYLGKNSKPNEL

QIWFTYDDMRVLGIQEAQMQ




ESVYSGDRAFIEKEPLAHLMTY

EDRRCTGYIFFYMHN




LEDTSLCQFHKAGGKPASSPGT






PLSKVDFQTVPENPKRKKYVKT






SKFVAFDRIINPTKDLYEDKNI






RIPERFQKVSEQTQQCDGMRIC






EQAPQQALPQSFPKPGTQGHTK






NLLRPTKLNLQKSNRNSLLALG






SNKNPRNKDILDKIKSKAKETK






RNDDKGDHTYRLISVVSHLGKT






LKSGHYICDAYDFEKQIWFTYD






DMRVLGIQEAQMQEDRRCTGYI






FFYMHNEIFEEMLKREENAQLN






SKEVEETLQKE







UBP19_HUMAN
27
MSGGASATGPRRGPPGLEDTTS
139
LPGFTGLVNLGNTCEMNSVI


Ubiquitin

KKKQKDRANQESKDGDPRKETG

QSLSNTRELRDFFHDRSFEA


carboxyl-

SRYVAQAGLEPLASGDPSASAS

EINYNNPLGTGGRLAIGFAV


terminal

HAAGITGSRHRTRLFFPSSSGS

LLRALWKGTHHAFQPSKLKA


hydrolase 19

ASTPQEEQTKEGACEDPHDLLA

IVASKASQFTGYAQHDAQEF




TPTPELLLDWRQSAEEVIVKLR

MAFLLDGLHEDLNRIQNKPY




VGVGPLQLEDVDAAFTDTDCVV

TETVDSDGRPDEVVAEEAWQ




RFAGGQQWGGVFYAEIKSSCAK

RHKMRNDSFIVDLFQGQYKS




VQTRKGSLLHLTLPKKVPMLTW

KLVCPVCAKVSITFDPFLYL




PSLLVEADEQLCIPPLNSQTCL

PVPLPQKQKVLPVFYFAREP




LGSEENLAPLAGEKAVPPGNDP

HSKPIKFLVSVSKENSTASE




VSPAMVRSRNPGKDDCAKEEMA

VLDSLSQSVHVKPENLRLAE




VAADAATLVDEPESMVNLAFVK

VIKNRFHRVELPSHSLDTVS




NDSYEKGPDSVVVHVYVKEICR

PSDTLLCFELLSSELAKERV




DTSRVLFREQDETLIFQTRDGN

VVLEVQQRPQVPSVPISKCA




FLRLHPGCGPHTTFRWQVKLRN

ACQRKQQSEDEKLKRCTRCY




LIEPEQCTFCFTASRIDICLRK

RVGYCNQLCQKTHWPDHKGL




RQSQRWGGLEAPAARVGGAKVA

CRPENIGYPFLVSVPASRLT




VPTGPTPLDSTPPGGAPHPLTG

YARLAQLLEGYARYSVSVFQ




QEEARAVEKDKSKARSEDTGLD

PPFQPGRMALESQSPGCTTL




SVATRTPMEHVTPKPETHLASP

LSTGSLEAGDSERDPIQPPE




KPTCMVPPMPHSPVSGDSVEEE

LQLVTPMAEGDTGLPRVWAA




EEEEKKVCLPGFTGLVNLGNTC

PDRGPVPSTSGISSEMLASG




FMNSVIQSLSNTRELRDFFHDR

PIEVGSLPAGERVSRPEAAV




SFEAEINYNNPLGTGGRLAIGE

PGYQHPSEAMNAHTPQFFIY




AVLLRALWKGTHHAFQPSKLKA

KIDSSNREQRLEDKGDTPLE




IVASKASQFTGYAQHDAQEFMA

LGDDCSLA




FLLDGLHEDLNRIQNKPYTETV

LVWRNNERLQEFVLVASKEL




DSDGRPDEVVAEEAWQRHKMRN

ECAEDPGSAGEAARAGHFTL




DSFIVDLFQGQYKSKLVCPVCA

DQCLNLFTRPEVLAPEEAWY




KVSITFDPFLYLPVPLPQKQKV

CPQCKQHREASKQLLLWRLP




LPVFYFAREPHSKPIKFLVSVS

NVLIVQLKRFSFRSFIWRDK




KENSTASEVLDSLSQSVHVKPE

INDLVEFPVRNLDLSKFCIG




NLRLAEVIKNRFHRVELPSHSL

QKEEQLPSYDLYAVINHYGG




DTVSPSDTLLCFELLSSELAKE

MIGGHYTACARLPNDRSSQR




RVVVLEVQQRPQVPSVPISKCA

SDVGWRLEDDSTVTTVDESQ




ACQRKQQSEDEKLKRCTRCYRV

VVTRYAYVLFYRRRN




GYCNQLCQKTHWPDHKGLCRPE






NIGYPFLVSVPASRLTYARLAQ






LLEGYARYSVSVFQPPFQPGRM






ALESQSPGCTTLLSTGSLEAGD






SERDPIQPPELQLVTPMAEGDT






GLPRVWAAPDRGPVPSTSGISS






EMLASGPIEVGSLPAGERVSRP






EAAVPGYQHPSEAMNAHTPQFF






IYKIDSSNREQRLEDKGDTPLE






LGDDCSLALVWRNNERLQEFVL






VASKELECAEDPGSAGEAARAG






HFTLDQCLNLFTRPEVLAPEEA






WYCPQCKQHREASKQLLLWRLP






NVLIVQLKRFSFRSFIWRDKIN






DLVEFPVRNLDLSKFCIGQKEE






QLPSYDLYAVINHYGGMIGGHY






TACARLPNDRSSQRSDVGWRLF






DDSTVTTVDESQVVTRYAYVLE






YRRRNSPVERPPRAGHSEHHPD






LGPAAEAAASQASRIWQELEAE






EEPVPEGSGPLGPWGPQDWVGP






LPRGPTTPDEGCLRYFVLGTVA






ALVALVLNVFYPLVSQSRWR







UBP10_HUMAN
28
MALHSPQYIFGDESPDEFNQFF
140
SLQPRGLINKGNWCYINATL


Ubiquitin

VTPRSSVELPPYSGTVLCGTQA

QALVACPPMYHLMKFIPLYS


carboxyl-

VDKLPDGQEYQRIEFGVDEVIE

KVQRPCTSTPMIDSFVRLMN


terminal

PSDTLPRTPSYSISSTLNPQAP

EFTNMPVPPKPRQALGDKIV


hydrolase 10

EFILGCTASKITPDGITKEASY

RDIRPGAAFEPTYIYRLLTV




GSIDCQYPGSALALDGSSNVEA

NKSSLSEKGRQEDAEEYLGF




EVLENDGVSGGLGQRERKKKKK

ILNGLHEEMLNLKKLLSPSN




RPPGYYSYLKDGGDDSISTEAL

EKLTISNGPKNHSVNEEEQE




VNGHANSAVPNSVSAEDAEFMG

EQGEGSEDEWEQVGPRNKTS




DMPPSVTPRTCNSPQNSTDSVS

VTRQADFVQTPITGIFGGHI




DIVPDSPFPGALGSDTRTAGQP

RSVVYQQSSKESATLQPFFT




EGGPGADFGQSCFPAEAGRDTL

LQLDIQSDKIRTVQDALESL




SRTAGAQPCVGTDTTENLGVAN

VARESVQGYTTKTKQEVEIS




GQILESSGEGTATN

RRVTLEKLPPVLVLHLKRFV




GVELHTTESIDLDPTKPESASP

YEKTGGCQKLIKNIEYPVDL




PADGTGSASGTLPVSQPKSWAS

EISKELLSPGVKNKNEKCHR




LFHDSKPSSSSPVAYVETKYSP

TYRLFAVVYHHGNSATGGHY




PAISPLVSEKQVEVKEGLVPVS

TTDVFQIGLNGWLRIDDQTV




EDPVAIKIAELLENVTLIHKPV

KVINQYQVVKPTAERTAYLL




SLQPRGLINKGNWCYINATLQA

YYRRVD




LVACPPMYHLMKFIPLYSKVQR






PCTSTPMIDSFVRLMNEFTNMP






VPPKPRQALGDKIVRDIRPGAA






FEPTYIYRLLTVNKSSLSEKGR






QEDAEEYLGFILNGLHEEMLNL






KKLLSPSNEKLTISNGPKNHSV






NEEEQEEQGEGSEDEWEQVGPR






NKTSVTRQADFVQT






PITGIFGGHIRSVVYQQSSKES






ATLQPFFTLQLDIQSDKIRTVQ






DALESLVARESVQGYTTKTKQE






VEISRRVTLEKLPPVLVLHLKR






FVYEKTGGCQKLIKNIEYPVDL






EISKELLSPGVKNKNFKCHRTY






RLFAVVYHHGNSATGGHYTTDV






FQIGLNGWLRIDDQTVKVINQY






QVVKPTAERTAYLLYYRRVDLL







UBP49_HUMAN
29
MDRCKHVGRLRLAQDHSILNPQ
141
MDRCKHVGRLRLAQDHSILN


Ubiquitin

KWCCLECATTESVWACLKCSHV

PQKWCCLECATTESVWACLK


carboxyl-

ACGRYIEDHALKHFEETGHPLA

CSHVACGRYIEDHALKHFEE


terminal

MEVRDLYVFCYLCKDYVLNDNP

TGHPLAMEVRDLYVFCYLCK


hydrolase 49

EGDLKLLRSSLLAVRGQKQDTP

DYVLNDNPEGDLKLLRSSLL




VRRGRTLRSMASGEDVVLPQRA

AVRGQKQDTPVRRGRTLRSM




PQGQPQMLTALWYRRQRLLART

ASGEDVVLPQRAPQGQPQML




LRLWFEKSSRGQAKLEQRRQEE

TALWYRRQRLLARTLRLWFE




ALERKKEEARRRRREVKRRLLE

KSSRGQAKLEQRRQEEALER




ELASTPPRKSARLLLHTPRDAG

KKEEARRRRREVKRRLLEEL




PAASRPAALPTSRRVPAATLKL

ASTPPRKSARLLLHTPRDAG




RRQPAMAPGVTGLRNLGNTCYM

PAASRPAALPTSRRVPAATL




NSILQVLSHLQKFRECELNLDP

KLRRQPAMAPGVTGLRNLGN




SKTEHLFPKATNGK

TCYMNSILQVLSHLQKFREC




TQLSGKPTNSSATELSLRNDRA

FLNLDPSKTEHLFPKATNGK




EACEREGFCWNGRASISRSLEL

TQLSGKPTNSSATELSLRND




IQNKEPSSKHISLCRELHTLER

RAEACEREGFCWNGRASISR




VMWSGKWALVSPFAMLHSVWSL

SLELIQNKEPSSKHISLCRE




IPAFRGYDQQDAQEFLCELLHK

LHTLFRVMWSGKWALVSPFA




VQQELESEGTTRRILIPFSQRK

MLHSVWSLIPAFRGYDQQDA




LTKQVLKVVNTIFHGQLLSQVT

QEFLCELLHKVQQELESEGT




CISCNYKSNTIEPFWDLSLEEP

TRRILIPFSQRKLTKQVLKV




ERYHCIEKGFVPLNQTECLLTE

VNTIFHGQLLSQVTCISCNY




MLAKFTETEALEGRIYACDQCN

KSNTIEPFWDLSLEFPERYH




SKRRKSNPKPLVLSEARKQLMI

CIEKGFVPLNQTECLLTEML




YRLPQVLRLHLKRFRWSGRNHR

AKFTETEALEGRIYACDQCN




EKIGVHVVEDQVLTMEPYCCRD

SKRRKSNPKPLVLSEARKQL




MLSSLDKETFAYDL

MIYRLPQVLRLHLKRFRWSG




SAVVMHHGKGFGSGHYTAYCYN

RNHREKIGVHVVEDQVLTME




TEGGFWVHCNDSKLNVCSVEEV

PYCCRDMLSSLDKETFAYDL




CKTQAYILFYTQRTVQGNARIS

SAVVMHHGKGFGSGHYTAYC




ETHLQAQVQSSNNDEGRPQTES

YNTEGGFWVHCNDSKLNVCS






VEEVCKTQAYILFYTQRT





U17L8_HUMAN
30
MEDDSLYLGGEWQFNHFSKLTS
142
AVGAGLQNMGNTCYLNASLQ


Inactive

PRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


ubiquitin

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


terminal

CYLNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


hydrolase 17-

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI


like protein 8

TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYPCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFCDVTGNKLAKNVQ




PEELNGENAYPCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRFCDV

YVLYAVLVHAGWSCHNGYYF




TGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGYYFSYVKAQEG






QWYKMDDAEVTACSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRPATQGELKR






DHPCLQVPELDEHLVERATEES






TLDHWKFPQEQNKMKPEFNVRK






VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSMNSTDQE






SMNTGTLASLQGRTRRSKGKNK






HSKRSLLVCQ







6VN6_1
31
GSKKHTGYVGLKNQGATCYMNS
143
TGYVGLKNQGATCYMNSLLQ




LLQTLFFTNQLRKAVYMMPTEG

TLFFTNQLRKAVYMMPTEGD




DDSSKSVPLALQRVFYELQHSD

DSSKSVPLALQRVFYELQHS




KPVGTKKLTKSFGWETLDSEMQ

DKPVGTKKLTKSFGWETLDS




HDVQELCRVLLDNVENKMKGTC

FMQHDVQELCRVLLDNVENK




VEGTIPKLFRGKMVSYIQCKEV

MKGTCVEGTIPKLFRGKMVS




DYRSDRREDYYDIQLSIKGKKN

YIQCKEVDYRSDRREDYYDI




IFESFVDYVAVEQLDGDNKYDA

QLSIKGKKNIFESFVDYVAV




GEHGLQEAEKGVKFLTLPPVLH

EQLDGDNKYDAGEHGLQEAE




LQLMRFMYDPQTDQNIKINDRE

KGVKFLTLPPVLHLQLMREM




EFPEQLPLDEFLQKTDPKDPAN

YDPQTDQNIKINDRFEFPEQ




YILHAVLVHSGDNHGGHYVVYL

LPLDEFLQKTDPKDPANYIL




NPKGDGKWCKFDDDVVSRCTKE

HAVLVHSGDNHGGHYVVYLN




EAIEHNYGGHDDDLSVRHCTNA

PKGDGKWCKFDDDVVSRCTK




YMLVYIRESKLSEVLQAVTDHD

EEAIEHNYGGHDDDLSVRHC




IPQQLVERLQEEKRIEAQKR

TNAYMLVYIRE





6DGF_1
32
AQGLAGLRNLGNTCEMNSILQC
144
AQGLAGLRNLGNTCEMNSIL




LSNTRELRDYCLQRLYMRDLHH

QCLSNTRELRDYCLQRLYMR




GSNAHTALVEEFAKLIQTIWTS

DLHHGSNAHTALVEEFAKLI




SPNDVVSPSEFKTQIQRYAPRE

QTIWTSSPNDVVSPSEFKTQ




VGYNQQDAQEFLRELLDGLHNE

IQRYAPRFVGYNQQDAQEFL




VNRVTLRPKSNPENLDHLPDDE

RFLLDGLHNEVNRVTLRPKS




KGRQMWRKYLEREDSRIGDLFV

NPENLDHLPDDEKGRQMWRK




GQLKSSLTCTDCGYCSTVEDPF

YLEREDSRIGDLFVGQLKSS




WDLSLPIAKRGYPEVTLMDCMR

LTCTDCGYCSTVEDPEWDLS




LFTKEDVLDGDEKPTCCRCRGR

LPIAKRGYPEVTLMDCMRLF




KRCIKKFSIQRFPKILVLHLKR

TKEDVLDGDEKPTCCRCRGR




FSESRIRTSKLTTFVNFPLRDL

KRCIKKFSIQRFPKILVLHL




DLREFASENTNHAVYNLYAVSN

KRFSESRIRTSKLTTFVNFP




HSGTTMGGHYTAYCRSPGTGEW

LRDLDLREFASENTNHAVYN




HTFNDSSVTPMSSSQVRTSDAY

LYAVSNHSGTTMGGHYTAYC




LLFYELASPPSRM

RSPGTGEWHTENDSSVTPMS






SSQVRTSDAYLLFYELAS





2VHF_1
33
GLEIMIGKKKGIQGHYNSCYLD
145
MIGKKKGIQGHYNSCYLDST




STLFCLFAFSSVLDTVLLRPKE

LFCLFAFSSVLDTVLLRPKE




KNDVEYYSETQELLRTEIVNPL

KNDVEYYSETQELLRTEIVN




RIYGYVCATKIMKLRKILEKVE

PLRIYGYVCATKIMKLRKIL




AASGFTSEEKDPEEFLNILFHH

EKVEAASGFTSEEKDPEEFL




ILRVEPLLKIRSAGQKVQDCYF

NILFHHILRVEPLLKIRSAG




YQIFMEKNEKVGVPTIQQLLEW

QKVQDCYFYQIFMEKNEKVG




SFINSNLKFAEAPSCLIIQMPR

VPTIQQLLEWSFINSNLKFA




FGKDFKLFKKIFPSLELNITDL

EAPSCLIIQMPRFGKDFKLE




LEDTPRQCRICGGLAMYECREC

KKIFPSLELNITDLLEDTPR




YDDPDISAGKIKQFCKTCNTQV

QCRICGGLAMYECRECYDDP




HLHPKRLNHKYNPVSLPKDLPD

DISAGKIKQFCKTCNTQVHL




WDWRHGCIPCQNMELFAVLCIE

HPKRLNHKYNPVSLPKDLPD




TSHYVAFVKYGKDDSAWLFFDS

WDWRHGCIPCQNMELFAVLC




MADRDGGQNGENIPQVTPCPEV

IETSHYVAFVKYGKDDSAWL




GEYLKMSLEDLHSLDSRRIQGC

FFDSMADRDGGQNGFNIPQV




ARRLLCDAYMCMYQSPTMSLYK

TPCPEVGEYLKMSLEDLHSL






DSRRIQGCARRLLCDAYMCM






YQS





U17LI_HUMAN
34
MEDDSLYLGGEWQFNHESKLTS
146
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 18

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQTNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQTNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRAKQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP22_HUMAN
35
MVSRPEPEGEAMDAELAVAPPG
147
LGNTCFMNCIVQALTHTPLL


Ubiquitin

CSHLGSFKVDNWKQNLRAIYQC

RDFFLSDRHRCEMQSPSSCL


carboxyl-

FVWSGTAEARKRKAKSCICHVC

VCEMSSLFQEFYSGHRSPHI


terminal

GVHLNRLHSCLYCVFFGCFTKK

PYKLLHLVWTHARHLAGYEQ


hydrolase 22

HIHEHAKAKRHNLAIDLMYGGI

QDAHEFLIAALDVLHRHCKG




YCFLCQDYIYDKDMEIIAKEEQ

DDNGKKANNPNHCNCIIDQI




RKAWKMQGVGEKESTWEPTKRE

FTGGLQSDVTCQVCHGVSTT




LELLKHNPKRRKITSNCTIGLR

IDPFWDISLDLPGSSTPFWP




GLINLGNTCEMNCIVQALTHTP

LSPGSEGNVVNGESHVSGTT




LLRDFFLSDRHRCEMQSPSSCL

TLTDCLRRFTRPEHLGSSAK




VCEMSSLFQEFYSGHRSPHIPY

IKCSGCHSYQESTKQLTMKK




KLLHLVWTHARHLAGYEQQDAH

LPIVACFHLKRFEHSAKLRR




EFLIAALDVLHRHCKGDDNGKK

KITTYVSFPLELDMTPFMAS




ANNPNHCNCIIDQIFTGGLQSD

SKESRMNGQYQQPTDSLNND




VTCQVCHGVSTTIDPFWDISLD

NKYSLFAVVNHQGTLESGHY




LPGSSTPFWPLSPGSEGNVVNG

TSFIRQHKDQWFKCDDAIIT




ESHVSGTTTLTDCLRRETRPEH

KASIKDVLDSEGYLLFYHKQ




LGSSAKIKCSGCHSYQESTKQL

F




TMKKLPIVACFHLKRFEHSAKL






RRKITTYVSFPLELDMTPEMAS






SKESRMNGQYQQPTDSLNNDNK






YSLFAVVNHQGTLESGHYTSFI






RQHKDQWFKCDDAIITKASIKD






VLDSEGYLLFYHKQFLEYE







UBP18_HUMAN
36
MSKAFGLLRQICQSILAESSQS
148
KGLVPGLVNLGNTCEMNSLL


Ubl

PADLEEKKEEDSNMKREQPRER

QGLSACPAFIRWLEEFTSQY


carboxyl-

PRAWDYPHGLVGLHNIGQTCCL

SRDQKEPPSHQYLSLTLLHL


terminal

NSLIQVFVMNVDFTRILKRITV

LKALSCQEVTDDEVLDASCL


hydrolase 18

PRGADEQRRSVPFQMLLLLEKM

LDVLRMYRWQISSFEEQDAH




QDSRQKAVRPLELAYCLQKCNV

ELFHVITSSLEDERDRQPRV




PLFVQHDAAQLYLKLWNLIKDQ

THLFDVHSLEQQSEITPKQI




ITDVHLVERLQALYTIRVKDSL

TCRTRGSPHPTSNHWKSQHP




ICVDCAMESSRNSSMLTLPLSL

FHGRLTSNMVCKHCEHQSPV




FDVDSKPLKTLEDALHCFFQPR

RFDTFDSLSLSIPAATWGHP




ELSSKSKCFCENCGKKTRGKQV

LTLDHCLHHFISSESVRDVV




LKLTHLPQTLTIHLMRESIRNS

CDNCTKIEAKGTLNGEKVEH




QTRKICHSLYFPQSLDESQILP

QRTTFVKQLKLGKLPQCLCI




MKRESCDAEEQSGG

HLQRLSWSSHGTPLKRHEHV




QYELFAVIAHVGMADSGHYCVY

QFNEFLMMDIYKYHLLGHKP




IRNAVDGKWFCENDSNICLVSW

SQHNPKLNKNPGPTLELQDG




EDIQCTYGNPNYHWQETAYLLV

PGAPTPVLNQPGAPKTQIFM




YMKMEC

NGACSPSLLPTLSAPMPFPL






PVVPDYSSSTYLERLMAVVV






HHGDMHSGHFVTYRRSPPSA






RNPLSTSNQWLWVSDDTVRK






ASLQEVLSSSAYLLFYERVL





UBP28_HUMAN
37
MTAELQQDDAAGAADGHGSSCQ
149
GWPVGLKNVGNTCWFSAVIQ


Ubiquitin

MLLNQLREITGIQDPSFLHEAL

SLFQLPEFRRLVLSYSLPQN


carboxyl-

KASNGDITQAVSLLTDERVKEP

VLENCRSHTEKRNIMFMQEL


terminal

SQDTVATEPSEVEGSAANKEVL

QYLFALMMGSNRKFVDPSAA


hydrolase 28

AKVIDLTHDNKDDLQAAIALSL

LDLLKGAFRSSEEQQQDVSE




LESPKIQADGRDLNRMHEATSA

FTHKLLDWLEDAFQLAVNVN




ETKRSKRKRCEVWGENPNPNDW

SPRNKSENPMVQLFYGTELT




RRVDGWPVGLKNVGNTCWFSAV

EGVREGKPFCNNETFGQYPL




IQSLFQLPEFRRLVLSYSLPQN

QVNGYRNLDECLEGAMVEGD




VLENCRSHTEKRNIMFMQELQY

VELLPSDHSVKYGQERWFTK




LFALMMGSNRKFVDPSAALDLL

LPPVLTFELSRFEFNQSLGQ




KGAFRSSEEQQQDVSEFTHKLL

PEKIHNKLEFPQIIYMDRYM




DWLEDAFQLAVNVNSPRNKSEN

YRSKELIRNKRECIRKLKEE




PMVQLFYGTELTEG

IKILQQKLERYVKYGSGPAR




VREGKPFCNNETFGQYPLQVNG

FPLPDMLKYVIEFASTKPAS




YRNLDECLEGAMVEGDVELLPS

ESCPPESDTHMTLPLSSVHC




DHSVKYGQERWFTKLPPVLTFE

SVSDQTSKESTSTESSSQDV




LSRFEFNQSLGQPEKIHNKLEF

ESTESSPEDSLPKSKPLTSS




PQIIYMDRYMYRSKELIRNKRE

RSSMEMPSQPAPRTVTDEEI




CIRKLKEEIKILQQKLERYVKY

NFVKTCLQRWRSEIEQDIQD




GSGPARFPLPDMLKYVIEFAST

LKTCIASTTQTIEQMYCDPL




KPASESCPPESDTHMTLPLSSV

LRQVPYRLHAVLVHEGQANA




HCSVSDQTSKESTSTESSSQDV

GHYWAYIYNQPRQSWLKYND




ESTESSPEDSLPKSKPLTSSRS

ISVTESSWEEVERDSYGGLR




SMEMPSQPAPRTVTDEEINFVK

NVSAYCLMYINDKLPY




TCLQRWRSEIEQDIQDLKTCIA






STTQTIEQMYCDPLLRQVPYRL






HAVLVHEGQANAGHYWAYIYNQ






PRQSWLKYNDISVTESSWEEVE






RDSYGGLRNVSAYCLMYINDKL






PYFNAEAAPTESDQMSEVEALS






VELKHYIQEDNWRFEQEVEEWE






EEQSCKIPQMESSINSSSQDYS






TSQEPSVASSHGVRCLSSEHAV






IVKEQTAQAIANTARAYEKSGV






EAALSEVMLSPAMQGVILAIAK






ARQTFDRDGSEAGLIKAFHEEY






SRLYQLAKETPTSHSDPRLQHV






LVYFFQNEAPKRVVERTLLEQF






ADKNLSYDERSISIMKVAQAKL






KEIGPDDMNMEEYKKWHEDYSL






FRKVSVYLLTGLELYQKGKYQE






ALSYLVYAYQSNAALLMKGPRR






GVKESVIALYRRKCLLELNAKA






ASLFETNDDHSVTEGINVMNEL






IIPCIHLIINNDISKDDLDAIE






VMRNHWCSYLGQDIAENLQLCL






GEFLPRLLDPSAEIIVLKEPPT






IRPNSPYDLCSRFAAVMESIQG






VSTVTVK







U17L2_HUMAN
38
MEDDSLYLGGEWQFNHESKLTS
150
AVGAGLQNMGNTCYENASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

SEARVDLCDDLAPVARQLAPRK

CQRPKCCMLCTMQAHITWAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


hydrolase 17

CYENASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC




REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVTGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHDGHYF




TGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAKVTA




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHDGHYFSYVKAQEG






QWYKMDDAKVTACSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDERLVERATQES






TLDHWKFPQEQNKTKPEFNVRK






VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTRTDQE






SVNTGTLASLQGRTRRSKGKNK






HSKRALLVCQ







UBP31_HUMAN
39
MSKVTAPGSGPPAAASGKEKRS
151
PVPGVAGLRNHGNTCFMNAT


Ubiquitin

FSKRLERSGRAGGGGAGGPGAS

LQCLSNTELFAEYLALGQYR


carboxyl-

GPAAPSSPSSPSSARSVGSEMS

AGRPEPSPDPEQPAGRGAQG


terminal

RVLKTLSTLSHLSSEGAAPDRG

QGEVTEQLAHLVRALWTLEY


hydrolase 31

GLRSCFPPGPAAAPTPPPCPPP

TPQHSRDFKTIVSKNALQYR




PASPAPPACAAEPVPGVAGLRN

GNSQHDAQEFLLWLLDRVHE




HGNTCFMNATLQCLSNTELFAE

DLNHSVKQSGQPPLKPPSET




YLALGQYRAGRPEPSPDPEQPA

DMMPEGPSFPVCSTFVQELF




GRGAQGQGEVTEQLAHLVRALW

QAQYRSSLTCPHCQKQSNTF




TLEYTPQHSRDEKTIVSKNALQ

DPFLCISLPIPLPHTRPLYV




YRGNSQHDAQEFLLWLLDRVHE

TVVYQGKCSHCMRIGVAVPL




DLNHSVKQSGQPPLKPPSETDM

SGTVARLREAVSMETKIPTD




MPEGPSFPVCSTFVQELFQAQY

QIVLTEMYYDGFHRSFCDTD




RSSLTCPHCQKQSN

DLETVHESDCIFAFETPEIF




TFDPFLCISLPIPLPHTRPLYV

RPEGILSQRGIHLNNNLNHL




TVVYQGKCSHCMRIGVAVPLSG

KFGLDYHRLSSPTQTAAKQG




TVARLREAVSMETKIPTDQIVL

KMDSPTSRAGSDKIVLLVCN




TEMYYDGFHRSFCDTDDLETVH

RACTGQQGKRFGLPFVLHLE




ESDCIFAFETPEIFRPEGILSQ

KTIAWDLLQKEILEKMKYFL




RGIHLNNNLNHLKFGLDYHRLS

RPTVCIQVCPFSLRVVSVVG




SPTQTAAKQGKMDSPTSRAGSD

ITYLLPQEEQPLCHPIVE




KIVLLVCNRACTGQQGKRFGLP

RALKSCGPGGTAHVKLVVEW




FVLHLEKTIAWDLLQKEILEKM

DKETRDELFVNTEDEYIPDA




KYFLRPTVCIQVCPFSLRVVSV

ESVRLQRERHHQPQTCTLSQ




VGITYLLPQEEQPLCHPIVERA

CFQLYTKEERLAPDDAWRCP




LKSCGPGGTAHVKLVVEWDKET

HCKQLQQGSITLSLWTLPDV




RDELFVNTEDEYIPDAESVRLQ

LIIHLKRFRQEGDRRMKLQN




RERHHQPQTCTLSQ

MVKFPLTGLDMTPHVVKRSQ




CFQLYTKEERLAPDDAWRCPHC

SSWSLPSHWSPWRRPYGLGR




KQLQQGSITLSLWTLPDVLIIH

DPEDYIYDLYAVCNHHGTMQ




LKRFRQEGDRRMKLQNMVKFPL

GGHYTAYCKNSVDGLWYCFD




TGLDMTPHVVKRSQSSWSLPSH

DSDVQQLSEDEVCTQTAYIL




WSPWRRPYGLGRDPEDYIYDLY

FYQRRT




AVCNHHGTMQGGHYTAYCKNSV






DGLWYCFDDSDVQQLSEDEVCT






QTAYILFYQRRTAIPSWSANSS






VAGSTSSSLCEHWVSRLPGSKP






ASVTSAASSRRTSLASLSESVE






MTGERSEDDGGFSTRPFVRSVQ






RQSLSSRSSVTSPLAVNENCMR






PSWSLSAKLQMRSNSPSRESGD






SPIHSSASTLEKIG






EAADDKVSISCFGSLRNLSSSY






QEPSDSHSRREHKAVGRAPLAV






MEGVFKDESDTRRLNSSVVDTQ






SKHSAQGDRLPPLSGPFDNNNQ






IAYVDQSDSVDSSPVKEVKAPS






HPGSLAKKPESTTKRSPSSKGT






SEPEKSLRKGRPALASQESSLS






STSPSSPLPVKVSLKPSRSRSK






ADSSSRGSGRHSSPAPAQPKKE






SSPKSQDSVSSPSPQKQKSASA






LTYTASSTSAKKASGPATRSPF






PPGKSRTSDHSLSREGSRQSLG






SDRASATSTSKPNSPRVSQARA






GEGRGAGKHVRSSS






MASLRSPSTSIKSGLKRDSKSE






DKGLSFFKSALRQKETRRSTDL






GKTALLSKKAGGSSVKSVCKNT






GDDEAERGHQPPASQQPNANTT






GKEQLVTKDPASAKHSLLSARK






SKSSQLDSGVPSSPGGRQSAEK






SSKKLSSSMQTSARPSQKPQ







U17LJ_HUMAN
40
MEEDSLYLGGEWQFNHESKLTS
152
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 19

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQTNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQTNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG

EWERHSESVSRGREPRALGA




QWYKMDDAEVTASSITSVLSQQ

EDTDRRATQGELKRDHPCLQ




AYVLFYIQKSEWERHSESVSRG

APEL




REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17LF_HUMAN
41
MEDDSLYLGGEWQFNHESKLTS
153
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 15

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIDKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMKLYMSQTNSGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIDKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMKLYMSQTNSGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQWSQWKYRPTRRG






AHTHAHTQTHT







UBP47_HUMAN
42
MVPGEENQLVPKEDVEWRCRQN
154
ETGYVGLVNQAMTCYLNSLL


Ubiquitin

IFDEMKKKFLQIENAAEEPRVL

QTLEMTPEFRNALYKWEFEE


carboxyl-

CIIQDTTNSKTVNERITLNLPA

SEEDPVTSIPYQLQRLFVLL


terminal

STPVRKLFEDVANKVGYINGTF

QTSKKRAIETTDVTRSFGWD


hydrolase 47

DLVWGNGINTADMAPLDHTSDK

SSEAWQQHDVQELCRVMEDA




SLLDANFEPGKKNFLHLTDKDG

LEQKWKQTEQADLINELYQG




EQPQILLEDSSAGEDSVHDREI

KLKDYVRCLECGYEGWRIDT




GPLPREGSGGSTSDYVSQSYSY

YLDIPLVIRPYGSSQAFASV




SSILNKSETGYVGLVNQAMTCY

EEALHAFIQPEILDGPNQYF




LNSLLQTLEMTPEFRNALYKWE

CERCKKKCDARKGLRFLHFP




FEESEEDPVTSIPYQLQRLEVL

YLLTLQLKRFDEDYTTMHRI




LQTSKKRAIETTDVTRSFGWDS

KLNDRMTFPEELDMSTFIDV




SEAWQQHDVQELCRVMEDALEQ

EDEKSPQTESCTDSGAENEG




KWKQTEQADLINEL

SCHSDQMSNDESNDDGVDEG




YQGKLKDYVRCLECGYEGWRID

ICLETNSGTEKISKSGLEKN




TYLDIPLVIRPYGSSQAFASVE

SLIYELFSVMVHSGSAAGGH




EALHAFIQPEILDGPNQYFCER

YYACIKSFSDEQWYSENDQH




CKKKCDARKGLRFLHFPYLLTL

VSRITQEDIKKTHGGSSGSR




QLKRFDEDYTTMHRIKLNDRMT

GYYSSAFASSTNAYMLIYRL




FPEELDMSTFIDVEDEKSPQTE

KD




SCTDSGAENEGSCHSDQMSNDE






SNDDGVDEGICLETNSGTEKIS






KSGLEKNSLIYELFSVMVHSGS






AAGGHYYACIKSFSDEQWYSEN






DQHVSRITQEDIKKTHGGSSGS






RGYYSSAFASSTNAYMLIYRLK






DPARNAKFLEVDEYPEHIKNLV






QKERELEEQEKRQR






EIERNTCKIKLFCLHPTKQVMM






ENKLEVHKDKTLKEAVEMAYKM






MDLEEVIPLDCCRLVKYDEFHD






YLERSYEGEEDTPMGLLLGGVK






STYMEDLLLETRKPDQVFQSYK






PGEVMVKVHVVDLKAESVAAPI






TVRAYLNQTVTEFKQLISKAIH






LPAETMRIVLERCYNDLRLLSV






SSKTLKAEGFFRSNKVFVESSE






TLDYQMAFADSHLWKLLDRHAN






TIRLFVLLPEQSPVSYSKRTAY






QKAGGDSGNVDDDCERVKGPVG






SLKSVEAILEESTEKLKSLSLQ






QQQDGDNGDSSKST






ETSDFENIESPLNERDSSASVD






NRELEQHIQTSDPENFQSEERS






DSDVNNDRSTSSVDSDILSSSH






SSDTLCNADNAQIPLANGLDSH






SITSSRRTKANEGKKETWDTAE






EDSGTDSEYDESGKSRGEMQYM






YFKAEPYAADEGSGEGHKWLMV






HVDKRITLAAFKQHLEPFVGVL






SSHFKVERVYASNQEFESVRLN






ETLSSESDDNKITIRLGRALKK






GEYRVKVYQLLVNEQEPCKELL






DAVFAKGMTVRQSKEELIPQLR






EQCGLELSIDRERLRKKTWKNP






GTVFLDYHIYEEDI






NISSNWEVELEVLDGVEKMKSM






SQLAVLSRRWKPSEMKLDPEQE






VVLESSSVDELREKLSEISGIP






LDDIEFAKGRGTFPCDISVLDI






HQDLDWNPKVSTLNVWPLYICD






DGAVIFYRDKTEELMELTDEQR






NELMKKESSRLQKTGHRVTYSP






RKEKALKIYLDGAPNKDLTQD







UBP51_HUM
43
MAQVRETSLPSGSGVRWISGGG
155
YTVGLRGLINLGNTCEMNCI


AN Ubiquitin

GGASPEEAVEKAGKMEEAAAGA

VQALTHIPLLKDFFLSDKHK


carboxyl-

TKASSRREAEEMKLEPLQEREP

CIMTSPSLCLVCEMSSLFHA


terminal

APEENLTWSSSGGDEKVLPSIP

MYSGSRTPHIPYKLLHLIWI


hydrolase 51

LRCHSSSSPVCPRRKPRPRPQP

HAEHLAGYRQQDAHEFLIAI




RARSRSQPGLSAPPPPPARPPP

LDVLHRHSKDDSGGQEANNP




PPPPPPPPAPRPRAWRGSRRRS

NCCNCIIDQIFTGGLQSDVT




RPGSRPQTRRSCSGDLDGSGDP

CQACHSVSTTIDPCWDISLD




GGLGDWLLEVEFGQGPTGCSHV

LPGSCATFDSQNPERADSTV




ESFKVGKNWQKNLRLIYQRFVW

SRDDHIPGIPSLTDCLQWFT




SGTPETRKRKAKSCICHVCSTH

RPEHLGSSAKIKCNSCQSYQ




MNRLHSCLSCVFFGCFTEKHIH

ESTKQLTMKKLPIVACFHLK




KHAETKQHHLAVDLYHGVIYCF

RFEHVGKQRRKINTFISFPL




MCKDYVYDKDIEQI

ELDMTPFLASTKESRMKEGQ




AKETKEKILRLLTSTSTDVSHQ

PPTDCVPNENKYSLFAVINH




QFMTSGFEDKQSTCETKEQEPK

HGTLESGHYTSFIRQQKDQW




LVKPKKKRRKKSVYTVGLRGLI

FSCDDAIITKATIEDLLYSE




NLGNTCFMNCIVQALTHIPLLK

GYLLFYHKQG




DFFLSDKHKCIMTSPSLCLVCE






MSSLFHAMYSGSRTPHIPYKLL






HLIWIHAEHLAGYRQQDAHEFL






IAILDVLHRHSKDDSGGQEANN






PNCCNCIIDQIFTGGLQSDVTC






QACHSVSTTIDPCWDISLDLPG






SCATFDSQNPERADSTVSRDDH






IPGIPSLTDCLQWFTRPEHLGS






SAKIKCNSCQSYQESTKQLTMK






KLPIVACFHLKRFE






HVGKQRRKINTFISFPLELDMT






PFLASTKESRMKEGQPPTDCVP






NENKYSLFAVINHHGTLESGHY






TSFIRQQKDQWFSCDDAIITKA






TIEDLLYSEGYLLFYHKQGLEK






D







UBP36_HUMAN
44
MPIVDKLKEALKPGRKDSADDG
156
RVGAGLHNLGNTCFLNATIQ


Ubiquitin

ELGKLLASSAKKVLLQKIEFEP

CLTYTPPLANYLLSKEHARS


carboxyl-

ASKSFSYQLEALKSKYVLLNPK

CHQGSFCMLCVMQNHIVQAF


terminal

TEGASRHKSGDDPPARRQGSEH

ANSGNAIKPVSFIRDLKKIA


hydrolase 36

TYESCGDGVPAPQKVLFPTERL

RHFREGNQEDAHEFLRYTID




SLRWERVERVGAGLHNLGNTCF

AMQKACLNGCAKLDRQTQAT




LNATIQCLTYTPPLANYLLSKE

TLVHQIFGGYLRSRVKCSVC




HARSCHQGSFCMLCVMQNHIVQ

KSVSDTYDPYLDVALEIRQA




AFANSGNAIKPVSFIRDLKKIA

ANIVRALELFVKADVLSGEN




RHFREGNQEDAHEFLRYTIDAM

AYMCAKCKKKVPASKRFTIH




QKACLNGCAKLDRQTQATTLVH

RTSNVLTLSLKRFANFSGGK




QIFGGYLRSRVKCSVCKSVSDT

ITKDVGYPEFLNIRPYMSQN




YDPYLDVALEIRQAANIVRALE

NG




LFVKADVLSGENAY

DPVMYGLYAVLVHSGYSCHA




MCAKCKKKVPASKRFTIHRTSN

GHYYCYVKASNGQWYQMNDS




VLTLSLKRFANFSGGKITKDVG

LVHSSNVKVVLNQQAYVLFY




YPEFLNIRPYMSQNNGDPVMYG

LRIP




LYAVLVHSGYSCHAGHYYCYVK






ASNGQWYQMNDSLVHSSNVKVV






LNQQAYVLFYLRIPGSKKSPEG






LISRTGSSSLPGRPSVIPDHSK






KNIGNGIISSPLTGKRQDSGTM






KKPHTTEEIGVPISRNGSTLGL






KSQNGCIPPKLPSGSPSPKLSQ






TPTHMPTILDDPGKKVKKPAPP






QHFSPRTAQGLPGTSNSNSSRS






GSQRQGSWDSRDVVLSTSPKLL






ATATANGHGLKGND






ESAGLDRRGSSSSSPEHSASSD






STKAPQTPRSGAAHLCDSQETN






CSTAGHSKTPPSGADSKTVKLK






SPVLSNTTTEPASTMSPPPAKK






LALSAKKASTLWRATGNDLRPP






PPSPSSDLTHPMKTSHPVVAST






WPVHRARAVSPAPQSSSRLQPP






FSPHPTLLSSTPKPPGTSEPRS






CSSISTALPQVNEDLVSLPHQL






PEASEPPQSPSEKRKKTEVGEP






QRLGSETRLPQHIREATAAPHG






KRKRKKKKRPEDTAASALQEGQ






TQRQPGSPMYRREGQAQLPAVR






RQEDGTQPQVNGQQ






VGCVTDGHHASSRKRRRKGAEG






LGEEGGLHQDPLRHSCSPMGDG






DPEAMEESPRKKKKKKRKQETQ






RAVEEDGHLKCPRSAKPQDAVV






PESSSCAPSANGWCPGDRMGLS






QAPPVSWNGERESDVVQELLKY






SSDKAYGRKVLTWDGKMSAVSQ






DAIEDSRQARTETVVDDWDEEF






DRGKEKKIKKFKREKRRNFNAF






QKLQTRRNEWSVTHPAKAASLS






YRR







UBP44_HUMAN
45
MLAMDTCKHVGQLQLAQDHSSL
157
TPGVTGLRNLGNTCYMNSVL


Ubiquitin

NPQKWHCVDCNTTESIWACLSC

QVLSHLLIFRQCFLKLDLNQ


carboxyl-

SHVACGRYIEEHALKHFQESSH

WLAMTASEKTRSCKHPPVTD


terminal

PVALEVNEMYVFCYLCDDYVLN

TVVYQMNECQEKDTGFVCSR


hydrolase 44

DNTTGDLKLLRRTLSAIKSQNY

QSSLSSGLSGGASKGRKMEL




HCTTRSGRFLRSMGTGDDSYFL

IQPKEPTSQYISLCHELHTL




HDGAQSLLQSEDQLYTALWHRR

FQVMWSGKWALVSPFAMLHS




RILMGKIFRTWFEQSPIGRKKQ

VWRLIPAFRGYAQQDAQEFL




EEPFQEKIVVKREVKKRRQELE

CELLDKIQRELETTGTSLPA




YQVKAELESMPPRKSLRLQGLA

LIPTSQRKLIKQVLNVVNNI




QSTIIEIVSVQVPAQTPASPAK

FHGQLLSQVTCLACDNKSNT




DKVLSTSENEISQKVSDSSVKR

IEPFWDLSLEFPERYQCSGK




RPIVTPGVTGLRNLGNTCYMNS

DIASQPCLVTEMLAKFTETE




VLQVLSHLLIFRQC

ALEGKIYVCDQCNSKRRRES




FLKLDLNQWLAMTASEKTRSCK

SKPVVLTEAQKQLMICHLPQ




HPPVTDTVVYQMNECQEKDTGF

VLRLHLKRFRWSGRNNREKI




VCSRQSSLSSGLSGGASKGRKM

GVHVGFEEILNMEPYCCRET




ELIQPKEPTSQYISLCHELHTL

LKSLRPECFIYDLSAVVMHH




FQVMWSGKWALVSPFAMLHSVW

GKGFGSGHYTAYCYNSEGGE




RLIPAFRGYAQQDAQEFLCELL

WVHCNDSKLSMCTMDEVCKA




DKIQRELETTGTSLPALIPTSQ

QAYILFYTQRV




RKLIKQVLNVVNNIFHGQLLSQ






VTCLACDNKSNTIEPFWDLSLE






FPERYQCSGKDIASQPCLVTEM






LAKFTETEALEGKIYVCDQCNS






KRRRFSSKPVVLTEAQKQLMIC






HLPQVLRLHLKRFRWSGRNNRE






KIGVHVGFEEILNM






EPYCCRETLKSLRPECFIYDLS






AVVMHHGKGFGSGHYTAYCYNS






EGGFWVHCNDSKLSMCTMDEVC






KAQAYILFYTQRVTENGHSKLL






PPELLLGSQHPNEDADTSSNEI






LS







UBP8_HUMAN
46
MPAVASVPKELYLSSSLKDLNK
158
PALTGLRNLGNTCYMNSILQ


Ubiquitin

KTEVKPEKISTKSYVHSALKIF

CLCNAPHLADYENRNCYQDD


carboxyl-

KTAEECRLDRDEERAYVLYMKY

INRSNLLGHKGEVAEEFGII


terminal

VTVYNLIKKRPDFKQQQDYFHS

MKALWTGQYRYISPKDFKIT


hydrolase 8

ILGPGNIKKAVEEAERLSESLK

IGKINDQFAGYSQQDSQELL




LRYEEAEVRKKLEEKDRQEEAQ

LFLMDGLHEDLNKADNRKRY




RLQQKRQETGREDGGTLAKGSL

KEENNDHLDDFKAAEHAWQK




ENVLDSKDKTQKSNGEKNEKCE

HKQLNESIIVALFQGQFKST




TKEKGAITAKELYTMMTDKNIS

VQCLTCHKKSRTFEAFMYLS




LIIMDARRMQDYQDSCILHSLS

LPLASTSKCTLQDCLRLESK




VPEEAISPGVTASWIEAHLPDD

EEKLTDNNRFYCSHCRARRD




SKDTWKKRGNVEYVVLLDWESS

SLKKIEIWKLPPVLLVHLKR




AKDLQIGTTLRSLKDALFKWES

FSYDGRWKQKLQTSVDEPLE




KTVLRNEPLVLEGG

NLDLSQYVIGPKNNLKKYNL




YENWLLCYPQYTTNAKVTPPPR

FSVSNHYGGLDGGHYTAYCK




RQNEEVSISLDFTYPSLEESIP

NAARQRWFKEDDHEVSDISV




SKPAAQTPPASIEVDENIELIS

SSVKSSAAYILFYTSLG




GQNERMGPLNISTPVEPVAASK






SDVSPIIQPVPSIKNVPQIDRT






KKPAVKLPEEHRIKSESTNHEQ






QSPQSGKVIPDRSTKPVVESPT






LMLTDEEKARIHAETALLMEKN






KQEKELRERQQEEQKEKLRKEE






QEQKAKKKQEAEENEITEKQQK






AKEEMEKKESEQAKKEDKETSA






KRGKEITGVKRQSKSEHETSDA






KKSVEDRGKRCPTPEIQKKSTG






DVPHTSVTGDSGSG






KPFKIKGQPESGILRTGTFRED






TDDTERNKAQREPLTRARSEEM






GRIVPGLPSGWAKFLDPITGTF






RYYHSPTNTVHMYPPEMAPSSA






PPSTPPTHKAKPQIPAERDREP






SKLKRSYSSPDITQAIQEEEKR






KPTVTPTVNRENKPTCYPKAEI






SRLSASQIRNLNPVFGGSGPAL






TGLRNLGNTCYMNSILQCLCNA






PHLADYFNRNCYQDDINRSNLL






GHKGEVAEEFGIIMKALWTGQY






RYISPKDFKITIGKINDQFAGY






SQQDSQELLLFLMDGLHEDLNK






ADNRKRYKEENNDH






LDDFKAAEHAWQKHKQLNESII






VALFQGQFKSTVQCLTCHKKSR






TFEAFMYLSLPLASTSKCTLQD






CLRLFSKEEKLTDNNRFYCSHC






RARRDSLKKIEIWKLPPVLLVH






LKRFSYDGRWKQKLQTSVDFPL






ENLDLSQYVIGPKNNLKKYNLF






SVSNHYGGLDGGHYTAYCKNAA






RQRWFKEDDHEVSDISVSSVKS






SAAYILFYTSLGPRVTDVAT







UBP37_HUMAN
47
MSPLKIHGPIRIRSMQTGITKW
159
QQLQGFSNLGNTCYMNAILQ


Ubiquitin

KEGSFEIVEKENKVSLVVHYNT

SLFSLQSFANDLLKQGIPWK


carboxyl-

GGIPRIFQLSHNIKNVVLRPSG

KIPLNALIRRFAHLLVKKDI


terminal

AKQSRLMLTLQDNSFLSIDKVP

CNSETKKDLLKKVKNAISAT


hydrolase 37

SKDAEEMRLELDAVHQNRLPAA

AERESGYMQNDAHEFLSQCL




MKPSQGSGSFGAILGSRTSQKE

DQLKEDMEKLNKTWKTEPVS




TSRQLSYSDNQASAKRGSLETK

GEENSPDISATRAYTCPVIT




DDIPFRKVLGNPGRGSIKTVAG

NLEFEVQHSIICKACGEIIP




SGIARTIPSLTSTSTPLRSGLL

KREQFNDLSIDLPRRKKPLP




ENRTEKRKRMISTGSELNEDYP

PRSIQDSLDLFFRAEELEYS




KENDSSSNNKAMTDPSRKYLTS

CEKCGGKCALVRHKENRLPR




SREKQLSLKQSEENRTSGLLPL

VLILHLKRYSENVALSLNNK




QSSSFYGSRAGSKEHSSGGTNL

IGQQVIIPRYLTLSSHCTEN




DRTNVSSQTPSAKR

TKP




SLGFLPQPVPLSVKKLRCNQDY

PFTLGWSAHMAISRPLKASQ




TGWNKPRVPLSSHQQQQLQGES

MVNSCITSPSTPSKKFTEKS




NLGNTCYMNAILQSLFSLQSFA

KSSLALCLDSDSEDELKRSV




NDLLKQGIPWKKIPLNALIRRF

ALSQRLCEMLGNEQQQEDLE




AHLLVKKDICNSETKKDLLKKV

KDSKLCPIEPDKSELENSGF




KNAISATAERFSGYMQNDAHEF

DRMSEEELLAAVLEISKRDA




LSQCLDQLKEDMEKLNKTWKTE

SPSLSHEDDDKPTSSPDTGF




PVSGEENSPDISATRAYTCPVI

AEDDIQEMPENPDTMETEKP




TNLEFEVQHSIICKACGEIIPK

KTITELDPASFTEITKDCDE




REQENDLSIDLPRRKKPLPPRS

NKENKTPEGSQGEVDWLQQY




IQDSLDLFFRAEELEYSCEKCG

DMEREREEQELQQALAQSLQ




GKCALVRHKENRLPRVLILHLK

EQEAWEQKEDDDLKRATELS




RYSENVALSLNNKIGQQVIIPR

LQEFNNSFVDALGSDEDSGN




YLTLSSHCTENTKP

EDVEDMEYTEAEAEELKRNA




PFTLGWSAHMAISRPLKASQMV

ETGNLPHSYRLISVVSHIGS




NSCITSPSTPSKKFTFKSKSSL

TSSSGHYISDVYDIKKQAWF




ALCLDSDSEDELKRSVALSQRL

TYNDLEVSKIQEAAVQSDRD




CEMLGNEQQQEDLEKDSKLCPI

RSGYIFFYMHK




EPDKSELENSGEDRMSEEELLA






AVLEISKRDASPSLSHEDDDKP






TSSPDTGFAEDDIQEMPENPDT






METEKPKTITELDPASFTEITK






DCDENKENKTPEGSQGEVDWLQ






QYDMEREREEQELQQALAQSLQ






EQEAWEQKEDDDLKRATELSLQ






EFNNSFVDALGSDEDSGNEDVE






DMEYTEAEAEELKRNAETGNLP






HSYRLISVVSHIGS






TSSSGHYISDVYDIKKQAWFTY






NDLEVSKIQEAAVQSDRDRSGY






IFFYMHKEIFDELLETEKNSQS






LSTEVGKTTRQAL







U17LD_HUMAN
48
MEEDSLYLGGEWQFNHESKLTS
160
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRLDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLVPEARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 13

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHPSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHPSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

ASITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTAASITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDRWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSSTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17L3_HUMAN
49
MGDDSLYLGGEWQFNHESKLTS
161
AVGAGLQNMGNTCYENASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


carboxyl-

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALASGFHRG


hydrolase 17-

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


like protein 3

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TWALHSPGHVIQPSQALASGEH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHDGHYF




AGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAEVTV




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHDGHYFSYVKAQEG






QWYKMDDAEVTVCSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRAKQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVGK






VEGTLPPNALVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTRTDQE






SMNTGTLASLQGRTRRAKGKNK






HSKRALLVCQ







UBP54_HUMAN
50
MSWKRNYFSGGRGSVQGMFAPR
162
APSKGLSNEPGQNSCFLNSA


Inactive

SSTSIAPSKGLSNEPGQNSCEL

LQVLWHLDIFRRSFRQLTTH


ubiquitin

NSALQVLWHLDIFRRSFRQLTT

KCMGDSCIFCALKGIFNQFQ


carboxyl-

HKCMGDSCIFCALKGIFNQFQC

CSSEKVLPSDTLRSALAKTE


terminal

SSEKVLPSDTLRSALAKTFQDE

QDEQRFQLGIMDDAAECFEN


hydrolase 54

QRFQLGIMDDAAECFENLLMRI

LLMRIHFHIADETKEDICTA




HFHIADETKEDICTAQHCISHQ

QHCISHQKFAMTLFEQCVCT




KFAMTLFEQCVCTSCGATSDPL

SCGATSDPLPFIQ




PFIQMVHYISTTSLCNQAICML

MVHYISTTSLCNQAICMLER




ERREKPSPSMFGELLQNASTMG

REKPSPSMFGELLQNASTMG




DLRNCPSNCGERIRIRRVLMNA

DLRNCPSNCGERIRIRRVLM




PQIITIGLVWDSDHSDLAEDVI

NAPQIITIGLVWDSDHSDLA




HSLGTCLKLGDLFFRVTDDRAK

EDVIHSLGTCLKLGDLFFRV




QSELYLVGMICYYG

TDDRAKQSELYLVGMICYYG




KHYSTFFFQTKIRKWMYEDDAH

KHYSTFFFQTKIRKWMYFDD




VKEIGPKWKDVVTKCIKGHYQP

AHVKEIGPKWKDVVTKCIKG




LLLLYADPQGTPVSTQDLPPQA

HYQPLLLLYADPQGTPVSTQ




EFQSYSRTCYDSEDSGREPSIS

DLPPQAEFQSYSRTCYDSED




SDTRTDSSTESYPYKHSHHESV

SGREPSISSDTRTDSSTESY




VSHFSSDSQGTVIYNVENDSMS

PYKHSHHESVVSHESSDSQG




QSSRDTGHLTDSECNQKHTSKK

TVIYNVEND




GSLIERKRSSGRVRRKGDEPQA






SGYHSEGETLKEKQAPRNASKP






SSSTNRLRDFKETVSNMIHNRP






SLASQTNVGSHCRGRGGDQPDK






KPPRTLPLHSRDWEIESTSSES






KSSSSSKYRPTWRPKRESLNID






SIFSKDKRKHCGYT






QLSPFSEDSAKEFIPDEPSKPP






SYDIKFGGPSPQYKRWGPARPG






SHLLEQHPRLIQRMESGYESSE






RNSSSPVSLDAALPESSNVYRD






PSAKRSAGLVPSWRHIPKSHSS






SILEVDSTASMGGWTKSQPFSG






EEISSKSELDELQEEVARRAQE






QELRRKREKELEAAKGENPHPS






RFMDLDELQNQGRSDGFERSLQ






EAESVFEESLHLEQKGDCAAAL






ALCNEAISKLRLALHGASCSTH






SRALVDKKLQISIRKARSLQDR






MQQQQSPQQPSQPSACLPTQAG






TLSQPTSEQPIPLQ






VLLSQEAQLESGMDTEFGASSE






FHSPASCHESHSSLSPESSAPQ






HSSPSRSALKLLTSVEVDNIEP






SAFHRQGLPKAPGWTEKNSHHS






WEPLDAPEGKLQGSRCDNSSCS






KLPPQEGRGIAQEQLFQEKKDP






ANPSPVMPGIATSERGDEHSLG






CSPSNSSAQPSLPLYRTCHPIM






PVASSFVLHCPDPVQKTNQCLQ






GQSLKTSLTLKVDRGSEETYRP






EFPSTKGLVRSLAEQFQRMQGV






SMRDSTGFKDRSLSGSLRKNSS






PSDSKPPFSQGQEKGHWPWAKQ






QSSLEGGDRPLSWE






ESTEHSSLALNSGLPNGETSSG






GQPRLAEPDIYQEKLSQVRDVR






SKDLGSSTDLGTSLPLDSWVNI






TRFCDSQLKHGAPRPGMKSSPH






DSHTCVTYPERNHILLHPHWNQ






DTEQETSELESLYQASLQASQA






GCSGWGQQDTAWHPLSQTGSAD






GMGRRLHSAHDPGLSKTSTAEM






EHGLHEARTVRTSQATPCRGLS






RECGEDEQYSAENLRRISRSLS






GTVVSEREEAPVSSHSFDSSNV






RKPLETGHRCSSSSSLPVIHDP






SVELLGPQLYLPQPQFLSPDVL






MPTMAGEPNRLPGT






SRSVQQFLAMCDRGETSQGAKY






TGRTLNYQSLPHRSRTDNSWAP






WSETNQHIGTRFLTTPGCNPQL






TYTATLPERSKGLQVPHTQSWS






DLFHSPSHPPIVHPVYPPSSSL






HVPLRSAWNSDPVPGSRTPGPR






RVDMPPDDDWRQSSYASHSGHR






RTVGEGFLFVLSDAPRREQIRA






RVLQHSQW







SNUT2_HUMAN
51
MSGRSKRESRGSTRGKRESESR
163
LPGIVGLNNIKANDYANAVL


U4/U6.U5

GSSGRVKRERDREREPEAASSR

QALSNVPPLRNYFLEEDNYK


tri-snRNP-

GSPVRVKREFEPASAREAPASV

NIKRPPGDIMELLVQREGEL


associated

VPFVRVKREREVDEDSEPEREV

MRKLWNPRNFKAHVSPHEML


protein 2

RAKNGRVDSEDRRSRHCPYLDT

QAVVLCSKKTFQITKQGDGV




INRSVLDEDFEKLCSISLSHIN

DFLSWFLNALHSALGGTKKK




AYACLVCGKYFQGRGLKSHAYI

KKTIVTDVFQGSMRIFTKKL




HSVQFSHHVELNLHTLKFYCLP

PHPDLPAEEKEQLLHNDEYQ




DNYEIIDSSLEDITYVLKPTFT

ETMVESTFMYLTLDLPTAPL




KQQIANLDKQAKLSRAYDGTTY

YKDEKEQLIIPQVPLENILA




LPGIVGLNNIKANDYANAVLQA

KFNGITEKEYKTYKENFLKR




LSNVPPLRNYFLEEDNYKNIKR

FQLTKLPPYLIFCIKRFTKN




PPGDIMFLLVQRFGELMRKLWN

NFFVEKNPTIVNFPITNVDL




PRNFKAHVSPHEML

REYLSEEVQAVHKNTTYDLI




QAVVLCSKKTFQITKQGDGVDE

ANIVHDGKPSEGSYRIHVLH




LSWFLNALHSALGGTKKKKKTI

HGTGKWYELQDLQVTDILPQ




VTDVFQGSMRIFTKKLPHPDLP

MITLSEAYIQIWKRRD




AEEKEQLLHNDEYQETMVESTE






MYLTLDLPTAPLYKDEKEQLII






PQVPLENILAKENGITEKEYKT






YKENFLKRFQLTKLPPYLIFCI






KRFTKNNFFVEKNPTIVNFPIT






NVDLREYLSEEVQAVHKNTTYD






LIANIVHDGKPSEGSYRIHVLH






HGTGKWYELQDLQVTDILPQMI






TLSEAYIQIWKRRDNDETNQQG






A







UBP35_HUMAN
52
MDKILEAVVTSSYPVSVKQGLV
164
SDTGKIGLINLGNTCYVNSI


Ubiquitin

RRVLEAARQPLEREQCLALLAL

LQALFMASDERHCVLRLTEN


carboxyl-

GARLYVGGAEELPRRVGCQLLH

NSQPLMTKLQWLFGFLEHSQ


terminal

VAGRHHPDVFAEFFSARRVLRL

RPAISPENELSASWTPWESP


hydrolase 35

LQGGAGPPGPRALACVQLGLQL

GTQQDCSEYLKYLLDRLHEE




LPEGPAADEVFALLRREVLRTV

EKTGTRICQKLKQSSSPSPP




CERPGPAACAQVARLLARHPRC

EEPPAPSSTSVEKMFGGKIV




VPDGPHRLLFCQQLVRCLGRER

TRICCLCCLNVSSREEAFTD




CPAEGEEGAVEFLEQAQQVSGL

LSLAFPPPERCRRRRLGSVM




LAQLWRAQPAAILPCLKELFAV

RPTEDITARELPPPTSAQGP




ISCAEEEPPSSALASVVQHLPL

GRVGPRRQRKHCITEDTPPT




ELMDGVVRNLSNDDSVTDSQML

SLYIEGLDSKEAGGQSSQEE




TAISRMIDWVSWPLGKNIDKWI

RIEREEEGKEERTEKEEVGE




IALLKGLAAVKKES

EEESTRGEGEREKEEEVEEE




ILIEVSLTKIEKVESKLLYPIV

EEKVE




RGAALSVLKYMLLTFQHSHEAF

KETEKEAEQEKEEDSLGAGT




HLLLPHIPPMVASLVKEDSNSG

HPDAAIPSGERTCGSEGSRS




TSCLEQLAELVHCMVFRFPGEP

VLDLVNYFLSPEKLTAENRY




DLYEPVMEAIKDLHVPNEDRIK

YCESCASLQDAEKVVELSQG




QLLGQDAWTSQKSELAGFYPRL

PCYLILTLLRESFDLRTMRR




MAKSDTGKIGLINLGNTCYVNS

RKILDDVSIPLLLRLPLAGG




ILQALFMASDERHCVLRLTENN

RGQAYDLCSVVVHSGVSSES




SQPLMTKLQWLFGFLEHSQRPA

GHYYCYAREGAARPAASLGT




ISPENFLSASWTPWFSPGTQQD

ADRPEPENQWYLENDTRVSF




CSEYLKYLLDRLHEEEKTGTRI

SSFESVSNVTSFFPKDTAYV




CQKLKQSSSPSPPEEPPAPSST

LFYRQRP




SVEKMEGGKIVTRICCLCCLNV






SSREEAFTDLSLAF






PPPERCRRRRLGSVMRPTEDIT






ARELPPPTSAQGPGRVGPRRQR






KHCITEDTPPTSLYIEGLDSKE






AGGQSSQEERIEREEEGKEERT






EKEEVGEEEESTRGEGEREKEE






EVEEEEEKVEKETEKEAEQEKE






EDSLGAGTHPDAAIPSGERTCG






SEGSRSVLDLVNYFLSPEKLTA






ENRYYCESCASLQDAEKVVELS






QGPCYLILTLLRFSEDLRTMRR






RKILDDVSIPLLLRLPLAGGRG






QAYDLCSVVVHSGVSSESGHYY






CYAREGAARPAASLGTADRPEP






ENQWYLENDTRVSE






SSFESVSNVTSFFPKDTAYVLE






YRQRPREGPEAELGSSRVRTEP






TLHKDLMEAISKDNILYLQEQE






KEARSRAAYISALPTSPHWGRG






FDEDKDEDEGSPGGCNPAGGNG






GDFHRLVE







UBP15_HUMAN
53
MAEGGAADLDTQRSDIATLLKT
165
EQPGLCGLSNLGNTCFMNSA


Ubiquitin

SLRKGDTWYLVDSRWFKQWKKY

IQCLSNTPPLTEYFLNDKYQ


carboxyl-

VGFDSWDKYQMGDQNVYPGPID

EELNFDNPLGMRGEIAKSYA


terminal

NSGLLKDGDAQSLKEHLIDELD

ELIKQMWSGKFSYVTPRAFK


hydrolase 15

YILLPTEGWNKLVSWYTLMEGQ

TQVGRFAPQFSGYQQQDCQE




EPIARKVVEQGMFVKHCKVEVY

LLAFLLDGLHEDLNRIRKKP




LTELKLCENGNMNNVVTRRESK

YIQLKDADGRPDKVVAEEAW




ADTIDTIEKEIRKIFSIPDEKE

ENHLKRNDSIIVDIFHGLFK




TRLWNKYMSNTFEPLNKPDSTI

STLVCPECAKISVTEDPFCY




QDAGLYQGQVLVIEQKNEDGTW

LTLPLPMKKERTLEVYLVRM




PRGPSTPKSPGASNESTLPKIS

DPLTKPMQYKVVVPKIGNIL




PSSLSNNYNNMNNRNVKNSNYC

DLCTALSALSGIPADKMIVT




LPSYTAYKNYDYSEPGRNNEQP

DIYNHRFHRIFAMDENLSSI




GLCGLSNLGNTCEM

MERDDIYVFEININRTEDTE




NSAIQCLSNTPPLTEYFLNDKY

HVIIPVCLREKFRHSSYTHH




QEELNFDNPLGMRGEIAKSYAE

TGSSLFGQPFLMAVPRNNTE




LIKQMWSGKFSYVTPRAFKTQV

DKLYNLLLLRMCRYVKISTE




GRFAPQFSGYQQQDCQELLAFL

TEETEGSLHCCKDQNINGNG




LDGLHEDLNRIRKKPYIQLKDA

PNGIHEEGSPSEMETDEPDD




DGRPDKVVAEEAWENHLKRNDS

ESSQDQELPSENENSQSEDS




IIVDIFHGLFKSTLVCPECAKI

VGGDNDSENGLCTEDTCKGQ




SVTFDPFCYLTLPLPMKKERTL

LTGHKKRLFTFQFNNLGNTD




EVYLVRMDPLTKPMQYKVVVPK

INYIKDDTRHIREDDRQLRL




IGNILDLCTALSALSGIPADKM

DERSFLALDWDPDLKKRYED




IVTDIYNHRFHRIFAMDENLSS

ENAAEDFEKHESVEYKPPKK




IMERDDIYVFEININRTEDTEH

PFVKLKDCIELFTTKEKLGA




VIIPVCLREKFRHSSYTHHTGS

EDPWYCPNCKEHQQATKKLD




SLFGQPFLMAVPRN

LWSLPPVLVVHLKRESYSRY




NTEDKLYNLLLLRMCRYVKIST

MRDKLDTLVDFPINDLDMSE




ETEETEGSLHCCKDQNINGNGP

FLINPNAGPCRYNLIAVSNH




NGIHEEGSPSEMETDEPDDESS

YGGMGGGHYTAFAKNKDDGK




QDQELPSENENSQSEDSVGGDN

WYYFDDSSVSTASEDQIVSK




DSENGLCTEDTCKGQLTGHKKR

AAYVLFYQRQD




LFTFQENNLGNTDINYIKDDTR






HIREDDRQLRLDERSFLALDWD






PDLKKRYFDENAAEDFEKHESV






EYKPPKKPFVKLKDCIELFTTK






EKLGAEDPWYCPNCKEHQQATK






KLDLWSLPPVLVVHLKRESYSR






YMRDKLDTLVDFPINDLDMSEF






LINPNAGPCRYNLIAVSNHYGG






MGGGHYTAFAKNKD






DGKWYYFDDSSVSTASEDQIVS






KAAYVLFYQRQDTESGTGFFPL






DRETKGASAATGIPLESDEDSN






DNDNDIENENCMHTN







UBP29_HUMAN
54
MISLKVCGFIQIWSQKTGMTKL
166
QLQQGFPNLGNTCYMNAVLQ


Ubiquitin

KEALIETVQRQKEIKLVVTEKS

SLFAIPSFADDLLTQGVPWE


carboxyl-

GKFIRIFQLSNNIRSVVLRHCK

YIPFEALIMTLTQLLALKDE


terminal

KRQSHLRLTLKNNVELFIDKLS

CSTKIKRELLGNVKKVISAV


hydrolase 29

YRDAKQLNMELDIIHQNKSQQP

AEIFSGNMQNDAHEFLGQCL




MKSDDDWSVFESRNMLKEIDKT

DQLKEDMEKLNATLNTGKEC




SFYSICNKPSYQKMPLFMSKSP

GDENSSPQMHVGSAATKVEV




THVKKGILENQGGKGQNTLSSD

CPVVANFEFELQLSLICKAC




VQTNEDILKEDNPVPNKKYKTD

GHAVLKVEPNNYLSINLHQE




SLKYIQSNRKNPSSLEDLEKDR

TKPLPLSIQNSLDLFFKEEE




DLKLGPSENTNCNGNPNLDETV

LEYNCQMCKQKSCVARHTES




LATQTLNAKNGLTSPLEPEHSQ

RLSRVLIIHLKRYSENNAWL




GDPRCNKAQVPLDSHSQQLQQG

LVKNNEQVYIPKSLSLSSYC




FPNLGNTCYMNAVL

NESTKPPLPLSSSAPVGKCE




QSLFAIPSFADDLLTQGVPWEY

VLEVSQEMISEINSPLTPSM




IPFEALIMTLTQLLALKDFCST

KLTSESSDSLVLPVEPDKNA




KIKRELLGNVKKVISAVAEIFS

DLQRFQRDCGDASQEQHQRD




GNMQNDAHEFLGQCLDQLKEDM

LENGSALESELVHERDRAIG




EKLNATLNTGKECGDENSSPQM

EKELPVADSLMDQGDISLPV




HVGSAATKVFVCPVVANFEFEL

MYEDGGKLISSPDTRLVEVH




QLSLICKACGHAVLKVEPNNYL

LQEVPQHPELQKYEKTNTFV




SINLHQETKPLPLSIQNSLDLE

EFNFDSVTESTNGFYDCKEN




FKEEELEYNCQMCKQKSCVARH

RIPEGSQGMAEQLQQCIEES




TFSRLSRVLIIHLKRYSENNAW

IIDEFLQQAPPPGVRKLDAQ




LLVKNNEQVYIPKSLSLSSYCN

EHTEETLNQSTELRLQKADL




ESTKPPLPLSSSAPVGKCEVLE

NHLGALGSDNPGNKNILDAE




VSQEMISEINSPLTPSMKLTSE

NTRGEAKELTRNVKMGDPLQ




SSDSLVLPVEPDKN

AYRLISVVSHIGSSPNSGHY




ADLQRFQRDCGDASQEQHQRDL

ISDVYDFQKQAWFTYNDLCV




ENGSALESELVHERDRAIGEKE

SEISETKMQEARLHSGYIFF




LPVADSLMDQGDISLPVMYEDG

YMHN




GKLISSPDTRLVEVHLQEVPQH






PELQKYEKTNTFVEFNEDSVTE






STNGFYDCKENRIPEGSQGMAE






QLQQCIEESIIDEFLQQAPPPG






VRKLDAQEHTEETLNQSTELRL






QKADLNHLGALGSDNPGNKNIL






DAENTRGEAKELTRNVKMGDPL






QAYRLISVVSHIGSSPNSGHYI






SDVYDFQKQAWFTYNDLCVSEI






SETKMQEARLHSGYIFFYMHNG






IFEELLRKAENSRLPSTQAGVI






PQGEYEGDSLYRPA







UBP6_HUMAN
55
MDMVENADSLQAQERKDILMKY
167
KGATGLSNLGNTCEMNSSIQ


Ubiquitin

DKGHRAGLPEDKGPEPVGINSS

CVSNTQPLTQYFISGRHLYE


carboxyl-

IDRFGILHETELPPVTAREAKK

LNRTNPIGMKGHMAKCYGDL


terminal

IRREMTRTSKWMEMLGEWETYK

VQELWSGTQKSVAPLKLRRT


hydrolase 6

HSSKLIDRVYKGIPMNIRGPVW

IAKYAPKFDGFQQQDSQELL




SVLLNIQEIKLKNPGRYQIMKE

AFLLDGLHEDLNRVHEKPYV




RGKRSSEHIHHIDLDVRTTLRN

ELKDSDGRPDWE




HVFFRDRYGAKQRELFYILLAY

VAAEAWDNHLRRNRSIIVDL




SEYNPEVGYCRDLSHITALFLL

FHGQLRSQVKCKTCGHISVR




YLPEEDAFWALVQLLASERHSL

FDPNFLSLPLPMDSYMDLEI




PGFHSPNGGTVQGLQDQQEHVV

TVIKLDGTTPVRYGLRLNMD




PKSQPKTMWHQDKEGLCGQCAS

EKYTGLKKQLRDLCGLNSEQ




LGCLLRNLIDGISLGLTLRLWD

ILLAEVHDSNIKNFPQDNQK




VYLVEGEQVLMPIT

VQLSVSGELCAFEIPVPSSP




SIALKVQQKRLMKTSRCGLWAR

ISASSPTQIDESSSPSTNGM




LRNQFFDTWAMNDDTVLKHLRA

FTLTTNGDLPKPIFIPNGMP




STKKLTRKQGDLPPPAKREQGS

NTVVPCGTEKNFTNGMVNGH




LAPRPVPASRGGKTLCKGYRQA

MPSLPDSPFTGYIIAVHRKM




PPGPPAQFQRPICSASPPWASR

MRTELYFLSPQENRPSLFGM




FSTPCPGGAVREDTYPVGTQGV

PLIVPCTVHTRKKDLYDAVW




PSLALAQGGPQGSWRFLEWKSM

IQVSWLARPLPPQEASIHAQ




PRLPTDLDIGGPWFPHYDFEWS

DRDNCMGYQYPFTLRVVQKD




CWVRAISQEDQLATCWQAEHCG

GNSCAWCPQYRFCRGCKIDC




EVHNKDMSWPEEMSFTANSSKI

GEDRAFIGNAYIAVDWHPTA




DRQKVPTEKGATGLSNLGNTCF

LHLRYQTSQERVVDKHESVE




MNSSIQCVSNTQPLTQYFISGR

QSRRAQAEPINLDSCLRAFT




HLYELNRTNPIGMKGHMAKCYG

SEEELGESEMYYCSKCKTHC




DLVQELWSGTQKSV

LATKKLDLWRLPPFLIIHLK




APLKLRRTIAKYAPKEDGFQQQ

RFQFVNDQWIKSQKIVRFLR




DSQELLAFLLDGLHEDLNRVHE

ESFDPSAFLVPRDPALCQHK




KPYVELKDSDGRPDWEVAAEAW

PLTPQGDELSKPRILAREVK




DNHLRRNRSIIVDLFHGQLRSQ

KVDAQSSAGKEDMLLSKSPS




VKCKTCGHISVREDPENELSLP

SLSANISSSPKGSPSSSRKS




LPMDSYMDLEITVIKLDGTTPV

GTSCPSSKNSSPNSSPRTLG




RYGLRLNMDEKYTGLKKQLRDL

RSKGRLRLPQIGSKNKPSSS




CGLNSEQILLAEVHDSNIKNFP

KKNLDASKENGAGQICELAD




QDNQKVQLSVSGFLCAFEIPVP

ALSRGHMRGGSQPELVTPQD




SSPISASSPTQIDFSSSPSTNG

HEVALANGFLYEHEACGNGC




MFTLTTNGDLPKPIFIPNGMPN

GDGYSNGQLGNHSEEDSTDD




TVVPCGTEKNFTNGMVNGHMPS

QREDTHIKPIYNLYAISCHS




LPDSPFTGYIIAVHRKMMRTEL

GILSGGHYITYAKNPNCKWY




YFLSPQENRPSLFG

CYNDSSCEELHPDEIDTDSA




MPLIVPCTVHTRKKDLYDAVWI

YILFYEQQG




QVSWLARPLPPQEASIHAQDRD






NCMGYQYPFTLRVVQKDGNSCA






WCPQYRFCRGCKIDCGEDRAFI






GNAYIAVDWHPTALHLRYQTSQ






ERVVDKHESVEQSRRAQAEPIN






LDSCLRAFTSEEELGESEMYYC






SKCKTHCLATKKLDLWRLPPEL






IIHLKRFQFVNDQWIKSQKIVR






FLRESFDPSAFLVPRDPALCQH






KPLTPQGDELSKPRILAREVKK






VDAQSSAGKEDMLLSKSPSSLS






ANISSSPKGSPSSSRKSGTSCP






SSKNSSPNSSPRTL






GRSKGRLRLPQIGSKNKPSSSK






KNLDASKENGAGQICELADALS






RGHMRGGSQPELVTPQDHEVAL






ANGFLYEHEACGNGCGDGYSNG






QLGNHSEEDSTDDQREDTHIKP






IYNLYAISCHSGILSGGHYITY






AKNPNCKWYCYNDSSCEELHPD






EIDTDSAYILFYEQQGIDYAQF






LPKIDGKKMADTSSTDEDSESD






YEKYSMLQ







UBP53_HUMAN
56
MAWVKFLRKPGGNLGKVYQPGS
168
APTKGLLNEPGQNSCFLNSA


Inactive

MLSLAPTKGLLNEPGQNSCFLN

VQVLWQLDIFRRSLRVLTGH


ubiquitin

SAVQVLWQLDIFRRSLRVLTGH

VCQGDACIFCALKTIFAQFQ


carboxyl-

VCQGDACIFCALKTIFAQFQHS

HSREKALPSDNIRHALAESF


terminal

REKALPSDNIRHALAESFKDEQ

KDEQRFQLGLMDDAAECFEN


hydrolase 53

RFQLGLMDDAAECFENMLERIH

MLERIHFHIVPSRDADMCTS




FHIVPSRDADMCTSKSCITHQK

KSCITHQKFAMTLYEQCVCR




FAMTLYEQCVCRSCGASSDPLP

SCGASSDPLPFTEFVRYIST




FTEFVRYISTTALCNEVERMLE

TALCNEVERMLERHERFKPE




RHERFKPEMFAELLQAANTTDD

MFAELLQAANTTDDYRKCPS




YRKCPSNCGQKIKIRRVLMNCP

NCGQKIKIRRVLMNCPEIVT




EIVTIGLVWDSEHSDLTEAVVR

IGLVWDSEHSDLTEAVVRNL




NLATHLYLPGLFYRVTDENAKN

ATHLYLPGLFYRVTDENAKN




SELNLVGMICYTSQ

SELNLVGMICYTSQHYCAFA




HYCAFAFHTKSSKWVFEDDANV

FHTKSSKWVFEDDANVKEIG




KEIGTRWKDVVSKCIRCHFQPL

TRWKDVVSKCIRCHFQPLLL




LLFYANPDGTAVSTEDALRQVI

FYANPDGTAVSTEDALRQVI




SWSHYKSVAENMGCEKPVIHKS

SWSHYKSVAENMGCEKPVIH




DNLKENGFGDQAKQRENQKEPT

KSDNLKENGFGDQAKQRENQ




DNISSSNRSHSHTGVGKGPAKL

KFPTDNISSSNRSHSHTGVG




SHIDQREKIKDISRECALKAIE

KGPAKLSHIDQREKIKDISR




QKNLLSSQRKDLEKGQRKDLGR

ECALKAIEQKNLLSSQRKDL




HRDLVDEDLSHFQSGSPPAPNG

EKGQRK




FKQHGNPHLYHSQGKGSYKHDR






VVPQSRASAQIISSSKSQILAP






GEKITGKVKSDNGTGYDTDSSQ






DSRDRGNSCDSSSKSRNRGWKP






MRETLNVDSIFSES






EKRQHSPRHKPNISNKPKSSKD






PSFSNWPKENPKQKGLMTIYED






EMKQEIGSRSSLESNGKGAEKN






KGLVEGKVHGDNWQMQRTESGY






ESSDHISNGSTNLDSPVIDGNG






TVMDISGVKETVCESDQITTSN






LNKERGDCTSLQSQHHLEGERK






ELRNLEAGYKSHEFHPESHLQI






KNHLIKRSHVHEDNGKLEPSSS






LQIPKDHNAREHIHQSDEQKLE






KPNECKESEWLNIENSERTGLP






FHVDNSASGKRVNSNEPSSLWS






SHLRTVGLKPETAPLIQQQNIM






DQCYFENSLSTECI






IRSASRSDGCQMPKLFCQNLPP






PLPPKKYAITSVPQSEKSESTP






DVKLTEVFKATSHLPKHSLSTA






SEPSLEVSTHMNDERHKETFQV






RECFGNTPNCPSSSSTNDEQAN






SGAIDAFCQPELDSISTCPNET






VSLTTYFSVDSCMTDTYRLKYH






QRPKLSFPESSGFCNNSLS







U17LO_HUMAN
57
MEDDSLYLRGEWQFNHESKLTS
169
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 24

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQPNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSSTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17LM_HUMAN

MEDDSLYLGGEWQFNHESKLTS

AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 22

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP5_HUMAN
58
MAELSEEALLSVLPTIRVPKAG
170
FGPGYTGIRNLGNSCYLNSV


Ubiquitin

DRVHKDECAFSEDTPESEGGLY

VQVLESIPDFQRKYVDKLEK


carboxyl-

ICMNTFLGFGKQYVERHENKTG

IFQNAPTDPTQDESTQVAKL


terminal

QRVYLHLRRTRRPKEEDPATGT

GHGLLSGEYSKPVPESGDGE


hydrolase 5

GDPPRKKPTRLAIGVEGGEDLS

RVPEQKEVQDGIAPRMEKAL




EEKFELDEDVKIVILPDYLEIA

IGKGHPEFSTNRQQDAQEFF




RDGLGGLPDIVRDRVTSAVEAL

LHLINMVERNCRSSENPNEV




LSADSASRKQEVQAWDGEVRQV

FRFLVEEKIKCLATEKVKYT




SKHAFSLKQLDNPARIPPCGWK

QRVDYIMQLPVPMDAALNKE




CSKCDMRENLWLNLTDGSILCG

ELLEYEEKKRQAEEEKMALP




RRYFDGSGGNNHAVEHYRETGY

ELVRAQVPESSCLEAYGAPE




PLAVKLGTITPDGADVYSYDED

QVDDFWSTALQAKSVAVKTT




DMVLDPSLAEHLSHFGIDMLKM

RFASFPDYLVIQIKKFTFGL




QKTDKTMTELEIDM

DWVPKKLDVSIEMPEELDIS




NQRIGEWELIQESGVPLKPLFG

QLRGTGLQPGEEELPDIAPP




PGYTGIRNLGNSCYLNSVVQVL

LVTPDEPKGSLGFYGNEDED




FSIPDFQRKYVDKLEKIFQNAP

SFCSPHFSSPTSPMLDESVI




TDPTQDESTQVAKLGHGLLSGE

IQLVEMGFPMDACRKAVYYT




YSKPVPESGDGERVPEQKEVQD

GNSGAEAAMNWVMSHMDDPD




GIAPRMFKALIGKGHPEFSTNR

FANPLILPGSSGPGSTSAAA




QQDAQEFFLHLINMVERNCRSS

DPPPEDCVTTIVSMGFSRDQ




ENPNEVERELVEEKIKCLATEK

ALKALRATNNSLERAVDWIE




VKYTQRVDYIMQLPVPMDAALN

SHIDDLDAEAAMDISEGRSA




KEELLEYEEKKRQAEEEKMALP

ADSISESVPVGPKVRDGPGK




ELVRAQVPFSSCLEAYGAPEQV

YQLFAFISHMGTSTMCGHYV




DDFWSTALQAKSVAVKTTRFAS

CHIKKEGRWVIYNDQKVCAS




FPDYLVIQIKKFTFGLDWVPKK

EKPPKDLGYIYFYQRVA




LDVSIEMPEELDIS






QLRGTGLQPGEEELPDIAPPLV






TPDEPKGSLGFYGNEDEDSFCS






PHESSPTSPMLDESVIIQLVEM






GFPMDACRKAVYYTGNSGAEAA






MNWVMSHMDDPDFANPLILPGS






SGPGSTSAAADPPPEDCVTTIV






SMGFSRDQALKALRATNNSLER






AVDWIFSHIDDLDAEAAMDISE






GRSAADSISESVPVGPKVRDGP






GKYQLFAFISHMGTSTMCGHYV






CHIKKEGRWVIYNDQKVCASEK






PPKDLGYIYFYQRVAS







UBP25_HUMAN
59
MTVEQNVLQQSAAQKHQQTELN

KAPVGLKNVGNTCWFSAVIQ


Ubiquitin

QLREITGINDTQILQQALKDSN

SLENLLEFRRLVLNYKPPSN


carboxyl-

GNLELAVAFLTAKNAKTPQQEE

AQDLPRNQKEHRNLPEMREL


terminal

TTYYQTALPGNDRYISVGSQAD

RYLFALLVGTKRKYVDPSRA


hydrolase 25

TNVIDLTGDDKDDLQRAIALSL

VEILKDAFKSNDSQQQDVSE




AESNRAFRETGITDEEQAISRV

FTHKLLDWLEDAFQMKAEEE




LEASIAENKACLKRTPTEVWRD

TDEEKPKNPMVELFYGRFLA




SRNPYDRKRQDKAPVGLKNVGN

VGVLEGKKFENTEMFGQYPL




TCWFSAVIQSLENLLEFRRLVL

QVNGFKDLHECLEAAMIEGE




NYKPPSNAQDLPRNQKEHRNLP

IESLHSENSGKSGQEHWFTE




FMRELRYLFALLVGTKRKYVDP

LPPVLTFELSRFEFNQALGR




SRAVEILKDAFKSNDSQQQDVS

PEKIHNKLEFPQVLYLDRYM




EFTHKLLDWLEDAFQMKAEEET

HRNREITRIKREEIKRLKDY




DEEKPKNPMVELFY

LTVLQQRLERYLSYGSGPKR




GRFLAVGVLEGKKFENTEMEGQ

FPLVDVLQYALEFASSKPVC




YPLQVNGFKDLHECLEAAMIEG

TSPVDDIDASSPPSGSIPSQ




EIESLHSENSGKSGQEHWFTEL

TLPSTTEQQGALSSELPSTS




PPVLTFELSRFEFNQALGRPEK

PSSVAAISSRSVIHKPFTQS




IHNKLEFPQVLYLDRYMHRNRE

RIPPDLPMHPAPRHITEEEL




ITRIKREEIKRLKDYLTVLQQR

SVLESCLHRWRTEIENDTRD




LERYLSYGSGPKRFPLVDVLQY

LQESISRIHRTIELMYSDKS




ALEFASSKPVCTSPVDDIDASS

MIQVPYRLHAVLVHEGQANA




PPSGSIPSQTLPSTTEQQGALS

GHYWAYIFDHRESRWMKYND




SELPSTSPSSVAAISSRSVIHK

IAVTKSSWEELVRDSFGGYR




PFTQSRIPPDLPMHPAPRHITE

NAS




EELSVLESCLHRWRTEIENDTR






DLQESISRIHRTIELMYSDKSM






IQVPYRLHAVLVHE






GQANAGHYWAYIFDHRESRWMK






YNDIAVTKSSWEELVRDSFGGY






RNASAYCLMYINDKAQFLIQEE






FNKETGQPLVGIETLPPDLRDF






VEEDNQRFEKELEEWDAQLAQK






ALQEKLLASQKLRESETSVTTA






QAAGDPEYLEQPSRSDFSKHLK






EETIQIITKASHEHEDKSPETV






LQSAIKLEYARLVKLAQEDTPP






ETDYRLHHVVVYFIQNQAPKKI






IEKTLLEQFGDRNLSFDERCHN






IMKVAQAKLEMIKPEEVNLEEY






EEWHQDYRKERETTMYLIIGLE






NFQRESYIDSLLEL






ICAYQNNKELLSKGLYRGHDEE






LISHYRRECLLKLNEQAAELFE






SGEDREVNNGLIIMNEFIVPEL






PLLLVDEMEEKDILAVEDMRNR






WCSYLGQEMEPHLQEKLTDELP






KLLDCSMEIKSFHEPPKLPSYS






THELCERFARIMLSLSRTPADG






R







UBP33_HUMAN
60
MTGSNSHITILTLKVLPHFESL
171
ARGLTGLKNIGNTCYMNAAL


Ubiquitin

GKQEKIPNKMSAFRNHCPHLDS

QALSNCPPLTQFELDCGGLA


carboxyl-

VGEITKEDLIQKSLGTCQDCKV

RTDKKPAICKSYLKLMTELW


terminal

QGPNLWACLENRCSYVGCGESQ

HKSRPGSVVPTTLFQGIKTV


hydrolase 33

VDHSTIHSQETKHYLTVNLTTL

NPTFRGYSQQDAQEFLRCLM




RVWCYACSKEVELDRKLGTQPS

DLLHEELKEQVMEVEEDPQT




LPHVRQPHQIQENSVQDFKIPS

ITTEETMEEDKSQSDVDFQS




NTTLKTPLVAVEDDLDIEADEE

CESCSNSDRAENENGSRCFS




DELRARGLTGLKNIGNTCYMNA

EDNNETTMLIQDDENNSEMS




ALQALSNCPPLTQFELDCGGLA

KDWQKEKMCNKINKVNSEGE




RTDKKPAICKSYLKLMTELWHK

FDKDRDSISETVDLNNQETV




SRPGSVVPTTLFQGIKTVNPTF

KVQIHSRASEYITDVHSNDL




RGYSQQDAQEFLRCLMDLLHEE

STPQILPSNEGVNPRLSASP




LKEQVMEVEEDPQT

PKSGNLWPGLAPPHKKAQSA




ITTEETMEEDKSQSDVDFQSCE

SPKRKKQHKKYRSVISDIED




SCSNSDRAENENGSRCFSEDNN

GTIISSVQCLTCDRVSVTLE




ETTMLIQDDENNSEMSKDWQKE

TFQDLSLPIPGKEDLAKLHS




KMCNKINKVNSEGEFDKDRDSI

SSHPTSIVKAGSCGEAYAPQ




SETVDLNNQETVKVQIHSRASE

GWIAFFMEYVKRFVVSCVPS




YITDVHSNDLSTPQILPSNEGV

WFWGPVVTLQDCLAAFFARD




NPRLSASPPKSGNLWPGLAPPH

ELKGDNMYSCEKCKKLRNGV




KKAQSASPKRKKQHKKYRSVIS

KFCKVQNFPEILCIHLKRER




DIFDGTIISSVQCLTCDRVSVT

HELMESTKISTHVSFPLEGL




LETFQDLSLPIPGKEDLAKLHS

DLQPFLAKDSPAQIVTYDLL




SSHPTSIVKAGSCGEAYAPQGW

SVICHHGTASSGHYIAYCRN




IAFFMEYVKRFVVSCVPSWFWG

NLNNLWYEFDDQSVTEVSES




PVVTLQDCLAAFFARDELKGDN

TVQNAEAYVLFYRKSS




MYSCEKCKKLRNGV






KFCKVQNFPEILCIHLKRFRHE






LMFSTKISTHVSFPLEGLDLQP






FLAKDSPAQIVTYDLLSVICHH






GTASSGHYIAYCRNNLNNLWYE






FDDQSVTEVSESTVQNAEAYVL






FYRKSSEEAQKERRRISNLLNI






MEPSLLQFYISRQWLNKFKTFA






EPGPISNNDFLCIHGGVPPRKA






GYIEDLVLMLPQNIWDNLYSRY






GGGPAVNHLYICHTCQIEAEKI






EKRRKTELEIFIRLNRAFQKED






SPATFYCISMQWFREWESFVKG






KDGDPPGPIDNTKIAVTKCGNV






MLRQGADSGQISEETWNFLQSI






YGGGPEVILRPPVVHVDPDILQ






AEEKIEVETRSL







UBP21_HUMAN
61
MPQASEHRLGRTREPPVNIQPR
172
LGSGHVGLRNLGNTCFLNAV


Ubiquitin

VGSKLPFAPRARSKERRNPASG

LQCLSSTRPLRDFCLRRDER


carboxyl-

PNPMLRPLPPRPGLPDERLKKL

QEVPGGGRAQELTEAFADVI


terminal

ELGRGRTSGPRPRGPLRADHGV

GALWHPDSCEAVNPTRFRAV


hydrolase 21

PLPGSPPPTVALPLPSRTNLAR

FQKYVPSFSGYSQQDAQEFL




SKSVSSGDLRPMGIALGGHRGT

KLLMERLHLEINRRGRRAPP




GELGAALSRLALRPEPPTLRRS

ILANGPVPSPPRRGGALLEE




TSLRRLGGFPGPPTLFSIRTEP

PELSDDDRANLMWK




PASHGSFHMISARSSEPFYSDD

RYLEREDSKIVDLFVGQLKS




KMAHHTLLLGSGHVGLRNLGNT

CLKCQACGYRSTTFEVECDL




CFLNAVLQCLSSTRPLRDFCLR

SLPIPKKGFAGGKVSLRDCF




RDFRQEVPGGGRAQELTEAFAD

NLFTKEEELESENAPVCDRC




VIGALWHPDSCEAVNPTRERAV

RQKTRSTKKLTVQRFPRILV




FQKYVPSFSGYSQQ

LHLNRFSASRGSIKKSSVGV




DAQEFLKLLMERLHLEINRRGR

DFPLQRLSLGDFASDKAGSP




RAPPILANGPVPSPPRRGGALL

VYQLYALCNHSGSVHYGHYT




EEPELSDDDRANLMWKRYLERE

ALCRCQTGWHVYNDSRVSPV




DSKIVDLFVGQLKSCLKCQACG

SENQVASSEGYVLFYQLMQ




YRSTTFEVFCDLSLPIPKKGFA






GGKVSLRDCENLFTKEEELESE






NAPVCDRCRQKTRSTKKLTVQR






FPRILVLHLNRESASRGSIKKS






SVGVDFPLQRLSLGDFASDKAG






SPVYQLYALCNHSGSVHYGHYT






ALCRCQTGWHVYNDSRVSPVSE






NQVASSEGYVLFYQLMQEPPRC






L







U17L4_HUMAN
62
MGDDSLYLGGEWQFNHESKLTS
173
AVGAGLQNMGNTCYENASLQ


Inactive

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


ubiquitin

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


terminal

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


hydrolase 17-

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI


like protein 4

TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHDGYYF




AGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAEVTV




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHDGYYFSYVKAQEG






QWYKMDDAEVTVCSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRPATQGELKR






DHPCLQVPELDEHLVERATEES






TLDHWKFPQEQNKMKPEFNVRK






VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSMNSTDQE






SMNTGTLASLQGRTRRSKGKNK






HSKRSLLVCQ







U17LK_HUMAN
63
MEDDSLYLGGEWQFNHESKLTS
174
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 20

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QPNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA






EVTASSITSVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGA






EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSTTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







UBP12_HUMAN
64
MEILMTVSKFASICTMGANASA
175
EHYFGLVNFGNTCYCNSVLQ


Ubiquitin

LEKEIGPEQFPVNEHYFGLVNE

ALYFCRPFREKVLAYKSQPR


carboxyl-

GNTCYCNSVLQALYFCRPFREK

KKESLLTCLADLFHSIATQK


terminal

VLAYKSQPRKKESLLTCLADLF

KKVGVIPPKKFITRLRKENE


hydrolase 12

HSIATQKKKVGVIPPKKFITRL

LFDNYMQQDAHEFLNYLLNT




RKENELFDNYMQQDAHEFLNYL

IADILQEERKQEKQNGRLPN




LNTIADILQEERKQEKQNGRLP

GNIDNENNNSTPDPTWVHEI




NGNIDNENNNSTPDPTWVHEIF

FQGTLTNETRCLTCETISSK




QGTLTNETRCLTCETISSKDED

DEDFLDLSVDVEQNTSITHC




FLDLSVDVEQNTSITHCLRGES

LRGFSNTETLCSEYKYYCEE




NTETLCSEYKYYCEECRSKQEA

CRSKQEAHKRMKVKKLPMIL




HKRMKVKKLPMILALHLKRFKY

ALHLKRFKYMDQLHRYTKLS




MDQLHRYTKLSYRVVFPLELRL

YRVVFPLELRLENTSGDATN




FNTSGDATNPDRMY

PDRMYDLVAVVVHCGSGPNR




DLVAVVVHCGSGPNRGHYIAIV

GHYIAIVKSHDFWLLEDDDI




KSHDEWLLEDDDIVEKIDAQAI

VEKIDAQAIEEFYGLTSDIS




EEFYGLTSDISKNSESGYILFY

KNSESGYILFYQSR




QSRD







UL17C_HUMAN
65
MEEDSLYLGGEWQFNHESKLTS
176
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSNRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 12

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKMLTLLTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KMLTLLTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQPNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP20_HUMAN
66
MGDSRDLCPHLDSIGEVTKEDL
177
PRGLTGMKNLGNSCYMNAAL


