Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.
Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
Many packages include solder masses in the form of solder balls, typically about 0.1 mm and about 0.8 mm (5 and 30 mils) in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
Packaged semiconductor chips are often provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board, and another package is mounted on top of the first package. These arrangements can allow a number of different chips to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between packages. Often, this interconnect distance is only slightly larger than the thickness of the chip itself. For interconnection to be achieved within a stack of chip packages, it is necessary to provide structures for mechanical and electrical connection on both sides of each package (except for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the chip is mounted, the pads being connected through the substrate by conductive vias or the like. Solder balls or the like have been used to bridge the gap between the contacts on the top of a lower substrate to the contacts on the bottom of the next higher substrate. The solder balls must be higher than the height of the chip in order to connect the contacts. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129 (“the '129 Publication”), the disclosure of which is incorporated by reference herein in its entirety.
Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging. In some instances, microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts. Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts. Moreover, the configurations of the microcontacts formed by conventional etching processes are limited.
Despite all of the above-described advances in the art, still further improvements in making and testing microelectronic packages would be desirable.
An electrically conductive lead can be formed using a bonding tool. In one embodiment, after bonding the wire to a metal surface and extending a length of the wire beyond the bonding tool, the wire is clamped. Movement of the bonding tool can impart a kink to the wire at a location where the wire is fully separated from any metal element other than the bonding tool. A forming element, e.g., an edge or a blade skirt provided at an exterior surface of the bonding tool can help kink the wire. Tensioning the wire using the bonding tool causes the wire to break and define an end. The lead then extends from the metal surface to the end.
In a method according to one example, an electrically conductive lead of a component can be formed by steps comprising: a) using a bonding tool to bond a wire extending beyond a surface of a bonding tool to a metal surface; b) drawing the bonding tool away from the metal surface while allowing the wire to extend farther from the surface of the bonding tool; c) clamping the wire to limit further extension of the wire beyond the surface of the bonding tool; d) moving the bonding tool while the wire remains clamped such that the bonding tool imparts a kink to the wire at a location where the wire is fully separated from any metal element other than the bonding tool; and e) tensioning the wire using the bonding tool such that the wire breaks at the kink to define an end, wherein the lead comprises the wire extending from the metal surface to the end.
Various components can incorporate the leads formed in accordance with the embodiments of the method provided herein.
Various movements of the bonding tool and shapes of conductive leads can be achieved in accordance with the embodiments of the method provided herein.
Referring to
As used in this disclosure with reference to a component, e.g., an interposer, microelectronic element, circuit panel, substrate, etc., a statement that an electrically conductive element is “at” a surface of a component indicates that, when the component is not assembled with any other element, the electrically conductive element is available for contact with a theoretical point moving in a direction perpendicular to the surface of the component toward the surface of the component from outside the component. Thus, a terminal or other conductive element which is at a surface of a substrate may project from such surface; may be flush with such surface; or may be recessed relative to such surface in a hole or depression in the substrate.
As used herein, a statement that an element is disposed “above a surface” or “overlying a surface” means at a location which is in an orthogonal direction away from the surface. A statement that one element is “above” or “upward from” a reference plane means at a location in an orthogonal direction away from the reference plane. Movement of an element in an “upward” direction means in a direction to a greater height above a reference plane defined by the surface. Conversely, movement of an element in a “downward” direction means in a direction to a lower height above a reference plane defined by the surface. All such statements and meanings of the foregoing terms are not in a gravitational reference, but rather in the frame of reference defined by the element itself.
As seen in
As further seen in
In another example, as seen in
In other variations, one or more of the components seen in
Turning now to
When bonding the wire, a ball bond 114 may be formed at an end of the wire that is joined to the metal surface 112, which may result from applying energy to a portion of the wire exposed beyond surface 122 as the bonding tool surface 122 is moved or positioned adjacent to the metal surface 112. After applying energy to form the bond to the metal surface 112, the bonding tool draws away from the metal surface 112. Referring to
At this stage, the shape of the wire 115 and the position of the bonding tool 104 relative to the metal surface 112 can be as shown in
Referring again to
In one example, the bonding tool can be moved along path segment in a lateral direction other than the lateral direction of travel along the previous path segment 130. Movement along path segment 150 may also be in a downward direction towards the reference plane 108 defined by the metal surface 112. The path may include any combination of movements in the x-, y-, or z-directions relative to the reference plane. The movements may be a series of straight lines or one or more curves. In examples, some or part of the movements may comprise motion of the surface 122 of the bonding tool in a loop or motion in a spiral. Moreover, the tool and/or the wire may be rotated or twisted during the process to further aid in forming the kink or shaping any portion of the wire.
