Oligonucleotides for SARS-CoV-2 modulation

Information

  • Patent Grant
  • 12077758
  • Patent Number
    12,077,758
  • Date Filed
    Friday, May 28, 2021
    3 years ago
  • Date Issued
    Tuesday, September 3, 2024
    4 months ago
Abstract
This disclosure relates to novel SARS-CoV-2 targeting sequences. Novel SARS-CoV-2 targeting oligonucleotides for the treatment of SARS-CoV-2 infection are also provided.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Sep. 8, 2021, is named 718622_UM9-258_ST25.txt and is 520,824 bytes in size.


FIELD OF THE INVENTION

This disclosure relates to novel SARS-CoV-2 targeting sequences, novel branched oligonucleotides, and novel methods for treating and preventing SARS-CoV-2-related infection.


BACKGROUND

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a highly infectious virus that causes severe respiratory illness. The SARS-CoV-2 genome encodes for four structural proteins, S (spike), E (envelope), M (membrane) and N (nucleocapsid). The spike protein plays a critical role in viral entry into a host cell. SARS-CoV-2 is the causative agent of the COVID-19 epidemic that has infected and kills millions of people worldwide.


RNAi-based therapeutics are revolutionizing human medicine. Currently, a single subcutaneous injection of chemically modified oligonucleotide compounds supports up to 12-months of target silencing in the liver with a clean adverse events profile. The ability to develop RNAi-based drugs is dependent on efficient delivery to the targeted tissues. Currently, the liver is the only tissue validated for clinical delivery.


With the current clinical approaches, it is not possible to halt or cure SARS-CoV-2 infection. The highly infectious virus is spreading throughout the world, leaving a path of destruction and death. Survivors of a severe infection with SARS-CoV-2 often present with long lasting lung injury and scarring.


There is a clear need for a therapeutic that can effectively neutralize SARS-CoV-2 particles from causing infection, and especially to selectively do so in the lung. This could be accomplished using optimized RNAi-based therapeutics, which is addressed in the present application.


SUMMARY

In one aspect, the disclosure provides an RNA molecule having a length of from about 8 nucleotides to about 80 nucleotides; and a nucleic acid sequence that is substantially complementary to a SARS-CoV-2 nucleic acid sequence of SEQ ID NO: 1. In certain embodiments, the RNA molecule is from 8 nucleotides to 80 nucleotides in length (e.g., 8 nucleotides, 9 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleotides, 44 nucleotides, 45 nucleotides, 46 nucleotides, 47 nucleotides, 48 nucleotides, 49 nucleotides, 50 nucleotides, 51 nucleotides, 52 nucleotides, 53 nucleotides, 54 nucleotides, 55 nucleotides, 56 nucleotides, 57 nucleotides, 58 nucleotides, 59 nucleotides, 60 nucleotides, 61 nucleotides, 62 nucleotides, 63 nucleotides, 64 nucleotides, 65 nucleotides, 66 nucleotides, 67 nucleotides, 68 nucleotides, 69 nucleotides, 70 nucleotides, 71 nucleotides, 72 nucleotides, 73 nucleotides, 74 nucleotides, 75 nucleotides, 76 nucleotides, 77 nucleotides, 78 nucleotides, 79 nucleotides, or 80 nucleotides in length).


In certain embodiments, the RNA molecule is from 10 to 50 nucleotides in length (e.g., 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, 40 nucleotides, 41 nucleotides, 42 nucleotides, 43 nucleotides, 44 nucleotides, 45 nucleotides, 46 nucleotides, 47 nucleotides, 48 nucleotides, 49 nucleotides, or 50 nucleotides in length).


In certain embodiments, the RNA molecule comprises about 15 nucleotides to about 25 nucleotides in length. In certain embodiments, the RNA molecule is from 15 to 25 nucleotides in length (e.g., 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, or 25 nucleotides in length).


In one aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of SEQ ID NO: 1.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 2-10.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 20-nucleotide targets in Table 6A.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions of 7a_27751, N_29293, Orf1a_2290, and Orf1ab_18571 in Table 6A.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 20-nucleotide targets of 7a_27751, N_29293, Orf1a_2290, and Orf1ab_18571 in Table 6A.


In certain embodiments, the oligonucleotide compound comprises complementarity to at least 10, 11, 12 or 13 contiguous nucleotides of the SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10. In certain embodiments, the oligonucleotide compound comprises no more than 3 mismatches with the SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10. In certain embodiments, the oligonucleotide compound comprises full complementarity to the SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10.


In another aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to an Angiotensin I Converting Enzyme 2 (ACE2) nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 1 ID or Table 12C.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to an ACE2 nucleic acid sequence of any one of the 45-nucleotide target gene regions of ACE2_119, ACE2_336, ACE2_349, ACE_1034, ACE_1775, ACE_784, ACE_908, and ACE_1071, as recited in Table 12C.


In another aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to a FURIN nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 1 IC or Table 12D.


In certain embodiments, the oligonucleotide compound comprises a sequence substantially complementary to a FURIN nucleic acid sequence of any one of the 45-nucleotide target gene regions of FURIN_443, FURIN_1959, FURIN_2711, FURIN_2712, FURIN_3524, and FURIN_3526, as recited in Table 12D.


In one aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to an Interleukin 6 (IL-6) nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 11B or Table 12B.


In one aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to an Interleukin 6 Receptor (IL-6R) nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 12E.


In one aspect, the disclosure provides an oligonucleotide compound comprising 15 to 35 bases in length, comprising a sequence substantially complementary to a Transmembrane Serine Protease 2 (TMPRSS2) nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 11A or Table 12A.


In certain embodiments, the oligonucleotide compound comprises one or more naturally occurring nucleotides.


In certain embodiments, the oligonucleotide compound comprises one or more modified nucleotide.


In certain embodiments, the one or more modified nucleotides each independently comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.


In certain embodiments, each modification of the ribose group is independently selected from the group consisting of 2′-O-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, and a constrained nucleotide.


In certain embodiments, the constrained nucleotide is selected from the group consisting of a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, and any combination thereof.


In certain embodiments, the constrained nucleotide is a locked nucleic acid (LNA), a 2′-(S)-constrained ethyl (S-cEt) nucleotide, and a combination thereof.


In certain embodiments, each modification of the nucleobase group is independently selected from the group consisting of 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, and halogenated aromatic groups.


In certain embodiments, each modification of the phosphate group is independently selected from the group consisting of a phosphorothioate, phosphonoacetate (PACE), thiophosphonoacetate (thioPACE), amide, triazole, phosphonate, and phosphotriester modification.


In certain embodiments, the modification of the phosphate group is phosphorothioate.


In certain embodiments, the oligonucleotide compound comprises 4-16 phosphorothioate modifications. In certain embodiments, the oligonucleotide compound comprises 6-13 phosphorothioate modifications.


In certain embodiments, the oligonucleotide compound comprises at least one modified internucleotide linkage.


In certain embodiments, the oligonucleotide compound comprises at least one modified internucleotide linkage of Formula I:




embedded image



wherein:

    • B is a base pairing moiety;
    • W is selected from the group consisting of O, OCH2, OCH, CH2, and CH;
    • X is selected from the group consisting of halo, hydroxy, and C1-6 alkoxy;
    • Y is selected from the group consisting of O, OH, OR, NH, NH2, S, and SH;
    • Z is selected from the group consisting of O and CH2;
    • R is a protecting group; and
    • custom character is an optional double bond.


In certain embodiments, the oligonucleotide compound comprises at least 80% chemically modified nucleotides. In certain embodiments, the oligonucleotide compound is fully chemically modified.


In certain embodiments, the oligonucleotide compound comprises an antisense oligonucleotide or a double stranded (ds) RNA.


In certain embodiments, the dsRNA comprises an antisense strand and a sense strand. In certain embodiments, the antisense strand comprises about 15 nucleotides to 25 nucleotides in length. In certain embodiments, the sense strand comprises about 15 nucleotides to 25 nucleotides in length. In certain embodiments, the antisense strand is 20 nucleotides in length, 21 nucleotides in length, or 22 nucleotides in length. In certain embodiments, the sense strand is 15 nucleotides in length, 16 nucleotides in length, 18 nucleotides in length, or 20 nucleotides in length.


In certain embodiments, the dsRNA comprises a double-stranded region of 15 base pairs to 20 base pairs. In certain embodiments, the dsRNA comprises a double-stranded region of 15 base pairs, 16 base pairs, 18 base pairs, or 20 base pairs.


In certain embodiments, the dsRNA comprises a blunt-end. In certain embodiments, the dsRNA comprises at least one single stranded nucleotide overhang. In certain embodiments, the dsRNA comprises about a 2-nucleotide to 5-nucleotide single stranded nucleotide overhang. In certain embodiments, the dsRNA comprises a 2-nucleotide single stranded nucleotide overhang or a 5-nucleotide single stranded nucleotide overhang.


In certain embodiments, the dsRNA comprises at least 70% 2′-O-methyl nucleotide modifications.


In certain embodiments, the antisense strand comprises at least 70% 2′-O-methyl nucleotide modifications. In certain embodiments, the antisense strand comprises about 70% to 90% 2′-O-methyl nucleotide modifications. In certain embodiments, the sense strand comprises at least 65% 2′-O-methyl nucleotide modifications. In certain embodiments, the sense strand comprises 100% 2′-O-methyl nucleotide modifications.


In certain embodiments, the sense strand comprises one or more nucleotide mismatches between the antisense strand and the sense strand. In certain embodiments, the one or more nucleotide mismatches are present at positions 2, 6, and 12 from the 5′ end of sense strand. In certain embodiments, the nucleotide mismatches are present at positions 2, 6, and 12 from the 5′ end of the sense strand.


In certain embodiments, the antisense strand comprises a 5′ phosphate, a 5′-alkyl phosphonate, a 5′ alkylene phosphonate, or a 5′ alkenyl phosphonate. In certain embodiments, the antisense strand comprises a 5′ vinyl phosphonate.


In certain embodiments, the dsRNA comprises an antisense strand and a sense strand, each strand with a 5′ end and a 3′ end, wherein: (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A; (2) the antisense strand comprises alternating 2′-methoxy-ribonucleotides and 2′-fluoro-ribonucleotides; (3) the nucleotides at positions 2 and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides; (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages; (5) a portion of the antisense strand is complementary to a portion of the sense strand; (6) the sense strand comprises alternating 2′-methoxy-ribonucleotides and 2′-fluoro-ribonucleotides; and (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In certain embodiments, the dsRNA comprises an antisense strand and a sense strand, each strand with a 5′ end and a 3′ end, wherein: (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A; (2) the antisense strand comprises at least 70% 2′-O-methyl modifications; (3) the nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand are not a 2′-methoxy-ribonucleotide; (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages; (5) a portion of the antisense strand is complementary to a portion of the sense strand; (6) the sense strand comprises at least 70% 2′-O-methyl modifications; (7) the nucleotides at positions 6, 7, 8 and 10 from the 5′ end of the sense strand are not a 2′-methoxy-ribonucleotide; and (8) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In certain embodiments, the dsRNA further comprises 1 to 5 internucleotide linkages of Formula I. In certain embodiments, the 3′ end of the antisense strand comprises 1 to 5 internucleotide linkages of Formula I. In certain embodiments, the 3′ end of the antisense strand comprises 4 consecutive internucleotide linkages of Formula I.


In certain embodiments, a functional moiety is linked to one or both of the 5′ end and 3′ end of the antisense strand. In certain embodiments, a functional moiety is linked to one or both of the 5′ end and 3′ end of the sense strand. In certain embodiments, a functional moiety is linked to the 3′ end of the sense strand.


In certain embodiments, the functional moiety comprises a hydrophobic moiety. In certain embodiments, the hydrophobic moiety is selected from the group consisting of fatty acids, steroids, secosteroids, lipids, gangliosides, nucleoside analogs, endocannabinoids, vitamins, and a mixture thereof. In certain embodiments, the steroid selected from the group consisting of cholesterol and Lithocholic acid (LCA). In certain embodiments, the fatty acid selected from the group consisting of Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA) and Docosanoic acid (DCA). In certain embodiments, the vitamin is selected from the group consisting of choline, vitamin A, vitamin E, and derivatives or metabolites thereof. In certain embodiments, the vitamin is selected from the group consisting of retinoic acid and alpha-tocopheryl succinate.


In certain embodiments, the functional moiety is linked to one or both of the antisense strand and sense strand by a linker. In certain embodiments, the linker comprises a divalent or trivalent linker. In certain embodiments, the divalent or trivalent linker is selected from the group consisting of




embedded image



wherein n is 1, 2, 3, 4, or 5.


In certain embodiments, the linker comprises an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphodiester, a phosphorothioate, a phosphoramidate, an amide, a carbamate, or a combination thereof.


In certain embodiments, the linker comprises a dTdT dinucleotide.


In certain embodiments, the functional moiety is linked to the 3′ end of the sense strand by a dTdT dinucleotide followed by the linker




embedded image



wherein n is 1.


In certain embodiments, the trivalent linker further links a phosphodiester or phosphodiester derivative.


In certain embodiments, the phosphodiester or phosphodiester derivative is selected from the group consisting of




embedded image



wherein X is O, S or BH3.


In certain embodiments, the nucleotides at positions 1 and 2 from the 5′ end of antisense strand are connected to adjacent ribonucleotides via phosphorothioate linkages.


In one aspect, the disclosure provides a double stranded (ds) RNA, comprising an antisense strand and a sense strand, each strand with a 5′ end and a 3′ end, wherein: (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A; (2) the antisense strand comprises at least 70% 2′-O-methyl modifications; (3) the nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand are not a 2′-methoxy-ribonucleotide; (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages; (5) a portion of the antisense strand is complementary to a portion of the sense strand; (6) the sense strand comprises at least 70% 2′-O-methyl modifications; (7) the nucleotides at positions 6, 7, 8 and 10 from the 5′ end of the sense strand are not a 2′-methoxy-ribonucleotide; (8) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages; and (9) the antisense strand comprises at least one modified intersubunit linkages of Formula II:




embedded image



wherein:

    • B is a base pairing moiety;
    • W is O or O(CH2)n1, wherein n1 is 1 to 10;
    • X is selected from the group consisting of H, OH, OR1, F, SH, SR, NR22 and C1-6-alkoxy;
    • Y is selected from the group consisting of O, OH, OR, OR2, NH, NH2, NR22, BH3, S, R1, and SH;
    • Z is O or O(CH2)n2 wherein n2 is 1 to 10;
    • R1 is alkyl, allyl or aryl; and
    • R2 is alkyl, allyl or aryl.


In certain embodiments, the 3′ end of the antisense strand comprises four consecutive modified intersubunit linkages of Formula II.


In certain embodiments, the antisense strand comprises a 5′ vinyl phosphonate.


In certain embodiments, the antisense strand is 20 nucleotides in length, 21 nucleotides in length, or 22 nucleotides in length. In certain embodiments, the sense strand is 15 nucleotides in length, 16 nucleotides in length, 18 nucleotides in length, or 20 nucleotides in length.


In certain embodiments, a functional moiety is linked to the 3′ end of the sense strand.


In certain embodiments, the functional moiety comprises Eicosapentaenoic acid (EPA) or Docosanoic acid (DCA).


In certain embodiments, a functional moiety is linked to the 3′ end of the sense strand by a linker.


In certain embodiments, the linker comprises a dTdT dinucleotide.


In certain embodiments, the functional moiety is linked to the 3′ end of the sense strand by a dTdT dinucleotide followed by the linker




embedded image



wherein n is 1.


In one aspect, the disclosure provides a combination comprising two or more oligonucleotide compounds or dsRNA recited above, wherein each oligonucleotide compound or dsRNA in the combination comprises complementarity to a different SARS-CoV-2 nucleic acid sequence.


In certain embodiments, the combination comprises two, three, four, or five oligonucleotide compounds or dsRNA.


In one aspect, the disclosure provides a combination comprising two or more oligonucleotide compounds for inhibiting the expression of a SARS-CoV-2 gene in a cell of an organism, wherein each oligonucleotide compound in the combination comprises complementarity to a different SARS-CoV-2 nucleic acid sequence.


In certain embodiments, the combination comprises a first oligonucleotide compound, a second oligonucleotide compound, and a third oligonucleotide compound, wherein:

    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_9679, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_8744, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_9679, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_8744, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_9679, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27565, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27565, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27656, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27751, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23174, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region E_26305, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_9679, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23174, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region N_29293, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region E_26305, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region N_29293, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23174, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region E_26470, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27565, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23174, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region M_27123, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27656, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23174, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region M_27032, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27751, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_416, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region E_26305, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27565, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1a_9679, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region E_26369, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27656, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region orf1ab_21391, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region M_27032, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27751, as recited in Table 6A; or
    • i) the first oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 3a_25868, as recited in Table 6A;
    • ii) the second oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region 7a_27751, as recited in Table 6A; and
    • iii) the third oligonucleotide compound comprises a sequence substantially complementary to the 45-nucleotide target gene region S_23774, as recited in Table 6A.


In one aspect, the disclosure provides a combination comprising one or more oligonucleotide compounds for inhibiting the expression of a SARS-CoV-2 gene and one or more oligonucleotide compounds for inhibiting the expression of one or more of an ACE2 gene, a FURIN gene, an IL-6 gene, a TMPRSS2 gene, and a IL-6R gene.


In one aspect, the disclosure provides a pharmaceutical composition for inhibiting the expression of one or more of a SARS-CoV-2 gene, an ACE2 gene, a FURIN gene, an IL-6 gene, a TMPRSS2 gene, and a IL-6R gene in a cell of an organism, comprising the oligonucleotide compound, dsRNA, or combination recited above and a pharmaceutically acceptable carrier.


In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more of the SARS-CoV-2 genes, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 50%. In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more of the SARS-CoV-2 genes, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 75%.


In one aspect, the disclosure provides a pharmaceutical composition for inhibiting the expression of one or more SARS-CoV-2 genes in a cell of an organism, comprising the oligonucleotide compound, dsRNA, or combination recited above and a pharmaceutically acceptable carrier.


In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more SARS-CoV-2 genes by at least 50%. In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more SARS-CoV-2 genes by at least 75%.


In one aspect, the disclosure provides a method for inhibiting expression of a SARS-CoV-2 gene in a cell of an organism, the method comprising: (a) introducing into the cell an oligonucleotide compound, dsRNA, or combination recited above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of the SARS-CoV-2 gene, thereby inhibiting expression of the SARS-CoV-2 gene in the cell.


In one aspect, the disclosure provides a method for inhibiting expression of one or more of a SARS-CoV-2 gene, an ACE2 gene, a FURIN gene, an IL-6 gene, a TMPRSS2 gene, and an IL-6R gene in a cell, the method comprising: (a) introducing into the cell an oligonucleotide compound, dsRNA, or combination recited above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene thereby inhibiting expression of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene in the cell.


In one aspect, the disclosure provides a method of treating or managing a SARS-CoV-2 infection, comprising administering to a patient in need of such treatment a therapeutically effective amount of the oligonucleotide compound, dsRNA, or combination recited above.


In certain embodiments, the oligonucleotide compound, dsRNA, or combination is administered by intratracheal (IT) injection, intravenous (IV) injection, subcutaneous (SQ) injection, or a combination thereof.


In certain embodiments, the oligonucleotide compound, dsRNA, or combination is administered sequentially or simultaneously.


In certain embodiments, administering the oligonucleotide compound, dsRNA, or combination causes a decrease in one or more of SARS-CoV-2 gene mRNA, ACE2 gene mRNA, FURIN gene mRNA, IL-6 gene mRNA, TMPRSS2 gene mRNA, and IL-6R gene mRNA in the lung.


In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 50%. In certain embodiments, the oligonucleotide compound, dsRNA, or combination inhibits the expression of one or more of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 75%.


In one aspect, the disclosure provides a vector comprising a regulatory sequence operably linked to a nucleotide sequence that encodes an oligonucleotide compound recited above.


In certain embodiments of the vector, the oligonucleotide compound inhibits the expression of one or more of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 30%. In certain embodiments of the vector, the oligonucleotide compound inhibits the expression of one or more of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 50%. In certain embodiments of the vector, the oligonucleotide compound inhibits the expression of one or more of the SARS-CoV-2 gene, the ACE2 gene, the FURIN gene, the IL-6 gene, the TMPRSS2 gene, and the IL-6R gene by at least 75%.


In one aspect, the disclosure provides a cell comprising the vector recited above.


In one aspect, the disclosure provides a recombinant adeno-associated virus (rAAV) comprising the vector recited above and an AAV capsid.


In one aspect, the disclosure provides a branched oligonucleotide compound comprising two or more of the oligonucleotide compounds or dsRNA recited above covalently bound to one another.


In certain embodiments, the oligonucleotide compounds are covalently bound to one another by way of a linker, spacer, a branching point, or a mixture thereof.


In one aspect, the disclosure provides a method of treating or managing a SARS-CoV-2 infection, comprising administering to a patient in need of such treatment a therapeutically effective amount of the branched oligonucleotide compound recited above.


In certain embodiments, the branched oligonucleotide compound is administered by intratracheal (IT) injection, intravenous (IV) injection, subcutaneous (SQ) injection, or a combination thereof.


In certain embodiments, the branched oligonucleotide compound accumulates in lung tissue to a greater extent than a non-branched oligonucleotide compound when administered by intratracheal (IT) injection.


In one aspect, the disclosure provides a branched RNA compound comprising: two or more RNA molecules comprising 15 to 35 nucleotides in length, and a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence, wherein the two or more RNA molecules are connected to one another by one or more moieties independently selected from a linker, a spacer and a branching point.


In certain embodiments, the branched RNA compound comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A.


In certain embodiments of the branched RNA compound, each RNA molecule comprises 15 to 25 nucleotides in length.


In certain embodiments of the branched RNA compound, each RNA molecule comprises a dsRNA comprising a sense strand and an antisense strand, wherein each antisense strand independently comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A.


In certain embodiments, the branched RNA compound comprises complementarity to at least 10, 11, 12 or 13 contiguous nucleotides of a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A. In certain embodiments of the branched RNA compound, each RNA molecule comprises no more than 3 mismatches with a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A. In certain embodiments, the branched RNA compound comprises full complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A.


In certain embodiments of the branched RNA compound, the antisense strand comprises a portion having the nucleic acid sequence of any one of the antisense strands recited in Table 6B.


In certain embodiments of the branched RNA compound, the antisense strand and/or sense strand comprises about 15 nucleotides to 25 nucleotides in length. In certain embodiments of the branched RNA compound, the antisense strand is 20 nucleotides in length, 21 nucleotides in length, or 22 nucleotides in length. In certain embodiments of the branched RNA compound, the sense strand is 15 nucleotides in length, 16 nucleotides in length, 18 nucleotides in length, or 20 nucleotides in length.


In certain embodiments of the branched RNA compound, the dsRNA comprises a double-stranded region of 15 base pairs to 20 base pairs. In certain embodiments of the branched RNA compound, the dsRNA comprises a double-stranded region of 15 base pairs, 16 base pairs, 18 base pairs, or 20 base pairs.


In certain embodiments of the branched RNA compound, the dsRNA comprises a blunt-end. In certain embodiments of the branched RNA compound, the dsRNA comprises at least one single stranded nucleotide overhang. In certain embodiments of the branched RNA compound, the dsRNA comprises between a 2-nucleotide to 5-nucleotide single stranded nucleotide overhang.


In certain embodiments of the branched RNA compound, the dsRNA comprises naturally occurring nucleotides.


In certain embodiments of the branched RNA compound, the dsRNA comprises at least one modified nucleotide.


In certain embodiments of the branched RNA compound, the modified nucleotide comprises a 2′-O-methyl modified nucleotide, a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, a 2′-amino-modified nucleotide, a 2′-alkyl-modified nucleotide, a morpholino nucleotide, a phosphoramidate, or a non-natural base comprising nucleotide.


In certain embodiments of the branched RNA compound, the dsRNA comprises at least one modified internucleotide linkage. In certain embodiments of the branched RNA compound, the modified internucleotide linkage comprises a phosphorothioate internucleotide linkage. In certain embodiments, the branched RNA compound comprises 4-16 phosphorothioate internucleotide linkages. In certain embodiments, the branched RNA compound comprises 6-13 phosphorothioate internucleotide linkages.


In certain embodiments of the branched RNA compound, the dsRNA comprises at least one modified internucleotide linkage of Formula I:




embedded image



wherein:

    • B is a base pairing moiety;
    • W is selected from the group consisting of O, OCH2, OCH, CH2, and CH;
    • X is selected from the group consisting of halo, hydroxy, and C1-6 alkoxy;
    • Y is selected from the group consisting of O, OH, OR, NH, NH2, S, and SH;
    • Z is selected from the group consisting of O and CH2;
    • R is a protecting group; and
    • custom character is an optional double bond.


In certain embodiments of the branched RNA compound, the dsRNA comprises at least 80% chemically modified nucleotides. In certain embodiments of the branched RNA compound, the dsRNA is fully chemically modified. In certain embodiments of the branched RNA compound, the dsRNA comprises at least 70% 2′-O-methyl nucleotide modifications. In certain embodiments of the branched RNA compound, the antisense strand comprises at least 70% 2′-O-methyl nucleotide modifications. In certain embodiments of the branched RNA compound, the antisense strand comprises about 70% to 90% 2′-O-methyl nucleotide modifications. In certain embodiments of the branched RNA compound, the sense strand comprises at least 65% 2′-O-methyl nucleotide modifications. In certain embodiments of the branched RNA compound, the sense strand comprises 100% 2′-O-methyl nucleotide modifications.


In certain embodiments of the branched RNA compound, the sense strand comprises one or more nucleotide mismatches between the antisense strand and the sense strand. In certain embodiments of the branched RNA compound, the one or more nucleotide mismatches are present at positions 2, 6, and 12 from the 5′ end of sense strand. In certain embodiments of the branched RNA compound, the nucleotide mismatches are present at positions 2, 6, and 12 from the 5′ end of the sense strand.


In certain embodiments of the branched RNA compound, the antisense strand comprises a 5′ phosphate, a 5′-alkyl phosphonate, a 5′ alkylene phosphonate, a 5′ alkenyl phosphonate, or a mixture thereof. In certain embodiments of the branched RNA compound, the antisense strand comprises a 5′ vinyl phosphonate.


In certain embodiments of the branched RNA compound, the dsRNA comprises an antisense strand and a sense strand, each strand with a 5′ end and a 3′ end, wherein: (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A; (2) the antisense strand comprises at least 70% 2′-O-methyl modifications; (3) the nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides; (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages; (5) a portion of the antisense strand is complementary to a portion of the sense strand; (6) the sense strand comprises at least 70% 2′-O-methyl modifications; (7) the nucleotides at positions 7, 9, 10, and 11 from the 3′ end of the sense strand are not 2′-methoxy-ribonucleotides; and (8) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In certain embodiments of the branched RNA compound, the antisense strand comprises a 5′ vinyl phosphonate.


In certain embodiments of the branched RNA compound, the antisense strand is 20 nucleotides in length, 21 nucleotides in length, or 22 nucleotides in length. In certain embodiments of the branched RNA compound, the sense strand is 15 nucleotides in length, 16 nucleotides in length, 18 nucleotides in length, or 20 nucleotides in length.


In certain embodiments of the branched RNA compound, a functional moiety is linked to one or both of the 5′ end and 3′ end of the antisense strand. In certain embodiments of the branched RNA compound, a functional moiety is linked to one or both of the 5′ end and 3′ end of the sense strand. In certain embodiments of the branched RNA compound, a functional moiety is linked to the 3′ end of the sense strand.


In certain embodiments of the branched RNA compound, the functional moiety comprises a hydrophobic moiety. In certain embodiments of the branched RNA compound, the hydrophobic moiety is selected from the group consisting of fatty acids, steroids, secosteroids, lipids, gangliosides, nucleoside analogs, endocannabinoids, vitamins, and a mixture thereof. In certain embodiments of the branched RNA compound, the steroid is selected from the group consisting of cholesterol and Lithocholic acid (LCA). In certain embodiments of the branched RNA compound, the fatty acid is selected from the group consisting of Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA) and Docosanoic acid (DCA). In certain embodiments of the branched RNA compound, the vitamin is selected from the group consisting of choline, vitamin A, vitamin E, derivatives thereof, and metabolites thereof. In certain embodiments of the branched RNA compound, the vitamin is selected from the group consisting of retinoic acid and alpha-tocopheryl succinate.


In certain embodiments of the branched RNA compound, the functional moiety is linked to one or both of the antisense strand and sense strand by a linker. In certain embodiments of the branched RNA compound, the linker comprises a divalent or trivalent linker.


In certain embodiments of the branched RNA compound, the divalent or trivalent linker is selected from the group consisting of:




embedded image



wherein n is 1, 2, 3, 4, or 5.


In certain embodiments of the branched RNA compound, the linker comprises an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphodiester, a phosphorothioate, a phosphoramidate, an amide, a carbamate, or a combination thereof.


In certain embodiments of the branched RNA compound, the trivalent linker further links a phosphodiester or phosphodiester derivative. In certain embodiments of the branched RNA compound, the phosphodiester or phosphodiester derivative is selected from the group consisting of:




embedded image



wherein X is O, S or BH3.


In certain embodiments of the branched RNA compound, the nucleotides at positions 1 and 2 from the 3′ end of sense strand, and the nucleotides at positions 1 and 2 from the 5′ end of antisense strand, are connected to adjacent ribonucleotides via phosphorothioate linkages.


In one aspect, the disclosure provides compound of formula (I):

L-(N)n  (I)

wherein:

    • L comprises an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, or combinations thereof, and wherein formula (I) optionally further comprises one or more branch point B, and one or more spacer S, wherein
    • B is independently for each occurrence a polyvalent organic species or derivative thereof;
    • S comprises independently for each occurrence an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, or a combination thereof; and
    • N is a double stranded nucleic acid comprising 15 to 35 bases in length comprising a sense strand and an antisense strand; wherein
    • the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • the sense strand and antisense strand each independently comprise one or more chemical modifications; and
    • n is 2, 3, 4, 5, 6, 7 or 8.


In certain embodiments, the compound has a structure selected from formulas (I-1)-(I-9):




embedded image


embedded image


In certain embodiments, the antisense strand comprises a 5′ terminal group R selected from the group consisting of:




embedded image


embedded image


In certain embodiments, the compound comprises the structure of formula (II):




embedded image



wherein:

    • X, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof;
    • Y, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof;
    • - represents a phosphodiester internucleoside linkage;
    • = represents a phosphorothioate internucleoside linkage; and
    • --- represents, individually for each occurrence, a base-pairing interaction or a mismatch.


In certain embodiments, the compound comprises structure of formula (IV):




embedded image



wherein:

    • X, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof;
    • Y, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof;
    • - represents a phosphodiester internucleoside linkage;
    • = represents a phosphorothioate internucleoside linkage; and
    • --- represents, individually for each occurrence, a base-pairing interaction or a mismatch.


In certain embodiments, L is structure L1:




embedded image


In certain embodiments, R is R3 and n is 2.


In certain embodiments, L is structure L2:




embedded image


In certain embodiments, R is R3 and n is 2.


In one aspect, the disclosure provides a delivery system for therapeutic nucleic acids having the structure of Formula (VI):

L-(cNA)n  (VI)

wherein:

    • L comprises an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, or combinations thereof, wherein formula (VI) optionally further comprises one or more branch point B, and one or more spacer S, wherein
    • B comprises independently for each occurrence a polyvalent organic species or a derivative thereof;
    • S comprises independently for each occurrence an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, or combinations thereof;
    • each cNA, independently, is a carrier nucleic acid comprising one or more chemical modifications;
    • each cNA, independently, comprises at least 15 contiguous nucleotides of a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A; and
    • n is 2, 3, 4, 5, 6, 7 or 8.


In certain embodiments, the delivery system has a structure selected from formulas (VI-1)-(VI-9):




embedded image


In certain embodiments, each cNA independently comprises a chemically-modified nucleotide.


In certain embodiments, the delivery system further comprises n therapeutic nucleic acids (NA), wherein each NA is hybridized to at least one cNA.


In certain embodiments, each NA independently comprises at least 16 contiguous nucleotides. In certain embodiments, each NA independently comprises 16-20 contiguous nucleotides.


In certain embodiments, each NA comprises an unpaired overhang of at least 2 nucleotides. In certain embodiments, the nucleotides of the overhang are connected via phosphorothioate linkages.


In certain embodiments, each NA, independently, is selected from the group consisting of DNAs, siRNAs, antagomiRs, miRNAs, gapmers, mixmers, and guide RNAs.


In certain embodiments, each NA is substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A.


In one aspect, the disclosure provides a pharmaceutical composition for inhibiting the expression of a SARS-CoV-2 gene in an organism, comprising a compound or a system recited above, and a pharmaceutically acceptable carrier.


In certain embodiments, the compound or system inhibits the expression of the SARS-CoV-2 gene by at least 50%. In certain embodiments, the compound or system inhibits the expression of the SARS-CoV-2 gene by at least 75%.


In one aspect, the disclosure provides a method for inhibiting expression of a SARS-CoV-2 gene in a cell, the method comprising: (a) introducing into the cell a compound or a system recited above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of the SARS-CoV-2 gene, thereby inhibiting expression of the SARS-CoV-2 gene in the cell.


In one aspect, the disclosure provides a method of treating or managing a SARS-CoV-2 infection comprising administering to a patient in need of such treatment or management a therapeutically effective amount of a compound or a system recited above.


In certain embodiments, the compound or system is administered to the lung of the patient.


In certain embodiments, the compound or system is administered by intratracheal (IT) injection, intravenous (IV) injection, subcutaneous (SQ) injection, or a combination thereof.


In certain embodiments, administering the compound or system causes a decrease in SARS-CoV-2 gene mRNA in one or more of the club cells and alveoli cells of the lung.


In certain embodiments, the compound or system inhibits the expression of the SARS-CoV-2 gene by at least 50%. In certain embodiments, the compound or system inhibits the expression of the SARS-CoV-2 gene by at least 75%.


In certain embodiments, the compound or system accumulates in lung tissue to a greater extent than a non-branched oligonucleotide compound when administered by intratracheal (IT) injection.


In one aspect, the disclosure provides a method of delivering an oligonucleotide compound to the lung of a patient, comprising administering the oligonucleotide compound, wherein the oligonucleotide compound is conjugated to a functional moiety selected from Eicosapentaenoic acid (EPA) and Docosanoic acid (DCA).


In certain embodiments, the oligonucleotide compound is a dsRNA comprising an antisense strand and a sense strand, each strand with a 5′ end and a 3′ end. In certain embodiments, the dsRNA is conjugated to the sense strand 3′ end.


In certain embodiments, the functional moiety is conjugated to the sense strand by a linker. In certain embodiments, the linker comprises a divalent or trivalent linker.


In certain embodiments, the divalent or trivalent linker is selected from the group consisting of:




embedded image



wherein n is 1, 2, 3, 4, or 5.


In certain embodiments, the linker comprises an ethylene glycol chain, an alkyl chain, a peptide, an RNA, a DNA, a phosphodiester, a phosphorothioate, a phosphoramidate, an amide, a carbamate, or a combination thereof.


In certain embodiments, the trivalent linker further links a phosphodiester or phosphodiester derivative.


In certain embodiments, the phosphodiester or phosphodiester derivative is selected from the group consisting of:




embedded image



wherein X is O, S or BH3.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the present disclosure will be more fully understood from the following detailed description of illustrative embodiments taken in conjunction with the accompanying drawings.



FIG. 1A-1B depict an exemplary chemically modified siRNA (FIG. 1A), and a schematic of the SARS-CoV-2 genome (FIG. 1B).



FIG. 2 depicts a diagram of siRNA and ASO target positions on encoded proteins in the SARS-CoV-2 Genome. siRNAs were designed to target nine genes encoding SARS-CoV-2 proteins: orf1a, orf1ab, spike surface glycoprotein (S), small envelope protein (E), matrix protein (M), nucleocapsid protein (N), and accessory proteins 3a, 8b, 7a. Grey arrows indicate siRNA and ASO target positions. Inset shows detailed view of siRNA target positions on genes in the 3′ region of the genome.