Ubiquitin

LLKSKGTCQSCGVTGPNLWACL

QALSNCPPLTQFFLECGGLV


carboxyl-

QVACPYVGCGESFADHSTIHAQ

RTDKKPALCKSYQKLVSEVW


terminal

AKKHNLTVNLTTFRLWCYACEK

HKKRPSYVVPTSLSHGIKLV


hydrolase

EVFLEQRLAAPLLGSSSKESEQ

NPMFRGYAQQDTQEFLRCLM




DSPPPSHPLKAVPIAVADEGES

DQLHEELKEPVVATVALTEA




ESEDDDLKPRGLTGMKNLGNSC

RDSDSSDTDEKREGDRSPSE




YMNAALQALSNCPPLTQFFLEC

DEFLSCDSSSDRGEGDGQGR




GGLVRTDKKPALCKSYQKLVSE

GGGSSQAETELLIPDEAGRA




VWHKKRPSYVVPTSLSHGIKLV

ISEKERMKDRKFSWGQQRTN




NPMFRGYAQQDTQEFLRCLMDQ

SEQVDEDADVDTAMAALDDQ




LHEELKEPVVATVALTEARDSD

PAEAQPPSPRSSSPCRTPEP




SSDTDEKREGDRSPSEDEFLSC

DNDAHLRSSSRPCSPVHHHE




DSSSDRGEGDGQGR

GHAKLSSSPPRASPVRMAPS




GGGSSQAETELLIPDEAGRAIS

YVLKKAQVLSAGSRRRKEQR




EKERMKDRKFSWGQQRTNSEQV

YRSVISDIFDGSILSLVQCL




DEDADVDTAMAALDDQPAEAQP

TCDRVSTTVETFQDLSLPIP




PSPRSSSPCRTPEPDNDAHLRS

GKEDLAKLHSAIYQNVPAKP




SSRPCSPVHHHEGHAKLSSSPP

GACGDSYAAQGWLAFIVEYI




RASPVRMAPSYVLKKAQVLSAG

RRFVVSCTPSWFWGPVVTLE




SRRRKEQRYRSVISDIFDGSIL

DCLAAFFAADELKGDNMYSC




SLVQCLTCDRVSTTVETFQDLS

ERCKKLRNGVKYCKVLRLPE




LPIPGKEDLAKLHSAIYQNVPA

ILCIHLKRFRHEVMYSFKIN




KPGACGDSYAAQGWLAFIVEYI

SHVSFPLEGLDLRPFLAKEC




RRFVVSCTPSWFWGPVVTLEDC

TSQITTYDLLSVICHHGTAG




LAAFFAADELKGDNMYSCERCK

SGHYIAYCQNVINGQWYEFD




KLRNGVKYCKVLRLPEILCIHL

DQYVTEVHETVVQNAEGYVL




KRFRHEVMYSEKIN

FYRKSS




SHVSFPLEGLDLRPFLAKECTS






QITTYDLLSVICHHGTAGSGHY






IAYCQNVINGQWYEFDDQYVTE






VHETVVQNAEGYVLFYRKSSEE






AMRERQQVVSLAAMREPSLLRF






YVSREWLNKENTFAEPGPITNQ






TFLCSHGGIPPHKYHYIDDLVV






ILPQNVWEHLYNRFGGGPAVNH






LYVCSICQVEIEALAKRRRIEI






DTFIKLNKAFQAEESPGVIYCI






SMQWFREWEAFVKGKDNEPPGP






IDNSRIAQVKGSGHVQLKQGAD






YGQISEETWTYLNSLYGGGPEI






AIRQSVAQPLGPENLHGEQKIE






AETRAV







UBP46_HUMAN
67
MTVRNIASICNMGTNASALEKD
178
EHYFGLVNFGNTCYCNSVLQ


Ubiquitin

IGPEQFPINEHYFGLVNEGNTC

ALYFCRPFRENVLAYKAQQK


carboxyl-

YCNSVLQALYFCRPFRENVLAY

KKENLLTCLADLEHSIATQK


terminal

KAQQKKKENLLTCLADLFHSIA

KKVGVIPPKKFISRLRKEND


hydrolase 46

TQKKKVGVIPPKKFISRLRKEN

LFDNYMQQDAHEFLNYLLNT




DLEDNYMQQDAHEFLNYLLNTI

IADILQEEKKQEKQNGKLKN




ADILQEEKKQEKQNGKLKNGNM

GNMNEPAENNKPELTWVHEI




NEPAENNKPELTWVHEIFQGTL

FQGTLTNETRCLNCETVSSK




TNETRCLNCETVSSKDEDELDL

DEDFLDLSVDVEQNTSITHC




SVDVEQNTSITHCLRDESNTET

LRDESNTETLCSEQKYYCET




LCSEQKYYCETCCSKQEAQKRM

CCSKQEAQKRMRVKKLPMIL




RVKKLPMILALHLKRFKYMEQL

ALHLKRFKYMEQLHRYTKLS




HRYTKLSYRVVFPLELRLENTS

YRVVFPLELRLENTSSDAVN




SDAVNLDRMYDLVA

LDRMYDLVAVVVHCGSGPNR




VVVHCGSGPNRGHYITIVKSHG

GHYITIVKSHGFWLLEDDDI




FWLLEDDDIVEKIDAQAIEEFY

VEKIDAQAIEEFYGLTSDIS




GLTSDISKNSESGYILFYQSRE

KNSESGYILFYQSR





CYLD_HUMAN
68
MSSGLWSQEKVTSPYWEERIFY
179
GKKKGIQGHYNSCYLDSTLF


Ubiquitin

LLLQECSVTDKQTQKLLKVPKG

CLFAFSSVLDTVLLRPKEKN


carboxyl-

SIGQYIQDRSVGHSRIPSAKGK

DVEYYSETQELLRTEIVNPL


terminal

KNQIGLKILEQPHAVLFVDEKD

RIYGYVCATKIMKLRKILEK


hydrolase

VVEINEKFTELLLAITNCEERE

VEAASGFTSEEKDPEEFLNI


CYLD

SLFKNRNRLSKGLQIDVGCPVK

LFHHILRVEPLLKIRSAGQK




VQLRSGEEKFPGVVRERGPLLA

VQDCYFYQIFME




ERTVSGIFFGVELLEEGRGQGF

KNEKVGVPTIQQLLEWSFIN




TDGVYQGKQLFQCDEDCGVEVA

SNLKFAEAPSCLIIQMPREG




LDKLELIEDDDTALESDYAGPG

KDFKLFKKIFPSLELNITDL




DTMQVELPPLEINSRVSLKVGE

LEDTPRQCRICGGLAMYECR




TIESGTVIFCDVLPGKESLGYF

ECYDDPDISAGKIKQFCKTC




VGVDMDNPIGNWDGREDGVQLC

NTQVHLHPKRLNHKYNPVSL




SFACVESTILLHIN

PKDLPDWDWRHGCIPCQNME




DIIPALSESVTQERRPPKLAFM

LFAVLCIETSHYVAFVKYGK




SRGVGDKGSSSHNKPKATGSTS

DDSAWLFFDSMADRDGGQNG




DPGNRNRSELFYTLNGSSVDSQ

FNIPQVTPCPEVGEYLKMSL




PQSKSKNTWYIDEVAEDPAKSL

EDLHSLDSRRIQGCARRLLC




TEISTDEDRSSPPLQPPPVNSL

DAYMCMYQSPT




TTENRFHSLPFSLTKMPNINGS






IGHSPLSLSAQSVMEELNTAPV






QESPPLAMPPGNSHGLEVGSLA






EVKENPPFYGVIRWIGQPPGLN






EVLAGLELEDECAGCTDGTFRG






TRYFTCALKKALFVKLKSCRPD






SRFASLQPVSNQIERCNSLAFG






GYLSEVVEENTPPKMEKEGLEI






MIGKKKGIQGHYNS






CYLDSTLFCLFAFSSVLDTVLL






RPKEKNDVEYYSETQELLRTEI






VNPLRIYGYVCATKIMKLRKIL






EKVEAASGFTSEEKDPEEFLNI






LFHHILRVEPLLKIRSAGQKVQ






DCYFYQIFMEKNEKVGVPTIQQ






LLEWSFINSNLKFAEAPSCLII






QMPRFGKDFKLFKKIFPSLELN






ITDLLEDTPRQCRICGGLAMYE






CRECYDDPDISAGKIKQFCKTC






NTQVHLHPKRLNHKYNPVSLPK






DLPDWDWRHGCIPCQNMELFAV






LCIETSHYVAFVKYGKDDSAWL






FFDSMADRDGGQNGENIPQVTP






CPEVGEYLKMSLEDLHSLDSRR






IQGCARRLLCDAYMCMYQSPTM






SLYK







UBP16_HUMAN
69
MGKKRTKGKTVPIDDSSETLEP
180
ITVKGLSNLGNTCFFNAVMQ


Ubiquitin

VCRHIRKGLEQGNLKKALVNVE

NLSQTPVLRELLKEVKMSGT


carboxyl-

WNICQDCKTDNKVKDKAEEETE

IVKIEPPDLALTEPLEINLE


terminal

EKPSVWLCLKCGHQGCGRNSQE

PPGPLTLAMSQFLNEMQETK


hydrolase 16

QHALKHYLTPRSEPHCLVLSLD

KGVVTPKELFSQVCKKAVRE




NWSVWCYVCDNEVQYCSSNQLG

KGYQQQDSQELLRYLLDGMR




QVVDYVRKQASITTPKPAEKDN

AEEHQRVSKGILKAFGNSTE




GNIELENKKLEKESKNEQEREK

KLDEELKNKVKDYEKKKSMP




KENMAKENPPMNSPCQITVKGL

SFVDRIFGGELTSMIMCDQC




SNLGNTCFFNAVMQNLSQTPVL

RTVSLVHESFLDLSLPVLDD




RELLKEVKMSGTIVKIEPPDLA

QSGKKSVNDKNLKKTVEDED




LTEPLEINLEPPGPLTLAMSQF

QDSEEEKDNDSYIKERSDIP




LNEMQETKKGVVTPKELFSQVC

SGTSKHLQKKAKKQAKKQAK




KKAVRFKGYQQQDS

NQRRQQKIQGKVLHLNDICT




QELLRYLLDGMRAEEHQRVSKG

IDHPEDSEYEAEMSLQGEVN




ILKAFGNSTEKLDEELKNKVKD

IKSNHISQEGVMHKEYCVNQ




YEKKKSMPSFVDRIFGGELTSM

KDLNGQAKMIESVTDNQKST




IMCDQCRTVSLVHESELDLSLP

EEVDMKNINMDNDLEVLTSS




VLDDQSGKKSVNDKNLKKTVED

PTRNLNGAYLTEGSNGEVDI




EDQDSEEEKDNDSYIKERSDIP

SNGFKNLNLNAALHPDEINI




SGTSKHLQKKAKKQAKKQAKNQ

EILNDSHTPGTKVYEVVNED




RRQQKIQGKVLHLNDICTIDHP

PETAFCTLANREVENTDECS




EDSEYEAEMSLQGEVNIKSNHI

IQHCLYQFTRNEKLRDANKL




SQEGVMHKEYCVNQKDLNGQAK

LCEVCTRRQCNGPKANIKGE




MIESVTDNQKSTEEVDMKNINM

RKHVYTNAKKQMLISLAPPV




DNDLEVLTSSPTRNLNGAYLTE

LTLHLKRFQQAGFNLRKVNK




GSNGEVDISNGFKNLNLNAALH

HIKFPEIL




PDEINIEILNDSHT

DLAPFCTLKCKNVAEENTRV




PGTKVYEVVNEDPETAFCTLAN

LYSLYGVVEHSGTMRSGHYT




REVENTDECSIQHCLYQFTRNE

AYAKARTANSHLSNLVLHGD




KLRDANKLLCEVCTRRQCNGPK

IPQDFEMESKGQWFHISDTH




ANIKGERKHVYTNAKKQMLISL

VQAVPTTKVLNSQAYLLFYE




APPVLTLHLKRFQQAGENLRKV

RIL




NKHIKFPEILDLAPFCTLKCKN






VAEENTRVLYSLYGVVEHSGTM






RSGHYTAYAKARTANSHLSNLV






LHGDIPQDFEMESKGQWFHISD






THVQAVPTTKVLNSQAYLLFYE






RIL







ALG13_HUMAN
70
MKCVFVTVGTTSEDDLIACVSA
181
YRYKDSLKEDIQKADLVISH


Putative

PDSLQKIESLGYNRLILQIGRG

AGAGSCLETLEKGKPLVVVI


bifunctional

TVVPEPESTESFTLDVYRYKDS

NEKLMNNHQLELAKQLHKEG


UDP-N-

LKEDIQKADLVISHAGAGSCLE

HLFYCTCRVLTCPGQAKSIA


acetyl-

TLEKGKPLVVVINEKLMNNHQL

SAPGKCQDSAALTSTAFSGL


glucosamine

ELAKQLHKEGHLFYCTCRVLTC

DFGLLSGYLHKQALVTATHP


transferase

PGQAKSIASAPGKCQDSAALTS

TCTLLFPSCHAFFPLPLTPT


and

TAFSGLDFGLLSGYLHKQALVT

LYKMHKGWKNYCSQKSLNEA


deubiquitinase

ATHPTCTLLFPSCHAFFPLPLT

SMDEYLGSLGLFRKLTAKDA


ALG13

PTLYKMHKGWKNYCSQKSLNEA

SCLFRAISEQLFCSQVHHLE




SMDEYLGSLGLFRKLTAKDASC

IRKACVSYMRENQQTFESYV




LFRAISEQLFCSQVHHLEIRKA

EGSFEKYLERLGDPKESAGQ




CVSYMRENQQTFESYVEGSFEK

LEIRALSLIYNRDFILYREP




YLERLGDPKESAGQ

GKPPTYVTDNGYEDKILLCY




LEIRALSLIYNRDFILYREPGK

SSSGHYDSVYS




PPTYVTDNGYEDKILLCYSSSG






HYDSVYSKQFQSSAAVCQAVLY






EILYKDVFVVDEEELKTAIKLF






RSGSKKNRNNAVTGSEDAHTDY






KSSNQNRMEEWGACYNAENIPE






GYNKGTEETKSPENPSKMPFPY






KVLKALDPEIYRNVEFDVWLDS






RKELQKSDYMEYAGRQYYLGDK






CQVCLESEGRYYNAHIQEVGNE






NNSVTVFIEELAEKHVVPLANL






KPVTQVMSVPAWNAMPSRKGRG






YQKMPGGYVPEIVISEMDIKQQ






KKMFKKIRGKEVYM






TMAYGKGDPLLPPRLQHSMHYG






HDPPMHYSQTAGNVMSNEHFHP






QHPSPRQGRGYGMPRNSSRFIN






RHNMPGPKVDFYPGPGKRCCQS






YDNESYRSRSFRRSHRQMSCVN






KESQYGFTPGNGQMPRGLEETI






TFYEVEEGDETAYPTLPNHGGP






STMVPATSGYCVGRRGHSSGKQ






TLNLEEGNGQSENGRYHEEYLY






RAEPDYETSGVYSTTASTANLS






LQDRKSCSMSPQDTVTSYNYPQ






KMMGNIAAVAASCANNVPAPVL






SNGAAANQAISTTSVSSQNAIQ






PLFVSPPTHGRPVI






ASPSYPCHSAIPHAGASLPPPP






PPPPPPPPPPPPPPPPPPPPPP






PALDVGETSNLQPPPPLPPPPY






SCDPSGSDLPQDTKVLQYYENL






GLQCYYHSYWHSMVYVPQMQQQ






LHVENYPVYTEPPLVDQTVPQC






YSEVRREDGIQAEASANDTEPN






ADSSSVPHGAVYYPVMSDPYGQ






PPLPGEDSCLPVVPDYSCVPPW






HPVGTAYGGSSQIHGAINPGPI






GCIAPSPPASHYVPQGM







OTU1_HUMAN
71
MFGPAKGRHFGVHPAPGFPGGV
182
QGLSSRTRVRELQGQIAAIT


Ubiquitin

SQQAAGTKAGPAGAWPVGSRTD

GIAPGGQRILVGYPPECLDL


thioesterase

TMWRLRCKAKDGTHVLQGLSSR

SNGDTILEDLPIQSGDMLII


OTU1

TRVRELQGQIAAITGIAPGGQR

EEDQTRPRSSPAFTKRGASS




ILVGYPPECLDLSNGDTILEDL

YVRETLPVLTRTVVPADNSC




PIQSGDMLIIEEDQTRPRSSPA

LETSVYYVVEGGVLNPACAP




FTKRGASSYVRETLPVLTRTVV

EMRRLIAQIVASDPDFYSEA




PADNSCLFTSVYYVVEGGVLNP

ILGKTNQEYCDWIKRDDTWG




ACAPEMRRLIAQIVASDPDFYS

GAIEISILSKFYQCEICVVD




EAILGKTNQEYCDWIKRDDTWG

TQTVRIDRFGEDAGYTKRVL




GAIEISILSKFYQCEICVVDTQ

LIYDGIHYDPLQ




TVRIDRFGEDAGYTKRVLLIYD






GIHYDPLQRNFPDPDTPPLTIF






SSNDDIVLVQALELADEARRRR






QFTDVNRFTLRCMVCQKGLTGQ






AEAREHAKETGHTNEGEV







OTUD1_HUMAN
72
MQLYSSVCTHYPAGAPGPTAAA
183
HREAAAVPAAKMPAFSSCFE


OTU

PAPPAAATPFKVSLQPPGAAGA

VVSGAAAPASAAAGPPGASC


domain-

APEPETGECQPAAAAEHREAAA

KPPLPPHYTSTAQITVRALG


containing

VPAAKMPAFSSCFEVVSGAAAP

ADRLLLHGPDPVPGAAGSAA


protein 1

ASAAAGPPGASCKPPLPPHYTS

APRGRCLLLAPAPAAPVPPR




TAQITVRALGADRLLLHGPDPV

RGSSAWLLEELLRPDCPEPA




PGAAGSAAAPRGRCLLLAPAPA

GLDATREGPDRNFRLSEHRQ




APVPPRRGSSAWLLEELLRPDC

ALAAAKHRGPAATPGSPDPG




PEPAGLDATREGPDRNERLSEH

PGPWGEEHLAERGPRGWERG




RQALAAAKHRGPAATPGSPDPG

GDRCDAPGGDAARRPDPEAE




PGPWGEEHLAERGPRGWERGGD

APPAGSIEAAPSSAAEPVIV




RCDAPGGDAARRPDPEAEAPPA

SRSDPRDEKLALYLAEVEKQ




GSIEAAPSSAAEPVIVSRSDPR

DKYLRQRNKYRFHIIPDGNC




DEKLALYLAEVEKQ

LYRAVSKTVYGDQSLHRELR




DKYLRQRNKYRFHIIPDGNCLY

EQTVHYIADHLDHFSPLIEG




RAVSKTVYGDQSLHRELREQTV

DVGEFIIAAAQDGAWAGYPE




HYIADHLDHFSPLIEGDVGEFI

LLAMGQMLNVNIHLTTGGRL




IAAAQDGAWAGYPELLAMGQML

ESPTVSTMIHYLGPEDSLRP




NVNIHLTTGGRLESPTVSTMIH

SIWLSWLSNGHYDAV




YLGPEDSLRPSIWLSWLSNGHY






DAVEDHSYPNPEYDNWCKQTQV






QRKRDEELAKSMAISLSKMYIE






QNACS







OTU6B_HUMAN
73
MEAVLTEELDEEEQLLRRHRKE
184
QKHREELEQLKLTTKENKID


Deubiquitinase

KKELQAKIQGMKNAVPKNDKKR

SVAVNISNLVLENQPPRISK


OTUD6B

RKQLTEDVAKLEKEMEQKHREE

AQKRREKKAALEKEREERIA




LEQLKLTTKENKIDSVAVNISN

EAEIENLTGARHMESEKLAQ




LVLENQPPRISKAQKRREKKAA

ILAARQLEIKQIPSDGHCMY




LEKEREERIAEAEIENLTGARH

KAIEDQLKEKDCALTVVALR




MESEKLAQILAARQLEIKQIPS

SQTAEYMQSHVEDELPELTN




DGHCMYKAIEDQLKEKDCALTV

PNTGDMYTPEEFQKYCEDIV




VALRSQTAEYMQSHVEDELPFL

NTAAWGGQLELRALSHILQT




TNPNTGDMYTPEEFQKYCEDIV

PIEIIQADSPPIIVGEEYSK




NTAAWGGQLELRALSHILQTPI

KPLILVYMRHAYG




EIIQADSPPIIVGEEYSKKPLI






LVYMRHAYGLGEHYNSVTRLVN






IVTENCS







OTU6A_HUMAN
74
MDDPKSEQQRILRRHQRERQEL
185
QELEKFQDDSSIESVVEDLA


OTU

QAQIRSLKNSVPKTDKTKRKQL

KMNLENRPPRSSKAHRKRER


domain-

LQDVARMEAEMAQKHRQELEKF

MESEERERQESIFQAEMSEH


containing

QDDSSIESVVEDLAKMNLENRP

LAGFKREEEEKLAAILGARG


protein 6A

PRSSKAHRKRERMESEERERQE

LEMKAIPADGHCMYRAIQDQ




SIFQAEMSEHLAGFKREEEEKL

LVFSVSVEMLRCRTASYMKK




AAILGARGLEMKAIPADGHCMY

HVDEFLPFFSNPETSDSFGY




RAIQDQLVFSVSVEMLRCRTAS

DDFMIYCDNIVRTTAWGGQL




YMKKHVDEFLPFFSNPETSDSF

ELRALSHVLKTPIEVIQADS




GYDDFMIYCDNIVRTTAWGGQL

PTLIIGEEYVKKPIILVYLR




ELRALSHVLKTPIEVIQADSPT

YAYS




LIIGEEYVKKPIILVYLRYAYS






LGEHYNSVTPLEAGAAGGVLPR






LL







OTUB1_HUMAN
75
MAAEEPQQQKQEPLGSDSEGVN
 75
MAAEEPQQQKQEPLGSDSEG


Ubiquitin

CLAYDEAIMAQQDRIQQEIAVQ

VNCLAYDEAIMAQQDRIQQE


thioesterase

NPLVSERLELSVLYKEYAEDDN

IAVQNPLVSERLELSVLYKE


OTUB1

IYQQKIKDLHKKYSYIRKTRPD

YAEDDNIYQQKIKDLHKKYS




GNCFYRAFGFSHLEALLDDSKE

YIRKTRPDGNCFYRAFGESH




LQRFKAVSAKSKEDLVSQGFTE

LEALLDDSKELQRFKAVSAK




FTIEDFHNTFMDLIEQVEKQTS

SKEDLVSQGFTEFTIEDFHN




VADLLASENDQSTSDYLVVYLR

TFMDLIEQVEKQTSVADLLA




LLTSGYLQRESKFFEHFIEGGR

SENDQSTSDYLVVYLRLLTS




TVKEFCQQEVEPMCKESDHIHI

GYLQRESKFFEHFIEGGRTV




IALAQALSVSIQVEYMDRGEGG

KEFCQQEVEPMCKESDHIHI




TTNPHIFPEGSEPKVYLLYRPG

IALAQALSVSIQVEYMDRGE




HYDILYK

GGTTNPHIFPEGSEPKVYLL






YRPGHYDILYK





OTU7A_HUMAN
76
MVSSVLPNPTSAECWAALLHDP
186
SDYEQLRQVHTANLPHVENE


OTU

MTLDMDAVLSDFVRSTGAEPGL

GRGPKQPEREPQPGHKVERP


domain-

ARDLLEGKNWDLTAALSDYEQL

CLQRQDDIAQEKRLSRGISH


containing

RQVHTANLPHVENEGRGPKQPE

ASSAIVSLARSHVASECNNE


protein 7A

REPQPGHKVERPCLQRQDDIAQ

QFPLEMPIYTFQLPDLSVYS




EKRLSRGISHASSAIVSLARSH

EDERSFIERDLIEQATMVAL




VASECNNEQFPLEMPIYTFQLP

EQAGRLNWWSTVCTSCKRLL




DLSVYSEDERSFIERDLIEQAT

PLATTGDGNCLLHAASLGMW




MVALEQAGRLNWWSTVCTSCKR

GFHDRDLVLRKALYTMMRTG




LLPLATTGDGNCLLHAASLGMW

AEREALKRRWRWQQTQQNKE




GFHDRDLVLRKALYTMMRTGAE

EEWEREWTELLKLASSEPRT




REALKRRWRWQQTQQNKEEEWE

HFSKNGGTGGGVDNSEDPVY




REWTELLKLASSEPRTHESKNG

ESLEEFHVEVLAHILRRPIV




GTGGGVDNSEDPVY

VVADTMLRDSGGEAFAPIPE




ESLEEFHVEVLAHILRRPIVVV

GGIYLPLEVPPNRCHCSPLV




ADTMLRDSGGEAFAPIPEGGIY

LAYDQAHFSAL




LPLEVPPNRCHCSPLVLAYDQA






HFSALVSMEQRDQQREQAVIPL






TDSEHKLLPLHFAVDPGKDWEW






GKDDNDNARLAHLILSLEAKLN






LLHSYMNVTWIRIPSETRAPLA






QPESPTASAGEDVQSLADSLDS






DRDSVCSNSNSNNGKNGKDKEK






EKQRKEKDKTRADSVANKLGSF






SKTLGIKLKKNMGGLGGLVHGK






MGRANSANGKNGDSAERGKEKK






AKSRKGSKEESGASASTSPSEK






TTPSPTDKAAGASP






AEKGGGPRGDAWKYSTDVKLSL






NILRAAMQGERKFIFAGLLLTS






HRHQFHEEMIGYYLTSAQERES






AEQEQRRRDAATAAAAAAAAAA






ATAKRPPRRPETEGVPVPERAS






PGPPTQLVLKLKERPSPGPAAG






RAARAAAGGTASPGGGARRASA






SGPVPGRSPPAPARQSVIHVQA






SGARDEACAPAVGALRPCATYP






QQNRSLSSQSYSPARAAALRTV






NTVESLARAVPGALPGAAGTAG






AAEHKSQTYTNGFGALRDGLEF






ADADAPTARSNGECGRGGPGPV






QRRCQRENCAFYGRAETEHYCS






YCYREELRRRREARGARP







OTUD4MAN_HU
77
MEAAVGVPDGGDQGGAGPREDA
187
MEAAVGVPDGGDQGGAGPRE


OTU

TPMDAYLRKLGLYRKLVAKDGS

DATPMDAYLRKLGLYRKLVA


domain-

CLFRAVAEQVLHSQSRHVEVRM

KDGSCLFRAVAEQVLHSQSR


containing

ACIHYLRENREKFEAFIEGSFE

HVEVRMACIHYLRENREKFE


protein 4

EYLKRLENPQEWVGQVEISALS

AFIEGSFEEYLKRLENPQEW




LMYRKDFIIYREPNVSPSQVTE

VGQVEISALSLMYRKDFIIY




NNFPEKVLLCESNGNHYDIVYP

REPNVSPSQVTENNFPEKVL




IKYKESSAMCQSLLYELLYEKV

LCFSNGNHYDIVYP




FKTDVSKIVMELDTLEVADEDN






SEISDSEDDSCKSKTAAAAADV






NGFKPLSGNEQLKNNGNSTSLP






LSRKVLKSLNPAVYRNVEYEIW






LKSKQAQQKRDYSIAAGLQYEV






GDKCQVRLDHNGKF






LNADVQGIHSENGPVLVEELGK






KHTSKNLKAPPPESWNTVSGKK






MKKPSTSGQNFHSDVDYRGPKN






PSKPIKAPSALPPRLQHPSGVR






QHAFSSHSSGSQSQKFSSEHKN






LSRTPSQIIRKPDRERVEDEDH






TSRESNYFGLSPEERREKQAIE






ESRLLYEIQNRDEQAFPALSSS






SVNQSASQSSNPCVQRKSSHVG






DRKGSRRRMDTEERKDKDSIHG






HSQLDKRPEPSTLENITDDKYA






TVSSPSKSKKLECPSPAEQKPA






EHVSLSNPAPLLVSPEVHLTPA






VPSLPATVPAWPSE






PTTFGPTGVPAPIPVLSVTQTL






TTGPDSAVSQAHLTPSPVPVSI






QAVNQPLMPLPQTLSLYQDPLY






PGFPCNEKGDRAIVPPYSLCQT






GEDLPKDKNILRFFENLGVKAY






SCPMWAPHSYLYPLHQAYLAAC






RMYPKVPVPVYPHNPWFQEAPA






AQNESDCTCTDAHFPMQTEASV






NGQMPQPEIGPPTFSSPLVIPP






SQVSESHGQLSYQADLESETPG






QLLHADYEESLSGKNMFPQSFG






PNPFLGPVPIAPPFFPHVWYGY






PFQGFIENPVMRQNIVLPSDEK






GELDLSLENLDLS






KDCGSVSTVDEFPEARGEHVHS






LPEASVSSKPDEGRTEQSSQTR






KADTALASIPPVAEGKAHPPTQ






ILNRERETVPVELEPKRTIQSL






KEKTEKVKDPKTAADVVSPGAN






SVDSRVQRPKEESSEDENEVSN






ILRSGRSKQFYNQTYGSRKYKS






DWGYSGRGGYQHVRSEESWKGQ






PSRSRDEGYQYHRNVRGRPFRG






DRRRSGMGDGHRGQHT







OTUB2_HUMAN
78
MSETSFNLISEKCDILSILRDH
78
MSETSENLISEKCDILSILR


Ubiquitin

PENRIYRRKIEELSKRFTAIRK

DHPENRIYRRKIEELSKRET


thioesterase

TKGDGNCFYRALGYSYLESLLG

AIRKTKGDGNCFYRALGYSY


OTUB2

KSREIFKFKERVLQTPNDLLAA

LESLLGKSREIFKFKERVLQ




GFEEHKERNFFNAFYSVVELVE

TPNDLLAAGFEEHKERNFEN




KDGSVSSLLKVENDQSASDHIV

AFYSVVELVEKDGSVSSLLK




QFLRLLTSAFIRNRADFFRHFI

VENDQSASDHIVQFLRLLTS




DEEMDIKDFCTHEVEPMATECD

AFIRNRADFFRHFIDEEMDI




HIQITALSQALSIALQVEYVDE

KDFCTHEVEPMATECDHIQI




MDTALNHHVFPEAATPSVYLLY

TALSQALSIALQVEYVDEMD




KTSHYNILYAADKH

TALNHHVFPEAATPSVYLLY






KTSHYNILYAADKH





OTUD3_HUMAN
79
MSRKQAAKSRPGSGSRKAEAER
188
MSRKQAAKSRPGSGSRKAEA


OTU

KRDERAARRALAKERRNRPESG

ERKRDERAARRALAKERRNR


domain-

GGGGCEEEFVSFANQLQALGLK

PESGGGGGCEEEFVSFANQL


containing

LREVPGDGNCLFRALGDQLEGH

QALGLKLREVPGDGNCLFRA


protein 3

SRNHLKHRQETVDYMIKQREDE

LGDQLEGHSRNHLKHRQETV




EPFVEDDIPFEKHVASLAKPGT

DYMIKQREDFEPFVEDDIPE




FAGNDAIVAFARNHQLNVVIHQ

EKHVASLAKPGTFAGNDAIV




LNAPLWQIRGTEKSSVRELHIA

AFARNHQLNVVIHQLNAPLW




YRYGEHYDSVRRINDNSEAPAH

QIRGTEKSSVRELHIAYRYG




LQTDFQMLHQDESNKREKIKTK

EHYDSVRR




GMDSEDDLRDEVEDAVQKVCNA






TGCSDENLIVQNLEAENYNIES






AIIAVLRMNQGKRNNAEENLEP






SGRVLKQCGPLWEE






GGSGARIFGNQGLNEGRTENNK






AQASPSEENKANKNQLAKVTNK






QRREQQWMEKKKRQEERHRHKA






LESRGSHRDNNRSEAEANTQVT






LVKTFAALNI







OTU7B_HUMAN
80
MTLDMDAVLSDFVRSTGAEPGL
189
MTLDMDAVLSDFVRSTGAEP


OTU

ARDLLEGKNWDVNAALSDFEQL

GLARDLLEGKNWDVNAALSD


domain-

RQVHAGNLPPSFSEGSGGSRTP

FEQLRQVHAGNLPPSESEGS


containing

EKGESDREPTRPPRPILQRQDD

GGSRTPEKGFSDREPTRPPR


protein 7B

IVQEKRLSRGISHASSSIVSLA

PILQRQDDIVQEKRLSRGIS


(Also referred

RSHVSSNGGGGGSNEHPLEMPI

HASSSIVSLARSHVSSNGGG


to herein as

CAFQLPDLTVYNEDERSFIERD

GGSNEHPLEMPICAFQLPDL


Cezanne)