In one example, the bonding tool may impart a kink 116 to a location of the wire 115 proximate a surface 122 of the tool. As further explained below, the kink manifests as a locally weakened location of the wire where tension applied to the wire in a longitudinal direction of the wire can cause the wire to break at the weakened location. The kink may coincide with a local reduction in the diameter or width of the wire in at least one direction.
As seen in
In a particular example, when the wire is joined to the metal surface 112 by a ball bond 114, and when forming the kink, the wire can be moved to within 100 microns of a surface of the ball bond 114 that bonds the wire 115 to the metal surface 112, without the wire contacting the ball bond 114. In a further example, when forming the kink, the wire can be moved to within 20 microns of a surface of the ball bond 114 that bonds the wire 115 to the metal surface 112, without the wire contacting the ball bond 114.
In a particular example, the bonding tool can be moved in such way that the surface 122 of the bonding tool, or a portion of the wire 115 projecting below that surface 122, or both the surface 122 and the wire 115 underlying that surface 122, is at a height from the component surface 111 that is lower than a thickness dimension “t” of a ball bond that joins an end of the wire to the metal surface 112.
After forming the kink, the bonding tool then is moved in a way that tensions the wire in a longitudinal direction of the wire. For example, as seen in
After forming the lead, the lead may be plated with an electrically conductive barrier material to reduce or avoid diffusion between the metal of which the lead is formed and a bond metal, e.g., solder, or gold which may be used in further bonding the lead to another element or other component. In one example, the conductive barrier can be palladium. In other examples, without limitation, the barrier metal can include one or more of nickel, tungsten, titanium, phosphorus, cobalt, and conductive compounds of the same.
Referring to
In a particular embodiment, the forming element 334 can include an edge 338 against which the wire is forced during the movement of the bonding tool. As seen in
The forming element 334 can be applied to the exterior surface 332 of a bonding tool to thereby form a part of the bonding tool 104 as used in practicing a method as described herein. For example, a forming element 334 having an annular shape can be provided at an exterior surface 332 of the bonding tool, and can be attached or fitted thereon. In one example, the forming element can be a “blade skirt” which is fitted onto the exterior surface 332. In another example, the forming element may be an integrally formed portion of the exterior surface 332.
In particular examples, ends of the leads formed in this manner can have shapes such as those shown in
Referring again to
In another example, a plurality of leads may be formed on a common metal surface such as shown in
Referring to
Thereafter, as further shown in
The microelectronic packages and microelectronic assemblies described above with reference to
In the exemplary system 1100 shown, the system can include a circuit panel, motherboard, or riser panel 1102 such as a flexible printed circuit board, and the circuit panel can include numerous conductors 1104, of which only one is depicted in
In a particular embodiment, the system 1100 can also include a processor such as the semiconductor chip 1108, such that each module or component 1106 can be configured to transfer a number N of data bits in parallel in a clock cycle, and the processor can be configured to transfer a number M of data bits in parallel in a clock cycle, M being greater than or equal to N. In the example depicted in
Modules or components 1106 and components 1108 and 1110 can be mounted in a common housing 1101, schematically depicted in broken lines, and can be electrically interconnected with one another as necessary to form the desired circuit. The housing 1101 is depicted as a portable housing of the type usable, for example, in a smartphone, tablet computer, or cellular telephone, and screen 1110 can be exposed at the surface of the housing. In embodiments where a structure 1106 includes a light-sensitive element such as an imaging chip, a lens 1111 or other optical device also can be provided for routing light to the structure. Again, the simplified system shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.