FIG. 3A-3B depict an alignment of siRNAs and ASOs selected for synthesis directed to six closely-related CoVs using a novel algorithm. Aligned genome regions of CoVs are shaded based on homology with darker coloring indicating higher homology with respect to SARS-CoV-2. The siRNA position is indicated on the top. Per position percent homology of SARS-CoV-2 to the six related CoVs is plotted on the bottom. SiRNA with low homology scores of 59 are shown in FIG. 3A (SEQ ID NOS 2583-2589, respectively, in order of appearance). SiRNA with a high homology score are shown in FIG. 3B (SEQ ID NOS 2590-2596, respectively, in order of appearance). Gaps in alignment are indicated with dashes (-).



FIG. 4A-4B depict siRNA and ASO target selection based on the ability to target many SARS-CoV-2 genomes from patient isolates. FIG. 4A, siRNAs and ASOs were selected to target regions of the 9 selection genes with low mutation rates in other coronaviruses. FIG. 4B, the proportion of SARS-CoV-2 variants from patient isolates targeted by all selected siRNAs. FIG. FIG. 5A-5I depicts the identification of siRNA hits for SARS-CoV-2. SiRNAs targeting different genes in the SARS-CoV-2 genome were tested for silencing efficacy.



FIG. 5A, gene orf1a, FIG. 5B, gene 3a; FIG. 5C, gene 7a, FIG. 5D, gene orf1ab, FIG. 5E, gene E, FIG. 5F, gene 8b, FIG. 5G, gene S, FIG. 5H, gene M, FIG. 5I, gene N. SiRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: 1.5 uM; Time point: 72 hours.



FIG. 6A-6I depict the identification of ASO hits for SARS-CoV-2. ASOs targeting different genes in the SARS-CoV2 genome were tested for silencing efficacy. FIG. 6A, gene orf1a, FIG. 6B, gene Orf1ab; FIG. 6C, gene S, FIG. 6D, gene 3a, FIG. 6E, gene E, FIG. 6F, gene M, FIG. 6G, gene 7a, FIG. 6H, gene 8b, FIG. 6I, gene N. ASOs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: 1.5 uM; Time point: 72 hours.



FIG. 7A-7B depict the identification of siRNA hits for SARS-CoV2 and mapping onto genes in the SARS-CoV-2 genome. FIG. 7A, SARS-CoV-2 genome. FIG. 7B, siRNAs targeting different genes in the SARS-CoV2 genome tested for silencing efficacy. siRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: 1.5 uM; Time point: 72 hours.



FIG. 8A-8B depicts the identification of ASO hits for SARS-CoV-2 and mapping onto genes in the SARS-CoV-2 genome. FIG. 8A, SARS-CoV-2 genome. FIG. 8B, LNA gapmers targeting different genes in the SARS-CoV-2 genome were tested for silencing efficacy. ASOs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: 1.5 μM; Time point: 72 hours.



FIG. 9A-9I depict the validation and determination of IC50 values. SiRNAs targeting different genes in the SARS-CoV-2 genome were tested for silencing efficacy in 8-point dose response studies. FIG. 9A, gene orf1a, FIG. 9B, gene Orf1ab; FIG. 9C, gene Spike, FIG. 9D, gene 3a, FIG. 9E, gene Envelope, FIG. 9F, gene Membrane, FIG. 9G, gene Orf7a, FIG. 9H, gene Orf8a, FIG. 9I, gene Nucleocapsid. siRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: Top=1.5 μM; Time point: 72 hours.



FIG. 10 depicts a schematic showing SARS-CoV-2 genes and their functions. Non-structural genes undergo primary translation while structural and accessory proteins are translated from sub-genomic mRNAs.



FIG. 11A-11E depict validation and determination of IC50 values for siRNA cocktails targeting SARS-CoV-2 Genes. FIG. 11A, replication cocktails; FIG. 11B, Replication/immuno cocktails; FIG. 11C, Replication/Capsid cocktails; FIG. 11D, Immuno/Capsid cocktails; and FIG. 11E, Replication/Immuno/Capsid cocktails. siRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: Top=1.5 uM; Time point: 72 hours.



FIG. 12A-12B depict design of siRNAs targeting ACE2 (FIG. 12A) and FURIN (FIG. 12B).



FIG. 13A-13B depict the identification of siRNA hits for ACE2 (FIG. 13A) and FURIN (FIG. 13B). siRNAs were tested in human Hacat cells and silencing was assessed using the QuantiGene assay and confirmed using psicheck reporter system. Concentration: 1.5 μM; Time point: 72 hours.



FIG. 14A-14B depict validation and determination of IC50 values for siRNAs targeting ACE2 (FIG. 14A) and FURIN (FIG. 14B). siRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system. Concentration: Top=1.5 μM; Time point: 72 hours.



FIG. 15A-15D depict validation and determination of IC50 values for siRNAs targeting FURIN. FIG. 15A, 2711; FIG. 15B, 2712; FIG. 15C, 3524; FIG. 15D, 3526. siRNAs were tested in HaCat cells and silencing was assessed using QuantiGene. Concentration: Top=1.5 μM; Time point: 72 hours.



FIG. 16A-16B depict the identification of ASO hits for ACE2 and FURIN. Twelve LNA gapmers targeting ACE2 (FIG. 16A) and FURIN (FIG. 16B) were tested for silencing efficacy. ASOs were tested in human U2OS cells and silencing was assessed using QRT-PCR assay. Concentration: 1.5 μM; Time point: 72 hours.



FIG. 17A-17B depict the identification of ASO hits for ACE2 and FURIN. Twelve LNA gapmers targeting ACE2 (FIG. 17A) and FURIN (FIG. 17B), were tested for silencing efficacy. ASOs were tested in human U2OS cells and silencing was assessed using QRT-PCR assay. Concentration: 1.5 μM; Time point: 72 hours.



FIG. 18A-18B depict validation and determination of IC50 values for ASOs targeting ACE2 (FIG. 18A) and FURIN (FIG. 18B). Concentration: Top=1.5 μM; Time point: 5 days.



FIG. 19A-19F show that the presence of a two-thymidine linker between the conjugate and the siRNA does not impact siRNA tissue distribution profile. The siRNA structural configurations studied to evaluate the impact of the nature of the linker on distribution is shown in FIG. 19A, FIG. 19C, and FIG. 19E. The corresponding bar graphs for siRNA accumulation in the various tissues are shown in FIG. 19B, FIG. 19D, and FIG. 19F, respectively. Shown are siRNA strand accumulation of DCA-conjugated siRNA in liver, kidney, spleen, lung, heart, muscle and fat 1-week after a single SC injection with 20 mg/kg (n=5-6 mice per group±SD), measured by PNA hybridization assay.



FIG. 20A-20B show that the presence of a two-thymidine linker increases DCA-conjugated siRNA silencing in multiple tissues. FIG. 20A, effect on huntingtin mRNA expression. FIG. 20B, effect on cyclophilin B mRNA expression. The presence of a two-thymidine linker increases DCA-conjugated siRNA silencing in multiple tissues. SC injection (FVB/N mice); 20 mg/kg; collection of tissues one week after injection; n=6 per group. Huntingtin (Htt) (A.) or Cyclophilin B (Ppib) (B.) mRNA levels were measured using QuantiGene® (Affymetrix), normalized to a housekeeping gene, Hprt (Hypoxanthine-guanine phosphoribosyl transferase), and presented as percent of PBS (Phosphate buffered saline) control (mean±SD). Data analysis: t test (****P<0.0001, ***P<0.001, **P<0.01, *P<0.1).



FIG. 21 depicts designs and structural configurations of siRNAs for lung delivery via systemic (SC). Schematic of siRNA structural configuration studied to evaluate the impact of the chemical composition on siRNA distribution and efficacy.



FIG. 22 depicts distribution and accumulation of siRNAs conjugated to DCA and containing different numbers of 3′ exNA modifications and phosphorothioates. These data show increased accumulation of DCA-conjugated siRNAs with exNA modifications compared to those without exNAs in all tissues including the lungs. SC, 20 mg/kg, n=3, 1 week, PNA hybridization assay. p2 scaffold: 4PS-exNa≈7PS in liver, spleen, lung; 4PS-exNa>7 PS in heart, muscle, fat; 7PS>4PS-exNa in kidney. p5 scaffold: 4PS-exNa>2PO-exNa 2PS-exNa≥4 PS>2PS.



FIG. 23A-23H depict target mRNA silencing (Htt) after systemic administration of siRNAs conjugated to DCA and containing different numbers of 3′ exNA modifications and phosphorothioates in various organ tissues. FIG. 23A, liver; FIG. 23B, kidney; FIG. 23C, spleen; FIG. 23D, muscle; FIG. 23E, lung; FIG. 23F, heart; FIG. 23G, adrenal glands; FIG. 23H, Fat. These data show increased silencing of DCA-conjugated siRNAs with exNA modifications compared to those without exNAs in all tissues including the lungs. SC, 20 mg/kg, n=5, 1 week, bDNA QuantiGene assay.



FIG. 24 depicts designs of siRNAs for lung delivery via intratracheal administration. Schematic of siRNA structural configuration studied to evaluate the impact of the chemical composition on siRNA distribution and efficacy.



FIG. 25A-25B depict siRNA accumulation after intratracheal administration. FIG. 25A, Distribution and delivery throughout the lung of mono and divalent siRNAs (Cy-3) compared to PBS controls; FIG. 25B, distribution and delivery throughout the lung of EPA and DCA conjugated siRNAs (Cy-3) compared to PBS controls. Intratracheal; 20 nmol for mono, 40 nmol for di; n=2, 24 h, 5×, Scale=1 mm. Subcutaneous; 40 nmol; n=3, 48 h, 5×, Scale=1 mm.



FIG. 26A-26C depict mono and di-valent siRNA accumulation after intratracheal administration. FIG. 26A, distribution and delivery throughout the lung of mono and divalent siRNAs (Cy-3) compared to PBS controls; FIG. 26B, distribution and delivery throughout the lung of mono and divalent siRNAs (Red, Cy3) to club cells (epithelial) (green) of the lungs compared to PBS controls; FIG. 26C, distribution and delivery throughout the lung of mono and divalent siRNAs (Red, Cy3) to alveoli type II cells (green) in the lung compared to PBS controls. Divalent siRNAs distribute to all cells of the lungs and saturate both alveolar and epithelial (club) cells 24 hours after intratracheal administration.



FIG. 27A-27C depict EPA and DCA conjugated siRNA distribution throughout the lungs after subcutaneous (SC) administration). FIG. 27A, distribution and delivery throughout the lung of EPA and DCA conjugated siRNAs (Cy-3) compared to PBS controls; FIG. 27B, distribution of EPA and DCA conjugated siRNAs (Red, Cy3) to club cells (epithelial) (green) of the lungs compared to PBS controls; FIG. 27C, distribution of EPA and DCA conjugated siRNAs (Red, Cy3) to alveoli cells (green) in the lung compared to PBS controls.



FIG. 28A-28D depict quantification of siRNA accumulation after systemic and intratracheal administration. FIG. 28A, fluorescence uptake in alveolar cells; FIG. 28B, percent in alveoli cells/total cells; FIG. 28C, fluorescence uptake in club cells; FIG. 28D, percent in club cells/total cells.



FIG. 29A-29G depict quantification of EPA and DCA conjugated siRNA accumulation after systemic administration. FIG. 29A, distribution in various lung cells; FIG. 29B, distribution by cell type; FIG. 29C-29G, CY3 signals in total cells, immune cells, endothelial cells, epithelial cells and fibroblasts, respectively. Using flow cytometry siRNA accumulation was quantified after systemic (SC) administration of EPA and DCA conjugated siRNAs.



FIG. 30A-30G depict quantification of siRNA accumulation after intratracheal administration. Using flow cytometry, siRNA accumulation was quantified after intratracheal administration of mono and di-valent siRNAs. FIG. 30A, distribution in various lung cells; FIG. 30B, distribution by cell type; FIG. 30C-30G, CY3 signals in total cells, immune cells, endothelial cells, epithelial cells and fibroblasts, respectively. Divalent siRNAs showed the highest amount of uptake in all cell types compared to other siRNAs.



FIG. 31A-31B depict distribution and accumulation of mono and di-siRNAs. FIG. 31A, di-siRNAs after intratracheal administration; FIG. 31B, di-siRNAs after intratracheal administration and DAC/EPA siRNA after SC injection. Intratracheal or SC, 7.5 and 15 nmol and 40 nmol, n=3, 1 week, PNA hybridization assay.



FIG. 32A-32H show target mRNA silencing (Htt) after intratracheal administration of mono and di-siRNAs in various tissues. FIG. 32A, liver; FIG. 32B, kidney; FIG. 32C, spleen; FIG. 32D, lung; FIG. 32E, heart, FIG. 32F, adrenal glands; FIG. 32G, muscle; FIG. 32H, fat. Low dose of di-siRNA achieved the best silencing in lungs without silence the gene in other tissues. Intratracheal, 7.5 or 15 nmol, n=5, 1 week, bDNA QuantiGene assay.



FIG. 33 depicts target mRNA silencing (Htt) after intratracheal administration of mono and di-siRNAs. Intratracheal, 7.5 or 15 nmol, n=5, 1 week, bDNA QuantiGene assay.



FIG. 34 depicts a screen of siRNAs and ASOs targeting various SARS-CoV2 genes and tested for silencing efficacy. siRNAs and ASOs were tested in in A549-ACE2 cells and silencing was assessed using the psi-check reporter system. siRNA concentration: 10 nM; ASO concentration: 25 nM; Time point: 72 hours.



FIG. 35 depicts dose response data of select siRNAs targeting various SARS-CoV2 genes. The data reports relative mRNA abundance of the targeted SARS-CoV2 genes and the percent of cells that are positive for the SARS-CoV2 spike protein. siRNAs were tested in in A549-ACE2 cells and silencing was assessed using the psi-check reporter system.



FIG. 36 depicts dose response data of select siRNAs targeting various SARS-CoV2 genes. The A549-ACE2 cells were infected with SARS-CoV-2 at a MOI of 0.1 and 0.4. The data reports relative mRNA abundance of the targeted SARS-CoV2 genes.



FIG. 37 depicts a screen of siRNAs targeting the orf7a SARS-CoV2 gene. siRNAs were tested in in A549-ACE2 cells and the data reports relative mRNA abundance of the targeted orf7a SARS-CoV2 gene and the percent of cells that are positive for the SARS-CoV2 spike protein. siRNA concentration: 10 nM; Time point: 72 hours.





DETAILED DESCRIPTION

Novel SARS-CoV-2 target sequences are provided. Also provided are novel RNA molecules, such as siRNAs and branched RNA compounds containing the same, that target one or more SARS-CoV-2 genes mRNA, such as one or more target sequences of the disclosure. Also provided are novel ACE2, FURIN, IL-6, and TMPRSS2 target sequences.


Unless otherwise specified, nomenclature used in connection with cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well-known and commonly used in the art. Unless otherwise specified, the methods and techniques provided herein are performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclature used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, delivery, and treatment of patients.


Unless otherwise defined herein, scientific and technical terms used herein have the meanings that are commonly understood by those of ordinary skill in the art. In the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The use of “or” means “and/or” unless stated otherwise. The use of the term “including,” as well as other forms, such as “includes” and “included,” is not limiting.


So that the invention may be more readily understood, certain terms are first defined.


The term “nucleoside” refers to a molecule having a purine or pyrimidine base covalently linked to a ribose or deoxyribose sugar. Exemplary nucleosides include adenosine, guanosine, cytidine, uridine and thymidine. Additional exemplary nucleosides include inosine, 1-methyl inosine, pseudouridine, 5,6-dihydrouridine, ribothymidine, 2N-methylguanosine and N2,N2-dimethylguanosine (also referred to as “rare” nucleosides). The term “nucleotide” refers to a nucleoside having one or more phosphate groups joined in ester linkages to the sugar moiety. Exemplary nucleotides include nucleoside monophosphates, diphosphates and triphosphates. The terms “polynucleotide” and “nucleic acid molecule” are used interchangeably herein and refer to a polymer of nucleotides joined together by a phosphodiester or phosphorothioate linkage between 5′ and 3′ carbon atoms.


The term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers to a polymer of ribonucleotides (e.g., 2, 3, 4, 5, 10, 15, 20, 25, 30, or more ribonucleotides). The term “DNA” or “DNA molecule” or “deoxyribonucleic acid molecule” refers to a polymer of deoxyribonucleotides. DNA and RNA can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively). RNA can be post-transcriptionally modified. DNA and RNA can also be chemically synthesized. DNA and RNA can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). “mRNA” or “messenger RNA” is single-stranded RNA that specifies the amino acid sequence of one or more polypeptide chains. This information is translated during protein synthesis when ribosomes bind to the mRNA.


As used herein, the term “small interfering RNA” (“siRNA”) (also referred to in the art as “short interfering RNAs”) refers to an RNA (or RNA analog) comprising between about 10-50 nucleotides (or nucleotide analogs), which is capable of directing or mediating RNA interference. In certain embodiments, a siRNA comprises between about 15-30 nucleotides or nucleotide analogs, or between about 16-25 nucleotides (or nucleotide analogs), or between about 18-23 nucleotides (or nucleotide analogs), or between about 19-22 nucleotides (or nucleotide analogs) (e.g., 19, 20, 21 or 22 nucleotides or nucleotide analogs). The term “short” siRNA refers to a siRNA comprising about 21 nucleotides (or nucleotide analogs), for example, 19, 20, 21 or 22 nucleotides. The term “long” siRNA refers to a siRNA comprising about 24-25 nucleotides, for example, 23, 24, 25 or 26 nucleotides. Short siRNAs may, in some instances, include fewer than 19 nucleotides, e.g., 16, 17 or 18 nucleotides, provided that the shorter siRNA retains the ability to mediate RNAi. Likewise, long siRNAs may, in some instances, include more than 26 nucleotides, provided that the longer siRNA retains the ability to mediate RNAi absent further processing, e.g., enzymatic processing, to a short siRNA.


The term “nucleotide analog” or “altered nucleotide” or “modified nucleotide” refers to a non-standard nucleotide, including non-naturally occurring ribonucleotides or deoxyribonucleotides. Exemplary nucleotide analogs are modified at any position so as to alter certain chemical properties of the nucleotide yet retain the ability of the nucleotide analog to perform its intended function. Examples of positions of the nucleotide, which may be derivatized include: the 5 position, e.g., 5-(2-amino)propyl uridine, 5-bromo uridine, 5-propyne uridine, 5-propenyl uridine, etc.; the 6 position, e.g., 6-(2-amino)propyl uridine; and the 8-position for adenosine and/or guanosines, e.g., 8-bromo guanosine, 8-chloro guanosine, 8-fluoroguanosine, etc. Nucleotide analogs also include deaza nucleotides, e.g., 7-deaza-adenosine; O- and N-modified (e.g., alkylated, e.g., N6-methyl adenosine, or as otherwise known in the art) nucleotides; and other heterocyclically modified nucleotide analogs, such as those described in Herdewijn, Antisense Nucleic Acid Drug Dev., 2000 Aug. 10(4):297-310.


Nucleotide analogs may also comprise modifications to the sugar portion of the nucleotides. For example, the 2′ OH-group may be replaced by a group selected from H, OR, R, F, Cl, Br, I, SH, SR, NH2, NHR, NR2, or COOR, wherein R is substituted or unsubstituted C1-C6 alkyl, alkenyl, alkynyl, aryl, etc. Other possible modifications include those described in U.S. Pat. Nos. 5,858,988, and 6,291,438.


The phosphate group of the nucleotide may also be modified, e.g., by substituting one or more of the oxygens of the phosphate group with sulfur (e.g., phosphorothioates), or by making other substitutions, which allow the nucleotide to perform its intended function, such as described in, for example, Eckstein, Antisense Nucleic Acid Drug Dev. 2000 Apr. 10(2):117-21, Rusckowski et al. Antisense Nucleic Acid Drug Dev. 2000 Oct. 10(5):333-45, Stein, Antisense Nucleic Acid Drug Dev. 2001 Oct. 11(5): 317-25, Vorobjev et al. Antisense Nucleic Acid Drug Dev. 2001 Apr. 11(2):77-85, and U.S. Pat. No. 5,684,143. Certain of the above-referenced modifications (e.g., phosphate group modifications) decrease the rate of hydrolysis of, for example, polynucleotides comprising said analogs in vivo or in vitro.


The term “oligonucleotide” refers to a short polymer of nucleotides and/or nucleotide analogs.


The term “RNA analog” refers to a polynucleotide (e.g., a chemically synthesized polynucleotide) having at least one altered or modified nucleotide as compared to a corresponding unaltered or unmodified RNA, but retaining the same or similar nature or function as the corresponding unaltered or unmodified RNA. As discussed above, the oligonucleotides may be linked with linkages, which result in a lower rate of hydrolysis of the RNA analog as compared to an RNA molecule with phosphodiester linkages. For example, the nucleotides of the analog may comprise methylenediol, ethylene diol, oxymethylthio, oxyethylthio, oxycarbonyloxy, phosphorodiamidate, phosphoroamidate, and/or phosphorothioate linkages. Some RNA analogues include sugar- and/or backbone-modified ribonucleotides and/or deoxyribonucleotides. Such alterations or modifications can further include addition of non-nucleotide material, such as to the end(s) of the RNA or internally (at one or more nucleotides of the RNA). An RNA analog need only be sufficiently similar to natural RNA that it has the ability to mediate RNA interference.


As used herein, the term “RNA interference” (“RNAi”) refers to a selective intracellular degradation of RNA. RNAi occurs in cells naturally to remove foreign RNAs (e.g., viral RNAs). Natural RNAi proceeds via fragments cleaved from free dsRNA, which direct the degradative mechanism to other similar RNA sequences. Alternatively, RNAi can be initiated by the hand of man, for example, to silence the expression of target genes.


An RNAi agent, e.g., an RNA silencing agent, having a strand, which is “sequence sufficiently complementary to a target mRNA sequence to direct target-specific RNA interference (RNAi)” means that the strand has a sequence sufficient to trigger the destruction of the target mRNA by the RNAi machinery or process.


As used herein, the term “isolated RNA” (e.g., “isolated siRNA” or “isolated siRNA precursor”) refers to RNA molecules, which are substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.


As used herein, the term “RNA silencing” refers to a group of sequence-specific regulatory mechanisms (e.g. RNA interference (RNAi), transcriptional gene silencing (TGS), post-transcriptional gene silencing (PTGS), quelling, co-suppression, and translational repression) mediated by RNA molecules, which result in the inhibition or “silencing” of the expression of a corresponding protein-coding gene. RNA silencing has been observed in many types of organisms, including plants, animals, and fungi.


The term “discriminatory RNA silencing” refers to the ability of an RNA molecule to substantially inhibit the expression of a “first” or “target” polynucleotide sequence while not substantially inhibiting the expression of a “second” or “non-target” polynucleotide sequence,” e.g., when both polynucleotide sequences are present in the same cell. In certain embodiments, the target polynucleotide sequence corresponds to a target gene, while the non-target polynucleotide sequence corresponds to a non-target gene. In other embodiments, the target polynucleotide sequence corresponds to a target allele, while the non-target polynucleotide sequence corresponds to a non-target allele. In certain embodiments, the target polynucleotide sequence is the DNA sequence encoding the regulatory region (e.g. promoter or enhancer elements) of a target gene. In other embodiments, the target polynucleotide sequence is a target mRNA encoded by a target gene.


The term “in vitro” has its art recognized meaning, e.g., involving purified reagents or extracts, e.g., cell extracts. The term “in vivo” also has its art recognized meaning, e.g., involving living cells, e.g., immortalized cells, primary cells, cell lines, and/or cells in an organism.


As used herein, the term “transgene” refers to any nucleic acid molecule, which is inserted by artifice into a cell, and becomes part of the genome of the organism that develops from the cell. Such a transgene may include a gene that is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism. The term “transgene” also means a nucleic acid molecule that includes one or more selected nucleic acid sequences, e.g., DNAs, that encode one or more engineered RNA precursors, to be expressed in a transgenic organism, e.g., animal, which is partly or entirely heterologous, i.e., foreign, to the transgenic animal, or homologous to an endogenous gene of the transgenic animal, but which is designed to be inserted into the animal's genome at a location which differs from that of the natural gene. A transgene includes one or more promoters and any other DNA, such as introns, necessary for expression of the selected nucleic acid sequence, all operably linked to the selected sequence, and may include an enhancer sequence.


A gene “involved” in a disease or disorder includes a gene, the normal or aberrant expression or function of which effects or causes the disease or disorder or at least one symptom of said disease or disorder.


The term “gain-of-function mutation” as used herein, refers to any mutation in a gene in which the protein encoded by said gene (i.e., the mutant protein) acquires a function not normally associated with the protein (i.e., the wild type protein) and causes or contributes to a disease or disorder. The gain-of-function mutation can be a deletion, addition, or substitution of a nucleotide or nucleotides in the gene, which gives rise to the change in the function of the encoded protein. In one embodiment, the gain-of-function mutation changes the function of the mutant protein or causes interactions with other proteins. In another embodiment, the gain-of-function mutation causes a decrease in or removal of normal wild-type protein, for example, by interaction of the altered, mutant protein with said normal, wild-type protein.


As used herein, the term “target gene” is a gene whose expression is to be substantially inhibited or “silenced.” This silencing can be achieved by RNA silencing, e.g., by cleaving the mRNA of the target gene or translational repression of the target gene. The term “non-target gene” is a gene whose expression is not to be substantially silenced. In one embodiment, the polynucleotide sequences of the target and non-target gene (e.g. mRNA encoded by the target and non-target genes) can differ by one or more nucleotides. In another embodiment, the target and non-target genes can differ by one or more polymorphisms (e.g., Single Nucleotide Polymorphisms or SNPs). In another embodiment, the target and non-target genes can share less than 100% sequence identity. In another embodiment, the non-target gene may be a homologue (e.g. an orthologue or paralogue) of the target gene.


As described herein, the term “SARS-CoV-2” refers to the severe acute respiratory syndrome coronavirus 2, which can cause severe respiratory illness. The SARS-CoV-2 genome contains nine genes. Four genes encode for four structural proteins, S (spike), E (envelope), M (matrix) and N (nucleocapsid). The five other genes are orf1a, orf1ab, 3a, 8b, and 7a. The sequence of the SARS-CoV-2 and the nine genes are recited in Table 1 and Table 2, respectively.


The phrase “examining the function of a gene in a cell or organism” refers to examining or studying the expression, activity, function or phenotype arising therefrom.


As used herein, the term “RNA silencing agent” refers to an RNA, which is capable of inhibiting or “silencing” the expression of a target gene. In certain embodiments, the RNA silencing agent is capable of preventing complete processing (e.g., the full translation and/or expression) of a mRNA molecule through a post-transcriptional silencing mechanism. RNA silencing agents include small (<50 b.p.), noncoding RNA molecules, for example RNA duplexes comprising paired strands, as well as precursor RNAs from which such small noncoding RNAs can be generated. Exemplary RNA silencing agents include siRNAs, miRNAs, siRNA-like duplexes, antisense oligonucleotides, GAPMER molecules, and dual-function oligonucleotides, as well as precursors thereof. In one embodiment, the RNA silencing agent is capable of inducing RNA interference. In another embodiment, the RNA silencing agent is capable of mediating translational repression.


As used herein, the term “rare nucleotide” refers to a naturally occurring nucleotide that occurs infrequently, including naturally occurring deoxyribonucleotides or ribonucleotides that occur infrequently, e.g., a naturally occurring ribonucleotide that is not guanosine, adenosine, cytosine, or uridine. Examples of rare nucleotides include, but are not limited to, inosine, 1-methyl inosine, pseudouridine, 5,6-dihydrouridine, ribothymidine, 2N-methylguanosine and 2,2N,N-dimethylguanosine.


The term “engineered,” as in an engineered RNA precursor, or an engineered nucleic acid molecule, indicates that the precursor or molecule is not found in nature, in that all or a portion of the nucleic acid sequence of the precursor or molecule is created or selected by a human. Once created or selected, the sequence can be replicated, translated, transcribed, or otherwise processed by mechanisms within a cell. Thus, an RNA precursor produced within a cell from a transgene that includes an engineered nucleic acid molecule is an engineered RNA precursor.


As used herein, the term “microRNA” (“miRNA”), also known in the art as “small temporal RNAs” (“stRNAs”), refers to a small (10-50 nucleotide) RNA, which are genetically encoded (e.g., by viral, mammalian, or plant genomes) and are capable of directing or mediating RNA silencing. An “miRNA disorder” shall refer to a disease or disorder characterized by an aberrant expression or activity of a miRNA.


As used herein, the term “dual functional oligonucleotide” refers to a RNA silencing agent having the formula T-L-μ, wherein T is an mRNA targeting moiety, L is a linking moiety, and p is a miRNA recruiting moiety. As used herein, the terms “mRNA targeting moiety,” “targeting moiety,” “mRNA targeting portion” or “targeting portion” refer to a domain, portion or region of the dual functional oligonucleotide having sufficient size and sufficient complementarity to a portion or region of an mRNA chosen or targeted for silencing (i.e., the moiety has a sequence sufficient to capture the target mRNA).


As used herein, the term “linking moiety” or “linking portion” refers to a domain, portion or region of the RNA-silencing agent which covalently joins or links the mRNA.


As used herein, the term “antisense strand” of an RNA silencing agent, e.g., an siRNA or RNA silencing agent, refers to a strand that is substantially complementary to a section of about 10-50 nucleotides, e.g., about 15-30, 16-25, 18-23 or 19-22 nucleotides of the mRNA of the gene targeted for silencing. The antisense strand or first strand has sequence sufficiently complementary to the desired target mRNA sequence to direct target-specific silencing, e.g., complementarity sufficient to trigger the destruction of the desired target mRNA by the RNAi machinery or process (RNAi interference) or complementarity sufficient to trigger translational repression of the desired target mRNA.


The term “sense strand” or “second strand” of an RNA silencing agent, e.g., an siRNA or RNA silencing agent, refers to a strand that is complementary to the antisense strand or first strand. Antisense and sense strands can also be referred to as first or second strands, the first or second strand having complementarity to the target sequence and the respective second or first strand having complementarity to said first or second strand. miRNA duplex intermediates or siRNA-like duplexes include a miRNA strand having sufficient complementarity to a section of about 10-50 nucleotides of the mRNA of the gene targeted for silencing and a miRNA* strand having sufficient complementarity to form a duplex with the miRNA strand.


As used herein, the term “guide strand” refers to a strand of an RNA silencing agent, e.g., an antisense strand of an siRNA duplex or siRNA sequence, that enters into the RISC complex and directs cleavage of the target mRNA.


As used herein, the term “asymmetry,” as in the asymmetry of the duplex region of an RNA silencing agent (e.g., the stem of an shRNA), refers to an inequality of bond strength or base pairing strength between the termini of the RNA silencing agent (e.g., between terminal nucleotides on a first strand or stem portion and terminal nucleotides on an opposing second strand or stem portion), such that the 5′ end of one strand of the duplex is more frequently in a transient unpaired, e.g., single-stranded, state than the 5′ end of the complementary strand. This structural difference determines that one strand of the duplex is preferentially incorporated into a RISC complex. The strand whose 5′ end is less tightly paired to the complementary strand will preferentially be incorporated into RISC and mediate RNAi.


As used herein, the term “bond strength” or “base pair strength” refers to the strength of the interaction between pairs of nucleotides (or nucleotide analogs) on opposing strands of an oligonucleotide duplex (e.g., an siRNA duplex), due primarily to H-bonding, van der Waals interactions, and the like, between said nucleotides (or nucleotide analogs).


As used herein, the “5′ end,” as in the 5′ end of an antisense strand, refers to the 5′ terminal nucleotides, e.g., between one and about 5 nucleotides at the 5′ terminus of the antisense strand. As used herein, the “3′ end,” as in the 3′ end of a sense strand, refers to the region, e.g., a region of between one and about 5 nucleotides, that is complementary to the nucleotides of the 5′ end of the complementary antisense strand.


As used herein the term “destabilizing nucleotide” refers to a first nucleotide or nucleotide analog capable of forming a base pair with second nucleotide or nucleotide analog such that the base pair is of lower bond strength than a conventional base pair (i.e., Watson-Crick base pair). In certain embodiments, the destabilizing nucleotide is capable of forming a mismatch base pair with the second nucleotide. In other embodiments, the destabilizing nucleotide is capable of forming a wobble base pair with the second nucleotide. In yet other embodiments, the destabilizing nucleotide is capable of forming an ambiguous base pair with the second nucleotide.


As used herein, the term “base pair” refers to the interaction between pairs of nucleotides (or nucleotide analogs) on opposing strands of an oligonucleotide duplex (e.g., a duplex formed by a strand of a RNA silencing agent and a target mRNA sequence), due primarily to H-bonding, van der Waals interactions, and the like between said nucleotides (or nucleotide analogs). As used herein, the term “bond strength” or “base pair strength” refers to the strength of the base pair.


As used herein, the term “mismatched base pair” refers to a base pair consisting of non-complementary or non-Watson-Crick base pairs, for example, not normal complementary G:C, A:T or A:U base pairs. As used herein the term “ambiguous base pair” (also known as a non-discriminatory base pair) refers to a base pair formed by a universal nucleotide.


As used herein, term “universal nucleotide” (also known as a “neutral nucleotide”) include those nucleotides (e.g. certain destabilizing nucleotides) having a base (a “universal base” or “neutral base”) that does not significantly discriminate between bases on a complementary polynucleotide when forming a base pair. Universal nucleotides are predominantly hydrophobic molecules that can pack efficiently into antiparallel duplex nucleic acids (e.g., double-stranded DNA or RNA) due to stacking interactions. The base portion of universal nucleotides typically comprise a nitrogen-containing aromatic heterocyclic moiety.


As used herein, the terms “sufficient complementarity” or “sufficient degree of complementarity” mean that the RNA silencing agent has a sequence (e.g. in the antisense strand, mRNA targeting moiety or miRNA recruiting moiety), which is sufficient to bind the desired target RNA, respectively, and to trigger the RNA silencing of the target mRNA.


As used herein, the term “translational repression” refers to a selective inhibition of mRNA translation. Natural translational repression proceeds via miRNAs cleaved from shRNA precursors. Both RNAi and translational repression are mediated by RISC. Both RNAi and translational repression occur naturally or can be initiated by the hand of man, for example, to silence the expression of target genes.


Various methodologies of the instant invention include a step that involves comparing a value, level, feature, characteristic, property, etc. to a “suitable control,” referred to interchangeably herein as an “appropriate control.” A “suitable control” or “appropriate control” is any control or standard familiar to one of ordinary skill in the art useful for comparison purposes. In one embodiment, a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, etc. determined prior to performing an RNAi methodology, as described herein. For example, a transcription rate, mRNA level, translation rate, protein level, biological activity, cellular characteristic or property, genotype, phenotype, etc. can be determined prior to introducing an RNA silencing agent of the invention into a cell or organism. In another embodiment, a “suitable control” or “appropriate control” is a value, level, feature, characteristic, property, etc. determined in a cell or organism, e.g., a control or normal cell or organism, exhibiting, for example, normal traits. In yet another embodiment, a “suitable control” or “appropriate control” is a predefined value, level, feature, characteristic, property, etc.


As used herein, the terms “extended nucleic acid” or “exNA” or ex-NA” refer to a novel oligonucleotide backbone modification. This chemical modification of the backbone significantly enhances oligonucleotide metabolic stability. The chemical modification includes one or more carbon atoms or chains inserted in the backbone at the 5′-position, 3′-position, or both. This structural modulation forms non-canonical stretched/flexible structure on oligo-backbones, which protect oligonucleotides from cleavage by various nucleases.