LIEQSMLVALEQAGRLNWWVSV

TVYNEDERSFIERDLIEQSM




DPTSQRLLPLATTGDGNCLLHA

LVALEQAGRLNWWVSVDPTS




ASLGMWGFHDRDLMLRKALYAL

QRLLPLATTGDGNCLLHAAS




MEKGVEKEALKRRWRWQQTQQN

LGMWGFHDRDLMLRKALYAL




KESGLVYTEDEWQKEWNELIKL

MEKGVEKEALKRRWRWQQTQ




ASSEPRMHLGTNGANCGGVESS

QNKESGLVYTEDEWQKEWNE




EEPVYESLEEFHVEVLAHVLRR

LIKLASSEPRMHLGTNGANC




PIVVVADTMLRDSGGEAFAPIP

GGVESSEEPVYESLEEFHVE




FGGIYLPLEVPASQCHRSPLVL

VLAHVLRRPIVVVADTMLRD




AYDQAHFSALVSMEQKENTKEQ

SGGEAFAPIPEGGIYLPLEV




AVIPLTDSEYKLLPLHFAVDPG

PASQCHRSPLVLAYDQAHES




KGWEWGKDDSDNVRLASVILSL

AL




EVKLHLLHSYMNVKWIPLSSDA
423
PPSFSEGSGGSRTPEKGESD




QAPLAQPESPTASAGDEPRSTP

REPTRPPRPILQRQDDIVQE




ESGDSDKESVGSSSTSNEGGRR

KRLSRGISHASSSIVSLARS




KEKSKRDREKDKKRADSVANKL

HVSSNGGGGGSNEHPLEMPI




GSFGKTLGSKLKKNMGGLMHSK

CAFQLPDLTVYNEDERSFIE




GSKPGGVGTGLGGSSGTETLEK

RDLIEQSMLVALEQAGRLNW




KKKNSLKSWKGGKEEAAGDGPV

WVSVDPTSQRLLPLATTGDG




SEKPPAESVGNGGSKYSQEVMQ

NCLLHAASLGMWGFHDRDLM




SLSILRTAMQGEGKFIFVGTLK

LRKALYALMEKGVEKEALKR




MGHRHQYQEEMIQRYLSDAEER

RWRWQQTQQNKESGLVYTED




FLAEQKQKEAERKIMNGGIGGG

EWQKEWNELIKLASSEPRMH




PPPAKKPEPDAREEQPTGPPAE

LGTNGANCGGVESSEEPVYE




SRAMAFSTGYPGDFTIPRPSGG

SLEEFHVFVLAHVLRRPIVV




GVHCQEPRRQLAGGPCVGGLPP

VADTMLRDSGGEAFAPIPFG




YATFPRQCPPGRPYPHQDSIPS

GIYLPLEVPASQCHRSPLVL




LEPGSHSKDGLHRGALLPPPYR

AYDQAHFSALVSMEQKENTK




VADSYSNGYREPPEPDGWAGGL

EQAVIPLTDSEYKLLPLHFA




RGLPPTQTKCKQPNCSFYGHPE

VDPGKGWEWGKDDSDNVRLA




TNNFCSCCYREELRRREREPDG

SVILSLEVKLHLLHSYMNVK




ELLVHRE

WIPLSSDAQAPLAQ





OTUD5_HUMAN
81
MTILPKKKPPPPDADPANEPPP
190
MTILPKKKPPPPDADPANEP


OTU

PGPMPPAPRRGGGVGVGGGGTG

PPPGPMPPAPRRGGGVGVGG


domain-

VGGGDRDRDSGVVGARPRASPP

GGTGVGGGDRDRDSGVVGAR


containing

PQGPLPGPPGALHRWALAVPPG

PRASPPPQGPLPGPPGALHR


protein 5

AVAGPRPQQASPPPCGGPGGPG

WALAVPPGAVAGPRPQQASP




GGPGDALGAAAAGVGAAGVVVG

PPCGGPGGPGGGPGDALGAA




VGGAVGVGGCCSGPGHSKRRRQ

AAGVGAAGVVVGVGGAVGVG




APGVGAVGGGSPEREEVGAGYN

GCCSGPGHSKRRRQAPGVGA




SEDEYEAAAARIEAMDPATVEQ

VGGGSPEREEVGAGYNSEDE




QEHWFEKALRDKKGFIIKQMKE

YEAAAARIEAMDPATVEQQE




DGACLFRAVADQVYGDQDMHEV

HWFEKALRDKKGFIIKQMKE




VRKHCMDYLMKNADYFSNYVTE

DGACLFRAVADQVYGDQDMH




DFTTYINRKRKNNCHGNHIEMQ

EVVRKHCMDYLMKNADYFSN




AMAEMYNRPVEVYQ

YVTEDFTTYINRKRKNNCHG




YSTGTSAVEPINTFHGIHQNED

NHIEMQAMAEMYNRPVEVYQ




EPIRVSYHRNIHYNSVVNPNKA

YSTGTSAVEPINTFHGIHQN




TIGVGLGLPSFKPGFAEQSLMK

EDEPIRVSYHRNIHYNSV




NAIKTSEESWIEQQMLEDKKRA






TDWEATNEAIEEQVARESYLQW






LRDQEKQARQVRGPSQPRKASA






TCSSATAAASSGLEEWTSRSPR






QRSSASSPEHPELHAELGMKPP






SPGTVLALAKPPSPCAPGTSSQ






FSAGADRATSPLVSLYPALECR






ALIQQMSPSAFGLNDWDDDEIL






ASVLAVSQQEYLDSMKKNKVHR






DPPPDKS







TNAP3_HUMAN
82
MAEQVLPQALYLSNMRKAVKIR
191
MAEQVLPQALYLSNMRKAVK


Tumor

ERTPEDIFKPTNGIIHHFKTMH

IRERTPEDIFKPTNGIIHHF


necrosis factor

RYTLEMFRTCQFCPQFREIIHK

KTMHRYTLEMFRTCQFCPQF


alpha-induced

ALIDRNIQATLESQKKLNWCRE

REIIHKALIDRNIQATLESQ


protein 3

VRKLVALKINGDGNCLMHATSQ

KKLNWCREVRKLVALKINGD




YMWGVQDTDLVLRKALFSTLKE

GNCLMHATSQYMWGVQDTDL




TDTRNFKFRWQLESLKSQEFVE

VLRKALFSTLKETDTRNEKF




TGLCYDTRNWNDEWDNLIKMAS

RWQLESLKSQEFVETGLCYD




TDTPMARSGLQYNSLEEIHIFV

TRNWNDEWDNLIKMASTDTP




LCNILRRPIIVISDKMLRSLES

MARSGLQYNSLEEIHIFVLC




GSNFAPLKVGGIYLPLHWPAQE

NILRRPIIVISDKMLRSLES




CYRYPIVLGYDSHHFVPLVTLK

GSNFAPLKVGGIYLPLHWPA




DSGPEIRAVPLVNRDRGRFEDL

QECYRYPIVLGYDSHHFVPL




KVHELTDPENEMKE






KLLKEYLMVIEIPVQGWDHGTT






HLINAAKLDEANLPKEINLVDD






YFELVQHEYKKWQENSEQGRRE






GHAQNPMEPSVPQLSLMDVKCE






TPNCPFFMSVNTQPLCHECSER






RQKNQNKLPKLNSKPGPEGLPG






MALGASRGEAYEPLAWNPEEST






GGPHSAPPTAPSPFLESETTAM






KCRSPGCPFTLNVQHNGFCERC






HNARQLHASHAPDHTRHLDPGK






CQACLQDVTRTENGICSTCFKR






TTAEASSSLSTSLPPSCHQRSK






SDPSRLVRSPSPHSCHRAGNDA






PAGCLSQAARTPGD






RTGTSKCRKAGCVYFGTPENKG






FCTLCFIEYRENKHFAAASGKV






SPTASRFQNTIPCLGRECGTLG






STMFEGYCQKCFIEAQNQREHE






AKRTEEQLRSSQRRDVPRTTQS






TSRPKCARASCKNILACRSEEL






CMECQHPNQRMGPGAHRGEPAP






EDPPKQRCRAPACDHEGNAKCN






GYCNECFQFKQMYG







ZRAN1_HUMAN
83
MSERGIKWACEYCTYENWPSAI
192
MSERGIKWACEYCTYENWPS


Ubiquitin

KCTMCRAQRPSGTIITEDPFKS

AIKCTMCRAQRPSGTIITED


thioesterase

GSSDVGRDWDPSSTEGGSSPLI

PFKSGSSDVGRDWDPSSTEG


ZRANB1

CPDSSARPRVKSSYSMENANKW

GSSPLICPDSSARPRVKSSY




SCHMCTYLNWPRAIRCTQCLSQ

SMENANKWSCHMCTYLNWPR




RRTRSPTESPQSSGSGSRPVAF

AIRCTQCLSQRRTRSPTESP




SVDPCEEYNDRNKLNTRTQHWT

QSSGSGSRPVAFSVDPCEEY




CSVCTYENWAKAKRCVVCDHPR

NDRNKLNTRTQHWTCSVCTY




PNNIEAIELAETEEASSIINEQ

ENWAKAKRCVVCDHPRPNNI




DRARWRGSCSSGNSQRRSPPAT

EAIELAETEEASSIINEQDR




KRDSEVKMDFQRIELAGAVGSK

ARWRGSCSSGNSQRRSPPAT




EELEVDFKKLKQIKNRMKKTDW

KRDSEVKMDFQRIELAGAVG




LFLNACVGVVEGDLAAIEAYKS

SKEELEVDEKKLKQIKNRMK




SGGDIARQLTADEV

KTDWLFLNACVGVVEGDLAA




RLLNRPSAFDVGYTLVHLAIRE

IEAYKSSGGDIARQLTADEV




QRQDMLAILLTEVSQQAAKCIP

RLLNRPSAFDVGYTLVHLAI




AMVCPELTEQIRREIAASLHQR

RFQRQDMLAILLTEVSQQAA




KGDFACYFLTDLVTFTLPADIE

KCIPAMVCPELTEQIRREIA




DLPPTVQEKLFDEVLDRDVQKE

ASLHQRKGDFACYFLTDLVT




LEEESPIINWSLELATRLDSRL

FTLPADIEDLPPTVQEKLED




YALWNRTAGDCLLDSVLQATWG

EVLDRDVQKELEEESPIINW




IYDKDSVLRKALHDSLHDCSHW

SLELATRLDSRLYALWNRTA




FYTRWKDWESWYSQSFGLHESL

GDCLLDSVLQATWGIYDKDS




REEQWQEDWAFILSLASQPGAS

VLRKALHDSLHDCSHWFYTR




LEQTHIFVLAHILRRPIIVYGV

WKDWESWYSQSFGLHESLRE




KYYKSFRGETLGYTRFQGVYLP

EQWQEDWAFILSLASQPGAS




LLWEQSFCWKSPIALGYTRGHF

LEQTHIFVLAHILRRPIIVY




SALVAMENDGYGNR

GVKYYKSFRGETLGYTRFQG




GAGANLNTDDDVTITELPLVDS

VYLPLLWEQSFCWKSPIALG




ERKLLHVHELSAQELGNEEQQE

YTRGHESAL




KLLREWLDCCVTEGGVLVAMQK






SSRRRNHPLVTQMVEKWLDRYR






QIRPCTSLSDGEEDEDDEDE







VCIP1_HUMAN
84
MSQPPPPPPPLPPPPPPPEAPQ
193
PASGSVSIECTECGQRHEQQ


Deubiquitinating

TPSSLASAAASGGLLKRRDRRI

QLLGVEEVTDPDVVLHNLLR


protein

LSGSCPDPKCQARLFFPASGSV

NALLGVTGAPKKNTELVKVM


VCIP135

SIECTECGQRHEQQQLLGVEEV

GLSNYHCKLLSPILARYGMD




TDPDVVLHNLLRNALLGVTGAP

KQTGRAKLLRDMNQGELEDC




KKNTELVKVMGLSNYHCKLLSP

ALLGDRAFLIEPEHVNTVGY




ILARYGMDKQTGRAKLLRDMNQ

GKDRSGSLLYLHDTLEDIKR




GELFDCALLGDRAFLIEPEHVN

ANKSQECLIPVHVDGDGHCL




TVGYGKDRSGSLLYLHDTLEDI

VHAVSRALVGRELFWHALRE




KRANKSQECLIPVHVDGDGHCL

NLKQHFQQHLARYQALFHDE




VHAVSRALVGRELFWHALRENL

IDAAEWEDIINECDPLFVPP




KQHFQQHLARYQALFHDFIDAA

EGVPLGLRNIHIFGLANVLH




EWEDIINECDPLFVPPEGVPLG

RPIILLDSLSGMRSSGDYSA




LRNIHIFGLANVLH

TFLPGLIPAEKCTGKDGHLN




RPIILLDSLSGMRSSGDYSATE

KPICIAWSSSGRNHYIPL




LPGLIPAEKCTGKDGHLNKPIC






IAWSSSGRNHYIPLVGIKGAAL






PKLPMNLLPKAWGVPQDLIKKY






IKLEEDGGCVIGGDRSLQDKYL






LRLVAAMEEVEMDKHGIHPSLV






ADVHQYFYRRTGVIGVQPEEVT






AAAKKAVMDNRLHKCLLCGALS






ELHVPPEWLAPGGKLYNLAKST






HGQLRTDKNYSFPLNNLVCSYD






SVKDVLVPDYGMSNLTACNWCH






GTSVRKVRGDGSIVYLDGDRTN






SRSTGGKCGCGFKHFWDGKEYD






NLPEAFPITLEWGG






RVVRETVYWFQYESDSSLNSNV






YDVAMKLVTKHEPGEFGSEILV






QKVVHTILHQTAKKNPDDYTPV






NIDGAHAQRVGDVQGQESESQL






PTKIILTGQKTKTLHKEELNMS






KTERTIQQNITEQASVMQKRKT






EKLKQEQKGQPRTVSPSTIRDG






PSSAPATPTKAPYSPTTSKEKK






IRITTNDGRQSMVTLKSSTTFF






ELQESIAREFNIPPYLQCIRYG






FPPKELMPPQAGMEKEPVPLQH






GDRITIEILKSKAEGGQSAAAH






SAHTVKQEDIAVTGKLSSKELQ






EQAEKEMYSLCLLA






TLMGEDVWSYAKGLPHMFQQGG






VFYSIMKKTMGMADGKHCTFPH






LPGKTFVYNASEDRLELCVDAA






GHFPIGPDVEDLVKEAVSQVRA






EATTRSRESSPSHGLLKLGSGG






VVKKKSEQLHNVTAFQGKGHSL






GTASGNPHLDPRARETSVVRKH






NTGTDFSNSSTKTEPSVFTASS






SNSELIRIAPGVVTMRDGRQLD






PDLVEAQRKKLQEMVSSIQASM






DRHLRDQSTEQSPSDLPQRKTE






VVSSSAKSGSLQTGLPESFPLT






GGTENLNTETTDGCVADALGAA






FATRSKAQRGNSVEELEEMDSQ






DAEMTNTTEPMDHS







UCHL3_HUMAN
85
MEGQRWLPLEANPEVTNQFLKQ
194
QRWLPLEANPEVTNQFLKQL


Ubiquitin

LGLHPNWQFVDVYGMDPELLSM

GLHPNWQFVDVYGMDPELLS


carboxyl-

VPRPVCAVLLLFPITEKYEVER

MVPRPVCAVLLLFPITEKYE


terminal

TEEEEKIKSQGQDVTSSVYFMK

VFRTEEEEKIKSQGQDVTSS


hydrolase

QTISNACGTIGLIHAIANNKDK

VYFMKQTISNACGTIGLIHA


isozyme L3

MHFESGSTLKKFLEESVSMSPE

IANNKDKMHFESGSTLKKEL




ERARYLENYDAIRVTHETSAHE

EESVSMSPEERARYLENYDA




GQTEAPSIDEKVDLHFIALVHV

IRVTHETSAHEGQTEAPSID




DGHLYELDGRKPFPINHGETSD

EKVDLHFIALVHVDGHLYEL




ETLLEDAIEVCKKEMERDPDEL

DGRKPFPINHGETSDETLLE




RENAIALSAA

DAIEVCKKEMERDPDELREN






AIALSAA





UCHL1_HUMAN
86
MQLKPMEINPEMLNKVLSRLGV
86
MQLKPMEINPEMLNKVLSRL


Ubiquitin

AGQWRFVDVLGLEEESLGSVPA

GVAGQWRFVDVLGLEEESLG


carboxyl-

PACALLLLFPLTAQHENFRKKQ

SVPAPACALLLLFPLTAQHE


terminal

IEELKGQEVSPKVYFMKQTIGN

NFRKKQIEELKGQEVSPKVY


hydrolase

SCGTIGLIHAVANNQDKLGFED

FMKQTIGNSCGTIGLIHAVA


isozyme L1

GSVLKQFLSETEKMSPEDRAKC

NNQDKLGFEDGSVLKQFLSE




FEKNEAIQAAHDAVAQEGQCRV

TEKMSPEDRAKCFEKNEAIQ




DDKVNFHFILENNVDGHLYELD

AAHDAVAQEGQCRVDDKVNF




GRMPFPVNHGASSEDTLLKDAA

HFILENNVDGHLYELDGRMP




KVCREFTEREQGEVRESAVALC

FPVNHGASSEDTLLKDAAKV




KAA

CREFTEREQGEVRESAVALC






KAA





UCHL5_HUMAN
87
MTGNAGEWCLMESDPGVFTELI
195
GEWCLMESDPGVFTELIKGF


Ubiquitin

KGFGCRGAQVEEIWSLEPENFE

GCRGAQVEEIWSLEPENFEK


carboxyl-

KLKPVHGLIFLEKWQPGEEPAG

LKPVHGLIFLFKWQPGEEPA


terminal

SVVQDSRLDTIFFAKQVINNAC

GSVVQDSRLDTIFFAKQVIN


hydrolase

ATQAIVSVLLNCTHQDVHLGET

NACATQAIVSVLLNCTHQDV


isozyme L5

LSEFKEFSQSFDAAMKGLALSN

HLGETLSEFKEFSQSEDAAM




SDVIRQVHNSFARQQMFEEDTK

KGLALSNSDVIRQVHNSFAR




TSAKEEDAFHFVSYVPVNGRLY

QQMFEEDTKTSAKEEDAFHF




ELDGLREGPIDLGACNQDDWIS

VSYVPVNGRLYELDGLREGP




AVRPVIEKRIQKYSEGEIRENL

IDLGACNQDDWISAVRPVIE




MAIVSDRKMIYEQKIAELQRQL

KRIQKYSEGEIRENLMAIVS




AEEEPMDTDQGNSMLSAIQSEV

DRK




AKNQMLIEEEVQKLKRYKIENI






RRKHNYLPFIMELLKTLAEHQQ






LIPLVEKAKEKQNAKKAQETK







ATX3_HUMAN
88
MESIFHEKQEGSLCAQHCLNNL
196
ESIFHEKQEGSLCAQHCLNN


Ataxin-3

LQGEYFSPVELSSIAHQLDEEE

LLQGEYFSPVELSSIAHQLD




RMRMAEGGVTSEDYRTFLQQPS

EEERMRMAEGGVTSEDYRTF




GNMDDSGFFSIQVISNALKVWG

LQQPSGNMDDSGFFSIQVIS




LELILENSPEYQRLRIDPINER

NALKVWGLELILENSPEYQR




SFICNYKEHWFTVRKLGKQWEN

LRIDPINERSFICNYKEHWF




LNSLLTGPELISDTYLALFLAQ

TVRKLGKQWFNLNSLLTGPE




LQQEGYSIFVVKGDLPDCEADQ

LISDTYLALFLAQLQQEGYS




LLQMIRVQQMHRPKLIGEELAQ

IFVVK




LKEQRVHKTDLERVLEANDGSG






MLDEDEEDLQRALALSRQEIDM






EDEEADLRRAIQLSMQGSSRNI






SQDMTQTSGTNLTSEELRKRRE






AYFEKQQQKQQQQQQQQQQGDL






SGQSSHPCERPATSSGALGSDL






GDAMSEEDMLQAAVTMSLETVR






NDLKTEGKK







JOS2_HUMAN
89
MSQAPGAQPSPPTVYHERQRLE
197
PTVYHERQRLELCAVHALNN


Josephin-2

LCAVHALNNVLQQQLESQEAAD

VLQQQLFSQEAADEICKRLA




EICKRLAPDSRLNPHRSLLGTG

PDSRLNPHRSLLGTGNYDVN




NYDVNVIMAALQGLGLAAVWWD

VIMAALQGLGLAAVWWDRRR




RRRPLSQLALPQVLGLILNLPS

PLSQLALPQVLGLILNLPSP




PVSLGLLSLPLRRRHWVALRQV

VSLGLLSLPLRRRHWVALRQ




DGVYYNLDSKLRAPEALGDEDG

VDGVYYNLDSKLRAPEALGD




VRAFLAAALAQGLCEVLLVVTK

EDGVRAFLAAALAQGLCEVL




EVEEKGSWLRTD

LVV





JOS1_HUMAN
90
MSCVPWKGDKAKSESLELPQAA
198
PQAAPPQIYHEKQRRELCAL


Josephin-1

PPQIYHEKQRRELCALHALNNV

HALNNVFQDSNAFTRDTLQE




FQDSNAFTRDTLQEIFQRLSPN

IFQRLSPNTMVTPHKKSMLG




TMVTPHKKSMLGNGNYDVNVIM

NGNYDVNVIMAALQTKGYEA




AALQTKGYEAVWWDKRRDVGVI

VWWDKRRDVGVIALTNVMGF




ALTNVMGFIMNLPSSLCWGPLK

IMNLPSSLCWGPLKLPLKRQ




LPLKRQHWICVREVGGAYYNLD

HWICVREVGGAYYNLDSKLK




SKLKMPEWIGGESELRKFLKHH

MPEWIGGESELRKFLKHHLR




LRGKNCELLLVVPEEVEAHQSW

GKNCELLLVV




RTDV







ATX3L_HUMAN
91
MDFIFHEKQEGFLCAQHCLNNL
199
DFIFHEKQEGFLCAQHCLNN


Ataxin-

LQGEYFSPVELASIAHQLDEEE

LLQGEYFSPVELASIAHQLD


3-like protein

RMRMAEGGVTSEEYLAFLQQPS

EEERMRMAEGGVTSEEYLAF




ENMDDTGFFSIQVISNALKEWG

LQQPSENMDDTGFFSIQVIS




LEIIHENNPEYQKLGIDPINER

NALKFWGLEIIHENNPEYQK




SFICNYKQHWFTIRKEGKHWEN

LGIDPINERSFICNYKQHWE




LNSLLAGPELISDTCLANFLAR

TIRKFGKHWENLNSLLAGPE




LQQQAYSVFVVKGDLPDCEADQ

LISDTCLANFLARLQQQAYS




LLQIISVEEMDTPKLNGKKLVK

VFVVK




QKEHRVYKTVLEKVSEESDESG






TSDQDEEDFQRALELSRQETNR






EDEHLRSTIELSMQGSSGNTSQ






DLPKTSCVTPASEQPKKIKEDY






FEKHQQEQKQQQQQSDLPGHSS






YLHERPTTSSRAIESDLSDDIS






EGTVQAAVDTILEIMRKNLKIK






GEK







MINY3_HUMAN
92
MSELTKELMELVWGTKSSPGLS
200
CRWTQGFVFSESEGSALEQF


Ubiquitin

DTIFCRWTQGFVESESEGSALE

EGGPCAVIAPVQAFLLKKLL


carboxyl-

QFEGGPCAVIAPVQAFLLKKLL

FSSEKSSWRDCSEEEQKELL


terminal

FSSEKSSWRDCSEEEQKELLCH

CHTLCDILESACCDHSGSYC


hydrolase

TLCDILESACCDHSGSYCLVSW

LVSWLRGKTTEETASISGSP


MINDY-3

LRGKTTEETASISGSPAESSCQ

AESSCQVEHSSALAVEELGF




VEHSSALAVEELGFERFHALIQ

ERFHALIQKRSFRSLPELKD




KRSFRSLPELKDAVLDQYSMWG

AVLDQYSMWGNKFG




NKFGVLLFLYSVLLTKGIENIK

VLLFLYSVLLTKGIENIKNE




NEIEDASEPLIDPVYGHGSQSL

IEDASEPLIDPVYGHGSQSL




INLLLTGHAVSNVWDGDRECSG

INLLLTGHAVSNVWDGDREC




MKLLGIHEQAAVGELTLMEALR

SGMKLLGIHEQAAVGELTLM




YCKVGSYLKSPKFPIWIVGSET

EALRYCKVGSYLKSPKFPIW




HLTVFFAKDMALVA

IVGSETHLTVFFAKDMALVA




PEAPSEQARRVFQTYDPEDNGF

PEAPSEQARRVFQTYDPEDN




IPDSLLEDVMKALDLVSDPEYI

GFIPDSLLEDVMKALDLVSD




NLMKNKLDPEGLGIILLGPFLQ

PEYINLMKNKLDPEGIGIIL




EFFPDQGSSGPESFTVYHYNGL

LGPFLQEFFPDQGSSGPESF




KQSNYNEKVMYVEGTAVVMGFE

TVYHYNGLKQSNYNEKVMYV




DPMLQTDDTPIKRCLQTKWPYI

EGTAVVMGFEDPMLQTDDTP




ELLWTTDRSPSLN

IKRCLQTKWPYIELLWTTDR






SPSLN





MINY1_HUMAN
93
MEYHQPEDPAPGKAGTAEAVIP
201
YCVKWIPWKGEQTPIITQST


Ubiquitin

ENHEVLAGPDEHPQDTDARDAD

NGPCPLLAIMNILFLQWKVK


carboxyl-

GEAREREPADQALLPSQCGDNL

LPPQKEVITSDELMAHLGNC


terminal

ESPLPEASSAPPGPTLGTLPEV

LLSIKPQEKSEGLQLNFQQN


hydrolase

ETIRACSMPQELPQSPRTRQPE

VDDAMTVLPKLATGLDVNVR


MINDY-1

PDFYCVKWIPWKGEQTPIITQS

FTGVSDFEYTPECSVEDLLG




TNGPCPLLAIMNILFLQWKVKL

IPLYHGWLVDPQSPEAVRAV




PPQKEVITSDELMAHLGNCLLS

GKLSYNQLVERIITCKHSSD




IKPQEKSEGLQLNFQQNVDDAM

TNLVTEGLIAEQFLETTAAQ




TVLPKLATGLDVNVRFTGVSDF

LTYHGLCELTAAAKEGELSV




EYTPECSVEDLLGIPLYHGWLV

FFRNNHFSTMTKHKSHLYLL




DPQSPEAVRAVGKLSYNQLVER

VTDQGFLQEEQVVWESLHNV




IITCKHSSDTNLVTEGLIAEQF

DGDSCFCDSDFHLSHSLGKG




LETTAAQLTYHGLC

PGAEGGSGSPETQLQVDQDY




ELTAAAKEGELSVFFRNNHEST

LIALSLQQQQPRGPLGLTDL




MTKHKSHLYLLVTDQGELQEEQ

ELAQQLQQEEYQQQQAAQPV




VVWESLHNVDGDSCFCDSDEHL

RMRTRVLSLQGRGATSGRPA




SHSLGKGPGAEGGSGSPETQLQ

GERRQRPKHESDCILL




VDQDYLIALSLQQQQPRGPLGL






TDLELAQQLQQEEYQQQQAAQP






VRMRTRVLSLQGRGATSGRPAG






ERRQRPKHESDCILL







MINY2_HUMAN
94
MESSPESLQPLEHGVAAGPASG
202
YHIKWIQWKEENTPIITQNE


Ubiquitin

TGSSQEGLQETRLAAGDGPGVW

NGPCPLLAILNVLLLAWKVK


carboxyl-

AAETSGGNGLGAAAARRSLPDS

LPPMMEIITAEQLMEYLGDY


terminal

ASPAGSPEVPGPCSSSAGLDLK

MLDAKPKEISEIQRLNYEQN


hydrolase

DSGLESPAAAEAPLRGQYKVTA

MSDAMAILHKLQTGLDVNVR


MINDY-2

SPETAVAGVGHELGTAGDAGAR

FTGVRVFEYTPECIVEDLLD




PDLAGTCQAELTAAGSEEPSSA

IPLYHGWLVDPQIDDIVKAV




GGLSSSCSDPSPPGESPSLDSL

GNCSYNQLVEKIISCKQSDN




ESFSNLHSFPSSCEENSEEGAE

SELVSEGFVAEQFLNNTATQ




NRVPEEEEGAAVLPGAVPLCKE

LTYHGLCELTSTVQEGELCV




EEGEETAQVLAASKERFPGQSV

FFRNNHFSTMTKYKGQLYLL




YHIKWIQWKEENTPIITQNENG

VTDQGFLTEEKVVWESLHNV




PCPLLAILNVLLLAWKVKLPPM

DGDGNFCDSEFHLRPPSDPE




MEIITAEQLMEYLG

TVYKGQQDQIDQDYLMALSL




DYMLDAKPKEISEIQRLNYEQN

QQEQQSQEINWEQIPEGISD




MSDAMAILHKLQTGLDVNVRFT

LELAKKLQEEEDRRASQYYQ




GVRVFEYTPECIVEDLLDIPLY

EQEQAAAAAAAASTQAQQGQ




HGWLVDPQIDDIVKAVGNCSYN

PAQASPSSGRQSGNSERKRK




QLVEKIISCKQSDNSELVSEGF

EPREKDKEKEKEKNSCVIL




VAEQFLNNTATQLTYHGLCELT






STVQEGELCVFFRNNHESTMTK






YKGQLYLLVTDQGELTEEKVVW






ESLHNVDGDGNFCDSEFHLRPP






SDPETVYKGQQDQIDQDYLMAL






SLQQEQQSQEINWEQIPEGISD






LELAKKLQEEEDRRASQYYQEQ






EQAAAAAAAASTQAQQGQPAQA






SPSSGRQSGNSERKRKEPREKD






KEKEKEKNSCVIL







MINY4_HUMAN
95
MDSLFVEEVAASLVREFLSRKG
203
FCCFNEEWKLQSESESNTAS


Probable

LKKTCVTMDQERPRSDLSINNR

LKYGIVQNKGGPCGVLAAVQ


ubiquitin

NDLRKVLHLEFLYKENKAKENP

GCVLQKLLFEGDSKADCAQG


carboxyl-

LKTSLELITRYFLDHEGNTANN

LQPSDAHRTRCLVLALADIV


terminal

FTQDTPIPALSVPKKNNKVPSR

WRAGGRERAVVALASRTQQF


hydrolase

CSETTLVNIYDLSDEDAGWRTS

SPTGKYKADGVLETLTLHSL


MINDY-4

LSETSKARHDNLDGDVLGNFVS

TCYEDLVTFLQQSIHQFEVG




SKRPPHKSKPMQTVPGETPVLT

PYGCILLTLSAILSRSTELI




SAWEKIDKLHSEPSLDVKRMGE

RQDFDVPTSHLIGAHGYCTQ




NSRPKSGLIVRGMMSGPIASSP

ELVNLLLTGKAVSNVENDVV




QDSFHRHYLRRSSPSSSSTQPQ

ELDSGDGNITLLRGIAARSD




EESRKVPELFVCTQQDILASSN

IGFLSLFEHYNMCQVGCFLK




SSPSRTSLGQLSELTVERQKTT

TPRFPIWVVCSESHESILES




ASSPPHLPSKRLPP

LQPGLLRDWRTERLEDLYYY




WDRARPRDPSEDTPAVDGSTDT

DGLANQQEQIRLTIDTTQTI




DRMPLKLYLPGGNSRMTQERLE

SEDTDNDLVPPLELCIRTKW




RAFKRQGSQPAPVRKNQLLPSD

KGASVNWNGSDPIL




KVDGELGALRLEDVEDELIREE






VILSPVPSVLKLQTASKPIDLS






VAKEIKTLLFGSSFCCENEEWK






LQSFSFSNTASLKYGIVQNKGG






PCGVLAAVQGCVLQKLLFEGDS






KADCAQGLQPSDAHRTRCLVLA






LADIVWRAGGRERAVVALASRT






QQFSPTGKYKADGVLETLTLHS






LTCYEDLVTFLQQSIHQFEVGP






YGCILLTLSAILSRSTELIRQD






FDVPTSHLIGAHGY






CTQELVNLLLTGKAVSNVENDV






VELDSGDGNITLLRGIAARSDI






GFLSLFEHYNMCQVGCFLKTPR






FPIWVVCSESHESILFSLQPGL






LRDWRTERLEDLYYYDGLANQQ






EQIRLTIDTTQTISEDTDNDLV






PPLELCIRTKWKGASVNWNGSD






PIL







STABP_HUMAN
96
MSDHGDVSLPPEDRVRALSQLG
204
VVPGRLCPQFLQLASANTAR


STAM-

SAVEVNEDIPPRRYFRSGVEII

GVETCGILCGKLMRNEFTIT


binding

RMASIYSEEGNIEHAFILYNKY

HVLIPKQSAGSDYCNTENEE


protein

ITLFIEKLPKHRDYKSAVIPEK

ELFLIQDQQGLITLGWIHTH




KDTVKKLKEIAFPKAEELKAEL

PTQTAFLSSVDLHTHCSYQM




LKRYTKEYTEYNEEKKKEAEEL

MLPESVAIVCSPKFQETGFF




ARNMAIQQELEKEKQRVAQQKQ

KLTDHGLEEISSCRQKGFHP




QQLEQEQFHAFEEMIRNQELEK

HSKDPPLFCSCSHVTVVDRA




ERLKIVQEFGKVDPGLGGPLVP

VTITDLR




DLEKPSLDVEPTLTVSSIQPSD






CHTTVRPAKPPVVDRSLKPGAL






SNSESIPTIDGLRHVVVPGRLC






PQFLQLASANTARGVETCGILC






GKLMRNEFTITHVL






IPKQSAGSDYCNTENEEELFLI






QDQQGLITLGWIHTHPTQTAFL






SSVDLHTHCSYQMMLPESVAIV






CSPKFQETGFFKLTDHGLEEIS






SCRQKGFHPHSKDPPLFCSCSH






VTVVDRAVTITDLR







MPND_HUMAN
97
MAAPEPLSPAGGAGEEAPEEDE
205
VAVSSNVLFLLDFHSHLTRS


MPN

DEAEAEDPERPNAGAGGGRSGG

EVVGYLGGRWDVNSQMLTVL


domain-

GGSSVSGGGGGGGAGAGGCGGP

RAFPCRSRLGDAETAAAIEE


containing

GGALTRRAVTLRVLLKDALLEP

EIYQSLFLRGLSLVGWYHSH


protein

GAGVLSIYYLGKKELGDLQPDG

PHSPALPSLQDIDAQMDYQL




RIMWQETGQTENSPSAWATHCK

RLQGSSNGFQPCLALLCSPY




KLVNPAKKSGCGWASVKYKGQK

YSGNPGPESKISPFWVMPPP




LDKYKATWLRLHQLHTPATAAD

EMLLVEFYKGSPDLVRLQEP




ESPASEGEEEELLMEEEEEDVL

WSQEHTYLDKLKISLASRTP




AGVSAEDKSRRPLGKSPSEPAH

KDQSLCHVLEQVCGVLKQGS




PEATTPGKRVDSKIRVPVRYCM






LGSRDLARNPHTLVEVTSFAAI






NKFQPFNVAVSSNVLELLDEHS






HLTRSEVVGYLGGR






WDVNSQMLTVLRAFPCRSRLGD






AETAAAIEEEIYQSLFLRGLSL






VGWYHSHPHSPALPSLQDIDAQ






MDYQLRLQGSSNGFQPCLALLC






SPYYSGNPGPESKISPFWVMPP






PEMLLVEFYKGSPDLVRLQEPW






SQEHTYLDKLKISLASRTPKDQ






SLCHVLEQVCGVLKQGS







EMC9_HUMAN
98
MGEVEISALAYVKMCLHAARYP
206
ALAYVKMCLHAARYPHAAVN


ER

HAAVNGLFLAPAPRSGECLCLT

GLFLAPAPRSGECLCLTDCV


membrane

DCVPLFHSHLALSVMLEVALNQ

PLFHSHLALSVMLEVALNQV


protein

VDVWGAQAGLVVAGYYHANAAV

DVWGAQAGLVVAGYYHANAA


complex

NDQSPGPLALKIAGRIAEFFPD

VNDQSPGPLALKIAGRIAEF


subunit 9

AVLIMLDNQKLVPQPRVPPVIV

FPDAVLIMLDNQKLVPQPRV




LENQGLRWVPKDKNLVMWRDWE

PPVIVLENQGLRWVPKDKNL




ESRQMVGALLEDRAHQHLVDED

VMWRDWEESRQMVGALLEDR




CHLDDIRQDWTNQRLNTQITQW

AHQHLVDEDCHLDDIRQDWT




VGPTNGNGNA

NQRLNTQITQWVGPTNGNGN






A





PSDE_HUMAN
99
MDRLLRLGGGMPGLGQGPPTDA
207
QVYISSLALLKMLKHGRAGV


26S

PAVDTAEQVYISSLALLKMLKH

PMEVMGLMLGEFVDDYTVRV


proteasome

GRAGVPMEVMGLMLGEFVDDYT

IDVFAMPQSGTGVSVEAVDP


non-ATPase

VRVIDVFAMPQSGTGVSVEAVD

VFQAKMLDMLKQTGRPEMVV


regulatory

PVFQAKMLDMLKQTGRPEMVVG

GWYHSHPGFGCWLSGVDINT


subunit 14

WYHSHPGFGCWLSGVDINTQQS

QQSFEALSERAVAVVVDPIQ




FEALSERAVAVVVDPIQSVKGK

SVKGKVVIDAFRLINANMMV




VVIDAFRLINANMMVLGHEPRQ

LGHEPRQTTSNLGHLNKPSI




TTSNLGHLNKPSIQALIHGLNR

QALIHGLNRHYYSITINYRK




HYYSITINYRKNELEQKMLLNL

NELEQKMLLNLHKKSWMEGL




HKKSWMEGLTLQDYSEHCKHNE

TLQDYSEHCKHNESVVKEML




SVVKEMLELAKNYNKAVEEEDK

ELAKNYNKAVEEEDKMTPEQ




MTPEQLAIKNVGKQDPKRHLEE

LAIKNVGKQDPKRHLEEHVD




HVDVLMTSNIVQCLAAMLDTVV

VLMTSNIVQCLAAMLDTVVE




FK

K





MYSM1_HUMAN
100
MAAEEADVDIEGDVVAAAGAQP
208
QVKVASEALLIMDLHAHVSM


Histone

GSGENTASVLQKDHYLDSSWRT

AEVIGLLGGRYSEVDKVVEV


H2A

ENGLIPWTLDNTISEENRAVIE

CAAEPCNSLSTGLQCEMDPV


deubiquitinase

KMLLEEEYYLSKKSQPEKVWLD

SQTQASETLAVRGESVIGWY


MYSM1

QKEDDKKYMKSLQKTAKIMVHS

HSHPAFDPNPSLRDIDTQAK




PTKPASYSVKWTIEEKELFEQG

YQSYFSRGGAKFIGMIVSPY




LAKFGRRWTKISKLIGSRTVLQ

NRNNPLPYSQITCLVISEEI




VKSYARQYFKNKVKCGLDKETP

SPDGSYRLPYKFEVQQMLEE




NQKTGHNLQVKNEDKGTKAWTP

PQWGLVFEKTRWIIEKYRLS




SCLRGRADPNLNAVKIEKLSDD

HSSVPMDKIFRRDSDLTCLQ




EEVDITDEVDELSSQTPQKNSS

KLLECMRKTLSKVTNCFMAE




SDLLLDFPNSKMHETNQGEFIT

EFLTEIENLFLSNYKSNQEN




SDSQEALESKSSRGCLQNEKQD

GVTEENCTKELLM




ETLSSSEITLWTEK






QSNGDKKSIELNDQKENELIKN






CNKHDGRGIIVDARQLPSPEPC






EIQKNLNDNEMLFHSCQMVEES






HEEEELKPPEQEIEIDRNIIQE






EEKQAIPEFFEGRQAKTPERYL






KIRNYILDQWEICKPKYLNKTS






VRPGLKNCGDVNCIGRIHTYLE






LIGAINFGCEQAVYNRPQTVDK






VRIRDRKDAVEAYQLAQRLQSM






RTRRRRVRDPWGNWCDAKDLEG






QTFEHLSAEELAKRREEEKGRP






VKSLKVPRPTKSSFDPFQLIPC






NFFSEEKQEPFQVKVASEALLI






MDLHAHVSMAEVIG






LLGGRYSEVDKVVEVCAAEPCN






SLSTGLQCEMDPVSQTQASETL






AVRGFSVIGWYHSHPAFDPNPS






LRDIDTQAKYQSYFSRGGAKFI






GMIVSPYNRNNPLPYSQITCLV






ISEEISPDGSYRLPYKFEVQQM






LEEPQWGLVFEKTRWIIEKYRL






SHSSVPMDKIFRRDSDLTCLQK






LLECMRKTLSKVINCEMAEEFL






TEIENLELSNYKSNQENGVTEE






NCTKELLM







ABRX2_HUMAN
101
MAASISGYTFSAVCFHSANSNA
209
AVCFHSANSNADHEGELLGE


BRISC

DHEGELLGEVRQEETFSISDSQ

VRQEETFSISDSQISNTEFL


complex

ISNTEFLQVIEIHNHQPCSKLE

QVIEIHNHQPCSKLESFYDY


subunit

SFYDYASKVNEESLDRILKDRR

ASKVNEESLDRILKDRRKKV


Abraxas 2

KKVIGWYRFRRNTQQQMSYREQ

IGWYRFRRNTQQQMSYREQV




VLHKQLTRILGVPDLVELLESF

LHKQLTRIL




ISTANNSTHALEYVLERPNRRY

GVPDLVELLESFISTANNST




NQRISLAIPNLGNTSQQEYKVS

HALEYVLERPNRRYNQRISL




SVPNTSQSYAKVIKEHGTDFFD

AIPNLGNTSQQEYKVSSVPN




KDGVMKDIRAIYQVYNALQEKV

TSQSYAKVIKEHGTDFEDKD




QAVCADVEKSERVVESCQAEVN

GVMKDIRAIYQVYNALQEKV




KLRRQITQRKNEKEQERRLQQA

QAVCADVEKSERVVESCQAE




VLSRQMPSESLDPAFSPRMPSS

VNKLRRQITQRKNEKEQERR




GFAAEGRSTLGDAE

LQQAVLSRQMPSESLDPAFS




ASDPPPPYSDFHPNNQESTLSH

PRMPSSGFAAEGRSTLGDAE




SRMERSVEMPRPQAVGSSNYAS

ASDPPPPYSDFHPNNQESTL




TSAGLKYPGSGADLPPPQRAAG

SHSRMERSVEMPRPQAVGSS




DSGEDSDDSDYENLIDPTEPSN

NYASTSAGLKYPGSGADLPP




SEYSHSKDSRPMAHPDEDPRNT

PQRAAGDSGEDSDDSDYENL




QTSQI

IDPTEPSNSEYSHSKDSRPM






AHPDEDPRNTQTSQI





PRP8_HUMAN
102
MAGVFPYRGPGNPVPGPLAPLP
210
FNPRTGQLELKIIHTSVWAG


Pre-mRNA-

DYMSEEKLQEKARKWQQLQAKR

QKRLGQLAKWKTAEEVAALI


processing-

YAEKRKFGFVDAQKEDMPPEHV

RSLPVEEQPKQIIVTRKGML


splicing factor

RKIIRDHGDMTNRKFRHDKRVY

DPLEVHLLDEPNIVIKGSEL


8

LGALKYMPHAVLKLLENMPMPW

QLPFQACLKVEKFGDLILKA




EQIRDVPVLYHITGAISFVNEI

TEPQMVLENLYDDWLKTISS




PWVIEPVYISQWGSMWIMMRRE

YTAFSRLILILRALHVNNDR




KRDRRHFKRMRFPPEDDEEPPL

AKVILKPDKTTITEPHHIWP




DYADNILDVEPLEAIQLELDPE

TLTDEEWIKVEVQLKDLILA




EDAPVLDWFYDHQPLRDSRKYV

DYGKKNNVNVASLTQSEIRD




NGSTYQRWQFTLPMMSTLYRLA

IILGMEISAPSQQRQQIAEI




NQLLTDLVDDNYFYLFDLKAFF

EKQTKEQSQLTATQTRTVNK




TSKALNMAIPGGPKFEPLVRDI

HGDEIITSTTSNYETQTESS




NLQDEDWNEENDIN

KTEWRVRAISAANLHLRTNH




KIIIRQPIRTEYKIAFPYLYNN

IYVSSDDIKETGYTYILPKN




LPHHVHLTWYHTPNVVFIKTED

VLKKFICISDLRAQIAGYLY




PDLPAFYFDPLINPISHRHSVK

GVSPPDNPQVKEIRCIVMVP




SQEPLPDDDEEFELPEFVEPEL

QWGTHQTVHLPGQLPQHEYL




KDTPLYTDNTANGIALLWAPRP

KEMEPLGWIHTQPNESPQLS




FNLRSGRTRRALDIPLVKNWYR

PQDVTTHAKIMADNPSWDGE




EHCPAGQPVKVRVSYQKLLKYY

KTIIITCSFTPGSCTLTAYK




VLNALKHRPPKAQKKRYLFRSF

LTPSGYEWGRQNTDKGNNPK




KATKFFQSTKLDWVEVGLQVCR

GYLPSHYERVOMLLSDRELG




QGYNMLNLLIHRKNLNYLHLDY

FFMVPAQSSWNYNEMGVRHD




NFNLKPVKTLTTKERKKSREGN

PNMKYELQLANPKEFYHEVH




AFHLCREVLRLTKLVVDSHVQY

RPSHELNFALLQEGEVYSAD




RLGNVDAFQLADGLQYIFAHVG

REDLYA




QLTGMYRYKYKLMR






QIRMCKDLKHLIYYRENTGPVG






KGPGCGFWAAGWRVWLFFMRGI






TPLLERWLGNLLARQFEGRHSK






GVAKTVTKQRVESHEDLELRAA






VMHDILDMMPEGIKQNKARTIL






QHLSEAWRCWKANIPWKVPGLP






TPIENMILRYVKAKADWWTNTA






HYNRERIRRGATVDKTVCKKNL






GRLTRLYLKAEQERQHNYLKDG






PYITAEEAVAVYTTTVHWLESR






RESPIPFPPLSYKHDTKLLILA






LERLKEAYSVKSRLNQSQREEL






GLIEQAYDNPHEALSRIKRHLL






TQRAFKEVGIEFMD






LYSHLVPVYDVEPLEKITDAYL






DQYLWYEADKRRLFPPWIKPAD






TEPPPLLVYKWCQGINNLQDVW






ETSEGECNVMLESRFEKMYEKI






DLTLLNRLLRLIVDHNIADYMT






AKNNVVINYKDMNHTNSYGIIR






GLQFASFIVQYYGLVMDLLVLG






LHRASEMAGPPQMPNDFLSFQD






IATEAAHPIRLFCRYIDRIHIF






FRFTADEARDLIQRYLTEHPDP






NNENIVGYNNKKCWPRDARMRL






MKHDVNLGRAVEWDIKNRLPRS






VTTVQWENSFVSVYSKDNPNLL






FNMCGFECRILPKC






RTSYEEFTHKDGVWNLQNEVTK






ERTAQCFLRVDDESMQRFHNRV






RQILMASGSTTFTKIVNKWNTA






LIGLMTYFREAVVNTQELLDLL






VKCENKIQTRIKIGLNSKMPSR






FPPVVFYTPKELGGLGMLSMGH






VLIPQSDLRWSKQTDVGITHER






SGMSHEEDQLIPNLYRYIQPWE






SEFIDSQRVWAEYALKRQEAIA






QNRRLTLEDLEDSWDRGIPRIN






TLFQKDRHTLAYDKGWRVRTDE






KQYQVLKQNPFWWTHQRHDGKL






WNLNNYRTDMIQALGGVEGILE






HTLFKGTYFPTWEG






LFWEKASGFEESMKWKKLTNAQ






RSGLNQIPNRRFTLWWSPTINR






ANVYVGFQVQLDLTGIFMHGKI






PTLKISLIQIFRAHLWQKIHES






IVMDLCQVEDQELDALEIETVQ






KETIHPRKSYKMNSSCADILLE






ASYKWNVSRPSLLADSKDVMDS






TTTQKYWIDIQLRWGDYDSHDI






ERYARAKFLDYTTDNMSIYPSP






TGVLIAIDLAYNLHSAYGNWFP






GSKPLIQQAMAKIMKANPALYV






LRERIRKGLQLYSSEPTEPYLS






SQNYGELFSNQIIWFVDDTNVY






RVTIHKTFEGNLTT






KPINGAIFIENPRTGQLELKII






HTSVWAGQKRLGQLAKWKTAEE






VAALIRSLPVEEQPKQIIVTRK






GMLDPLEVHLLDEPNIVIKGSE






LQLPFQACLKVEKFGDLILKAT






EPQMVLFNLYDDWLKTISSYTA






FSRLILILRALHVNNDRAKVIL






KPDKTTITEPHHIWPTLTDEEW






IKVEVQLKDLILADYGKKNNVN






VASLTQSEIRDIILGMEISAPS






QQRQQIAEIEKQTKEQSQLTAT






QTRTVNKHGDEIITSTTSNYET






QTFSSKTEWRVRAISAANLHLR






TNHIYVSSDDIKET






GYTYILPKNVLKKFICISDLRA






QIAGYLYGVSPPDNPQVKEIRC






IVMVPQWGTHQTVHLPGQLPQH






EYLKEMEPLGWIHTQPNESPQL






SPQDVTTHAKIMADNPSWDGEK






TIIITCSFTPGSCTLTAYKLTP






SGYEWGRQNTDKGNNPKGYLPS






HYERVQMLLSDRELGFFMVPAQ






SSWNYNEMGVRHDPNMKYELQL






ANPKEFYHEVHRPSHELNFALL






QEGEVYSADREDLYA







NPL4_HUMAN
103
MAESIIIRVQSPDGVKRITATK
211
QPSAITLNRQKYRHVDNIME


Nuclear

RETAATFLKKVAKEFGFQNNGE

ENHTVADRFLDFWRKTGNQH


protein

SVYINRNKTGEITASSNKSLNL

FGYLYGRYTEHKDIPLGIRA


localization

LKIKHGDLLFLFPSSLAGPSSE

EVAAIYEPPQIGTQNSLELL


protein 4

METSVPPGFKVEGAPNVVEDEI

EDPKAEVVDEIAAKLGLRKV


homolog

DQYLSKQDGKIYRSRDPQLCRH

GWIFTDLVSEDTRKGTVRYS




GPLGKCVHCVPLEPFDEDYLNH

RNKDTYFLSSEECITAGDFQ




LEPPVKHMSFHAYIRKLTGGAD

NKHPNMCRLSPDGHFGSKFV




KGKFVALENISCKIKSGCEGHL

TAVATGGPDNQVHFEGYQVS




PWPNGICTKCQPSAITLNRQKY

NQCMALVRDECLLPCKDAPE




RHVDNIMFENHTVADRELDEWR

LGYAKESSSEQYVPDVFYKD




KTGNQHFGYLYGRYTEHKDIPL

VDKFGNEITQLARPLPVEYL




GIRAEVAAIYEPPQIGTQNSLE

IIDITTTFPKDPVYTESISQ




LLEDPKAEVVDEIA

NPFPIENRDVLGETQDFHSL




AKLGLRKVGWIFTDLVSEDTRK

ATYLSQNTSSVELDTISDFH




GTVRYSRNKDTYFLSSEECITA

LLLFLVTNEVMPLQDSISLL




GDFQNKHPNMCRLSPDGHFGSK

LEAVRTRNEELAQTWKRSEQ




FVTAVATGGPDNQVHFEGYQVS

WATIEQLCSTVGGQLPGLHE




NQCMALVRDECLLPCKDAPELG

YGAVGGSTHTATAAMWACQH




YAKESSSEQYVPDVFYKDVDKF

CTFMNQPGTGHCEMCSLPRT




GNEITQLARPLPVEYLIIDITT






TFPKDPVYTESISQNPFPIENR






DVLGETQDFHSLATYLSQNTSS






VELDTISDFHLLLFLVTNEVMP






LQDSISLLLEAVRTRNEELAQT






WKRSEQWATIEQLCSTVGGQLP






GLHEYGAVGGSTHTATAAMWAC






QHCTFMNQPGTGHCEMCSLPRT







EMC8_HUMAN
104
MPGVKLTTQAYCKMVLHGAKYP
212
TQAYCKMVLHGAKYPHCAVN


ER

HCAVNGLLVAEKQKPRKEHLPL

GLLVAEKQKPRKEHLPLGGP


membrane

GGPGAHHTLFVDCIPLFHGTLA

GAHHTLFVDCIPLFHGTLAL


protein

LAPMLEVALTLIDSWCKDHSYV

APMLEVALTLIDSWCKDHSY


complex

IAGYYQANERVKDASPNQVAEK

VIAGYYQANERVKDASPNQV


subunit 8

VASRIAEGFSDTALIMVDNTKF

AEKVASRIAEGFSDTALIMV




TMDCVAPTIHVYEHHENRWRCR

DNTKFTMDCVAPTIHVYEHH




DPHHDYCEDWPEAQRISASLLD

ENRWRCRDPHHDYCEDWPEA




SRSYETLVDEDNHLDDIRNDWT

QRISASLLDSRSYETLVDED




NPEINKAVLHLC

NHLDDIRNDWTNPEINKAVL






HLC





ABRX1_HUMAN
105
MEGESTSAVLSGFVLGALAFQH
213
GFVLGALAFQHLNTDSDTEG


BRCA1-A

LNTDSDTEGELLGEVKGEAKNS

FLLGEVKGEAKNSITDSQMD


complex

ITDSQMDDVEVVYTIDIQKYIP

DVEVVYTIDIQKYIPCYQLF


subunit

CYQLFSFYNSSGEVNEQALKKI

SFYNSSGEVNEQALKKILSN


Abraxas 1

LSNVKKNVVGWYKFRRHSDQIM

VKKNVVGWYKFRRHSDQIMT




TFRERLLHKNLQEHFSNQDLVE

FRERLLHKNLQEHFSNQDLV




LLLTPSIITESCSTHRLEHSLY

FLLLTPSIITESCSTHRLEH




KPQKGLFHRVPLVVANLGMSEQ

SLYKPQKGLFHRVPLVVANL




LGYKTVSGSCMSTGFSRAVQTH

GMSEQLGYKTVSGSCMSTGF




SSKFFEEDGSLKEVHKINEMYA

SRAVQTHSSKFFEEDGSLKE




SLQEELKSICKKVEDSEQAVDK

VHKINEMYASLQEELKSICK




LVKDVNRLKREIEKRRGAQIQA

KVEDSEQAVDKLVKDVNRLK




AREKNIQKDPQENIFLCQALRT

REIEKRRGAQIQAAREKNIQ




FFPNSEFLHSCVMS

KDPQENIFLCQALRTFFPNS




LKNRHVSKSSCNYNHHLDVVDN

EFLHSCVMSLKNRHVSKSSC




LTLMVEHTDIPEASPASTPQII

NYNHHLDVVDNLTLMVEHTD




KHKALDLDDRWQFKRSRLLDTQ

IPEASPASTPQIIKHKALDL




DKRSKADTGSSNQDKASKMSSP

DDRWQFKRSRLLDTQDKRSK




ETDEEIEKMKGFGEYSRSPTF

ADTGSSNQDKASKMSSPETD






EEIEKMKGFGEYSRSPTF





STALP_HUMAN
106
MDQPFTVNSLKKLAAMPDHTDV
214
VVLPEDLCHKELQLAESNTV


AMSH-

SLSPEERVRALSKLGCNITISE

RGIETCGILCGKLTHNEFTI


like protease

DITPRRYFRSGVEMERMASVYL

THVIVPKQSAGPDYCDMENV




EEGNLENAFVLYNKFITLFVEK

EELFNVQDQHDLLTLGWIHT




LPNHRDYQQCAVPEKQDIMKKL

HPTQTAFLSSVDLHTHCSYQ




KEIAFPRTDELKNDLLKKYNVE

LMLPEAIAIVCSPKHKDTGI




YQEYLQSKNKYKAEILKKLEHQ

FRLTNAGMLEVSACKKKGFH




RLIEAERKRIAQMRQQQLESEQ

PHTKEPRLFSICKHVLVKDI




FLFFEDQLKKQELARGQMRSQQ

KIIVLDLR




TSGLSEQIDGSALSCFSTHQNN






SLLNVFADQPNKSDATNYASHS






PPVNRALTPAATLSAVQNLVVE






GLRCVVLPEDLCHKELQLAESN






TVRGIETCGILCGK






LTHNEFTITHVIVPKQSAGPDY






CDMENVEELFNVQDQHDLLTLG






WIHTHPTQTAFLSSVDLHTHCS






YQLMLPEAIAIVCSPKHKDTGI






FRLTNAGMLEVSACKKKGFHPH






TKEPRLFSICKHVLVKDIKIIV






LDLR







CSN6_HUMAN
107
MAAAAAAAAATNGTGGSSGMEV
215
VALHPLVILNISDHWIRMRS


COP9

DAAVVPSVMACGVTGSVSVALH

QEGRPVQVIGALIGKQEGRN


signalosome

PLVILNISDHWIRMRSQEGRPV

IEVMNSFELLSHTVEEKIII


complex

QVIGALIGKQEGRNIEVMNSFE

DKEYYYTKEEQFKQVFKELE


subunit 6

LLSHTVEEKIIIDKEYYYTKEE

FLGWYTTGGPPDPSDIHVHK




QFKQVFKELEFLGWYTTGGPPD

QVCEIIESPLFLKLNPMTKH




PSDIHVHKQVCEIIESPLELKL

TDLPVSVFESVIDIINGEAT




NPMTKHTDLPVSVFESVIDIIN

MLFAELTYTLATEEAERIGV




GEATMLFAELTYTLATEEAERI

DHVARMTATGSGENSTVAEH




GVDHVARMTATGSGENSTVAEH

LIAQHSAIKMLHSRVKLILE




LIAQHSAIKMLHSRVKLILEYV

YVKASEAGEVPFNHEILREA




KASEAGEVPFNHEILREAYALC

YALCHCLPVLSTDKFKTDFY




HCLPVLSTDKFKTDFYDQCNDV

DQCNDVGLMAYLGTITKTCN




GLMAYLGTITKTCNTMNQFVNK

TMNQFVNKFNVLYDRQGIGR




FNVLYDRQGIGRRMRGLFF

RMRGLFF





EIF3F_HUMAN
108
MATPAVPVSAPPATPTPVPAAA
216
VRLHPVILASIVDSYERRNE


Eukaryotic

PASVPAPTPAPAAAPVPAAAPA

GAARVIGTLLGTVDKHSVEV


translation

SSSDPAAAAAATAAPGQTPASA

TNCFSVPHNESEDEVAVDME


initiation

QAPAQTPAPALPGPALPGPFPG

FAKNMYELHKKVSPNELILG


factor 3

GRVVRLHPVILASIVDSYERRN

WYATGHDITEHSVLIHEYYS


subunit F

EGAARVIGTLLGTVDKHSVEVT

REAPNPIHLTVDTSLQNGRM




NCFSVPHNESEDEVAVDMEFAK

SIKAYVSTLMGVPGRTMGVM




NMYELHKKVSPNELILGWYATG

FTPLTVKYAYYDTERIGVDL




HDITEHSVLIHEYYSREAPNPI

IMKTCFSPNRVIGLSSDLQQ




HLTVDTSLQNGRMSIKAYVSTL

VGGASARIQDALSTVLQYAE




MGVPGRTMGVMFTPLTVKYAYY

DVLSGKVSADNTVGRFLMSL




DTERIGVDLIMKTCFSPNRVIG

VNQVPKIVPDDFETMLNSNI




LSSDLQQVGGASARIQDALSTV

NDLLMVTYLANLTQSQIALN




LQYAEDVLSGKVSADNTVGREL

EKLVNL




MSLVNQVPKIVPDDFETMLNSN






INDLLMVTYLANLTQSQIALNE






KLVNL







PSMD7_HUMAN
109
MPELAVQKVVVHPLVLLSVVDH
217
VVVHPLVLLSVVDHENRIGK


26S

FNRIGKVGNQKRVVGVLLGSWQ

VGNQKRVVGVLLGSWQKKVL


proteasome

KKVLDVSNSFAVPFDEDDKDDS

DVSNSFAVPFDEDDKDDSVW


non-ATPase

VWFLDHDYLENMYGMFKKVNAR

FLDHDYLENMYGMFKKVNAR


regulatory

ERIVGWYHTGPKLHKNDIAINE

ERIVGWYHTGPKLHKNDIAI


subunit 7

LMKRYCPNSVLVIIDVKPKDLG

NELMKRYCPNSVLVIIDVKP




LPTEAYISVEEVHDDGTPTSKT

KDLGLPTEAYISVEEVHDDG




FEHVTSEIGAEEAEEVGVEHLL

TPTSKTFEHVTSEIGAEEAE




RDIKDTTVGTLSQRITNQVHGL

EVGVEHLLRDIKDTTVGTLS




KGLNSKLLDIRSYLEKVATGKL

QRITNQVHGLKGLNSKLLDI




PINHQIIYQLQDVENLLPDVSL

RSYLEKVATGKLPINHQIIY




QEFVKAFYLKTNDQMVVVYLAS

QLQDVFNLLPDVSLQEFVKA




LIRSVVALHNLINNKIANRDAE

FYLKTNDQMVVVYLASLIRS




KKEGQEKEESKKDRKEDKEKDK

VVALHNLINNKIANRDAEKK




DKEKSDVKKEEKKEKK

EGQEKEESKKDRKEDKEKDK






DKEKSDVKKEEKKEKK





EIF3H_HUMAN
110
MASRKEGTGSTATSSSSTAGAA
218
VQIDGLVVLKIIKHYQEEGQ


Eukaryotic

GKGKGKGGSGDSAVKQVQIDGL

GTEVVQGVLLGLVVEDRLEI


translation

VVLKIIKHYQEEGQGTEVVQGV

TNCFPFPQHTEDDADEDEVQ


initiation

LLGLVVEDRLEITNCFPFPQHT

YQMEMMRSLRHVNIDHLHVG


factor 3

EDDADEDEVQYQMEMMRSLRHV

WYQSTYYGSFVTRALLDSQF


subunit H

NIDHLHVGWYQSTYYGSFVTRA

SYQHAIEESVVLIYDPIKTA




LLDSQFSYQHAIEESVVLIYDP

QGSLSLKAYRLTPKLMEVCK




IKTAQGSLSLKAYRLTPKLMEV

EKDESPEALKKANITFEYME




CKEKDFSPEALKKANITFEYME

EEVPIVIKNSHLINVLMWEL




EEVPIVIKNSHLINVLMWELEK

EKKSAVADKHELLSLASSNH




KSAVADKHELLSLASSNHLG

LGKNLQLLMDRVDEMSQDIV




KNLQLLMDRVDEMSQDIVKYNT

KYNTYMRNTSKQQQQKHQYQ




YMRNTSKQQQQKHQYQQRRQQE

QRRQQENMQRQSRGEPPLPE




NMQRQSRGEPPLPEEDLSKLFK

EDLSKLFKPPQPPARMDSLL




PPQPPARMDSLLIAGQINTYCQ

IAGQINTYCQNIKEFTAQNL




NIKEFTAQNLGKLEMAQALQEY

GKLFMAQALQEYNN




NN







CSN5_HUMAN
111
MAASGSGMAQKTWELANNMQEA
219
YCKISALALLKMVMHARSGG


COP9

QSIDEIYKYDKKQQQEILAAKP

NLEVMGLMLGKVDGETMIIM


signalosome

WTKDHHYFKYCKISALALLKMV

DSFALPVEGTETRVNAQAAA


complex

MHARSGGNLEVMGLMLGKVDGE

YEYMAAYIENAKQVGRLENA


subunit 5

TMIIMDSFALPVEGTETRVNAQ

IGWYHSHPGYGCWLSGIDVS




AAAYEYMAAYIENAKQVGRLEN

TQMLNQQFQEPFVAVVIDPT




AIGWYHSHPGYGCWLSGIDVST

RTISAGKVNLGAFRTYPKGY




QMLNQQFQEPFVAVVIDPTRTI

KPPDEGPSEYQTIPLNKIED




SAGKVNLGAFRTYPKGYKPPDE

FGVHCKQYYALEVSYFKSSL




GPSEYQTIPLNKIEDFGVHCKQ

DRKLLELLWNKYWVNTLSSS




YYALEVSYFKSSLDRKLLELLW

SLLTNADYTTGQVEDLSEKL




NKYWVNTLSSSSLLTNADYTTG

EQSEAQLGRGSFMLGLETHD




QVEDLSEKLEQSEAQLGRGSEM

RKSEDKLAKATRDSCKTTIE




LGLETHDRKSEDKLAKATRDSC

AIHGLMSQVIKDKLENQINI




KTTIEAIHGLMSQVIKDKLENQ

S




INIS







BRCC3_HUMAN
112
MAVQVVQAVQAVHLESDAFLVC
220
VHLESDAFLVCLNHALSTEK


Lys-63-

LNHALSTEKEEVMGLCIGELND

EEVMGLCIGELNDDTRSDSK


specific

DTRSDSKFAYTGTEMRTVAEKV

FAYTGTEMRTVAEKVDAVRI


deubiquitinase

DAVRIVHIHSVIILRRSDKRKD

VHIHSVIILRRSDKRKDRVE


BRCC36

RVEISPEQLSAASTEAERLAEL

ISPEQLSAASTEAERLAELT




TGRPMRVVGWYHSHPHITVWPS

GRPMRVVGWYHSHPHITVWP




HVDVRTQAMYQMMDQGEVGLIF

SHVDVRTQAMYQMMDQGFVG




SCFIEDKNTKTGRVLYTCFQSI

LIFSCFIEDKNTKTGRVLYT




QAQKSSESLHGPRDEWSSSQHI

CFQSIQAQKSSESLHGPRDE




SIEGQKEEERYERIEIPIHIVP

WSSSQHISIEGQKEEERYER




HVTIGKVCLESAVELPKILCQE

IEIPIHIVPHVTIGKVCLES




EQDAYRRIHSLTHLDSVIKIHN

AVELPKILCQEEQDAYRRIH




GSVFTKNLCSQMSAVSGPLLQW

SLTHLDSVTKIHNGSVETKN




LEDRLEQNQQHLQELQQEKEEL

LCSQMSAVSGPLLQWLEDRL




MQELSSLE

EQNQQHLQELQQEKEELMQE






LSSLE









5.3.2 Targeting Domain

In some embodiments, the targeting domain comprises a targeting moiety that specifically binds to a target nuclear protein. In some embodiments, the targeting moiety comprises an antibody (or antigen binding fragment thereof). In some embodiments, the antibody is a full-length antibody, a single chain variable fragment (scFv), a (scFv)2, a scFv-Fc, a Fab, a Fab′, a (Fab′)2, a F(v), a single domain antibody, a single chain antibody, a VHH, or a (VHH)2. In some embodiments the targeting moiety comprises a VHH. In some embodiments the targeting moiety comprises a (VHH)2.


In some embodiments, the targeting moiety specifically binds to a wild type target nuclear protein. In some embodiments, the targeting moiety specifically binds to a wild type target nuclear protein, but does not specifically binds to a variant of the target nuclear protein associated with a genetic disease. In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target nuclear protein. In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target nuclear protein that is associated with a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target nuclear protein that is a cause of a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target nuclear protein that is a loss of a function variant. In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target nuclear protein that is a loss of a function variant associated with a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target nuclear protein that is a loss of a function variant that causes a genetic disease (e.g., a genetic disease described herein).


5.3.2.1 Exemplary Target Nuclear Proteins

In some embodiments, targeting moiety specifically binds a target nuclear protein (e.g., a nuclear protein described herein). Exemplary target nuclear proteins include, but are not limited to, chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), and calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin 1 (NF1), histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), and histone acetyltransferase KAT6A (KAT6A). In some embodiments, the target nuclear protein is CHD2. In some embodiments, the target nuclear protein is RERE. In some embodiments, the target nuclear protein is CDKL5. In some embodiments, the target nuclear protein is MECP2. In some embodiments, the target nuclear protein is KMT2D. In some embodiments, the target nuclear protein is SETD5. In some embodiments, the target nuclear protein is ZEB2. In some embodiments, the target nuclear protein is CAMTA1. In some embodiments, the target nuclear protein is FMR1. In some embodiments, the target nuclear protein is PRPF8. In some embodiments, the target nuclear protein is RAI1. In some embodiments, the target nuclear protein is CREBBP. In some embodiments, the target nuclear protein is NF1. In some embodiments, the target nuclear protein is KMT2A. In some embodiments, the target nuclear protein is CHD4. In some embodiments, the target nuclear protein is NSD1. In some embodiments, the target nuclear protein is MED13L. In some embodiments, the target nuclear protein is SMC1A. In some embodiments, the target nuclear protein is SMARCA2. In some embodiments, the target nuclear protein is ARID1B. In some embodiments, the target nuclear protein is POGZ. In some embodiments, the target nuclear protein is KAT6B. In some embodiments, the target nuclear protein is AHDC1. In some embodiments, the target nuclear protein is EP300. In some embodiments, the target nuclear protein is IQSEC2. In some embodiments, the target nuclear protein is TCF20. In some embodiments, the target nuclear protein is ASXL3. In some embodiments, the target nuclear protein is KAT6A.


In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 221. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 222. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 223. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 224. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 225. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 226. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 227. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 228. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 229. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 230. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 231. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 232. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 233. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 234. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 235. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 236. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 237. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 238. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 239. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 240. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 241. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 242. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 243. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 244. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 245. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 246. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 247. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 248. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 424. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 425. In some embodiments, the target nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 426.


Table 2 below, provides the wild type amino acid sequence of exemplary proteins to target for deubiquitination utilizing the fusion proteins described herein.









TABLE 2







The amino acid sequence of exemplary nuclear proteins to target for deubiquitination


utilizing the fusion proteins described herein and exemplary disease associations











Disease
SEQ



Description
Associations
ID NO
WT Amino Acid Sequence





Chromodomain-
Epileptic
221
MMRNKDKSQEEDSSLHSNASSHSASEEASGSDSGSQS


helicase-DNA-
encephalopathy,

ESEQGSDPGSGHGSESNSSSESSESQSESESESAGSK


binding protein
childhood-

SQPVLPEAKEKPASKKERIADVKKMWEEYPDVYGVRR


2 (CHD2)
onset

SNRSRQEPSRENIKEEASSGSESGSPKRRGQRQLKKQ





EKWKQEPSEDEQEQGTSAESEPEQKKVKARRPVPRRT





VPKPRVKKQPKTQRGKRKKQDSSDEDDDDDEAPKRQT





RRRAAKNVSYKEDDDFETDSDDLIEMTGEGVDEQQDN





SETIEKVLDSRLGKKGATGASTTVYAIEANGDPSGDE





DTEKDEGEIQYLIKWKGWSYIHSTWESEESLQQQKVK





GLKKLENFKKKEDEIKQWLGKVSPEDVEYENCQQELA





SELNKQYQIVERVIAVKTSKSTLGQTDFPAHSRKPAP





SNEPEYLCKWMGLPYSECSWEDEALIGKKFQNCIDSF





HSRNNSKTIPTRECKALKQRPRFVALKKQPAYLGGEN





LELRDYQLEGLNWLAHSWCKNNSVILADEMGLGKTIQ





TISFLSYLFHQHQLYGPFLIVVPLSTLTSWQREFEIW





APEINVVVYIGDLMSRNTIREYEWIHSQTKRLKENAL





ITTYEILLKDKTVLGSINWAFLGVDEAHRLKNDDSLL





YKTLIDFKSNHRLLITGTPLQNSLKELWSLLHFIMPE





KFEFWEDFEEDHGKGRENGYQSLHKVLEPFLLRRVKK





DVEKSLPAKVEQILRVEMSALQKQYYKWILTRNYKAL





AKGTRGSTSGELNIVMELKKCCNHCYLIKPPEENERE





NGQEILLSLIRSSGKLILLDKLLTRLRERGNRVLIES





QMVRMLDILAEYLTIKHYPFQRLDGSIKGEIRKQALD





HFNADGSEDFCFLLSTRAGGLGINLASADTVVIFDSD





WNPQNDLQAQARAHRIGQKKQVNIYRLVTKGTVEEEI





IERAKKKMVLDHLVIQRMDTTGRTILENNSGRSNSNP





FNKEELTAILKFGAEDLFKELEGEESEPQEMDIDEIL





RLAETRENEVSTSATDELLSQFKVANFATMEDEEELE





ERPHKDWDEIIPEEQRKKVEEEERQKELEEIYMLPRI





RSSTKKAQTNDSDSDTESKRQAQRSSASESETEDSDD





DKKPKRRGRPRSVRKDLVEGETDAEIRRFIKAYKKFG





LPLERLECIARDAELVDKSVADLKRLGELIHNSCVSA





MQEYEEQLKENASEGKGPGKRRGPTIKISGVQVNVKS





IIQHEEEFEMLHKSIPVDPEEKKKYCLTCRVKAAHED





VEWGVEDDSRLLLGIYEHGYGNWELIKTDPELKLTDK





ILPVETDKKPQGKQLQTRADYLLKLLRKGLEKKGAVT





GGEEAKLKKRKPRVKKENKVPRLKEEHGIELSSPRHS





DNPSEEGEVKDDGLEKSPMKKKQKKKENKENKEKQMS





SRKDKEGDKERKKSKDKKEKPKSGDAKSSSKSKRSQG





PVHITAGSEPVPIGEDEDDDLDQETFSICKERMRPVK





KALKQLDKPDKGLNVQEQLEHTRNCLLKIGDRIAECL





KAYSDQEHIKLWRRNLWIFVSKFTEFDARKLHKLYKM





AHKKRSQEEEEQKKKDDVTGGKKPFRPEASGSSRDSL





ISQSHTSHNLHPQKPHLPASHGPQMHGHPRDNYNHPN





KRHFSNADRGDWQRERKENYGGGNNNPPWGSDRHHQY





EQHWYKDHHYGDRRHMDAHRSGSYRPNNMSRKRPYDQ





YSSDRDHRGHRDYYDRHHHDSKRRRSDEFRPQNYHQQ





DERRMSDHRPAMGYHGQGPSDHYRSFHTDKLGEYKQP





LPPLHPAVSDPRSPPSQKSPHDSKSPLDHRSPLERSL





EQKNNPDYNWNVRKT





Arginine-
1p36 Deletion
222
MTADKDKDKDKEKDRDRDRDREREKRDKARESENSRP


glutamic acid
Syndrome

RRSCTLEGGAKNYAESDHSEDEDNDNNSATAEESTKK


dipeptide


NKKKPPKKKSRYERTDTGEITSYITEDDVVYRPGDCV


repeats protein


YIESRRPNTPYFICSIQDFKLVHNSQACCRSPTPALC


(RERE)


DPPACSLPVASQPPQHLSEAGRGPVGSKRDHLLMNVK





WYYRQSEVPDSVYQHLVQDRHNENDSGRELVITDPVI





KNRELFISDYVDTYHAAALRGKCNISHESDIFAAREF





KARVDSFFYILGYNPETRRLNSTQGEIRVGPSHQAKL





PDLQPFPSPDGDTVTQHEELVWMPGVNDCDLLMYLRA





ARSMAAFAGMCDGGSTEDGCVAASRDDTTLNALNTLH





ESGYDAGKALQRLVKKPVPKLIEKCWTEDEVKRFVKG





LRQYGKNFFRIRKELLPNKETGELITFYYYWKKTPEA





ASSRAHRRHRRQAVFRRIKTRTASTPVNTPSRPPSSE





FLDLSSASEDDFDSEDSEQELKGYACRHCFTTTSKDW





HHGGRENILLCTDCRIHFKKYGELPPIEKPVDPPPEM





FKPVKEEDDGLSGKHSMRTRRSRGSMSTLRSGRKKQP





ASPDGRTSPINEDIRSSGRNSPSAASTSSNDSKAETV





KKSAKKVKEEASSPLKSNKRQREKVASDTEEADRTSS





KKTKTQEISRPNSPSEGEGESSDSRSVNDEGSSDPKD





IDQDNRSTSPSIPSPQDNESDSDSSAQQQMLQAQPPA





LQAPTGVTPAPSSAPPGTPQLPTPGPTPSATAVPPQG





SPTASQAPNQPQAPTAPVPHTHIQQAPALHPQRPPSP





HPPPHPSPHPPLQPLTGSAGQPSAPSHAQPPLHGQGP





PGPHSLQAGPLLQHPGPPQPFGLPPQASQGQAPLGTS





PAAAYPHTSLQLPASQSALQSQQPPREQPLPPAPLAM





PHIKPPPTTPIPQLPAPQAHKHPPHLSGPSPESMNAN





LPPPPALKPLSSLSTHHPPSAHPPPLQLMPQSQPLPS





SPAQPPGLTQSQNLPPPPASHPPTGLHQVAPQPPFAQ





HPFVPGGPPPITPPTCPSTSTPPAGPGTSAQPPCSGA





AASGGSIAGGSSCPLPTVQIKEEALDDAEEPESPPPP





PRSPSPEPTVVDTPSHASQSARFYKHLDRGYNSCART





DLYFMPLAGSKLAKKREEAIEKAKREAEQKAREERER





EKEKEKEREREREREREAERAAKASSSAHEGRLSDPQ





LSGPGHMRPSFEPPPTTIAAVPPYIGPDTPALRTLSE





YARPHVMSPTNRNHPFYMPLNPTDPLLAYHMPGLYNV





DPTIRERELREREIREREIRERELRERMKPGFEVKPP





ELDPLHPAANPMEHFARHSALTIPPTAGPHPFASEHP





GLNPLERERLALAGPQLRPEMSYPDRLAAERIHAERM





ASLTSDPLARLQMENVTPHHHQHSHIHSHLHLHQQDP





LHQGSAGPVHPLVDPLTAGPHLARFPYPPGTLPNPLL





GQPPHEHEMLRHPVFGTPYPRDLPGAIPPPMSAAHQL





QAMHAQSAELQRLAMEQQWLHGHPHMHGGHLPSQEDY





YSRLKKEGDKQL





Cyclin-
Epileptic
223
MKIPNIGNVMNKFEILGVVGEGAYGVVLKCRHKETHE


dependent
encephalopathy,

IVAIKKFKDSEENEEVKETTLRELKMLRTLKQENIVE


kinase-like 5
early infantile

LKEAFRRRGKLYLVFEYVEKNMLELLEEMPNGVPPEK


(CDKL5)
Type 2

VKSYIYQLIKAIHWCHKNDIVHRDIKPENLLISHNDV





LKLCDFGFARNLSEGNNANYTEYVATRWYRSPELLLG





APYGKSVDMWSVGCILGELSDGQPLEPGESEIDQLET





IQKVLGPLPSEQMKLFYSNPRFHGLRFPAVNHPQSLE





RRYLGILNSVLLDLMKNLLKLDPADRYLTEQCLNHPT





FQTQRLLDRSPSRSAKRKPYHVESSTLSNRNQAGKST





ALQSHHRSNSKDIQNLSVGLPRADEGLPANESFLNGN





LAGASLSPLHTKTYQASSQPGSTSKDLINNNIPHLLS





PKEAKSKTEFDFNIDPKPSEGPGTKYLKSNSRSQQNR





HSFMESSQSKAGTLQPNEKQSRHSYIDTIPQSSRSPS





YRTKAKSHGALSDSKSVSNLSEARAQIAEPSTSRYFP





SSCLDLNSPTSPTPTRHSDTRTLLSPSGRNNRNEGTL





DSRRTTTRHSKTMEELKLPEHMDSSHSHSLSAPHESE





SYGLGYTSPESSQQRPHRHSMYVTRDKVRAKGLDGSL





SIGQGMAARANSLQLLSPQPGEQLPPEMTVARSSVKE





TSREGTSSFHTRQKSEGGVYHDPHSDDGTAPKENRHL





YNDPVPRRVGSFYRVPSPRPDNSFHENNVSTRVSSLP





SESSSGTNHSKRQPAFDPWKSPENISHSEQLKEKEKQ





GFFRSMKKKKKKSQTVPNSDSPDLLTLQKSIHSASTP





SSRPKEWRPEKISDLQTQSQPLKSLRKLLHLSSASNH





PASSDPRFQPLTAQQTKNSFSEIRIHPLSQASGGSSN





IRQEPAPKGRPALQLPGQMDPGWHVSSVTRSATEGPS





YSEQLGAKSGPNGHPYNRTNRSRMPNLNDLKETAL





Methyl-CpG-
Rett syndrome
224
MVAGMLGLREEKSEDQDLQGLKDKPLKFKKVKKDKKE


binding protein


EKEGKHEPVQPSAHHSAEPAEAGKAETSEGSGSAPAV


2 (MECP2)


PEASASPKQRRSIIRDRGPMYDDPTLPEGWTRKLKQR





KSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDT





SLDPNDFDFTVTGRGSPSRREQKPPKKPKSPKAPGTG





RGRGRPKGSGTTRPKAATSEGVQVKRVLEKSPGKLLV





KMPFQTSPGGKAEGGGATTSTQVMVIKRPGRKRKAEA





DPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSV





QETVLPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSG





KGLKTCKSPGRKSKESSPKGRSSSASSPPKKEHHHHH





HHSESPKAPVPLLPPLPPPPPEPESSEDPTSPPEPQD





LSSSVCKEEKMPRGGSLESDGCPKEPAKTQPAVATAA





TAAEKYKHRGEGERKDIVSSSMPRPNREEPVDSRTPV





TERVS





Histone-lysine
Kabuki
225
MDSQKLAGEDKDSEPAADGPAASEDPSATESDLPNPH


N-
syndrome 1

VGEVSVLSSGSPRLQETPQDCSGGPVRRCALCNCGEP


methyltransferase


SLHGQRELRRFELPFDWPRCPVVSPGGSPGPNEAVLP


2D (KMT2D)


SEDLSQIGFPEGLTPAHLGEPGGSCWAHHWCAAWSAG





VWGQEGPELCGVDKAIFSGISQRCSHCTRLGASIPCR





SPGCPRLYHFPCATASGSELSMKTLQLLCPEHSEGAA





YLEEARCAVCEGPGELCDLFFCTSCGHHYHGACLDTA





LTARKRAGWQCPECKVCQACRKPGNDSKMLVCETCDK





GYHTFCLKPPMEELPAHSWKCKACRVCRACGAGSAEL





NPNSEWFENYSLCHRCHKAQGGQTIRSVAEQHTPVCS





RESPPEPGDTPTDEPDALYVACQGQPKGGHVTSMQPK





EPGPLQCEAKPLGKAGVQLEPQLEAPLNEEMPLLPPP





EESPLSPPPEESPTSPPPEASRLSPPPEELPASPLPE





ALHLSRPLEESPLSPPPEESPLSPPPESSPESPLEES





PLSPPEESPPSPALETPLSPPPEASPLSPPFEESPLS





PPPEELPTSPPPEASRLSPPPEESPMSPPPEESPMSP





PPEASRLFPPFEESPLSPPPEESPLSPPPEASRLSPP





PEDSPMSPPPEESPMSPPPEVSRLSPLPVVSRLSPPP





EESPLSPPPEESPTSPPPEASRLSPPPEDSPTSPPPE





DSPASPPPEDSLMSLPLEESPLLPLPEEPQLCPRSEG





PHLSPRPEEPHLSPRPEEPHLSPQAEEPHLSPQPEEP





CLCAVPEEPHLSPQAEGPHLSPQPEELHLSPQTEEPH





LSPVPEEPCLSPQPEESHLSPQSEEPCLSPRPEESHL





SPELEKPPLSPRPEKPPEEPGQCPAPEELPLFPPPGE





PSLSPLLGEPALSEPGEPPLSPLPEELPLSPSGEPSL





SPQLMPPDPLPPPLSPIITAAAPPALSPLGELEYPFG





AKGDSDPESPLAAPILETPISPPPEANCTDPEPVPPM





ILPPSPGSPVGPASPILMEPLPPQCSPLLQHSLVPQN





SPPSQCSPPALPLSVPSPLSPIGKVVGVSDEAELHEM





ETEKVSEPECPALEPSATSPLPSPMGDLSCPAPSPAP





ALDDESGLGEDTAPLDGIDAPGSQPEPGQTPGSLASE





LKGSPVLLDPEELAPVTPMEVYPECKQTAGQGSPCEE





QEEPRAPVAPTPPTLIKSDIVNEISNLSQGDASASFP





GSEPLLGSPDPEGGGSLSMELGVSTDVSPARDEGSLR





LCTDSLPETDDSLLCDAGTAISGGKAEGEKGRRRSSP





ARSRIKQGRSSSFPGRRRPRGGAHGGRGRGRARLKST





ASSIETLVVADIDSSPSKEEEEEDDDTMQNTVVLESN





TDKFVLMQDMCVVCGSFGRGAEGHLLACSQCSQCYHP





YCVNSKITKVMLLKGWRCVECIVCEVCGQASDPSRLL





LCDDCDISYHTYCLDPPLLTVPKGGWKCKWCVSCMQC





GAASPGFHCEWQNSYTHCGPCASLVTCPICHAPYVEE





DLLIQCRHCERWMHAGCESLFTEDDVEQAADEGEDCV





SCQPYVVKPVAPVAPPELVPMKVKEPEPQYFRFEGVW





LTETGMALLRNLTMSPLHKRRQRRGRLGLPGEAGLEG





SEPSDALGPDDKKDGDLDTDELLKGEGGVEHMECEIK





LEGPVSPDVEPGKEETEESKKRKRKPYRPGIGGFMVR





QRKSHTRTKKGPAAQAEVLSGDGQPDEVIPADLPAEG





AVEQSLAEGDEKKKQQRRGRKKSKLEDMFPAYLQEAF





FGKELLDLSRKALFAVGVGRPSFGLGTPKAKGDGGSE





RKELPTSQKGDDGPDIADEESRGLEGKADTPGPEDGG





VKASPVPSDPEKPGTPGEGMLSSDLDRISTEELPKME





SKDLQQLFKDVLGSEREQHLGCGTPGLEGSRTPLQRP





FLQGGLPLGNLPSSSPMDSYPGLCQSPFLDSRERGGE





FSPEPGEPDSPWTGSGGTTPSTPTTPTTEGEGDGLSY





NQRSLQRWEKDEELGQLSTISPVLYANINFPNLKQDY





PDWSSRCKQIMKLWRKVPAADKAPYLQKAKDNRAAHR





INKVQKQAESQINKQTKVGDIARKTDRPALHLRIPPQ





PGALGSPPPAAAPTIFIGSPTTPAGLSTSADGELKPP





AGSVPGPDSPGELFLKLPPQVPAQVPSQDPFGLAPAY





PLEPRFPTAPPTYPPYPSPTGAPAQPPMLGASSRPGA





GQPGEFHTTPPGTPRHQPSTPDPFLKPRCPSLDNLAV





PESPGVGGGKASEPLLSPPPFGESRKALEVKKEELGA





SSPSYGPPNLGFVDSPSSGTHLGGLELKTPDVFKAPL





TPRASQVEPQSPGLGLRPQEPPPAQALAPSPPSHPDI





FRPGSYTDPYAQPPLTPRPQPPPPESCCALPPRSLPS





DPFSRVPASPQSQSSSQSPLTPRPLSAEAFCPSPVTP





RFQSPDPYSRPPSRPQSRDPFAPLHKPPRPQPPEVAF





KAGSLAHTSLGAGGFPAALPAGPAGELHAKVPSGQPP





NFVRSPGTGAFVGTPSPMRFTFPQAVGEPSLKPPVPQ





PGLPPPHGINSHFGPGPTLGKPQSTNYTVATGNFHPS





GSPLGPSSGSTGESYGLSPLRPPSVLPPPAPDGSLPY





LSHGASQRSGITSPVEKREDPGTGMGSSLATAELPGT





QDPGMSGLSQTELEKQRQRQRLRELLIRQQIQRNTLR





QEKETAAAAAGAVGPPGSWGAEPSSPAFEQLSRGQTP





FAGTQDKSSLVGLPPSKLSGPILGPGSFPSDDRLSRP





PPPATPSSMDVNSRQLVGGSQAFYQRAPYPGSLPLQQ





QQQQLWQQQQATAATSMRFAMSARFPSTPGPELGRQA





LGSPLAGISTRLPGPGEPVPGPAGPAQFIELRHNVQK





GLGPGGTPFPGQGPPQRPRFYPVSEDPHRLAPEGLRG





LAVSGLPPQKPSAPPAPELNNSLHPTPHTKGPTLPTG





LELVNRPPSSTELGRPNPLALEAGKLPCEDPELDDDE





DAHKALEDDEELAHLGLGVDVAKGDDELGTLENLETN





DPHLDDLLNGDEFDLLAYTDPELDTGDKKDIFNEHLR





LVESANEKAEREALLRGVEPGPLGPEERPPPAADASE





PRLASVLPEVKPKVEEGGRHPSPCQFTIATPKVEPAP





AANSLGLGLKPGQSMMGSRDTRMGTGPFSSSGHTAEK





ASFGATGGPPAHLLTPSPLSGPGGSSLLEKFELESGA





LTLPGGPAASGDELDKMESSLVASELPLLIEDLLEHE





KKELQKKQQLSAQLQPAQQQQQQQQQHSLLSAPGPAQ





AMSLPHEGSSPSLAGSQQQLSLGLAGARQPGLPQPLM





PTQPPAHALQQRLAPSMAMVSNQGHMLSGQHGGQAGL





VPQQSSQPVLSQKPMGTMPPSMCMKPQQLAMQQQLAN





SFFPDTDLDKFAAEDIIDPIAKAKMVALKGIKKVMAQ





GSIGVAPGMNRQQVSLLAQRLSGGPSSDLQNHVAAGS





GQERSAGDPSQPRPNPPTFAQGVINEADQRQYEEWLF





HTQQLLQMQLKVLEEQIGVHRKSRKALCAKQRTAKKA





GREFPEADAEKLKLVTEQQSKIQKQLDQVRKQQKEHT





NLMAEYRNKQQQQQQQQQQQQQQHSAVLALSPSQSPR





LLTKLPGQLLPGHGLQPPQGPPGGQAGGLRLTPGGMA





LPGQPGGPFLNTALAQQQQQQHSGGAGSLAGPSGGFF





PGNLALRSLGPDSRLLQERQLQLQQQRMQLAQKLQQQ





QQQQQQQQHLLGQVAIQQQQQQGPGVQTNQALGPKPQ





GLMPPSSHQGLLVQQLSPQPPQGPQGMLGPAQVAVLQ





QQHPGALGPQGPHRQVLMTQSRVLSSPQLAQQGQGLM





GHRLVTAQQQQQQQQHQQQGSMAGLSHLQQSLMSHSG





QPKLSAQPMGSLQQLQQQQQLQQQQQLQQQQQQQLQQ





QQQQQQFQQQQQQQQMGLLNQSRTLLSPQQQQQQQVA





LGPGMPAKPLQHFSSPGALGPTLLLTGKEQNTVDPAV





SSEATEGPSTHQGGPLAIGTTPESMATEPGEVKPSLS





GDSQLLLVQPQPQPQPSSLQLQPPLRLPGQQQQQVSL





LHTAGGGSHGQLGSGSSSEASSVPHLLAQPSVSLGDQ





PGSMTQNLLGPQQPMLERPMQNNTGPQPPKPGPVLQS





GQGLPGVGIMPTVGQLRAQLQGVLAKNPQLRHLSPQQ





QQQLQALLMQRQLQQSQAVRQTPPYQEPGTQTSPLQG





LLGCQPQLGGFPGPQTGPLQELGAGPRPQGPPRLPAP





PGALSTGPVLGPVHPTPPPSSPQEPKRPSQLPSPSSQ





LPTEAQLPPTHPGTPKPQGPTLEPPPGRVSPAAAQLA





DTLESKGLGPWDPPDNLAETQKPEQSSLVPGHLDQVN





GQVVPEASQLSIKQEPREEPCALGAQSVKREANGEPI





GAPGTSNHLLLAGPRSEAGHLLLQKLLRAKNVQLSTG





RGSEGLRAEINGHIDSKLAGLEQKLQGTPSNKEDAAA





RKPLTPKPKRVQKASDRLVSSRKKLRKEDGVRASEAL





LKQLKQELSLLPLTEPAITANFSLFAPFGSGCPVNGQ





SQLRGAFGSGALPTGPDYYSQLLTKNNLSNPPTPPSS





LPPTPPPSVQQKMVNGVTPSEELGEHPKDAASARDSE





RALRDTSEVKSLDLLAALPTPPHNQTEDVRMESDEDS





DSPDSIVPASSPESILGEEAPRFPHLGSGRWEQEDRA





LSPVIPLIPRASIPVFPDTKPYGALGLEVPGKLPVTT





WEKGKGSEVSVMLTVSAAAAKNLNGVMVAVAELLSMK





IPNSYEVLFPESPARAGTEPKKGEAEGPGGKEKGLEG





KSPDTGPDWLKQFDAVLPGYTLKSQLDILSLLKQESP





APEPPTQHSYTYNVSNLDVRQLSAPPPEEPSPPPSP





LAPSPASPPTEPLVELPTEPLAEPPVPSPLPLASSPE





SARPKPRARPPEEGEDSRPPRLKKWKGVRWKRLRLLL





TIQKGSGRQEDEREVAEFMEQLGTALRPDKVPRDMRR





CCFCHEEGDGATDGPARLLNLDLDLWVHLNCALWSTE





VYETQGGALMNVEVALHRGLLTKCSLCQRTGATSSCN





RMRCPNVYHFACAIRAKCMFFKDKTMLCPMHKIKGPC





EQELSSFAVERRVYIERDEVKQIASIIQRGERLHMER





VGGLVFHAIGQLLPHQMADFHSATALYPVGYEATRIY





WSLRTNNRRCCYRCSIGENNGRPEFVIKVIEQGLEDL





VFTDASPQAVWNRIIEPVAAMRKEADMLRLFPEYLKG





EELFGLTVHAVLRIAESLPGVESCQNYLFRYGRHPLM





ELPLMINPTGCARSEPKILTHYKRPHTLNSTSMSKAY





QSTFTGETNTPYSKQFVHSKSSQYRRLRTEWKNNVYL





ARSRIQGLGLYAAKDLEKHTMVIEYIGTIIRNEVANR





REKIYEEQNRGIYMFRINNEHVIDATLTGGPARYINH





SCAPNCVAEVVTEDKEDKIIIISSRRIPKGEELTYDY





QFDFEDDQHKIPCHCGAWNCRKWMN





Histone-lysine
Mental
226
MSIAIPLGVTTSDTSYSDMAAGSDPESVEASPAVNEK


N-
retardation,

SVYSTHNYGTTQRHGCRGLPYATIIPRSDLNGLPSPV


methyltransferase
autosomal

EERCGDSPNSEGETVPTWCPCGLSQDGELLNCDKCRG


SETD5
dominant 23

MSRGKVIRLHRRKQDNISGGDSSATESWDEELSPSTV


(SETD5)