Number | Name | Date | Kind |
---|---|---|---|
3289452 | Koellner | Dec 1966 | A |
3358897 | Christensen | Dec 1967 | A |
3623649 | Keisling | Nov 1971 | A |
3795037 | Luttmer | Mar 1974 | A |
3900153 | Beerwerth et al. | Aug 1975 | A |
4327860 | Kirshenboin et al. | May 1982 | A |
4415115 | James | Nov 1983 | A |
4422568 | Elles et al. | Dec 1983 | A |
4437604 | Razon et al. | Mar 1984 | A |
4604644 | Beckham et al. | Aug 1986 | A |
4695870 | Patraw | Sep 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4771930 | Gillotti et al. | Sep 1988 | A |
4793814 | Zifcak et al. | Dec 1988 | A |
4804132 | DiFrancesco | Feb 1989 | A |
4902600 | Tamagawa et al. | Feb 1990 | A |
4924353 | Patraw | May 1990 | A |
4975079 | Beaman et al. | Dec 1990 | A |
4976392 | Smith et al. | Dec 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4998885 | Beaman | Mar 1991 | A |
4999472 | Neinast et al. | Mar 1991 | A |
5014111 | Tsuda et al. | May 1991 | A |
5067382 | Zimmerman et al. | Nov 1991 | A |
5083697 | Difrancesco | Jan 1992 | A |
5095187 | Gliga | Mar 1992 | A |
5138438 | Masayuki et al. | Aug 1992 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5186381 | Kim | Feb 1993 | A |
5189505 | Bartelink | Feb 1993 | A |
5196726 | Nishiguchi et al. | Mar 1993 | A |
5214308 | Nishiguchi et al. | May 1993 | A |
5220489 | Barreto et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5340771 | Rostoker | Aug 1994 | A |
5364004 | Davidson | Nov 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5397997 | Tuckerman et al. | Mar 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5455390 | DiStefano et al. | Oct 1995 | A |
5494667 | Uchida et al. | Feb 1996 | A |
5495667 | Farnworth et al. | Mar 1996 | A |
5518964 | DiStefano et al. | May 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5536909 | DiStefano et al. | Jul 1996 | A |
5541567 | Fogel et al. | Jul 1996 | A |
5559054 | Adamjee | Sep 1996 | A |
5571428 | Nishimura et al. | Nov 1996 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5615824 | Fjelstad et al. | Apr 1997 | A |
5635846 | Beaman et al. | Jun 1997 | A |
5656550 | Tsuji et al. | Aug 1997 | A |
5659952 | Kovac et al. | Aug 1997 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5686353 | Yagi et al. | Nov 1997 | A |
5688716 | DiStefano et al. | Nov 1997 | A |
5715989 | Kee | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5731709 | Pastore et al. | Mar 1998 | A |
5736780 | Murayama | Apr 1998 | A |
5787581 | DiStefano et al. | Aug 1998 | A |
5801441 | DiStefano et al. | Sep 1998 | A |
5802699 | Fjelstad et al. | Sep 1998 | A |
5811982 | Beaman et al. | Sep 1998 | A |
5821763 | Beaman et al. | Oct 1998 | A |
5831836 | Long et al. | Nov 1998 | A |
5854507 | Miremadi et al. | Dec 1998 | A |
5868300 | Babayan | Feb 1999 | A |
5898991 | Fogel et al. | May 1999 | A |
5912505 | Itoh et al. | Jun 1999 | A |
5953624 | Bando et al. | Sep 1999 | A |
5971253 | Gilleo et al. | Oct 1999 | A |
5973391 | Bischoff et al. | Oct 1999 | A |
5977618 | DiStefano et al. | Nov 1999 | A |
5980270 | Fjelstad et al. | Nov 1999 | A |
5989936 | Smith et al. | Nov 1999 | A |
5994152 | Khandros et al. | Nov 1999 | A |
6002168 | Bellaar et al. | Dec 1999 | A |
6032359 | Carroll | Mar 2000 | A |
6038136 | Weber | Mar 2000 | A |
6052287 | Palmer et al. | Apr 2000 | A |
6054337 | Solberg | Apr 2000 | A |
6054756 | DiStefano et al. | Apr 2000 | A |
6077380 | Hayes et al. | Jun 2000 | A |
6117694 | Smith et al. | Sep 2000 | A |