The novel exNA-modification is widely compatible in any oligonucleotide, such as an siRNA, antisense oligonucleotide, and mRNA. The combination of an exNA-phosphorothioate (exNA-PS) backbone enables drastic enhancement of metabolic stability (10-50 orders of magnitude as compared to unmodified oligonucleotides) without compromising the function of the oligonucleotide (e.g., siRNA-mediated silencing efficacy). For example, 5′-[exNA-PS]4-3′ modification induce NO negative impact on siRNA efficacy while inducing drastically high exonuclease stability, as will be shown below. Moreover, an exNA-phosphodiester (exNA-PO) backbone also enables drastic enhancement of metabolic stability without compromising the function of the oligonucleotide. It has been previously shown that phosphorothioate-containing backbones in oligonucleotides are toxic when administered in vivo. Accordingly, the exNA-PO backbone can be employed to enhancement of metabolic stability while decreasing toxicity. Thus, this metabolically stabilizing exNA modification is widely and robustly improves the performance of therapeutic oligonucleotide candidates in vivo.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and example are illustrative only and not intended to be limiting.


Various aspects of the invention are described in further detail in the following subsections.


I. Novel Target Sequences


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting a SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10, as recited in Table 4 and Table 5.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 6A. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 6A.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 7. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 7.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 8. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 8.


In certain exemplary embodiments, RNA silencing agents of the invention comprise an antisense strand as recited in Table 6B. In certain exemplary embodiments, RNA silencing agents of the invention comprise a sense strand as recited in Table 6C. In certain exemplary embodiments, RNA silencing agents of the invention comprise a sense strand as recited in Table 6D.


In one embodiment, the RNA silencing agents of the invention capable of targeting one or more of a SARS-CoV-2 nucleic acid sequence can be combined with RNA silencing agents of the invention capable of targeting one or more of an ACE2, FURIN, TMPRSS2, IL-6, and IL-6R nucleic acid sequence. The endogenous genes ACE2, FURIN, TMPRSS2, IL-6, and IL-6R each may play a role in SARS-CoV-2 infection and pathogenesis.


“ACE2”, as described herein, refers to angiotensin I converting enzyme 2. ACE2 belongs to a family of dipeptidyl carboxydipeptidases and is a zinc-containing metallo protease. ACE2 cleaves angiotensin I into angiotensin II, which has vasoconstrictive properties. It also is a functional receptor of the spike glycoprotein of the human corona viruses. ACE2 expression is age and disease state dependent. Children have lower ACE2 expression, which may explain their decreased susceptibility and milder disease symptoms upon SARS-CoV-2 infection. As such, a reduction in ACE2 expression is a viable therapeutic approach.


“FURIN”, as described herein, refers to a subtilisin-like proprotein belonging to the convertase family of proteases. They include proteases that process protein and peptides precursors as they traffic through the constitute branches of the secretory pathway. Furin is exploited by viruses for cleaving envelope proteins. The spike protein of the SARS-CoV-2 virus must be cleaved by furin to become functional, and as such furin represents an attractive target for siRNA (Coutard et al. Antiviral Research. 176: 104727. April 2020).


“TMPRSS2”, as described herein, refers to Transmembrane Serine Protease 2. TMPRSS2 has been shown to contribute to virus spread and immunopathology in the airways of murine models after coronavirus infection (Iwata-Yoshikawa et al. J. Virol. 93 (6): e01815-18. March 2019).


“IL-6”, as described herein, refers to interleukin-6. “IL-6R”, as described herein, refers to interleukin-6 receptor. IL-6 is an inflammatory agent that contributes to cytokine release syndrome (CRS), a severe and potentially deadly response to an infection. IL-6 stimulates inflammation through an interaction with IL-6R (Liu et al. J Autoimmun. 10: 102452. April 2020). Inhibition of IL-6 or its receptor, IL-6R may prevent or reduce the cytokine release syndrome that occurs during a SARS-CoV-2 infection.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an ACE2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 11D and Table 12C. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an ACE2 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 1 ID and Table 12C.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an FURIN nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 11C and Table 12D. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an FURIN nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 1 IC and Table 12D.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an TMPRSS2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 11A and Table 12A. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an TMPRSS2 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 11A and Table 12A.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an IL-6 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 11B and Table 12B. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an IL-6 nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 11B and Table 12B.


In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an IL-6R nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 12E. In certain exemplary embodiments, RNA silencing agents of the invention are capable of targeting an IL-6R nucleic acid sequence of any one of the 20-nucleotide target regions recited in Table 12E.


Genomic sequence for each target sequence can be found in, for example, the publicly available database maintained by the NCBI.


II. siRNA Design


In some embodiments, siRNAs are designed as follows. First, a portion of the target gene (e.g., the SARS-CoV-2 gene), e.g., one or more of the target sequences set forth in Table 4, Table 5, Table 6A, Table 7, or Table 8 is selected. Cleavage of mRNA at these sites should eliminate translation of corresponding protein. Antisense strands were designed based on the target sequence and sense strands were designed to be complementary to the antisense strand. Hybridization of the antisense and sense strands forms the siRNA duplex. The antisense strand includes about 19 to 25 nucleotides, e.g., 19, 20, 21, 22, 23, 24 or 25 nucleotides. In other embodiments, the antisense strand includes 20, 21, 22 or 23 nucleotides. The sense strand includes about 14 to 25 nucleotides, e.g., 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides. In other embodiments, the sense strand is 15 nucleotides. In other embodiments, the sense strand is 18 nucleotides. In other embodiments, the sense strand is 20 nucleotides. The skilled artisan will appreciate, however, that siRNAs having a length of less than 19 nucleotides or greater than 25 nucleotides can also function to mediate RNAi. Accordingly, siRNAs of such length are also within the scope of the instant invention, provided that they retain the ability to mediate RNAi. Longer RNAi agents have been demonstrated to elicit an interferon or PKR response in certain mammalian cells, which may be undesirable. In certain embodiments, the RNAi agents of the invention do not elicit a PKR response (i.e., are of a sufficiently short length). However, longer RNAi agents may be useful, for example, in cell types incapable of generating a PKR response or in situations where the PKR response has been down-regulated or dampened by alternative means.


The sense strand sequence can be designed such that the target sequence is essentially in the middle of the strand. Moving the target sequence to an off-center position can, in some instances, reduce efficiency of cleavage by the siRNA. Such compositions, i.e., less efficient compositions, may be desirable for use if off-silencing of the wild-type mRNA is detected.


The antisense strand can be the same length as the sense strand and includes complementary nucleotides. In one embodiment, the strands are fully complementary, i.e., the strands are blunt-ended when aligned or annealed. In another embodiment, the strands align or anneal such that 1-, 2-, 3-, 4-, 5-, 6-, 7-, or 8-nucleotide overhangs are generated, i.e., the 3′ end of the sense strand extends 1, 2, 3, 4, 5, 6, 7, or 8 nucleotides further than the 5′ end of the antisense strand and/or the 3′ end of the antisense strand extends 1, 2, 3, 4, 5, 6, 7, or 8 nucleotides further than the 5′ end of the sense strand. Overhangs can comprise (or consist of) nucleotides corresponding to the target gene sequence (or complement thereof). Alternatively, overhangs can comprise (or consist of) deoxyribonucleotides, for example dTs, or nucleotide analogs, or other suitable non-nucleotide material.


To facilitate entry of the antisense strand into RISC (and thus increase or improve the efficiency of target cleavage and silencing), the base pair strength between the 5′ end of the sense strand and 3′ end of the antisense strand can be altered, e.g., lessened or reduced, as described in detail in U.S. Pat. Nos. 7,459,547, 7,772,203 and 7,732,593, entitled “Methods and Compositions for Controlling Efficacy of RNA Silencing” (filed Jun. 2, 2003) and U.S. Pat. Nos. 8,309,704, 7,750,144, 8,304,530, 8,329,892 and 8,309,705, entitled “Methods and Compositions for Enhancing the Efficacy and Specificity of RNAi” (filed Jun. 2, 2003), the contents of which are incorporated in their entirety by this reference. In one embodiment of these aspects of the invention, the base-pair strength is less due to fewer G:C base pairs between the 5′ end of the first or antisense strand and the 3′ end of the second or sense strand than between the 3′ end of the first or antisense strand and the 5′ end of the second or sense strand. In another embodiment, the base pair strength is less due to at least one mismatched base pair between the 5′ end of the first or antisense strand and the 3′ end of the second or sense strand. In certain exemplary embodiments, the mismatched base pair is selected from the group consisting of G:A, C:A, C:U, G:G, A:A, C:C and U:U. In another embodiment, the base pair strength is less due to at least one wobble base pair, e.g., G:U, between the 5′ end of the first or antisense strand and the 3′ end of the second or sense strand. In another embodiment, the base pair strength is less due to at least one base pair comprising a rare nucleotide, e.g., inosine (I). In certain exemplary embodiments, the base pair is selected from the group consisting of an I:A, I:U and I:C. In yet another embodiment, the base pair strength is less due to at least one base pair comprising a modified nucleotide. In certain exemplary embodiments, the modified nucleotide is selected from the group consisting of 2-amino-G, 2-amino-A, 2,6-diamino-G, and 2,6-diamino-A.


The design of siRNAs suitable for targeting the SARS-CoV-2 target sequences set forth in Table 4, Table 5, Table 6A, Table 7, or Table 8 is described in detail below. siRNAs can be designed according to the above exemplary teachings for any other target sequences found in the SARS-CoV-2 gene. Moreover, the technology is applicable to targeting any other target sequences, e.g., non-disease-causing target sequences.


To validate the effectiveness by which siRNAs destroy mRNAs (e.g., SARS-CoV-2 mRNA), the siRNA can be incubated with cDNA (e.g., SARS-CoV-2 cDNA) in a Drosophila-based in vitro mRNA expression system. Radiolabeled with 32P, newly synthesized mRNAs (e.g., SARS-CoV-2 mRNA) are detected autoradiographically on an agarose gel. The presence of cleaved mRNA indicates mRNA nuclease activity. Suitable controls include omission of siRNA. Alternatively, control siRNAs are selected having the same nucleotide composition as the selected siRNA, but without significant sequence complementarity to the appropriate target gene. Such negative controls can be designed by randomly scrambling the nucleotide sequence of the selected siRNA; a homology search can be performed to ensure that the negative control lacks homology to any other gene in the appropriate genome. In addition, negative control siRNAs can be designed by introducing one or more base mismatches into the sequence. Sites of siRNA-mRNA complementation are selected which result in optimal mRNA specificity and maximal mRNA cleavage.


III. RNAi Agents


The present invention includes RNAi molecules, such as siRNA molecules designed, for example, as described above. The siRNA molecules of the invention can be chemically synthesized, or can be transcribed in vitro from a DNA template, or in vivo from e.g., shRNA, or by using recombinant human DICER enzyme, to cleave in vitro transcribed dsRNA templates into pools of 20-, 21- or 23-bp duplex RNA mediating RNAi. The siRNA molecules can be designed using any method known in the art.


In one aspect, instead of the RNAi agent being an interfering ribonucleic acid, e.g., an siRNA or shRNA as described above, the RNAi agent can encode an interfering ribonucleic acid, e.g., an shRNA, as described above. In other words, the RNAi agent can be a transcriptional template of the interfering ribonucleic acid. Thus, RNAi agents of the present invention can also include small hairpin RNAs (shRNAs), and expression constructs engineered to express shRNAs. Transcription of shRNAs is initiated at a polymerase III (pol III) promoter, and is thought to be terminated at position 2 of a 4-5-thymine transcription termination site. Upon expression, shRNAs are thought to fold into a stem-loop structure with 3′ UU-overhangs; subsequently, the ends of these shRNAs are processed, converting the shRNAs into siRNA-like molecules of about 21-23 nucleotides (Brummelkamp et al., 2002; Lee et al., 2002, Supra; Miyagishi et al., 2002; Paddison et al., 2002, supra; Paul et al., 2002, supra; Sui et al., 2002 supra; Yu et al., 2002, supra. More information about shRNA design and use can be found on the internet at the following addresses: katandin.cshl.org:9331/RNAi/docs/BseRI-BamHI_Strategy.pdf and katandin.cshl.org:9331/RNAi/docs/Web_version_of_PCR_strategyl.pdf).


Expression constructs of the present invention include any construct suitable for use in the appropriate expression system and include, but are not limited to, retroviral vectors, linear expression cassettes, plasmids and viral or virally-derived vectors, as known in the art. Such expression constructs can include one or more inducible promoters, RNA Pol III promoter systems, such as U6 snRNA promoters or H1 RNA polymerase III promoters, or other promoters known in the art. The constructs can include one or both strands of the siRNA. Expression constructs expressing both strands can also include loop structures linking both strands, or each strand can be separately transcribed from separate promoters within the same construct. Each strand can also be transcribed from a separate expression construct. (Tuschl, T., 2002, Supra).


Synthetic siRNAs can be delivered into cells by methods known in the art, including cationic liposome transfection and electroporation. To obtain longer term suppression of the target genes (e.g., SARS-CoV-2 genes) and to facilitate delivery under certain circumstances, one or more siRNA can be expressed within cells from recombinant DNA constructs. Such methods for expressing siRNA duplexes within cells from recombinant DNA constructs to allow longer-term target gene suppression in cells are known in the art, including mammalian Pol III promoter systems (e.g., H1 or U6/snRNA promoter systems (Tuschl, T., 2002, supra) capable of expressing functional double-stranded siRNAs; (Bagella et al., 1998; Lee et al., 2002, supra; Miyagishi et al., 2002, supra; Paul et al., 2002, supra; Yu et al., 2002, supra; Sui et al., 2002, supra). Transcriptional termination by RNA Pol III occurs at runs of four consecutive T residues in the DNA template, providing a mechanism to end the siRNA transcript at a specific sequence. The siRNA is complementary to the sequence of the target gene in 5′-3′ and 3′-5′ orientations, and the two strands of the siRNA can be expressed in the same construct or in separate constructs. Hairpin siRNAs, driven by H1 or U6 snRNA promoter and expressed in cells, can inhibit target gene expression (Bagella et al., 1998; Lee et al., 2002, supra; Miyagishi et al., 2002, supra; Paul et al., 2002, supra; Yu et al., 2002), supra; Sui et al., 2002, supra). Constructs containing siRNA sequence under the control of T7 promoter also make functional siRNAs when co-transfected into the cells with a vector expressing T7 RNA polymerase (Jacque et al., 2002, supra). A single construct may contain multiple sequences coding for siRNAs, such as multiple regions of the gene encoding SARS-CoV-2, targeting the same gene or multiple genes, and can be driven, for example, by separate PolIII promoter sites.


Animal cells express a range of noncoding RNAs of approximately 22 nucleotides termed micro RNA (miRNAs), which can regulate gene expression at the post transcriptional or translational level during animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop, probably by Dicer, an RNase III-type enzyme, or a homolog thereof. By substituting the stem sequences of the miRNA precursor with sequence complementary to the target mRNA, a vector construct that expresses the engineered precursor can be used to produce siRNAs to initiate RNAi against specific mRNA targets in mammalian cells (Zeng et al., 2002, supra). When expressed by DNA vectors containing polymerase III promoters, micro-RNA designed hairpins can silence gene expression (McManus et al., 2002, supra). MicroRNAs targeting polymorphisms may also be useful for blocking translation of mutant proteins, in the absence of siRNA-mediated gene-silencing. Such applications may be useful in situations, for example, where a designed siRNA caused off-target silencing of wild type protein.


Viral-mediated delivery mechanisms can also be used to induce specific silencing of targeted genes through expression of siRNA, for example, by generating recombinant adenoviruses harboring siRNA under RNA Pol II promoter transcription control (Xia et al., 2002, supra). Infection of HeLa cells by these recombinant adenoviruses allows for diminished endogenous target gene expression. Injection of the recombinant adenovirus vectors into transgenic mice expressing the target genes of the siRNA results in in vivo reduction of target gene expression. Id. In an animal model, whole-embryo electroporation can efficiently deliver synthetic siRNA into post-implantation mouse embryos (Calegari et al., 2002). In adult mice, efficient delivery of siRNA can be accomplished by “high-pressure” delivery technique, a rapid injection (within 5 seconds) of a large volume of siRNA containing solution into animal via the tail vein (Liu et al., 1999, supra; McCaffrey et al., 2002, supra; Lewis et al., 2002. Nanoparticles and liposomes can also be used to deliver siRNA into animals. In certain exemplary embodiments, recombinant adeno-associated viruses (rAAVs) and their associated vectors can be used to deliver one or more siRNAs into cells, e.g., lung (e.g., endothelial cells, epithelial cells, fibroblasts, and immune cells in the lungs, e.g. clara cells, alveolar cells, and club cells)


The nucleic acid compositions of the invention include both unmodified siRNAs and modified siRNAs, such as crosslinked siRNA derivatives or derivatives having non-nucleotide moieties linked, for example to their 3′ or 5′ ends. Modifying siRNA derivatives in this way may improve cellular uptake or enhance cellular targeting activities of the resulting siRNA derivative, as compared to the corresponding siRNA, and are useful for tracing the siRNA derivative in the cell, or improving the stability of the siRNA derivative compared to the corresponding siRNA.


Engineered RNA precursors, introduced into cells or whole organisms as described herein, will lead to the production of a desired siRNA molecule. Such an siRNA molecule will then associate with endogenous protein components of the RNAi pathway to bind to and target a specific mRNA sequence for cleavage and destruction. In this fashion, the mRNA, which will be targeted by the siRNA generated from the engineered RNA precursor, and will be depleted from the cell or organism, leading to a decrease in the concentration of the protein encoded by that mRNA in the cell or organism. The RNA precursors are typically nucleic acid molecules that individually encode either one strand of a dsRNA or encode the entire nucleotide sequence of an RNA hairpin loop structure.


The nucleic acid compositions of the invention can be unconjugated or can be conjugated to another moiety, such as a nanoparticle, to enhance a property of the compositions, e.g., a pharmacokinetic parameter such as absorption, efficacy, bioavailability and/or half-life. The conjugation can be accomplished by methods known in the art, e.g., using the methods of Lambert et al., Drug Deliv. Rev.: 47(1), 99-112 (2001) (describes nucleic acids loaded to polyalkylcyanoacrylate (PACA) nanoparticles); Fattal et al., J. Control Release 53 (1-3): 137-43 (1998) (describes nucleic acids bound to nanoparticles); Schwab et al., Ann. Oncol. 5 Suppl. 4:55-8 (1994) (describes nucleic acids linked to intercalating agents, hydrophobic groups, polycations or PACA nanoparticles); and Godard et al., Eur. J. Biochem. 232(2):404-10 (1995) (describes nucleic acids linked to nanoparticles).


The nucleic acid molecules of the present invention can also be labeled using any method known in the art. For instance, the nucleic acid compositions can be labeled with a fluorophore, e.g., Cy3, fluorescein, or rhodamine. The labeling can be carried out using a kit, e.g., the SILENCER™ siRNA labeling kit (Ambion). Additionally, the siRNA can be radiolabeled, e.g., using 3H, 32P or another appropriate isotope.


Moreover, because RNAi is believed to progress via at least one single-stranded RNA intermediate, the skilled artisan will appreciate that ss-siRNAs (e.g., the antisense strand of a ds-siRNA) can also be designed (e.g., for chemical synthesis), generated (e.g., enzymatically generated), or expressed (e.g., from a vector or plasmid) as described herein and utilized according to the claimed methodologies. Moreover, in invertebrates, RNAi can be triggered effectively by long dsRNAs (e.g., dsRNAs about 100-1000 nucleotides in length, such as about 200-500, for example, about 250, 300, 350, 400 or 450 nucleotides in length) acting as effectors of RNAi. (Brondani et al., Proc Natl Acad Sci USA. 2001 Dec. 4; 98(25):14428-33. Epub 2001 Nov. 27.)


IV. Anti-SARS-CoV-2 RNA Silencing Agents


In certain embodiment, the present invention provides novel anti-SARS-CoV-2 RNA silencing agents (e.g., siRNA, shRNA, and antisense oligonucleotides), methods of making said RNA silencing agents, and methods (e.g., research and/or therapeutic methods) for using said improved RNA silencing agents (or portions thereof) for RNA silencing of SARS-CoV-2 protein. The RNA silencing agents comprise an antisense strand (or portions thereof), wherein the antisense strand has sufficient complementary to a target SARS-CoV-2 mRNA to mediate an RNA-mediated silencing mechanism (e.g. RNAi).


In certain embodiments, siRNA compounds are provided having one or any combination of the following properties: (1) fully chemically-stabilized (i.e., no unmodified 2′-OH residues); (2) asymmetry; (3) 11-20 base pair duplexes; (4) greater than 50% 2′-methoxy modifications, such as 70%-100% 2′-methoxy modifications, although an alternating pattern of chemically-modified nucleotides (e.g., 2′-fluoro and 2′-methoxy modifications), are also contemplated; and (5) single-stranded, fully phosphorothioated tails of 5-8 bases. In certain embodiments, the number of phosphorothioate modifications is varied from 4 to 16 total. In certain embodiments, the number of phosphorothioate modifications is varied from 8 to 13 total.


In certain embodiments, the siRNA compounds described herein can be conjugated to a variety of targeting agents, including, but not limited to, docosanoic acid (DCA), cholesterol, docosahexaenoic acid (DHA), phenyltropanes, cortisol, vitamin A, vitamin D, N-acetylgalactosamine (GalNac), and gangliosides. The cholesterol-modified version showed 5-10 fold improvement in efficacy in vitro versus previously used chemical stabilization patterns (e.g., wherein all purine but not pyrimidines are modified) in wide range of cell types (e.g., HeLa, neurons, hepatocytes, trophoblasts. lung epithelial cells).


Certain compounds of the invention having the structural properties described above and herein may be referred to as “hsiRNA-ASP” (hydrophobically-modified, small interfering RNA, featuring an advanced stabilization pattern). In addition, siRNAs conjugated to DCA or EPA and containing different numbers of 3′ exNA modifications and phosphorothioates showed a dramatically improved distribution through the lung, making them accessible for therapeutic intervention.


In certain embodiments, the siRNA comprises between 6 and 13 total phosphorothioate modifications. In certain embodiments, the siRNA comprises 6 phosphorothioate modifications. In certain embodiments, the siRNA comprises 8 phosphorothioate modifications. In certain embodiments, the siRNA antisense strand comprises 6 phosphorothioate modifications. In certain embodiments, the siRNA antisense strand comprises 4 phosphorothioate modifications. In certain embodiments, the siRNA sense strand comprises 2 phosphorothioate modifications.


In certain embodiments, the siRNA sense strand 3′ end is conjugated to DCA. In certain embodiments, the siRNA sense strand 3′ end is conjugated to EPA.


In certain embodiments, the siRNA antisense strand comprises two to five 3′ exNA modifications. In certain embodiments, the siRNA antisense strand comprises two 3′ exNA modifications. In certain embodiments, the siRNA antisense strand comprises three 3′ exNA modifications. In certain embodiments, the siRNA antisense strand comprises four 3′ exNA modifications. In certain embodiments, the siRNA antisense strand comprises five 3′ exNA modifications. In certain embodiments, the siRNA antisense strand comprises four consecutive 3′ exNA modifications.


In certain embodiments, the siRNA antisense strand comprises two to five 3′ exNA modifications and 6 phosphorothioate modifications. In certain embodiments, the siRNA antisense strand comprises two to five 3′ exNA modifications and 4 phosphorothioate modifications. In certain embodiments, the siRNA antisense strand comprises four 3′ exNA modifications and 6 phosphorothioate modifications. In certain embodiments, the siRNA antisense strand comprises four 3′ exNA modifications and 4 phosphorothioate modifications.


The compounds of the invention can be described in the following aspects and embodiments.


In a first aspect, provided herein is a double stranded RNA (dsRNA) comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises alternating 2′-methoxy-ribonucleotides and 2′-fluoro-ribonucleotides;
    • (3) the nucleotides at positions 2 and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises alternating 2′-methoxy-ribonucleotides and 2′-fluoro-ribonucleotides; and
    • (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a second aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 70% 2′-O-methyl modifications;
    • (3) the nucleotide at position 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises at least 70% 2′-O-methyl modifications; and
    • (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a third aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 85% 2′-O-methyl modifications;
    • (3) the nucleotides at positions 2 and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises 100% 2′-O-methyl modifications; and
    • (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a fourth aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 75% 2′-O-methyl modifications;
    • (3) the nucleotides at positions 4, 5, 6, and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises 100% 2′-O-methyl modifications; and
    • (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a fifth aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 75% 2′-O-methyl modifications;
    • (3) the nucleotides at positions 2, 4, 5, 6, and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises 100% 2′-O-methyl modifications; and
    • (7) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a sixth aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 75% 2′-O-methyl modifications;
    • (3) the nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises at least 70% 2′-O-methyl modifications;
    • (7) the nucleotides at positions 7, 9, 10, and 11 from the 3′ end of the sense strand are not 2′-methoxy-ribonucleotides; and
    • (8) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


In a seventh aspect, provided herein is a dsRNA comprising an antisense strand and a sense strand, each strand comprising at least 14 contiguous nucleotides, with a 5′ end and a 3′ end, wherein:

    • (1) the antisense strand comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions in Table 6A;
    • (2) the antisense strand comprises at least 75% 2′-O-methyl modifications;
    • (3) the nucleotides at positions 2, 6, and 14 from the 5′ end of the antisense strand are not 2′-methoxy-ribonucleotides;
    • (4) the nucleotides at positions 1-2 to 1-7 from the 3′ end of the antisense strand are connected to each other via phosphorothioate internucleotide linkages;
    • (5) a portion of the antisense strand is complementary to a portion of the sense strand;
    • (6) the sense strand comprises at least 80% 2′-O-methyl modifications;
    • (7) the nucleotides at positions 7, 10, and 11 from the 3′ end of the sense strand are not 2′-methoxy-ribonucleotides; and
    • (8) the nucleotides at positions 1-2 from the 5′ end of the sense strand are connected to each other via phosphorothioate internucleotide linkages.


a) Design of Anti-SARS-CoV-2 siRNA Molecules


An siRNA molecule of the application is a duplex made of a sense strand and complementary antisense strand, the antisense strand having sufficient complementary to a SARS-CoV-2 mRNA to mediate RNAi. In certain embodiments, the siRNA molecule has a length from about 10-50 or more nucleotides, i.e., each strand comprises 10-50 nucleotides (or nucleotide analogs). In other embodiments, the siRNA molecule has a length from about 15-30, e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in each strand, wherein one of the strands is sufficiently complementary to a target region. In certain embodiments, the strands are aligned such that there are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 bases at the end of the strands, which do not align (i.e., for which no complementary bases occur in the opposing strand), such that an overhang of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 residues occurs at one or both ends of the duplex when strands are annealed.


Usually, siRNAs can be designed by using any method known in the art, for instance, by using the following protocol:


1. The siRNA should be specific for a target sequence, e.g., a target sequence set forth in the Examples. The first strand should be complementary to the target sequence, and the other strand is substantially complementary to the first strand. (See Examples for exemplary sense and antisense strands.) Exemplary target sequences are selected from any region of the target gene that leads to potent gene silencing. Regions of the target gene include, but are not limited to, the 5′ untranslated region (5′-UTR) of a target gene, the 3′ untranslated region (3′-UTR) of a target gene, an exon of a target gene, or an intron of a target gene. Cleavage of mRNA at these sites should eliminate translation of corresponding SARS-CoV-2 protein. Target sequences from other regions of the SARS-CoV-2 gene are also suitable for targeting. A sense strand is designed based on the target sequence.


2. The sense strand of the siRNA is designed based on the sequence of the selected target site. In certain embodiments, the sense strand includes about 15 to 25 nucleotides, e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides. In certain embodiments, the sense strand includes 15, 16, 17, 18, 19, or 20 nucleotides. In certain embodiments, the sense strand is 15 nucleotides in length. In certain embodiments, the sense strand is 18 nucleotides in length. In certain embodiments, the sense strand is 20 nucleotides in length. The skilled artisan will appreciate, however, that siRNAs having a length of less than 15 nucleotides or greater than 25 nucleotides can also function to mediate RNAi. Accordingly, siRNAs of such length are also within the scope of the instant invention, provided that they retain the ability to mediate RNAi. Longer RNA silencing agents have been demonstrated to elicit an interferon or Protein Kinase R (PKR) response in certain mammalian cells which may be undesirable. In certain embodiments, the RNA silencing agents of the invention do not elicit a PKR response (i.e., are of a sufficiently short length). However, longer RNA silencing agents may be useful, for example, in cell types incapable of generating a PKR response or in situations where the PKR response has been down-regulated or dampened by alternative means.


The siRNA molecules of the invention have sufficient complementarity with the target sequence such that the siRNA can mediate RNAi. In general, siRNA containing nucleotide sequences sufficiently complementary to a target sequence portion of the target gene to effect RISC-mediated cleavage of the target gene are contemplated. Accordingly, in a certain embodiment, the antisense strand of the siRNA is designed to have a sequence sufficiently complementary to a portion of the target. For example, the antisense strand may have 100% complementarity to the target site. However, 100% complementarity is not required. Greater than 80% identity, e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or even 100% complementarity, between the antisense strand and the target RNA sequence is contemplated. The present application has the advantage of being able to tolerate certain sequence variations to enhance efficiency and specificity of RNAi. In one embodiment, the antisense strand has 4, 3, 2, 1, or 0 mismatched nucleotide(s) with a target region, such as a target region that differs by at least one base pair between a wild-type and mutant allele, e.g., a target region comprising the gain-of-function mutation, and the other strand is identical or substantially identical to the first strand. Moreover, siRNA sequences with small insertions or deletions of 1 or 2 nucleotides may also be effective for mediating RNAi. Alternatively, siRNA sequences with nucleotide analog substitutions or insertions can be effective for inhibition.


Sequence identity may be determined by sequence comparison and alignment algorithms known in the art. To determine the percent identity of two nucleic acid sequences (or of two amino acid sequences), the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the first sequence or second sequence for optimal alignment). The nucleotides (or amino acid residues) at corresponding nucleotide (or amino acid) positions are then compared. When a position in the first sequence is occupied by the same residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=number of identical positions/total number of positions×100), optionally penalizing the score for the number of gaps introduced and/or length of gaps introduced.


The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In one embodiment, the alignment generated over a certain portion of the sequence aligned having sufficient identity but not over portions having low degree of identity (i.e., a local alignment). A non-limiting example of a local alignment algorithm utilized for the comparison of sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77. Such an algorithm is incorporated into the BLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.


In another embodiment, the alignment is optimized by introducing appropriate gaps and the percent identity is determined over the length of the aligned sequences (i.e., a gapped alignment). To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. In another embodiment, the alignment is optimized by introducing appropriate gaps and percent identity is determined over the entire length of the sequences aligned (i.e., a global alignment). A non-limiting example of a mathematical algorithm utilized for the global comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.


3. The antisense or guide strand of the siRNA is routinely the same length as the sense strand and includes complementary nucleotides. In one embodiment, the guide and sense strands are fully complementary, i.e., the strands are blunt-ended when aligned or annealed. In another embodiment, the strands of the siRNA can be paired in such a way as to have a 3′ overhang of 1 to 7 (e.g., 2, 3, 4, 5, 6 or 7), or 1 to 4, e.g., 2, 3 or 4 nucleotides. Overhangs can comprise (or consist of) nucleotides corresponding to the target gene sequence (or complement thereof). Alternatively, overhangs can comprise (or consist of) deoxyribonucleotides, for example dTs, or nucleotide analogs, or other suitable non-nucleotide material. Thus, in another embodiment, the nucleic acid molecules may have a 3′ overhang of 2 nucleotides, such as TT. The overhanging nucleotides may be either RNA or DNA. As noted above, it is desirable to choose a target region wherein the mutant:wild type mismatch is a purine:purine mismatch.


4. Using any method known in the art, compare the potential targets to the appropriate genome database (human, mouse, rat, etc.) and eliminate from consideration any target sequences with significant homology to other coding sequences. One such method for such sequence homology searches is known as BLAST, which is available at National Center for Biotechnology Information website.


5. Select one or more sequences that meet your criteria for evaluation.


Further general information about the design and use of siRNA may be found in “The siRNA User Guide,” available at The Max-Plank-Institut fur Biophysikalische Chemie website.


Alternatively, the siRNA may be defined functionally as a nucleotide sequence (or oligonucleotide sequence) that is capable of hybridizing with the target sequence (e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. hybridization for 12-16 hours; followed by washing). Additional hybridization conditions include hybridization at 70° C. in 1×SSC or 50° C. in 1×SSC, 50% formamide followed by washing at 70° C. in 0.3×SSC or hybridization at 70° C. in 4×SSC or 50° C. in 4×SSC, 50% formamide followed by washing at 67° C. in 1×SSC. The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10° C. less than the melting temperature (Tm) of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm(° C.)=2 (# of A+T bases)+4 (# of G+C bases). For hybrids between 18 and 49 base pairs in length, Tm(° C.)=81.5+16.6 (log 10[Na+])+0.41 (% G+C)−(600/N), where N is the number of bases in the hybrid, and [Na+] is the concentration of sodium ions in the hybridization buffer ([Na+] for 1×SSC=0.165 M). Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F. M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.


Negative control siRNAs should have the same nucleotide composition as the selected siRNA, but without significant sequence complementarity to the appropriate genome. Such negative controls may be designed by randomly scrambling the nucleotide sequence of the selected siRNA. A homology search can be performed to ensure that the negative control lacks homology to any other gene in the appropriate genome. In addition, negative control siRNAs can be designed by introducing one or more base mismatches into the sequence.


6. To validate the effectiveness by which siRNAs destroy target mRNAs (e.g., wild-type or mutant SARS-CoV-2 mRNA), the siRNA may be incubated with target cDNA (e.g., SARS-CoV-2 cDNA) in a Drosophila-based in vitro mRNA expression system. Radiolabeled with 32P, newly synthesized target mRNAs (e.g., SARS-CoV-2 mRNA) are detected autoradiographically on an agarose gel. The presence of cleaved target mRNA indicates mRNA nuclease activity. Suitable controls include omission of siRNA and use of non-target cDNA. Alternatively, control siRNAs are selected having the same nucleotide composition as the selected siRNA, but without significant sequence complementarity to the appropriate target gene. Such negative controls can be designed by randomly scrambling the nucleotide sequence of the selected siRNA. A homology search can be performed to ensure that the negative control lacks homology to any other gene in the appropriate genome. In addition, negative control siRNAs can be designed by introducing one or more base mismatches into the sequence.


Anti-SARS-CoV-2 siRNAs may be designed to target any of the target sequences described supra. Said siRNAs comprise an antisense strand, which is sufficiently complementary with the target sequence to mediate silencing of the target sequence. In certain embodiments, the RNA silencing agent is a siRNA.


In certain embodiments, the siRNA comprises a sense strand comprising a sequence set forth in Table 6C or Table 6D, and an antisense strand comprising a sequence set forth in Table 6B.


Sites of siRNA-mRNA complementation are selected, which result in optimal mRNA specificity and maximal mRNA cleavage.


b) siRNA-Like Molecules


siRNA-like molecules of the invention have a sequence (i.e., have a strand having a sequence) that is “sufficiently complementary” to a target sequence of an SARS-CoV-2 mRNA to direct gene silencing either by RNAi or translational repression. siRNA-like molecules are designed in the same way as siRNA molecules, but the degree of sequence identity between the sense strand and target RNA approximates that observed between a miRNA and its target. In general, as the degree of sequence identity between a miRNA sequence and the corresponding target gene sequence is decreased, the tendency to mediate post-transcriptional gene silencing by translational repression rather than RNAi is increased. Therefore, in an alternative embodiment, where post-transcriptional gene silencing by translational repression of the target gene is desired, the miRNA sequence has partial complementarity with the target gene sequence. In certain embodiments, the miRNA sequence has partial complementarity with one or more short sequences (complementarity sites) dispersed within the target mRNA (e.g. within the 3′-UTR of the target mRNA) (Hutvagner and Zamore, Science, 2002; Zeng et al., Mol. Cell, 2002; Zeng et al., RNA, 2003; Doench et al., Genes & Dev., 2003). Since the mechanism of translational repression is cooperative, multiple complementarity sites (e.g., 2, 3, 4, 5, or 6) may be targeted in certain embodiments.