LYTATQHTPTSITLTVRRTKPKKRKKSPEKGRAAPKT





KKIKNSPSEAQNLDENTTEGWENRIRLWTDQYEEAFT





NQYSADVQNALEQHLHSSKEFVGKPTILDTINKTELA





CNNTVIGSQMQLQLGRVTRVQKHRKILRAARDLALDT





LIIEYRGKVMLRQQFEVNGHFFKKPYPFVLFYSKENG





VEMCVDARTEGNDARFIRRSCTPNAEVRHMIADGMIH





LCIYAVSAITKDAEVTIAFDYEYSNCNYKVDCACHKG





NRNCPIQKRNPNATELPLLPPPPSLPTIGAETRRRKA





RRKELEMEQQNEASEENNDQQSQEVPEKVTVSSDHEE





VDNPEEKPEEEKEEVIDDQENLAHSRRTREDRKVEAI





MHAFENLEKRKKRRDQPLEQSNSDVEITTTTSETPVG





EETKTEAPESEVSNSVSNVTIPSTPQSVGVNTRRSSQ





AGDIAAEKLVPKPPPAKPSRPRPKSRISRYRTSSAQR





LKRQKQANAQQAELSQAALEEGGSNSLVTPTEAGSLD





SSGENRPLTGSDPTVVSITGSHVNRAASKYPKTKKYL





VTEWLNDKAEKQECPVECPLRITTDPTVLATTLNMLP





GLIHSPLICTTPKHYIRFGSPFIPERRRRPLLPDGTF





SSCKKRWIKQALEEGMTQTSSVPQETRTQHLYQSNEN





SSSSSICKDNADLLSPLKKWKSRYLMEQNVTKLLRPL





SPVTPPPPNSGSKSPQLATPGSSHPGEEECRNGYSLM





FSPVTSLTTASRCNTPLQFELCHRKDLDLAKVGYLDS





NTNSCADRPSLLNSGHSDLAPHPSLGPTSETGFPSRS





GDGHQTLVRNSDQAFRTEENLMYAYSPLNAMPRADGL





YRGSPLVGDRKPLHLDGGYCSPAEGESSRYEHGLMKD





LSRGSLSPGGERACEGVPSAPQNPPQRKKVSLLEYRK





RKQEAKENSAGGGGDSAQSKSKSAGAGQGSSNSVSDT





GAHGVQGSSARTPSSPHKKESPSHSSMSHLEAVSPSD





SRGTSSSHCRPQENISSRWMVPTSVERLREGGSIPKV





LRSSVRVAQKGEPSPTWESNITEKDSDPADGEGPETL





SSALSKGATVYSPSRYSYQLLQCDSPRTESQSLLQQS





SSPFRGHPTQSPGYSYRTTALRPGNPPSHGSSESSLS





STSYSSPAHPVSTDSLAPFTGTPGYFSSQPHSGNSTG





SNLPRRSCPSSAASPTLQGPSDSPTSDSVSQSSTGTL





SSTSFPQNSRSSLPSDLRTISLPSAGQSAVYQASRVS





AVSNSQHYPHRGSGGVHQYRLQPLQGSGVKTQTGLS





Zinc finger E-
Mowat-Wilson
227
MKQPIMADGPRCKRRKQANPRRKNVVNYDNVVDTGSE


box-binding
syndrome

TDEEDKLHIAEDDGIANPLDQETSPASVPNHESSPHV


homeobox 2


SQALLPREEEEDEIREGGVEHPWHNNEILQASVDGPE


(ZEB2)


EMKEDYDTMGPEATIQTAINNGTVKNANCTSDFEEYF





AKRKLEERDGHAVSIEEYLQRSDTAITYPEAPEELSR





LGTPEANGQEENDLPPGTPDAFAQLLTCPYCDRGYKR





LTSLKEHIKYRHEKNEENFSCPLCSYTFAYRTQLERH





MVTHKPGTDQHQMLTQGAGNRKFKCTECGKAFKYKHH





LKEHLRIHSGEKPYECPNCKKRFSHSGSYSSHISSKK





CIGLISVNGRMRNNIKTGSSPNSVSSSPTNSAITQLR





NKLENGKPLSMSEQTGLLKIKTEPLDENDYKVLMATH





GFSGTSPFMNGGLGATSPLGVHPSAQSPMQHLGVGME





APLLGFPTMNSNLSEVQKVLQIVDNTVSRQKMDCKAE





EISKLKGYHMKDPCSQPEEQGVTSPNIPPVGLPVVSH





NGATKSIIDYTLEKVNEAKACLQSLTTDSRRQISNIK





KEKLRTLIDLVTDDKMIENHNISTPFSCQFCKESFPG





PIPLHQHERYLCKMNEEIKAVLQPHENIVPNKAGVFV





DNKALLLSSVLSEKGMTSPINPYKDHMSVLKAYYAMN





MEPNSDELLKISIAVGLPQEFVKEWFEQRKVYQYSNS





RSPSLERSSKPLAPNSNPPTKDSLLPRSPVKPMDSIT





SPSIAELHNSVTNCDPPLRLTKPSHFTNIKPVEKLDH





SRSNTPSPLNLSSTSSKNSHSSSYTPNSESSEELQAE





PLDLSLPKQMKEPKSIIATKNKTKASSISLDHNSVSS





SSENSDEPLNLTFIKKEFSNSNNLDNKSTNPVESMNP





FSAKPLYTALPPQSAFPPATEMPPVQTSIPGLRPYPG





LDQMSFLPHMAYTYPTGAATFADMQQRRKYQRKQGFQ





GELLDGAQDYMSGLDDMTDSDSCLSRKKIKKTESGMY





ACDLCDKTFQKSSSLLRHKYEHTGKRPHQCQICKKAF





KHKHHLIEHSRLHSGEKPYQCDKCGKRFSHSGSYSQH





MNHRYSYCKREAEEREAAEREAREKGHLEPTELLMNR





AYLQSITPQGYSDSEERESMPRDGESEKEHEKEGEDG





YGKLGRQDGDEEFEEEEEESENKSMDTDPETIRDEEE





TGDHSMDDSSEDGKMETKSDHEEDNMEDGM





Calmodulin-
CAMTA1
228
MWRAEGKWLPKTSRKSVSQSVFCGTSTYCVLNTVPPI


binding
Syndrome;

EDDHGNSNSSHVKIFLPKKLLECLPKCSSLPKERHRW


transcription
Cerebellar

NTNEEIAAYLITFEKHEEWLTTSPKTRPQNGSMILYN


activator 1
ataxia,

RKKVKYRKDGYCWKKRKDGKTTREDHMKLKVQGVECL


(CAMTA1)
nonprogressive,

YGCYVHSSIIPTFHRRCYWLLQNPDIVLVHYLNVPAI



with mental

EDCGKPCGPILCSINTDKKEWAKWTKEELIGQLKPMF



retardation

HGIKWTCSNGNSSSGFSVEQLVQQILDSHQTKPQPRT





HNCLCTGSLGAGGSVHHKCNSAKHRIISPKVEPRTGG





YGSHSEVQHNDVSEGKHEHSHSKGSSREKRNGKVAKP





VLLHQSSTEVSSTNQVEVPDTTQSSPVSISSGLNSDP





DMVDSPVVTGVSGMAVASVMGSLSQSATVEMSEVTNE





AVYTMSPTAGPNHHLLSPDASQGLVLAVSSDGHKFAF





PTTGSSESLSMLPTNVSEELVLSTTLDGGRKIPETTM





NFDPDCFLNNPKQGQTYGGGGLKAEMVSSNIRHSPPG





ERSESFTTVLTKEIKTEDTSFEQQMAKEAYSSSAAAV





AASSLTLTAGSSLLPSGGGLSPSTTLEQMDFSAIDSN





KDYTSSFSQTGHSPHIHQTPSPSFFLQDASKPLPVEQ





NTHSSLSDSGGTFVMPTVKTEASSQTSSCSGHVETRI





ESTSSLHLMQFQANFQAMTAEGEVTMETSQAAEGSEV





LLKSGELQACSSEHYLQPETNGVIRSAGGVPILPGNV





VQGLYPVAQPSLGNASNMELSLDHFDISESNQFSDLI





NDFISVEGGSSTIYGHQLVSGDSTALSQSEDGARAPF





TQAEMCLPCCSPQQGSLQLSSSEGGASTMAYMHVAEV





VSAASAQGTLGMLQQSGRVEMVTDYSPEWSYPEGGVK





VLITGPWQEASNNYSCLFDQISVPASLIQPGVLRCYC





PAHDTGLVTLQVAFNNQIISNSVVFEYKARALPTLPS





SQHDWLSLDDNQFRMSILERLEQMERRMAEMTGSQQH





KQASGGGSSGGGSGSGNGGSQAQCASGTGALGSCFES





RVVVVCEKMMSRACWAKSKHLIHSKTFRGMTLLHLAA





AQGYATLIQTLIKWRTKHADSIDLELEVDPLNVDHES





CTPLMWACALGHLEAAVVLYKWDRRAISIPDSLGRLP





LGIARSRGHVKLAECLEHLQRDEQAQLGQNPRIHCPA





SEEPSTESWMAQWHSEAISSPEIPKGVTVIASTNPEL





RRPRSEPSNYYSSESHKDYPAPKKHKLNPEYFQTRQE





KLLPTALSLEEPNIRKQSPSSKQSVPETLSPSEGVRD





FSRELSPPTPETAAFQASGSQPVGKWNSKDLYIGVST





VQVTGNPKGTSVGKEAAPSQVRPREPMSVLMMANREV





VNTELGSYRDSAENEECGQPMDDIQVNMMTLAEHIIE





ATPDRIKQENFVPMESSGLERTDPATISSTMSWLASY





LADADCLPSAAQIRSAYNEPLTPSSNTSLSPVGSPVS





EIAFEKPNLPSAADWSEFLSASTSEKVENEFAQLTLS





DHEQRELYEAARLVQTAFRKYKGRPLREQQEVAAAVI





QRCYRKYKQYALYKKMTQAAILIQSKERSYYEQKKFQ





QSRRAAVLIQKYYRSYKKCGKRRQARRTAVIVQQKLR





SSLLTKKQDQAARKIMRFLRRCRHSPLVDHRLYKRSE





RIEKGQGT





Synaptic
Fragile X
229
MEELVVEVRGSNGAFYKAFVKDVHEDSITVAFENNWQ


functional
syndrome

PDRQIPFHDVREPPPVGYNKDINESDEVEVYSRANEK


regulator FMR1


EPCCWWLAKVRMIKGEFYVIEYAACDATYNEIVTIER


(FMR1)


LRSVNPNKPATKDTFHKIKLDVPEDLRQMCAKEAAHK





DFKKAVGAFSVTYDPENYQLVILSINEVTSKRAHMLI





DMHFRSLRTKLSLIMRNEEASKQLESSRQLASRFHEQ





FIVREDLMGLAIGTHGANIQQARKVPGVTAIDLDEDT





CTFHIYGEDQDAVKKARSFLEFAEDVIQVPRNLVGKV





IGKNGKLIQEIVDKSGVVRVRIEAENEKNVPQEEEIM





PPNSLPSNNSRVGPNAPEEKKHLDIKENSTHESQPNS





TKVQRVLVASSVVAGESQKPELKAWQGMVPFVFVGTK





DSIANATVLLDYHLNYLKEVDQLRLERLQIDEQLRQI





GASSRPPPNRTDKEKSYVTDDGQGMGRGSRPYRNRGH





GRRGPGYTSGTNSEASNASETESDHRDELSDWSLAPT





EEERESFLRRGDGRRRGGGGRGQGGRGRGGGFKGNDD





HSRTDNRPRNPREAKGRTTDGSLQIRVDCNNERSVHT





KTLQNTSSEGSRLRTGKDRNQKKEKPDSVDGQQPLVN





GVP





Pre-mRNA-
Retinitis
230
MAGVFPYRGPGNPVPGPLAPLPDYMSEEKLQEKARKW


processing-
pigmentosa 13

QQLQAKRYAEKRKFGFVDAQKEDMPPEHVRKIIRDHG


splicing factor 8


DMTNRKFRHDKRVYLGALKYMPHAVLKLLENMPMPWE


(PRPF8)


QIRDVPVLYHITGAISFVNEIPWVIEPVYISQWGSMW





IMMRREKRDRRHFKRMRFPPEDDEEPPLDYADNILDV





EPLEAIQLELDPEEDAPVLDWFYDHQPLRDSRKYVNG





STYQRWQFTLPMMSTLYRLANQLLTDLVDDNYFYLED





LKAFFTSKALNMAIPGGPKFEPLVRDINLQDEDWNEF





NDINKIIIRQPIRTEYKIAFPYLYNNLPHHVHLTWYH





TPNVVFIKTEDPDLPAFYEDPLINPISHRHSVKSQEP





LPDDDEEFELPEFVEPFLKDTPLYTDNTANGIALLWA





PRPENLRSGRTRRALDIPLVKNWYREHCPAGQPVKVR





VSYQKLLKYYVLNALKHRPPKAQKKRYLFRSFKATKF





FQSTKLDWVEVGLQVCRQGYNMLNLLIHRKNLNYLHL





DYNFNLKPVKTLTTKERKKSREGNAFHLCREVLRLTK





LVVDSHVQYRLGNVDAFQLADGLQYIFAHVGQLTGMY





RYKYKLMRQIRMCKDLKHLIYYRENTGPVGKGPGCGF





WAAGWRVWLFFMRGITPLLERWLGNLLARQFEGRHSK





GVAKTVTKQRVESHEDLELRAAVMHDILDMMPEGIKQ





NKARTILQHLSEAWRCWKANIPWKVPGLPTPIENMIL





RYVKAKADWWTNTAHYNRERIRRGATVDKTVCKKNLG





RLTRLYLKAEQERQHNYLKDGPYITAEEAVAVYTTTV





HWLESRRESPIPFPPLSYKHDTKLLILALERLKEAYS





VKSRLNQSQREELGLIEQAYDNPHEALSRIKRHLLTQ





RAFKEVGIEFMDLYSHLVPVYDVEPLEKITDAYLDQY





LWYEADKRRLFPPWIKPADTEPPPLLVYKWCQGINNL





QDVWETSEGECNVMLESRFEKMYEKIDLTLLNRLLRL





IVDHNIADYMTAKNNVVINYKDMNHTNSYGIIRGLQF





ASFIVQYYGLVMDLLVLGLHRASEMAGPPQMPNDELS





FQDIATEAAHPIRLFCRYIDRIHIFFRFTADEARDLI





QRYLTEHPDPNNENIVGYNNKKCWPRDARMRLMKHDV





NLGRAVEWDIKNRLPRSVTTVQWENSFVSVYSKDNPN





LLENMCGFECRILPKCRTSYEEFTHKDGVWNLQNEVT





KERTAQCFLRVDDESMQRFHNRVRQILMASGSTTFTK





IVNKWNTALIGLMTYFREAVVNTQELLDLLVKCENKI





QTRIKIGLNSKMPSRFPPVVFYTPKELGGLGMLSMGH





VLIPQSDLRWSKQTDVGITHERSGMSHEEDQLIPNLY





RYIQPWESEFIDSQRVWAEYALKRQEAIAQNRRLTLE





DLEDSWDRGIPRINTLFQKDRHTLAYDKGWRVRTDEK





QYQVLKQNPFWWTHQRHDGKLWNLNNYRTDMIQALGG





VEGILEHTLFKGTYFPTWEGLFWEKASGFEESMKWKK





LTNAQRSGLNQIPNRRFTLWWSPTINRANVYVGFQVQ





LDLTGIFMHGKIPTLKISLIQIFRAHLWQKIHESIVM





DLCQVFDQELDALEIETVQKETIHPRKSYKMNSSCAD





ILLFASYKWNVSRPSLLADSKDVMDSTTTQKYWIDIQ





LRWGDYDSHDIERYARAKFLDYTTDNMSIYPSPTGVL





IAIDLAYNLHSAYGNWFPGSKPLIQQAMAKIMKANPA





LYVLRERIRKGLQLYSSEPTEPYLSSQNYGELFSNQI





IWFVDDTNVYRVTIHKTFEGNLTTKPINGAIFIENPR





TGQLELKIIHTSVWAGQKRLGQLAKWKTAEEVAALIR





SLPVEEQPKQIIVTRKGMLDPLEVHLLDEPNIVIKGS





ELQLPFQACLKVEKFGDLILKATEPQMVLENLYDDWL





KTISSYTAFSRLILILRALHVNNDRAKVILKPDKTTI





TEPHHIWPTLTDEEWIKVEVQLKDLILADYGKKNNVN





VASLTQSEIRDIILGMEISAPSQQRQQIAEIEKQTKE





QSQLTATQTRTVNKHGDEIITSTTSNYETQTESSKTE





WRVRAISAANLHLRTNHIYVSSDDIKETGYTYILPKN





VLKKFICISDLRAQIAGYLYGVSPPDNPQVKEIRCIV





MVPQWGTHQTVHLPGQLPQHEYLKEMEPLGWIHTQPN





ESPQLSPQDVTTHAKIMADNPSWDGEKTIIITCSFTP





GSCTLTAYKLTPSGYEWGRQNTDKGNNPKGYLPSHYE





RVQMLLSDRFLGFFMVPAQSSWNYNEMGVRHDPNMKY





ELQLANPKEFYHEVHRPSHELNFALLQEGEVYSADRE





DLYA





Retinoic acid-
Smith-Magenis
231
MQSFRERCGFHGKQQNYQQTSQETSRLENYRQPSQAG


induced protein
syndrome

LSCDRQRLLAKDYYNPQPYPSYEGGAGTPSGTAAAVA


1 (RAI1)


ADKYHRGSKALPTQQGLQGRPAFPGYGVQDSSPYPGR





YAGEESLQAWGAPQPPPPQPQPLPAGVAKYDENLMKK





TAVPPSRQYAEQGAQVPFRTHSLHVQQPPPPQQPLAY





PKLQRQKLQNDIASPLPFPQGTHEPQHSQSFPTSSTY





SSSVQGGGQGAHSYKSCTAPTAQPHDRPLTASSSLAP





GQRVQNLHAYQSGRLSYDQQQQQQQQQQQQQQALQSR





HHAQETLHYQNLAKYQHYGQQGQGYCQPDAAVRTPEQ





YYQTFSPSSSHSPARSVGRSPSYSSTPSPLMPNLENF





PYSQQPLSTGAFPAGITDHSHEMPLLNPSPTDATSSV





DTQAGNCKPLQKDKLPENLLSDLSLQSLTALTSQVEN





ISNTVQQLLLSKAAVPQKKGVKNLVSRTPEQHKSQHC





SPEGSGYSAEPAGTPLSEPPSSTPQSTHAEPQEADYL





SGSEDPLERSFLYCNQARGSPARVNSNSKAKPESVST





CSVTSPDDMSTKSDDSFQSLHGSLPLDSESKEVAGER





DCPRLLLSALAQEDLASEILGLQEAIGEKADKAWAEA





PSLVKDSSKPPFSLENHSACLDSVAKSAWPRPGEPEA





LPDSLQLDKGGNAKDESPGLFEDPSVAFATPDPKKTT





GPLSFGTKPTLGVPAPDPTTAAFDCFPDTTAASSADS





ANPFAWPEENLGDACPRWGLHPGELTKGLEQGGKASD





GISKGDTHEASACLGFQEEDPPGEKVASLPGDEKQEE





VGGVKEEAGGLLQCPEVAKADRWLEDSRHCCSTADFG





DLPLLPPTSRKEDLEAEEEYSSLCELLGSPEQRPGMQ





DPLSPKAPLICTKEEVEEVLDSKAGWGSPCHLSGESV





ILLGPTVGTESKVQSWFESSLSHMKPGEEGPDGERAP





GDSTTSDASLAQKPNKPAVPEAPIAKKEPVPRGKSLR





SRRVHRGLPEAEDSPCRAPVLPKDLLLPESCTGPPQG





QMEGAGAPGRGASEGLPRMCTRSLTALSEPRTPGPPG





LTTTPAPPDKLGGKQRAAFKSGKRVGKPSPKAASSPS





NPAALPVASDSSPMGSKTKETDSPSTPGKDQRSMILR





SRTKTQEIFHSKRRRPSEGRLPNCRATKKLLDNSHLP





ATFKVSSSPQKEGRVSQRARVPKPGAGSKLSDRPLHA





LKRKSAFMAPVPTKKRNLVLRSRSSSSSNASGNGGDG





KEERPEGSPTLFKRMSSPKKAKPTKGNGEPATKLPPP





ETPDACLKLASRAAFQGAMKTKVLPPRKGRGLKLEAI





VQKITSPSLKKFACKAPGASPGNPLSPSLSDKDRGLK





GAGGSPVGVEEGLVNVGTGQKLPTSGADPLCRNPTNR





SLKGKLMNSKKLSSTDCFKTEAFTSPEALQPGGTALA





PKKRSRKGRAGAHGLSKGPLEKRPYLGPALLLTPRDR





ASGTQGASEDNSGGGGKKPKMEELGLASQPPEGRPCQ





PQTRAQKQPGHTNYSSYSKRKRLTRGRAKNTTSSPCK





GRAKRRRQQQVLPLDPAEPEIRLKYISSCKRLRSDSR





TPAFSPFVRVEKRDAFTTICTVVNSPGDAPKPHRKPS





SSASSSSSSSSESLDAAGASLATLPGGSILQPRPSLP





LSSTMHLGPVVSKALSTSCLVCCLCQNPANEKDLGDL





CGPYYPEHCLPKKKPKLKEKVRPEGTCEEASLPLERT





LKGPECAAAATAGKPPRPDGPADPAKQGPLRTSARGL





SRRLQSCYCCDGREDGGEEAAPADKGRKHECSKEAPA





EPGGEAQEHWVHEACAVWTGGVYLVAGKLFGLQEAMK





VAVDMMCSSCQEAGATIGCCHKGCLHTYHYPCASDAG





CIFIEENFSLKCPKHKRLP





CREB-binding
Rubinstein-
232
MAENLLDGPPNPKRAKLSSPGFSANDSTDEGSLEDLE


protein
Taybi

NDLPDELIPNGGELGLLNSGNLVPDAASKHKQLSELL


(CREBBP)
syndrome

RGGSGSSINPGIGNVSASSPVQQGLGGQAQGQPNSAN





MASLSAMGKSPLSQGDSSAPSLPKQAASTSGPTPAAS





QALNPQAQKQVGLATSSPATSQTGPGICMNANENQTH





PGLLNSNSGHSLINQASQGQAQVMNGSLGAAGRGRGA





GMPYPTPAMQGASSSVLAETLTQVSPQMTGHAGLNTA





QAGGMAKMGITGNTSPFGQPFSQAGGQPMGATGVNPQ





LASKQSMVNSLPTFPTDIKNTSVTNVPNMSQMQTSVG





IVPTQAIATGPTADPEKRKLIQQQLVLLLHAHKCQRR





EQANGEVRACSLPHCRTMKNVLNHMTHCQAGKACQVA





HCASSRQIISHWKNCTRHDCPVCLPLKNASDKRNQQT





ILGSPASGIQNTIGSVGTGQQNATSLSNPNPIDPSSM





QRAYAALGLPYMNQPQTQLQPQVPGQQPAQPQTHQQM





RTLNPLGNNPMNIPAGGITTDQQPPNLISESALPTSL





GATNPLMNDGSNSGNIGTLSTIPTAAPPSSTGVRKGW





HEHVTQDLRSHLVHKLVQAIFPTPDPAALKDRRMENL





VAYAKKVEGDMYESANSRDEYYHLLAEKIYKIQKELE





EKRRSRLHKQGILGNQPALPAPGAQPPVIPQAQPVRP





PNGPLSLPVNRMQVSQGMNSFNPMSLGNVQLPQAPMG





PRAASPMNHSVQMNSMGSVPGMAISPSRMPQPPNMMG





AHTNNMMAQAPAQSQFLPQNQFPSSSGAMSVGMGQPP





AQTGVSQGQVPGAALPNPLNMLGPQASQLPCPPVTQS





PLHPTPPPASTAAGMPSLQHTTPPGMTPPQPAAPTQP





STPVSSSGQTPTPTPGSVPSATQTQSTPTVQAAAQAQ





VTPQPQTPVQPPSVATPQSSQQQPTPVHAQPPGTPLS





QAAASIDNRVPTPSSVASAETNSQQPGPDVPVLEMKT





ETQAEDTEPDPGESKGEPRSEMMEEDLQGASQVKEET





DIAEQKSEPMEVDEKKPEVKVEVKEEEESSSNGTASQ





STSPSQPRKKIFKPEELRQALMPTLEALYRQDPESLP





FRQPVDPQLLGIPDYFDIVKNPMDLSTIKRKLDTGQY





QEPWQYVDDVWLMENNAWLYNRKTSRVYKFCSKLAEV





FEQEIDPVMQSLGYCCGRKYEFSPQTLCCYGKQLCTI





PRDAAYYSYQNRYHFCEKCFTEIQGENVTLGDDPSQP





QTTISKDQFEKKKNDTLDPEPFVDCKECGRKMHQICV





LHYDIIWPSGFVCDNCLKKTGRPRKENKFSAKRLQTT





RLGNHLEDRVNKELRRQNHPEAGEVFVRVVASSDKTV





EVKPGMKSRFVDSGEMSESFPYRTKALFAFEEIDGVD





VCFFGMHVQEYGSDCPPPNTRRVYISYLDSIHFFRPR





CLRTAVYHEILIGYLEYVKKLGYVTGHIWACPPSEGD





DYIFHCHPPDQKIPKPKRLQEWYKKMLDKAFAERIIH





DYKDIFKQATEDRLTSAKELPYFEGDFWPNVLEESIK





ELEQEEEERKKEESTAASETTEGSQGDSKNAKKKNNK





KTNKNKSSISRANKKKPSMPNVSNDLSQKLYATMEKH





KEVFFVIHLHAGPVINTLPPIVDPDPLLSCDLMDGRD





AFLTLARDKHWEFSSLRRSKWSTLCMLVELHTQGQDR





FVYTCNECKHHVETRWHCTVCEDYDLCINCYNTKSHA





HKMVKWGLGLDDEGSSQGEPQSKSPQESRRLSIQRCI





QSLVHACQCRNANCSLPSCQKMKRVVQHTKGCKRKTN





GGCPVCKQLIALCCYHAKHCQENKCPVPFCLNIKHKL





RQQQIQHRLQQAQLMRRRMATMNTRNVPQQSLPSPTS





APPGTPTQQPSTPQTPQPPAQPQPSPVSMSPAGEPSV





ARTQPPTTVSTGKPTSQVPAPPPPAQPPPAAVEAARQ





IEREAQQQQHLYRVNINNSMPPGRTGMGTPGSQMAPV





SLNVPRPNQVSGPVMPSMPPGQWQQAPLPQQQPMPGL





PRPVISMQAQAAVAGPRMPSVQPPRSISPSALQDLLR





TLKSPSSPQQQQQVLNILKSNPQLMAAFIKQRTAKYV





ANQPGMQPQPGLQSQPGMQPQPGMHQQPSLQNLNAMQ





AGVPRPGVPPQQQAMGGLNPQGQALNIMNPGHNPNMA





SMNPQYREMLRRQLLQQQQQQQQQQQQQQQQQQGSAG





MAGGMAGHGQFQQPQGPGGYPPAMQQQQRMQQHLPLQ





GSSMGQMAAQMGQLGQMGQPGLGADSTPNIQQALQQR





ILQQQQMKQQIGSPGQPNPMSPQQHMLSGQPQASHLP





GQQIATSLSNQVRSPAPVQSPRPQSQPPHSSPSPRIQ





PQPSPHHVSPQTGSPHPGLAVTMASSIDQGHLGNPEQ





SAMLPQLNTPSRSALSSELSLVGDTTGDTLEKFVEGL





Neurofibromin
Neurofibromatosis,
233
MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTE


(NF1)
type 1

HNKECLINISKYKESLVISGLTTILKNVNNMRIFGEA





AEKNLYLSQLIILDTLEKCLAGQPKDTMRLDETMLVK





QLLPEICHELHTCREGNQHAAELRNSASGVLESLSCN





NFNAVESRISTRLQELTVCSEDNVDVHDIELLQYINV





DCAKLKRLLKETAFKFKALKKVAQLAVINSLEKAFWN





WVENYPDEFTKLYQIPQTDMAECAEKLEDLVDGFAES





TKRKAAVWPLQIILLILCPEIIQDISKDVVDENNMNK





KLFLDSLRKALAGHGGSRQLTESAAIACVKLCKASTY





INWEDNSVIFLLVQSMVVDLKNLLENPSKPFSRGSQP





ADVDLMIDCLVSCFRISPHNNQHFKICLAQNSPSTEH





YVLVNSLHRIITNSALDWWPKIDAVYCHSVELRNMEG





ETLHKAVQGCGAHPAIRMAPSLTFKEKVTSLKFKEKP





TDLETRSYKYLLLSMVKLIHADPKLLLCNPRKQGPET





QGSTAELITGLVQLVPQSHMPEIAQEAMEALLVLHQL





DSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLS





STEILKWLREILICRNKELLKNKQADRSSCHELLFYG





VGCDIPSSGNTSQMSMDHEELLRTPGASLRKGKGNSS





MDSAAGCSGTPPICRQAQTKLEVALYMFLWNPDTEAV





LVAMSCFRHLCEEADIRCGVDEVSVHNLLPNYNTEME





FASVSNMMSTGRAALQKRVMALLRRIEHPTAGNTEAW





EDTHAKWEQATKLILNYPKAKMEDGQAAESLHKTIVK





RRMSHVSGGGSIDLSDTDSLQEWINMTGFLCALGGVC





LQQRSNSGLATYSPPMGPVSERKGSMISVMSSEGNAD





TPVSKEMDRLLSLMVCNHEKVGLQIRTNVKDLVGLEL





SPALYPMLENKLKNTISKFFDSQGQVLLTDTNTQFVE





QTIAIMKNLLDNHTEGSSEHLGQASIETMMLNLVRYV





RVLGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMK





FRNKMVEYLTDWVMGTSNQAADDDVKCLTRDLDQASM





EAVVSLLAGLPLQPEEGDGVELMEAKSQLFLKYFTLE





MNLLNDCSEVEDESAQTGGRKRGMSRRLASLRHCTVL





AMSNLLNANVDSGLMHSIGLGYHKDLQTRATFMEVLT





KILQQGTEFDTLAETVLADRFERLVELVTMMGDQGEL





PIAMALANVVPCSQWDELARVLVTLEDSRHLLYQLLW





NMFSKEVELADSMQTLFRGNSLASKIMTFCFKVYGAT





YLQKLLDPLLRIVITSSDWQHVSFEVDPTRLEPSESL





EENQRNLLQMTEKFFHAIISSSSEFPPQLRSVCHCLY





QATCHSLLNKATVKEKKENKKSVVSQRFPQNSIGAVG





SAMFLRFINPAIVSPYEAGILDKKPPPRIERGLKLMS





KILQSIANHVLFTKEEHMRPENDEVKSNEDAARRFEL





DIASDCPTSDAVNHSLSFISDGNVLALHRLLWNNQEK





IGQYLSSNRDHKAVGRRPFDKMATLLAYLGPPEHKPV





ADTHWSSLNLTSSKFEEFMTRHQVHEKEEFKALKTLS





IFYQAGTSKAGNPIFYYVARREKTGQINGDLLIYHVL





LTLKPYYAKPYEIVVDLTHTGPSNRFKTDELSKWFVV





FPGFAYDNVSAVYIYNCNSWVREYTKYHERLLTGLKG





SKRIVFIDCPGKLAEHIEHEQQKLPAATLALEEDLKV





FHNALKLAHKDTKVSIKVGSTAVQVTSAERTKVLGQS





VFLNDIYYASEIEEICLVDENQFTLTIANQGTPLTEM





HQECEAIVQSIIHIRTRWELSQPDSIPQHTKIRPKDV





PGTLLNIALLNLGSSDPSLRSAAYNLLCALTCTENLK





IEGQLLETSGLCIPANNTLFIVSISKTLAANEPHLTL





EFLEECISGFSKSSIELKHLCLEYMTPWLSNLVRECK





HNDDAKRQRVTAILDKLITMTINEKQMYPSIQAKIWG





SLGQITDLLDVVLDSFIKTSATGGLGSIKAEVMADTA





VALASGNVKLVSSKVIGRMCKIIDKTCLSPTPTLEQH





LMWDDIAILARYMLMLSENNSLDVAAHLPYLFHVVTF





LVATGPLSLRASTHGLVINIIHSLCTCSQLHFSEETK





QVLRLSLTEFSLPKFYLLFGISKVKSAAVIAFRSSYR





DRSESPGSYERETFALTSLETVTEALLEIMEACMRDI





PTCKWLDQWTELAQRFAFQYNPSLQPRALVVFGCISK





RVSHGQIKQIIRILSKALESCLKGPDTYNSQVLIEAT





VIALTKLQPLLNKDSPLHKALFWVAVAVLQLDEVNLY





SAGTALLEQNLHTLDSLRIENDKSPEEVEMAIRNPLE





WHCKQMDHFVGLNENSNENFALVGHLLKGYRHPSPAI





VARTVRILHTLLTLVNKHRNCDKFEVNTQSVAYLAAL





LTVSEEVRSRCSLKHRKS





LLLTDISMENVPMDTYPIHHGDPSYRTLKETQPWSSP





KGSEGYLAATYPTVGQTSPRARKSMSLDMGQPSQANT





KKLLGTRKSFDHLISDTKAPKRQEMESGITTPPKMRR





VAETDYEMETQRISSSQQHPHLRKVSVSESNVLLDEE





VLTDPKIQALLLTVLATLVKYTTDEFDQRILYEYLAE





ASVVFPKVFPVVHNLLDSKINTLLSLCQDPNLLNPIH





GIVQSVVYHEESPPQYQTSYLQSFGENGLWRFAGPES





KQTQIPDYAELIVKELDALIDTYLPGIDEETSEESLL





TPTSPYPPALQSQLSITANLNLSNSMTSLATSQHSPG





IDKENVELSPTTGHCNSGRTRHGSASQVQKORSAGSF





KRNSIKKIV





Histone-lysine
Wiedmann-
234
MAHSCRWRFPARPGTTGGGGGGGRRGLGGAPRQRVPA


N-
Steiner

LLLPPGPPVGGGGPGAPPSPPAVAAAAAAAGSSGAGV


methyltransferase
Syndrome

PGGAAAASAASSSSASSSSSSSSSASSGPALLRVGPG


2A


FDAALQVSAAIGTNLRRFRAVFGESGGGGGSGEDEQF


(KMT2A)


LGFGSDEEVRVRSPTRSPSVKTSPRKPRGRPRSGSDR





NSAILSDPSVESPLNKSETKSGDKIKKKDSKSIEKKR





GRPPTFPGVKIKITHGKDISELPKGNKEDSLKKIKRT





PSATFQQATKIKKLRAGKLSPLKSKFKTGKLQIGRKG





VQIVRRRGRPPSTERIKTPSGLLINSELEKPQKVRKD





KEGTPPLTKEDKTVVRQSPRRIKPVRIIPSSKRTDAT





IAKQLLQRAKKGAQKKIEKEAAQLQGRKVKTQVKNIR





QFIMPVVSAISSRIIKTPRRFIEDEDYDPPIKIARLE





STPNSRESAPSCGSSEKSSAASQHSSQMSSDSSRSSS





PSVDTSTDSQASEEIQVLPEERSDTPEVHPPLPISQS





PENESNDRRSRRYSVSERSFGSRTTKKLSTLQSAPQQ





QTSSSPPPPLLTPPPPLQPASSISDHTPWLMPPTIPL





ASPFLPASTAPMQGKRKSILREPTFRWTSLKHSRSEP





QYFSSAKYAKEGLIRKPIFDNERPPPLTPEDVGFASG





FSASGTAASARLFSPLHSGTREDMHKRSPLLRAPRFT





PSEAHSRIFESVTLPSNRTSAGTSSSGVSNRKRKRKV





FSPIRSEPRSPSHSMRTRSGRLSSSELSPLTPPSSVS





SSLSISVSPLATSALNPTFTFPSHSLTQSGESAEKNQ





RPRKQTSAPAEPFSSSSPTPLFPWFTPGSQTERGRNK





DKAPEELSKDRDADKSVEKDKSRERDREREKENKRES





RKEKRKKGSEIQSSSALYPVGRVSKEKVVGEDVATSS





SAKKATGRKKSSSHDSGTDITSVTLGDTTAVKTKILI





KKGRGNLEKTNLDLGPTAPSLEKEKTLCLSTPSSSTV





KHSTSSIGSMLAQADKLPMTDKRVASLLKKAKAQLCK





IEKSKSLKQTDQPKAQGQESDSSETSVRGPRIKHVCR





RAAVALGRKRAVFPDDMPTLSALPWEEREKILSSMGN





DDKSSIAGSEDAEPLAPPIKPIKPVTRNKAPQEPPVK





KGRRSRRCGQCPGCQVPEDCGVCTNCLDKPKFGGRNI





KKQCCKMRKCQNLQWMPSKAYLQKQAKAVKKKEKKSK





TSEKKDSKESSVVKNVVDSSQKPTPSAREDPAPKKSS





SEPPPRKPVEEKSEEGNVSAPGPESKQATTPASRKSS





KQVSQPALVIPPQPPTTGPPRKEVPKTTPSEPKKKQP





PPPESGPEQSKQKKVAPRPSIPVKQKPKEKEKPPPVN





KQENAGTLNILSTLSNGNSSKQKIPADGVHRIRVDEK





EDCEAENVWEMGGLGILTSVPITPRVVCFLCASSGHV





EFVYCQVCCEPFHKFCLEENERPLEDQLENWCCRRCK





FCHVCGRQHQATKQLLECNKCRNSYHPECLGPNYPTK





PTKKKKVWICTKCVRCKSCGSTTPGKGWDAQWSHDES





LCHDCAKLFAKGNFCPLCDKCYDDDDYESKMMQCGKC





DRWVHSKCENLSDEMYEILSNLPESVAYTCVNCTERH





PAEWRLALEKELQISLKQVLTALLNSRTTSHLLRYRQ





AAKPPDLNPETEESIPSRSSPEGPDPPVLTEVSKQDD





QQPLDLEGVKRKMDQGNYTSVLEFSDDIVKIIQAAIN





SDGGQPEIKKANSMVKSFFIRQMERVFPWFSVKKSRF





WEPNKVSSNSGMLPNAVLPPSLDHNYAQWQEREENSH





TEQPPLMKKIIPAPKPKGPGEPDSPTPLHPPTPPILS





TDRSREDSPELNPPPGIEDNRQCALCLTYGDDSANDA





GRLLYIGQNEWTHVNCALWSAEVFEDDDGSLKNVHMA





VIRGKQLRCEFCQKPGATVGCCLTSCTSNYHFMCSRA





KNCVFLDDKKVYCQRHRDLIKGEVVPENGFEVERRVE





VDFEGISLRRKELNGLEPENIHMMIGSMTIDCLGILN





DLSDCEDKLFPIGYQCSRVYWSTTDARKRCVYTCKIV





ECRPPVVEPDINSTVEHDENRTIAHSPTSFTESSSKE





SQNTAEIISPPSPDRPPHSQTSGSCYYHVISKVPRIR





TPSYSPTQRSPGCRPLPSAGSPTPTTHEIVTVGDPLL





SSGLRSIGSRRHSTSSLSPQRSKLRIMSPMRTGNTYS





RNNVSSVSTTGTATDLESSAKVVDHVLGPLNSSTSLG





QNTSTSSNLQRTVVTVGNKNSHLDGSSSSEMKQSSAS





DLVSKSSSLKGEKTKVLSSKSSEGSAHNVAYPGIPKL





APQVHNTTSRELNVSKIGSFAEPSSVSFSSKEALSFP





HLHLRGQRNDRDQHTDSTQSANSSPDEDTEVKTLKLS





GMSNRSSIINEHMGSSSRDRRQKGKKSCKETFKEKHS





SKSFLEPGQVTTGEEGNLKPEFMDEVLTPEYMGQRPC





NNVSSDKIGDKGLSMPGVPKAPPMQVEGSAKELQAPR





KRTVKVTLTPLKMENESQSKNALKESSPASPLQIEST





SPTEPISASENPGDGPVAQPSPNNTSCQDSQSNNYQN





LPVQDRNLMLPDGPKPQEDGSFKRRYPRRSARARSNM





FFGLTPLYGVRSYGEEDIPFYSSSTGKKRGKRSAEGQ





VDGADDLSTSDEDDLYYYNFTRTVISSGGEERLASHN





LFREEEQCDLPKISQLDGVDDGTESDTSVTATTRKSS





QIPKRNGKENGTENLKIDRPEDAGEKEHVTKSSVGHK





NEPKMDNCHSVSRVKTQGQDSLEAQLSSLESSRRVHT





STPSDKNLLDTYNTELLKSDSDNNNSDDCGNILPSDI





MDFVLKNTPSMQALGESPESSSSELLNLGEGLGLDSN





REKDMGLFEVESQQLPTTEPVDSSVSSSISAEEQFEL





PLELPSDLSVLTTRSPTVPSQNPSRLAVISDSGEKRV





TITEKSVASSESDPALLSPGVDPTPEGHMTPDHFIQG





HMDADHISSPPCGSVEQGHGNNQDLTRNSSTPGLQVP





VSPTVPIQNQKYVPNSTDSPGPSQISNAAVQTTPPHL





KPATEKLIVVNQNMQPLYVLQTLPNGVTQKIQLTSSV





SSTPSVMETNTSVLGPMGGGLTLTTGLNPSLPTSQSL





FPSASKGLLPMSHHQHLHSFPAATQSSFPPNISNPPS





GLLIGVQPPPDPQLLVSESSQRTDLSTTVATPSSGLK





KRPISRLQTRKNKKLAPSSTPSNIAPSDVVSNMTLIN





FTPSQLPNHPSLLDLGSLNTSSHRTVPNIIKRSKSSI





MYFEPAPLLPQSVGGTAATAAGTSTISQDTSHLTSGS





VSGLASSSSVLNVVSMQTTTTPTSSASVPGHVTLTNP





RLLGTPDIGSISNLLIKASQQSLGIQDQPVALPPSSG





MFPQLGTSQTPSTAAITAASSICVLPSTQTTGITAAS





PSGEADEHYQLQHVNQLLASKTGIHSSQRDLDSASGP





QVSNFTQTVDAPNSMGLEQNKALSSAVQASPTSPGGS





PSSPSSGQRSASPSVPGPTKPKPKTKRFQLPLDKGNG





KKHKVSHLRTSSSEAHIPDQETTSLTSGTGTPGAEAE





QQDTASVEQSSQKECGQPAGQVAVLPEVQVTQNPANE





QESAEPKTVEEEESNESSPLMLWLQQEQKRKESITEK





KPKKGLVFEISSDDGFQICAESIEDAWKSLTDKVQEA





RSNARLKQLSFAGVNGLRMLGILHDAVVFLIEQLSGA





KHCRNYKFRFHKPEEANEPPLNPHGSARAEVHLRKSA





FDMENFLASKHRQPPEYNPNDEEEEEVQLKSARRATS





MDLPMPMRFRHLKKTSKEAVGVYRSPIHGRGLFCKRN





IDAGEMVIEYAGNVIRSIQTDKREKYYDSKGIGCYME





RIDDSEVVDATMHGNAARFINHSCEPNCYSRVINIDG





QKHIVIFAMRKIYRGEELTYDYKFPIEDASNKLPCNC





GAKKCRKELN





Chromodomain-
Sifrim-Hitz-
235
MASGLGSPSPCSAGSEEEDMDALLNNSLPPPHPENEE


helicase-DNA-
Weiss

DPEEDLSETETPKLKKKKKPKKPRDPKIPKSKRQKKE


binding protein
Syndrome

RMLLCRQLGDSSGEGPEFVEEEEEVALRSDSEGSDYT


4


PGKKKKKKLGPKKEKKSKSKRKEEEEEEDDDDDSKEP


(CHD4)


KSSAQLLEDWGMEDIDHVESEEDYRTLTNYKAFSQFV





RPLIAAKNPKIAVSKMMMVLGAKWREFSTNNPFKGSS





GASVAAAAAAAVAVVESMVTATEVAPPPPPVEVPIRK





AKTKEGKGPNARRKPKGSPRVPDAKKPKPKKVAPLKI





KLGGFGSKRKRSSSEDDDLDVESDEDDASINSYSVSD





GSTSRSSRSRKKLRTTKKKKKGEEEVTAVDGYETDHQ





DYCEVCQQGGEIILCDTCPRAYHMVCLDPDMEKAPEG





KWSCPHCEKEGIQWEAKEDNSEGEEILEEVGGDLEEE





DDHHMEFCRVCKDGGELLCCDTCPSSYHIHCLNPPLP





EIPNGEWLCPRCTCPALKGKVQKILIWKWGQPPSPTP





VPRPPDADPNTPSPKPLEGRPERQFFVKWQGMSYWHC





SWVSELQLELHCQVMERNYQRKNDMDEPPSGDEGGDE





EKSRKRKNKDPKFAEMEERFYRYGIKPEWMMIHRILN





HSVDKKGHVHYLIKWRDLPYDQASWESEDVEIQDYDL





FKQSYWNHRELMRGEEGRPGKKLKKVKLRKLERPPET





PTVDPTVKYERQPEYLDATGGTLHPYQMEGLNWLRES





WAQGTDTILADEMGLGKTVQTAVFLYSLYKEGHSKGP





FLVSAPLSTIINWEREFEMWAPDMYVVTYVGDKDSRA





IIRENEFSFEDNAIRGGKKASRMKKEASVKFHVLLTS





YELITIDMAILGSIDWACLIVDEAHRLKNNQSKFFRV





LNGYSLQHKLLLTGTPLQNNLEELFHLLNELTPERFH





NLEGFLEEFADIAKEDQIKKLHDMLGPHMLRRLKADV





FKNMPSKTELIVRVELSPMQKKYYKYILTRNFEALNA





RGGGNQVSLLNVVMDLKKCCNHPYLFPVAAMEAPKMP





NGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIES





QMTKMLDLLEDFLEHEGYKYERIDGGITGNMRQEAID





RFNAPGAQQFCFLLSTRAGGLGINLATADTVIIYDSD





WNPHNDIQAFSRAHRIGQNKKVMIYREVTRASVEERI





TQVAKKKMMLTHLVVRPGLGSKTGSMSKQELDDILKF





GTEELFKDEATDGGGDNKEGEDSSVIHYDDKAIERLL





DRNQDETEDTELQGMNEYLSSFKVAQYVVREEEMGEE





EEVEREIIKQEESVDPDYWEKLLRHHYEQQQEDLARN





LGKGKRIRKQVNYNDGSQEDRDWQDDQSDNQSDYSVA





SEEGDEDFDERSEAPRRPSRKGLRNDKDKPLPPLLAR





VGGNIEVLGFNARQRKAFLNAIMRYGMPPQDAFTTQW





LVRDLRGKSEKEFKAYVSLFMRHLCEPGADGAETFAD





GVPREGLSRQHVLTRIGVMSLIRKKVQEFEHVNGRWS





MPELAEVEENKKMSQPGSPSPKTPTPSTPGDTQPNTP





APVPPAEDGIKIEENSLKEEESIEGEKEVKSTAPETA





IECTQAPAPASEDEKVVVEPPEGEEKVEKAEVKERTE





EPMETEPKGAADVEKVEEKSAIDLTPIVVEDKEEKKE





EEEKKEVMLQNGETPKDLNDEKQKKNIKQRFMENIAD





GGFTELHSLWQNEERAATVTKKTYEIWHRRHDYWLLA





GIINHGYARWQDIQNDPRYAILNEPFKGEMNRGNFLE





IKNKFLARRFKLLEQALVIEEQLRRAAYLNMSEDPSH





PSMALNTRFAEVECLAESHQHLSKESMAGNKPANAVL





HKVLKQLEELLSDMKADVTRLPATIARIPPVAVRLQM





SERNILSRLANRAPEPTPQQVAQQQ





Histone-lysine
Sotos
236
MDQTCELPRRNCLLPFSNPVNLDAPEDKDSPEGNGQS


N-
Syndrome

NFSEPLNGCTMQLSTVSGTSQNAYGQDSPSCYIPLRR


methyltransferase,


LQDLASMINVEYLNGSADGSESFQDPEKSDSRAQTPI


H3 lysine-36


VCTSLSPGGPTALAMKQEPSCNNSPELQVKVTKTIKN


specific


GFLHFENFTCVDDADVDSEMDPEQPVTEDESIEEIFE


(NSD1)