6121676 | Solberg | Sep 2000 | A |
6124546 | Hayward et al. | Sep 2000 | A |
6133072 | Fjelstad | Oct 2000 | A |
6157080 | Tamaki et al. | Dec 2000 | A |
6158647 | Chapman et al. | Dec 2000 | A |
6164523 | Fauty et al. | Dec 2000 | A |
6177636 | Fjelstad | Jan 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6194291 | DiStefano et al. | Feb 2001 | B1 |
6202297 | Faraci et al. | Mar 2001 | B1 |
6206273 | Beaman et al. | Mar 2001 | B1 |
6208024 | DiStefano | Mar 2001 | B1 |
6211461 | Park et al. | Apr 2001 | B1 |
6211572 | Fjelstad et al. | Apr 2001 | B1 |
6215670 | Khandros | Apr 2001 | B1 |
6218728 | Kimura | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6258625 | Brofman et al. | Jul 2001 | B1 |
6260264 | Chen et al. | Jul 2001 | B1 |
6262482 | Shiraishi et al. | Jul 2001 | B1 |
6295729 | Beaman et al. | Oct 2001 | B1 |
6300780 | Beaman et al. | Oct 2001 | B1 |
6303997 | Lee et al. | Oct 2001 | B1 |
6313528 | Solberg | Nov 2001 | B1 |
6316838 | Ozawa et al. | Nov 2001 | B1 |
6332270 | Beaman et al. | Dec 2001 | B2 |
6334247 | Beaman et al. | Jan 2002 | B1 |
6358627 | Benenati et al. | Mar 2002 | B2 |
6362520 | DiStefano | Mar 2002 | B2 |
6362525 | Rahim | Mar 2002 | B1 |
6388333 | Taniguchi et al. | May 2002 | B1 |
6407448 | Chun | Jun 2002 | B2 |
6439450 | Chapman et al. | Aug 2002 | B1 |
6458411 | Goossen et al. | Oct 2002 | B1 |
6476503 | Imamura et al. | Nov 2002 | B1 |
6476583 | McAndrews | Nov 2002 | B2 |
6495914 | Sekine et al. | Dec 2002 | B1 |
6507104 | Ho et al. | Jan 2003 | B2 |
6509639 | Lin | Jan 2003 | B1 |
6514847 | Ohsawa et al. | Feb 2003 | B1 |
6515355 | Jiang et al. | Feb 2003 | B1 |
6522018 | Tay et al. | Feb 2003 | B1 |
6526655 | Beaman et al. | Mar 2003 | B2 |
6531784 | Shim et al. | Mar 2003 | B1 |
6545228 | Hashimoto | Apr 2003 | B2 |
6550666 | Chew et al. | Apr 2003 | B2 |
6555918 | Masuda et al. | Apr 2003 | B2 |
6560117 | Moon | May 2003 | B2 |
6573458 | Matsubara et al. | Jun 2003 | B1 |
6578754 | Tung | Jun 2003 | B1 |
6581283 | Sugiura et al. | Jun 2003 | B2 |
6624653 | Cram | Sep 2003 | B1 |
6630730 | Grigg | Oct 2003 | B2 |
6647310 | Yi et al. | Nov 2003 | B1 |
6684007 | Yoshimura et al. | Jan 2004 | B2 |
6687988 | Sugiura et al. | Feb 2004 | B1 |
6699730 | Kim et al. | Mar 2004 | B2 |
6708403 | Beaman et al. | Mar 2004 | B2 |
6730544 | Yang | May 2004 | B1 |
6734542 | Nakatani et al. | May 2004 | B2 |
6746894 | Fee et al. | Jun 2004 | B2 |
6762078 | Shin et al. | Jul 2004 | B2 |
6765287 | Lin | Jul 2004 | B1 |
6774467 | Horiuchi et al. | Aug 2004 | B2 |
6774473 | Shen | Aug 2004 | B1 |
6774494 | Arakawa | Aug 2004 | B2 |
6777787 | Shibata | Aug 2004 | B2 |
6790757 | Chittipeddi et al. | Sep 2004 | B1 |
6815257 | Yoon et al. | Nov 2004 | B2 |
6828668 | Smith et al. | Dec 2004 | B2 |
6844619 | Tago | Jan 2005 | B2 |
6856235 | Fjelstad | Feb 2005 | B2 |
6867499 | Tabrizi | Mar 2005 | B1 |
6900530 | Tsai | May 2005 | B1 |
6902869 | Appelt et al. | Jun 2005 | B2 |
6930256 | Huemoeller et al. | Aug 2005 | B1 |
6933608 | Fujisawa | Aug 2005 | B2 |
6946380 | Takahashi | Sep 2005 | B2 |
6962282 | Manansala | Nov 2005 | B2 |
6962864 | Jeng et al. | Nov 2005 | B1 |
6979599 | Silverbrook | Dec 2005 | B2 |
6987032 | Fan et al. | Jan 2006 | B1 |
7009297 | Chiang et al. | Mar 2006 | B1 |
7045884 | Standing | May 2006 | B2 |
7051915 | Mutaguchi | May 2006 | B2 |
7061079 | Weng et al. | Jun 2006 | B2 |
7067911 | Lin et al. | Jun 2006 | B1 |
7119427 | Kim | Oct 2006 | B2 |