The capacity of a siRNA-like duplex to mediate RNAi or translational repression may be predicted by the distribution of non-identical nucleotides between the target gene sequence and the nucleotide sequence of the silencing agent at the site of complementarity. In one embodiment, where gene silencing by translational repression is desired, at least one non-identical nucleotide is present in the central portion of the complementarity site so that duplex formed by the miRNA guide strand and the target mRNA contains a central “bulge” (Doench J G et al., Genes & Dev., 2003). In another embodiment 2, 3, 4, 5, or 6 contiguous or non-contiguous non-identical nucleotides are introduced. The non-identical nucleotide may be selected such that it forms a wobble base pair (e.g., G:U) or a mismatched base pair (G:A, C:A, C:U, G:G, A:A, C:C, U:U). In a further embodiment, the “bulge” is centered at nucleotide positions 12 and 13 from the 5′ end of the miRNA molecule.


c) Short Hairpin RNA (shRNA) Molecules


In certain featured embodiments, the instant invention provides shRNAs capable of mediating RNA silencing of an SARS-CoV-2 target sequence with enhanced selectivity. In contrast to siRNAs, shRNAs mimic the natural precursors of micro RNAs (miRNAs) and enter at the top of the gene silencing pathway. For this reason, shRNAs are believed to mediate gene silencing more efficiently by being fed through the entire natural gene silencing pathway.


miRNAs are noncoding RNAs of approximately 22 nucleotides, which can regulate gene expression at the post transcriptional or translational level during plant and animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop termed pre-miRNA, probably by Dicer, an RNase III-type enzyme, or a homolog thereof. Naturally-occurring miRNA precursors (pre-miRNA) have a single strand that forms a duplex stem including two portions that are generally complementary, and a loop, that connects the two portions of the stem. In typical pre-miRNAs, the stem includes one or more bulges, e.g., extra nucleotides that create a single nucleotide “loop” in one portion of the stem, and/or one or more unpaired nucleotides that create a gap in the hybridization of the two portions of the stem to each other. Short hairpin RNAs, or engineered RNA precursors, of the present application are artificial constructs based on these naturally occurring pre-miRNAs, but which are engineered to deliver desired RNA silencing agents (e.g., siRNAs of the invention). By substituting the stem sequences of the pre-miRNA with sequence complementary to the target mRNA, a shRNA is formed. The shRNA is processed by the entire gene silencing pathway of the cell, thereby efficiently mediating RNAi.


The requisite elements of a shRNA molecule include a first portion and a second portion, having sufficient complementarity to anneal or hybridize to form a duplex or double-stranded stem portion. The two portions need not be fully or perfectly complementary. The first and second “stem” portions are connected by a portion having a sequence that has insufficient sequence complementarity to anneal or hybridize to other portions of the shRNA. This latter portion is referred to as a “loop” portion in the shRNA molecule. The shRNA molecules are processed to generate siRNAs. shRNAs can also include one or more bulges, i.e., extra nucleotides that create a small nucleotide “loop” in a portion of the stem, for example a one-, two- or three-nucleotide loop. The stem portions can be the same length, or one portion can include an overhang of, for example, 1-5 nucleotides. The overhanging nucleotides can include, for example, uracils (Us), e.g., all Us. Such Us are notably encoded by thymidines (Ts) in the shRNA-encoding DNA which signal the termination of transcription.


In shRNAs (or engineered precursor RNAs) of the instant invention, one portion of the duplex stem is a nucleic acid sequence that is complementary (or anti-sense) to the SARS-CoV-2 target sequence. In certain embodiments, one strand of the stem portion of the shRNA is sufficiently complementary (e.g., antisense) to a target RNA (e.g., mRNA) sequence to mediate degradation or cleavage of said target RNA via RNA interference (RNAi). Thus, engineered RNA precursors include a duplex stem with two portions and a loop connecting the two stem portions. The antisense portion can be on the 5′ or 3′ end of the stem. The stem portions of a shRNA are about 15 to about 50 nucleotides in length. In certain embodiments, the two stem portions are about 18 or 19 to about 21, 22, 23, 24, 25, 30, 35, 37, 38, 39, or 40 or more nucleotides in length. In certain embodiments, the length of the stem portions should be 21 nucleotides or greater. When used in mammalian cells, the length of the stem portions should be less than about 30 nucleotides to avoid provoking non-specific responses like the interferon pathway. In non-mammalian cells, the stem can be longer than 30 nucleotides. In fact, the stem can include much larger sections complementary to the target mRNA (up to, and including the entire mRNA). In fact, a stem portion can include much larger sections complementary to the target mRNA (up to, and including the entire mRNA).


The two portions of the duplex stem must be sufficiently complementary to hybridize to form the duplex stem. Thus, the two portions can be, but need not be, fully or perfectly complementary. In addition, the two stem portions can be the same length, or one portion can include an overhang of 1, 2, 3, or 4 nucleotides. The overhanging nucleotides can include, for example, uracils (Us), e.g., all Us. The loop in the shRNAs or engineered RNA precursors may differ from natural pre-miRNA sequences by modifying the loop sequence to increase or decrease the number of paired nucleotides, or replacing all or part of the loop sequence with a tetraloop or other loop sequences. Thus, the loop in the shRNAs or engineered RNA precursors can be 2, 3, 4, 5, 6, 7, 8, 9, or more, e.g., 15 or 20, or more nucleotides in length.


The loop in the shRNAs or engineered RNA precursors may differ from natural pre-miRNA sequences by modifying the loop sequence to increase or decrease the number of paired nucleotides, or replacing all or part of the loop sequence with a tetraloop or other loop sequences. Thus, the loop portion in the shRNA can be about 2 to about 20 nucleotides in length, i.e., about 2, 3, 4, 5, 6, 7, 8, 9, or more, e.g., 15 or 20, or more nucleotides in length. In certain embodiments, a loop consists of or comprises a “tetraloop” sequence. Exemplary tetraloop sequences include, but are not limited to, the sequences GNRA, where N is any nucleotide and R is a purine nucleotide, GGGG, and UUUU.


In certain embodiments, shRNAs of the present application include the sequences of a desired siRNA molecule described supra. In other embodiments, the sequence of the antisense portion of a shRNA can be designed essentially as described above or generally by selecting an 18, 19, 20, 21 nucleotides, or longer, sequence from within the target RNA (e.g., SARS-CoV-2 mRNA), for example, from a region 100 to 200 or 300 nucleotides upstream or downstream of the start of translation. In general, the sequence can be selected from any portion of the target RNA (e.g., mRNA) including the 5′ UTR (untranslated region), coding sequence, or 3′ UTR. This sequence can optionally follow immediately after a region of the target gene containing two adjacent AA nucleotides. The last two nucleotides of the nucleotide sequence can be selected to be UU. This 21 or so nucleotide sequence is used to create one portion of a duplex stem in the shRNA. This sequence can replace a stem portion of a wild-type pre-miRNA sequence, e.g., enzymatically, or is included in a complete sequence that is synthesized. For example, one can synthesize DNA oligonucleotides that encode the entire stem-loop engineered RNA precursor, or that encode just the portion to be inserted into the duplex stem of the precursor, and using restriction enzymes to build the engineered RNA precursor construct, e.g., from a wild-type pre-miRNA.


Engineered RNA precursors include, in the duplex stem, the 21-22 or so nucleotide sequences of the siRNA or siRNA-like duplex desired to be produced in vivo. Thus, the stem portion of the engineered RNA precursor includes at least 18 or 19 nucleotide pairs corresponding to the sequence of an exonic portion of the gene whose expression is to be reduced or inhibited. The two 3′ nucleotides flanking this region of the stem are chosen so as to maximize the production of the siRNA from the engineered RNA precursor and to maximize the efficacy of the resulting siRNA in targeting the corresponding mRNA for translational repression or destruction by RNAi in vivo and in vitro.


In certain embodiments, shRNAs of the invention include miRNA sequences, optionally end-modified miRNA sequences, to enhance entry into RISC. The miRNA sequence can be similar or identical to that of any naturally occurring miRNA (see e.g. The miRNA Registry; Griffiths-Jones S, Nuc. Acids Res., 2004). Over one thousand natural miRNAs have been identified to date and together they are thought to comprise about 1% of all predicted genes in the genome. Many natural miRNAs are clustered together in the introns of pre-mRNAs and can be identified in silico using homology-based searches (Pasquinelli et al., 2000; Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001) or computer algorithms (e.g. MiRScan, MiRSeeker) that predict the capability of a candidate miRNA gene to form the stem loop structure of a pri-mRNA (Grad et al., Mol. Cell., 2003; Lim et al., Genes Dev., 2003; Lim et al., Science, 2003; Lai E C et al., Genome Bio., 2003). An online registry provides a searchable database of all published miRNA sequences (The miRNA Registry at the Sanger Institute website; Griffiths-Jones S, Nuc. Acids Res., 2004). Exemplary, natural miRNAs include lin-4, let-7, miR-10, mirR-15, miR-16, miR-168, miR-175, miR-196 and their homologs, as well as other natural miRNAs from humans and certain model organisms including Drosophila melanogaster, Caenorhabditis elegans, zebrafish, Arabidopsis thalania, Mus musculus, and Rattus norvegicus as described in International PCT Publication No. WO 03/029459.


Naturally-occurring miRNAs are expressed by endogenous genes in vivo and are processed from a hairpin or stem-loop precursor (pre-miRNA or pri-miRNAs) by Dicer or other RNAses (Lagos-Quintana et al., Science, 2001; Lau et al., Science, 2001; Lee and Ambros, Science, 2001; Lagos-Quintana et al., Curr. Biol., 2002; Mourelatos et al., Genes Dev., 2002; Reinhart et al., Science, 2002; Ambros et al., Curr. Biol., 2003; Brennecke et al., 2003; Lagos-Quintana et al., RNA, 2003; Lim et al., Genes Dev., 2003; Lim et al., Science, 2003). miRNAs can exist transiently in vivo as a double-stranded duplex, but only one strand is taken up by the RISC complex to direct gene silencing. Certain miRNAs, e.g., plant miRNAs, have perfect or near-perfect complementarity to their target mRNAs and, hence, direct cleavage of the target mRNAs. Other miRNAs have less than perfect complementarity to their target mRNAs and, hence, direct translational repression of the target mRNAs. The degree of complementarity between a miRNA and its target mRNA is believed to determine its mechanism of action. For example, perfect or near-perfect complementarity between a miRNA and its target mRNA is predictive of a cleavage mechanism (Yekta et al., Science, 2004), whereas less than perfect complementarity is predictive of a translational repression mechanism. In certain embodiments, the miRNA sequence is that of a naturally-occurring miRNA sequence, the aberrant expression or activity of which is correlated with a miRNA disorder.


d) Dual Functional Oligonucleotide Tethers


In other embodiments, the RNA silencing agents of the present invention include dual functional oligonucleotide tethers useful for the intercellular recruitment of a miRNA. Animal cells express a range of miRNAs, noncoding RNAs of approximately 22 nucleotides which can regulate gene expression at the post transcriptional or translational level. By binding a miRNA bound to RISC and recruiting it to a target mRNA, a dual functional oligonucleotide tether can repress the expression of genes involved e.g., in the arteriosclerotic process. The use of oligonucleotide tethers offers several advantages over existing techniques to repress the expression of a particular gene. First, the methods described herein allow an endogenous molecule (often present in abundance), a miRNA, to mediate RNA silencing. Accordingly, the methods described herein obviate the need to introduce foreign molecules (e.g., siRNAs) to mediate RNA silencing. Second, the RNA-silencing agents and the linking moiety (e.g., oligonucleotides such as the 2′-O-methyl oligonucleotide), can be made stable and resistant to nuclease activity. As a result, the tethers of the present invention can be designed for direct delivery, obviating the need for indirect delivery (e.g. viral) of a precursor molecule or plasmid designed to make the desired agent within the cell. Third, tethers and their respective moieties, can be designed to conform to specific mRNA sites and specific miRNAs. The designs can be cell and gene product specific. Fourth, the methods disclosed herein leave the mRNA intact, allowing one skilled in the art to block protein synthesis in short pulses using the cell's own machinery. As a result, these methods of RNA silencing are highly regulatable.


The dual functional oligonucleotide tethers (“tethers”) of the invention are designed such that they recruit miRNAs (e.g., endogenous cellular miRNAs) to a target mRNA so as to induce the modulation of a gene of interest. In certain embodiments, the tethers have the formula T-L-μ, wherein T is an mRNA targeting moiety, L is a linking moiety, and is a miRNA recruiting moiety. Any one or more moiety may be double stranded. In certain embodiments, each moiety is single stranded.


Moieties within the tethers can be arranged or linked (in the 5′ to 3′ direction) as depicted in the formula T-L-μ (i.e., the 3′ end of the targeting moiety linked to the 5′ end of the linking moiety and the 3′ end of the linking moiety linked to the 5′ end of the miRNA recruiting moiety). Alternatively, the moieties can be arranged or linked in the tether as follows: μ-T-L (i.e., the 3′ end of the miRNA recruiting moiety linked to the 5′ end of the linking moiety and the 3′ end of the linking moiety linked to the 5′ end of the targeting moiety).


The mRNA targeting moiety, as described above, is capable of capturing a specific target mRNA. According to the invention, expression of the target mRNA is undesirable, and, thus, translational repression of the mRNA is desired. The mRNA targeting moiety should be of sufficient size to effectively bind the target mRNA. The length of the targeting moiety will vary greatly, depending, in part, on the length of the target mRNA and the degree of complementarity between the target mRNA and the targeting moiety. In various embodiments, the targeting moiety is less than about 200, 100, 50, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, or 5 nucleotides in length. In a certain embodiment, the targeting moiety is about 15 to about 25 nucleotides in length.


The miRNA recruiting moiety, as described above, is capable of associating with a miRNA. According to the present application, the miRNA may be any miRNA capable of repressing the target mRNA. Mammals are reported to have over 250 endogenous miRNAs (Lagos-Quintana et al. (2002) Current Biol. 12:735-739; Lagos-Quintana et al. (2001) Science 294:858-862; and Lim et al. (2003) Science 299:1540). In various embodiments, the miRNA may be any art-recognized miRNA.


The linking moiety is any agent capable of linking the targeting moieties such that the activity of the targeting moieties is maintained. Linking moieties can be oligonucleotide moieties comprising a sufficient number of nucleotides, such that the targeting agents can sufficiently interact with their respective targets. Linking moieties have little or no sequence homology with cellular mRNA or miRNA sequences. Exemplary linking moieties include one or more 2′-O-methylnucleotides, e.g., 2′-β-methyladenosine, 2′-O-methylthymidine, 2′-O-methylguanosine or 2′-O-methyluridine.


e) Gene Silencing Oligonucleotides


In certain exemplary embodiments, gene expression (i.e., SARS-CoV-2 gene expression) can be modulated using oligonucleotide-based compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5′-ends that allow the presence of two or more accessible 3′-ends to effectively inhibit or decrease SARS-CoV-2 gene expression. Such linked oligonucleotides are also known as Gene Silencing Oligonucleotides (GSOs). (See, e.g., U.S. Pat. No. 8,431,544 assigned to Idera Pharmaceuticals, Inc., incorporated herein by reference in its entirety for all purposes.)


The linkage at the 5′ ends of the GSOs is independent of the other oligonucleotide linkages and may be directly via 5′, 3′ or 2′ hydroxyl groups, or indirectly, via a non-nucleotide linker or a nucleoside, utilizing either the 2′ or 3′ hydroxyl positions of the nucleoside. Linkages may also utilize a functionalized sugar or nucleobase of a 5′ terminal nucleotide.


GSOs can comprise two identical or different sequences conjugated at their 5′-5′ ends via a phosphodiester, phosphorothioate or non-nucleoside linker. Such compounds may comprise 15 to 27 nucleotides that are complementary to specific portions of mRNA targets of interest for antisense down regulation of a gene product. GSOs that comprise identical sequences can bind to a specific mRNA via Watson-Crick hydrogen bonding interactions and inhibit protein expression. GSOs that comprise different sequences are able to bind to two or more different regions of one or more mRNA target and inhibit protein expression. Such compounds are comprised of heteronucleotide sequences complementary to target mRNA and form stable duplex structures through Watson-Crick hydrogen bonding. Under certain conditions, GSOs containing two free 3′-ends (5′-5′-attached antisense) can be more potent inhibitors of gene expression than those containing a single free 3′-end or no free 3′-end.


In some embodiments, the non-nucleotide linker is glycerol or a glycerol homolog of the formula HO—(CH2)o—CH(OH)—(CH2)p—OH, wherein o and p independently are integers from 1 to about 6, from 1 to about 4 or from 1 to about 3. In some other embodiments, the non-nucleotide linker is a derivative of 1,3-diamino-2-hydroxypropane. Some such derivatives have the formula HO—(CH2)m—C(O)NH—CH2—CH(OH)—CH2—NHC(O)—(CH2)m—OH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6 or from 2 to about 4.


Some non-nucleotide linkers permit attachment of more than two GSO components. For example, the non-nucleotide linker glycerol has three hydroxyl groups to which GSO components may be covalently attached. Some oligonucleotide-based compounds of the invention, therefore, comprise two or more oligonucleotides linked to a nucleotide or a non-nucleotide linker. Such oligonucleotides according to the invention are referred to as being “branched.”


In certain embodiments, GSOs are at least 14 nucleotides in length. In certain exemplary embodiments, GSOs are 15 to 40 nucleotides long or 20 to 30 nucleotides in length. Thus, the component oligonucleotides of GSOs can independently be 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


These oligonucleotides can be prepared by the art recognized methods, such as phosphoramidate or H-phosphonate chemistry, which can be carried out manually or by an automated synthesizer. These oligonucleotides may also be modified in a number of ways without compromising their ability to hybridize to mRNA. Such modifications may include at least one internucleotide linkage of the oligonucleotide being an alkylphosphonate, phosphorothioate, phosphorodithioate, methylphosphonate, phosphate ester, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate hydroxyl, acetamidate, carboxymethyl ester, or a combination of these and other internucleotide linkages between the 5′ end of one nucleotide and the 3′ end of another nucleotide, in which the 5′ nucleotide phosphodiester linkage has been replaced with any number of chemical groups.


V. Modified Anti-SARS-CoV-2 RNA Silencing Agents


In certain aspects of the invention, an RNA silencing agent (or any portion thereof) of the present application, as described supra, may be modified, such that the activity of the agent is further improved. For example, the RNA silencing agents described in Section II supra, may be modified with any of the modifications described infra. The modifications can, in part, serve to further enhance target discrimination, to enhance stability of the agent (e.g., to prevent degradation), to promote cellular uptake, to enhance the target efficiency, to improve efficacy in binding (e.g., to the targets), to improve patient tolerance to the agent, and/or to reduce toxicity.


1) Modifications to Enhance Target Discrimination


In certain embodiments, the RNA silencing agents of the present application may be substituted with a destabilizing nucleotide to enhance single nucleotide target discrimination (see U.S. application Ser. No. 11/698,689, filed Jan. 25, 2007 and U.S. Provisional Application No. 60/762,225 filed Jan. 25, 2006, both of which are incorporated herein by reference). Such a modification may be sufficient to abolish the specificity of the RNA silencing agent for a non-target mRNA (e.g. wild-type mRNA), without appreciably affecting the specificity of the RNA silencing agent for a target mRNA (e.g. gain-of-function mutant mRNA).


In certain embodiments, the RNA silencing agents of the present application are modified by the introduction of at least one universal nucleotide in the antisense strand thereof. Universal nucleotides comprise base portions that are capable of base pairing indiscriminately with any of the four conventional nucleotide bases (e.g. A, G, C, U). A universal nucleotide is contemplated because it has relatively minor effect on the stability of the RNA duplex or the duplex formed by the guide strand of the RNA silencing agent and the target mRNA. Exemplary universal nucleotides include those having an inosine base portion or an inosine analog base portion selected from the group consisting of deoxyinosine (e.g. 2′-deoxyinosine), 7-deaza-2′-deoxyinosine, 2′-aza-2′-deoxyinosine, PNA-inosine, morpholino-inosine, LNA-inosine, phosphoramidate-inosine, 2′-O-methoxyethyl-inosine, and 2′-OMe-inosine. In certain embodiments, the universal nucleotide is an inosine residue or a naturally occurring analog thereof.


In certain embodiments, the RNA silencing agents of the invention are modified by the introduction of at least one destabilizing nucleotide within 5 nucleotides from a specificity-determining nucleotide (i.e., the nucleotide which recognizes the disease-related polymorphism). For example, the destabilizing nucleotide may be introduced at a position that is within 5, 4, 3, 2, or 1 nucleotide(s) from a specificity-determining nucleotide. In exemplary embodiments, the destabilizing nucleotide is introduced at a position which is 3 nucleotides from the specificity-determining nucleotide (i.e., such that there are 2 stabilizing nucleotides between the destabilizing nucleotide and the specificity-determining nucleotide). In RNA silencing agents having two strands or strand portions (e.g. siRNAs and shRNAs), the destabilizing nucleotide may be introduced in the strand or strand portion that does not contain the specificity-determining nucleotide. In certain embodiments, the destabilizing nucleotide is introduced in the same strand or strand portion that contains the specificity-determining nucleotide.


2) Modifications to Enhance Efficacy and Specificity


In certain embodiments, the RNA silencing agents of the invention may be altered to facilitate enhanced efficacy and specificity in mediating RNAi according to asymmetry design rules (see U.S. Pat. Nos. 8,309,704, 7,750,144, 8,304,530, 8,329,892 and 8,309,705). Such alterations facilitate entry of the antisense strand of the siRNA (e.g., a siRNA designed using the methods of the present application or an siRNA produced from a shRNA) into RISC in favor of the sense strand, such that the antisense strand preferentially guides cleavage or translational repression of a target mRNA, and thus increasing or improving the efficiency of target cleavage and silencing. In certain embodiments, the asymmetry of an RNA silencing agent is enhanced by lessening the base pair strength between the antisense strand 5′ end (AS 5′) and the sense strand 3′ end (S 3′) of the RNA silencing agent relative to the bond strength or base pair strength between the antisense strand 3′ end (AS 3′) and the sense strand 5′ end (S ′5) of said RNA silencing agent.


In one embodiment, the asymmetry of an RNA silencing agent of the present application may be enhanced such that there are fewer G:C base pairs between the 5′ end of the first or antisense strand and the 3′ end of the sense strand portion than between the 3′ end of the first or antisense strand and the 5′ end of the sense strand portion. In another embodiment, the asymmetry of an RNA silencing agent of the invention may be enhanced such that there is at least one mismatched base pair between the 5′ end of the first or antisense strand and the 3′ end of the sense strand portion. In certain embodiments, the mismatched base pair is selected from the group consisting of G:A, C:A, C:U, G:G, A:A, C:C and U:U. In another embodiment, the asymmetry of an RNA silencing agent of the invention may be enhanced such that there is at least one wobble base pair, e.g., G:U, between the 5′ end of the first or antisense strand and the 3′ end of the sense strand portion. In another embodiment, the asymmetry of an RNA silencing agent of the invention may be enhanced such that there is at least one base pair comprising a rare nucleotide, e.g., inosine (I). In certain embodiments, the base pair is selected from the group consisting of an I:A, I:U and I:C. In yet another embodiment, the asymmetry of an RNA silencing agent of the invention may be enhanced such that there is at least one base pair comprising a modified nucleotide. In certain embodiments, the modified nucleotide is selected from the group consisting of 2-amino-G, 2-amino-A, 2,6-diamino-G, and 2,6-diamino-A.


3) RNA Silencing Agents with Enhanced Stability


The RNA silencing agents of the present application can be modified to improve stability in serum or in growth medium for cell cultures. In order to enhance the stability, the 3′-residues may be stabilized against degradation, e.g., they may be selected such that they consist of purine nucleotides, such as adenosine or guanosine nucleotides. Alternatively, substitution of pyrimidine nucleotides by modified analogues, e.g., substitution of uridine by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNA interference.


In a one aspect, the present application features RNA silencing agents that include first and second strands wherein the second strand and/or first strand is modified by the substitution of internal nucleotides with modified nucleotides, such that in vivo stability is enhanced as compared to a corresponding unmodified RNA silencing agent. As defined herein, an “internal” nucleotide is one occurring at any position other than the 5′ end or 3′ end of nucleic acid molecule, polynucleotide or oligonucleotide. An internal nucleotide can be within a single-stranded molecule or within a strand of a duplex or double-stranded molecule. In one embodiment, the sense strand and/or antisense strand is modified by the substitution of at least one internal nucleotide. In another embodiment, the sense strand and/or antisense strand is modified by the substitution of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more internal nucleotides. In another embodiment, the sense strand and/or antisense strand is modified by the substitution of at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more of the internal nucleotides. In yet another embodiment, the sense strand and/or antisense strand is modified by the substitution of all of the internal nucleotides.


In one aspect, the present application features RNA silencing agents that are at least 80% chemically modified. In certain embodiments, the RNA silencing agents may be fully chemically modified, i.e., 100% of the nucleotides are chemically modified. In another aspect, the present application features RNA silencing agents comprising 2′-OH ribose groups that are at least 80% chemically modified. In certain embodiments, the RNA silencing agents comprise 2′-OH ribose groups that are about 80%, 85%, 90%, 95%, or 100% chemically modified.


In certain embodiments, the RNA silencing agents may contain at least one modified nucleotide analogue. The nucleotide analogues may be located at positions where the target-specific silencing activity, e.g., the RNAi mediating activity or translational repression activity is not substantially affected, e.g., in a region at the 5′-end and/or the 3′-end of the siRNA molecule. Moreover, the ends may be stabilized by incorporating modified nucleotide analogues.


Exemplary nucleotide analogues include sugar- and/or backbone-modified ribonucleotides (i.e., include modifications to the phosphate-sugar backbone). For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. In exemplary backbone-modified ribonucleotides, the phosphoester group connecting to adjacent ribonucleotides is replaced by a modified group, e.g., of phosphorothioate group. In exemplary sugar-modified ribonucleotides, the 2′ OH-group is replaced by a group selected from H, OR, R, halo, SH, SR, NH2, NHR, NR2 or ON, wherein R is C1-C6 alkyl, alkenyl or alkynyl and halo is F, Cl, Br or I.


In certain embodiments, the modifications are 2′-fluoro, 2′-amino and/or 2′-thio modifications. Modifications include 2′-fluoro-cytidine, 2′-fluoro-uridine, 2′-fluoro-adenosine, 2′-fluoro-guanosine, 2-amino-cytidine, 2-amino-uridine, 2-amino-adenosine, 2′-amino-guanosine, 2,6-diaminopurine, 4-thio-uridine, and/or 5-amino-allyl-uridine. In a certain embodiment, the 2′-fluoro ribonucleotides are every uridine and cytidine. Additional exemplary modifications include 5-bromo-uridine, 5-iodo-uridine, 5-methyl-cytidine, ribothymidine, 2-aminopurine, 2′-amino-butyryl-pyrene-uridine, 5-fluoro-cytidine, and 5-fluoro-uridine. 2′-deoxy-nucleotides and 2′-O-Me nucleotides can also be used within modified RNA-silencing agents of the instant invention. Additional modified residues include, deoxy-abasic, inosine, N3-methyl-uridine, N6,N6-dimethyl-adenosine, pseudouridine, purine ribonucleoside and ribavirin. In a certain embodiment, the 2′ moiety is a methyl group such that the linking moiety is a 2′-O-methyl oligonucleotide.


In a certain embodiment, the RNA silencing agent of the present application comprises Locked Nucleic Acids (LNAs). LNAs comprise sugar-modified nucleotides that resist nuclease activities (are highly stable) and possess single nucleotide discrimination for mRNA (Elmen et al., Nucleic Acids Res., (2005), 33(1): 439-447; Braasch et al. (2003) Biochemistry 42:7967-7975, Petersen et al. (2003) Trends Biotechnol 21:74-81). These molecules have 2′-0,4′-C-ethylene-bridged nucleic acids, with possible modifications such as 2′-deoxy-2″-fluorouridine. Moreover, LNAs increase the specificity of oligonucleotides by constraining the sugar moiety into the 3′-endo conformation, thereby pre-organizing the nucleotide for base pairing and increasing the melting temperature of the oligonucleotide by as much as 10° C. per base.


In another exemplary embodiment, the RNA silencing agent of the present application comprises Peptide Nucleic Acids (PNAs). PNAs comprise modified nucleotides in which the sugar-phosphate portion of the nucleotide is replaced with a neutral 2-amino ethylglycine moiety capable of forming a polyamide backbone, which is highly resistant to nuclease digestion and imparts improved binding specificity to the molecule (Nielsen, et al., Science, (2001), 254: 1497-1500).


Also contemplated are nucleobase-modified ribonucleotides, i.e., ribonucleotides, containing at least one non-naturally occurring nucleobase instead of a naturally occurring nucleobase. Bases may be modified to block the activity of adenosine deaminase. Exemplary modified nucleobases include, but are not limited to, uridine and/or cytidine modified at the 5-position, e.g., 5-(2-amino)propyl uridine, 5-bromo uridine; adenosine and/or guanosines modified at the 8 position, e.g., 8-bromo guanosine; deaza nucleotides, e.g., 7-deaza-adenosine; O- and N-alkylated nucleotides, e.g., N6-methyl adenosine are suitable. It should be noted that the above modifications may be combined.


In other embodiments, cross-linking can be employed to alter the pharmacokinetics of the RNA silencing agent, for example, to increase half-life in the body. Thus, the present application includes RNA silencing agents having two complementary strands of nucleic acid, wherein the two strands are crosslinked. The present application also includes RNA silencing agents which are conjugated or unconjugated (e.g., at its 3′ terminus) to another moiety (e.g. a non-nucleic acid moiety such as a peptide), an organic compound (e.g., a dye), or the like). Modifying siRNA derivatives in this way may improve cellular uptake or enhance cellular targeting activities of the resulting siRNA derivative as compared to the corresponding siRNA, are useful for tracing the siRNA derivative in the cell, or improve the stability of the siRNA derivative compared to the corresponding siRNA.


Other exemplary modifications include: (a) 2′ modification, e.g., provision of a 2′ OMe moiety on a U in a sense or antisense strand, but especially on a sense strand, or provision of a 2′ OMe moiety in a 3′ overhang, e.g., at the 3′ terminus (3′ terminus means at the 3′ atom of the molecule or at the most 3′ moiety, e.g., the most 3′ P or 2′ position, as indicated by the context); (b) modification of the backbone, e.g., with the replacement of an O with an S, in the phosphate backbone, e.g., the provision of a phosphorothioate modification, on the U or the A or both, especially on an antisense strand; e.g., with the replacement of a O with an S; (c) replacement of the U with a C5 amino linker; (d) replacement of an A with a G (sequence changes can be located on the sense strand and not the antisense strand in certain embodiments); and (d) modification at the 2′, 6′, 7′, or 8′ position. Exemplary embodiments are those in which one or more of these modifications are present on the sense but not the antisense strand, or embodiments where the antisense strand has fewer of such modifications. Yet other exemplary modifications include the use of a methylated P in a 3′ overhang, e.g., at the 3′ terminus; combination of a 2′ modification, e.g., provision of a 2′ O Me moiety and modification of the backbone, e.g., with the replacement of a O with an S, e.g., the provision of a phosphorothioate modification, or the use of a methylated P, in a 3′ overhang, e.g., at the 3′ terminus; modification with a 3′ alkyl; modification with an abasic pyrrolidone in a 3′ overhang, e.g., at the 3′ terminus; modification with naproxen, ibuprofen, or other moieties which inhibit degradation at the 3′ terminus.


Heavily Modified RNA Silencing Agents


In certain embodiments, the RNA silencing agent comprises at least 80% chemically modified nucleotides. In certain embodiments, the RNA silencing agent is fully chemically modified, i.e., 100% of the nucleotides are chemically modified.


In certain embodiments, the RNA silencing agent is 2′-O-methyl rich, i.e., comprises greater than 50% 2′-O-methyl content. In certain embodiments, the RNA silencing agent comprises at least about 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% 2′-O-methyl nucleotide content. In certain embodiments, the RNA silencing agent comprises at least about 70% 2′-O-methyl nucleotide modifications. In certain embodiments, the RNA silencing agent comprises between about 70% and about 90% 2′-O-methyl nucleotide modifications. In certain embodiments, the RNA silencing agent is a dsRNA comprising an antisense strand and sense strand. In certain embodiments, the antisense strand comprises at least about 70% 2′-O-methyl nucleotide modifications. In certain embodiments, the antisense strand comprises between about 70% and about 90% 2′-O-methyl nucleotide modifications. In certain embodiments, the sense strand comprises at least about 70% 2′-O-methyl nucleotide modifications. In certain embodiments, the sense strand comprises between about 70% and about 90% 2′-O-methyl nucleotide modifications. In certain embodiments, the sense strand comprises between 100% 2′-O-methyl nucleotide modifications.


2′-O-methyl rich RNA silencing agents and specific chemical modification patterns are further described in U.S. Ser. No. 16/550,076 (filed Aug. 23, 2019) and U.S. Ser. No. 62/891,185 (filed Aug. 23, 2019), each of which is incorporated herein by reference.


Internucleotide Linkage Modifications


In certain embodiments, at least one internucleotide linkage, intersubunit linkage, or nucleotide backbone is modified in the RNA silencing agent. In certain embodiments, all of the internucleotide linkages in the RNA silencing agent are modified. In certain embodiments, the modified internucleotide linkage comprises a phosphorothioate internucleotide linkage. In certain embodiments, the RNA silencing agent comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 phosphorothioate internucleotide linkages. In certain embodiments, the RNA silencing agent comprises 4-16 phosphorothioate internucleotide linkages. In certain embodiments, the RNA silencing agent comprises 8-13 phosphorothioate internucleotide linkages. In certain embodiments, the RNA silencing agent is a dsRNA comprising an antisense strand and a sense strand, each comprising a 5′ end and a 3′ end. In certain embodiments, the nucleotides at positions 1 and 2 from the 5′ end of sense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages. In certain embodiments, the nucleotides at positions 1 and 2 from the 3′ end of sense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages. In certain embodiments, the nucleotides at positions 1 and 2 from the 5′ end of antisense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages. In certain embodiments, the nucleotides at positions 1-2 to 1-8 from the 3′ end of antisense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages. In certain embodiments, the nucleotides at positions 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, or 1-8 from the 3′ end of antisense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages. In certain embodiments, the nucleotides at positions 1-2 to 1-7 from the 3′ end of antisense strand are connected to adjacent ribonucleotides via phosphorothioate internucleotide linkages.


In one aspect, the disclosure provides a modified oligonucleotide, said oligonucleotide having a 5′ end, a 3′ end, that is complementary to a target, wherein the oligonucleotide comprises a sense and antisense strand, and at least one modified intersubunit linkage of Formula (I):




embedded image



wherein:

    • B is a base pairing moiety;
    • W is selected from the group consisting of O, OCH2, OCH, CH2, and CH;
    • X is selected from the group consisting of halo, hydroxy, and C1-6 alkoxy;
    • Y is selected from the group consisting of O, OH, OR, NH, NH2, S, and SH;
    • Z is selected from the group consisting of O and CH2;
    • R is a protecting group; and
    • custom character is an optional double bond.


In an embodiment of Formula (I), when W is CH, custom character is a double bond.


In an embodiment of Formula (I), when W selected from the group consisting of O, OCH2, OCH, CH2, custom character is a single bond.


In an embodiment of Formula (I), when Y is O, either Z or W is not O.