ETQTNATCNYETKSENGVKVAMGSEQDSTPESRHGAV





KSPFLPLAPQTETQKNKQRNEVDGSNEKAALLPAPES





LGDTNITIEEQLNSINLSFQDDPDSSTSTLGNMLELP





GTSSSSTSQELPFCQPKKKSTPLKYEVGDLIWAKEKR





RPWWPCRICSDPLINTHSKMKVSNRRPYRQYYVEAFG





DPSERAWVAGKAIVMFEGRHQFEELPVLRRRGKQKEK





GYRHKVPQKILSKWEASVGLAEQYDVPKGSKNRKCIP





GSIKLDSEEDMPFEDCTNDPESEHDLLLNGCLKSLAF





DSEHSADEKEKPCAKSRARKSSDNPKRTSVKKGHIQF





EAHKDERRGKIPENLGLNFISGDISDTQASNELSRIA





NSLTGSNTAPGSFLFSSCGKNTAKKEFETSNGDSLLG





LPEGALISKCSREKNKPQRSLVCGSKVKLCYIGAGDE





EKRSDSISICTTSDDGSSDLDPIEHSSESDNSVLEIP





DAFDRTENMLSMQKNEKIKYSRFAATNTRVKAKQKPL





ISNSHTDHLMGCTKSAEPGTETSQVNLSDLKASTLVH





KPQSDFTNDALSPKENLSSSISSENSLIKGGAANQAL





LHSKSKQPKFRSIKCKHKENPVMAEPPVINEECSLKC





CSSDTKGSPLASISKSGKVDGLKLLNNMHEKTRDSSD





IETAVVKHVLSELKELSYRSLGEDVSDSGTSKPSKPL





LFSSASSQNHIPIEPDYKFSTLLMMLKDMHDSKTKEQ





RLMTAQNLVSYRSPGRGDCSTNSPVGVSKVLVSGGST





HNSEKKGDGTQNSANPSPSGGDSALSGELSASLPGLL





SDKRDLPASGKSRSDCVTRRNCGRSKPSSKLRDAFSA





QMVKNTVNRKALKTERKRKLNQLPSVTLDAVLQGDRE





RGGSLRGGAEDPSKEDPLQIMGHLTSEDGDHFSDVHF





DSKVKQSDPGKISEKGLSFENGKGPELDSVMNSENDE





LNGVNQVVPKKRWQRLNQRRTKPRKRMNREKEKENSE





CAFRVLLPSDPVQEGRDEFPEHRTPSASILEEPLTEQ





NHADCLDSAGPRLNVCDKSSASIGDMEKEPGIPSLTP





QAELPEPAVRSEKKRLRKPSKWLLEYTEEYDQIFAPK





KKQKKVQEQVHKVSSRCEEESLLARGRSSAQNKQVDE





NSLISTKEEPPVLEREAPFLEGPLAQSELGGGHAELP





QLTLSVPVAPEVSPRPALESEELLVKTPGNYESKRQR





KPTKKLLESNDLDPGEMPKKGDLGLSKKCYEAGHLEN





GITESCATSYSKDFGGGTTKIFDKPRKRKRQRHAAAK





MQCKKVKNDDSSKEIPGSEGELMPHRTATSPKETVEE





GVEHDPGMPASKKMQGERGGGAALKENVCQNCEKLGE





LLLCEAQCCGAFHLECLGLTEMPRGKFICNECRTGIH





TCFVCKQSGEDVKRCLLPLCGKFYHEECVQKYPPTVM





QNKGFRCSLHICITCHAANPANVSASKGRLMRCVRCP





VAYHANDFCLAAGSKILASNSIICPNHFTPRRGCRNH





EHVNVSWCFVCSEGGSLLCCDSCPAAFHRECLNIDIP





EGNWYCNDCKAGKKPHYREIVWVKVGRYRWWPAEICH





PRAVPSNIDKMRHDVGEFPVLFFGSNDYLWTHQARVE





PYMEGDVSSKDKMGKGVDGTYKKALQEAAARFEELKA





QKELRQLQEDRKNDKKPPPYKHIKVNRPIGRVQIFTA





DLSEIPRCNCKATDENPCGIDSECINRMLLYECHPTV





CPAGGRCQNQCFSKRQYPEVEIFRTLQRGWGLRTKTD





IKKGEFVNEYVGELIDEEECRARIRYAQEHDITNFYM





LTLDKDRIIDAGPKGNYARFMNHCCQPNCETQKWSVN





GDTRVGLFALSDIKAGTELTENYNLECLGNGKTVCKC





GAPNCSGFLGVRPKNQPIATEEKSKKFKKKQQGKRRT





QGEITKEREDECFSCGDAGQLVSCKKPGCPKVYHADC





LNLTKRPAGKWECPWHQCDICGKEAASFCEMCPSSFC





KQHREGMLFISKLDGRLSCTEHDPCGPNPLEPGEIRE





YVPPPVPLPPGPSTHLAEQSTGMAAQAPKMSDKPPAD





TNQMLSLSKKALAGTCQRPLLPERPLERTDSRPQPLD





KVRDLAGSGTKSQSLVSSQRPLDRPPAVAGPRPQLSD





KPSPVTSPSSSPSVRSQPLERPLGTADPRLDKSIGAA





SPRPQSLEKTSVPTGLRLPPPDRLLITSSPKPQTSDR





PTDKPHASLSQRLPPPEKVLSAVVQTLVAKEKALRPV





DQNTQSKNRAALVMDLIDLTPRQKERAASPHQVTPQA





DEKMPVLESSSWPASKGLGHMPRAVEKGCVSDPLQTS





GKAAAPSEDPWQAVKSLTQARLLSQPPAKAFLYEPTT





QASGRASAGAEQTPGPLSQSPGLVKQAKQMVGGQQLP





ALAAKSGQSFRSLGKAPASLPTEEKKLVTTEQSPWAL





GKASSRAGLWPIVAGQTLAQSCWSAGSTQTLAQTCWS





LGRGQDPKPEQNTLPALNQAPSSHKCAESEQK





Mediator of
MED13L
237
MTAAANWVANGASLEDCHSNLESLAELTGIKWRRYNF


RNA
Syndrome

GGHGDCGPIISAPAQDDPILLSFIRCLQANLLCVWRR


polymerase II


DVKPDCKELWIFWWGDEPNLVGVIHHELQVVEEGLWE


transcription


NGLSYECRTLLFKAIHNLLERCLMDKNFVRIGKWFVR


subunit 13-like


PYEKDEKPVNKSEHLSCAFTFELHGESNVCTSVEIAQ


(MED13L)


HQPIYLINEEHIHMAQSSPAPFQVLVSPYGLNGTLTG





QAYKMSDPATRKLIEEWQYFYPMVLKKKEESKEEDEL





GYDDDFPVAVEVIVGGVRMVYPSAFVLISQNDIPVPQ





SVASAGGHIAVGQQGLGSVKDPSNCGMPLTPPTSPEQ





AILGESGGMQSAASHLVSQDGGMITMHSPKRSGKIPP





KLHNHMVHRVWKECILNRTQSKRSQMSTPTLEEEPAS





NPATWDFVDPTQRVSCSCSRHKLLKRCAVGPNRPPTV





SQPGFSAGPSSSSSLPPPASSKHKTAERQEKGDKLQK





RPLIPFHHRPSVAEELCMEQDTPGQKLGLAGIDSSLE





VSSSRKYDKQMAVPSRNTSKQMNLNPMDSPHSPISPL





PPTLSPQPRGQETESLDPPSVPVNPALYGNGLELQQL





STLDDRTVLVGQRLPLMAEVSETALYCGIRPSNPESS





EKWWHSYRLPPSDDAEFRPPELQGERCDAKMEVNSES





TALQRLLAQPNKRFKIWQDKQPQLQPLHELDPLPLSQ





QPGDSLGEVNDPYTFEDGDIKYIFTANKKCKQGTEKD





SLKKNKSEDGFGTKDVTTPGHSTPVPDGKNAMSIFSS





ATKTDVRQDNAAGRAGSSSLTQVTDLAPSLHDLDNIE





DNSDDDELGAVSPALRSSKMPAVGTEDRPLGKDGRAA





VPYPPTVADLQRMFPTPPSLEQHPAFSPVMNYKDGIS





SETVTALGMMESPMVSMVSTQLTEFKMEVEDGLGSPK





PEEIKDFSYVHKVPSFQPFVGSSMFAPLKMLPSHCLL





PLKIPDACLFRPSWAIPPKIEQLPMPPAATFIRDGYN





NVPSVGSLADPDYLNTPQMNTPVTLNSAAPASNSGAG





VLPSPATPRFSVPTPRTPRTPRTPRGGGTASGQGSVK





YDSTDQGSPASTPSTTRPLNSVEPATMQPIPEAHSLY





VTLILSDSVMNIFKDRNEDSCCICACNMNIKGADVGL





YIPDSSNEDQYRCTCGFSAIMNRKLGYNSGLFLEDEL





DIFGKNSDIGQAAERRLMMCQSTELPQVEGTKKPQEP





PISLLLLLQNQHTQPFASLNFLDYISSNNRQTLPCVS





WSYDRVQADNNDYWTECFNALEQGRQYVDNPTGGKVD





EALVRSATVHSWPHSNVLDISMLSSQDVVRMLLSLQP





FLQDAIQKKRTGRTWENIQHVQGPLTWQQFHKMAGRG





TYGSEESPEPLPIPTLLVGYDKDELTISPESLPFWER





LLLDPYGGHRDVAYIVVCPENEALLEGAKTFERDLSA





VYEMCRLGQHKPICKVLRDGIMRVGKTVAQKLTDELV





SEWFNQPWSGEENDNHSRLKLYAQVCRHHLAPYLATL





QLDSSLLIPPKYQTPPAAAQGQATPGNAGPLAPNGSA





APPAGSAFNPTSNSSSTNPAASSSASGSSVPPVSSSA





SAPGISQISTTSSSGFSGSVGGQNPSTGGISADRTQG





NIGCGGDTDPGQSSSQPSQDGQESVTERERIGIPTEP





DSADSHAHPPAVVIYMVDPFTYAAEEDSTSGNEWLLS





LMRCYTEMLDNLPEHMRNSFILQIVPCQYMLQTMKDE





QVFYIQYLKSMAFSVYCQCRRPLPTQIHIKSLTGFGP





AASIEMTLKNPERPSPIQLYSPPFILAPIKDKQTELG





ETFGEASQKYNVLFVGYCLSHDQRWLLASCTDLHGEL





LETCVVNIALPNRSRRSKVSARKIGLQKLWEWCIGIV





QMTSLPWRVVIGRLGRLGHGELKDWSILLGECSLQTI





SKKLKDVCRMCGISAADSPSILSACLVAMEPQGSFVV





MPDAVTMGSVFGRSTALNMQSSQLNTPQDASCTHILV





FPTSSTIQVAPANYPNEDGESPNNDDMFVDLPFPDDM





DNDIGILMTGNLHSSPNSSPVPSPGSPSGIGVGSHFQ





HSRSQGERLLSREAPEELKQQPLALGYFVSTAKAENL





PQWFWSSCPQAQNQCPLFLKASLHHHISVAQTDELLP





ARNSQRVPHPLDSKTTSDVLRFVLEQYNALSWLTCNP





ATQDRTSCLPVHFVVLTQLYNAIMNIL





Structural
SMC1A
238
MGFLKLIEIENFKSYKGRQIIGPFQRFTAIIGPNGSG


maintenance of
Syndrome

KSNLMDAISFVLGEKTSNLRVKTLRDLIHGAPVGKPA


chromosomes


ANRAFVSMVYSEEGAEDRTFARVIVGGSSEYKINNKV


protein 1A


VQLHEYSEELEKLGILIKARNFLVFQGAVESIAMKNP


(SMC1A)


KERTALFEEISRSGELAQEYDKRKKEMVKAEEDTQEN





YHRKKNIAAERKEAKQEKEEADRYQRLKDEVVRAQVQ





LQLFKLYHNEVEIEKLNKELASKNKEIEKDKKRMDKV





EDELKEKKKELGKMMREQQQIEKEIKEKDSELNQKRP





QYIKAKENTSHKIKKLEAAKKSLQNAQKHYKKRKGDM





DELEKEMLSVEKARQEFEERMEEESQSQGRDLTLEEN





QVKKYHRLKEEASKRAATLAQELEKENRDQKADQDRL





DLEERKKVETEAKIKQKLREIEENQKRIEKLEEYITT





SKQSLEEQKKLEGELTEEVEMAKRRIDEINKELNQVM





EQLGDARIDRQESSRQQRKAEIMESIKRLYPGSVYGR





LIDLCQPTQKKYQIAVTKVLGKNMDAIIVDSEKTGRD





CIQYIKEQRGEPETFLPLDYLEVKPTDEKLRELKGAK





LVIDVIRYEPPHIKKALQYACGNALVCDNVEDARRIA





FGGHQRHKTVALDGTLFQKSGVISGGASDLKAKARRW





DEKAVDKLKEKKERLTEELKEQMKAKRKEAELRQVQS





QAHGLQMRLKYSQSDLEQTKTRHLALNLQEKSKLESE





LANFGPRINDIKRIIQSREREMKDLKEKMNQVEDEVE





EEFCREIGVRNIREFEEEKVKRQNEIAKKRLEFENQK





TRLGIQLDFEKNQLKEDQDKVHMWEQTVKKDENEIEK





LKKEEQRHMKIIDETMAQLQDLKNQHLAKKSEVNDKN





HEMEEIRKKLGGANKEMTHLQKEVTAIETKLEQKRSD





RHNLLQACKMQDIKLPLSKGTMDDISQEEGSSQGEDS





VSGSQRISSIYAREALIEIDYGDLCEDLKDAQAEEEI





KQEMNTLQQKLNEQQSVLQRIAAPNMKAMEKLESVRD





KFQETSDEFEAARKRAKKAKQAFEQIKKERFDRENAC





FESVATNIDEIYKALSRNSSAQAFLGPENPEEPYLDG





INYNCVAPGKRFRPMDNLSGGEKTVAALALLFAIHSY





KPAPFFVLDEIDAALDNTNIGKVANYIKEQSTCNFQA





IVISLKEEFYTKAESLIGVYPEQGDCVISKVLTEDLT





KYPDANPNPNEQ





Probable global
Nicolaides-
239
MSTPTDPGAMPHPGPSPGPGPSPGPILGPSPGPGPSP


transcription
Baraitser

GSVHSMMGPSPGPPSVSHPMPTMGSTDFPQEGMHQMH


activator
Syndrome

KPIDGIHDKGIVEDIHCGSMKGTGMRPPHPGMGPPQS


SNF2L2


PMDQHSQGYMSPHPSPLGAPEHVSSPMSGGGPTPPQM


(SMARCA2)


PPSQPGALIPGDPQAMSQPNRGPSPFSPVQLHQLRAQ





ILAYKMLARGQPLPETLQLAVQGKRTLPGLQQQQQQQ





QQQQQQQQQQQQQQQQPQQQPPQPQTQQQQQPALVNY





NRPSGPGPELSGPSTPQKLPVPAPGGRPSPAPPAAAQ





PPAAAVPGPSVPQPAPGQPSPVLQLQQKQSRISPIQK





PQGLDPVEILQEREYRLQARIAHRIQELENLPGSLPP





DLRTKATVELKALRLLNFQRQLRQEVVACMRRDTTLE





TALNSKAYKRSKRQTLREARMTEKLEKQQKIEQERKR





RQKHQEYLNSILQHAKDFKEYHRSVAGKIQKLSKAVA





TWHANTEREQKKETERIEKERMRRLMAEDEEGYRKLI





DQKKDRRLAYLLQQTDEYVANLTNLVWEHKQAQAAKE





KKKRRRRKKKAEENAEGGESALGPDGEPIDESSQMSD





LPVKVTHTETGKVLFGPEAPKASQLDAWLEMNPGYEV





APRSDSEESDSDYEEEDEEEESSRQETEEKILLDPNS





EEVSEKDAKQIIETAKQDVDDEYSMQYSARGSQSYYT





VAHAISERVEKQSALLINGTLKHYQLQGLEWMVSLYN





NNLNGILADEMGLGKTIQTIALITYLMEHKRINGPYL





IIVPLSTLSNWTYEFDKWAPSVVKISYKGTPAMRRSL





VPQLRSGKENVLLTTYEYIIKDKHILAKIRWKYMIVD





EGHRMKNHHCKLTQVLNTHYVAPRRILLTGTPLQNKL





PELWALLNFLLPTIFKSCSTFEQWENAPFAMTGERVD





LNEEETILIIRRLHKVLRPELLRRLKKEVESQLPEKV





EYVIKCDMSALQKILYRHMQAKGILLTDGSEKDKKGK





GGAKTLMNTIMQLRKICNHPYMFQHIEESFAEHLGYS





NGVINGAELYRASGKFELLDRILPKLRATNHRVLLFC





QMTSLMTIMEDYFAFRNFLYLRLDGTTKSEDRAALLK





KENEPGSQYFIFLLSTRAGGLGLNLQAADTVVIEDSD





WNPHQDLQAQDRAHRIGQQNEVRVLRLCTVNSVEEKI





LAAAKYKLNVDQKVIQAGMEDQKSSSHERRAFLQAIL





EHEEENEEEDEVPDDETLNQMIARREEEFDLFMRMDM





DRRREDARNPKRKPRLMEEDELPSWIIKDDAEVERLT





CEEEEEKIFGRGSRQRRDVDYSDALTEKQWLRAIEDG





NLEEMEEEVRLKKRKRRRNVDKDPAKEDVEKAKKRRG





RPPAEKLSPNPPKLTKQMNAIIDTVINYKDRCNVEKV





PSNSQLEIEGNSSGRQLSEVFIQLPSRKELPEYYELI





RKPVDFKKIKERIRNHKYRSLGDLEKDVMLLCHNAQT





FNLEGSQIYEDSIVLQSVEKSARQKIAKEEESEDESN





EEEEEEDEEESESEAKSVKVKIKLNKKDDKGRDKGKG





KKRPNRGKAKPVVSDFDSDEEQDEREQSEGSGTDDE





AT-rich
ARID1B-
240
MAHNAGAAAAAGTHSAKSGGSEAALKEGGSAAALSSS


interactive
Related

SSSSAAAAAASSSSSSGPGSAMETGLLPNHKLKTVGE


domain-
Disorder

APAAPPHQQHHHHHHAHHHHHHAHHLHHHHALQQQLN


containing


QFQQQQQQQQQQQQQQQQQQHPISNNNSLGGAGGGAP


protein 1B


QPGPDMEQPQHGGAKDSAAGGQADPPGPPLLSKPGDE


(ARID1B)


DDAPPKMGEPAGGRYEHPGLGALGTQQPPVAVPGGGG





GPAAVPEFNNYYGSAAPASGGPGGRAGPCFDQHGGQQ





SPGMGMMHSASAAAAGAPGSMDPLQNSHEGYPNSQCN





HYPGYSRPGAGGGGGGGGGGGGGSGGGGGGGGAGAGG





AGAGAVAAAAAAAAAAAGGGGGGGYGGSSAGYGVLSS





PRQQGGGMMMGPGGGGAASLSKAAAGSAAGGFQRFAG





QNQHPSGATPTLNQLLTSPSPMMRSYGGSYPEYSSPS





APPPPPSQPQSQAAAAGAAAGGQQAAAGMGLGKDMGA





QYAAASPAWAAAQQRSHPAMSPGTPGPTMGRSQGSPM





DPMVMKRPQLYGMGSNPHSQPQQSSPYPGGSYGPPGP





QRYPIGIQGRTPGAMAGMQYPQQQMPPQYGQQGVSGY





CQQGQQPYYSQQPQPPHLPPQAQYLPSQSQQRYQPQQ





DMSQEGYGTRSQPPLAPGKPNHEDLNLIQQERPSSLP





DLSGSIDDLPTGTEATLSSAVSASGSTSSQGDQSNPA





QSPFSPHASPHLSSIPGGPSPSPVGSPVGSNQSRSGP





ISPASIPGSQMPPQPPGSQSESSSHPALSQSPMPQER





GFMAGTQRNPQMAQYGPQQTGPSMSPHPSPGGQMHAG





ISSFQQSNSSGTYGPQMSQYGPQGNYSRPPAYSGVPS





ASYSGPGPGMGISANNQMHGQGPSQPCGAVPLGRMPS





AGMQNRPFPGNMSSMTPSSPGMSQQGGPGMGPPMPTV





NRKAQEAAAAVMQAAANSAQSRQGSFPGMNQSGLMAS





SSPYSQPMNNSSSLMNTQAPPYSMAPAMVNSSAASVG





LADMMSPGESKLPLPLKADGKEEGTPQPESKSKKSSS





STTTGEKITKVYELGNEPERKLWVDRYLTEMEERGSP





VSSLPAVGKKPLDLFRLYVCVKEIGGLAQVNKNKKWR





ELATNLNVGTSSSAASSLKKQYIQYLFAFECKIERGE





EPPPEVESTGDTKKQPKLQPPSPANSGSLQGPQTPQS





TGSNSMAEVPGDLKPPTPASTPHGQMTPMQGGRSSTI





SVHDPFSDVSDSSFPKRNSMTPNAPYQQGMSMPDVMG





RMPYEPNKDPFGGMRKVPGSSEPFMTQGQMPNSSMQD





MYNQSPSGAMSNLGMGQRQQFPYGASYDRRHEPYGQQ





YPGQGPPSGQPPYGGHQPGLYPQQPNYKRHMDGMYGP





PAKRHEGDMYNMQYSSQQQEMYNQYGGSYSGPDRRPI





QGQYPYPYSRERMQGPGQIQTHGIPPQMMGGPLQSSS





SEGPQQNMWAARNDMPYPYQNRQGPGGPTQAPPYPGM





NRTDDMMVPDQRINHESQWPSHVSQRQPYMSSSASMQ





PITRPPQPSYQTPPSLPNHISRAPSPASFQRSLENRM





SPSKSPFLPSMKMQKVMPTVPTSQVTGPPPQPPPIRR





EITFPPGSVEASQPVLKQRRKITSKDIVTPEAWRVMM





SLKSGLLAESTWALDTINILLYDDSTVATENLSQLSG





FLELLVEYERKCLIDIFGILMEYEVGDPSQKALDHNA





ARKDDSQSLADDSGKEEEDAECIDDDEEDEEDEEEDS





EKTESDEKSSIALTAPDAAADPKEKPKQASKEDKLPI





KIVKKNNLFVVDRSDKLGRVQEFNSGLLHWQLGGGDT





TEHIQTHFESKMEIPPRRRPPPPLSSAGRKKEQEGKG





DSEEQQEKSIIATIDDVLSARPGALPEDANPGPQTES





SKFPFGIQQAKSHRNIKLLEDEPRSRDETPLCTIAHW





QDSLAKRCICVSNIVRSLSFVPGNDAEMSKHPGLVLI





LGKLILLHHEHPERKRAPQTYEKEEDEDKGVACSKDE





WWWDCLEVLRDNTLVTLANISGQLDLSAYTESICLPI





LDGLLHWMVCPSAEAQDPFPTVGPNSVLSPQRLVLET





LCKLSIQDNNVDLILATPPFSRQEKFYATLVRYVGDR





KNPVCREMSMALLSNLAQGDALAARAIAVQKGSIGNL





ISFLEDGVTMAQYQQSQHNLMHMQPPPLEPPSVDMMC





RAAKALLAMARVDENRSEFLLHEGRLLDISISAVLNS





LVASVICDVLFQIGQL





Pogo
White-Sutton
241
MADTDLFMECEEEELEPWQKISDVIEDSVVEDYNSVD


transposable
Syndrome

KTTTVSVSQQPVSAPVPIAAHASVAGHLSTSTTVSSS


element with


GAQNSDSTKKTLVTLIANNNAGNPLVQQGGQPLILTQ


ZNF domain


NPAPGLGTMVTQPVLRPVQVMQNANHVTSSPVASQPI


(POGZ)


FITTQGFPVRNVRPVQNAMNQVGIVLNVQQGQTVRPI





TLVPAPGTQFVKPTVGVPQVFSQMTPVRPGSTMPVRP





TTNTFTTVIPATLTIRSTVPQSQSQQTKSTPSTSTTP





TATQPTSLGQLAVQSPGQSNQTTNPKLAPSFPSPPAV





SIASFVTVKRPGVTGENSNEVAKLVNTLNTIPSLGQS





PGPVVVSNNSSAHGSQRTSGPESSMKVTSSIPVEDLQ





DGGRKICPRCNAQFRVTEALRGHMCYCCPEMVEYQKK





GKSLDSEPSVPSAAKPPSPEKTAPVASTPSSTPIPAL





SPPTKVPEPNENVGDAVQTKLIMLVDDFYYGRDGGKV





AQLTNFPKVATSFRCPHCTKRLKNNIRFMNHMKHHVE





LDQQNGEVDGHTICQHCYRQFSTPFQLQCHLENVHSP





YESTTKCKICEWAFESEPLFLQHMKDTHKPGEMPYVC





QVCQYRSSLYSEVDVHERMIHEDTRHLLCPYCLKVEK





NGNAFQQHYMRHQKRNVYHCNKCRLQFLFAKDKIEHK





LQHHKTFRKPKQLEGLKPGTKVTIRASRGQPRTVPVS





SNDTPPSALQEAAPLTSSMDPLPVFLYPPVQRSIQKR





AVRKMSVMGRQTCLECSFEIPDFPNHFPTYVHCSLCR





YSTCCSRAYANHMINNHVPRKSPKYLALFKNSVSGIK





LACTSCTFVTSVGDAMAKHLVENPSHRSSSILPRGLT





WIAHSRHGQTRDRVHDRNVKNMYPPPSEPTNKAATVK





SAGATPAEPEELLTPLAPALPSPASTATPPPTPTHPQ





ALALPPLATEGAECLNVDDQDEGSPVTQEPELASGGG





GSGGVGKKEQLSVKKLRVVLFALCCNTEQAAEHERNP





QRRIRRWLRRFQASQGENLEGKYLSFEAEEKLAEWVL





TQREQQLPVNEETLFQKATKIGRSLEGGEKISYEWAV





RFMLRHHLTPHARRAVAHTLPKDVAENAGLFIDEVQR





QIHNQDLPLSMIVAIDEISLFLDTEVLSSDDRKENAL





QTVGTGEPWCDVVLAILADGTVLPTLVFYRGQMDQPA





NMPDSILLEAKESGYSDDEIMELWSTRVWQKHTACQR





SKGMLVMDCHRTHLSEEVLAMLSASSTLPAVVPAGCS





SKIQPLDVCIKRTVKNFLHKKWKEQAREMADTACDSD





VLLQLVLVWLGEVLGVIGDCPELVQRSELVASVLPGP





DGNINSPTRNADMQEELIASLEEQLKLSGEHSESSTP





RPRSSPEETIEPESLHQLFEGESETESFYGFEEADLD





LMEI





Histone
KAT6B
242
MADTDLFMECEEEELEPWQKISDVIEDSVVEDYNSVD


acetyltransferase
Disorder

KTTTVSVSQQPVSAPVPIAAHASVAGHLSTSTTVSSS


KAT6B


GAQNSDSTKKTLVTLIANNNAGNPLVQQGGQPLILTQ


(KAT6B)


NPAPGLGTMVTQPVLRPVQVMQNANHVTSSPVASQPI





FITTQGFPVRNVRPVQNAMNQVGIVLNVQQGQTVRPI





TLVPAPGTQFVKPTVGVPQVFSQMTPVRPGSTMPVRP





TTNTFTTVIPATLTIRSTVPQSQSQQTKSTPSTSTTP





TATQPTSLGQLAVQSPGQSNQTTNPKLAPSFPSPPAV





SIASFVTVKRPGVTGENSNEVAKLVNTLNTIPSLGQS





PGPVVVSNNSSAHGSQRTSGPESSMKVTSSIPVEDLQ





DGGRKICPRCNAQFRVTEALRGHMCYCCPEMVEYQKK





GKSLDSEPSVPSAAKPPSPEKTAPVASTPSSTPIPAL





SPPTKVPEPNENVGDAVQTKLIMLVDDFYYGRDGGKV





AQLTNFPKVATSFRCPHCTKRLKNNIREMNHMKHHVE





LDQQNGEVDGHTICQHCYRQFSTPFQLQCHLENVHSP





YESTTKCKICEWAFESEPLFLQHMKDTHKPGEMPYVC





QVCQYRSSLYSEVDVHERMIHEDTRHLLCPYCLKVEK





NGNAFQQHYMRHQKRNVYHCNKCRLQFLFAKDKIEHK





LQHHKTFRKPKQLEGLKPGTKVTIRASRGQPRTVPVS





SNDTPPSALQEAAPLTSSMDPLPVFLYPPVQRSIQKR





AVRKMSVMGRQTCLECSFEIPDFPNHFPTYVHCSLCR





YSTCCSRAYANHMINNHVPRKSPKYLALFKNSVSGIK





LACTSCTFVTSVGDAMAKHLVENPSHRSSSILPRGLT





WIAHSRHGQTRDRVHDRNVKNMYPPPSFPTNKAATVK





SAGATPAEPEELLTPLAPALPSPASTATPPPTPTHPQ





ALALPPLATEGAECLNVDDQDEGSPVTQEPELASGGG





GSGGVGKKEQLSVKKLRVVLFALCCNTEQAAEHERNP





QRRIRRWLRRFQASQGENLEGKYLSFEAEEKLAEWVL





TQREQQLPVNEETLFQKATKIGRSLEGGEKISYEWAV





RFMLRHHLTPHARRAVAHTLPKDVAENAGLFIDEVQR





QIHNQDLPLSMIVAIDEISLELDTEVLSSDDRKENAL





QTVGTGEPWCDVVLAILADGTVLPTLVFYRGQMDQPA





NMPDSILLEAKESGYSDDEIMELWSTRVWQKHTACQR





SKGMLVMDCHRTHLSEEVLAMLSASSTLPAVVPAGCS





SKIQPLDVCIKRTVKNFLHKKWKEQAREMADTACDSD





VLLQLVLVWLGEVLGVIGDCPELVQRSELVASVLPGP





DGNINSPTRNADMQEELIASLEEQLKLSGEHSESSTP





RPRSSPEETIEPESLHQLFEGESETESFYGFEEADLD





LMEI





AT-hook DNA-
Xia-Gibbs
243
MRVKPQGLVVTSSAVCSSPDYLREPKYYPGGPPTPRP


binding motif-
Syndrome

LLPTRPPASPPDKAFSTHAFSENPRPPPRRDPSTRRP


containing


PVLAKGDDPLPPRAARPVSQARCPTPVGDGSSSRRCW


protein 1


DNGRVNLRPVVQLIDIMKDLTRLSQDLQHSGVHLDCG


(AHDC1)


GLRLSRPPAPPPGDLQYSFFSSPSLANSIRSPEERAT





PHAKSERPSHPLYEPEPEPRDSPQPGQGHSPGATAAA





TGLPPEPEPDSTDYSELADADILSELASLTCPEAQLL





EAQALEPPSPEPEPQLLDPQPRELDPQALEPLGEALE





LPPLQPLADPLGLPGLALQALDTLPDSLESQLLDPQA





LDPLPKLLDVPGRRLEPQQPLGHCPLAEPLRLDLCSP





HGPPGPEGHPKYALRRTDRPKILCRRRKAGRGRKADA





GPEGRLLPLPMPTGLVAALAEPPPPPPPPPPALPGPG





PVSVPELKPESSQTPVVSTRKGKCRGVRRMVVKMAKI





PVSLGRRNKTTYKVSSLSSSLSVEGKELGLRVSAEPT





PLLKMKNNGRNVVVVFPPGEMPIILKRKRGRPPKNLL





LGPGKPKEPAVVAAEAATVAAATMAMPEVKKRRRRKQ





KLASPQPSYAADANDSKAEYSDVLAKLAFLNRQSQCA





GRCSPPRCWTPSEPESVHQAPDTQSISHELHRVQGER





RRGGKAGGFGGRGGGHAAKSARCSFSDFFEGIGKKKK





VVAVAAAGVGGPGLTELGHPRKRGRGEVDAVTGKPKR





KRRSRKNGTLFPEQVPSGPGFGEAGAEWAGDKGGGWA





PHHGHPGGQAGRNCGFQGTEARAFASTGLESGASGRG





SYYSTGAPSGQTELSQERQNLFTGYFRSLLDSDDSSD





LLDFALSASRPESRKASGTYAGPPTSALPAQRGLATE





PSRGAKASPVAVGSSGAGADPSFQPVLSARQTFPPGR





AASYGLTPAASDCRAAETFPKLVPPPSAMARSPTTHP





PANTYLPQYGGYGAGQSVFAPTKPFTGQDCANSKDCS





FAYGSGNSLPASPSSAHSAGYAPPPTGGPCLPPSKAS





FFSSSEGAPFSGSAPTPLRCDSRASTVSPGGYMVPKG





TTASATSAASAASSSSSSFQPSPENCRQFAGASQWPF





RQGYGGLDWASEAFSQLYNPSEDCHVSEPNVILDISN





YTPQKVKQQTAVSETFSESSSDSTQFNQPVGGGGERR





ANSEASSSEGQSSLSSLEKLMMDWNEASSAPGYNWNQ





SVLFQSSSKPGRGRRKKVDLFEASHLGFPTSASAAAS





GYPSKRSTGPRQPRGGRGGGACSAKKERGGAAAKAKE





IPKPQPVNPLFQDSPDLGLDYYSGDSSMSPLPSQSRA





FGVGERDPCDFIGPYSMNPSTPSDGTFGQGFHCDSPS





LGAPELDGKHFPPLAHPPTVEDAGLQKAYSPTCSPTL





GFKEELRPPPTKLAACEPLKHGLQGASLGHAAAAQAH





LSCRDLPLGQPHYDSPSCKGTAYWYPPGSAARSPPYE





GKVGTGLLADELGRTEAACLSAPHLASPPATPKADKE





PLEMARPPGPPRGPAAAAAGYGCPLLSDLTLSPVPRD





SLLPLQDTAYRYPGFMPQAHPGLGGGPKSGELGPMAE





PHPEDTFTVTSL





Histone
Menke-
244
MAENVVEPGPPSAKRPKLSSPALSASASDGTDFGSLF


acetyltransferase
Hennekam

DLEHDLPDELINSTELGLINGGDINQLQTSLGMVQDA


p300
Syndrome 2

ASKHKQLSELLRSGSSPNLNMGVGGPGQVMASQAQQS


(EP300)


SPGLGLINSMVKSPMTQAGLTSPNMGMGTSGPNQGPT





QSTGMMNSPVNQPAMGMNTGMNAGMNPGMLAAGNGQG





IMPNQVMNGSIGAGRGRQNMQYPNPGMGSAGNLLTEP





LQQGSPQMGGQTGLRGPQPLKMGMMNNPNPYGSPYTQ





NPGQQIGASGLGLQIQTKTVLSNNLSPFAMDKKAVPG





GGMPNMGQQPAPQVQQPGLVTPVAQGMGSGAHTADPE





KRKLIQQQLVLLLHAHKCQRREQANGEVRQCNLPHCR





TMKNVLNHMTHCQSGKSCQVAHCASSRQIISHWKNCT





RHDCPVCLPLKNAGDKRNQQPILTGAPVGLGNPSSLG





VGQQSAPNLSTVSQIDPSSIERAYAALGLPYQVNQMP





TQPQVQAKNQQNQQPGQSPQGMRPMSNMSASPMGVNG





GVGVQTPSLLSDSMLHSAINSQNPMMSENASVPSLGP





MPTAAQPSTTGIRKQWHEDITQDLRNHLVHKLVQAIF





PTPDPAALKDRRMENLVAYARKVEGDMYESANNRAEY





YHLLAEKIYKIQKELEEKRRTRLQKQNMLPNAAGMVP





VSMNPGPNMGQPQPGMTSNGPLPDPSMIRGSVPNQMM





PRITPQSGLNQFGQMSMAQPPIVPRQTPPLQHHGQLA





QPGALNPPMGYGPRMQQPSNQGQFLPQTQFPSQGMNV





TNIPLAPSSGQAPVSQAQMSSSSCPVNSPIMPPGSQG





SHIHCPQLPQPALHQNSPSPVPSRTPTPHHTPPSIGA





QQPPATTIPAPVPTPPAMPPGPQSQALHPPPRQTPTP





PTTQLPQQVQPSLPAAPSADQPQQQPRSQQSTAASVP





TPTAPLLPPQPATPLSQPAVSIEGQVSNPPSTSSTEV





NSQAIAEKQPSQEVKMEAKMEVDQPEPADTQPEDISE





SKVEDCKMESTETEERSTELKTEIKEEEDQPSTSATQ





SSPAPGQSKKKIFKPEELRQALMPTLEALYRQDPESL





PFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLDTGQ





YQEPWQYVDDIWLMENNAWLYNRKTSRVYKYCSKLSE





VFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCT





IPRDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQ





PQTTINKEQFSKRKNDTLDPELFVECTECGRKMHQIC





VLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPS





TRLGTFLENRVNDELRRQNHPESGEVTVRVVHASDKT





VEVKPGMKARFVDSGEMAESFPYRTKALFAFEEIDGV





DLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRP





KCLRTAVYHEILIGYLEYVKKLGYTTGHIWACPPSEG





DDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIV





HDYKDIFKQATEDRLTSAKELPYFEGDEWPNVLEESI





KELEQEEEERKREENTSNESTDVTKGDSKNAKKKNNK





KTSKNKSSLSRGNKKKPGMPNVSNDLSQKLYATMEKH





KEVFFVIRLIAGPAANSLPPIVDPDPLIPCDLMDGRD





AFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDR





FVYTCNECKHHVETRWHCTVCEDYDLCITCYNTKNHD





HKMEKLGLGLDDESNNQQAAATQSPGDSRRLSIQRCI





QSLVHACQCRNANCSLPSCQKMKRVVQHTKGCKRKTN





GGCPICKQLIALCCYHAKHCQENKCPVPFCLNIKQKL





RQQQLQHRLQQAQMLRRRMASMQRTGVVGQQQGLPSP





TPATPTTPTGQQPTTPQTPQPTSQPQPTPPNSMPPYL





PRTQAAGPVSQGKAAGQVTPPTPPQTAQPPLPGPPPA





AVEMAMQIQRAAETQRQMAHVQIFQRPIQHQMPPMTP





MAPMGMNPPPMTRGPSGHLEPGMGPTGMQQQPPWSQG





GLPQPQQLQSGMPRPAMMSVAQHGQPLNMAPQPGLGQ





VGISPLKPGTVSQQALQNLLRTLRSPSSPLQQQQVLS





ILHANPQLLAAFIKQRAAKYANSNPQPIPGQPGMPQG





QPGLQPPTMPGQQGVHSNPAMQNMNPMQAGVQRAGLP





QQQPQQQLQPPMGGMSPQAQQMNMNHNTMPSQFRDIL





RRQQMMQQQQQQGAGPGIGPGMANHNQFQQPQGVGYP





PQQQQRMQHHMQQMQQGNMGQIGQLPQALGAEAGASL





QAYQQRLLQQQMGSPVQPNPMSPQQHMLPNQAQSPHL





QGQQIPNSLSNQVRSPQPVPSPRPQSQPPHSSPSPRM





QPQPSPHHVSPQTSSPHPGLVAAQANPMEQGHFASPD





QNSMLSQLASNPGMANLHGASATDLGLSTDNSDLNSN





LSQSTLDIH





IQ motif and
IQSEC2-
245
MEAGSGPPGGPGSESPNRAVEYLLELNNIIESQQQLL


SEC7 domain-
Related

ETQRRRIEELEGQLDQLTQENRDLREESQLHRGELHR


containing
Disorder

DPHGARDSPGRESQYQNLRETQFHHRELRESQFHQAA


protein 2


RDVGYPNREGAYQNREAVYRDKERDASYPLQDTTGYT


(IQSEC2)


ARERDVAQCHLHHENPALGRERGGREAGPAHPGREKE





AGYSAAVGVGPRPPRERGQLSRGASRSSSPGAGGGHS





TSTSTSPATTLQRKSDGENSRTVSVEGDAPGSDLSTA





VDSPGSQPPYRLSQLPPSSSHMGGPPAGVGLPWAQRA





RLQPASVALRKQEEEEIKRSKALSDSYELSTDLQDKK





VEMLERKYGGSELSRRAARTIQTAFRQYRMNKNFERL





RSSASESRMSRRIILSNMRMQFSFEEYEKAQNPAYFE





GKPASLDEGAMAGARSHRLERGLPYGGSCGGGIDGGG





SSVTTSGEFSNDITELEDSFSKQVKSLAESIDEALNC





HPSGPMSEEPGSAQLEKRESKEQQEDSSATSESDLPL





YLDDTVPQQSPERLPSTEPPPQGRPEFWAPAPLPPVP





PPVPSGTREDGSREEGTRRGPGCLECRDERLRAAHLP





LLTIEPPSDSSVDLSDRSDRGSVHRQLVYEADGCSPH





GTLKHKGPPGRAPIPHRHYPAPEGPAPAPPGPLPPAP





NSGTGPSGVAGGRRLGKCEAAGENSDGGDNESLESSS





NSNETINCSSGSSSRDSLREPPATGLCKQTYQRETRH





SWDSPAFNNDVVQRRHYRIGLNLENKKPEKGIQYLIE





RGFLSDTPVGVAHFILERKGLSRQMIGEFLGNRQKQF





NRDVLDCVVDEMDESSMDLDDALRKFQSHIRVQGEAQ





KVERLIEAFSQRYCVCNPALVRQFRNPDTIFILAFAI





ILLNTDMYSPSVKAERKMKLDDFIKNLRGVDNGEDIP





RDLLVGIYQRIQGRELRTNDDHVSQVQAVERMIVGKK





PVLSLPHRRLVCCCQLYEVPDPNRPQRLGLHQREVEL





FNDLLVVTKIFQKKKILVTYSFRQSFPLVEMHMQLFQ





NSYYQFGIKLLSAVPGGERKVLIIFNAPSLQDRLRET





SDLRESIAEVQEMEKYRVESELEKQKGMMRPNASQPG





GAKDSVNGTMARSSLEDTYGAGDGLKRGALSSSLRDL





SDAGKRGRRNSVGSLDSTIEGSVISSPRPHQRMPPPP





PPPPPEEYKSQRPVSNSSSFLGSLFGSKRGKGPFQMP





PPPTGQASASSSSASSTHHHHHHHHHGHSHGGLGVLP





DGQSKLQALHAQYCQGPGPAPPPYLPPQQPSLPPPPQ





QPPPLPQLGSIPPPPASAPPVGPHRHFHAHGPVPGPQ





HYTLGRPGRAPRRGAGGHPQFAPHGRHPLHQPTSPLP





LYSPAPQHPPAHKQGPKHFIFSHHPQMMPAAGAAGGP





GSRPPGGSYSHPHHPQSPLSPHSPIPPHPSYPPLPPP





SPHTPHSPLPPTSPHGPLHASGPPGTANPPSANPKAK





PSRISTVV





Transcription
TCF20-Related
246
MQSFREQSSYHGNQQSYPQEVHGSSRLEEFSPRQAQM


factor 20
Disorder

FQNFGGTGGSSGSSGSGSGGGRRGAAAAAAAMASETS


(TCF20)


GHQGYQGFRKEAGDFYYMAGNKDPVTTGTPQPPQRRP





SGPVQSYGPPQGSSFGNQYGSEGHVGQFQAQHSGLGG





VSHYQQDYTGPFSPGSAQYQQQASSQQQQQQVQQLRQ





QLYQSHQPLPQATGQPASSSSHLQPMQRPSTLPSSAA





GYQLRVGQFGQHYQSSASSSSSSSFPSPQRESQSGQS





YDGSYNVNAGSQYEGHNVGSNAQAYGTQSNYSYQPQS





MKNFEQAKIPQGTQQGQQQQQPQQQQHPSQHVMQYTN





AATKLPLQSQVGQYNQPEVPVRSPMQFHQNFSPISNP





SPAASVVQSPSCSSTPSPLMQTGENLQCGQGSVPMGS





RNRILQLMPQLSPTPSMMPSPNSHAAGFKGFGLEGVP





EKRLTDPGLSSLSALSTQVANLPNTVQHMLLSDALTP





QKKTSKRPSSSKKADSCTNSEGSSQPEEQLKSPMAES





LDGGCSSSSEDQGERVRQLSGQSTSSDTTYKGGASEK





AGSSPAQGAQNEPPRLNASPAAREEATSPGAKDMPLS





SDGNPKVNEKTVGVIVSREAMTGRVEKPGGQDKGSQE





DDPAATQRPPSNGGAKETSHASLPQPEPPGGGGSKGN





KNGDNNSNHNGEGNGQSGHSAAGPGFTSRTEPSKSPG





SLRYSYKDSFGSAVPRNVSGFPQYPTGQEKGDETGHG





ERKGRNEKFPSLLQEVLQGYHHHPDRRYSRSTQEHQG





MAGSLEGTTRPNVLVSQTNELASRGLLNKSIGSLLEN





PHWGPWERKSSSTAPEMKQINLTDYPIPRKFEIEPQS





SAHEPGGSLSERRSVICDISPLRQIVRDPGAHSLGHM





SADTRIGRNDRLNPTLSQSVILPGGLVSMETKLKSQS





GQIKEEDFEQSKSQASENNKKSGDHCHPPSIKHESYR





GNASPGAATHDSLSDYGPQDSRPTPMRRVPGRVGGRE





GMRGRSPSQYHDFAEKLKMSPGRSRGPGGDPHHMNPH





MTFSERANRSSLHTPFSPNSETLASAYHANTRAHAYG





DPNAGLNSQLHYKRQMYQQQPEEYKDWSSGSAQGVIA





AAQHRQEGPRKSPRQQQFLDRVRSPLKNDKDGMMYGP





PVGTYHDPSAQEAGRCLMSSDGLPNKGMELKHGSQKL





QESCWDLSRQTSPAKSSGPPGMSSQKRYGPPHETDGH





GLAEATQSSKPGSVMLRLPGQEDHSSQNPLIMRRRVR





SFISPIPSKRQSQDVKNSSTEDKGRLLHSSKEGADKA





FNSYAHLSHSQDIKSIPKRDSSKDLPSPDSRNCPAVT





LTSPAKTKILPPRKGRGLKLEAIVQKITSPNIRRSAS





SNSAEAGGDTVTLDDILSLKSGPPEGGSVAVQDADIE





KRKGEVASDLVSPANQELHVEKPLPRSSEEWRGSVDD





KVKTETHAETVTAGKEPPGAMTSTTSQKPGSNQGRPD





GSLGGTAPLIFPDSKNVPPVGILAPEANPKAEEKEND





TVTISPKQEGFPPKGYFPSGKKKGRPIGSVNKQKKQQ





QPPPPPPQPPQIPEGSADGEPKPKKQRQRRERRKPGA





QPRKRKTKQAVPIVEPQEPEIKLKYATQPLDKTDAKN





KSFYPYIHVVNKCELGAVCTIINAEEEEQTKLVRGRK





GQRSLTPPPSSTESKALPASSEMLQGPVVTESSVMGH





LVCCLCGKWASYRNMGDLFGPFYPQDYAATLPKNPPP





KRATEMQSKVKVRHKSASNGSKTDTEEEEEQQQQQKE





QRSLAAHPREKRRHRSEDCGGGPRSLSRGLPCKKAAT





EGSSEKTVLDSKPSVPTTSEGGPELELQIPELPLDSN





EFWVHEGCILWANGIYLVCGRLYGLQEALEIAREMKC





SHCQEAGATLGCYNKGCSFRYHYPCAIDADCLLHEEN





FSVRCPKHKPPLPCPLPPLQNKTAKGSLSTEQSERG





Putative
Bainbridge-
247
MKDKRKKKDRTWAEAARLALEKHPNSPMTAKQILEVI


Polycomb group
Ropers

QKEGLKETSGTSPLACLNAMLHTNTRIGDGTFFKIPG


protein ASXL3
Syndrome

KSGLYALKKEESSCPADGTLDLVCESELDGTDMAEAN


(ASXL3)


AHGEENGVCSKQVTDEASSTRDSSLTNTAVQSKLVSS





FQQHTKKALKQALRQQQKRRNGVSMMVNKTVPRVVLT





PLKVSDEQSDSPSGSESKNGEADSSDKEMKHGQKSPT





GKQTSQHLKRLKKSGLGHLKWTKAEDIDIETPGSILV





NTNLRALINKHTFASLPQHFQQYLLLLLPEVDRQMGS





DGILRLSTSALNNEFFAYAAQGWKQRLAEGEFTPEMQ





LRIRQEIEKEKKTEPWKEKFFERFYGEKLGMSREESV





KLTTGPNNAGAQSSSSCGTSGLPVSAQTALAEQQPKS





MKSPASPEPGFCATLCPMVEIPPKDIMAELESEDILI





PEESVIQEEIAEEVETSICECQDENHKTIPEFSEEAE





SLTNSHEEPQIAPPEDNLESCVMMNDVLETLPHIEVK





IEGKSESPQEEMTVVIDQLEVCDSLIPSTSSMTHVSD





TEHKESETAVETSTPKIKTGSSSLEGQFPNEGIAIDM





ELQSDPEEQLSENACISETSESSESPEGACTSLPSPG





GETQSTSEESCTPASLETTFCSEVSSTENTDKYNQRN





STDENFHASLMSEISPISTSPEISEASLMSNLPLTSE





ASPVSNLPLTSETSPMSDLPLTSETSSVSSMLLTSET





TFVSSLPLPSETSPISNSSINERMAHQQRKSPSVSEE





PLSPQKDESSATAKPLGENLTSQQKNLSNTPEPIIMS





SSSIAPEAFPSEDLHNKTLSQQTCKSHVDTEKPYPAS





IPELASTEMIKVKNHSVLQRTEKKVLPSPLELSVESE





GTDNKGNELPSAKLQDKQYISSVDKAPFSEGSRNKTH





KQGSTQSRLETSHTSKSSEPSKSPDGIRNESRDSEIS





KRKTAEQHSFGICKEKRARIEDDQSTRNISSSSPPEK





EQPPREEPRVPPLKIQLSKIGPPFIIKSQPVSKPESR





ASTSTSVSGGRNTGARTLADIKARAQQARAQREAAAA





AAVAAAASIVSGAMGSPGEGGKTRTLAHIKEQTKAKL





FAKHQARAHLFQTSKETRLPPPLSSKEGPPNLEVSST





PETKMEGSTGVIIVNPNCRSPSNKSAHLRETTTVLQQ





SLNPSKLPETATDLSVHSSDENIPVSHLSEKIVSSTS





SENSSVPMLFNKNSVPVSVCSTAISGAIKEHPFVSSV





DKSSVLMSVDSANTTISACNISMLKTIQGTDTPCIAI





IPKCIESTPISATTEGSSISSSMDDKQLLISSSSASN





LVSTQYTSVPTPSIGNNLPNLSTSSVLIPPMGINNRE





PSEKIAIPGSEEQATVSMGTTVRAALSCSDSVAVTDS





LVAHPTVAMFTGNMLTINSYDSPPKLSAESLDKNSGP





RNRADNSGKPQQPPGGFAPAAINRSIPCKVIVDHSTT





LTSSLSLTVSVESSEASLDLQGRPVRTEASVQPVACP





QVSVISRPEPVANEGIDHSSTFIAASAAKQDSKTLPA





TCTSLRELPLVPDKLNEPTAPSHNFAEQARGPAPEKS





EADTTCSNQYNPSNRICWNDDGMRSTGQPLVTHSGSS





KQKEYLEQSCPKAIKTEHANYLNVSELHPRNLVINVA





LPVKSELHEADKGFRMDTEDFPGPELPPPAAEGASSV





QQTQNMKASTSSPMEEAISLATDALKRVPGAGSSGCR





LSSVEANNPLVTQLLQGNLPLEKVLPQPRLGAKLEIN





RLPLPLQTTSVGKTAPERNVEIPPSSPNPDGKGYLAG





TLAPLQMRKRENHPKKRVARTVGEHTQVKCEPGKLLV





EPDVKGVPCVISSGISQLGHSQPFKQEWLNKHSMQNR





IVHSPEVKQQKRLLPSCSFQQNLFHVDKNGGFHTDAG





TSHRQQFYQMPVAARGPIPTAALLQASSKTPVGCNAF





AFNRHLEQKGLGEVSLSSAPHQLRLANMLSPNMPMKE





GDEVGGTAHTMPNKALVHPPPPPPPPPPPPLALPPPP





PPPPPLPPPLPNAEVPSDQKQPPVTMETTKRLSWPQS





TGICSNIKSEPLSFEEGLSSSCELGMKQVSYDQNEMK





EQLKAFALKSADESSYLLSEPQKPFTQLAAQKMQVQQ





QQQLCGNYPTIHFGSTSFKRAASAIEKSIGILGSGSN





PATGLSGQNAQMPVQNFADSSNADELELKCSCRLKAM





IVCKGCGAFCHDDCIGPSKLCVACLVVR





Histone
KATA6
248
MVKLANPLYTEWILEAIKKVKKQKQRPSEERICNAVS


acetyltransferase
Syndrome

SSHGLDRKTVLEQLELSVKDGTILKVSNKGLNSYKDP


KAT6A


DNPGRIALPKPRNHGKLDNKQNVDWNKLIKRAVEGLA


(KAT6A)


ESGGSTLKSIERFLKGQKDVSALFGGSAASGFHQQLR





LAIKRAIGHGRLLKDGPLYRLNTKATNVDGKESCESL





SCLPPVSLLPHEKDKPVAEPIPICSFCLGTKEQNREK





KPEELISCADCGNSGHPSCLKFSPELTVRVKALRWQC





IECKTCSSCRDQGKNADNMLFCDSCDRGFHMECCDPP





LTRMPKGMWICQICRPRKKGRKLLQKKAAQIKRRYTN





PIGRPKNRLKKQNTVSKGPFSKVRTGPGRGRKRKITL





SSQSASSSSEEGYLERIDGLDFCRDSNVSLKENKKTK





GLIDGLTKFFTPSPDGRKARGEVVDYSEQYRIRKRGN





RKSSTSDWPTDNQDGWDGKQENEERLEGSQEIMTEKD





MELFRDIQEQALQKVGVTGPPDPQVRCPSVIEFGKYE





IHTWYSSPYPQEYSRLPKLYLCEFCLKYMKSRTILQQ





HMKKCGWFHPPANEIYRKNNISVFEVDGNVSTIYCQN





LCLLAKLFLDHKTLYYDVEPFLFYVLTQNDVKGCHLV





GYFSKEKHCQQKYNVSCIMILPQYQRKGYGRFLIDES





YLLSKREGQAGSPEKPLSDLGRLSYMAYWKSVILECL





YHQNDKQISIKKLSKLTGICPQDITSTLHHLRMLDER





SDQFVIIRREKLIQDHMAKLQLNLRPVDVDPECLRWT





PVIVSNSVVSEEEEEEAEEGENEEPQCQERELEISVG





KSVSHENKEQDSYSVESEKKPEVMAPVSSTRLSKQVL





PHDSLPANSQPSRRGRWGRKNRKTQERFGDKDSKLLL





EETSSAPQEQYGECGEKSEATQEQYTESEEQLVASEE





QPSQDGKPDLPKRRLSEGVEPWRGQLKKSPEALKCRL





TEGSERLPRRYSEGDRAVLRGFSESSEEEEEPESPRS





SSPPILTKPTLKRKKPFLHRRRRVRKRKHHNSSVVTE





TISETTEVLDEPFEDSDSERPMPRLEPTFEIDEEEEE





EDENELFPREYFRRLSSQDVLRCQSSSKRKSKDEEED





EESDDADDTPILKPVSLLRKRDVKNSPLEPDTSTPLK





KKKGWPKGKSRKPIHWKKRPGRKPGFKLSREIMPVST





QACVIEPIVSIPKAGRKPKIQESEETVEPKEDMPLPE





ERKEEEEMQAEAEEAEEGEEEDAASSEVPAASPADSS





NSPETETKEPEVEEEEEKPRVSEEQRQSEEEQQELEE





PEPEEEEDAAAETAQNDDHDADDEDDGHLESTKKKEL





EEQPTREDVKEEPGVQESELDANMQKSREKIKDKEET





ELDSEEEQPSHDTSVVSEQMAGSEDDHEEDSHTKEEL





IELKEEEEIPHSELDLETVQAVQSLTQEESSEHEGAY





QDCEETLAACQTLQSYTQADEDPQMSMVEDCHASEHN





SPISSVQSHPSQSVRSVSSPNVPALESGYTQISPEQG





SLSAPSMQNMETSPMMDVPSVSDHSQQVVDSGESDLG





SIESTTENYENPSSYDSTMGGSICGNSSSQSSCSYGG





LSSSSSLTQSSCVVTQQMASMGSSCSMMQQSSVQPAA





NCSIKSPQSCVVERPPSNQQQQPPPPPPQQPQPPPPQ





PQPAPQPPPPQQQPQQQPQPQPQQPPPPPPPQQQPPL





SQCSMNNSFTPAPMIMEIPESGSTGNISIYERIPGDE





GAGSYSQPSATFSLAKLQQLTNTIMDPHAMPYSHSPA





VTSYATSVSLSNTGLAQLAPSHPLAGTPQAQATMTPP





PNLASTTMNLTSPLLQCNMSATNIGIPHTQRLQGQMP





VKGHISIRSKSAPLPSAAAHQQQLYGRSPSAVAMQAG





PRALAVQRGMNMGVNLMPTPAYNVNSMNMNTLNAMNS





YRMTQPMMNSSYHSNPAYMNQTAQYPMQMQMGMMGSQ





AYTQQPMQPNPHGNMMYTGPSHHSYMNAAGVPKQSLN





GPYMRR





Small nuclear

424
MSKAHPPELKKFMDKKLSLKLNGGRHVQGILRGEDPF


ribonucleoprotein


MNLVIDECVEMATSGQQNNIGMVVIRGNSIIMLEALE


G


RV


(SNRPG)








U6 snRNA-

425
MLFYSFFKSLVGKDVVVELKNDLSICGTLHSVDQYLN


associated Sm-


IKLTDISVTDPEKYPHMLSVKNCFIRGSVVRYVQLPA


like protein


DEVDTQLLQDAARKEALQQKQ


LSm2





(LSM2)








Nuclear protein

426
MEAPAERALPRLQALARPPPPISYEEELYDCLDYYYL


2


RDFPACGAGRSKGRTRREQALRTNWPAPGGHERKVAQ


(NUPR2)


KLLNGQRKRRQRQLHPKMRTRLT









5.3.3 Nuclear Localization Signals

In some embodiments, the fusion protein comprises a nuclear localization signal (NLS) at the N terminus of the fusion protein. Exemplary NLSs are provided in Table 3. In some embodiments, the NLS comprises an amino acid sequence at least 95%, 96%, 97%, 98%, 99%, or 100% identical to one of SEQ ID NO: 249-367.