7170185 | Hogerton et al. | Jan 2007 | B1 |
7176506 | Beroz et al. | Feb 2007 | B2 |
7176559 | Ho et al. | Feb 2007 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7190061 | Lee | Mar 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7225538 | Eldridge et al. | Jun 2007 | B2 |
7227095 | Roberts et al. | Jun 2007 | B2 |
7229906 | Babinetz et al. | Jun 2007 | B2 |
7233057 | Hussa | Jun 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7262124 | Fujisawa | Aug 2007 | B2 |
7294928 | Bang et al. | Nov 2007 | B2 |
7323767 | James et al. | Jan 2008 | B2 |
7365416 | Kawabata et al. | Apr 2008 | B2 |
7371676 | Hembree | May 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7391105 | Yeom | Jun 2008 | B2 |
7391121 | Otremba | Jun 2008 | B2 |
7416107 | Chapman et al. | Aug 2008 | B2 |
7456091 | Kuraya et al. | Nov 2008 | B2 |
7476608 | Craig et al. | Jan 2009 | B2 |
7476962 | Kim | Jan 2009 | B2 |
7485562 | Chua et al. | Feb 2009 | B2 |
7495342 | Beaman et al. | Feb 2009 | B2 |
7517733 | Camacho et al. | Apr 2009 | B2 |
7538565 | Beaman et al. | May 2009 | B1 |
7550836 | Chou et al. | Jun 2009 | B2 |
7576439 | Craig et al. | Aug 2009 | B2 |
7578422 | Lange et al. | Aug 2009 | B2 |
7621436 | Mii et al. | Nov 2009 | B2 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7642133 | Wu et al. | Jan 2010 | B2 |
7646102 | Boon | Jan 2010 | B2 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7671459 | Corisis et al. | Mar 2010 | B2 |
7675152 | Gerber et al. | Mar 2010 | B2 |
7677429 | Chapman et al. | Mar 2010 | B2 |
7682962 | Hembree | Mar 2010 | B2 |
7728443 | Hembree | Jun 2010 | B2 |
7737545 | Fjelstad et al. | Jun 2010 | B2 |
7750483 | Lin et al. | Jul 2010 | B1 |
7757385 | Hembree | Jul 2010 | B2 |
7777351 | Berry et al. | Aug 2010 | B1 |
7780064 | Wong et al. | Aug 2010 | B2 |
7795717 | Goller | Sep 2010 | B2 |
7808093 | Kagaya et al. | Oct 2010 | B2 |
7842541 | Rusli et al. | Nov 2010 | B1 |
7850087 | Hwang et al. | Dec 2010 | B2 |
7855462 | Boon et al. | Dec 2010 | B2 |
7880290 | Park | Feb 2011 | B2 |
7892889 | Howard et al. | Feb 2011 | B2 |
7919846 | Hembree | Apr 2011 | B2 |
7932170 | Huemoeller et al. | Apr 2011 | B1 |
7934313 | Lin et al. | May 2011 | B1 |
7934634 | Mii et al. | May 2011 | B2 |
7964956 | Bet-Shliemoun | Jun 2011 | B1 |
7967062 | Campbell et al. | Jun 2011 | B2 |
7977597 | Roberts et al. | Jul 2011 | B2 |
8012797 | Shen et al. | Sep 2011 | B2 |
8020290 | Sheats | Sep 2011 | B2 |
8039970 | Yamamori et al. | Oct 2011 | B2 |
8071470 | Khor et al. | Dec 2011 | B2 |
8084867 | Tang et al. | Dec 2011 | B2 |
8092734 | Jiang et al. | Jan 2012 | B2 |
8093697 | Haba et al. | Jan 2012 | B2 |
8213184 | Knickerbocker | Jul 2012 | B2 |
8217502 | Ko | Jul 2012 | B2 |
8232141 | Choi et al. | Jul 2012 | B2 |
8264091 | Cho et al. | Sep 2012 | B2 |
8304900 | Jang et al. | Nov 2012 | B2 |
8372741 | Co et al. | Feb 2013 | B1 |
8772152 | Co et al. | Jul 2014 | B2 |
8940630 | Damberg et al. | Jan 2015 | B2 |
20010002607 | Sugiura et al. | Jun 2001 | A1 |
20010007370 | Distefano | Jul 2001 | A1 |
20010020545 | Eldridge et al. | Sep 2001 | A1 |
20010021541 | Akram et al. | Sep 2001 | A1 |
20010023534 | Tamai et al. | Sep 2001 | A1 |
20010028114 | Hosomi | Oct 2001 | A1 |
20020014004 | Beaman et al. | Feb 2002 | A1 |
20020023942 | Terakado et al. | Feb 2002 | A1 |
20020066952 | Taniguchi et al. | Jun 2002 | A1 |
20020117330 | Eldridge et al. | Aug 2002 | A1 |
20020125571 | Corisis et al. | Sep 2002 | A1 |