In an embodiment of Formula (I), Z is CH2 and W is CH2. In another embodiment, the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula (II):




embedded image


In an embodiment of Formula (I), Z is CH2 and W is O. In another embodiment, wherein the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula (III):




embedded image


In an embodiment of Formula (I), Z is O and W is CH2. In another embodiment, the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula (IV):




embedded image


In an embodiment of Formula (I), Z is O and W is CH. In another embodiment, the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula V:




embedded image


In an embodiment of Formula (I), Z is O and W is OCH2. In another embodiment, the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula VI:




embedded image


In an embodiment of Formula (I), Z is CH2 and W is CH. In another embodiment, the modified intersubunit linkage of Formula (I) is a modified intersubunit linkage of Formula VII:




embedded image


In an embodiment of Formula (I), the base pairing moiety B is selected from the group consisting of adenine, guanine, cytosine, and uracil.


In an embodiment, the modified oligonucleotide is incorporated into siRNA, said modified siRNA having a 5′ end, a 3′ end, that is complementary to a target, wherein the siRNA comprises a sense and antisense strand, and at least one modified intersubunit linkage of any one or more of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), or Formula (VII).


In an embodiment, the modified oligonucleotide is incorporated into siRNA, said modified siRNA having a 5′ end, a 3′ end, that is complementary to a target and comprises a sense and antisense strand, wherein the siRNA comprises at least one modified intersubunit linkage is of Formula VIII:




embedded image



wherein:

    • D is selected from the group consisting of O, OCH2, OCH, CH2, and CH;
    • C is selected from the group consisting of O, OH, OR1, NH, NH2, S, and SH;
    • A is selected from the group consisting of O and CH2;
    • R1 is a protecting group;
    • custom character is an optional double bond; and
    • the intersubunit is bridging two optionally modified nucleosides.


In an embodiment, when C is O, either A or D is not O.


In an embodiment, D is CH2. In another embodiment, the modified intersubunit linkage of Formula VIII is a modified intersubunit linkage of Formula (IX):




embedded image


In an embodiment, D is O. In another embodiment, the modified intersubunit linkage of Formula VIII is a modified intersubunit linkage of Formula (X):




embedded image


In an embodiment, D is CH2. In another embodiment, the modified intersubunit linkage of Formula (VIII) is a modified intersubunit linkage of Formula (XI):




embedded image


In an embodiment, D is CH. In another embodiment, the modified intersubunit linkage of Formula VIII is a modified intersubunit linkage of Formula (XII):




embedded image


In another embodiment, the modified intersubunit linkage of Formula (VII) is a modified intersubunit linkage of Formula (XIV):




embedded image


In an embodiment, D is OCH2. In another embodiment, the modified intersubunit linkage of Formula (VII) is a modified intersubunit linkage of Formula (XIII):




embedded image


In another embodiment, the modified intersubunit linkage of Formula (VII) is a modified intersubunit linkage of Formula (XXa):




embedded image


In an embodiment of the modified siRNA linkage, each optionally modified nucleoside is independently, at each occurrence, selected from the group consisting of adenosine, guanosine, cytidine, and uridine.


In certain exemplary embodiments of Formula (I), W is O. In another embodiment, W is CH2. In yet another embodiment, W is CH.


In certain exemplary embodiments of Formula (I), X is OH. In another embodiment, X is OCH3. In yet another embodiment, X is halo.


In a certain embodiment of Formula (I), the modified siRNA does not comprise a 2′-fluoro substituent.


In an embodiment of Formula (I), Y is O. In another embodiment, Y is OH. In yet another embodiment, Y is OR. In still another embodiment, Y is NH. In an embodiment, Y is NH2. In another embodiment, Y is S. In yet another embodiment, Y is SH.


In an embodiment of Formula (I), Z is O. In another embodiment, Z is CH2.


In an embodiment, the modified intersubunit linkage is inserted on position 1-2 of the antisense strand. In another embodiment, the modified intersubunit linkage is inserted on position 6-7 of the antisense strand. In yet another embodiment, the modified intersubunit linkage is inserted on position 10-11 of the antisense strand. In still another embodiment, the modified intersubunit linkage is inserted on position 19-20 of the antisense strand. In an embodiment, the modified intersubunit linkage is inserted on positions 5-6 and 18-19 of the antisense strand.


In an exemplary embodiment of the modified siRNA linkage of Formula (VIII), C is O. In another embodiment, C is OH. In yet another embodiment, C is OR1. In still another embodiment, C is NH. In an embodiment, C is NH2. In another embodiment, C is S. In yet another embodiment, C is SH.


In an exemplary embodiment of the modified siRNA linkage of Formula (VIII), A is O. In another embodiment, A is CH2. In yet another embodiment, C is OR1. In still another embodiment, C is NH. In an embodiment, C is NH2. In another embodiment, C is S. In yet another embodiment, C is SH.


In a certain embodiment of the modified siRNA linkage of Formula (VIII), the optionally modified nucleoside is adenosine. In another embodiment of the modified siRNA linkage of Formula (VIII), the optionally modified nucleoside is guanosine. In another embodiment of the modified siRNA linkage of Formula (VIII), the optionally modified nucleoside is cytidine. In another embodiment of the modified siRNA linkage of Formula (VIII), the optionally modified nucleoside is uridine.


In an embodiment of the modified siRNA linkage, wherein the linkage is inserted on position 1-2 of the antisense strand. In another embodiment, the linkage is inserted on position 6-7 of the antisense strand. In yet another embodiment, the linkage is inserted on position 10-11 of the antisense strand. In still another embodiment, the linkage is inserted on position 19-20 of the antisense strand. In an embodiment, the linkage is inserted on positions 5-6 and 18-19 of the antisense strand.


In certain embodiments of Formula (I), the base pairing moiety B is adenine. In certain embodiments of Formula (I), the base pairing moiety B is guanine. In certain embodiments of Formula (I), the base pairing moiety B is cytosine. In certain embodiments of Formula (I), the base pairing moiety B is uracil.


In an embodiment of Formula (I), W is O. In an embodiment of Formula (I), W is CH2. In an embodiment of Formula (I), W is CH.


In an embodiment of Formula (I), X is OH. In an embodiment of Formula (I), X is OCH3. In an embodiment of Formula (I), X is halo.


In an exemplary embodiment of Formula (I), the modified oligonucleotide does not comprise a 2′-fluoro substituent.


In an embodiment of Formula (I), Y is O. In an embodiment of Formula (I), Y is OH. In an embodiment of Formula (I), Y is OR. In an embodiment of Formula (I), Y is NH. In an embodiment of Formula (I), Y is NH2. In an embodiment of Formula (I), Y is S. In an embodiment of Formula (I), Y is SH.


In an embodiment of Formula (I), Z is O. In an embodiment of Formula (I), Z is CH2.


In an embodiment of the Formula (I), the linkage is inserted on position 1-2 of the antisense strand. In another embodiment of Formula (I), the linkage is inserted on position 6-7 of the antisense strand. In yet another embodiment of Formula (I), the linkage is inserted on position 10-11 of the antisense strand. In still another embodiment of Formula (I), the linkage is inserted on position 19-20 of the antisense strand. In an embodiment of Formula (I), the linkage is inserted on positions 5-6 and 18-19 of the antisense strand.


Modified intersubunit linkages are further described in WO20200198509 and PCT/US2021/024425, each of which is incorporated herein by reference.


4) Conjugated Functional Moieties


In other embodiments, RNA silencing agents may be modified with one or more functional moieties. A functional moiety is a molecule that confers one or more additional activities to the RNA silencing agent. In certain embodiments, the functional moieties enhance cellular uptake by target cells (e.g., lung cells). Thus, the invention includes RNA silencing agents which are conjugated or unconjugated (e.g., at its 5′ and/or 3′ terminus) to another moiety (e.g. a non-nucleic acid moiety such as a peptide), an organic compound (e.g., a dye), or the like. The conjugation can be accomplished by methods known in the art, e.g., using the methods of Lambert et al., Drug Deliv. Rev.: 47(1), 99-112 (2001) (describes nucleic acids loaded to polyalkylcyanoacrylate (PACA) nanoparticles); Fattal et al., J. Control Release 53 (1-3): 137-43 (1998) (describes nucleic acids bound to nanoparticles); Schwab et al., Ann. Oncol. 5 Suppl. 4:55-8 (1994) (describes nucleic acids linked to intercalating agents, hydrophobic groups, polycations or PACA nanoparticles); and Godard et al., Eur. J. Biochem. 232(2):404-10 (1995) (describes nucleic acids linked to nanoparticles).


In a certain embodiment, the functional moiety is a hydrophobic moiety. In a certain embodiment, the hydrophobic moiety is selected from the group consisting of fatty acids, steroids, secosteroids, lipids, gangliosides and nucleoside analogs, endocannabinoids, and vitamins. In a certain embodiment, the steroid selected from the group consisting of cholesterol and Lithocholic acid (LCA). In a certain embodiment, the fatty acid selected from the group consisting of Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA) and Docosanoic acid (DCA). In a certain embodiment, the vitamin selected from the group consisting of choline, vitamin A, vitamin E, and derivatives or metabolites thereof. In a certain embodiment, the vitamin is selected from the group consisting of retinoic acid and alpha-tocopheryl succinate.


In a certain embodiment, an RNA silencing agent of invention is conjugated to a lipophilic moiety. In one embodiment, the lipophilic moiety is a ligand that includes a cationic group. In another embodiment, the lipophilic moiety is attached to one or both strands of an siRNA. In an exemplary embodiment, the lipophilic moiety is attached to one end of the sense strand of the siRNA. In another exemplary embodiment, the lipophilic moiety is attached to the 3′ end of the sense strand. In certain embodiments, the lipophilic moiety is selected from the group consisting of cholesterol, vitamin E, vitamin K, vitamin A, folic acid, a cationic dye (e.g., Cy3). In an exemplary embodiment, the lipophilic moiety is cholesterol. Other lipophilic moieties include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.


In certain embodiments, the functional moieties may comprise one or more ligands tethered to an RNA silencing agent to improve stability, hybridization thermodynamics with a target nucleic acid, targeting to a particular tissue or cell-type, or cell permeability, e.g., by an endocytosis-dependent or -independent mechanism. Ligands and associated modifications can also increase sequence specificity and consequently decrease off-site targeting. A tethered ligand can include one or more modified bases or sugars that can function as intercalators. These can be located in an internal region, such as in a bulge of RNA silencing agent/target duplex. The intercalator can be an aromatic, e.g., a polycyclic aromatic or heterocyclic aromatic compound. A polycyclic intercalator can have stacking capabilities, and can include systems with 2, 3, or 4 fused rings. The universal bases described herein can be included on a ligand. In one embodiment, the ligand can include a cleaving group that contributes to target gene inhibition by cleavage of the target nucleic acid. The cleaving group can be, for example, a bleomycin (e.g., bleomycin-A5, bleomycin-A2, or bleomycin-B2), pyrene, phenanthroline (e.g., O-phenanthroline), a polyamine, a tripeptide (e.g., lys-tyr-lys tripeptide), or a metal ion chelating group. The metal ion chelating group can include, e.g., an Lu(III) or EU(III) macrocyclic complex, a Zn(II) 2,9-dimethylphenanthroline derivative, a Cu(II) terpyridine, or acridine, which can promote the selective cleavage of target RNA at the site of the bulge by free metal ions, such as Lu(III). In some embodiments, a peptide ligand can be tethered to a RNA silencing agent to promote cleavage of the target RNA, e.g., at the bulge region. For example, 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (cyclam) can be conjugated to a peptide (e.g., by an amino acid derivative) to promote target RNA cleavage. A tethered ligand can be an aminoglycoside ligand, which can cause an RNA silencing agent to have improved hybridization properties or improved sequence specificity. Exemplary aminoglycosides include glycosylated polylysine, galactosylated polylysine, neomycin B, tobramycin, kanamycin A, and acridine conjugates of aminoglycosides, such as Neo-N-acridine, Neo-S-acridine, Neo-C-acridine, Tobra-N-acridine, and KanaA-N-acridine. Use of an acridine analog can increase sequence specificity. For example, neomycin B has a high affinity for RNA as compared to DNA, but low sequence-specificity. An acridine analog, neo-5-acridine, has an increased affinity for the HIV Rev-response element (RRE). In some embodiments, the guanidine analog (the guanidinoglycoside) of an aminoglycoside ligand is tethered to an RNA silencing agent. In a guanidinoglycoside, the amine group on the amino acid is exchanged for a guanidine group. Attachment of a guanidine analog can enhance cell permeability of an RNA silencing agent. A tethered ligand can be a poly-arginine peptide, peptoid or peptidomimetic, which can enhance the cellular uptake of an oligonucleotide agent.


Exemplary ligands are coupled, either directly or indirectly, via an intervening tether, to a ligand-conjugated carrier. In certain embodiments, the coupling is through a covalent bond. In certain embodiments, the ligand is attached to the carrier via an intervening tether. In certain embodiments, a ligand alters the distribution, targeting or lifetime of an RNA silencing agent into which it is incorporated. In certain embodiments, a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand.


Exemplary ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified RNA silencing agent, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides. Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; nuclease-resistance conferring moieties; and natural or unusual nucleobases. General examples include lipophiles, lipids, steroids (e.g., uvaol, hecigenin, diosgenin), terpenes (e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), vitamins (e.g., folic acid, vitamin A, biotin, pyridoxal), carbohydrates, proteins, protein binding agents, integrin targeting molecules, polycationics, peptides, polyamines, and peptide mimics. Ligands can include a naturally occurring substance, (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); amino acid, or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.


Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine (GalNAc) or derivatives thereof, N-acetyl-glucosamine, multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic. Other examples of ligands include dyes, intercalating agents (e.g. acridines and substituted acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine, phenanthroline, pyrenes), lys-tyr-lys tripeptide, aminoglycosides, guanidium aminoglycosides, artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, cholesterol (and thio analogs thereof), cholic acid, cholanic acid, lithocholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, glycerol (e.g., esters (e.g., mono, bis, or tris fatty acid esters, e.g., C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, or C20 fatty acids) and ethers thereof, e.g., C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, or C20 alkyl; e.g., 1,3-bis-O(hexadecyl)glycerol, 1,3-bis-O(octaadecyl)glycerol), geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, stearic acid (e.g., glyceryl distearate), oleic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, naproxen, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP or AP. In certain embodiments, the ligand is GalNAc or a derivative thereof.


Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-glucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.


The ligand can be a substance, e.g., a drug, which can increase the uptake of the RNA silencing agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin. The ligand can increase the uptake of the RNA silencing agent into the cell by activating an inflammatory response, for example. Exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNF D), interleukin-1 beta, or gamma interferon. In one aspect, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule can bind a serum protein, e.g., human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA. A lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney. In a certain embodiment, the lipid based ligand binds HSA. A lipid-based ligand can bind HSA with a sufficient affinity such that the conjugate will be distributed to a non-kidney tissue. However, it is contemplated that the affinity not be so strong that the HSA-ligand binding cannot be reversed. In another embodiment, the lipid based ligand binds HSA weakly or not at all, such that the conjugate will be distributed to the kidney. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.


In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These can be useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).


In another aspect, the ligand is a cell-permeation agent, such as a helical cell-permeation agent. In certain embodiments, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent can be an alpha-helical agent, which may have a lipophilic and a lipophobic phase.


The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to oligonucleotide agents can affect pharmacokinetic distribution of the RNA silencing agent, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long. A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. The peptide moiety can be an L-peptide or D-peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature 354:82-84, 1991). In exemplary embodiments, the peptide or peptidomimetic tethered to an RNA silencing agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.


In certain embodiments, the functional moiety is linked to the 5′ end and/or 3′ end of the RNA silencing agent of the disclosure. In certain embodiments, the functional moiety is linked to the 5′ end and/or 3′ end of an antisense strand of the RNA silencing agent of the disclosure. In certain embodiments, the functional moiety is linked to the 5′ end and/or 3′ end of a sense strand of the RNA silencing agent of the disclosure. In certain embodiments, the functional moiety is linked to the 3′ end of a sense strand of the RNA silencing agent of the disclosure.


In certain embodiments, the functional moiety is linked to the RNA silencing agent by a linker. In certain embodiments, the functional moiety is linked to the antisense strand and/or sense strand by a linker. In certain embodiments, the functional moiety is linked to the 3′ end of a sense strand by a linker. In certain embodiments, the linker comprises a divalent or trivalent linker. In certain embodiments, the linker comprises an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphodiester, a phosphorothioate, a phosphoramidate, an amide, a carbamate, or a combination thereof. In certain embodiments, the divalent or trivalent linker is selected from:




embedded image



wherein n is 1, 2, 3, 4, or 5.


In certain embodiments, the linker further comprises a phosphodiester or phosphodiester derivative. In certain embodiments, the phosphodiester or phosphodiester derivative is selected from the group consisting of.




embedded image


wherein X is O, S or BH3.


The various functional moieties of the disclosure and means to conjugate them to RNA silencing agents are described in further detail in WO2017/030973A1 and WO2018/031933A2, incorporated herein by reference.


VI. Branched Oligonucleotides


Two or more RNA silencing agents as disclosed supra, for example oligonucleotide constructs such as anti-SARS-CoV-2 siRNAs, may be connected to one another by one or more moieties independently selected from a linker, a spacer and a branching point, to form a branched oligonucleotide RNA silencing agent. In certain embodiments, the branched oligonucleotide RNA silencing agent consists of two siRNAs to form a di-branched siRNA (“di-siRNA”) scaffolding for delivering two siRNAs. In representative embodiments, the nucleic acids of the branched oligonucleotide each comprise an antisense strand (or portions thereof), wherein the antisense strand has sufficient complementarity to a target mRNA (e.g., SARS-CoV-2 mRNA) to mediate an RNA-mediated silencing mechanism (e.g. RNAi).


In exemplary embodiments, the branched oligonucleotides may have two to eight RNA silencing agents attached through a linker. The linker may be hydrophobic. In an embodiment, branched oligonucleotides of the present application have two to three oligonucleotides. In an embodiment, the oligonucleotides independently have substantial chemical stabilization (e.g., at least 40% of the constituent bases are chemically-modified). In an exemplary embodiment, the oligonucleotides have full chemical stabilization (i.e., all the constituent bases are chemically-modified). In some embodiments, branched oligonucleotides comprise one or more single-stranded phosphorothioated tails, each independently having two to twenty nucleotides. In a non-limiting embodiment, each single-stranded tail has two to ten nucleotides.


In certain embodiments, branched oligonucleotides are characterized by three properties: (1) a branched structure, (2) full metabolic stabilization, and (3) the presence of a single-stranded tail comprising phosphorothioate linkers. In certain embodiments, branched oligonucleotides have 2 or 3 branches. It is believed that the increased overall size of the branched structures promotes increased uptake. Also, without being bound by a particular theory of activity, multiple adjacent branches (e.g., 2 or 3) are believed to allow each branch to act cooperatively and thus dramatically enhance rates of internalization, trafficking and release.


Branched oligonucleotides are provided in various structurally diverse embodiments. In some embodiments nucleic acids attached at the branching points are single stranded or double stranded and consist of miRNA inhibitors, gapmers, mixmers, SSOs, PMOs, or PNAs. These single strands can be attached at their 3′ or 5′ end. Combinations of siRNA and single stranded oligonucleotides could also be used for dual function. In another embodiment, short nucleic acids complementary to the gapmers, mixmers, miRNA inhibitors, SSOs, PMOs, and PNAs are used to carry these active single-stranded nucleic acids and enhance distribution and cellular internalization. The short duplex region has a low melting temperature (Tm ˜37° C.) for fast dissociation upon internalization of the branched structure into the cell.


The Di-siRNA branched oligonucleotides may comprise chemically diverse conjugates, such as the functional moieties described above. Conjugated bioactive ligands may be used to enhance cellular specificity and to promote membrane association, internalization, and serum protein binding. Examples of bioactive moieties to be used for conjugation include DHA, GalNAc, and cholesterol. These moieties can be attached to Di-siRNA either through the connecting linker or spacer, or added via an additional linker or spacer attached to another free siRNA end.


Branched oligonucleotides comprise a variety of therapeutic nucleic acids, including siRNAs, ASOs, miRNAs, miRNA inhibitors, splice switching, PMOs, PNAs. In some embodiments, branched oligonucleotides further comprise conjugated hydrophobic moieties and exhibit unprecedented silencing and efficacy in vitro and in vivo.


Linkers


In an embodiment of the branched oligonucleotide, each linker is independently selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof; wherein any carbon or oxygen atom of the linker is optionally replaced with a nitrogen atom, bears a hydroxyl substituent, or bears an oxo substituent. In one embodiment, each linker is an ethylene glycol chain. In another embodiment, each linker is an alkyl chain. In another embodiment, each linker is a peptide. In another embodiment, each linker is RNA. In another embodiment, each linker is DNA. In another embodiment, each linker is a phosphate. In another embodiment, each linker is a phosphonate. In another embodiment, each linker is a phosphoramidate. In another embodiment, each linker is an ester. In another embodiment, each linker is an amide. In another embodiment, each linker is a triazole.


VII. Compound of Formula (I)


In another aspect, provided herein is a branched oligonucleotide compound of formula (I):

L-(N)n  (I)


wherein L is selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof, wherein formula (I) optionally further comprises one or more branch point B, and one or more spacer S; wherein B is independently for each occurrence a polyvalent organic species or derivative thereof, S is independently for each occurrence selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof.


Moiety N is an RNA duplex comprising a sense strand and an antisense strand; and n is 2, 3, 4, 5, 6, 7 or 8. In an embodiment, the antisense strand of N comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10, as recited in Table 4 and Table 5.


In an embodiment, the antisense strand of N comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of the 45-nucleotide target gene regions recited in Table 6A.


The sense strand and antisense strand may each independently comprise one or more chemical modifications.


In an embodiment, the compound of formula (I) has a structure selected from formulas (I-1)-(I-9) of Table 1.












TABLE 1











embedded image


(I-1)









embedded image


(I-2)









embedded image


(I-3)









embedded image


(I-4)









embedded image


(I-5)









embedded image


(I-6)









embedded image


(I-7)









embedded image


(I-8)









embedded image


(I-9)










In one embodiment, the compound of formula (I) is formula (I-1). In another embodiment, the compound of formula (I) is formula (I-2). In another embodiment, the compound of formula (I) is formula (I-3). In another embodiment, the compound of formula (I) is formula (I-4). In another embodiment, the compound of formula (I) is formula (I-5). In another embodiment, the compound of formula (I) is formula (I-6). In another embodiment, the compound of formula (I) is formula (I-7). In another embodiment, the compound of formula (I) is formula (I-8). In another embodiment, the compound of formula (I) is formula (I-9).


In an embodiment of the compound of formula (I), each linker is independently selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof; wherein any carbon or oxygen atom of the linker is optionally replaced with a nitrogen atom, bears a hydroxyl substituent, or bears an oxo substituent. In one embodiment of the compound of formula (I), each linker is an ethylene glycol chain. In another embodiment, each linker is an alkyl chain. In another embodiment of the compound of formula (I), each linker is a peptide. In another embodiment of the compound of formula (I), each linker is RNA. In another embodiment of the compound of formula (I), each linker is DNA. In another embodiment of the compound of formula (I), each linker is a phosphate. In another embodiment, each linker is a phosphonate. In another embodiment of the compound of formula (I), each linker is a phosphoramidate. In another embodiment of the compound of formula (I), each linker is an ester. In another embodiment of the compound of formula (I), each linker is an amide. In another embodiment of the compound of formula (I), each linker is a triazole.


In one embodiment of the compound of formula (I), B is a polyvalent organic species. In another embodiment of the compound of formula (I), B is a derivative of a polyvalent organic species. In one embodiment of the compound of formula (I), B is a triol or tetrol derivative. In another embodiment, B is a tri- or tetra-carboxylic acid derivative. In another embodiment, B is an amine derivative. In another embodiment, B is a tri- or tetra-amine derivative. In another embodiment, B is an amino acid derivative. In another embodiment of the compound of formula (I), B is selected from the formulas of.




embedded image


Polyvalent organic species are moieties comprising carbon and three or more valencies (i.e., points of attachment with moieties such as S, L or N, as defined above). Non-limiting examples of polyvalent organic species include triols (e.g., glycerol, phloroglucinol, and the like), tetrols (e.g., ribose, pentaerythritol, 1,2,3,5-tetrahydroxybenzene, and the like), tri-carboxylic acids (e.g., citric acid, 1,3,5-cyclohexanetricarboxylic acid, trimesic acid, and the like), tetra-carboxylic acids (e.g., ethylenediaminetetraacetic acid, pyromellitic acid, and the like), tertiary amines (e.g., tripropargylamine, triethanolamine, and the like), triamines (e.g., diethylenetriamine and the like), tetramines, and species comprising a combination of hydroxyl, thiol, amino, and/or carboxyl moieties (e.g., amino acids such as lysine, serine, cysteine, and the like).


In an embodiment of the compound of formula (I), each nucleic acid comprises one or more chemically-modified nucleotides. In an embodiment of the compound of formula (I), each nucleic acid consists of chemically-modified nucleotides. In certain embodiments of the compound of formula (I), >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >55% or >50% of each nucleic acid comprises chemically-modified nucleotides.


In an embodiment, each antisense strand independently comprises a 5′ terminal group R selected from the groups of Table 2.












TABLE 2











embedded image


R1









embedded image


R2









embedded image


R3









embedded image


R4









embedded image


R5









embedded image


R6









embedded image


R7









embedded image


R8










In one embodiment, R is R1. In another embodiment, R is R2. In another embodiment, R is R3. In another embodiment, R is R4. In another embodiment, R is R5. In another embodiment, R is R6. In another embodiment, R is R7. In another embodiment, R is R8.


Structure of Formula (II)


In an embodiment, the compound of formula (I) has the structure of formula (II):




embedded image


wherein X, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof; Y, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof; - represents a phosphodiester internucleoside linkage; = represents a phosphorothioate internucleoside linkage; and --- represents, individually for each occurrence, a base-pairing interaction or a mismatch.


In certain embodiments, the structure of formula (II) does not contain mismatches. In one embodiment, the structure of formula (II) contains 1 mismatch. In another embodiment, the compound of formula (II) contains 2 mismatches. In another embodiment, the compound of formula (II) contains 3 mismatches. In another embodiment, the compound of formula (II) contains 4 mismatches. In an embodiment, each nucleic acid consists of chemically-modified nucleotides.


In certain embodiments, >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >55% or >50% of X's of the structure of formula (II) are chemically-modified nucleotides. In other embodiments, >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >55% or >50% of X's of the structure of formula (II) are chemically-modified nucleotides.


Structure of Formula (III)


In an embodiment, the compound of formula (I) has the structure of formula (III):




embedded image


wherein X, for each occurrence, independently, is a nucleotide comprising a 2′-deoxy-2′-fluoro modification; X, for each occurrence, independently, is a nucleotide comprising a 2′-O-methyl modification; Y, for each occurrence, independently, is a nucleotide comprising a 2′-deoxy-2′-fluoro modification; and Y, for each occurrence, independently, is a nucleotide comprising a 2′-O-methyl modification.


In an embodiment, X is chosen from the group consisting of 2′-deoxy-2′-fluoro modified adenosine, guanosine, uridine or cytidine. In an embodiment, X is chosen from the group consisting of 2′-O-methyl modified adenosine, guanosine, uridine or cytidine. In an embodiment, Y is chosen from the group consisting of 2′-deoxy-2′-fluoro modified adenosine, guanosine, uridine or cytidine. In an embodiment, Y is chosen from the group consisting of 2′-O-methyl modified adenosine, guanosine, uridine or cytidine.


In certain embodiments, the structure of formula (III) does not contain mismatches. In one embodiment, the structure of formula (III) contains 1 mismatch. In another embodiment, the compound of formula (III) contains 2 mismatches. In another embodiment, the compound of formula (III) contains 3 mismatches. In another embodiment, the compound of formula (III) contains 4 mismatches.


Structure of Formula (IV)


In an embodiment, the compound of formula (I) has the structure of formula (IV):




embedded image


wherein X, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof; Y, for each occurrence, independently, is selected from adenosine, guanosine, uridine, cytidine, and chemically-modified derivatives thereof; - represents a phosphodiester internucleoside linkage; =represents a phosphorothioate internucleoside linkage; and --- represents, individually for each occurrence, a base-pairing interaction or a mismatch.


In certain embodiments, the structure of formula (IV) does not contain mismatches. In one embodiment, the structure of formula (IV) contains 1 mismatch. In another embodiment, the compound of formula (IV) contains 2 mismatches. In another embodiment, the compound of formula (IV) contains 3 mismatches. In another embodiment, the compound of formula (IV) contains 4 mismatches. In an embodiment, each nucleic acid consists of chemically-modified nucleotides.


In certain embodiments, >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >55% or >50% of X's of the structure of formula (IV) are chemically-modified nucleotides. In other embodiments, >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >55% or >50% of X's of the structure of formula (IV) are chemically-modified nucleotides.


Structure of Formula (V)


In an embodiment, the compound of formula (I) has the structure of formula (V):




embedded image


wherein X, for each occurrence, independently, is a nucleotide comprising a 2′-deoxy-2′-fluoro modification; X, for each occurrence, independently, is a nucleotide comprising a 2′-O-methyl modification; Y, for each occurrence, independently, is a nucleotide comprising a 2′-deoxy-2′-fluoro modification; and Y, for each occurrence, independently, is a nucleotide comprising a 2′-O-methyl modification.


In certain embodiments, X is chosen from the group consisting of 2′-deoxy-2′-fluoro modified adenosine, guanosine, uridine or cytidine. In an embodiment, X is chosen from the group consisting of 2′-O-methyl modified adenosine, guanosine, uridine or cytidine. In an embodiment, Y is chosen from the group consisting of 2′-deoxy-2′-fluoro modified adenosine, guanosine, uridine or cytidine. In an embodiment, Y is chosen from the group consisting of 2′-O-methyl modified adenosine, guanosine, uridine or cytidine.


In certain embodiments, the structure of formula (V) does not contain mismatches. In one embodiment, the structure of formula (V) contains 1 mismatch. In another embodiment, the compound of formula (V) contains 2 mismatches. In another embodiment, the compound of formula (V) contains 3 mismatches. In another embodiment, the compound of formula (V) contains 4 mismatches.


Variable Linkers


In an embodiment of the compound of formula (I), L has the structure of L1:




embedded image


In an embodiment of L1, R is R3 and n is 2.


In an embodiment of the structure of formula (II), L has the structure of L1. In an embodiment of the structure of formula (III), L has the structure of L1. In an embodiment of the structure of formula (IV), L has the structure of L1. In an embodiment of the structure of formula (V), L has the structure of L1. In an embodiment of the structure of formula (VI), L has the structure of L1. In an embodiment of the structure of formula (VI), L has the structure of L1.


In an embodiment of the compound of formula (I), L has the structure of L2:




embedded image


In an embodiment of L2, R is R3 and n is 2. In an embodiment of the structure of formula (II), L has the structure of L2. In an embodiment of the structure of formula (III), L has the structure of L2. In an embodiment of the structure of formula (IV), L has the structure of L2. In an embodiment of the structure of formula (V), L has the structure of L2. In an embodiment of the structure of formula (VI), L has the structure of L2. In an embodiment of the structure of formula (VI), L has the structure of L2.


Delivery System


In a third aspect, provided herein is a delivery system for therapeutic nucleic acids having the structure of formula (VI):

L-(cNA)n   (VI)


wherein L is selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof, wherein formula (VI) optionally further comprises one or more branch point B, and one or more spacer S; wherein B is independently for each occurrence a polyvalent organic species or derivative thereof; S is independently for each occurrence selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and combinations thereof; each cNA, independently, is a carrier nucleic acid comprising one or more chemical modifications; and n is 2, 3, 4, 5, 6, 7 or 8.


In one embodiment of the delivery system, L is an ethylene glycol chain. In another embodiment of the delivery system, L is an alkyl chain. In another embodiment of the delivery system, L is a peptide. In another embodiment of the delivery system, L is RNA. In another embodiment of the delivery system, L is DNA. In another embodiment of the delivery system, L is a phosphate. In another embodiment of the delivery system, L is a phosphonate. In another embodiment of the delivery system, L is a phosphoramidate. In another embodiment of the delivery system, L is an ester. In another embodiment of the delivery system, L is an amide. In another embodiment of the delivery system, L is a triazole.


In one embodiment of the delivery system, S is an ethylene glycol chain. In another embodiment, S is an alkyl chain. In another embodiment of the delivery system, S is a peptide. In another embodiment, S is RNA. In another embodiment of the delivery system, S is DNA. In another embodiment of the delivery system, S is a phosphate. In another embodiment of the delivery system, S is a phosphonate. In another embodiment of the delivery system, S is a phosphoramidate. In another embodiment of the delivery system, S is an ester. In another embodiment, S is an amide. In another embodiment, S is a triazole.


In one embodiment of the delivery system, n is 2. In another embodiment of the delivery system, n is 3. In another embodiment of the delivery system, n is 4. In another embodiment of the delivery system, n is 5. In another embodiment of the delivery system, n is 6. In another embodiment of the delivery system, n is 7. In another embodiment of the delivery system, n is 8.


In certain embodiments, each cNA comprises >95%, >90%, >85%, >80%, >75%, >70%, >65%, >60%, >5500 or >5000 chemically-modified nucleotides.


In an embodiment, the compound of formula (VI) has a structure selected from formulas (VI-1)-(VI-9) of Table 3:












TABLE 3











embedded image


(VI-1)









embedded image


(VI-2)









embedded image


(VI-3)









embedded image


(VI-4)









embedded image


(VI-5)









embedded image


(VI-6)









embedded image


(VI-7)









embedded image


(VI-8)









embedded image


(VI-9)










In an embodiment, the compound of formula (VI) is the structure of formula (VI-1). In an embodiment, the compound of formula (VI) is the structure of formula (VI-2). In an embodiment, the compound of formula (VI) is the structure of formula (VI-3). In an embodiment, the compound of formula (VI) is the structure of formula (VI-4). In an embodiment, the compound of formula (VI) is the structure of formula (VI-5). In an embodiment, the compound of formula (VI) is the structure of formula (VI-6). In an embodiment, the compound of formula (VI) is the structure of formula (VI-7). In an embodiment, the compound of formula (VI) is the structure of formula (VI-8). In an embodiment, the compound of formula (VI) is the structure of formula (VI-9).


In an embodiment, the compound of formulas (VI) (including, e.g., formulas (VI-1)-(VI-9), each cNA independently comprises at least 15 contiguous nucleotides. In an embodiment, each cNA independently consists of chemically-modified nucleotides.


In an embodiment, the delivery system further comprises n therapeutic nucleic acids (NA), wherein each NA comprises a sequence substantially complementary to a SARS-CoV-2 nucleic acid sequence of any one of SEQ ID NOs: 1-10, as recited in Table 4 and Table. In further embodiments, NA includes strands that are capable of targeting one or more SARS-CoV-2 nucleic acid sequences of any one of the 45-nucleotide target gene regions recited in Table 6A.


Also, each NA is hybridized to at least one cNA. In one embodiment, the delivery system is comprised of 2 NAs. In another embodiment, the delivery system is comprised of 3 NAs. In another embodiment, the delivery system is comprised of 4 NAs. In another embodiment, the delivery system is comprised of 5 NAs. In another embodiment, the delivery system is comprised of 6 NAs. In another embodiment, the delivery system is comprised of 7 NAs. In another embodiment, the delivery system is comprised of 8 NAs.