TABLE 3







The amino acid sequence of exemplary NLSs









SEQ


Amino Acid Sequence
ID NO





AHFKISGEKRPSTDPGKKAKNPKKKKKKDP
249





AHRAKKMSKTHA
250





ASPEYVNLPINGNG
251





CTKRPRW
252





DKAKRVSRNKSEKKRR
253





EELRLKEELLKGIYA
254





EEQLRRRKNSRLNNTG
255





EVLKVIRTGKRKKKAWKRMVTKVC
256





HHHHHHHHHHHHQPH
257





HKKKHPDASVNFSEFSK
258





HKRTKKNLS
259





IINGRKLKLKKSRRRSSQTSNNSFTSRRS
260





KAEQERRK
261





KEKRKRREELFIEQKKRK
262





KKGKDEWFSRGKKP
263





KKGPSVQKRKKTNLS
264





KKKTVINDLLHYKKEK
265





KKNGGKGKNKPSAKIKK
266





KKPKWDDFKKKKK
267





KKRKKDNLS
268





KKRRKRRRK
269





KKRRRRARK
270





KKSKRGR
272





KKSRKRGS
272





KKSTALSRELGKIMRRR
273





KKSYQDPEIIAHSRPRK
274





KKTGKNRKLKSKRVKTR
275





KKVSIAGQSGKLWRWKR
276





KKYENVVIKRSPRKRGRPRK
278





KNKKRK
279





KPKKKR
280





KRAMKDDSHGNSTSPKRRK
281





KRANSNLVAAYEKAKKK
282





KRASEDTTSGSPPKKSSAGPKR
283





KRFKRRWMVRKMKTKK
284





KRGLNSSFETSPKKVK
285





KRGNSSIGPNDLSKRKQRKK
286





KRIHSVSLSQSQIDPSKKVKRAK
287





KRKGKLKNKGSKRKK
288





KRRRRRRREKRKR
289





KRSNDRTYSPEEEKQRRA
290





KRTVATNGDASGAHRAKKMSK
291





KRVYNKGEDEQEHLPKGKKR
292





KSGKAPRRRAVSMDNSNK
293





KVNFLDMSLDDIIIYKELE
294





KVQHRIAKKTTRRRR
295





LSPSLSPL
296





MDSLLMNRRKFLYQFKNVRWAKGRRETYLC
297





MPQNEYIELHRKRYGYRLDYHEKKRKKESREAHERSKKAK
298


KMIGLKAKLYHK






MVQLRPRASR
299





NNKLLAKRRKGGASPKDDPMDDIK
300





NYKRPMDGTYGPPAKRHEGE
301





PDTKRAKLDSSETTMVKKK
302





PEKRTKI
303





PGGRGKKK
304





PGKMDKGEHRQERRDRPY
305





PKKGDKYDKTD
306





PKKKSRK
307





PKKNKPE
308





PKKRAKV
309





PKPKKLKVE
310





PKRGRGR
311





PKRRLVDDA
312





PKRRRTY
313





PLFKRR
314





PLRKAKR
315





PPAKRKCIF
316





PPARRRRL
317





PPKKKRKV
318





PPNKRMKVKH
319





PPRIYPQLPSAPT
320





PQRSPFPKSSVKR
321





PRPRKVPR
322





PRRRVQRKR
323





PRRVRLK
324





PSRKRPR
325





PSSKKRKV
326





PTKKRVK
327





QRPGPYDRP
328





RGKGGKGLGKGGAKRHRK
329





RKAGKGGGGHKTTKKRSAKDEKVP
330





RKIKLKRAK
331





RKIKRKRAK
332





RKKEAPGPREELRSRGR
333





RKKRKGK
334





RKKRRQRRR
335





RKKSIPLSIKNLKRKHKRKKNKITR
336





RKLVKPKNTKMKTKLRTNPY
337





RKRLILSDKGQLDWKK
338





RKRLKSK
339





RKRRVRDNM
340





RKRSPKDKKEKDLDGAGKRRKT
341





RKRTPRVDGQTGENDMNKRRRK
342





RLPVRRRRRR
343





RLRFRKPKSK
344





RQQRKR
345





RRDLNSSFETSPKKVK
346





RRDRAKLR
347





RRGDGRRR
348





RRGRKRKAEKQ
349





RRKKRR
350





RRKRSKSEDMDSVESKRRR
351





RRKRSR
352





RRPKGKTLQKRKPK
353





RRRGFERFGPDNMGRKRK
354





RRRGKNKVAAQNCRK
355





RRRKRRNLS
356





RRRQKQKGGASRRR
357





RRRREGPRARRRR
358





RRTIRLKLVYDKCDRSCKIQKKNRNKCQYCRFHKCLSVGM
359


SHNAIRFGRMPRSEKAKLKAE






RRVPQRKEVSRCRKCRK
360





RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP
361





RVVKLRIAP
362





RVVRRR
363





SKRKTKISRKTR
364





SYVKTVPNRTRTYIKL
365





TGKNEAKKRKIA
366





TLSPASSPSSVSCPVIPASTDESPGSALNI
367









5.3.4 Orientation and Linkers

In some embodiments, the effector domain is N-terminal of the targeting domain in the fusion protein. In some embodiments, the targeting domain is N-terminal of the effector domain in the fusion protein. In some embodiments, the effector domain is operably connected (directly or indirectly) to the C terminus of the targeting domain. In some embodiments, the effector domain is operably connected (directly or indirectly) to the N terminus of the targeting domain. In some embodiments, the effector domain is directly operably connected to the C terminus of the targeting domain. In some embodiments, the effector domain is directly operably connected to the N terminus of the targeting domain.


In some embodiments, the effector domain is indirectly operably connected to the C terminus of the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the N terminus of the targeting domain. One or more amino acid sequences comprising e.g., a linker, or encoding one or more polypeptides may be positioned between the effector moiety and the targeting moiety. In some embodiments, the effector domain is indirectly operably connected to the C terminus of the targeting domain through a peptide linker. In some embodiments, the effector domain is indirectly operably connected to the N terminus of the targeting domain through a peptide linker.


Each component of the fusion protein described herein can be directly linked to the other to indirectly linked to the other via a peptide linker. [0080] Any suitable peptide linker known in the art can be used that enables the effector domain and the targeting domain to bind their respective antigens. In some embodiments, the linker is one or any combination of a cleavable linker, a non-cleavable linker, a peptide linker, a flexible linker, a rigid linker, a helical linker, or a non-helical linker. In some embodiments, the linker is a peptide linker. In some embodiments, the linker is a peptide linker that comprises glycine or serine, or both glycine and serine amino acid residues. In some embodiments, the peptide linker comprises from about 1-20, 1-15, 1-10, 1-5, 5-20, 5-15, 5-10, or 15-20 amino acids. In some embodiments, the peptide linker comprises from or from about 2-25, 5-25, 10-25, 15-25, 20-25, 2-20, 5-20, 10-20, 15-20, 2-15, 5-15, 10-15, 2-10, or 5-10 amino acids. In some embodiments, the linker is a peptide linker that consists of glycine or serine, or both glycine and serine amino acid residues. In some embodiments, the peptide linker consists of from or from about 2-25, 5-25, 10-25, 15-25, 20-25, 2-20, 5-20, 10-20, 15-20, 2-15, 5-15, 10-15, 2-10, or 5-10 amino acids. In some embodiments, the peptide linker comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 amino acid residues. In some embodiments, the linker is at least 11 amino acids in length. In some embodiments, the linker is at least 15 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 amino acid residues in length.


In some embodiments, the linker is a glycine/serine linker, e.g., a peptide linker substantially consisting of the amino acids glycine and serine. In some embodiments, the linker is a glycine/serine/proline linker, e.g., a peptide linker substantially consisting of the amino acids glycine, serine, and proline.


In some embodiments, the amino acid sequence of the linker comprises the amino acid sequence of any one of SEQ ID NOS: 249-367 or 427-436, or the amino acid sequence of any one of SEQ ID NOS: 249-367 or 427-436 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition). In some embodiments, the amino acid sequence of the linker consists of the amino acid sequence of any one of SEQ ID NOS: 249-367 or 427-436, or the amino acid sequence of any one of SEQ ID NOS: 249-367 or 427-436 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition).


In some embodiments, the amino acid sequence of the linker comprises the amino acid sequence of any one of SEQ ID NOS: 427-436, or the amino acid sequence of any one of SEQ ID NOS: 427-436 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition). In some embodiments, the amino acid sequence of the linker consists of the amino acid sequence of any one of SEQ ID NOS: 427-436, or the amino acid sequence of any one of SEQ ID NOS: 427-436 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition).


The amino acid sequence of exemplary linkers for use in any one or more of the fusion proteins described herein is provided in Table 4 below.









TABLE 4







Amino Acid Sequence of Exemplary Linkers









SEQ


Amino Acid Sequence
ID NO





GGGGSGGGGSGGGGSGGGGSGGGGS
427





GGGGSGGGGSGGGGSGGGGS
428





GGGGSGGGGSGGGGS
429





GGGGSGGGGS
430





GGGGS
431





SGGGGSGGGGSGGGGS
432





SGGGGSGGGGSGGGG
433





SGGGGSGGGG
434





SGGGG
435





GGSGG
436





AHFKISGEKRPSTDPGKKAKNPKKKKKKDP
249





AHRAKKMSKTHA
250





ASPEYVNLPINGNG
251





CTKRPRW
252





DKAKRVSRNKSEKKRR
253





EELRLKEELLKGIYA
254





EEQLRRRKNSRLNNTG
255





EVLKVIRTGKRKKKAWKRMVTKVC
256





HHHHHHHHHHHHQPH
257





HKKKHPDASVNFSEFSK
258





HKRTKKNLS
259





IINGRKLKLKKSRRRSSQTSNNSFTSRRS
260





KAEQERRK
261





KEKRKRREELFIEQKKRK
262





KKGKDEWFSRGKKP
263





KKGPSVQKRKKTNLS
264





KKKTVINDLLHYKKEK
265





KKNGGKGKNKPSAKIKK
266





KKPKWDDFKKKKK
267





KKRKKDNLS
268





KKRRKRRRK
269





KKRRRRARK
270





KKSKRGR
272





KKSRKRGS
272





KKSTALSRELGKIMRRR
273





KKSYQDPEIIAHSRPRK
274





KKTGKNRKLKSKRVKTR
275





KKVSIAGQSGKLWRWKR
276





KKYENVVIKRSPRKRGRPRK
278





KNKKRK
279





KPKKKR
280





KRAMKDDSHGNSTSPKRRK
281





KRANSNLVAAYEKAKKK
282





KRASEDTTSGSPPKKSSAGPKR
283





KRFKRRWMVRKMKTKK
284





KRGLNSSFETSPKKVK
285





KRGNSSIGPNDLSKRKQRKK
286





KRIHSVSLSQSQIDPSKKVKRAK
287





KRKGKLKNKGSKRKK
288





KRRRRRRREKRKR
289





KRSNDRTYSPEEEKQRRA
290





KRTVATNGDASGAHRAKKMSK
291





KRVYNKGEDEQEHLPKGKKR
292





KSGKAPRRRAVSMDNSNK
293





KVNFLDMSLDDIIIYKELE
294





KVQHRIAKKTTRRRR
295





LSPSLSPL
296





MDSLLMNRRKFLYQFKNVRWAKGRRETYLC
297





MPQNEYIELHRKRYGYRLDYHEKKRKKESREAHERSKKAK
298


KMIGLKAKLYHK






MVQLRPRASR
299





NNKLLAKRRKGGASPKDDPMDDIK
300





NYKRPMDGTYGPPAKRHEGE
301





PDTKRAKLDSSETTMVKKK
302





PEKRTKI
303





PGGRGKKK
304





PGKMDKGEHRQERRDRPY
305





PKKGDKYDKTD
306





PKKKSRK
307





PKKNKPE
308





PKKRAKV
309





PKPKKLKVE
310





PKRGRGR
311





PKRRLVDDA
312





PKRRRTY
313





PLFKRR
314





PLRKAKR
315





PPAKRKCIF
316





PPARRRRL
317





PPKKKRKV
318





PPNKRMKVKH
319





PPRIYPQLPSAPT
320





PQRSPFPKSSVKR
321





PRPRKVPR
322





PRRRVQRKR
323





PRRVRLK
324





PSRKRPR
325





PSSKKRKV
326





PTKKRVK
327





QRPGPYDRP
328





RGKGGKGLGKGGAKRHRK
329





RKAGKGGGGHKTTKKRSAKDEKVP
330





RKIKLKRAK
331





RKIKRKRAK
332





RKKEAPGPREELRSRGR
333





RKKRKGK
334





RKKRRQRRR
335





RKKSIPLSIKNLKRKHKRKKNKITR
336





RKLVKPKNTKMKTKLRTNPY
337





RKRLILSDKGQLDWKK
338





RKRLKSK
339





RKRRVRDNM
340





RKRSPKDKKEKDLDGAGKRRKT
341





RKRTPRVDGQTGENDMNKRRRK
342





RLPVRRRRRR
343





RLRFRKPKSK
344





RQQRKR
345





RRDLNSSFETSPKKVK
346





RRDRAKLR
347





RRGDGRRR
348





RRGRKRKAEKQ
349





RRKKRR
350





RRKRSKSEDMDSVESKRRR
351





RRKRSR
352





RRPKGKTLQKRKPK
353





RRRGFERFGPDNMGRKRK
354





RRRGKNKVAAQNCRK
355





RRRKRRNLS
356





RRRQKQKGGASRRR
357





RRRREGPRARRRR
358





RRTIRLKLVYDKCDRSCKIQKKNRNKCQYCRFHKCLSVGM
359


SHNAIREGRMPRSEKAKLKAE






RRVPQRKEVSRCRKCRK
360





RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP
361





RVVKLRIAP
362





RVVRRR
363





SKRKTKISRKTR
364





SYVKTVPNRTRTYIKL
365





TGKNEAKKRKIA
366





TLSPASSPSSVSCPVIPASTDESPGSALNI
367









5.3.4.1 Conditional Constructs

Also described herein are constructs that comprise a targeting domain (e.g., a VHH, (VHH)2) bound to an effector domain (e.g., an effector domain that comprises a catalytic domain of an deubiquitinase, or an effector domain that comprises a deubiquitinase). In some embodiments, the association of the targeting domain and the effector domain is mediated by binding of a first agent (e.g., a small molecule, protein, or peptide) attached to the targeting domain and a second agent (e.g., a small, molecule, protein, or peptide) attached to the effector domain. For example, in one embodiment, the targeting domain may be attached to a first agent that specifically binds to a second agent that is attached to the effector domain. In some embodiments, specific binding of the first agent to the second agent is mediated by addition of a third agent (e.g., a small molecule).


For example, a conditional construct includes an KBP/FRB-based dimerization switch, e.g., as described in US20170081411 (the entire contents of which are incorporated by reference herein), can be utilized herein. FKBP12 (FKBP or FK506 binding protein) is an abundant cytoplasmic protein that serves as the initial intracellular target for the natural product immunosuppressive drug, rapamycin. Rapamycin binds to FKBP and to the large PI3K homolog FRAP (RAFT, mTOR), thereby acting to dimerize these molecules. In some embodiments, an FKBP/FRAP based switch, also referred to herein as an FKBP/FRB based switch, can utilize a heterodimerization molecule, e.g., rapamycin or a rapamycin analog. FRB is a 93 amino acid portion of FRAP, that is sufficient for binding the FKBP-rapamycin complex (Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947-51), the entire contents of which is incorporated by reference herein. For example, the targeting domain can be attached to FKBP and the effector domain attached to FRB. Thereby, the association of the targeting domain and the effector domain is mediated by rapamycin and only takes place in the presence of rapamycin.


Exemplary conditional activation systems that can be used here include, but are not limited to those described in US20170081411; Lajoie M J, et al. Designed protein logic to target cells with precise combinations of surface antigens. Science. 2020 Sep. 25; 369(6511):1637-1643. doi: 10.1126/science.aba6527. Epub 2020 Aug. 20. PMID: 32820060; Farrants H, et al. Chemogenetic Control of Nanobodies. Nat Methods. 2020 March; 17(3):279-282. doi: 10.1038/s41592-020-0746-7. Epub 2020 Feb. 17. PMID: 32066961; and US20170081411, the entire contents of each of which is incorporated by reference herein for all purposes.


5.3.5 Exemplary Fusion Proteins

Exemplary fusion proteins of the present disclosure include, but are not limited to, those described below. In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a cysteine protease deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a metalloprotease deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, USP46, BAP1, UCHL1, UCHL3, UCHL5, ATXN3 ATXN3L, OTUB1, OTUB2 MINDY1, MINDY2, MINDY3, MINDY4, or ZUP1; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is described in Table 1; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein selected is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain is described in Table 1; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220 or 423; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-248.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220 or 423; and a targeting domain comprising a targeting moiety that specifically binds a nuclear protein, wherein the nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-248.


5.3.5.1 Additional Exemplary Embodiments

Additional exemplary embodiments of fusion proteins described herein are provided below, which should not be construed as limiting.


Embodiment 1. A fusion protein comprising: (a) an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination, wherein the human deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112, and a targeting moiety comprising a VHH, (VHH)2. or scFv that specifically binds to a nuclear protein.


Embodiment 2. A fusion protein comprising an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 423, and a targeting moiety comprising a VHH, (VHH)2, or scFv that specifically binds to a nuclear protein.


Embodiment 3. A fusion protein comprising an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 423, and a targeting moiety comprising a VHH, (VHH)2, or scFv that specifically binds to a nuclear protein.


Embodiment 4. The fusion protein of any one of Embodiments 1-3, wherein said targeting moiety is a VHH or (VHH)2.


Embodiment 5. The fusion protein of any one of Embodiments 1-4, wherein the nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, KAT6A, SNRPG, LSM2, or NUPR2.


Embodiment 6. The fusion protein of any one of Embodiments 1-5, wherein said nuclear protein is CHD2, RERE, CDKL5, MECP2, KMT2D, SETD5, ZEB2, CAMTA1, FMR1, PRPF8, RAI1, CREBBP, NF1, KMT2A, CHD4, NSD1, MED13L, SMC1A, SMARCA2, ARID1B, POGZ, KAT6B, AHDC1, EP300, IQSEC2, TCF20, ASXL3, or KAT6A.


Embodiment 7. The fusion protein of any one of Embodiments 1-6, wherein said nuclear protein is SNRPG, LSM2, or NUPR2.


5.3.6 Methods of Making Fusion Proteins

Fusion proteins described herein can be made by any conventional technique known in the art, for example, recombinant techniques or chemical synthesis (e.g., solid phase peptide synthesis). In some embodiments, the fusion protein is made through recombinant expression in a cell (e.g., a eukaryotic cell, e.g., a mammalian cell). Briefly, the fusion protein can be made by synthesizing the DNA encoding the fusion protein and cloning the DNA into any suitable expression vector. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator and/or one or more enhancer elements, so that the DNA sequence encoding the fusion protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. Heterologous leader sequences can be added to the coding sequence that causes the secretion of the expressed polypeptide from the host organism. Other regulatory sequences may also be desirable which allow for regulation of expression of the protein sequences relative to the growth of the host cell. Such regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.


The expression vector may then be used to transform an appropriate host cell. A number of mammalian cell lines are known in the art and include immortalized cell lines available from the American Type Culture Collection (ATCC), such as, but not limited to, Chinese hamster ovary (CHO) cells, CHO-suspension cells (CHO-S), HeLa cells, HEK293, baby hamster kidney (BHK) cells, monkey kidney cells (COS), VERO, HepG2, MadinDarby bovine kidney (MDBK) cells, NOS, U2OS, A549, HT1080, CAD, P19, NIH3T3, L929, N2a, MCF-7, Y79, SO-Rb50, DUKX-X11, and J558L.


Depending on the expression system and host selected, the fusion protein is produced by growing host cells transformed by an expression vector described above under conditions whereby the fusion protein is expressed. The fusion protein is then isolated from the host cells and purified. If the expression system secretes the fusion protein into growth media, the fusion protein can be purified directly from the media. If the fusion protein is not secreted, it is isolated from cell lysates. The selection of the appropriate growth conditions and recovery methods are within the skill of the art. Once purified, the amino acid sequences of the fusion proteins can be determined, i.e., by repetitive cycles of Edman degradation, followed by amino acid analysis by HPLC. Other methods of amino acid sequencing are also known in the art. Once purified, the functionality of the fusion protein can be assessed, e.g., as described herein, e.g., utilizing a bifunctional ELISA.


As described above, functionality of the fusion protein can be tested by any method known in the art. Each functionality can be measured in a separate assay. For example, binding of the targeting domain to the target protein can be measure using an enzyme linked immunosorbent assay (ELISA). Catalytic activity of the effector domain can be measured using any standard deubiquitinase activity assay known in the art. For example, BioVision Deubiquitinase Activity Assay Kit (Fluorometric) Catalog #K485-100 according to the manufacturer's instructions. The deubiquitinase activity of a fusion protein described herein can be measured for example by using a fluorescent deubiquitinase substrate to detect deubiquitinase activity upon cleavage of the fluorescent substrate. The deubiquitinase activity can also be measured according to the materials and methods set forth in the Examples provided herein.


5.4 Nucleic Acids, Host Cells, Vectors, and Viral Particles

In one aspect, provided herein are nucleic acid molecules encoding a fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule. In some embodiments, the nucleic acid molecule contains at least one modified nucleic acid (e.g., that increases stability of the nucleic acid molecule), e.g., phosphorothioate, N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C).


In one aspect, provided herein is a host cell (or population of host cells) comprising a nucleic acid encoding a fusion protein described herein. In some embodiments, the nucleic acid is incorporated into the genome of the host cell. In some embodiments, the nucleic acid is not incorporated into the genome of the host cell. In some embodiments, the nucleic acid is present in the cell episomally. In some embodiments, the host cell is a human cell. In some embodiments, the host cell is a mammalian cell. In some embodiments, the host cell is a mouse, rat, hamster, guinea pig, cat, dog, or human cell. In some embodiments, the host cell is modified in vitro, ex vivo, or in vivo.


The nucleic acid can be introduced into the host cell by any suitable method known in the art (e.g., as described herein). For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, or a coxsackie virus delivery system) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression with the host cell. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the host cell. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the host cell. In some embodiments, the virus replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, a nucleic acid (DNA or RNA) is delivered to the host cell using a non-viral vector (e.g., a plasmid) encoding the fusion protein. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the host cell. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the host cell. Exemplary non-viral transfection methods known in the art include, but are not limited to, direct delivery of DNA such as by ex vivo transfection, by injection (e.g., microinjection), electroporation, liposome mediated transfection, receptor-mediated transfection, microprojectile bombardment, by agitation with silicon carbide fibers Through the application of techniques such as these cells may be stably or transiently transfected with a nucleic acid encoding a fusion protein described herein to express the encoded fusion protein.


In one aspect, provided herein are vectors comprising a nucleic acid encoding a fusion protein described herein (e.g., a nucleic acid described herein). In some embodiments, the vector is a viral vector. Exemplary viral vectors include, but are not limited to, retroviral vectors, adenoviral vectors, adeno associated viral vectors, herpes viral vectors, lentiviral vectors, pox viral vectors, vaccinia viral vectors, vesicular stomatitis viral vectors, polio viral vectors, Newcastle's Disease viral vectors, Epstein-Barr viral vectors, influenza viral vectors, reovirus vectors, myxoma viral vectors, maraba viral vectors, rhabdoviral vectors, and coxsackie viral vectors. In some embodiments, the vector is a non-viral vector. In some embodiments, the non-viral vector is a plasmid.


In one aspect, provided herein is a viral particle (or population of viral particles) that comprise a nucleic acid encoding a fusion protein described herein (e.g., a nucleic acid described herein). In some embodiments, the viral particle is an RNA virus. In some embodiments, the viral particle is a DNA virus. In some embodiments, the viral particle comprises a double stranded genome. In some embodiments, the viral particle comprises a single stranded genome. Exemplary viral particles include, but are not limited to, a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, or a coxsackie.


5.5 Pharmaceutical Compositions

In one aspect, provided herein are pharmaceutical compositions comprising 1) a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein; and 2) at least one pharmaceutically acceptable carrier, excipient, stabilizer buffer, diluent, surfactant, preservative and/or adjuvant, etc. (see, e.g., Remington's Pharmaceutical Sciences (1990) Mack Publishing Co., Easton, PA). A person of ordinary skill in the art can select suitable excipient for inclusion in the pharmaceutical composition. For example, the formulation of the pharmaceutical composition may differ based on the route of administration (e.g., intravenous, subcutaneous, etc.), and/or the active molecule contained within the pharmaceutical composition (e.g., a viral particle, a non-viral vector, a nucleic acid not contained within a vector).


Acceptable carriers, excipients, or stabilizers are preferably nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants including ascorbic acid or methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; or m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, or other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™ PLURONICS™ or polyethylene glycol (PEG).


In one embodiment, the present disclosure provides a pharmaceutical composition comprising a fusion protein described herein for use as a medicament. In another embodiment, the disclosure provides a pharmaceutical composition for use in a method for the treatment of cancer. In some embodiments, pharmaceutical compositions comprise a fusion protein disclosed herein, and optionally one or more additional prophylactic or therapeutic agents, in a pharmaceutically acceptable carrier.


A pharmaceutical composition may be formulated for any route of administration to a subject. Specific examples of routes of administration include parenteral administration (e.g., intravenous, subcutaneous, intramuscular). In some embodiments, the pharmaceutical composition is formulated for intravenous administration. In some embodiments, the pharmaceutical composition is formulated for subcutaneous administration. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions. The injectables can contain one or more excipients. Exemplary excipients include, for example, water, saline, dextrose, glycerol or ethanol. In addition, if desired, the pharmaceutical compositions to be administered can also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, or other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate or cyclodextrins.


In some embodiments, the pharmaceutical composition is formulated for intravenous administration. Suitable carriers for intravenous administration include physiological saline or phosphate buffered saline (PBS), or solutions containing thickening or solubilizing agents, such as glucose, polyethylene glycol, or polypropylene glycol or mixtures thereof.


The compositions to be used for in vivo administration can be sterile. This is readily accomplished by filtration through, e.g., sterile filtration membranes.


Pharmaceutically acceptable carriers used in the parenteral preparations described herein include for example, aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents or other pharmaceutically acceptable substances. Examples of aqueous vehicles, which can be incorporated in one or more of the formulations described herein, include sodium chloride injection, Ringer's injection, isotonic dextrose injection, sterile water injection, dextrose or lactated Ringer's injection. Nonaqueous parenteral vehicles, which can be incorporated in one or more of the formulations described herein, include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil or peanut oil. Antimicrobial agents in bacteriostatic or fungistatic concentrations can be added to the parenteral preparations described herein and packaged in multiple-dose containers, which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride or benzethonium chloride. Isotonic agents, which can be incorporated in one or more of the formulations described herein, include sodium chloride or dextrose. Buffers, which can be incorporated in one or more of the formulations described herein, include phosphate or citrate. Antioxidants, which can be incorporated in one or more of the formulations described herein, include sodium bisulfate. Local anesthetics, which can be incorporated in one or more of the formulations described herein, include procaine hydrochloride. Suspending and dispersing agents, which can be incorporated in one or more of the formulations described herein, include sodium carboxymethylcelluose, hydroxypropyl methylcellulose or polyvinylpyrrolidone. Emulsifying agents, which can be incorporated in one or more of the formulations described herein, include Polysorbate 80 (TWEEN® 80). A sequestering or chelating agent of metal ions, which can be incorporated in one or more of the formulations described herein, is EDTA. Pharmaceutical carriers, which can be incorporated in one or more of the formulations described herein, also include ethyl alcohol, polyethylene glycol or propylene glycol for water miscible vehicles; orsodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.


The precise dose to be employed in a pharmaceutical composition will also depend on the route of administration, and the seriousness of the condition caused by it, and should be decided according to the judgment of the practitioner and each subject's circumstances. For example, effective doses may also vary depending upon means of administration, target site, physiological state of the subject (including age, body weight, and health), other medications administered, or whether therapy is prophylactic or therapeutic. Therapeutic dosages are preferably titrated to optimize safety and efficacy.


5.6 Methods of Therapeutic Use

In one aspect, provided herein are methods of treating a disease in a subject by administering to the subject having the disease a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein.


The fusion protein can be delivered to host cells via any method known in the art. For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, an enadenotucirev or a coxsackie) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression within a population of cells of a subject. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the population of cells of the subject. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the population of cells of the subject. In some embodiments, the virus is replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, the fusion protein is administered to the subject. In some embodiments, a nucleic acid (DNA or RNA) is administered to the subject. In some embodiments, the nucleic acid (DNA or RNA) is complexed within a carrier (e.g., a nanoparticle, a liposome, a microsphere). In some embodiments, a nucleic acid (DNA or RNA) within a non-viral vector (e.g., a plasmid) encoding the fusion protein is administered to the subject.


5.6.1 Administration

The fusion protein can be delivered to host cells via any method known in the art. For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, an enadenotucirev or a coxsackie) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression within a population of cells of a subject. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the population of cells of the subject. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the population of cells of the subject. In some embodiments, the virus is replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, the fusion protein is administered to the subject. In some embodiments, a nucleic acid (DNA or RNA) is administered to the subject. In some embodiments, the nucleic acid (DNA or RNA) is complexed within a carrier (e.g., a nanoparticle, a liposome, a microsphere). In some embodiments, a nucleic acid (DNA or RNA) within a non-viral vector (e.g., a plasmid) encoding the fusion protein is administered to the subject.


In some embodiment, the fusion protein is administered parenterally. In some embodiments, the fusion protein is administered via intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural or intrasternal injection or infusion. In some embodiments, the fusion protein is intravenously administered. In some embodiments, the fusion protein is subcutaneously administered. In some embodiments, the fusion protein is administered via a non-parenteral route, or orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.


In some embodiments, the methods disclosed herein are used in place of standard of care therapies. In certain embodiments, a standard of care therapy is used in combination with any method disclosed herein. In some embodiments, the methods disclosed herein are used after standard of care therapy has failed. In some embodiments, the fusion protein is co-administered, administered prior to, or administered after, an additional therapeutic agent. In some embodiments, the disease is a genetic disease.


5.6.2 Exemplary Genetic Diseases

In some embodiments, the disease is a genetic disease. In some embodiments, the genetic disease is associated with decreased expression of a functional target nuclear protein. In some embodiments, the genetic disease is associated with decreased stability of a functional target nuclear protein. In some embodiments, the genetic disease is associated with increased ubiquitination of a target nuclear protein. In some embodiments, the genetic disease is associated with increased ubiquitination and degradation of a target nuclear protein. In some embodiments, the genetic disease is a haploinsufficiency disease.


In some embodiments, the disease is selected from the group consisting of early CHD2 encephalopathy, CDKL5 deficiency disorder, SETD5 syndrome, CAMTA1 syndrome, infantile epileptic encephalopathy (e.g., type 2), childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, Kabuki syndrome 1, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, Wiedmann-Steiner Syndrome, Sifrim-Hitz-Weiss Syndrome, Sotos Syndrome, MED13L Syndrome, SMC1A Syndrome, Nicolaides-Baraitser Syndrome, ARID1B-Related Disorder, White-Sutton Syndrome, KAT6B Disorder, Xia-Gibbs Syndrome, Menke-Hennekam Syndrome 2, IQSEC2-Related Disorder, TCF20-Related Disorder, Bainbridge-Ropers Syndrome, and KATA6 Syndrome.


In some embodiments, the target nuclear protein is CHD2 and the disease is childhood onset epileptic encephalopathy. In some embodiments, the target nuclear protein is CHD2 and the disease is CHD2 encephalopathy. In some embodiments, the target nuclear protein is RERE and the disease is 1p36 deletion syndrome. In some embodiments, the target nuclear protein is CDKL5 and the disease is early infantile epileptic encephalopathy (e.g., type 2). In some embodiments, the target nuclear protein is CDKL5 and the disease is CDKL5 deficiency disorder. In some embodiments, the target nuclear protein is MECP2 and the disease is Rett syndrome. In some embodiments, the target nuclear protein is KMT2D and the disease is Kabuki syndrome 1. In some embodiments, the target nuclear protein is SETD5 and the disease is mental retardation autosomal dominant 23. In some embodiments, the target nuclear protein is ZEB2 and the disease is Mowat-Wilson syndrome. In some embodiments, the target nuclear protein is KMT2A, and the disease is Wiedmann-Steiner Syndrome. In some embodiments, the target nuclear protein is CHD4, and the disease is Sifrim-Hitz-Weiss Syndrome. In some embodiments, the target nuclear protein is NSD1, and the disease is Sotos Syndrome. In some embodiments, the target nuclear protein is SMC1A, and the disease is SMC1A Syndrome. In some embodiments, the target nuclear protein is SMARCA2, and the disease is Nicolaides-Baraitser Syndrome. In some embodiments, the target nuclear protein is ARID1B, and the disease is ARID1B-Related Disorder. In some embodiments, the target nuclear protein is POGZ, and the disease is White-Sutton Syndrome. In some embodiments, the target nuclear protein is KAT6B, and the disease is KAT6B Disorder. In some embodiments, the target nuclear protein is AHDC1, and the genetic disease is Xia-Gibbs Syndrome. In some embodiments, the target nuclear protein is EP300, and the disease is Menke-Hennekam Syndrome 2. In some embodiments, the target nuclear protein is IQSEC2, and the disease is IQSEC2-Related Disorder. In some embodiments, the target nuclear protein is TCF20, and the disease is TCF20-Related Disorder. In some embodiments, the target nuclear protein is ASXL3, and the disease is Bainbridge-Ropers Syndrome. In some embodiments, the target nuclear protein is KAT6A, and the disease is KATA6 Syndrome. In some embodiments, the target nuclear protein is MED13L, and the disease is MED13L Syndrome. In some embodiments, the target nuclear protein is CAMTA1, and the disease is CAMTA1 Syndrome. In some embodiments, the target nuclear protein is FMR1, and the disease is Fragile X syndrome. In some embodiments, the target nuclear protein is PRPF8, and the disease is Retinitis pigmentosa 13. In some embodiments, the target nuclear protein is RAI1, and the disease is Smith-Magenis Syndrome. In some embodiments, the target nuclear protein is CREBBP, and the disease is Rubinstein-Taybi syndrome. In some embodiments, the target nuclear protein is NF1, and the disease is Neurofibromatosis (e.g., type 1).


5.7 Kits

In one aspect, provided herein are kits comprising a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein, for therapeutic uses. Kits typically include a label indicating the intended use of the contents of the kit and instructions for use. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit. Accordingly, this disclosure provides a kit for treating a subject afflicted with a disease (e.g., a genetic disease), the kit comprising: (a) a dosage of a fusion protein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion described herein; and (b) instructions for using the fusion protein in any of the therapy methods disclosed herein.


6. EXAMPLES

The present invention is further illustrated by the following examples which should not be construed as further limiting.


6.1 Example 1. Generation of Targeted Engineered Deubiquitinases

This example provides general experimental methods of using fluorescent tagged target proteins together with fluorophore tagged engineered deubiquitinases (enDUBs) to demonstrate up-regulation of expression in the context of an enDUB. For illustrative purposes the constructs disclosed below will be synthesized in a suitable vector for mammalian expression. Generally, the target protein will be expressed with a C-terminal YFP followed by a P2A cleavage signal and an mCherry protein as a second reporter (Target protein-YFP-P2A-mCherry). This construct will be co-transfected in the presence of a trifunctional fusion protein comprising of a CFP protein followed by a P2A signal and a nanobody specifically binding to YPF followed by the engineered DUB (CFP-P2A-Anti-YFPnanobody-enDUB). In applications for drug treatment the targeting nanobodies (or other specific binders) will be directed to the wild type (or disease-causing mutant) protein in the cell to be upregulated while the enDUB is fused to a binding protein directed to the target protein. Target protein binding moieties could be any antibody or antibody fragments, nanobodies, or any other non-antibody scaffold such as fibronectins, anticalins, ankyrin repeats or natural binding proteins interacting specifically with the target protein to be upregulated. The amino acid sequence of the components of the test fusion proteins is provided in Table 5 below.









TABLE 5







Amino Acid Sequence of Components of test fusion proteins









Description
SEQ ID NO
Amino Acid Sequence










Target Proteins









STAT3
368
MAQWNQLQQLDTRYLEQLHQLYSDSFPMELRQFLAPWIESQDWAYA




ASKESHATLVFHNLLGEIDQQYSRELQESNVLYQHNLRRIKQFLQS




RYLEKPMEIARIVARCLWEESRLLQTAATAAQQGGQANHPTAAVVT




EKQQMLEQHLQDVRKRVQDLEQKMKVVENLQDDFDENYKTLKSQGD




MQDLNGNNQSVTRQKMQQLEQMLTALDQMRRSIVSELAGLLSAMEY




VQKTLTDEELADWKRRQQIACIGGPPNICLDRLENWITSLAESQLQ




TRQQIKKLEELQQKVSYKGDPIVQHRPMLEERIVELERNLMKSAFV




VERQPCMPMHPDRPLVIKTGVQFTTKVRLLVKFPELNYQLKIKVCI




DKDSGDVAALRGSRKENILGTNTKVMNMEESNNGSLSAEFKHLTLR




EQRCGNGGRANCDASLIVTEELHLITFETEVYHQGLKIDLETHSLP




VVVISNICQMPNAWASILWYNMLTNNPKNVNFFTKPPIGTWDQVAE




VLSWQFSSTTKRGLSIEQLTTLAEKLLGPGVNYSGCQITWAKFCKE




NMAGKGFSFWVWLDNIIDLVKKYILALWNEGYIMGFISKERERAIL




STKPPGTELLRESESSKEGGVTFTWVEKDISGKTQIQSVEPYTKQQ




LNNMSFAEIIMGYKIMDATNILVSPLVYLYPDIPKEEAFGKYCRPE




SQEHPEADPGSAAPYLKTKFICVTPTTCSNTIDLPMSPRTLDSLMQ




FGNNGEGAEPSAGGQFESLTEDMELTSECATSPM





PRDM14
369
MALPRPSEAVPQDKVCYPPESSPQNLAAYYTPEPSYGHYRNSLATV




EEDFQPFRQLEAAASAAPAMPPEPERMAPPLLSPGLGLQREPLYDL




PWYSKLPPWYPIPHVPREVPPELSSSHEYAGASSEDLGHQIIGGDN




ESGPCCGPDTLIPPPPADASLLPEGLRTSQLLPCSPSKQSEDGPKP




SNQEGKSPARFQFTEEDLHFVLYGVTPSLEHPASLHHAISGLLVPP




DSSGSDSLPQTLDKDSLQLPEGLCLMQTVFGEVPHFGVFCSSFIAK




GVRFGPFQGKVVNASEVKTYGDNSVMWEIFEDGHLSHFIDGKGGTG




NWMSYVNCARFPKEQNLVAVQCQGHIFYESCKEIHQNQELLVWYGD




CYEKFLDIPVSLQVTEPGKQPSGPSEESAEGYRCERCGKVFTYKYY




RDKHLKYTPCVDKGDRKFPCSLCKRSFEKRDRLRIHILHVHEKHRP




HKCSTCGKCFSQSSSLNKHMRVHSGDRPYQCVYCTKRFTASSILRT




HIRQHSGEKPFKCKYCGKSFASHAAHDSHVRRSHKEDDGCSCSICG




KIFSDQETFYSHMKFHEDY





WDR5
370
MATEEKKPETEAARAQPTPSSSATQSKPTPVKPNYALKFTLAGHTK




AVSSVKESPNGEWLASSSADKLIKIWGAYDGKFEKTISGHKLGISD




VAWSSDSNLLVSASDDKTLKIWDVSSGKCLKTLKGHSNYVFCCNEN




PQSNLIVSGSFDESVRIWDVKTGKCLKTLPAHSDPVSAVHENRDGS




LIVSSSYDGLCRIWDTASGQCLKTLIDDDNPPVSFVKESPNGKYIL




AATLDNTLKLWDYSKGKCLKTYTGHKNEKYCIFANFSVTGGKWIVS




GSEDNLVYIWNLQTKEIVQKLQGHTDVVISTACHPTENIIASAALE




NDKTIKLWKSDC





NR112
371
MEVRPKESWNHADEVHCEDTESVPGKPSVNADEEVGGPQICRVCGD




KATGYHFNVMTCEGCKGFFRRAMKRNARLRCPERKGACEITRKTRR




QCQACRLRKCLESGMKKEMIMSDEAVEERRALIKRKKSERTGTQPL




GVQGLTEEQRMMIRELMDAQMKTEDTTESHFKNERLPGVLSSGCEL




PESLQAPSREEAAKWSQVRKDLCSLKVSLQLRGEDGSVWNYKPPAD




SGGKEIFSLLPHMADMSTYMFKGIISFAKVISYERDLPIEDQISLL




KGAAFELCQLRFNTVFNAETGTWECGRLSYCLEDTAGGFQQLLLEP




MLKFHYMLKKLQLHEEEYVLMQAISLESPDRPGVLQHRVVDQLQEQ




FAITLKSYIECNRPQPAHRFLFLKIMAMLTELRSINAQHTQRLLRI




QDIHPFATPLMQELFGITGS










 FluorescentProteins









YFP
372
VSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKF




ICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGY




VQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILG




HKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQ




NTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGIT




LGMDELYK





mCherry
373
MVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGT




QTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSE




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG




PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKT




TYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGG




MDELYK





CFP
374
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK




FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYK










A2 Peptides









P2A
375
GSGATNFSLLKQAGDVEENPGP





T2A
376
GSGEGRGSLLTCGDVEENPGP





E2A
377
GSGQCTNYALLKLAGDVESNPGP










 Target Binders









YFP targeting
378
QVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKERE


nanobody

WVAGMSSAGDRSSYEDSVKGRFTISRDDARNTVYLQMNSLKPEDTA




VYYCNVNVGFEYWGQGTQVTVSS





STAT3 binder
379
GSVSSVPTKLEVVAATPTSLLISWDAPAVTVDFYHITYGETGGNSP


(monobody)

VQEFTVPGSKSTATISGLKPGVDYTITVYAYVSYPEYYFPSPISIN




YRT





PRDM14binder
380
GSVSSVPTKLEVVAATPTSLLISWDAPAVTVDLYFITYGETGGNSP


(monobody)

VQKFTVPGSKSTATISGLKPGVDYTITVYAQYYYRGWYVGSPISIN




YRT





WDR5 binder
381
GSVSSVPTKLEVVAATPTSLLISWDAPAVTVVHYVITYGETGGNSP


(monobody)

VQKFKVPGSKSTATISGLKPGVDYTITVYAYQGGGRWHPYGYYSPI




SINYRT





NR112 binder
382
ASTSGSTHYYKQTADLEVVAATPTSLLISWPPPYYVEGVTVFRITY


(adnectin)

GETGGNSPVQEFTVPYWTETATISGLKPGVDYTITVYAEMYPGSPW




AGQVMDIQPISINYRTEGSGS










EnDUBS









Cezanne
383
PPSFSEGSGGSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRG




ISHASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYN




EDFRSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTG




DGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRW




QQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANCGG




VESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAP




IPFGGIYLPLEVPASQCHRSPLVLAYDQAHESALVSMEQKENTKEQ




AVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEV




KLHLLHSYMNVKWIPLSSDAQAPLAQ





OTUD1
384
DEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGNCLYRAVSKTVYGD




QSLHRELREQTVHYIADHLDHESPLIEGDVGEFIIAAAQDGAWAGY




PELLAMGQMLNVNIHLTTGGRLESPTVSTMIHYLGPEDSLRPSIWL




SWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRKRDEELAKSMAISL




SKMYIEQNACS





TRABID
385
LEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGDLAAIEAYKSSGGD




IARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQRQDMLAILLTEVS




QQAAKCIPAMVCPELTEQIRREIAASLHQRKGDFACYFLTDLVTFT




LPADIEDLPPTVQEKLFDEVLDRDVQKELEEESPIINWSLELATRL




DSRLYALWNRTAGDCLLDSVLQATWGIYDKDSVLRKALHDSLHDCS




HWFYTRWKDWESWYSQSFGLHESLREEQWQEDWAFILSLASQPGAS




LEQTHIFVLAHILRRPIIVYGVKYYKSFRGETLGYTRFQGVYLPLL




WEQSFCWKSPIALGYTRGHFSALVAMENDGYGNRGAGANLNTDDDV




TITFLPLVDSERKLLHVHELSAQELGNEEQQEKLLREWLDCCVTEG




GVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIRPCTSLS





USP21
386
SDDKMAHHTLLLGSGHVGLRNLGNTCELNAVLQCLSSTRPLRDFCL




RRDFRQEVPGGGRAQELTEAFADVIGALWHPDSCEAVNPTRFRAVE




QKYVPSFSGYSQQDAQEFLKLLMERLHLEINRRGRRAPPILANGPV




PSPPRRGGALLEEPELSDDDRANLMWKRYLEREDSKIVDLFVGQLK




SCLKCQACGYRSTTFEVECDLSLPIPKKGFAGGKVSLRDCFNLFTK




EEELESENAPVCDRCRQKTRSTKKLTVQRFPRILVLHLNRESASRG




SIKKSSVGVDFPLQRLSLGDFASDKAGSPVYQLYALCNHSGSVHYG




HYTALCRCQTGWHVYNDSRVSPVSENQVASSEGYVLFYQLMQEPPR




CI





OTUD4
387
ATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQVLHSQSRHVEVRMA




CIHYLRENREKFEAFIEGSFEEYLKRLENPQEWVGQVEISALSLMY




RKDFIIYREPNVSPSQVTENNFPEKVLLCESNGNHYDIVYPIKYKE




SSAMCQSLLYELLYEKVEKTDVSKIVMELDTLEVADE





Human USP3
388
MECPHLSSSVCIAPDSAKFPNGSPSSWCCSVCRSNKSPWVCLTCSS


(full length)

VHCGRYVNGHAKKHYEDAQVPLTNHKKSEKQDKVQHTVCMDCSSYS


nuclear located

TYCYRCDDFVVNDTKLGLVQKVREHLQNLENSAFTADRHKKRKLLE




NSTLNSKLLKVNGSTTAICATGLRNLGNTCEMNAILQSLSNIEQFC




CYFKELPAVELRNGKTAGRRTYHTRSQGDNNVSLVEEFRKTLCALW




QGSQTAFSPESLFYVVWKIMPNERGYQQQDAHEFMRYLLDHLHLEL




QGGFNGVSRSAILQENSTLSASNKCCINGASTVVTAIFGGILQNEV




NCLICGTESRKFDPFLDLSLDIPSQFRSKRSKNQENGPVCSLRDCL




RSFTDLEELDETELYMCHKCKKKQKSTKKFWIQKLPKVLCLHLKRE




HWTAYLRNKVDTYVEFPLRGLDMKCYLLEPENSGPESCLYDLAAVV




VHHGSGVGSGHYTAYATHEGRWFHENDSTVTLTDEETVVKAKAYIL




FYVEHQAKAGSDKL









The amino acid sequence of the test fusion proteins is provided in Table 6 below.