20020153602 | Tay et al. | Oct 2002 | A1 |
20020164838 | Moon et al. | Nov 2002 | A1 |
20020185735 | Sakurai et al. | Dec 2002 | A1 |
20030006494 | Lee et al. | Jan 2003 | A1 |
20030048108 | Beaman et al. | Mar 2003 | A1 |
20030057544 | Nathan et al. | Mar 2003 | A1 |
20030094700 | Aiba et al. | May 2003 | A1 |
20030106213 | Beaman et al. | Jun 2003 | A1 |
20030124767 | Lee et al. | Jul 2003 | A1 |
20030162378 | Mikami | Aug 2003 | A1 |
20030164540 | Lee et al. | Sep 2003 | A1 |
20040026480 | Imai et al. | Feb 2004 | A1 |
20040036164 | Koike et al. | Feb 2004 | A1 |
20040038447 | Corisis et al. | Feb 2004 | A1 |
20040075164 | Pu et al. | Apr 2004 | A1 |
20040090756 | Ho et al. | May 2004 | A1 |
20040110319 | Fukutomi et al. | Jun 2004 | A1 |
20040119152 | Karnezos et al. | Jun 2004 | A1 |
20040124518 | Karnezos | Jul 2004 | A1 |
20040148773 | Beaman et al. | Aug 2004 | A1 |
20040152292 | Babinetz et al. | Aug 2004 | A1 |
20040160751 | Inagaki et al. | Aug 2004 | A1 |
20040164128 | Mii | Aug 2004 | A1 |
20040188499 | Nosaka | Sep 2004 | A1 |
20040262734 | Yoo | Dec 2004 | A1 |
20050035440 | Mohammed | Feb 2005 | A1 |
20050062492 | Beaman et al. | Mar 2005 | A1 |
20050082664 | Funaba et al. | Apr 2005 | A1 |
20050092815 | Mii | May 2005 | A1 |
20050095835 | Humpston et al. | May 2005 | A1 |
20050116326 | Haba et al. | Jun 2005 | A1 |
20050121764 | Mallik et al. | Jun 2005 | A1 |
20050133916 | Karnezos | Jun 2005 | A1 |
20050133932 | Pohl et al. | Jun 2005 | A1 |
20050140265 | Hirakata | Jun 2005 | A1 |
20050151235 | Yokoi | Jul 2005 | A1 |
20050151238 | Yamunan | Jul 2005 | A1 |
20050173805 | Damberg et al. | Aug 2005 | A1 |
20050173807 | Zhu et al. | Aug 2005 | A1 |
20050181544 | Haba et al. | Aug 2005 | A1 |
20050181655 | Haba et al. | Aug 2005 | A1 |
20050212109 | Cherukuri et al. | Sep 2005 | A1 |
20050253213 | Jiang et al. | Nov 2005 | A1 |
20050266672 | Jeng et al. | Dec 2005 | A1 |
20050285246 | Haba et al. | Dec 2005 | A1 |
20060118641 | Hwang et al. | Jun 2006 | A1 |
20060166397 | Lau et al. | Jul 2006 | A1 |
20060175383 | Mii et al. | Aug 2006 | A1 |
20060197220 | Beer | Sep 2006 | A1 |
20060216863 | Arakawa | Sep 2006 | A1 |
20060255449 | Lee et al. | Nov 2006 | A1 |
20060278682 | Lange et al. | Dec 2006 | A1 |
20070015353 | Craig et al. | Jan 2007 | A1 |
20070148822 | Haba et al. | Jun 2007 | A1 |
20070181989 | Corisis et al. | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070231959 | Seidel et al. | Oct 2007 | A1 |
20070235850 | Gerber et al. | Oct 2007 | A1 |
20070246513 | Tei et al. | Oct 2007 | A1 |
20070271781 | Beaman et al. | Nov 2007 | A9 |
20070290325 | Wu et al. | Dec 2007 | A1 |
20080017968 | Choi et al. | Jan 2008 | A1 |
20080032519 | Murata | Feb 2008 | A1 |
20080047741 | Beaman et al. | Feb 2008 | A1 |
20080048309 | Corisis et al. | Feb 2008 | A1 |
20080048690 | Beaman et al. | Feb 2008 | A1 |
20080048691 | Beaman et al. | Feb 2008 | A1 |
20080048697 | Beaman et al. | Feb 2008 | A1 |
20080054434 | Kim | Mar 2008 | A1 |
20080073769 | Wu et al. | Mar 2008 | A1 |
20080073771 | Seo et al. | Mar 2008 | A1 |
20080076208 | Wu et al. | Mar 2008 | A1 |
20080100316 | Beaman et al. | May 2008 | A1 |
20080100317 | Beaman et al. | May 2008 | A1 |
20080100318 | Beaman et al. | May 2008 | A1 |
20080100324 | Beaman et al. | May 2008 | A1 |
20080106281 | Beaman et al. | May 2008 | A1 |
20080106282 | Beaman et al. | May 2008 | A1 |
20080106283 | Beaman et al. | May 2008 | A1 |