In an embodiment, each NA independently comprises at least 15 contiguous nucleotides. In an embodiment, each NA independently comprises 15-25 contiguous nucleotides. In an embodiment, each NA independently comprises 15 contiguous nucleotides. In an embodiment, each NA independently comprises 16 contiguous nucleotides. In another embodiment, each NA independently comprises 17 contiguous nucleotides. In another embodiment, each NA independently comprises 18 contiguous nucleotides. In another embodiment, each NA independently comprises 19 contiguous nucleotides. In another embodiment, each NA independently comprises 20 contiguous nucleotides. In an embodiment, each NA independently comprises 21 contiguous nucleotides. In an embodiment, each NA independently comprises 22 contiguous nucleotides. In an embodiment, each NA independently comprises 23 contiguous nucleotides. In an embodiment, each NA independently comprises 24 contiguous nucleotides. In an embodiment, each NA independently comprises 25 contiguous nucleotides.


In an embodiment, each NA comprises an unpaired overhang of at least 2 nucleotides. In another embodiment, each NA comprises an unpaired overhang of at least 3 nucleotides. In another embodiment, each NA comprises an unpaired overhang of at least 4 nucleotides. In another embodiment, each NA comprises an unpaired overhang of at least 5 nucleotides. In another embodiment, each NA comprises an unpaired overhang of at least 6 nucleotides. In an embodiment, the nucleotides of the overhang are connected via phosphorothioate linkages.


In an embodiment, each NA, independently, is selected from the group consisting of: DNA, siRNAs, antagomiRs, miRNAs, gapmers, mixmers, or guide RNAs. In one embodiment, each NA, independently, is a DNA. In another embodiment, each NA, independently, is a siRNA. In another embodiment, each NA, independently, is an antagomiR. In another embodiment, each NA, independently, is a miRNA. In another embodiment, each NA, independently, is a gapmer. In another embodiment, each NA, independently, is a mixmer. In another embodiment, each NA, independently, is a guide RNA. In an embodiment, each NA is the same. In an embodiment, each NA is not the same.


In an embodiment, the delivery system further comprising n therapeutic nucleic acids (NA) has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein. In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 2 therapeutic nucleic acids (NA). In another embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 3 therapeutic nucleic acids (NA). In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 4 therapeutic nucleic acids (NA). In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 5 therapeutic nucleic acids (NA). In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 6 therapeutic nucleic acids (NA). In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 7 therapeutic nucleic acids (NA). In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), and embodiments thereof described herein further comprising 8 therapeutic nucleic acids (NA).


In one embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), further comprising a linker of structure L1 or L2 wherein R is R3 and n is 2. In another embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), further comprising a linker of structure L1 wherein R is R3 and n is 2. In another embodiment, the delivery system has a structure selected from formulas (I), (II), (III), (IV), (V), (VI), further comprising a linker of structure L2 wherein R is R3 and n is 2.


In an embodiment of the delivery system, the target of delivery is selected from the group consisting of: lung, brain, liver, skin, kidney, spleen, pancreas, colon, fat, muscle, adrenal glands, and thymus. In one embodiment, the target of delivery is the lung. In another embodiment, the target of delivery are alveolar cells in the lung. In another embodiment, the target of delivery are club cells in the lung. In another embodiment, the target of delivery is the striatum of the brain. In one embodiment, the target of delivery is the liver. In one embodiment, the target of delivery is the skin. In one embodiment, the target of delivery is the kidney. In one embodiment, the target of delivery is the spleen. In one embodiment, the target of delivery is the pancreas. In one embodiment, the target of delivery is the colon. In one embodiment, the target of delivery is the fat. In one embodiment, the target of delivery are the adrenal glands. In one embodiment, the target of delivery is the muscle. In one embodiment, the target of delivery is the thymus. In one embodiment, the target of delivery is the spinal cord.


In one embodiment, efficacy of delivery to lung cells is achieved through combinations of unique conjugates, optimization of siRNA stability, structural configuration, cleavable linker, and Phosphorothioate (PS) content. In another embodiment, three conjugates, EPA, DCA and PC-DCA, have different distribution profiles. In one embodiment, DCA and PC-DCA are being cleared mostly by the liver and EPA is being cleared mostly by the kidneys. In another embodiment the two classes of conjugates show different cell-type preferences in the lung, where EPA accumulation is higher in epithelial (Clara) cells of the lung.


In certain embodiments, compounds of the invention are characterized by the following properties: (1) two or more branched oligonucleotides, e.g., wherein there is a non-equal number of 3′ and 5′ ends; (2) substantially chemically stabilized, e.g., wherein more than 40%, optimally 100%, of oligonucleotides are chemically modified (e.g., no RNA and optionally no DNA); and (3) phoshorothioated single oligonucleotides containing at least 3, phosphorothioated bonds. In certain embodiments, the phoshorothioated single oligonucleotides contain 4-20 phosphorothioated bonds.


It is to be understood that the methods described in this disclosure are not limited to particular methods and experimental conditions disclosed herein; as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


Furthermore, the experiments described herein, unless otherwise indicated, use conventional molecular and cellular biological and immunological techniques within the skill of the art. Such techniques are well known to the skilled worker, and are explained fully in the literature. See, e.g., Ausubel, et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., NY (1987-2008), including all supplements, Molecular Cloning: A Laboratory Manual (Fourth Edition) by M R Green and J. Sambrook and Harlow et al., Antibodies: A Laboratory Manual, Chapter 14, Cold Spring Harbor Laboratory, Cold Spring Harbor (2013, 2nd edition).


Branched oligonucleotides, including synthesis and methods of use, are described in greater detail in WO2017/132669, incorporated herein by reference.


Methods of Introducing Nucleic Acids, Vectors and Host Cells


RNA silencing agents of the invention may be directly introduced into the cell (e.g., a cell in the lung) (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing a cell or organism in a solution containing the nucleic acid. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the nucleic acid may be introduced.


The RNA silencing agents of the invention can be introduced using nucleic acid delivery methods known in art including injection of a solution containing the nucleic acid, bombardment by particles covered by the nucleic acid, soaking the cell or organism in a solution of the nucleic acid, or electroporation of cell membranes in the presence of the nucleic acid. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, and cationic liposome transfection such as calcium phosphate, and the like. The nucleic acid may be introduced along with other components that perform one or more of the following activities: enhance nucleic acid uptake by the cell or other-wise increase inhibition of the target gene.


Physical methods of introducing nucleic acids include injection of a solution containing the RNA, bombardment by particles covered by the RNA, soaking the cell or organism in a solution of the RNA, or electroporation of cell membranes in the presence of the RNA. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of RNA encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus, the RNA may be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, inhibit annealing of single strands, stabilize the single strands, or other-wise increase inhibition of the target gene.


RNA may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing a cell or organism in a solution containing the RNA. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the RNA may be introduced.


The cell having the target gene may be from the germ line or somatic, totipotent or pluripotent, dividing or non-dividing, parenchyma or epithelium, immortalized or transformed, or the like. The cell may be a stem cell or a differentiated cell. Cell types that are differentiated include adipocytes, fibroblasts, myocytes, cardiomyocytes, endothelium, neurons, glia, blood cells, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, basophils, mast cells, leukocytes, granulocytes, keratinocytes, chondrocytes, osteoblasts, osteoclasts, hepatocytes, and cells of the endocrine or exocrine glands.


Depending on the particular target gene and the dose of double stranded RNA material delivered, this process may provide partial or complete loss of function for the target gene. A reduction or loss of gene expression in at least 50%, 60%, 70%, 80%, 90%, 95% or 99% or more of targeted cells is exemplary. Inhibition of gene expression refers to the absence (or observable decrease) in the level of protein and/or mRNA product from a target gene. Specificity refers to the ability to inhibit the target gene without manifest effects on other genes of the cell. The consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism (as presented below in the examples) or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, Enzyme Linked ImmunoSorbent Assay (ELISA), Western blotting, RadioImmunoAssay (RIA), other immunoassays, and Fluorescence Activated Cell Sorting (FACS).


For RNA-mediated inhibition in a cell line or whole organism, gene expression is conveniently assayed by use of a reporter or drug resistance gene whose protein product is easily assayed. Such reporter genes include acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline. Depending on the assay, quantitation of the amount of gene expression allows one to determine a degree of inhibition which is greater than 10%, 33%, 50%, 90%, 95% or 99% as compared to a cell not treated according to the present invention. Lower doses of injected material and longer times after administration of RNAi agent may result in inhibition in a smaller fraction of cells (e.g., at least 10%, 20%, 50%, 75%, 90%, or 95% of targeted cells). Quantization of gene expression in a cell may show similar amounts of inhibition at the level of accumulation of target mRNA or translation of target protein. As an example, the efficiency of inhibition may be determined by assessing the amount of gene product in the cell; mRNA may be detected with a hybridization probe having a nucleotide sequence outside the region used for the inhibitory double-stranded RNA, or translated polypeptide may be detected with an antibody raised against the polypeptide sequence of that region.


The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies per cell) of material may yield more effective inhibition; lower doses may also be useful for specific applications.


In an exemplary aspect, the efficacy of an RNAi agent of the invention (e.g., an siRNA targeting an SARS-CoV-2 target sequence) is tested for its ability to specifically degrade mutant mRNA (e.g., SARS-CoV-2 mRNA and/or the production of SARS-CoV-2 protein) in cells, such as cells in the lung. In certain embodiments, cells in the lung include, but are not limited to, clara cells, alveolar cells, and club cells. Also suitable for cell-based validation assays are other readily transfectable cells, for example, HeLa cells or COS cells. Cells are transfected with human wild type or mutant cDNAs (e.g., human wild type or mutant SARS-CoV-2 cDNA). Standard siRNA, modified siRNA or vectors able to produce siRNA from U-looped mRNA are co-transfected. Selective reduction in target mRNA (e.g., SARS-CoV-2 mRNA) and/or target protein (e.g., SARS-CoV-2 protein) is measured. Reduction of target mRNA or protein can be compared to levels of target mRNA or protein in the absence of an RNAi agent or in the presence of an RNAi agent that does not target SARS-CoV-2 mRNA. Exogenously-introduced mRNA or protein (or endogenous mRNA or protein) can be assayed for comparison purposes. When utilizing lung cells, it may be desirable to introduce RNAi agents (e.g., siRNAs) by passive uptake.


Recombinant Adeno-Associated Viruses and Vectors


In certain exemplary embodiments, recombinant adeno-associated viruses (rAAVs) and their associated vectors can be used to deliver one or more siRNAs into cells, e.g., lung cells (e.g., clara cells, alveolar cells or club cells). AAV is able to infect many different cell types, although the infection efficiency varies based upon serotype, which is determined by the sequence of the capsid protein. Several native AAV serotypes have been identified, with serotypes 1-9 being the most commonly used for recombinant AAV. AAV-2 is the most well-studied and published serotype. The AAV-DJ system includes serotypes AAV-DJ and AAV-DJ/8. These serotypes were created through DNA shuffling of multiple AAV serotypes to produce AAV with hybrid capsids that have improved transduction efficiencies in vitro (AAV-DJ) and in vivo (AAV-DJ/8) in a variety of cells and tissues.


In certain embodiments, widespread lung delivery can be achieved by intratracheal (IT) delivery of recombinant adeno-associated virus 7 (rAAV7), RAAV9 and rAAV10, or other suitable rAAVs. rAAVs and their associated vectors are well-known in the art and are described in US Patent Applications 2014/0296486, 2010/0186103, 2008/0269149, 2006/0078542 and 2005/0220766, each of which is incorporated herein by reference in its entirety for all purposes.


rAAVs may be delivered to a subject in compositions according to any appropriate methods known in the art. An rAAV can be suspended in a physiologically compatible carrier (i.e., in a composition), and may be administered to a subject, i.e., a host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, a non-human primate (e.g., Macaque) or the like. In certain embodiments, a host animal is a non-human host animal.


Delivery of one or more rAAVs to a mammalian subject may be performed, for example, by intramuscular injection or by administration into the bloodstream of the mammalian subject. Administration into the bloodstream may be by injection into a vein, an artery, or any other vascular conduit. In certain embodiments, one or more rAAVs are administered into the bloodstream by way of isolated limb perfusion, a technique well known in the surgical arts, the method essentially enabling the artisan to isolate a limb from the systemic circulation prior to administration of the rAAV virions. A variant of the isolated limb perfusion technique, described in U.S. Pat. No. 6,177,403, can also be employed by the skilled artisan to administer virions into the vasculature of an isolated limb to potentially enhance transduction into muscle cells or tissue. Moreover, in certain instances, it may be desirable to deliver virions to the lung of a subject. By “lung” is meant all cells and tissue of the lung of a vertebrate. Thus, the term includes, but is not limited to, clara cells, alveolar cells, club cells, and the like. Recombinant AAVs may be delivered directly to the lung by injection, e.g., intratracheal injection.


The compositions of the invention may comprise an rAAV alone, or in combination with one or more other viruses (e.g., a second rAAV encoding having one or more different transgenes). In certain embodiments, a composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different rAAVs each having one or more different transgenes.


An effective amount of an rAAV is an amount sufficient to target infect an animal, target a desired tissue. In some embodiments, an effective amount of an rAAV is an amount sufficient to produce a stable somatic transgenic animal model. The effective amount will depend primarily on factors such as the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among animal and tissue. For example, an effective amount of one or more rAAVs is generally in the range of from about 1 ml to about 100 ml of solution containing from about 109 to 1016 genome copies. In some cases, a dosage between about 1011 to 1012 rAAV genome copies is appropriate. In certain embodiments, 1012 rAAV genome copies is effective to target lung, heart, liver, and pancreas tissues. In some cases, stable transgenic animals are produced by multiple doses of an rAAV.


In some embodiments, rAAV compositions are formulated to reduce aggregation of AAV particles in the composition, particularly where high rAAV concentrations are present (e.g., about 1013 genome copies/mL or more). Methods for reducing aggregation of rAAVs are well known in the art and, include, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright et al. (2005) Molecular Therapy 12:171-178, the contents of which are incorporated herein by reference.)


“Recombinant AAV (rAAV) vectors” comprise, at a minimum, a transgene and its regulatory sequences, and 5′ and 3′ AAV inverted terminal repeats (ITRs). It is this recombinant AAV vector which is packaged into a capsid protein and delivered to a selected target cell. In some embodiments, the transgene is a nucleic acid sequence, heterologous to the vector sequences, which encodes a polypeptide, protein, functional RNA molecule (e.g., siRNA) or other gene product, of interest. The nucleic acid coding sequence is operatively linked to regulatory components in a manner which permits transgene transcription, translation, and/or expression in a cell of a target tissue.


The AAV sequences of the vector typically comprise the cis-acting 5′ and 3′ inverted terminal repeat (ITR) sequences (See, e.g., B. J. Carter, in “Handbook of Parvoviruses”, ed., P. Tijsser, CRC Press, pp. 155 168 (1990)). The ITR sequences are usually about 145 basepairs in length. In certain embodiments, substantially the entire sequences encoding the ITRs are used in the molecule, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of the art. (See, e.g., texts such as Sambrook et al, “Molecular Cloning. A Laboratory Manual”, 2d ed., Cold Spring Harbor Laboratory, New York (1989); and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the present invention is a “cis-acting” plasmid containing the transgene, in which the selected transgene sequence and associated regulatory elements are flanked by the 5′ and 3′ AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including mammalian AAV types described further herein.


VIII. Methods of Treatment


In one aspect, the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) SARS-CoV-2 infection. In one embodiment, the disease or disorder is such that SARS-CoV-2 levels in blood or another biological sample have been found to be a marker of infection. In another embodiment, the infection with SARS-CoV-2 is characterized by a clinical manifestation of viral infection, e.g. an increase in body temperature. In a certain embodiment, a reduction in SARS-CoV-2 mRNA reduces clinical manifestations of SARS-CoV-2 infection.


“Treatment,” or “treating,” as used herein, is defined as the application or administration of a therapeutic agent (e.g., a RNA agent or vector or transgene encoding same) to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has the disease or disorder, a symptom of disease or disorder or a predisposition toward a disease or disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease or disorder, the symptoms of the disease or disorder, or the predisposition toward disease.


In one aspect, the invention provides a method for preventing in a subject, a disease or disorder as described above, by administering to the subject a therapeutic agent (e.g., an RNAi agent or vector or transgene encoding same). Subjects at risk for the disease can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the disease or disorder, such that the disease or disorder is prevented or, alternatively, delayed in its progression.


Another aspect of the invention pertains to methods treating subjects therapeutically, i.e., alter onset of symptoms of the disease or disorder. In an exemplary embodiment, the modulatory method of the invention involves contacting a lung cell with a therapeutic agent (e.g., a RNAi agent or vector or transgene encoding same) that is specific for a target sequence within the gene (e.g., SARS-CoV-2 target sequences of Tables 4, 5, 6A, 7, and 8), such that sequence specific interference with the gene is achieved. These methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject).


IX. Pharmaceutical Compositions and Methods of Administration


The invention pertains to uses of the above-described agents for prophylactic and/or therapeutic treatments as described infra. Accordingly, the modulators (e.g., RNAi agents) of the present invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, antibody, or modulatory compound and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, intraperitoneal, intramuscular, oral (e.g., inhalation), transdermal (topical), and transmucosal administration.


The nucleic acid molecules of the invention can be inserted into expression constructs, e.g., viral vectors, retroviral vectors, expression cassettes, or plasmid viral vectors, e.g., using methods known in the art, including but not limited to those described in Xia et al., (2002), Supra. Expression constructs can be delivered to a subject by, for example, inhalation, orally, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994), Proc. Natl. Acad. Sci. USA, 91, 3054-3057). The pharmaceutical preparation of the delivery vector can include the vector in an acceptable diluent, or can comprise a slow release matrix in which the delivery vehicle is imbedded. Alternatively, where the complete delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


The nucleic acid molecules of the invention can also include small hairpin RNAs (shRNAs), and expression constructs engineered to express shRNAs. Transcription of shRNAs is initiated at a polymerase III (pol III) promoter, and is thought to be terminated at position 2 of a 4-5-thymine transcription termination site. Upon expression, shRNAs are thought to fold into a stem-loop structure with 3′ UU-overhangs; subsequently, the ends of these shRNAs are processed, converting the shRNAs into siRNA-like molecules of about 21 nucleotides. Brummelkamp et al. (2002), Science, 296, 550-553; Lee et al, (2002). supra; Miyagishi and Taira (2002), Nature Biotechnol., 20, 497-500; Paddison et al. (2002), supra; Paul (2002), supra; Sui (2002) supra; Yu et al. (2002), supra.


The expression constructs may be any construct suitable for use in the appropriate expression system and include, but are not limited to retroviral vectors, linear expression cassettes, plasmids and viral or virally-derived vectors, as known in the art. Such expression constructs may include one or more inducible promoters, RNA Pol III promoter systems such as U6 snRNA promoters or H1 RNA polymerase III promoters, or other promoters known in the art. The constructs can include one or both strands of the siRNA. Expression constructs expressing both strands can also include loop structures linking both strands, or each strand can be separately transcribed from separate promoters within the same construct. Each strand can also be transcribed from a separate expression construct, Tuschl (2002), Supra.


In certain embodiments, a composition that includes a compound of the invention can be delivered to the lungs of a subject by a variety of routes. Exemplary routes include intratracheal or nasal delivery. The composition can also be delivered systemically, e.g., by intravenous, subcutaneous or intramuscular injection.


For example, compositions can include one or more species of a compound of the invention and a pharmaceutically acceptable carrier. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated.


As used herein “intratracheal administration” refers to the direct administration to the lung through the trachea. Intratracheal administration includes, but is not limited to, intratracheal inhalation and intratracheal instillation. Intratracheal administration (IT) is non-invasive and can be used in the field. Both the chemical architectures of the siRNAs and routes of administration might have benefits in different clinical contexts and disease stages. The chemical architectures optimal for different routes of administration is different. For example, DCA-conjugated siRNAs or divalent siRNAs can be effective for delivery of siRNA to the lung.


In one embodiment, divalent siRNAs are delivered to lung tissues. A variety of lung delivery systems can be employed to accomplish delivery to the lung tissues, for example, but not limited to, direct intrathecal instillation, or by using a nebulizer. Formulations in which the siRNA can be delivered are, for example, but not limited to, dry powder, direct powder, vapor droplets, etc.


It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods described herein may be made using suitable equivalents without departing from the scope of the embodiments disclosed herein. Having now described certain embodiments in detail, the same will be more clearly understood by reference to the following example, which is included for purposes of illustration only and is not intended to be limiting.


EXAMPLES
Example 1. In Vitro Identification of SARS-CoV-2 Targeting Sequences

Hyper functional siRNAs targeting all 9 genes (regions) of SARS-CoV2 were identified. A combination of bioinformatic approaches were employed to identify regions of conservation (based on 718 patients isolates) in combination with features essential for RISC entry and tolerance of chemical modifications. Over 100 chemically optimized compounds were synthesized, and reporter systems developed to test these compounds in cells, screened at 1.5 μM concentration. Selected hits were further screened in dose response studies, and at least two lead compounds were identified per gene with IC50 values <20 nM.


Target sequences were derived from the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) isolate Wuhan-Hu-1 (NCBI accession: NC_045512). Fully chemically modified and conjugated oligonucleotides targeting SARS-CoV-2 and the human host receptors of SARS-CoV2 could potentially prevent and treat viral infections from viruses within the family Coronaviridiae.


Nine SARS-CoV-2 transcripts were selected for knockdown: the genes coding for the four major structural proteins spike surface glycoprotein (S), small envelope protein (E), matrix protein (M), and nucleocapsid protein (N), as well as genes coding for pp1a, pp1ab, which make up the 16 non-structural proteins of SARS-CoV-2, and genes coding for the accessory proteins 3a, 8b, 7a (FIG. 1). Table 4 shows the full-length sequence of the SARS-CoV-2 genome, Table 5 the sequences of the SARS-CoV-2 genes. FIG. 2 depicts a diagram of siRNA and antisense oligonucleotides (ASOs) target positions on encoded proteins in the SARS-CoV-2 genome. siRNAs were designed to target nine genes encoding SARS-CoV-2 proteins: orf1a, orf1ab, spike surface glycoprotein (S), small envelope protein (E), matrix protein (M), nucleocapsid protein (N), and accessory proteins 3a, 8b, 7a. Grey arrows indicate siRNA and ASO target positions. Inset in FIG. 2 shows a detailed view of siRNA target positions on genes in the 3′ region of the genome.









TABLE 4





SARS-CoV2 genomic sequence (NCBI Accession Number


NC 045512)