TABLE 6







Amino acid sequence of exemplary test fusion proteins









Description
SEQ ID NO
Amino Acid Sequence





STAT3 Target-
389
MAQWNQLQQLDTRYLEQLHQLYSDSFPMELRQFLAPWIESQDWAYA


YFP-P2A-

ASKESHATLVFHNLLGEIDQQYSRELQESNVLYQHNLRRIKQFLQS


mCherrry

RYLEKPMEIARIVARCLWEESRLLQTAATAAQQGGQANHPTAAVVT




EKQQMLEQHLQDVRKRVQDLEQKMKVVENLQDDFDENYKTLKSQGD




MQDLNGNNQSVTRQKMQQLEQMLTALDQMRRSIVSELAGLLSAMEY




VQKTLTDEELADWKRRQQIACIGGPPNICLDRLENWITSLAESQLQ




TRQQIKKLEELQQKVSYKGDPIVQHRPMLEERIVELFRNLMKSAFV




VERQPCMPMHPDRPLVIKTGVQFTTKVRLLVKFPELNYQLKIKVCI




DKDSGDVAALRGSRKENILGTNTKVMNMEESNNGSLSAEFKHLTLR




EQRCGNGGRANCDASLIVTEELHLITFETEVYHQGLKIDLETHSLP




VVVISNICQMPNAWASILWYNMLTNNPKNVNFFTKPPIGTWDQVAE




VLSWQFSSTTKRGLSIEQLTTLAEKLLGPGVNYSGCQITWAKFCKE




NMAGKGFSFWVWLDNIIDLVKKYILALWNEGYIMGFISKERERAIL




STKPPGTELLRESESSKEGGVTFTWVEKDISGKTQIQSVEPYTKQQ




LNNMSFAEIIMGYKIMDATNILVSPLVYLYPDIPKEEAFGKYCRPE




SQEHPEADPGSAAPYLKTKFICVTPTTCSNTIDLPMSPRTLDSLMQ




FGNNGEGAEPSAGGQFESLTEDMELTSECATSPMVSKGEELFTGVV




PILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWP




TLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDG




NYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNV




YIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP




DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGSGA




TNFSLLKQAGDVEENPGPMVSKGEEDNMAIIKEFMRFKVHMEGSVN




GHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGS




KAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQD




GEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEI




KQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNED




YTIVEQYERAEGRHSTGGMDELYK





PRDM14 Target-
390
MALPRPSEAVPQDKVCYPPESSPQNLAAYYTPFPSYGHYRNSLATV


YFP-P2A-

EEDFQPFRQLEAAASAAPAMPPFPFRMAPPLLSPGLGLQREPLYDL


mCherrry

PWYSKLPPWYPIPHVPREVPPFLSSSHEYAGASSEDLGHQIIGGDN




ESGPCCGPDTLIPPPPADASLLPEGLRTSQLLPCSPSKQSEDGPKP




SNQEGKSPARFQFTEEDLHFVLYGVTPSLEHPASLHHAISGLLVPP




DSSGSDSLPQTLDKDSLQLPEGLCLMQTVFGEVPHFGVFCSSFIAK




GVRFGPFQGKVVNASEVKTYGDNSVMWEIFEDGHLSHFIDGKGGTG




NWMSYVNCARFPKEQNLVAVQCQGHIFYESCKEIHQNQELLVWYGD




CYEKFLDIPVSLQVTEPGKQPSGPSEESAEGYRCERCGKVFTYKYY




RDKHLKYTPCVDKGDRKFPCSLCKRSFEKRDRLRIHILHVHEKHRP




HKCSTCGKCFSQSSSLNKHMRVHSGDRPYQCVYCTKRFTASSILRT




HIRQHSGEKPFKCKYCGKSFASHAAHDSHVRRSHKEDDGCSCSICG




KIFSDQETFYSHMKFHEDYVSKGEELFTGVVPILVELDGDVNGHKE




SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFAR




YPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTL




VNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNE




KIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDP




NEKRDHMVLLEFVTAAGITLGMDELYKGSGATNFSLLKQAGDVEEN




PGPMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPY




EGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLK




LSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNEP




SDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAE




VKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHS




TGGMDELYK





WDR5 Target-
391
MATEEKKPETEAARAQPTPSSSATQSKPTPVKPNYALKFTLAGHTK


YFP-P2A-

AVSSVKESPNGEWLASSSADKLIKIWGAYDGKFEKTISGHKLGISD


mCherrry

VAWSSDSNLLVSASDDKTLKIWDVSSGKCLKTLKGHSNYVFCCNEN




PQSNLIVSGSFDESVRIWDVKTGKCLKTLPAHSDPVSAVHENRDGS




LIVSSSYDGLCRIWDTASGQCLKTLIDDDNPPVSFVKESPNGKYIL




AATLDNTLKLWDYSKGKCLKTYTGHKNEKYCIFANFSVTGGKWIVS




GSEDNLVYIWNLQTKEIVQKLQGHTDVVISTACHPTENIIASAALE




NDKTIKLWKSDCVSKGEELFTGVVPILVELDGDVNGHKESVSGEGE




GDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQ




HDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELK




GIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE




DGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHM




VLLEFVTAAGITLGMDELYKGSGATNFSLLKQAGDVEENPGPMVSK




GEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAK




LKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGE




KWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQ




KKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKA




KKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDEL




YK





NR112 Target-
392
MEVRPKESWNHADFVHCEDTESVPGKPSVNADEEVGGPQICRVCGD


YFP-P2A-

KATGYHFNVMTCEGCKGFFRRAMKRNARLRCPFRKGACEITRKTRR


mCherrry

QCQACRLRKCLESGMKKEMIMSDEAVEERRALIKRKKSERTGTQPL




GVQGLTEEQRMMIRELMDAQMKTEDTTFSHFKNERLPGVLSSGCEL




PESLQAPSREEAAKWSQVRKDLCSLKVSLQLRGEDGSVWNYKPPAD




SGGKEIFSLLPHMADMSTYMFKGIISFAKVISYFRDLPIEDQISLL




KGAAFELCQLRFNTVFNAETGTWECGRLSYCLEDTAGGFQQLLLEP




MLKFHYMLKKLQLHEEEYVLMQAISLESPDRPGVLQHRVVDQLQEQ




FAITLKSYIECNRPQPAHRFLFLKIMAMLTELRSINAQHTQRLLRI




QDIHPFATPLMQELFGITGSVSKGEELFTGVVPILVELDGDVNGHK




FSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFA




RYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDT




LVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVN




FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKD




PNEKRDHMVLLEFVTAAGITLGMDELYKGSGATNFSLLKQAGDVEE




NPGPMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRP




YEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYL




KLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNF




PSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDA




EVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRH




STGGMDELYK





CFP-P2A-
393
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Cezanne enDUB

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPPPSESEGSGGSRTPE




KGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLARSH




VSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIERDLIEQS




MLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAASLGMWG




FHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESGLVYTE




DEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESLEEF




HVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLPLEVPAS




QCHRSPLVLAYDQAHFSALVSMEQKENTKEQAVIPLTDSEYKLLPL




HFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVKWIP




LSSDAQAPLAQ





CFP-P2A-
394
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


OTUD1 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPDEKLALYLAEVEKQD




KYLRQRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELREQTVHYI




ADHLDHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQMLNVNIH




LTTGGRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYDAVEDHS




YPNPEYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-
395
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


TRABID

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPLEVDEKKLKQIKNRM




KKTDWLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADEVRLLNR




PSAFDVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPAMVCPEL




TEQIRREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLPPTVQEK




LFDEVLDRDVQKELEEESPIINWSLELATRLDSRLYALWNRTAGDC




LLDSVLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKDWESWYS




QSFGLHESLREEQWQEDWAFILSLASQPGASLEQTHIFVLAHILRR




PIIVYGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKSPIALGY




TRGHFSALVAMENDGYGNRGAGANLNTDDDVTITFLPLVDSERKLL




HVHELSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKSSRRRNH




PLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-
396
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


USP21 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPSDDKMAHHTLLLGSG




HVGLRNLGNTCFLNAVLQCLSSTRPLRDFCLRRDERQEVPGGGRAQ




ELTEAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQQDA




QEFLKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLEEPE




LSDDDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRSTTF




EVFCDLSLPIPKKGFAGGKVSLRDCENLFTKEEELESENAPVCDRC




RQKTRSTKKLTVQRFPRILVLHLNRFSASRGSIKKSSVGVDEPLQR




LSLGDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGWHVY




NDSRVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-
397
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


OTUD4 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPATPMDAYLRKLGLYR




KLVAKDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENREKFEAF




IEGSFEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYREPNVSPS




QVTENNFPEKVLLCESNGNHYDIVYPIKYKESSAMCQSLLYELLYE




KVFKTDVSKIVMELDTLEVADE





CFP-P2A-a-
398
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG


Cezanne enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSPPSFSEGSGGSRTPEKGFSDREPTRPPRPILQRQDDIV




QEKRLSRGISHASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQ




LPDLTVYNEDERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQR




LLPLATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKE




ALKRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLG




TNGANCGGVESSEEPVYESLEEFHVEVLAHVLRRPIVVVADTMLRD




SGGEAFAPIPEGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSME




QKENTKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLA




SVILSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





CFP-P2A-a-
399
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


OTUD1 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSDEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGNCLYRA




VSKTVYGDQSLHRELREQTVHYIADHLDHFSPLIEGDVGEFIIAAA




QDGAWAGYPELLAMGQMLNVNIHLTTGGRLESPTVSTMIHYLGPED




SLRPSIWLSWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRKRDEEL




AKSMAISLSKMYIEQNACS





CFP-P2A-a-
400
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG


TRABID

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSLEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGDLAAIE




AYKSSGGDIARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQRQDML




AILLTEVSQQAAKCIPAMVCPELTEQIRREIAASLHQRKGDFACYF




LTDLVTFTLPADIEDLPPTVQEKLEDEVLDRDVQKELEEESPIINW




SLELATRLDSRLYALWNRTAGDCLLDSVLQATWGIYDKDSVLRKAL




HDSLHDCSHWFYTRWKDWESWYSQSFGLHESLREEQWQEDWAFILS




LASQPGASLEQTHIFVLAHILRRPIIVYGVKYYKSFRGETLGYTRE




QGVYLPLLWEQSFCWKSPIALGYTRGHFSALVAMENDGYGNRGAGA




NLNTDDDVTITFLPLVDSERKLLHVHELSAQELGNEEQQEKLLREW




LDCCVTEGGVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIRPCTSL





CFP-P2A-a-
401
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


USP21 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGEPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSSDDKMAHHTLLLGSGHVGLRNLGNTCFLNAVLQCLSST




RPLRDFCLRRDFRQEVPGGGRAQELTEAFADVIGALWHPDSCEAVN




PTRFRAVFQKYVPSFSGYSQQDAQEFLKLLMERLHLEINRRGRRAP




PILANGPVPSPPRRGGALLEEPELSDDDRANLMWKRYLEREDSKIV




DLFVGQLKSCLKCQACGYRSTTFEVECDLSLPIPKKGFAGGKVSLR




DCFNLFTKEEELESENAPVCDRCRQKTRSTKKLTVQRFPRILVLHL




NRFSASRGSIKKSSVGVDFPLQRLSLGDFASDKAGSPVYQLYALCN




HSGSVHYGHYTALCRCQTGWHVYNDSRVSPVSENQVASSEGYVLFY




QLMQEPPRCL





CFP-P2A-a-
402
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG


OTUD4 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQVLHSQS




RHVEVRMACIHYLRENREKFEAFIEGSFEEYLKRLENPQEWVGQVE




ISALSLMYRKDFIIYREPNVSPSQVTENNFPEKVLLCESNGNHYDI




VYPIKYKESSAMCQSLLYELLYEKVEKTDVSKIVMELDTLEVADE





CFP-P2A-anti-
403
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Stat3 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-Cezanne

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDFYHITYGETGGNSPVQEFTVPGSKSTATI




SGLKPGVDYTITVYAYVSYPEYYFPSPISINYRTPPSFSEGSGGSR




TPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLA




RSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIERDLI




EQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAASLG




MWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESGLV




YTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESL




EEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLPLEV




PASQCHRSPLVLAYDQAHFSALVSMEQKENTKEQAVIPLTDSEYKL




LPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVK




WIPLSSDAQAPLAQ





CFP-P2A-anti-
404
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Stat3 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD1

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDFYHITYGETGGNSPVQEFTVPGSKSTATI




SGLKPGVDYTITVYAYVSYPEYYFPSPISINYRTDEKLALYLAEVE




KQDKYLRQRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELREQTV




HYIADHLDHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQMLNV




NIHLTTGGRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYDAVE




DHSYPNPEYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-anti-
405
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Stat3 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


TRABID

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDFYHITYGETGGNSPVQEFTVPGSKSTATI




SGLKPGVDYTITVYAYVSYPEYYFPSPISINYRTLEVDEKKLKQIK




NRMKKTDWLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADEVRL




LNRPSAFDVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPAMVC




PELTEQIRREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLPPTV




QEKLFDEVLDRDVQKELEEESPIINWSLELATRLDSRLYALWNRTA




GDCLLDSVLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKDWES




WYSQSFGLHESLREEQWQEDWAFILSLASQPGASLEQTHIFVLAHI




LRRPIIVYGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKSPIA




LGYTRGHFSALVAMENDGYGNRGAGANLNTDDDVTITELPLVDSER




KLLHVHELSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKSSRR




RNHPLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-anti-
406
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Stat3 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-USP21

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDFYHITYGETGGNSPVQEFTVPGSKSTATI




SGLKPGVDYTITVYAYVSYPEYYFPSPISINYRTSDDKMAHHTLLL




GSGHVGLRNLGNTCFLNAVLQCLSSTRPLRDFCLRRDERQEVPGGG




RAQELTEAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQ




QDAQEFLKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLE




EPELSDDDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRS




TTFEVFCDLSLPIPKKGFAGGKVSLRDCFNLFTKEEELESENAPVC




DRCRQKTRSTKKLTVQRFPRILVLHLNRFSASRGSIKKSSVGVDFP




LQRLSLGDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGW




HVYNDSRVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
407
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Stat3 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD4

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDFYHITYGETGGNSPVQEFTVPGSKSTATI




SGLKPGVDYTITVYAYVSYPEYYFPSPISINYRTATPMDAYLRKLG




LYRKLVAKDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENREKE




EAFIEGSFEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYREPNV




SPSQVTENNFPEKVLLCESNGNHYDIVYPIKYKESSAMCQSLLYEL




LYEKVEKTDVSKIVMELDTLEVADE





CFP-P2A-anti-
408
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


PRDM14

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG


targeting

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


Cezanne enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDLYFITYGETGGNSPVQKFTVPGSKSTATI




SGLKPGVDYTITVYAQYYYRGWYVGSPISINYRTPPSFSEGSGGSR




TPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLA




RSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIERDLI




EQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAASLG




MWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESGLV




YTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESL




EEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLPLEV




PASQCHRSPLVLAYDQAHESALVSMEQKENTKEQAVIPLTDSEYKL




LPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVK




WIPLSSDAQAPLAQ





CFP-P2A-anti-
409
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


PRDM14

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


targeting

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


OTUD1 enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDLYFITYGETGGNSPVQKFTVPGSKSTATI




SGLKPGVDYTITVYAQYYYRGWYVGSPISINYRTDEKLALYLAEVE




KQDKYLRQRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELREQTV




HYIADHLDHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQMLNV




NIHLTTGGRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYDAVE




DHSYPNPEYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-anti-
410
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


PRDM14

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


targeting

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


TRABID enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDLYFITYGETGGNSPVQKFTVPGSKSTATI




SGLKPGVDYTITVYAQYYYRGWYVGSPISINYRTLEVDEKKLKQIK




NRMKKTDWLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADEVRL




LNRPSAFDVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPAMVC




PELTEQIRREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLPPTV




QEKLFDEVLDRDVQKELEEESPIINWSLELATRLDSRLYALWNRTA




GDCLLDSVLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKDWES




WYSQSFGLHESLREEQWQEDWAFILSLASQPGASLEQTHIFVLAHI




LRRPIIVYGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKSPIA




LGYTRGHESALVAMENDGYGNRGAGANLNTDDDVTITELPLVDSER




KLLHVHELSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKSSRR




RNHPLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-anti-
411
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


PRDM14

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG


targeting binder-

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


USP21 enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDLYFITYGETGGNSPVQKFTVPGSKSTATI




SGLKPGVDYTITVYAQYYYRGWYVGSPISINYRTSDDKMAHHTLLL




GSGHVGLRNLGNTCELNAVLQCLSSTRPLRDFCLRRDERQEVPGGG




RAQELTEAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQ




QDAQEFLKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLE




EPELSDDDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRS




TTFEVFCDLSLPIPKKGFAGGKVSLRDCENLFTKEEELESENAPVC




DRCRQKTRSTKKLTVQRFPRILVLHLNRESASRGSIKKSSVGVDFP




LQRLSLGDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGW




HVYNDSRVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
412
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


PRDM14

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


targeting binder-

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


OTUD4 enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVDLYFITYGETGGNSPVQKFTVPGSKSTATI




SGLKPGVDYTITVYAQYYYRGWYVGSPISINYRTATPMDAYLRKLG




LYRKLVAKDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENREKF




EAFIEGSFEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYREPNV




SPSQVTENNFPEKVLLCESNGNHYDIVYPIKYKESSAMCQSLLYEL




LYEKVEKTDVSKIVMELDTLEVADE





CFP-P2A-anti-
413
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


NR112 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-Cezanne

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPASTSGSTHYYKQTAD




LEVVAATPTSLLISWPPPYYVEGVTVFRITYGETGGNSPVQEFTVP




YWTETATISGLKPGVDYTITVYAEMYPGSPWAGQVMDIQPISINYR




TEGSGSPPSFSEGSGGSRTPEKGESDREPTRPPRPILQRQDDIVQE




KRLSRGISHASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQLP




DLTVYNEDERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLL




PLATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEAL




KRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTN




GANCGGVESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSG




GEAFAPIPFGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQK




ENTKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASV




ILSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





CFP-P2A-anti-
414
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


NR112 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD1

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPASTSGSTHYYKQTAD




LEVVAATPTSLLISWPPPYYVEGVTVFRITYGETGGNSPVQEFTVP




YWTETATISGLKPGVDYTITVYAEMYPGSPWAGQVMDIQPISINYR




TEGSGSDEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGNCLYRAVS




KTVYGDQSLHRELREQTVHYIADHLDHFSPLIEGDVGEFIIAAAQD




GAWAGYPELLAMGQMLNVNIHLTTGGRLESPTVSTMIHYLGPEDSL




RPSIWLSWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRKRDEELAK




SMAISLSKMYIEQNACS





CFP-P2A-anti-
415
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


NR112 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


TRABID

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPASTSGSTHYYKQTAD




LEVVAATPTSLLISWPPPYYVEGVTVFRITYGETGGNSPVQEFTVP




YWTETATISGLKPGVDYTITVYAEMYPGSPWAGQVMDIQPISINYR




TEGSGSLEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGDLAAIEAY




KSSGGDIARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQRQDMLAI




LLTEVSQQAAKCIPAMVCPELTEQIRREIAASLHQRKGDFACYFLT




DLVTFTLPADIEDLPPTVQEKLFDEVLDRDVQKELEEESPIINWSL




ELATRLDSRLYALWNRTAGDCLLDSVLQATWGIYDKDSVLRKALHD




SLHDCSHWFYTRWKDWESWYSQSFGLHESLREEQWQEDWAFILSLA




SQPGASLEQTHIFVLAHILRRPIIVYGVKYYKSERGETLGYTREQG




VYLPLLWEQSFCWKSPIALGYTRGHFSALVAMENDGYGNRGAGANL




NTDDDVTITFLPLVDSERKLLHVHELSAQELGNEEQQEKLLREWLD




CCVTEGGVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-anti-
416
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


NR112 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-USP21

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPASTSGSTHYYKQTAD




LEVVAATPTSLLISWPPPYYVEGVTVFRITYGETGGNSPVQEFTVP




YWTETATISGLKPGVDYTITVYAEMYPGSPWAGQVMDIQPISINYR




TEGSGSSDDKMAHHTLLLGSGHVGLRNLGNTCELNAVLQCLSSTRP




LRDFCLRRDERQEVPGGGRAQELTEAFADVIGALWHPDSCEAVNPT




RFRAVFQKYVPSFSGYSQQDAQEFLKLLMERLHLEINRRGRRAPPI




LANGPVPSPPRRGGALLEEPELSDDDRANLMWKRYLEREDSKIVDL




FVGQLKSCLKCQACGYRSTTFEVFCDLSLPIPKKGFAGGKVSLRDC




FNLFTKEEELESENAPVCDRCRQKTRSTKKLTVQRFPRILVLHLNR




FSASRGSIKKSSVGVDFPLQRLSLGDFASDKAGSPVYQLYALCNHS




GSVHYGHYTALCRCQTGWHVYNDSRVSPVSENQVASSEGYVLFYQL




MQEPPRCL





CFP-P2A-anti-
417
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


NR112 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD4

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPASTSGSTHYYKQTAD




LEVVAATPTSLLISWPPPYYVEGVTVFRITYGETGGNSPVQEFTVP




YWTETATISGLKPGVDYTITVYAEMYPGSPWAGQVMDIQPISINYR




TEGSGSATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQVLHSQSRH




VEVRMACIHYLRENREKFEAFIEGSFEEYLKRLENPQEWVGQVEIS




ALSLMYRKDFIIYREPNVSPSQVTENNFPEKVLLCESNGNHYDIVY




PIKYKESSAMCQSLLYELLYEKVEKTDVSKIVMELDTLEVADE





CFP-P2A-anti-
418
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


WDR5 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG


binder-Cezanne

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVVHYVITYGETGGNSPVQKFKVPGSKSTATI




SGLKPGVDYTITVYAYQGGGRWHPYGYYSPISINYRTPPSFSEGSG




GSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIV




SLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIER




DLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAA




SLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKES




GLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVY




ESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLP




LEVPASQCHRSPLVLAYDQAHESALVSMEQKENTKEQAVIPLTDSE




YKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYM




NVKWIPLSSDAQAPLAQ





CFP-P2A-anti-
419
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


WDR5 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD1

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVVHYVITYGETGGNSPVQKFKVPGSKSTATI




SGLKPGVDYTITVYAYQGGGRWHPYGYYSPISINYRTDEKLALYLA




EVEKQDKYLRQRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELRE




QTVHYIADHLDHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQM




LNVNIHLTTGGRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYD




AVFDHSYPNPEYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNA




CS





CFP-P2A-anti-
420
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


WDR5 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


TRABID

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVVHYVITYGETGGNSPVQKFKVPGSKSTATI




SGLKPGVDYTITVYAYQGGGRWHPYGYYSPISINYRTLEVDFKKLK




QIKNRMKKTDWLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADE




VRLLNRPSAFDVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPA




MVCPELTEQIRREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLP




PTVQEKLFDEVLDRDVQKELEEESPIINWSLELATRLDSRLYALWN




RTAGDCLLDSVLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKD




WESWYSQSFGLHESLREEQWQEDWAFILSLASQPGASLEQTHIFVL




AHILRRPIIVYGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKS




PIALGYTRGHFSALVAMENDGYGNRGAGANLNTDDDVTITELPLVD




SERKLLHVHELSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKS




SRRRNHPLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-anti-
421
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


WDR5 targeting

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDEFKSAMPEG


binder-USP21

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVVHYVITYGETGGNSPVQKFKVPGSKSTATI




SGLKPGVDYTITVYAYQGGGRWHPYGYYSPISINYRTSDDKMAHHT




LLLGSGHVGLRNLGNTCFLNAVLQCLSSTRPLRDFCLRRDERQEVP




GGGRAQELTEAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSG




YSQQDAQEFLKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGA




LLEEPELSDDDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACG




YRSTTFEVFCDLSLPIPKKGFAGGKVSLRDCENLFTKEEELESENA




PVCDRCRQKTRSTKKLTVQRFPRILVLHLNRFSASRGSIKKSSVGV




DFPLQRLSLGDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQ




TGWHVYNDSRVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
422
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


WDR5 targeting

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


binder-OTUD4

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPGSVSSVPTKLEVVAA




TPTSLLISWDAPAVTVVHYVITYGETGGNSPVQKFKVPGSKSTATI




SGLKPGVDYTITVYAYQGGGRWHPYGYYSPISINYRTATPMDAYLR




KLGLYRKLVAKDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENR




EKFEAFIEGSFEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYRE




PNVSPSQVTENNFPEKVLLCFSNGNHYDIVYPIKYKESSAMCQSLL




YELLYEKVEKTDVSKIVMELDTLEVADE









6.2 Example 2. Testing of Targeted Engineered Deubiquitinases

To demonstrate upregulation of a target protein in the context of a specific targeting enDUB the following experiments will be performed. Schematic constructs used:

    • Control experiment using non-targeting enDUB fusion
      • Target-YFP-P2A-mCherrry
      • CFP-P2A-enDUB (nontargeting control enDUB)
    • Test constructs for up-regulation:
      • Target-YFP-P2A-mCherry
      • CFP-P2A-a-YFPnanobody-enDUB
    • Or specific targeting enDUB fusion composed of
      • CFP-P2A-anti-targeting binder-enDUB


Co-transfection of both plasmids carrying the YFP tagged target protein together with the enDUB fused to a target binding protein into HEK cells will be performed. A control construct carrying the enDUB in the absence of the targeting binder will also be co-transfected together with the labeled target protein. After 24-48 hours the transfected cells will be analyzed by FACS or upregulation over the control. The mCherry signal on the target protein will be used to normalize for transfection efficiency while the CFP signal will be used to normalize for the transfection efficiency of the enDUB constructs. The YFP fused to the target protein is the read-out for target gene expression and will be plotted vs the signal in the control transfection. Relative increase in the YFP fluorescence over control will demonstrate upregulation in the presence of the enDUB.


6.3 Example 3. Screening Assay for Testing Fusion Proteins

The following example describes an assay to analyze the ability of a targeted engineered deubiquitinase (enDub) (e.g., an enDub described herein) to increase expression of a target protein. Generally, the assay involves tagging the target protein with a fluorescent tag (e.g., NanoLuciferase (NLuc)) and an alfa-tag (a-Tag); and tagging a fusion protein of the enDub and an anti-alfa Tag nanobody with a different fluorescent tag (e.g., Firefly Luciferase (FLuc)) through a cleavable linker. The use of two different fluorescent tags enables normalization of the signal to compensate for variation in transfection/expression, as the second fluorescent tag is rapidly cleaved from the enDub-anti-alfa tag fusion protein inside the cell through cleavage of the cleavable linker. FIG. 2 provides a general schematic of the cellular aspects of the assay. The protocol, including materials and methods is described below.


CHO-K1 cells were digested with 0.25% (w/v) Trypsin-EDTA, at 37° C., for 5 min. Complete medium was added for the CHO-K1 cell cultures to stop the digestion. The CHO-K1 cells were centrifuges at 800 rpm for 5 minutes. After centrifugation, the supernatant was discarded and the CHO-K1 cells were resuspend in 2 mL culture medium and counted. 10{circumflex over ( )}6 CHO-K1 cells were electroporated under 440V with 0.5 ug of a plasmid encoding the target protein tagged with NLuc and alfa-tag, and 1 ug of a plasmid encoding a) enDub-anti-alfa tag nanobody-FLuc fusion protein (experimental), b) the enDub (control), or the anti-alfa tag nanobody (control). 5E+4 cells/well were placed in in 24 well plates and cultured for 24 h, at 37° C., 5% CO2. The cells were digested with 0.25% (w/v) Trypsin-EDTA, at 37° C. for 5 min. Complete medium was added to the culture to stop the digestion and the cells were counted for use in NanoGlo® Dual Luciferase® Assay (Promega), which enables detection of FLuc and NLuc® in a single sample. The NanoGlo® Dual Luciferase® Assay was carried out according to manufacturer's instructions (Promega, Nano-Glo® Dual-Luciferase® Reporter Assay Technical Manual #TM426). Briefly, 1E+4 cells/well were placed in 96 well black plates and cultured for 24 h, at 37° C., 5% CO2. The plates were removed from the incubator and allowed to equilibrate to room temperature. The samples were modified as needed to have a starting volume of 80 μl per well. All sample wells were injected with 80 μl of ONE-Glo™ EX Reagent and incubated for 3 minutes. The firefly luminescence was read in all sample wells using a 1-second integration time. All sample wells were injected with 80 μl of NanoDLR™ Stop & Glo® Reagent; and incubated for 5 minutes. The NanoLuc® luminescence of all sample wells was read using a 1-second integration time. The dispensing lines were cleaned according to manufacturer's instructions (Nano-Glo® Dual-Luciferase® Reporter Assay Technical Manual #TM426.) and the data analyzed.


The amino acid sequence of the components of the fusion proteins used in the assay are detailed in Table 7 below.









TABLE 7







Amino acid sequence of components of test fusion proteins









Description
SEQ ID NO
Amino Acid Sequence













Fluorescent
NanoLuc
437
VFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQ


Protein


NLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGL





SGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLV





IDGVTPNMIDYFGRPYEGIAVEDGKKITVTGTL





WNGNKIIDERLINPDGSLLFRVTINGVTGWRLC





ERILA



Firefly
438
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRY



Luciferase

ALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEA





MKRYGLNTNHRIVVCSENSLQFFMPVLGALFIG





VAVAPANDIYNERELLNSMGISQPTVVFVSKKG





LQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMY





TFVTSHLPPGENEYDFVPESEDRDKTIALIMNS





SGSTGLPKGVALPHRTACVRESHARDPIFGNQI





IPDTAILSVVPFHHGFGMFTTLGYLICGERVVL





MYRFEEELFLRSLQDYKIQSALLVPTLESFFAK





STLIDKYDLSNLHEIASGGAPLSKEVGEAVAKR





FHLPGIRQGYGLTETTSAILITPEGDDKPGAVG





KVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPM





IMSGYVNNPEATNALIDKDGWLHSGDIAYWDED





EHFFIVDRLKSLIKYKGYQVAPAELESILLQHP





NIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE





KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTG





KLDARKIREILIKAKKGGKIAVTRLK












Alfa Tag
439
PSRLEEELRRRLTEP





P2A
440
GSGATNFSLLKQAGDVEENPGP













Cezanne

441
PPSFSEGSGGSRTPEKGFSDREPTRPPRPILQR


(Exemplary


QDDIVQEKRLSRGISHASSSIVSLARSHVSSNG


Catalytic Domain)


GGGGSNEHPLEMPICAFQLPDLTVYNEDERSFI





ERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLL





PLATTGDGNCLLHAASLGMWGFHDRDLMLRKAL





YALMEKGVEKEALKRRWRWQQTQQNKESGLVYT





EDEWQKEWNELIKLASSEPRMHLGTNGANCGGV





ESSEEPVYESLEEFHVFVLAHVLRRPIVVVADT





MLRDSGGEAFAPIPEGGIYLPLEVPASQCHRSP





LVLAYDQAHFSALVSMEQKENTKEQAVIPLTDS





EYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVI





LSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ









The amino acid sequence of exemplary target fusion proteins comprising a target protein, NLuc, and the alfa tag are detailed in Table 8 below.









TABLE 8







Amino Acid Sequence of exemplary Target Protein-NLuc-Alfa Tag Fusion Proteins









Test Protein
SEQ ID NO
Amino Acid Sequence





SETD5-nanoluc-
442
MSIAIPLGVTTSDTSYSDMAAGSDPESVEASPAVNEKSVYSTHNY


alfa-tag-fusion

GTTQRHGCRGLPYATIIPRSDLNGLPSPVEERCGDSPNSEGETVP




TWCPCGLSQDGFLLNCDKCRGMSRGKVIRLHRRKQDNISGGDSSA




TESWDEELSPSTVLYTATQHTPTSITLTVRRTKPKKRKKSPEKGR




AAPKTKKIKNSPSEAQNLDENTTEGWENRIRLWTDQYEEAFTNQY




SADVQNALEQHLHSSKEFVGKPTILDTINKTELACNNTVIGSQMQ




LQLGRVTRVQKHRKILRAARDLALDTLIIEYRGKVMLRQQFEVNG




HFFKKPYPFVLFYSKENGVEMCVDARTEGNDARFIRRSCTPNAEV




RHMIADGMIHLCIYAVSAITKDAEVTIAFDYEYSNCNYKVDCACH




KGNRNCPIQKRNPNATELPLLPPPPSLPTIGAETRRRKARRKELE




MEQQNEASEENNDQQSQEVPEKVTVSSDHEEVDNPEEKPEEEKEE




VIDDQENLAHSRRTREDRKVEAIMHAFENLEKRKKRRDQPLEQSN




SDVEITTTTSETPVGEETKTEAPESEVSNSVSNVTIPSTPQSVGV




NTRRSSQAGDIAAEKLVPKPPPAKPSRPRPKSRISRYRTSSAQRL




KRQKQANAQQAELSQAALEEGGSNSLVTPTEAGSLDSSGENRPLT




GSDPTVVSITGSHVNRAASKYPKTKKYLVTEWLNDKAEKQECPVE




CPLRITTDPTVLATTLNMLPGLIHSPLICTTPKHYIRFGSPFIPE




RRRRPLLPDGTESSCKKRWIKQALEEGMTQTSSVPQETRTQHLYQ




SNENSSSSSICKDNADLLSPLKKWKSRYLMEQNVTKLLRPLSPVT




PPPPNSGSKSPQLATPGSSHPGEEECRNGYSLMFSPVTSLTTASR




CNTPLQFELCHRKDLDLAKVGYLDSNTNSCADRPSLLNSGHSDLA




PHPSLGPTSETGFPSRSGDGHQTLVRNSDQAFRTEENLMYAYSPL




NAMPRADGLYRGSPLVGDRKPLHLDGGYCSPAEGFSSRYEHGLMK




DLSRGSLSPGGERACEGVPSAPQNPPQRKKVSLLEYRKRKQEAKE




NSAGGGGDSAQSKSKSAGAGQGSSNSVSDTGAHGVQGSSARTPSS




PHKKESPSHSSMSHLEAVSPSDSRGTSSSHCRPQENISSRWMVPT




SVERLREGGSIPKVLRSSVRVAQKGEPSPTWESNITEKDSDPADG




EGPETLSSALSKGATVYSPSRYSYQLLQCDSPRTESQSLLQQSSS




PFRGHPTQSPGYSYRTTALRPGNPPSHGSSESSLSSTSYSSPAHP




VSTDSLAPFTGTPGYFSSQPHSGNSTGSNLPRRSCPSSAASPTLQ




GPSDSPTSDSVSQSSTGTLSSTSFPQNSRSSLPSDLRTISLPSAG




QSAVYQASRVSAVSNSQHYPHRGSGGVHQYRLQPLQGSGVKTQTG




LSKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVSVT




PIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYPVD




DHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKITVTG




TLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGGGGS




PSRLEEELRRRLTEP





RAI1-nanoluc-
443
MQSFRERCGFHGKQQNYQQTSQETSRLENYRQPSQAGLSCDRQRL


alfa-

LAKDYYNPQPYPSYEGGAGTPSGTAAAVAADKYHRGSKALPTQQG


tag-fusion

LQGRPAFPGYGVQDSSPYPGRYAGEESLQAWGAPQPPPPQPQPLP




AGVAKYDENLMKKTAVPPSRQYAEQGAQVPFRTHSLHVQQPPPPQ




QPLAYPKLQRQKLQNDIASPLPFPQGTHEPQHSQSFPTSSTYSSS




VQGGGQGAHSYKSCTAPTAQPHDRPLTASSSLAPGQRVQNLHAYQ




SGRLSYDQQQQQQQQQQQQQQALQSRHHAQETLHYQNLAKYQHYG




QQGQGYCQPDAAVRTPEQYYQTFSPSSSHSPARSVGRSPSYSSTP




SPLMPNLENFPYSQQPLSTGAFPAGITDHSHEMPLLNPSPTDATS




SVDTQAGNCKPLQKDKLPENLLSDLSLQSLTALTSQVENISNTVQ




QLLLSKAAVPQKKGVKNLVSRTPEQHKSQHCSPEGSGYSAEPAGT




PLSEPPSSTPQSTHAEPQEADYLSGSEDPLERSFLYCNQARGSPA




RVNSNSKAKPESVSTCSVTSPDDMSTKSDDSFQSLHGSLPLDSFS




KFVAGERDCPRLLLSALAQEDLASEILGLQEAIGEKADKAWAEAP




SLVKDSSKPPFSLENHSACLDSVAKSAWPRPGEPEALPDSLQLDK




GGNAKDESPGLFEDPSVAFATPDPKKTTGPLSFGTKPTLGVPAPD




PTTAAFDCFPDTTAASSADSANPFAWPEENLGDACPRWGLHPGEL




TKGLEQGGKASDGISKGDTHEASACLGFQEEDPPGEKVASLPGDE




KQEEVGGVKEEAGGLLQCPEVAKADRWLEDSRHCCSTADFGDLPL




LPPTSRKEDLEAEEEYSSLCELLGSPEQRPGMQDPLSPKAPLICT




KEEVEEVLDSKAGWGSPCHLSGESVILLGPTVGTESKVQSWFESS




LSHMKPGEEGPDGERAPGDSTTSDASLAQKPNKPAVPEAPIAKKE




PVPRGKSLRSRRVHRGLPEAEDSPCRAPVLPKDLLLPESCTGPPQ




GQMEGAGAPGRGASEGLPRMCTRSLTALSEPRTPGPPGLTTTPAP




PDKLGGKQRAAFKSGKRVGKPSPKAASSPSNPAALPVASDSSPMG




SKTKETDSPSTPGKDQRSMILRSRTKTQEIFHSKRRRPSEGRLPN




CRATKKLLDNSHLPATFKVSSSPQKEGRVSQRARVPKPGAGSKLS




DRPLHALKRKSAFMAPVPTKKRNLVLRSRSSSSSNASGNGGDGKE




ERPEGSPTLFKRMSSPKKAKPTKGNGEPATKLPPPETPDACLKLA




SRAAFQGAMKTKVLPPRKGRGLKLEAIVQKITSPSLKKFACKAPG




ASPGNPLSPSLSDKDRGLKGAGGSPVGVEEGLVNVGTGQKLPTSG




ADPLCRNPTNRSLKGKLMNSKKLSSTDCFKTEAFTSPEALQPGGT




ALAPKKRSRKGRAGAHGLSKGPLEKRPYLGPALLLTPRDRASGTQ




GASEDNSGGGGKKPKMEELGLASQPPEGRPCQPQTRAQKQPGHTN




YSSYSKRKRLTRGRAKNTTSSPCKGRAKRRRQQQVLPLDPAEPEI




RLKYISSCKRLRSDSRTPAFSPFVRVEKRDAFTTICTVVNSPGDA




PKPHRKPSSSASSSSSSSSESLDAAGASLATLPGGSILQPRPSLP




LSSTMHLGPVVSKALSTSCLVCCLCQNPANFKDLGDLCGPYYPEH




CLPKKKPKLKEKVRPEGTCEEASLPLERTLKGPECAAAATAGKPP




RPDGPADPAKQGPLRTSARGLSRRLQSCYCCDGREDGGEEAAPAD




KGRKHECSKEAPAEPGGEAQEHWVHEACAVWTGGVYLVAGKLFGL




QEAMKVAVDMMCSSCQEAGATIGCCHKGCLHTYHYPCASDAGCIF




IEENFSLKCPKHKRLPKVPVFTLEDFVGDWRQTAGYNLDQVLEQG




GVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQM




GQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMIDYEGRPYE




GIAVFDGKKITVTGTLWNGNKIIDERLINPDGSLLERVTINGVTG




WRLCERILAGGGGSPSRLEEELRRRLTEP





MECP2-nanoluc-
444
MVAGMLGLREEKSEDQDLQGLKDKPLKFKKVKKDKKEEKEGKHEP


alfa-tag-fusion

VQPSAHHSAEPAEAGKAETSEGSGSAPAVPEASASPKQRRSIIRD




RGPMYDDPTLPEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSK




VELIAYFEKVGDTSLDPNDFDFTVTGRGSPSRREQKPPKKPKSPK




APGTGRGRGRPKGSGTTRPKAATSEGVQVKRVLEKSPGKLLVKMP




FQTSPGGKAEGGGATTSTQVMVIKRPGRKRKAEADPQAIPKKRGR




KPGSVVAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIE




VKEVVKPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASS




PPKKEHHHHHHHSESPKAPVPLLPPLPPPPPEPESSEDPTSPPEP




QDLSSSVCKEEKMPRGGSLESDGCPKEPAKTQPAVATAATAAEKY




KHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSKVPVFTLED




FVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGEN




GLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYG




TLVIDGVTPNMIDYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDE




RLINPDGSLLFRVTINGVTGWRLCERILAGGGGSPSRLEEELRRR




LTEP





CHD2-nanoluc-
445
MMRNKDKSQEEDSSLHSNASSHSASEEASGSDSGSQSESEQGSDP


alfa-tag-fusion

GSGHGSESNSSSESSESQSESESESAGSKSQPVLPEAKEKPASKK




ERIADVKKMWEEYPDVYGVRRSNRSRQEPSRENIKEEASSGSESG




SPKRRGQRQLKKQEKWKQEPSEDEQEQGTSAESEPEQKKVKARRP




VPRRTVPKPRVKKQPKTQRGKRKKQDSSDEDDDDDEAPKRQTRRR




AAKNVSYKEDDDFETDSDDLIEMTGEGVDEQQDNSETIEKVLDSR




LGKKGATGASTTVYAIEANGDPSGDEDTEKDEGEIQYLIKWKGWS




YIHSTWESEESLQQQKVKGLKKLENFKKKEDEIKQWLGKVSPEDV




EYFNCQQELASELNKQYQIVERVIAVKTSKSTLGQTDFPAHSRKP




APSNEPEYLCKWMGLPYSECSWEDEALIGKKFQNCIDSFHSRNNS




KTIPTRECKALKQRPRFVALKKQPAYLGGENLELRDYQLEGLNWL




AHSWCKNNSVILADEMGLGKTIQTISFLSYLFHQHQLYGPFLIVV




PLSTLTSWQREFEIWAPEINVVVYIGDLMSRNTIREYEWIHSQTK




RLKFNALITTYEILLKDKTVLGSINWAFLGVDEAHRLKNDDSLLY




KTLIDFKSNHRLLITGTPLQNSLKELWSLLHFIMPEKFEFWEDFE




EDHGKGRENGYQSLHKVLEPFLLRRVKKDVEKSLPAKVEQILRVE




MSALQKQYYKWILTRNYKALAKGTRGSTSGELNIVMELKKCCNHC




YLIKPPEENERENGQEILLSLIRSSGKLILLDKLLTRLRERGNRV




LIFSQMVRMLDILAEYLTIKHYPFQRLDGSIKGEIRKQALDHENA




DGSEDFCFLLSTRAGGLGINLASADTVVIFDSDWNPQNDLQAQAR




AHRIGQKKQVNIYRLVTKGTVEEEIIERAKKKMVLDHLVIQRMDT




TGRTILENNSGRSNSNPENKEELTAILKFGAEDLFKELEGEESEP




QEMDIDEILRLAETRENEVSTSATDELLSQFKVANFATMEDEEEL




EERPHKDWDEIIPEEQRKKVEEEERQKELEEIYMLPRIRSSTKKA




QTNDSDSDTESKRQAQRSSASESETEDSDDDKKPKRRGRPRSVRK




DLVEGETDAEIRRFIKAYKKEGLPLERLECIARDAELVDKSVADL




KRLGELIHNSCVSAMQEYEEQLKENASEGKGPGKRRGPTIKISGV




QVNVKSIIQHEEEFEMLHKSIPVDPEEKKKYCLTCRVKAAHEDVE




WGVEDDSRLLLGIYEHGYGNWELIKTDPELKLTDKILPVETDKKP




QGKQLQTRADYLLKLLRKGLEKKGAVTGGEEAKLKKRKPRVKKEN




KVPRLKEEHGIELSSPRHSDNPSEEGEVKDDGLEKSPMKKKQKKK




ENKENKEKQMSSRKDKEGDKERKKSKDKKEKPKSGDAKSSSKSKR




SQGPVHITAGSEPVPIGEDEDDDLDQETESICKERMRPVKKALKQ




LDKPDKGLNVQEQLEHTRNCLLKIGDRIAECLKAYSDQEHIKLWR




RNLWIFVSKFTEFDARKLHKLYKMAHKKRSQEEEEQKKKDDVTGG




KKPFRPEASGSSRDSLISQSHTSHNLHPQKPHLPASHGPQMHGHP




RDNYNHPNKRHFSNADRGDWQRERKENYGGGNNNPPWGSDRHHQY




EQHWYKDHHYGDRRHMDAHRSGSYRPNNMSRKRPYDQYSSDRDHR




GHRDYYDRHHHDSKRRRSDEFRPQNYHQQDERRMSDHRPAMGYHG




QGPSDHYRSFHTDKLGEYKQPLPPLHPAVSDPRSPPSQKSPHDSK




SPLDHRSPLERSLEQKNNPDYNWNVRKTKVPVFTLEDFVGDWRQT




AGYNLDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHV




IIPYEGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVT




PNMIDYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINPDGS




LLFRVTINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





SNRGP-nanoluc-
446
MSKAHPPELKKFMDKKLSLKLNGGRHVQGILRGFDPEMNLVIDEC


alfa-tag-fusion

VEMATSGQQNNIGMVDNIPNKAVSPKFLKKVNQKGQLTFSKLLSI




KTSKEWKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLG




VSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVV




YPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKI




TVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAG




GGGSPSRLEEELRRRLTEP





LSM2-nanoluc-
447
MLFYSFFKSLVGKDVVVELKNDLSICGTLHSVDQYLNIKLTDISV


alfa-tag-fusion

TDPEKYPHMLSVKNCFIRGSVVRYVQLPADEVDTQLLQDAARKEA




LQQKQKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGV




SVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVY




PVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKIT




VTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGG




GGSPSRLEEELRRRLTEP





NUPR2-nanoluc-
448
MEAPAERALPRLQALARPPPPISYEEELYDCLDYYYLRDEPACGA


alfa-tag-fusion

GRSKGRTRREQALRTNWPAPGGHERKVAQKLLNGQRKRRQRQLHP




KMRTRLTKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNL




GVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKV




VYPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKK




ITVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILA




GGGGSPSRLEEELRRRLTEP









The amino acid sequence of exemplary fusion proteins comprising a control or a targeted engineered deubiquitinase are detailed in Table 9 below.









TABLE 9







Amino Acid Sequence of exemplary enDub Control and Screening Fusion Proteins









Description
SEQ ID NO
Amino Acid Sequence





FireflyLuciferase-
449
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-nano

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFM


(Control)

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK




ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSSGE




VQLQESGGGLVQPGGSLRLSCTASGVTISALNAMAMGWYRQAPGE




RRVMVAAVSERGNAMYRESVQGRFTVTRDFTNKMVSLQMDNLKPE




DTAVYYCHVLEDRVDSFHDYWGQGTQVTVSS





FireflyLuciferase-
450
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-Cezanne

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFM


(Control)

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK




ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESEDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLESFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSPPS




FSEGSGGSRTPEKGESDREPTRPPRPILQRQDDIVQEKRLSRGIS




HASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNE




DERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTG




DGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWR




WQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANC




GGVESSEEPVYESLEEFHVEVLAHVLRRPIVVVADTMLRDSGGEA




FAPIPFGGIYLPLEVPASQCHRSPLVLAYDQAHESALVSMEQKEN




TKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVI




LSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





FireflyLuciferase-
451
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFM


a_alfatag_nano-

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK


Cezanne

ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESEDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSSGE




VQLQESGGGLVQPGGSLRLSCTASGVTISALNAMAMGWYRQAPGE




RRVMVAAVSERGNAMYRESVQGRFTVTRDFTNKMVSLQMDNLKPE




DTAVYYCHVLEDRVDSFHDYWGQGTQVTVSSGAPGSGPPSFSEGS




GGSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSS




IVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSE




IERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCL




LHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQ




QNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVES




SEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIP




FGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKENTKEQA




VIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEV




KLHLLHSYMNVKWIPLSSDAQAPLAQ









The assay was conducted with utilizing the tagged proteins and targeted enDubs described above in Tables 7 and 8. The results of the SNRPG targeting are shown in FIG. 3, showing a 2.37-fold increase in SNRPG protein expression. The results of the LSM2 targeting are shown in FIG. 4, showing a 1.87-fold increase in LSM2 protein expression. The results of the NUPR2 targeting are shown in FIG. 5, showing a 1.13-fold increase in NURP2 protein expression. The control used for the SNRPG, LSM2, and NUPR2 experiments is the engineered deubiquitinase without the nanobody targeting the alfa-tag. Normalization of transduction efficiency was performed using the firefly luciferase signal as the reference and the ratio between NLuc signal divided by firefly luciferase signal plotted on the y axes.


The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.


All references (e.g., publications or patents or patent applications) cited herein are incorporated herein by reference in their entireties and for all purposes to the same extent as if each individual reference (e.g., publication or patent or patent application) was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. Other embodiments are within the following claims.

Claims
  • 1. A fusion protein comprising: a. an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; andb. a targeting domain comprising a targeting moiety that specifically binds a nuclear protein.
  • 2. The fusion protein of claim 1, wherein said deubiquitinase is a cysteine protease or a metalloprotease.
  • 3. The fusion protein of claim 2, wherein said deubiquitinase is a cysteine protease.
  • 4. The fusion protein of claim 3, wherein said cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.
  • 5. The fusion protein of claim 4, wherein said cysteine protease is a USP.
  • 6. The fusion protein of claim 5, wherein said USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.
  • 7. The fusion protein of claim 4, wherein said cysteine protease is a UCH.
  • 8. The fusion protein of claim 7, wherein said UCH is BAP1, UCHL1, UCHL3, or UCHL5.
  • 9. The fusion protein of claim 4, wherein said cysteine protease is a MJD.
  • 10. The fusion protein of claim 9, wherein said MJD is ATXN3 or ATXN3L.
  • 11. The fusion protein of claim 4, wherein said cysteine protease is a OTU.
  • 12. The fusion protein of claim 11, wherein said OTU is OTUB1 or OTUB2.
  • 13. The fusion protein of claim 4, wherein said cysteine protease is a MINDY.
  • 14. The fusion protein of claim 13, wherein said MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.
  • 15. The fusion protein of claim 4, wherein said cysteine protease is a ZUFSP.
  • 16. The fusion protein of claim 15, wherein said ZUFSP is ZUP1.
  • 17. The fusion protein of claim 2, wherein said deubiquitinase is a metalloprotease.
  • 18. The fusion protein of claim 17, wherein said metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) domain protease.
  • 19. The fusion protein of any one of the preceding claims, wherein said deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 20. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 21. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 423.
  • 22. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 423.
  • 23. The fusion protein of any one of the preceding claims, wherein said moiety that specifically binds a nuclear protein comprises an antibody, or functional fragment or functional variant thereof.
  • 24. The fusion protein of claim 23, wherein said antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, a (VHH)2.
  • 25. The fusion protein of claim 23, wherein said antibody, or functional fragment or functional variant thereof, comprises a VHH or a (VHH)2.
  • 26. The fusion protein of any one of the preceding claims, wherein the nuclear protein is a transcription factor.
  • 27. The fusion protein of any one of the preceding claims, wherein the nuclear protein is chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin (NF1), and histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), histone acetyltransferase KAT6A (KAT6A), small nuclear ribonucleoprotein G (SNRPG), U6 snRNA-associated Sm-like protein LSm2 (LSM2), or nuclear protein 2 (NUPR2).
  • 28. The fusion protein of any one of the preceding claims, wherein the nuclear protein is chromodomain-helicase-DNA-binding protein 2 (CHD2), arginine-glutamic acid dipeptide repeats protein (RERE), cyclin-dependent kinase-like 5 (CDKL5), methyl-CpG-binding protein 2 (MECP2), histone-lysine N-methyltransferase 2D (KMT2D), histone-lysine N-methyltransferase SETD5 (SETD5), zinc finger E-box-binding homeobox 2 (ZEB2), calmodulin-binding transcription activator 1 (CAMTA1), synaptic functional regulator FMR1 (FMR1), pre-mRNA-processing-splicing factor 8 (PRPF8), retinoic acid-induced protein 1 (RAI1), CREB-binding protein (CREBBP), neurofibromin (NF1), and histone-lysine N-methyltransferase 2A (KMT2A), chromodomain-helicase-DNA-binding protein 4 (CHD4), histone-lysine N-methyltransferase, H3 lysine-36 specific (NSD1), mediator of RNA polymerase II transcription subunit 13-like (MED13L), structural maintenance of chromosomes protein 1A (SMC1A), probable global transcription activator SNF2L2 (SMARCA2), AT-rich interactive domain-containing protein 1B (ARID1B), pogo transposable element with ZNF domain (POGZ), histone acetyltransferase KAT6B (KAT6B), AT-hook DNA-binding motif-containing protein 1 (AHDC1), histone acetyltransferase p300 (EP300), IQ motif and SEC7 domain-containing protein 2 (IQSEC2), transcription factor 20 (TCF20), putative polycomb group protein ASXL3(ASXL3), or histone acetyltransferase KAT6A (KAT6A).
  • 29. The fusion protein of any one of the preceding claims, wherein the nuclear protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 221-248 or 424-426.
  • 30. The fusion protein of any one of the preceding claims, wherein said effector domain is directly operably connected to said targeting domain.
  • 31. The fusion protein of any one of claims 1-29, wherein said effector domain is indirectly operably connected to said targeting domain.
  • 32. The fusion protein of claim 31, wherein said effector domain is indirectly operably connected to said targeting domain via a peptide linker.
  • 33. The fusion protein of claim 32, wherein said effector domain is indirectly fused to said targeting domain via a peptide linker of sufficient length such that said effector domain and said targeting domain can simultaneous bind the respective target proteins.
  • 34. The fusion protein of claim 32 or 33, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 427-436 or 249-367, or the amino acid sequence of any one of SEQ ID NOS: 427-436 or 249-367 comprising 1, 2, or 3 amino acid modifications.
  • 35. The fusion protein of claim 34, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 427-436, or the amino acid sequence of any one of SEQ ID NOS: 427-436 comprising 1, 2, or 3 amino acid modifications.
  • 36. The fusion protein of any one of the preceding claims, wherein said effector domain is operably connected either directly or indirectly to the C terminus of said targeting domain.
  • 37. The fusion protein of any one of claims 1-35, wherein said effector moiety is operably connected either directly or indirectly to the N terminus of said targeting domain.
  • 38. The fusion protein of any one of the preceding claims, further comprising a nuclear localization signal (NLS).
  • 39. The fusion protein of claim 38, wherein said NLS is a at the N terminus of the fusion protein.
  • 40. The fusion protein of claim 38 or 39, wherein said NLS comprises the amino acid sequence of any one of SEQ ID NOS: 249-367.
  • 41. A nucleic acid molecule encoding the fusion protein of any one of claims 1-40.
  • 42. The nucleic acid molecule of claim 41, wherein the nucleic acid molecule is a DNA molecule.
  • 43. The nucleic acid molecule of claim 41, wherein the nucleic acid molecule is an RNA molecule.
  • 44. A vector comprising the nucleic acid molecule of any one of claims 41-43.
  • 45. The vector of claim 44, wherein the vector is a plasmid or a viral vector.
  • 46. A viral particle comprising the nucleic acid of any one of claims 41-43.
  • 47. An in vitro cell or population of cells comprising the fusion protein of any one of claims 1-40, the nucleic acid molecule of any one of claims 41-43, or the vector of any one of claims 44-45.
  • 48. A pharmaceutical composition comprising the fusion protein of any one of claims 1-40, the nucleic acid molecule of any one of claims 41-43, the vector of any one of claims 44-45, or the viral particle of claim 46, and an excipient.
  • 49. A method of making the fusion protein of any one of claims 1-40, comprising a. introducing into an in vitro cell or population of cells the nucleic acid molecule of any one of claims 41-43, the vector of any one of claims 44-45, the viral particle of claim 46;b. culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein,c. isolating the fusion protein from the culture medium, andd. optionally purifying the fusion protein.
  • 50. A method of treating or preventing a disease in a subject comprising administering the fusion protein of any one of claims 1-40, the nucleic acid molecule of any one of claims 41-43, the vector of any one of claims 44-45, the viral particle of claim 46, or the pharmaceutical composition of claim 48, to a subject in need thereof.
  • 51. The method of claim 50, wherein the subject is human.
  • 52. The method of claim 50 or 51, wherein the disease is associated with decreased expression of a functional version of the nuclear protein relative to a non-diseased control.
  • 53. The method of any one of claims 50-52, wherein the disease is associated with decreased stability of a functional version of the nuclear protein relative to a non-diseased control.
  • 54. The method of any one of claims 50-53, wherein the disease is associated with increased ubiquitination of the nuclear protein relative to a non-diseased control.
  • 55. The method of any one of claims 50-54, wherein the disease is associated with increased ubiquitination and degradation of the nuclear protein relative to a non-diseased control.
  • 56. The method of any one of claims 50-55, wherein the disease is a genetic disease.
  • 57. The method of any one of claims 50-56, wherein the disease is CHD2 encephalopathy, CDKL5 deficiency disorder, SETD5 syndrome, CAMTA1 syndrome, early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, Kabuki syndrome 1, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, fragile X syndrome, retinitis pigmentosa 13, Smith-Magenis syndrome, Rubinstein-Taybi syndrome, neurofibromatosis (e.g., type 1), Wiedmann-Steiner Syndrome, Sifrim-Hitz-Weiss Syndrome, Sotos Syndrome, MED13L Syndrome, SMC1A Syndrome, Nicolaides-Baraitser Syndrome, ARID1B-Related Disorder, White-Sutton Syndrome, KAT6B Disorder, Xia-Gibbs Syndrome, Menke-Hennekam Syndrome 2, IQSEC2-Related Disorder, TCF20-Related Disorder, Bainbridge-Ropers Syndrome, or KATA6 Syndrome.
  • 58. The method of any one of claims 50-57, wherein a. said target nuclear protein is CHD2 and said disease is childhood onset epileptic encephalopathy;b. said target nuclear protein is CHD2 and said disease is CHD2 encephalopathy;c. said target nuclear protein is RERE and said disease is 1p36 deletion syndrome;d. said target nuclear protein is CDKL5 and said disease is early infantile epileptic encephalopathy (e.g., type 2);e. said target nuclear protein is CDKL5 and said disease is CDKL5 deficiency disorder;f. said target nuclear protein is MECP2 and said disease is Rett syndrome;g. said target nuclear protein is KMT2D and said disease is Kabuki syndrome 1;h. said target nuclear protein is SETD5 and said disease is mental retardation autosomal dominant 23;i. said target nuclear protein is ZEB2 and said disease is Mowat-Wilson syndrome;j. said target nuclear protein is KMT2A, and said disease is Wiedmann-Steiner Syndrome;k. said target nuclear protein is CHD4, and said disease is Sifrim-Hitz-Weiss Syndrome;l. said target nuclear protein is NSD1, and said disease is Sotos Syndrome;m. said target nuclear protein is SMC1A, and said disease is SMC1A Syndrome;n. said target nuclear protein is SMARCA2, and said disease is Nicolaides-Baraitser Syndrome;o. said target nuclear protein is ARID1B, and said disease is ARID1B-Related Disorder;p. said target nuclear protein is POGZ, and said disease is White-Sutton Syndrome;q. said target nuclear protein is KAT6B, and said disease is KAT6B Disorder;r. said target nuclear protein is AHDC1, and said genetic disease is Xia-Gibbs Syndrome;s. said target nuclear protein is EP300, and said disease is Menke-Hennekam Syndrome 2;t. said target nuclear protein is IQSEC2, and said disease is IQSEC2-Related Disorder;u. said target nuclear protein is TCF20, and said disease is TCF20-Related Disorder;v. said target nuclear protein is ASXL3, and said disease is Bainbridge-Ropers Syndrome;w. said target nuclear protein is KAT6A, and said disease is KATA6 Syndrome;x. said target nuclear protein is MED13L, and said disease is MED13L Syndrome;y. said target nuclear protein is CAMTA1, and said disease is CAMTA1 Syndrome;z. said target nuclear protein is FMR1, and said disease is Fragile X syndrome;aa. said target nuclear protein is PRPF8, and said disease is Retinitis pigmentosa 13;bb. said target nuclear protein is RAI1, and said disease is Smith-Magenis Syndrome;cc. said target nuclear protein is CREBBP, and said disease is Rubinstein-Taybi syndrome; ordd. said target nuclear protein is NF1, and said disease is Neurofibromatosis (e.g., type 1).
  • 59. The method of any one of claims 50-58, wherein said disease is a haploinsufficiency disease.
  • 60. The method of claim 59, wherein said haploinsufficiency disease is selected from the group consisting of early infantile epileptic encephalopathy type 2, childhood onset epileptic encephalopathy, 1p36 deletion syndrome, Rett syndrome, mental retardation autosomal dominant 23, Mowat-Wilson syndrome, cerebellar ataxia, Smith-Magenis syndrome, or neurofibromatosis (e.g., type 1).
  • 61. The method of any one of claims 50-60, wherein the fusion protein is administered at a therapeutically effective dose.
  • 62. The method of any one of claims 50-61, wherein the fusion protein is administered systematically or locally.
  • 63. The method of any one of claims 50-62, wherein the fusion protein is administered intravenously, subcutaneously, or intramuscularly.
  • 64. The fusion protein of any one of claims 1-40, the polynucleotide of claim 41, the DNA of claim 42, the RNA of claim 43, the vector of any one of claims 44-45, the viral particle of claim 46, or the pharmaceutical composition of claim 48 for use as a medicament.
  • 65. The fusion protein of any one of claims 1-40, the polynucleotide of claim 41, the DNA of claim 42, the RNA of claim 43, the vector of any one of claims 44-45, the viral particle of claim 46, or the pharmaceutical composition of claim 48 for use in treating or inhibiting a genetic disorder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 63/110,616, filed Nov. 6, 2020, the entire disclosure of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/058276 11/5/2021 WO