20080106284 | Beaman et al. | May 2008 | A1 |
20080106285 | Beaman et al. | May 2008 | A1 |
20080106291 | Beaman et al. | May 2008 | A1 |
20080106872 | Beaman et al. | May 2008 | A1 |
20080111568 | Beaman et al. | May 2008 | A1 |
20080111569 | Beaman et al. | May 2008 | A1 |
20080111570 | Beaman et al. | May 2008 | A1 |
20080112144 | Beaman et al. | May 2008 | A1 |
20080112145 | Beaman et al. | May 2008 | A1 |
20080112146 | Beaman et al. | May 2008 | A1 |
20080112147 | Beaman et al. | May 2008 | A1 |
20080112148 | Beaman et al. | May 2008 | A1 |
20080112149 | Beaman et al. | May 2008 | A1 |
20080116912 | Beaman et al. | May 2008 | A1 |
20080116913 | Beaman et al. | May 2008 | A1 |
20080116914 | Beaman et al. | May 2008 | A1 |
20080116915 | Beaman et al. | May 2008 | A1 |
20080116916 | Beaman et al. | May 2008 | A1 |
20080117611 | Beaman et al. | May 2008 | A1 |
20080117612 | Beaman et al. | May 2008 | A1 |
20080117613 | Beaman et al. | May 2008 | A1 |
20080121879 | Beaman et al. | May 2008 | A1 |
20080123310 | Beaman et al. | May 2008 | A1 |
20080129319 | Beaman et al. | Jun 2008 | A1 |
20080129320 | Beaman et al. | Jun 2008 | A1 |
20080132094 | Beaman et al. | Jun 2008 | A1 |
20080156518 | Honer et al. | Jul 2008 | A1 |
20080164595 | Wu et al. | Jul 2008 | A1 |
20080197510 | Mii et al. | Aug 2008 | A1 |
20080211084 | Chow et al. | Sep 2008 | A1 |
20080284045 | Gerber et al. | Nov 2008 | A1 |
20080303153 | Oi et al. | Dec 2008 | A1 |
20080308609 | Felber | Dec 2008 | A1 |
20080315385 | Gerber et al. | Dec 2008 | A1 |
20090014876 | Youn et al. | Jan 2009 | A1 |
20090026609 | Masuda | Jan 2009 | A1 |
20090045497 | Kagaya et al. | Feb 2009 | A1 |
20090050994 | Ishihara et al. | Feb 2009 | A1 |
20090085185 | Byun et al. | Apr 2009 | A1 |
20090085205 | Sugizaki | Apr 2009 | A1 |
20090091009 | Corisis et al. | Apr 2009 | A1 |
20090102063 | Lee et al. | Apr 2009 | A1 |
20090104736 | Haba et al. | Apr 2009 | A1 |
20090127686 | Yang et al. | May 2009 | A1 |
20090128176 | Beaman et al. | May 2009 | A1 |
20090160065 | Haba et al. | Jun 2009 | A1 |
20090189288 | Beaman et al. | Jul 2009 | A1 |
20090206461 | Yoon | Aug 2009 | A1 |
20090212442 | Chow et al. | Aug 2009 | A1 |
20090236700 | Moriya | Sep 2009 | A1 |
20090236753 | Moon et al. | Sep 2009 | A1 |
20090261466 | Pagaila et al. | Oct 2009 | A1 |
20090315579 | Beaman et al. | Dec 2009 | A1 |
20100007009 | Chang et al. | Jan 2010 | A1 |
20100007026 | Shikano | Jan 2010 | A1 |
20100025835 | Oh et al. | Feb 2010 | A1 |
20100052135 | Shim et al. | Mar 2010 | A1 |
20100065963 | Eldridge et al. | Mar 2010 | A1 |
20100078789 | Choi et al. | Apr 2010 | A1 |
20100078795 | Dekker et al. | Apr 2010 | A1 |
20100087035 | Yoo et al. | Apr 2010 | A1 |
20100090330 | Nakazato | Apr 2010 | A1 |
20100109138 | Cho | May 2010 | A1 |
20100117212 | Corisis et al. | May 2010 | A1 |
20100133675 | Yu et al. | Jun 2010 | A1 |
20100224975 | Shin et al. | Sep 2010 | A1 |
20100232129 | Haba et al. | Sep 2010 | A1 |
20100237471 | Pagaila et al. | Sep 2010 | A1 |
20100314748 | Hsu et al. | Dec 2010 | A1 |
20100327419 | Muthukumar et al. | Dec 2010 | A1 |
20110068453 | Cho et al. | Mar 2011 | A1 |
20110115081 | Osumi | May 2011 | A1 |
20110140259 | Cho et al. | Jun 2011 | A1 |
20110147911 | Kohl et al. | Jun 2011 | A1 |
20110241193 | Ding et al. | Oct 2011 | A1 |
20110272449 | Pirkle et al. | Nov 2011 | A1 |
20120043655 | Khor et al. | Feb 2012 | A1 |
20120086130 | Sasaki et al. | Apr 2012 | A1 |
20120119380 | Haba | May 2012 | A1 |
Number | Date | Country |
---|---|---|
102324418 | Jan 2012 | CN |
920058 | Jun 1999 | EP |
2234158 | Sep 2010 | EP |
61125062 | Jun 1986 | JP |
62-226307 | Oct 1987 | JP |
1012769 | Jan 1989 | JP |
64-71162 | Mar 1989 | JP |
06268015 | Sep 1994 | JP |
07-122787 | May 1995 | JP |
11-074295 | Mar 1999 | JP |
11135663 | May 1999 | JP |
11251350 | Sep 1999 | JP |
2001196407 | Jul 2001 | JP |
2002289769 | Oct 2002 | JP |
2003122611 | Apr 2003 | JP |
2003-174124 | Jun 2003 | JP |
2003307897 | Oct 2003 | JP |
2004281514 | Oct 2004 | JP |
2004327856 | Nov 2004 | JP |
2004343030 | Dec 2004 | JP |
2005011874 | Jan 2005 | JP |
2003377641 | Jun 2005 | JP |
2005142378 | Jun 2005 | JP |
2003426392 | Jul 2005 | JP |
2005183880 | Jul 2005 | JP |
2005203497 | Jul 2005 | JP |
2005302765 | Oct 2005 | JP |
2007123595 | May 2007 | JP |
2007287922 | Nov 2007 | JP |
2008251794 | Oct 2008 | JP |
2009004650 | Jan 2009 | JP |
2009260132 | Nov 2009 | JP |
2010103129 | May 2010 | JP |
2010206007 | Sep 2010 | JP |
100265563 | Sep 2000 | KR |
2001-0094894 | Nov 2001 | KR |
20020058216 | Jul 2002 | KR |
10-0393102 | Jul 2003 | KR |
20060064291 | Jun 2006 | KR |
20080020069 | Mar 2008 | KR |
100865125 | Oct 2008 | KR |
20080094251 | Oct 2008 | KR |
100886100 | Feb 2009 | KR |
20090033605 | Apr 2009 | KR |
20090123680 | Dec 2009 | KR |
20100033012 | Mar 2010 | KR |
20100062315 | Jun 2010 | KR |
101011863 | Jan 2011 | KR |
0213256 | Feb 2002 | WO |
2006050691 | May 2006 | WO |
2008065896 | Jun 2008 | WO |
Entry |
---|
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from internet. <http://www.eetasia.com/ART—8800428222—480300—nt—dec52276.HTM>, 4 pages. |
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages. |
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003. |
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013. |
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012. |
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012. |
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011. |
International Search Report, PCT/US2005/039716, Apr. 5, 2006. |
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013. |
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010. |
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008). |
Kim, et al., Application of Through Mold Via (TMV) as PoP base package, ECTC, 2008. |
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011. |
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011. |
Meiser S, “Klein und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992, pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.). |
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking,” IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003. |
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6. |
Office Action from U.S. Appl. No. 12/769,930 mailed May 5, 2011. |
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013. |
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013. |
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012. |
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages. |
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011. |
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, STATS ChipPAC Ltd. |
International Search Report and Written Opinion for Application No. PCT/US20141064960 dated Mar. 17, 2015. |
Number | Date | Country | |
---|---|---|---|
20150129646 A1 | May 2015 | US |