SARS-CoV2 genome sequence


ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTC





TTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTC





GGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGT





CGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGT





TTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTG





TGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAAC





ACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTAC





GTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACAT





CTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCC





TCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTG





CACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATT





CAGTACGGTCGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGG





CGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATA





AAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTA





GGCGACGAGCTTGGCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAA





CACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACG





GAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGC





TACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTC





ATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTAT





ACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCT





GAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAA





ATTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATT





CCATAATCAAGACTATTCAACCAAGGGTTGAAAAGAAAAAGCTTGATGGC





TTTATGGGTAGAATTCGATCTGTCTATCCAGTTGCGTCACCAAATGAATG





CAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCATTGTGGTGAAA





CTTCATGGCAGACGGGCGATTTTGTTAAAGCCACTTGCGAATTTTGTGGC





ACTGAGAATTTGACTAAAGAAGGTGCCACTACTTGTGGTTACTTACCCCA





AAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAG





GACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGGCTTGAAAACC





ATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGGAGGCTGTGTGTTCTC





TTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCACGTGCTAGCG





CTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGT





CTTAATGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAA





TATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCAT





CTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGAT





TATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC





AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAA





TACTGAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGA





TCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTT





ACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGA





GACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAATCTA





GTTGTAATGGCCTACATTACAGGTGGTGTTGTTCAGTTGACTTCGCAGTG





GCTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTG





ATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGT





TGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGG





ACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGACATTCT





TTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATT





GGTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCA





CTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCC





TACTCATGCCTCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAA





ACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGA





TTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCCATTGG





TTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGAC





ACAGAAAAGTACTGTGCCCTTGCACCTAATATGATGGTAACAAACAATAC





CTTCACACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACA





CTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTT





GATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGT





TGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATGCTG





TCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATT





GATTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGG





TGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATG





AGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACT





CAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCTTTGGAATT





TGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAGATT





GGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAG





GACAATCAGACAACTACTATTCAAACAATTGTTGAGGTTCAACCTCAATT





AGAGATGGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTA





GTGGTTATTTAAAACTTACTGACAATGTATACATTAAAAATGCAGACATT





GTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAA





TGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGGCTA





CTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGA





CCACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAA





ACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTC





AACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTT





GCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTT





AAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTG





ATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGT





GAAAAGCAAGTTGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAA





GCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATG





ATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAA





ACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGGCAA





TCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCT





TAAAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTT





TTAACTGCTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAAT





GCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTT





ACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGCAAAGACAGTG





CTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAA





TGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGC





TTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACT





AAAGCCATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACA





AGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAA





CAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAACTCTT





GTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC





TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTT





CACCTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAA





ACACCTGAAGAACATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAA





AGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATAGAATTTCTTA





AGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACATTCCAC





CTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTT





GAGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACC





TCCACACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGGT





CCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTC





ACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTACGTG





TTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGG





TACATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAA





TGGTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTG





CATTGTTAACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTA





CAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGC





ACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTGATGTTA





GAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAAA





AGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCT





TAAGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAAT





TTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACAAGCTACAAAA





TATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGC





TCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG





GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTG





TATTGCATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCC





TATTACGGATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAAC





CAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAG





TTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGCAACCAAT





TGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTTTA





AGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACT





GGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGA





CTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTT





TTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGTTAAC





AATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTG





TCTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGA





AGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAA





CCAGTCTCTGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCT





TGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAAC





CAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTA





ATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGA





ATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTG





CTGTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTT





CTTAACAAAGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAA





CCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCTACAAT





TGTGTACTTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG





ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGA





GGCTTCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATA





TTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTAC





TCAACCGCTGCTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTA





CTGTACTGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCACTATTG





CAACCTACTGTACTGGTTCTATACCTTGTAGTGTTTGTCTTAGTGGTTTA





GATTCTTTAGACACCTATCCTTCTTTAGAAACTATACAAATTACCATTTC





ATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGTTTT





TGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCTGCA





ATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTC





TTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAG





CTATGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATGGAAA





AGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTG





TTACAAACGTAATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATG





GTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAAAGGCTTTTGC





AAACTACACAATTGGAATTGTGTTAATTGTGATACATTCTGTGCTGGTAG





TACATTTATTAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAA





GACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTGATAGTGTTACA





GTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAAAAGAC





TTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAG





CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGT





AAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAG





TCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTG





ATGTTGGTGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTT





AATACGTTTTCATCAACTTTTAACGTACCAATGGAAAAACTCAAAACACT





AGTTGCAACTGCAGAAGCTGAACTTGCAAAGAATGTGTCCTTAGACAATG





TCTTATCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGATTCAGAT





GTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGA





CATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCACCTATAACA





AAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTGTAGT





GCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGAT





ATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAA





TACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCA





ACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGG





TGGTAAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAAGTTACACTTG





TGTTCCTTTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTTCATGTC





ATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTAT





TGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCTA





ACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTAT





ACTAATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGT





GGGTTTTGTCGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATG





GTGACTTTTTGCATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATC





TGTTACACACCATCAAAACTTATAGAGTACACTGACTTTGCAACATCAGC





TTGTGTTTTGGCTGCTGAATGTACAATTTTTAAAGATGCTTCTGGTAAGC





CAGTACCATATTGTTATGATACCAATGTACTAGAAGGTTCTGTTGCTTAT





GAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGGCTCTATTAT





TCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAACTT





TTGATTCTGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGT





GTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAG





ATCTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTA





ATATGTTTACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCA





TCTATAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTA





CTATTTTATGAGGTTTAGAAGAGCTTTTGGTGAATACAGTCATGTAGTTG





CCTTTAATACTTTACTATTCCTTATGTCATTCACTGTACTCTGTTTAACA





CCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGTACTT





GACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCAGTGGA





TGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATC





ATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAA





GAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTG





CGCTGTGCACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGT





GATGTGCTATTACCTCTTACGCAATATAATAGATACTTAGCTCTTTATAA





TAAGTACAAGTATTTTAGTGGAGCAATGGATACAACTAGCTACAGAGAAG





CTGCTTGTTGTCATCTCGCAAAGGCTCTCAATGACTTCAGTAACTCAGGT





TCTGATGTTCTTTACCAACCACCACAAACCTCTATCACCTCAGCTGTTTT





GCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAAGTTGAGGGTT





GTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCTTTGGCTT





GATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGACAT





GCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATT





TCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATG





CAAAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACC





TAAGTATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGTGTTAG





CTTGTTACAATGGTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCC





AATTTCACTATTAAGGGTTCATTCCTTAATGGTTCATGTGGTAGTGTTGG





TTTTAACATAGATTATGACTGTGTCTCTTTTTGTTACATGCACCATATGG





AATTACCAACTGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTAT





GGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTACGGACACAAC





TATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAAATGGAG





ACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACTTTAACCTT





GTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACAT





ACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTG





CTTCATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTG





GGTAGTGCTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACA





ATGCTCAGGTGTTACTTTCCAAAGTGCAGTGAAAAGAACAATCAAGGGTA





CACACCACTGGTTGTTACTCACAATTTTGACTTCACTTTTAGTTTTAGTC





CAGAGTACTCAATGGTCTTTGTTCTTTTTTTTGTATGAAAATGCCTTTTT





ACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGTTTG





TCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTTACCTTCTCTTGCC





ACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGTGATGCG





TATTATGACATGGTTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGC





TAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATG





ACAGCAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTAT





GAATGTCTTGACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATC





AAGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTTCTAACTACTCA





GGTGTAGTTACAACTGTCATGTTTTTGGCCAGAGGTATTGTTTTTATGTG





TGTTGAGTATTGCCCTATTTTCTTCATAACTGGTAATACACTTCAGTGTA





TAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTACTTTGGC





CTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGA





TTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTAC





TCCCACCCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTG





GGTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAAT





GTCAGATGTAAAGTGCACATCAGTAGTCTTACTCTCAGTTTTGCAACAAC





TCAGAGTAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACAC





AATGACATTCTCTTAGCTAAAGATACTACTGAAGCCTTTGAAAAAATGGT





TTCACTACTTTCTGTTTTGCTTTCCATGCAGGGTGCTGTAGACATAAACA





AGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTATAGCC





TCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACTGCTCAAGA





AGCTTATGAGCAGGCTGTTGCTAATGGTGATTCTGAAGTTGTTCTTAAAA





AGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCA





GCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAAT





GTATAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTA





TGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTC





AACAACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAAT





ACCTCTTACAACAGCAGCCAAACTAATGGTTGTCATACCAGACTATAACA





CATATAAAAATACGTGTGATGGTACAACATTTACTTATGCATCAGCATTG





TGGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAG





TGAAATTAGTATGGACAATTCACCTAATTTAGCATGGCCTCTTATTGTAA





CAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCTTAGT





CCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAAACTGC





TTGCACTGATGACAATGCGTTAGCTTACTACAACACAACAAAGGGAGGTA





GGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGA





TTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACC





TTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTAT





ACTTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGT





TTAGCTGCCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGC





CAATTCAACTGTATTATCTTTCTGTGCTTTTGCTGTAGATGCTGCTAAAG





CTTACAAAGATTATCTAGCTAGTGGGGGACAACCAATCACTAATTGTGTT





AAGATGTTGTGTACACACACTGGTACTGGTCAGGCAATAACAGTTACACC





GGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGTCTGT





ACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGTGACTTA





AAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGG





TTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTT





ATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGAT





GCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACA





CCGTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACAT





CTACAATGATAAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTGTT





GTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGATTCTTACTTT





GTAGTTAAGAGACACACTTTCTCTAACTACCAACATGAAGAAACAATTTA





TAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAGT





TTAGAATAGACGGTGACATGGTACCACATATATCACGTCAACGTCTTACT





AAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGG





TAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGATG





ATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAAACCCAGAT





ATATTACGCGTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTT





AAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTG





TACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGT





GATTTCATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTA





TTATTCATTGTTAATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAG





AGTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTG





TTAAAATATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTATTT





TAAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTGGATG





ACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTG





TTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGG





TGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTG





TACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAA





TTACTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCT





ATTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACA





ATGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTAT





GACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATT





AAAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATG





ACTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTA





TTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTG





TATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTT





TTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGT





TATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCC





TACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAG





CTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAG





TTTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGT





AGTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAA





CTGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCT





AAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGT





TCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATA





GATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATGTGTGGC





GGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAAC





TGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATG





TTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTC





CGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGT





TGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCT





CAATGATGATACTCTCTGACGATGCTGTTGTGTGTTTCAATAGCACTTAT





GCATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTA





TTATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTG





ACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTT





AAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAAT





CCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACAC





TTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTTACT





AAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATA





CATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATT





CTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTT





TATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTG





TGTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTA





GACCATTCTTATGTTGTAAATGCTGTTACGACCATGTCATATCAACATCA





CATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTG





TGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATT





GTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAA





GTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGA





CTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTT





TAGCTAACACCTGTACTGAAAGACTCAAGCTTTTTGCAGCAGAAACGCTC





AAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACG





TGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAAC





CTAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACT





AAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTA





TGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAATGTTG





GTGATTATTTTGTGCTGACATCACATACAGTAATGCCATTAAGTGCACCT





ACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAAC





ACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGG





TTGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTAAG





AGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGT





GTATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCAT





TAAAATATTTGCCTATAGATAAATGTAGTAGAATTATACCTGCACGTGCT





CGTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTA





TGTCTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTG





TCTTTGATGAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAAT





GCCAGATTACGTGCTAAGCACTATGTGTACATTGGCGACCCTGCTCAATT





ACCTGCACCACGCACATTGCTAACTAAGGGCACACTAGAACCAGAATATT





TCAATTCAGTGTGTAGACTTATGAAAACTATAGGTCCAGACATGTTCCTC





GGAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAGTGCTTT





GGTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGCT





TTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATT





AACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGC





TTGGAGAAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTGTAG





CCTCAAAGATTTTGGGACTACCAACTCAAACTGTTGATTCATCACAGGGC





TCAGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTC





TTGTAATGTAAACAGATTTAATGTTGCTATTACCAGAGCAAAAGTAGGCA





TACTTTGCATAATGTCTGATAGAGACCTTTATGACAAGTTGCAATTTACA





AGTCTTGAAATTCCACGTAGGAATGTGGCAACTTTACAAGCTGAAAATGT





AACAGGACTCTTTAAAGATTGTAGTAAGGTAATCACTGGGTTACATCCTA





CACAGGCACCTACACACCTCAGTGTTGACACTAAATTCAAAACTGAAGGT





TTATGTGTTGACATACCTGGCATACCTAAGGACATGACCTATAGAAGACT





CATCTCTATGATGGGTTTTAAAATGAATTATCAAGTTAATGGTTACCCTA





ACATGTTTATCACCCGCGAAGAAGCTATAAGACATGTACGTGCATGGATT





GGCTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTACCAA





TTTACCTTTACAGCTAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTAC





CTACAGGTTATGTTGATACACCTAATAATACAGATTTTTCCAGAGTTAGT





GCTAAACCACCGCCTGGAGATCAATTTAAACACCTCATACCACTTATGTA





CAAAGGACTTCCTTGGAATGTAGTGCGTATAAAGATTGTACAAATGTTAA





GTGACACACTTAAAAATCTCTCTGACAGAGTCGTATTTGTCTTATGGGCA





CATGGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAATAGGACCTGA





GCGCACCTGTTGTCTATGTGATAGACGTGCCACATGCTTTTCCACTGCTT





CAGACACTTATGCCTGTTGGCATCATTCTATTGGATTTGATTACGTCTAT





AATCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGTAACCTACA





AAGCAACCATGATCTGTATTGTCAAGTCCATGGTAATGCACATGTAGCTA





GTTGTGATGCAATCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTT





AAGCGTGTTGACTGGACTATTGAATATCCTATAATTGGTGATGAACTGAA





GATTAATGCGGCTTGTAGAAAGGTTCAACACATGGTTGTTAAAGCTGCAT





TATTAGCAGACAAATTCCCAGTTCTTCACGACATTGGTAACCCTAAAGCT





ATTAAGTGTGTACCTCAAGCTGATGTAGAATGGAAGTTCTATGATGCACA





GCCTTGTAGTGACAAAGCTTATAAAATAGAAGAATTATTCTATTCTTATG





CCACACATTCTGACAAATTCACAGATGGTGTATGCCTATTTTGGAATTGC





AATGTCGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTGACACTAG





AGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGTGGCAGTTTGTATG





TAAATAAACATGCATTCCACACACCAGCTTTTGATAAAAGTGCTTTTGTT





AATTTAAAACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAGTC





TCATGGAAAACAAGTAGTGTCAGATATAGATTATGTACCACTAAAGTCTG





CTACGTGTATAACACGTTGCAATTTAGGTGGTGCTGTCTGTAGACATCAT





GCTAATGAGTACAGATTGTATCTCGATGCTTATAACATGATGATCTCAGC





TGGCTTTAGCTTGTGGGTTTACAAACAATTTGATACTTATAACCTCTGGA





ACACTTTTACAAGACTTCAGAGTTTAGAAAATGTGGCTTTTAATGTTGTA





AATAAGGGACACTTTGATGGACAACAGGGTGAAGTACCAGTTTCTATCAT





TAATAACACTGTTTACACAAAAGTTGATGGTGTTGATGTAGAATTGTTTG





AAAATAAAACAACATTACCTGTTAATGTAGCATTTGAGCTTTGGGCTAAG





CGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAATAATTTGGGTGT





GGACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGATGCTCCAG





CACATATATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGAAA





CCAACTGAAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGT





TGATGGTCAAGTAGACTTATTTAGAAATGCCCGTAATGGTGTTCTTATTA





CAGAAGGTAGTGTTAAAGGTTTACAACCATCTGTAGGTCCCAAACAAGCT





AGTCTTAATGGAGTCACATTAATTGGAGAAGCCGTAAAAACACAGTTCAA





TTATTATAAGAAAGTTGATGGTGTTGTCCAACAATTACCTGAAACTTACT





TTACTCAGAGTAGAAATTTACAAGAATTTAAACCCAGGAGTCAAATGGAA





ATTGATTTCTTAGAATTAGCTATGGATGAATTCATTGAACGGTATAAATT





AGAAGGCTATGCCTTCGAACATATCGTTTATGGAGATTTTAGTCATAGTC





AGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAAACGTTTTAAGGAA





TCACCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAAAA





CTATTTCATAACAGATGCGCAAACAGGTTCATCTAAGTGTGTGTGTTCTG





TTATTGATTTATTACTTGATGATTTTGTTGAAATAATAAAATCCCAAGAT





TTATCTGTAGTTTCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAAT





TTCATTTATGCTTTGGTGTAAAGATGGCCATGTAGAAACATTTTACCCAA





AATTACAATCTAGTCAAGCGTGGCAACCGGGTGTTGCTATGCCTAATCTT





TACAAAATGCAAAGAATGCTATTAGAAAAGTGTGACCTTCAAAATTATGG





TGATAGTGCAACATTACCTAAAGGCATAATGATGAATGTCGCAAAATATA





CTCAACTGTGTCAATATTTAAACACATTAACATTAGCTGTACCCTATAAT





ATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGG





TACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGCTGCTTGTCGATT





CAGATCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGATTGGTGAT





TGTGCAACTGTACATACAGCTAATAAATGGGATCTCATTATTAGTGATAT





GTACGACCCTAAGACTAAAAATGTTACAAAAGAAAATGACTCTAAAGAGG





GTTTTTTCACTTACATTTGTGGGTTTATACAACAAAAGCTAGCTCTTGGA





GGTTCCGTGGCTATAAAGATAACAGAACATTCTTGGAATGCTGATCTTTA





TAAGCTCATGGGACACTTCGCATGGTGGACAGCCTTTGTTACTAATGTGA





ATGCGTCATCATCTGAAGCATTTTTAATTGGATGTAATTATCTTGGCAAA





CCACGCGAACAAATAGATGGTTATGTCATGCATGCAAATTACATATTTTG





GAGGAATACAAATCCAATTCAGTTGTCTTCCTATTCTTTATTTGACATGA





GTAAATTTCCCCTTAAATTAAGGGGTACTGCTGTTATGTCTTTAAAAGAA





GGTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAAGGTAGACTTAT





AATTAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTGTTAACA





ACTAAACGAACAATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAG





TCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTA





ATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCA





GTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTAC





TTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTG





ATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAG





AAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAA





GACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAG





TCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCAC





AAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGC





GAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTG





AAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAAT





ATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGT





GCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGC





CAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGA





AGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGC





AGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATA





ATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTC





TCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTA





TCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTC





CTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGA





TTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGC





TGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTT





ATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTAT





GCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGG





GCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTA





CAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGT





GGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACC





TTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTT





GTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGT





TTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACT





TTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGT





CTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTA





ACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCA





ACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCAC





AGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGT





GTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCA





GGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTA





CTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGT





GCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGA





CATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATT





CTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACT





ATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGC





CATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGT





CTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCA





ACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATT





AAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAG





AAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGAT





TTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAG





CAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAG





ATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCT





AGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACC





TTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGG





GTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATA





CCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACA





GAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTG





CTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGA





AAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGT





TAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATA





TCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTG





ATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAAT





TAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGT





CAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGC





TATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTT





GCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTG





CCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTT





TCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACA





AATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAA





TAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGAC





TCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGA





TGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTC





AAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCT





CTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCC





ATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGG





TGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGC





TGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCC





AGTGCTCAAAGGAGTCAAATTACATTACACATAAACGAACTTATGGATTT





GTTTATGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGTGAAA





TCAAGGATGCTACTCCTTCAGATTTTGTTCGCGCTACTGCAACGATACCG





ATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTTGCACTTCT





TGCTGTTTTTCAGAGCGCTTCCAAAATCATAACCCTCAAAAAGAGATGGC





AACTAGCACTCTCCAAGGGTGTTCACTTTGTTTGCAACTTGCTGTTGTTG





TTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTTGAAGC





CCCTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTATAAACT





TTGTAAGAATAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAA





AACCCATTACTTTATGATGCCAACTATTTTCTTTGCTGGCATACTAATTG





TTACGACTATTGTATACCTTACAATAGTGTAACTTCTTCAATTGTCATTA





CTTCAGGTGATGGCACAACAAGTCCTATTTCTGAACATGACTACCAGATT





GGTGGTTATACTGAAAAATGGGAATCTGGAGTAAAAGACTGTGTTGTATT





ACACAGTTACTTCACTTCAGACTATTACCAGCTGTACTCAACTCAATTGA





GTACAGACACTGGTGTTGAACATGTTACCTTCTTCATCTACAATAAAATT





GTTGATGAGCCTGAAGAACATGTCCAAATTCACACAATCGACGGTTCATC





CGGAGTTGTTAATCCAGTAATGGAACCAATTTATGATGAACCGACGACGA





CTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAACTTATGTAC





TCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCT





TTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTG





CGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTA





AAACCTTCTTTTTACGTTTACTCTCGTGTTAAAAATCTGAATTCTTCTAG





AGTTCCTGATCTTCTGGTCTAAACGAACTAAATATTATATTAGTTTTTCT





GTTTGGAACTTTAATTTTAGCCATGGCAGATTCCAACGGTACTATTACCG





TTGAAGAGCTTAAAAAGCTCCTTGAACAATGGAACCTAGTAATAGGTTTC





CTATTCCTTACATGGATTTGTCTTCTACAATTTGCCTATGCCAACAGGAA





TAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGCTGTTATGGCCAG





TAACTTTAGCTTGTTTTGTGCTTGCTGCTGTTTACAGAATAAATTGGATC





ACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGCT





CAGCTACTTCATTGCTTCTTTCAGACTGTTTGCGCGTACGCGTTCCATGT





GGTCATTCAATCCAGAAACTAACATTCTTCTCAACGTGCCACTCCATGGC





ACTATTCTGACCAGACCGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGT





GATCCTTCGTGGACATCTTCGTATTGCTGGACACCATCTAGGACGCTGTG





ACATCAAGGACCTGCCTAAAGAAATCACTGTTGCTACATCACGAACGCTT





TCTTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAGGTGACTCAGGTTT





TGCTGCATACAGTCGCTACAGGATTGGCAACTATAAATTAAACACAGACC





ATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTACAGTAAGTGACAACA





GATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAA





TTATTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATA





AACCTCATAATTAAAAATTTATCTAAGTCACTAACTGAGAATAAATATTC





TCAATTAGATGAAGAGCAACCAATGGAGATTGATTAAACGAACATGAAAA





TTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCAC





TACCAAGAGTGTGTTAGAGGTACAACAGTACTTTTAAAAGAACCTTGCTC





TTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACA





AATTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGAC





GGCGTAAAACACGTCTATCAGTTACGTGCCAGATCAGTTTCACCTAAACT





GTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTA





TTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAG





ACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTTTAGCC





TTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACT





TGAACTGCAAGATCATAATGAAACTTGTCACGCCTAAACGAACATGAAAT





TTCTTGTTTTCTTAGGAATCATCACAACTGTAGCTGCATTTCACCAAGAA





TGTAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCC





GTGTCCTATTCACTTCTATTCTAAATGGTATATTAGAGTAGGAGCTAGAA





AATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCA





CCCATTCAGTACATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTT





TACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCGTTGTT





CGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTGTTTTAGAT





TTCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAG





CGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAG





TAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCC





AAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACAT





GGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACAC





CAATAGCAGTCCAGATGACCAAATTGGCTACTACCGAAGAGCTACCAGAC





GAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTAT





TTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAA





CAAAGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAA





AAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTA





CAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAG





CAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACA





GTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGA





ATGGCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAG





ATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAG





GCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGG





CAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAG





ACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCA





GACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCC





AGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTCACACC





TTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAG





ATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCA





TACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGC





TGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGA





CTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAA





TCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACAC





AAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATA





GTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGCACAAGTAGAT





GTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTA





GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTAC





GATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAG





CCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAA





TAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAA (SEQ ID NO: 1)
















TABLE 5







SARS-CoV2 gene sequences










Gene
Start
End
Sequence





orf1a
  266
13483
ATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACAC


(SEQ ID


ACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGAC


NO: 2)


GTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGG





TCTTATCAGAGGCACGTCAACATCTTAAAGATGGCAC





TTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTC





AACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGAT





GCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCT





GGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGT





GGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGA





AATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGA





ACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGC





CGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGC





ACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACA





CTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCG





TGAGCTTAACGGAGGGGCATACACTCGCTATGTCGAT





AACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTG





CATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTCAT





GCACTTTGTCCGAACAACTGGACTTTATTGACACTAAG





AGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAA





TTGCTTGGTACACGGAACGTTCTGAAAAGAGCTATGA





ATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAA





TTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATT





TCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGG





TTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAAT





TCGATCTGTCTATCCAGTTGCGTCACCAAATGAATGCA





ACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCAT





TGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTA





AAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACT





AAAGAAGGTGCCACTACTTGTGGTTACTTACCCCAAA





ATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAAT





TCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACC





ATAATGAATCTGGCTTGAAAACCATTCTTCGTAAGGGT





GGTCGCACTATTGCCTTTGGAGGCTGTGTGTTCTCTTA





TGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCAC





GTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGT





TGTTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTT





CTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATA





TTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATT





ATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGT





GGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAAC





AAATTGTTGAATCCTGTGGTAATTTTAAAGTTACAAAA





GGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAAC





AGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCA





GAGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCAC





TCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGA





AGGCCGCTATAACAATACTAGATGGAATTTCACAGTA





TTCACTGAGACTCATTGATGCTATGATGTTCACATCTG





ATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATT





ACAGGTGGTGTTGTTCAGTTGACTTCGCAGTGGCTAAC





TAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCG





TCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGT





AGAGTTTCTTAGAGACGGTTGGGAAATTGTTAAATTTA





TCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATT





GTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGA





CATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGT





GCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGC





CTTGAATTTAGGTGAAACATTTGTCACGCACTCAAAG





GGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAA





CTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAAT





TATCTTCTTAGAGGGAGAAACACTTCCCACAGAAGTG





TTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTAC





AACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGC





TCCATTGGTTGGTACACCAGTTTGTATTAACGGGCTTA





TGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGC





CCTTGCACCTAATATGATGGTAACAAACAATACCTTCA





CACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGG





TGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGT





GTGAATATCACTTTTGAACTTGATGAAAGGATTGATA





AAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGA





ACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTG





GCAGATGCTGTCATAAAAACTTTGCAACCAGTATCTG





AATTACTTACACCACTGGGCATTGATTTAGATGAGTGG





AGTATGGCTACATACTACTTATTTGATGAGTCTGGTGA





GTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACC





CTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGA





AGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGT





ACTGAAGATGATTACCAAGGTAAACCTTTGGAATTTG





GTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCA





AGAAGAAGATTGGTTAGATGATGATAGTCAACAAACT





GTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAA





CTACTATTCAAACAATTGTTGAGGTTCAACCTCAATTA





GAGATGGAACTTACACCAGTTGTTCAGACTATTGAAG





TGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAAT





GTATACATTAAAAATGCAGACATTGTGGAAGAAGCTA





AAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAA





TGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCC





TTAAATAAGGCTACTAACAATGCCATGCAAGTTGAAT





CTGATGATTACATAGCTACTAATGGACCACTTAAAGT





GGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTA





AACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAA





GGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAA





ATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTA





TCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTT





AAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACT





TAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTT





TCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTG





AACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAA





GCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAG





AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTG





AAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCT





CACAGAAAACTTGTTACTTTATATTGACATTAATGGCA





ATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATT





GACATCACTTTCTTAAAGAAAGATGCTCCATATATAGT





GGGTGATGTTGTTCAAGAGGGTGTTTTAACTGCTGTGG





TTATACCTACTAAAAAGGCTGGTGGCACTACTGAAAT





GCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAAT





TATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTA





CACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGT





AAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAA





TGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATT





TGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAA





ATTAATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTT





CAACTATACAGCGTAAATATAAGGGTATTAAAATACA





AGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTT





ACACCAGTAAAACAACTGTAGCGTCACTTATCAACAC





ACTTAACGATCTAAATGAAACTCTTGTTACAATGCCAC





TTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC





TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACA





GTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAA





TGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAAC





ATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAA





GATTGGTCCTATTCTGGACAATCTACACAACTAGGTAT





AGAATTTCTTAAGAGAGGTGATAAAAGTGTATATTAC





ACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGT





TATCACCTTTGACAATCTTAAGACACTTCTTTCTTTGA





GAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGA





CAACATTAACCTCCACACGCAAGTTGTGGACATGTCA





ATGACATATGGACAACAGTTTGGTCCAACTTATTTGGA





TGGAGCTGATGTTACTAAAATAAAACCTCATAATTCA





CATGAAGGTAAAACATTTTATGTTTTACCTAATGATGA





CACTCTACGTGTTGAGGCTTTTGAGTACTACCACACAA





CTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTA





AATCACACTAAAAAGTGGAAATACCCACAAGTTAATG





GTTTAACTTCTATTAAATGGGCAGATAACAACTGTTAT





CTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTT





GAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA





GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACT





TATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTA





GGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAAC





ATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTG





GTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTA





AGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCT





TATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTA





CGTGTGGTAAACAAGCTACAAAATATCTAGTACAACA





GGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTC





AGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGT





GAGTACACTGGTAATTACCAGTGTGGTCACTATAAAC





ATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGT





GCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTAT





TACGGATGTTTTCTACAAAGAAAACAGTTACACAACA





ACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGT





TTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA





AGAAAGACAATTCTTATTTCACAGAGCAACCAATTGA





TCTTGTACCAAACCAACCATATCCAAACGCAAGCTTC





GATAATTTTAAGTTTGTATGTGATAATATCAAATTTGC





TGATGATTTAAACCAGTTAACTGGTTATAAGAAACCT





GCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTT





AAATGGTGATGTGGTGGCTATTGATTATAAACACTAC





ACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATA





AACCTATTGTTTGGCATGTTAACAATGCAACTAATAAA





GCCACGTATAAACCAAATACCTGGTGTATACGTTGTCT





TTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTT





GATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATA





ATCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGA





AGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTT





GAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACA





TTATACTTAAACCAGCAAATAATAGTTTAAAAATTAC





AGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTAT





GTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGA





ATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTC





ATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACT





ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGT





TAGTACAACTACTAACATAGTTACACGGTGTTTAAACC





GTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTA





TTGCTACAATTGTGTACTTTTACTAGAAGTACAAATTC





TAGAATTAAAGCATCTATGCCGACTACTATAGCAAAGA





ATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCT





TCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACT





GATAAATATTATAATTTGGTTTTTACTATTAAGTGTTT





GCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGGT





GTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTAC





TGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCA





CTATTGCAACCTACTGTACTGGTTCTATACCTTGTAGT





GTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCC





TTCTTTAGAAACTATACAAATTACCATTTCATCTTTTA





AATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGG





TTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGT





ACTTGGATTGGCTGCAATCATGCAATTGTTTTTCAGCT





ATTTTGCAGTACATTTTATTAGTAATTCTTGGCTTAT





GTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTT





CAGCTATGGTTAGAATGTACATCTTCTTTGCATCATT





TTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACG





GTTGTAATTCATCAACTTGTATGATGTGTTACAAACGT





AATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAA





TGGTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAG





GTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTT





AATTGTGATACATTCTGTGCTGGTAGTACATTTATTAG





TGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAA





AGACCAATAAATCCTACTGACCAGTCTTCTTACATCGT





TGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTT





ACTTTGATAAAGCTGGTCAAAAGACTTATGAAAGACATTC





TCTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCTAA





TAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTT





TTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAA





ATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAAC





CTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTT





GGTGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATG





CTTACGTTAATACGTTTTCATCAACTTTTAACGTACCA





ATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAG





CTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTA





TCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGA





TTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTA





AATTGTCACATCAATCTGACATAGAAGTTACTGGCGA





TAGTTGTAATAACTATATGCTCACCTATAACAAAGTTG





AAAACATGACACCCCGTGACCTTGGTGCTTGTATTGAC





TGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAA





GTCACAACATTGCTTTGATATGGAACGTTAAAGATTTC





ATGTCATTGTCTGAACAACTACGAAAACAAATACGTA





GTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACA





TGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAAC





AAAGATAGCACTTAAGGGTGGTAAAATTGTTAATAAT





TGGTTGAAGCAGTTAATTAAAGTTACACTTGTGTTCCT





TTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTTCA





TGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCA





TAGGATACAAGGCTATTGATGGTGGTGTCACTCGTGA





CATAGCATCTACAGATACTTGTTTTGCTAACAAACATG





CTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGT





TATACTAATGACAAAGCTTGCCCATTGATTGCTGCAGT





CATAACAAGAGAAGTGGGTTTTGTCGTGCCTGGTTTGC





CTGGCACGATATTACGCACAACTAATGGTGACTTTTTG





CATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACAT





CTGTTACACACCATCAAAACTTATAGAGTACACTGACT





TTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACA





ATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTG





TTATGATACCAATGTACTAGAAGGTTCTGTTGCTTATG





AAAGTTTACGCCCTGACACACGTTATGTGCTCATGGAT





GGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGG





TTCTGTTAGAGTGGTAACAACTTTTGATTCTGAGTACT





GTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGT





TTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATG





ATTATTACAGATCTTTACCAGGAGTTTTCTGTGGTGTA





GATGCTGTAAATTTACTTACTAATATGTTTACACCACT





AATTCAACCTATTGGTGCTTTGGACATATCAGCATCTA





TAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGC





CTTGCCTACTATTTTATGAGGTTTAGAAGAGCTTTTGG





TGAATACAGTCATGTAGTTGCCTTTAATACTTTACTAT





TCCTTATGTCATTCACTGTACTCTGTTTAACACCAGTTT





ACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGT





ACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAG





CACATATTCAGTGGATGGTTATGTTCACACCTTTAGTA





CCTTTCTGGATAACAATTGCTTATATCATTTGTATTTCC





ACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAA





GAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTT





TTGAAGAAGCTGCGCTGTGCACCTTTTTGTTAAATAAA





GAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACC





TCTTACGCAATATAATAGATACTTAGCTCTTTATAATA





AGTACAAGTATTTTAGTGGAGCAATGGATACAACTAG





CTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTC





TCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTAC





CAACCACCACAAACCTCTATCACCTCAGCTGTTTTGCA





GAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAA





GTTGAGGGTTGTATGGTACAAGTAACTTGTGGTACAA





CTACACTTAACGGTCTTTGGCTTGATGACGTAGTTTAC





TGTCCAAGACATGTGATCTGCACCTCTGAAGACATGCT





TAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTA





ATCATAATTTCTTGGTACAGGCTGGTAATGTTCAACTC





AGGGTTATTGGACATTCTATGCAAAATTGTGTACTTAA





GCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAG





TATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTC





AGTGTTAGCTTGTTACAATGGTTCACCATCTGGTGTTT





ACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGT





TCATTCCTTAATGGTTCATGTGGTAGTGTTGGTTTTAA





CATAGATTATGACTGTGTCTCTTTTTGTTACATGCACC





ATATGGAATTACCAACTGGAGTTCATGCTGGCACAGA





CTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGC





AAACAGCACAAGCAGCTGGTACGGACACAACTATTAC





AGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAA





ATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACT





CTTAATGACTTTAACCTTGTGGCTATGAAGTACAATTA





TGAACCTCTAACACAAGACCATGTTGACATACTAGGA





CCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATAT





GTGTGCTTCATTAAAAGAATTACTGCAAAATGGTATG





AATGGACGTACCATATTGGGTAGTGCTTTATTAGAAG





ATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCA





GGTGTTACTTTCCAAAGTGCAGTGAAAAGAACAATCA





AGGGTACACACCACTGGTTGTTACTCACAATTTTGACT





TCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTT





GTTCTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGC





TATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGT





TTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGT





TACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCT





ATATGCCTGCTAGTTGGGTGATGCGTATTATGACATGG





TTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGCT





AAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTAC





TAATCCTTATGACAGCAAGAACTGTGTATGATGATGG





TGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACA





CTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCA





AGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTT





CTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTG





GCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCC





TATTTTCTTCATAACTGGTAATACACTTCAGTGTATAA





TGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTT





ACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGAC





TGACTCTTGGTGTTTATGATTACTTAGTTTCTACACAG





GAGTTTAGATATATGAATTCACAGGGACTACTCCCAC





CCAAGAATAGCATAGATGCCTTCAAACTCAACATTAA





ATTGTTGGGTGTTGGTGGCAAACCTTGTATCAAAGTAG





CCACTGTACAGTCTAAAATGTCAGATGTAAAGTGCAC





ATCAGTAGTCTTACTCTCAGTTTTGCAACAACTCAGAG





TAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAG





TTACACAATGACATTCTCTTAGCTAAAGATACTACTGA





AGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGC





TTTCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGT





GAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTA





TAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCT





TTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGC





TAATGGTGATTCTGAAGTTGTTCTTAAAAAGTTGAAGA





AGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGAT





GCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATC





AAGCTATGACCCAAATGTATAAACAGGCTAGATCTGA





GGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACA





ATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGC





ACTCAACAACATTATCAACAATGCAAGAGATGGTTGT





GTTCCCTTGAACATAATACCTCTTACAACAGCAGCCAA





ACTAATGGTTGTCATACCAGACTATAACACATATAAA





AATACGTGTGATGGTACAACATTTACTTATGCATCAGC





ATTGTGGGAAATCCAACAGGTTGTAGATGCAGATAGT





AAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTC





ACCTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAA





GGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCT





TAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCG





GTACTACACAAACTGCTTGCACTGATGACAATGCGTT





AGCTTACTACAACACAACAAAGGGAGGTAGGTTTGTA





CTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGC





TAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATA





CAGAACTGGAACCACCTTGTAGGTTTGTTACAGACAC





ACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTA





AAGGATTAAACAACCTAAATAGAGGTATGGTACTTGG





TAGTTTAGCTGCCACAGTACGTCTACAAGCTGGTAATG





CAACAGAAGTGCCTGCCAATTCAACTGTATTATCTTTC





TGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGA





TTATCTAGCTAGTGGGGGACAACCAATCACTAATTGT





GTTAAGATGTTGTGTACACACACTGGTACTGGTCAGG





CAATAACAGTTACACCGGAAGCCAATATGGATCAAGA





ATCCTTTGGTGGTGCATCGTGTTGTCTGTACTGCCGTT





GCCACATAGATCATCCAAATCCTAAAGGATTTTGTGA





CTTAAAAGGTAAGTATGTACAAATACCTACAACTTGT





GCTAATGACCCTGTGGGTTTTACACTTAAAAACACAGT





CTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTA





GTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCT





GATGCACAATCGTTTTTAAACGGGTTTGCGGTGTA





orf1ab
 266
21555
ATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACAC


(SEQ ID


ACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGAC


NO: 3)


GTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGG





TCTTATCAGAGGCACGTCAACATCTTAAAGATGGCAC





TTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTC





AACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGAT





GCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCT





GGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGT





GGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGA





AATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGA





ACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGC





CGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGC





ACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACA





CTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCG





TGAGCTTAACGGAGGGGCATACACTCGCTATGTCGAT





AACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTG





CATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTCAT





GCACTTTGTCCGAACAACTGGACTTTATTGACACTAAG





AGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAA





TTGCTTGGTACACGGAACGTTCTGAAAAGAGCTATGA





ATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAA





TTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATT





TCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGG





TTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAAT





TCGATCTGTCTATCCAGTTGCGTCACCAAATGAATGCA





ACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCAT





TGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTA





AAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACT





AAAGAAGGTGCCACTACTTGTGGTTACTTACCCCAAA





ATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAAT





TCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACC





ATAATGAATCTGGCTTGAAAACCATTCTTCGTAAGGGT





GGTCGCACTATTGCCTTTGGAGGCTGTGTGTTCTCTTA





TGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCAC





GTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGT





TGTTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTT





CTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATA





TTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATT





ATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTG





GAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAAC





AAATTGTTGAATCCTGTGGTAATTTTAAAGTTACAAAA





GGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAAC





AGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCA





GAGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCAC





TCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGA





AGGCCGCTATAACAATACTAGATGGAATTTCACAGTA





TTCACTGAGACTCATTGATGCTATGATGTTCACATCTG





ATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATT





ACAGGTGGTGTTGTTCAGTTGACTTCGCAGTGGCTAAC





TAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCG





TCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGT





AGAGTTTCTTAGAGACGGTTGGGAAATTGTTAAATTTA





TCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATT





GTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGA





CATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGT





GCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGC





CTTGAATTTAGGTGAAACATTTGTCACGCACTCAAAG





GGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAA





CTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAAT





TATCTTCTTAGAGGGAGAAACACTTCCCACAGAAGTG





TTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTAC





AACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGC





TCCATTGGTTGGTACACCAGTTTGTATTAACGGGCTTA





TGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGC





CCTTGCACCTAATATGATGGTAACAAACAATACCTTCA





CACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGG





TGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGT





GTGAATATCACTTTTGAACTTGATGAAAGGATTGATA





AAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGA





ACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTG





GCAGATGCTGTCATAAAAACTTTGCAACCAGTATCTG





AATTACTTACACCACTGGGCATTGATTTAGATGAGTGG





AGTATGGCTACATACTACTTATTTGATGAGTCTGGTGA





GTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCC





TCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGA





AGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGT





ACTGAAGATGATTACCAAGGTAAACCTTTGGAATTTG





GTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCA





AGAAGAAGATTGGTTAGATGATGATAGTCAACAAACT





GTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAA





CTACTATTCAAACAATTGTTGAGGTTCAACCTCAATTA





GAGATGGAACTTACACCAGTTGTTCAGACTATTGAAG





TGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAAT





GTATACATTAAAAATGCAGACATTGTGGAAGAAGCTA





AAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAA





TGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCC





TTAAATAAGGCTACTAACAATGCCATGCAAGTTGAAT





CTGATGATTACATAGCTACTAATGGACCACTTAAAGT





GGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTA





AACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAA





GGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAA





ATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTA





TCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTT





AAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACT





TAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTT





TCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGTTG





AACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAA





GCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAG





AGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTG





AAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCT





CACAGAAAACTTGTTACTTTATATTGACATTAATGGCA





ATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATT





GACATCACTTTCTTAAAGAAAGATGCTCCATATATAGT





GGGTGATGTTGTTCAAGAGGGTGTTTTAACTGCTGTGG





TTATACCTACTAAAAAGGCTGGTGGCACTACTGAAAT





GCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAAT





TATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTA





CACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGT





AAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAA





TGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATT





TGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAA





ATTAATGCCTGTCTGTGTGGAAACTAAAGCCATAGTTT





CAACTATACAGCGTAAATATAAGGGTATTAAAATACA





AGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTT





ACACCAGTAAAACAACTGTAGCGTCACTTATCAACAC





ACTTAACGATCTAAATGAAACTCTTGTTACAATGCCAC





TTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC





TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACA





GTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAA





TGGTTATCTTACTTCTTCTTCTAAAACACCTGAAGAAC





ATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAA





GATTGGTCCTATTCTGGACAATCTACACAACTAGGTAT





AGAATTTCTTAAGAGAGGTGATAAAAGTGTATATTAC





ACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGT





TATCACCTTTGACAATCTTAAGACACTTCTTTCTTTGA





GAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGA





CAACATTAACCTCCACACGCAAGTTGTGGACATGTCA





ATGACATATGGACAACAGTTTGGTCCAACTTATTTGGA





TGGAGCTGATGTTACTAAAATAAAACCTCATAATTCA





CATGAAGGTAAAACATTTTATGTTTTACCTAATGATGA





CACTCTACGTGTTGAGGCTTTTGAGTACTACCACACAA





CTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTA





AATCACACTAAAAAGTGGAAATACCCACAAGTTAATG





GTTTAACTTCTATTAAATGGGCAGATAACAACTGTTAT





CTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTT





GAAGTTTAATCCACCTGCTCTACAAGATGCTTATTACA





GAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACT





TATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTA





GGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAAC





ATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTG





GTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTA





AGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCT





TATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTA





CGTGTGGTAAACAAGCTACAAAATATCTAGTACAACA





GGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTC





AGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGT





GAGTACACTGGTAATTACCAGTGTGGTCACTATAAAC





ATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGT





GCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTAT





TACGGATGTTTTCTACAAAGAAAACAGTTACACAACA





ACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGT





TTGTACAGAAATTGACCCTAAGTTGGACAATTATTATA





AGAAAGACAATTCTTATTTCACAGAGCAACCAATTGA





TCTTGTACCAAACCAACCATATCCAAACGCAAGCTTC





GATAATTTTAAGTTTGTATGTGATAATATCAAATTTGC





TGATGATTTAAACCAGTTAACTGGTTATAAGAAACCT





GCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTT





AAATGGTGATGTGGTGGCTATTGATTATAAACACTAC





ACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATA





AACCTATTGTTTGGCATGTTAACAATGCAACTAATAAA





GCCACGTATAAACCAAATACCTGGTGTATACGTTGTCT





TTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTT





GATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATA





ATCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGA





AGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTT





GAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACA





TTATACTTAAACCAGCAAATAATAGTTTAAAAATTAC





AGAAGAGGTTGGCCACACAGATCTAATGGCTGCTTAT





GTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGA





ATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTC





ATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACT





ATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGT





TAGTACAACTACTAACATAGTTACACGGTGTTTAAACC





GTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTAT





TGCTACAATTGTGTACTTTTACTAGAAGTACAAATTCT





AGAATTAAAGCATCTATGCCGACTACTATAGCAAAGA





ATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCT





TCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACT





GATAAATATTATAATTTGGTTTTTACTATTAAGTGTTT





GCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGGT





GTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACT





GGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCA





CTATTGCAACCTACTGTACTGGTTCTATACCTTGTAGT





GTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCT





TCTTTAGAAACTATACAAATTACCATTTCATCTTTTAA





ATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGT





TTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTAC





TTGGATTGGCTGCAATCATGCAATTGTTTTTCAGCTAT





TTTGCAGTACATTTTATTAGTAATTCTTGGCTTATGTG





GTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAG





CTATGGTTAGAATGTACATCTTCTTTGCATCATTTTATT





ATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGT





AATTCATCAACTTGTATGATGTGTTACAAACGTAATAG





AGCAACAAGAGTCGAATGTACAACTATTGTTAATGGT





GTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAA





AGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATT





GTGATACATTCTGTGCTGGTAGTACATTTATTAGTGAT





GAAGTTGCGAGAGACTTGTCACTACAGTTTAAAAGAC





CAATAAATCCTACTGACCAGTCTTCTTACATCGTTGAT





AGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTT





TGATAAAGCTGGTCAAAAGACTTATGAAAGACATTCT





CTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCTAA





TAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTT





TTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAA





ATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAAC





CTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTT





GGTGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATG





CTTACGTTAATACGTTTTCATCAACTTTTAACGTACCA





ATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAG





CTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTA





TCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGA





TTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTA





AATTGTCACATCAATCTGACATAGAAGTTACTGGCGA





TAGTTGTAATAACTATATGCTCACCTATAACAAAGTTG





AAAACATGACACCCCGTGACCTTGGTGCTTGTATTGAC





TGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAA





GTCACAACATTGCTTTGATATGGAACGTTAAAGATTTC





ATGTCATTGTCTGAACAACTACGAAAACAAATACGTA





GTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACA





TGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAAC





AAAGATAGCACTTAAGGGTGGTAAAATTGTTAATAAT





TGGTTGAAGCAGTTAATTAAAGTTACACTTGTGTTCCT





TTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTTCA





TGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCA





TAGGATACAAGGCTATTGATGGTGGTGTCACTCGTGA





CATAGCATCTACAGATACTTGTTTTGCTAACAAACATG





CTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGT





TATACTAATGACAAAGCTTGCCCATTGATTGCTGCAGT





CATAACAAGAGAAGTGGGTTTTGTCGTGCCTGGTTTGC





CTGGCACGATATTACGCACAACTAATGGTGACTTTTTG





CATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACAT





CTGTTACACACCATCAAAACTTATAGAGTACACTGACT





TTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACA





ATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTG





TTATGATACCAATGTACTAGAAGGTTCTGTTGCTTATG





AAAGTTTACGCCCTGACACACGTTATGTGCTCATGGAT





GGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGG





TTCTGTTAGAGTGGTAACAACTTTTGATTCTGAGTACT





GTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGT





TTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATG





ATTATTACAGATCTTTACCAGGAGTTTTCTGTGGTGTA





GATGCTGTAAATTTACTTACTAATATGTTTACACCACT





AATTCAACCTATTGGTGCTTTGGACATATCAGCATCTA





TAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGC





CTTGCCTACTATTTTATGAGGTTTAGAAGAGCTTTTGG





TGAATACAGTCATGTAGTTGCCTTTAATACTTTACTAT





TCCTTATGTCATTCACTGTACTCTGTTTAACACCAGTTT





ACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGT





ACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAG





CACATATTCAGTGGATGGTTATGTTCACACCTTTAGTA





CCTTTCTGGATAACAATTGCTTATATCATTTGTATTTCC





ACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAA





GAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTT





TTGAAGAAGCTGCGCTGTGCACCTTTTTGTTAAATAAA





GAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACC





TCTTACGCAATATAATAGATACTTAGCTCTTTATAATA





AGTACAAGTATTTTAGTGGAGCAATGGATACAACTAG





CTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTC





TCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTAC





CAACCACCACAAACCTCTATCACCTCAGCTGTTTTGCA





GAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAA





GTTGAGGGTTGTATGGTACAAGTAACTTGTGGTACAA





CTACACTTAACGGTCTTTGGCTTGATGACGTAGTTTAC





TGTCCAAGACATGTGATCTGCACCTCTGAAGACATGCT





TAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTA





ATCATAATTTCTTGGTACAGGCTGGTAATGTTCAACTC





AGGGTTATTGGACATTCTATGCAAAATTGTGTACTTAA





GCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAG





TATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTC





AGTGTTAGCTTGTTACAATGGTTCACCATCTGGTGTTT





ACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGT





TCATTCCTTAATGGTTCATGTGGTAGTGTTGGTTTTAA





CATAGATTATGACTGTGTCTCTTTTTGTTACATGCACC





ATATGGAATTACCAACTGGAGTTCATGCTGGCACAGA





CTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGC





AAACAGCACAAGCAGCTGGTACGGACACAACTATTAC





AGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAA





ATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACT





CTTAATGACTTTAACCTTGTGGCTATGAAGTACAATTA





TGAACCTCTAACACAAGACCATGTTGACATACTAGGA





CCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATAT





GTGTGCTTCATTAAAAGAATTACTGCAAAATGGTATG





AATGGACGTACCATATTGGGTAGTGCTTTATTAGAAG





ATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCA





GGTGTTACTTTCCAAAGTGCAGTGAAAAGAACAATCA





AGGGTACACACCACTGGTTGTTACTCACAATTTTGACT





TCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTT





GTTCTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGC





TATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGT





TTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGT





TACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCT





ATATGCCTGCTAGTTGGGTGATGCGTATTATGACATGG





TTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGCT





AAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTAC





TAATCCTTATGACAGCAAGAACTGTGTATGATGATGG





TGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACA





CTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCA





AGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTT





CTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTG





GCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCC





TATTTTCTTCATAACTGGTAATACACTTCAGTGTATAA





TGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTT





ACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGAC





TGACTCTTGGTGTTTATGATTACTTAGTTTCTACACAG





GAGTTTAGATATATGAATTCACAGGGACTACTCCCAC





CCAAGAATAGCATAGATGCCTTCAAACTCAACATTAA





ATTGTTGGGTGTTGGTGGCAAACCTTGTATCAAAGTAG





CCACTGTACAGTCTAAAATGTCAGATGTAAAGTGCAC





ATCAGTAGTCTTACTCTCAGTTTTGCAACAACTCAGAG





TAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAG





TTACACAATGACATTCTCTTAGCTAAAGATACTACTGA





AGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGC





TTTCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGT





GAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTA





TAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCT





TTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGC





TAATGGTGATTCTGAAGTTGTTCTTAAAAAGTTGAAGA





AGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGAT





GCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATC





AAGCTATGACCCAAATGTATAAACAGGCTAGATCTGA





GGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACA





ATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGC





ACTCAACAACATTATCAACAATGCAAGAGATGGTTGT





GTTCCCTTGAACATAATACCTCTTACAACAGCAGCCAA





ACTAATGGTTGTCATACCAGACTATAACACATATAAA





AATACGTGTGATGGTACAACATTTACTTATGCATCAGC





ATTGTGGGAAATCCAACAGGTTGTAGATGCAGATAGT





AAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTC





ACCTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAA





GGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCT





TAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCG





GTACTACACAAACTGCTTGCACTGATGACAATGCGTT





AGCTTACTACAACACAACAAAGGGAGGTAGGTTTGTA





CTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGC





TAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATA





CAGAACTGGAACCACCTTGTAGGTTTGTTACAGACAC





ACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTA





AAGGATTAAACAACCTAAATAGAGGTATGGTACTTGG





TAGTTTAGCTGCCACAGTACGTCTACAAGCTGGTAATG





CAACAGAAGTGCCTGCCAATTCAACTGTATTATCTTTC





TGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGA





TTATCTAGCTAGTGGGGGACAACCAATCACTAATTGT





GTTAAGATGTTGTGTACACACACTGGTACTGGTCAGG





CAATAACAGTTACACCGGAAGCCAATATGGATCAAGA





ATCCTTTGGTGGTGCATCGTGTTGTCTGTACTGCCGTT





GCCACATAGATCATCCAAATCCTAAAGGATTTTGTGA





CTTAAAAGGTAAGTATGTACAAATACCTACAACTTGT





GCTAATGACCCTGTGGGTTTTACACTTAAAAACACAGT





CTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTA





GTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCT





GATGCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGT





GCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTA





CTGATGTCGTATACAGGGCTTTTGACATCTACAATGAT





AAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTG





TTGTCGCTTCCAAGAAAAGGACGAAGATGACAATTTA





ATTGATTCTTACTTTGTAGTTAAGAGACACACTTTCTC





TAACTACCAACATGAAGAAACAATTTATAATTTACTTA





AGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAG





TTTAGAATAGACGGTGACATGGTACCACATATATCAC





GTCAACGTCTTACTAAATACACAATGGCAGACCTCGT





CTATGCTTTAAGGCATTTTGATGAAGGTAATTGTGACA





CATTAAAAGAAATACTTGTCACATACAATTGTTGTGAT





GATGATTATTTCAATAAAAAGGACTGGTATGATTTTGT





AGAAAACCCAGATATATTACGCGTATACGCCAACTTA





GGTGAACGTGTACGCCAAGCTTTGTTAAAAACAGTAC





AATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGT





GTACTGACATTAGATAATCAAGATCTCAATGGTAACT





GGTATGATTTCGGTGATTTCATACAAACCACGCCAGGT





AGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTT





AATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAG





AGTCACATGTTGACACTGACTTAACAAAGCCTTACATT





AAGTGGGATTTGTTAAAATATGACTTCACGGAAGAGA





GGTTAAAACTCTTTGACCGTTATTTTAAATATTGGGAT





CAGACATACCACCCAAATTGTGTTAACTGTTTGGATGA





CAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTAT





TCTCTACAGTGTTCCCACCTACAAGTTTTGGACCACTA





GTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGT





TTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGTAC





ATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGT





TTTAAGGAATTACTTGTGTATGCTGCTGACCCTGCTAT





GCACGCTGCTTCTGGTAATCTATTACTAGATAAACGCA





CTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTT





GCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGA





CTTCTATGACTTTGCTGTGTCTAAGGGTTTCTTTAAGG





AAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCT





CAGGATGGTAATGCTGCTATCAGCGATTATGACTACT





ATCGTTATAATCTACCAACAATGTGTGATATCAGACA





ACTACTATTTGTAGTTGAAGTTGTTGATAAGTACTTTG





ATTGTTACGATGGTGGCTGTATTAATGCTAACCAAGTC





ATCGTCAACAACCTAGACAAATCAGCTGGTTTTCCATT





TAATAAATGGGGTAAGGCTAGACTTTATTATGATTCA





ATGAGTTATGAGGATCAAGATGCACTTTTCGCATATAC





AAAACGTAATGTCATCCCTACTATAACTCAAATGAAT





CTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCA





CCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAAT





AGACAGTTTCATCAAAAATTATTGAAATCAATAGCCG





CCACTAGAGGAGCTACTGTAGTAATTGGAACAAGCAA





ATTCTATGGTGGTTGGCACAACATGTTAAAAACTGTTT





ATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGA





TTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTA





GAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACA





ACGTGTTGTAGCTTGTCACACCGTTTCTATAGATTAGC





TAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATG





TGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTC





ATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTT





TTAACATTTGTCAAGCTGTCACGGCCAATGTTAATGCA





CTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTA





TGTCCGCAATTTACAACACAGACTTTATGAGTGTCTCT





ATAGAAATAGAGATGTTGACACAGACTTTGTGAATGA





GTTTTACGCATATTTGCGTAAACATTTCTCAATGATGA





TACTCTCTGACGATGCTGTTGTGTGTTTCAATAGCACT





TATGCATCTCAAGGTCTAGTGGCTAGCATAAAGAACT





TTAAGTCAGTTCTTTATTATCAAAACAATGTTTTTATG





TCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTA





AAGGACCTCATGAATTTTGCTCTCAACATACAATGCTA





GTTAAACAGGGTGATGATTATGTGTACCTTCCTTACCC





AGATCCATCAAGAATCCTAGGGGCCGGCTGTTTTGTA





GATGATATCGTAAAAACAGATGGTACACTTATGATTG





AACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTT





ACTAAACATCCTAATCAGGAGTATGCTGATGTCTTTCA





TTTGTACTTACAATACATAAGAAAGCTACATGATGAG





TTAACAGGACACATGTTAGACATGTATTCTGTTATGCT





TACTAATGATAACACTTCAAGGTATTGGGAACCTGAG





TTTTATGAGGCTATGTACACACCGCATACAGTCTTACA





GGCTGTTGGGGCTTGTGTTCTTTGCAATTCACAGACTT





CATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTA





TGTTGTAAATGCTGTTACGACCATGTCATATCAACATC





ACATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCA





ATGCTCCAGGTTGTGATGTCACAGATGTGACTCAACTT





TACTTAGGAGGTATGAGCTATTATTGTAAATCACATAA





ACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAAG





TTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGAT





AATGTTACTGACTTTAATGCAATTGCAACATGTGACTG





GACAAATGCTGGTGATTACATTTTAGCTAACACCTGTA





CTGAAAGACTCAAGCTTTTTGCAGCAGAAACGCTCAA





AGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTG





CTACTGTACGTGAAGTGCTGTCTGACAGAGAATTACA





TCTTTCATGGGAAGTTGGTAAACCTAGACCACCACTTA





ACCGAAATTATGTCTTTACTGGTTATCGTGTAACTAAA





AACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAA





AAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTAC





AACAACTTACAAATTAAATGTTGGTGATTATTTTGTGC





TGACATCACATACAGTAATGCCATTAAGTGCACCTAC





ACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGC





TTATACCCAACACTCAATATCTCAGATGAGTTTTCTAG





CAATGTTGCAAATTATCAAAAGGTTGGTATGCAAAAG





TATTCTACACTCCAGGGACCACCTGGTACTGGTAAGA





GTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTG





CTCGCATAGTGTATACAGCTTGCTCTCATGCCGCTGTT





GATGCACTATGTGAGAAGGCATTAAAATATTTGCCTA





TAGATAAATGTAGTAGAATTATACCTGCACGTGCTCGT





GTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATT





AGAACAGTATGTCTTTTGTACTGTAAATGCATTGCCTG





AGACGACAGCAGATATAGTTGTCTTTGATGAAATTTC





AATGGCCACAAATTATGATTTGAGTGTTGTCAATGCCA





GATTACGTGCTAAGCACTATGTGTACATTGGCGACCCT





GCTCAATTACCTGCACCACGCACATTGCTAACTAAGG





GCACACTAGAACCAGAATATTTCAATTCAGTGTGTAG





ACTTATGAAAACTATAGGTCCAGACATGTTCCTCGGA





ACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGT





GAGTGCTTTGGTTTATGATAATAAGCTTAAAGCACATA





AAGACAAATCAGCTCAATGCTTTAAAATGTTTTATAA





GGGTGTTATCACGCATGATGTTTCATCTGCAATTAACA





GGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACG





TAACCCTGCTTGGAGAAAAGCTGTCTTTATTTCACCTT





ATAATTCACAGAATGCTGTAGCCTCAAAGATTTTGGG





ACTACCAACTCAAACTGTTGATTCATCACAGGGCTCA





GAATATGACTATGTCATATTCACTCAAACCACTGAAA





CAGCTCACTCTTGTAATGTAAACAGATTTAATGTTGCT





ATTACCAGAGCAAAAGTAGGCATACTTTGCATAATGT





CTGATAGAGACCTTTATGACAAGTTGCAATTTACAAGT





CTTGAAATTCCACGTAGGAATGTGGCAACTTTACAAG





CTGAAAATGTAACAGGACTCTTTAAAGATTGTAGTAA





GGTAATCACTGGGTTACATCCTACACAGGCACCTACA





CACCTCAGTGTTGACACTAAATTCAAAACTGAAGGTTT





ATGTGTTGACATACCTGGCATACCTAAGGACATGACC





TATAGAAGACTCATCTCTATGATGGGTTTTAAAATGAA





TTATCAAGTTAATGGTTACCCTAACATGTTTATCACCC





GCGAAGAAGCTATAAGACATGTACGTGCATGGATTGG





CTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCT





GTTGGTACCAATTTACCTTTACAGCTAGGTTTTTCTAC





AGGTGTTAACCTAGTTGCTGTACCTACAGGTTATGTTG





ATACACCTAATAATACAGATTTTTCCAGAGTTAGTGCT





AAACCACCGCCTGGAGATCAATTTAAACACCTCATAC





CACTTATGTACAAAGGACTTCCTTGGAATGTAGTGCGT





ATAAAGATTGTACAAATGTTAAGTGACACACTTAAAA





ATCTCTCTGACAGAGTCGTATTTGTCTTATGGGCACAT





GGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAAT





AGGACCTGAGCGCACCTGTTGTCTATGTGATAGACGT





GCCACATGCTTTTCCACTGCTTCAGACACTTATGCCTG





TTGGCATCATTCTATTGGATTTGATTACGTCTATAATC





CGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGT





AACCTACAAAGCAACCATGATCTGTATTGTCAAGTCC





ATGGTAATGCACATGTAGCTAGTTGTGATGCAATCAT





GACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTTAAGC





GTGTTGACTGGACTATTGAATATCCTATAATTGGTGAT





GAACTGAAGATTAATGCGGCTTGTAGAAAGGTTCAAC





ACATGGTTGTTAAAGCTGCATTATTAGCAGACAAATTC





CCAGTTCTTCACGACATTGGTAACCCTAAAGCTATTAA





GTGTGTACCTCAAGCTGATGTAGAATGGAAGTTCTAT





GATGCACAGCCTTGTAGTGACAAAGCTTATAAAATAG





AAGAATTATTCTATTCTTATGCCACACATTCTGACAAA





TTCACAGATGGTGTATGCCTATTTTGGAATTGCAATGT





CGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTG





ACACTAGAGTGCTATCTAACCTTAACTTGCCTGGTTGT





GATGGTGGCAGTTTGTATGTAAATAAACATGCATTCC





ACACACCAGCTTTTGATAAAAGTGCTTTTGTTAATTTA





AAACAATTACCATTTTTCTATTACTCTGACAGTCCATG





TGAGTCTCATGGAAAACAAGTAGTGTCAGATATAGAT





TATGTACCACTAAAGTCTGCTACGTGTATAACACGTTG





CAATTTAGGTGGTGCTGTCTGTAGACATCATGCTAATG





AGTACAGATTGTATCTCGATGCTTATAACATGATGATC





TCAGCTGGCTTTAGCTTGTGGGTTTACAAACAATTTGA





TACTTATAACCTCTGGAACACTTTTACAAGACTTCAGA





GTTTAGAAAATGTGGCTTTTAATGTTGTAAATAAGGG





ACACTTTGATGGACAACAGGGTGAAGTACCAGTTTCT





ATCATTAATAACACTGTTTACACAAAAGTTGATGGTGT





TGATGTAGAATTGTTTGAAAATAAAACAACATTACCT





GTTAATGTAGCATTTGAGCTTTGGGCTAAGCGCAACAT





TAAACCAGTACCAGAGGTGAAAATACTCAATAATTTG





GGTGTGGACATTGCTGCTAATACTGTGATCTGGGACTA





CAAAAGAGATGCTCCAGCACATATATCTACTATTGGT





GTTTGTTCTATGACTGACATAGCCAAGAAACCAACTG





AAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGT





AGAGTTGATGGTCAAGTAGACTTATTTAGAAATGCCC





GTAATGGTGTTCTTATTACAGAAGGTAGTGTTAAAGGT





TTACAACCATCTGTAGGTCCCAAACAAGCTAGTCTTAA





TGGAGTCACATTAATTGGAGAAGCCGTAAAAACACAG





TTCAATTATTATAAGAAAGTTGATGGTGTTGTCCAACA





ATTACCTGAAACTTACTTTACTCAGAGTAGAAATTTAC





AAGAATTTAAACCCAGGAGTCAAATGGAAATTGATTT





CTTAGAATTAGCTATGGATGAATTCATTGAACGGTATA





AATTAGAAGGCTATGCCTTCGAACATATCGTTTATGGA





GATTTTAGTCATAGTCAGTTAGGTGGTTTACATCTACT





GATTGGACTAGCTAAACGTTTTAAGGAATCACCTTTTG





AATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAA





AACTATTTCATAACAGATGCGCAAACAGGTTCATCTA





AGTGTGTGTGTTCTGTTATTGATTTATTACTTGATGATT





TTGTTGAAATAATAAAATCCCAAGATTTATCTGTAGTT





TCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAA





TTTCATTTATGCTTTGGTGTAAAGATGGCCATGTAGAA





ACATTTTACCCAAAATTACAATCTAGTCAAGCGTGGC





AACCGGGTGTTGCTATGCCTAATCTTTACAAAATGCAA





AGAATGCTATTAGAAAAGTGTGACCTTCAAAATTATG





GTGATAGTGCAACATTACCTAAAGGCATAATGATGAA





TGTCGCAAAATATACTCAACTGTGTCAATATTTAAACA





CATTAACATTAGCTGTACCCTATAATATGAGAGTTATA





CATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGG





TACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGC





TGCTTGTCGATTCAGATCTTAATGACTTTGTCTCTGAT





GCAGATTCAACTTTGATTGGTGATTGTGCAACTGTACA





TACAGCTAATAAATGGGATCTCATTATTAGTGATATGT





ACGACCCTAAGACTAAAAATGTTACAAAAGAAAATGA





CTCTAAAGAGGGTTTTTTCACTTACATTTGTGGGTTTA





TACAACAAAAGCTAGCTCTTGGAGGTTCCGTGGCTAT





AAAGATAACAGAACATTCTTGGAATGCTGATCTTTAT





AAGCTCATGGGACACTTCGCATGGTGGACAGCCTTTG





TTACTAATGTGAATGCGTCATCATCTGAAGCATTTTTA





ATTGGATGTAATTATCTTGGCAAACCACGCGAACAAA





TAGATGGTTATGTCATGCATGCAAATTACATATTTTGG





AGGAATACAAATCCAATTCAGTTGTCTTCCTATTCTTT





ATTTGACATGAGTAAATTTCCCCTTAAATTAAGGGGTA





CTGCTGTTATGTCTTTAAAAGAAGGTCAAATCAATGAT





ATGATTTTATCTCTTCTTAGTAAAGGTAGACTTATAAT





TAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTC





TTGTTAACAACTA





S
21563
25384
ATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGT


(SEQ ID


CAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCC


NO: 4) 


TGCATACACTAATTCTTTCACACGTGGTGTTTATTACC





CTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACT





CAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGG





TTCCATGCTATACATGTCTCTGGGACCAATGGTACTAA





GAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTG





TTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGA





GGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCA





GTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTA





TTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTT





TTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGA





TGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAA





TTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGA





CCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGG





GAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAAT





ATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATC





TCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGAT





TTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTT





ACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATT





CTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTAT





GTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATA





TAATGAAAATGGAACCATTACAGATGCTGTAGACTGT





GCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGA





AATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCT





AACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATT





TCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTT





TTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAAC





AGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTG





TCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTT





ATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTT





ACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGA





TGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAG





ATTGCTGATTATAATTATAAATTACCAGATGATTTTAC





AGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATT





CTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTG





TTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATAT





TTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTA





ATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAA





TCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCA





ACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTAC





ATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTAC





TAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCA





ATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAAC





AAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACAT





TGCTGACACTACTGATGCTGTCCGTGATCCACAGACAC





TTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGT





GTCAGTGTTATAACACCAGGAACAAATACTTCTAACC





AGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAA





GTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTAC





TTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAA





CACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAA





CAACTCATATGAGTGTGACATACCCATTGGTGCAGGT





ATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCG





GCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCT





ACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTAC





TCTAATAACTCTATTGCCATACCCACAAATTTTACTAT





TAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCA





AGACATCAGTAGATTGTACAATGTACATTTGTGGTGAT





TCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAG





TTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAG





CTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGC





ACAAGTCAAACAAATTTACAAAACACCACCAATTAAA





GATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGA





TCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGAT





CTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTT





CATCAAACAATATGGTGATTGCCTTGGTGATATTGCTG





CTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTT





ACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGC





TCAATACACTTCTGCACTGTTAGCGGGTACAATCACTT





CTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATA





CCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTAT





TGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAA





TTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAAT





TCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAA





AACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTT





AAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTG





CAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTT





GACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGA





TCACAGGCAGACTTCAAAGTTTGCAGACATATGTGAC





TCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCT





GCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACT





TGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGC





TATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGG





TGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAG





AAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGAT





GGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTC





AAATGGCACACACTGGTTTGTAACACAAAGGAATTTT





TATGAACCACAAATCATTACTACAGACAACACATTTG





TGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAAC





AACACAGTTTATGATCCTTTGCAACCTGAATTAGACTC





ATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCAT





ACATCACCAGATGTTGATTTAGGTGACATCTCTGGCAT





TAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGAC





CGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCT





CATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTAT





ATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGC





TGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTT





GCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGT





TGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGA





CTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTAC





ACATA





3a
25393
26220
ATGGATTTGTTTATGAGAATCTTCACAATTGGAACTGT


(SEQ ID 


AACTTTGAAGCAAGGTGAAATCAAGGATGCTACTCCT


NO: 5)


TCAGATTTTGTTCGCGCTACTGCAACGATACCGATACA





AGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTTG





CACTTCTTGCTGTTTTTCAGAGCGCTTCCAAAATCATA





ACCCTCAAAAAGAGATGGCAACTAGCACTCTCCAAGG





GTGTTCACTTTGTTTGCAACTTGCTGTTGTTGTTTGTAA





CAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTT





GAAGCCCCTTTTCTCTATCTTTATGCTTTAGTCTACTTC





TTGCAGAGTATAAACTTTGTAAGAATAATAATGAGGC





TTTGGCTTTGCTGGAAATGCCGTTCCAAAAACCCATTA





CTTTATGATGCCAACTATTTTCTTTGCTGGCATACTAA





TTGTTACGACTATTGTATACCTTACAATAGTGTAACTT





CTTCAATTGTCATTACTTCAGGTGATGGCACAACAAGT





CCTATTTCTGAACATGACTACCAGATTGGTGGTTATAC





TGAAAAATGGGAATCTGGAGTAAAAGACTGTGTTGTA





TTACACAGTTACTTCACTTCAGACTATTACCAGCTGTA





CTCAACTCAATTGAGTACAGACACTGGTGTTGAACAT





GTTACCTTCTTCATCTACAATAAAATTGTTGATGAGCC





TGAAGAACATGTCCAAATTCACACAATCGACGGTTCA





TCCGGAGTTGTTAATCCAGTAATGGAACCAATTTATGA





TGAACCGACGACGACTACTAGCGTGCCTTTGTA





E
26245
26472
ATGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAAT


(SEQ ID 


AGTTAATAGCGTACTTCTTTTTCTTGCTTTCGTGGTATT


NO: 6)


CTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGAT





TGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTT





GTAAAACCTTCTTTTTACGTTTACTCTCGTGTTAAAAA





TCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTCTA





M
26523
27191
ATGGCAGATTCCAACGGTACTATTACCGTTGAAGAGC


(SEQ ID 


TTAAAAAGCTCCTTGAACAATGGAACCTAGTAATAGG


NO: 7)


TTTCCTATTCCTTACATGGATTTGTCTTCTACAATTTGC





CTATGCCAACAGGAATAGGTTTTTGTATATAATTAAGT





TAATTTTCCTCTGGCTGTTATGGCCAGTAACTTTAGCT





TGTTTTGTGCTTGCTGCTGTTTACAGAATAAATTGGAT





CACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAG





GCTTGATGTGGCTCAGCTACTTCATTGCTTCTTTCAGA





CTGTTTGCGCGTACGCGTTCCATGTGGTCATTCAATCC





AGAAACTAACATTCTTCTCAACGTGCCACTCCATGGCA





CTATTCTGACCAGACCGCTTCTAGAAAGTGAACTCGTA





ATCGGAGCTGTGATCCTTCGTGGACATCTTCGTATTGC





TGGACACCATCTAGGACGCTGTGACATCAAGGACCTG





CCTAAAGAAATCACTGTTGCTACATCACGAACGCTTTC





TTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAGGT





GACTCAGGTTTTGCTGCATACAGTCGCTACAGGATTGG





CAACTATAAATTAAACACAGACCATTCCAGTAGCAGT





GACAATATTGCTTTGCTTGTACAGTA





7a
27394
27759
ATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGC


(SEQ ID 


TACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAG


NO: 8)


GTACAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGA





ACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGA





TAACAAATTTGCACTGACTTGCTTTAGCACTCAATTTG





CTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAG





TTACGTGCCAGATCAGTTTCACCTAAACTGTTCATCAG





ACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTC





TTATTGTTGCGGCAATAGTGTTTATAACACTTTGCTTC





ACACTCAAAAGAAAGACAGAATG





8a
27894
28259
ATGAAATTTCTTGTTTTCTTAGGAATCATCACAACTGT


(SEQ ID 


AGCTGCATTTCACCAAGAATGTAGTTTACAGTCATGTA


NO: 9)


CTCAACATCAACCATATGTAGTTGATGACCCGTGTCCT





ATTCACTTCTATTCTAAATGGTATATTAGAGTAGGAGC





TAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGAT





GAGGCTGGTTCTAAATCACCCATTCAGTACATCGATAT





CGGTAATTATACAGTTTCCTGTTTACCTTTTACAATTA





ATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCGT





TGTTCGTTCTATGAAGACTTTTTAGAGTATCATGACGT





TCGTGTTGTTTTAGATTTCATCTA





N
28274
29533
ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCAC


(SEQ ID 


CCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGC


NO: 10)


AGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCA





AAACAACGTCGGCCCCAAGGTTTACCCAATAATACTG





CGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAA





GACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTA





ACACCAATAGCAGTCCAGATGACCAAATTGGCTACTA





CCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGT





AAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACT





ACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGG





TGCTAACAAAGACGGCATCATATGGGTTGCAACTGAG





GGAGCCTTGAATACACCAAAAGATCACATTGGCACCC





GCAATCCTGCTAACAATGCTGCAATCGTGCTACAACTT





CCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAG





AAGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTC





CTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACT





CCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGG





CTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTG





CTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTG





GTAAAGGCCAACAACAACAAGGCCAAACTGTCACTAA





GAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAA





AAACGTACTGCCACTAAAGCATACAATGTAACACAAG





CTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAA





TTTTGGGGACCAGGAACTAATCAGACAAGGAACTGAT





TACAAACATTGGCCGCAAATTGCACAATTTGCCCCCA





GCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATG





GAAGTCACACCTTCGGGAACGTGGTTGACCTACACAG





GTGCCATCAAATTGGATGACAAAGATCCAAATTTCAA





AGATCAAGTCATTTTGCTGAATAAGCATATTGACGCAT





ACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAA





AAAGAAGAAGGCTGATGAAACTCAAGCCTTACCGCAG





AGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTG





CTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAA





TCCATGAGCAGTGCTGACTCAACTCAGGCCTA









The invention covers a combination of bioinformatic approaches to identify regions of conservation (based on 718 patient isolates) in combination with features essential for RISC entry and tolerance of chemical modifications. The method uses a scoring scheme to identify siRNAs that target regions of related viral genomes with low mutation rates. Since viral targets are known to mutate frequently, it was imperative to select siRNAs targeting regions that are predicted to remain constant. We identified these regions as those with high homology to the six most closely-related coronavirus genomes (Middle East respiratory syndrome-related coronavirus (MERS-CoV), Human coronavirus 229E, Human coronavirus NL63 (HCoV-NL63), Human coronavirus HKU1 (HCoV-HKU1), Human coronavirus OC43 (HCoV-OC43), and SARS coronavirus) indicating low rates of mutation within these regions.


The percent homology to the related coronavirus genomes was determined for every position for each of the SARS-CoV-2 target genes. siRNA sequence designs were then scored by the number of positions within the sequence having a percentage homology greater than 70% within position 2-8 and greater than 50% for at least 10 bases within the remaining positions of the 16-nucleotide targeting region of the 20-nucleotide siRNA. The design algorithm identified a 20-nucleotide siRNA sequences and scored them by their predicted efficiency to knockdown the target transcript. The 20-nucleotide siRNA target regions are summarized in Table 6A and Table 7. Top scoring siRNAs had the highest potential to knockdown the target transcript and targeted regions with the highest homology to other closely related coronaviruses (Middle East respiratory syndrome-related coronavirus (MERS-CoV), Human coronavirus 229E, Human coronavirus NL63 (HCoV-NL63), Human coronavirus HKU1 (HCoV-HKU1), Human coronavirus OC43 (HCoV-OC43), and SARS coronavirus) are summarized in Table 8 and were selected for synthesis. ASOs targeting SARS-CoV-2 genes are summarized in Table 9.









TABLE 6A







SARS-CoV2 Screened-20 nucleotide target sequences and 45 nucleotide


target gene regions













SEQ

SEQ




ID

ID


Sequence ID
20 nt Sequence
NO:
45 nt Gene Region
NO:





orf1ab_14080
GGUAACUGG
 11
AATCAAGATCTCAATGGTAACTGGTAT
119



UAUGAUUUC

GATTTCGGTGATTTCATA




GG








orf1ab_14361
UCUGCAUUG
 12
GGATGACAGATGCATTCTGCATTGTGC
120



UGCAAACUU

AAACTTTAATGTTTTATT




UA








orf1ab_14830
UGUGAUAUC
 13
AATCTACCAACAATGTGTGATATCAGA
121



AGACAACUA

CAACTACTATTTGTAGTT




CU








orf1ab_15376
UGUAGCUUG
 14
AAACATACAACGTGTTGTAGCTTGTCA
122



UCACACCGU

CACCGTTTCTATAGATTA




UU








orf1ab_15786
UAAGUCAGU
 15
TAGCATAAAGAACTTTAAGTCAGTTCT
123



UCUUUAUUA

TTATTATCAAAACAATGT




UC








orf1ab_17107
UUUGCUAUU
 16
ACTGGTAAGAGTCATTTTGCTATTGGC
124



GGCCUAGCU

CTAGCTCTCTACTACCCT




CU








orf1ab_17370
GGCCACAAA
 17
TGATGAAATTTCAATGGCCACAAATTA
125



UUAUGAUU

TGATTTGAGTGTTGTCAA




UGA








orf1ab_18025
GUGGCAACU
 18
ATTCCACGTAGGAATGTGGCAACTTTA
126



UUACAAGCU

CAAGCTGAAAATGTAACA




GA








orf1ab_18571
UCUGACAGA
 19
ACACTTAAAAATCTCTCTGACAGAGTC
127



GUCGUAUUU

GTATTTGTCTTATGGGCA




GU








orf1ab_20497
UCUGUUAUU
 20
TCTAAGTGTGTGTGTTCTGTTATTGATT
128



GAUUUAUU

TATTACTTGATGATTTT




ACU








orf1ab_20892
UGCACCAGG
 21
TTCTGATAAAGGAGTTGCACCAGGTAC
129



UACAGCUGU

AGCTGTTTTAAGACAGTG




UU








orf1ab_21391
UUUGACAUG
 22
TCTTCCTATTCTTTATTTGACATGAGTA
130



AGUAAAUU

AATTTCCCCTTAAATTA




UCC








orf1a_416
UGUGGCUUA
 23
CTTAAAGATGGCACTTGTGGCTTAGTA
131



GUAGAAGU

GAAGTTGAAAAAGGCGTT




UGA








orf1a_2290
UCAGACAUU
 24
AATTAAGGAGAGTGTTCAGACATTCTT
132



CUUUAAGCU

TAAGCTTGTAAATAAATT




UG








orf1a_6059
UGUGAUAA
 25
AATTTTAAGTTTGTATGTGATAATATC
133



UAUCAAAUU

AAATTTGCTGATGATTTA




UGC








orf1a_6322
UGAAACAUC
 26
GAGCACAAAACCAGTTGAAACATCAA
134



AAAUUCGUU

ATTCGTTTGATGTACTGAA




UG








orf1a_6499
ACCAGCAAA
 27
AGACATTATACTTAAACCAGCAAATAA
135



UAAUAGUU

TAGTTTAAAAATTACAGA




UAA








orf1a_7643
GCUGGUAGU
 28
TGTGATACATTCTGTGCTGGTAGTACA
136



ACAUUUAUU

TTTATTAGTGATGAAGTT




AG








orf1a_8200
UGUAGAAAC
 29
GTTTGTTGATTCAGATGTAGAAACTAA
137



UAAAGAUG

AGATGTTGTTGAATGTCT




UUG








orf1a_8201
GUAGAAACU
 30
TTTGTTGATTCAGATGTAGAAACTAAA
138



AAAGAUGU

GATGTTGTTGAATGTCTT




UGU








orf1a_8744
UUUGCUAAC
 31
TCTACAGATACTTGTTTTGCTAACAAA
139



AAACAUGCU

CATGCTGATTTTGACACA




GA








orf1a_9679
CUGGAUAAC
 32
ACCTTTAGTACCTTTCTGGATAACAAT
140



AAUUGCUUA

TGCTTATATCATTTGTAT




UA








orf1a_11594
CAGUGUAUA
 33
ACTGGTAATACACTTCAGTGTATAATG
141



AUGCUAGUU

CTAGTTTATTGTTTCTTA




UA








orf1a_12932
CCUAAAGUG
 34
GACACACCTAAAGGTCCTAAAGTGAA
142



AAGUAUUU

GTATTTATACTTTATTAAA




AUA








S_21944
AUUAAAGUC
 35
GCTACTAATGTTGTTATTAAAGTCTGT
143



UGUGAAUU

GAATTTCAATTTTGTAAT




UCA








S_22223
UCGGCUUUA
 36
CTCCCTCAGGGTTTTTCGGCTTTAGAA
144



GAACCAUUG

CCATTGGTAGATTTGCCA




GU








S_22550
CCUAAUAUU
 37
TCTATTGTTAGATTTCCTAATATTACAA
145



ACAAACUUG

ACTTGTGCCCTTTTGGT




UG








S_22820
GAUUAUAA
 38
ACTGGAAAGATTGCTGATTATAATTAT
146



UUAUAAAU

AAATTACCAGATGATTTT




UACC








S_22898
GGUGGUAA
 39
CTTGATTCTAAGGTTGGTGGTAATTAT
147



UUAUAAUU

AATTACCTGTATAGATTG




ACCU








S_23174
UGUGUCAAU
 40
TTGGTTAAAAACAAATGTGTCAATTTC
148



UUCAACUUC

AACTTCAATGGTTTAACA




AA








S_23239
UCUGCCUUU
 41
GTCTAACAAAAAGTTTCTGCCTTTCCA
149



CCAACAAUU

ACAATTTGGCAGAGACAT




UG








S_23240
CUGCCUUUC
 42
TCTAACAAAAAGTTTCTGCCTTTCCAA
150



CAACAAUUU

CAATTTGGCAGAGACATT




GG








S_23774
UGUACAAUG
 43
AAGACATCAGTAGATTGTACAATGTAC
151



UACAUUUGU

ATTTGTGGTGATTCAACT




GG








S_24056
GGCUUCAUC
 44
ACACTTGCAGATGCTGGCTTCATCAAA
152



AAACAAUAU

CAATATGGTGATTGCCTT




GG








S_24289
UGGAGUUAC
 45
TAGGTTTAATGGTATTGGAGTTACACA
153



ACAGAAUGU

GAATGTTCTCTATGAGAA




UC








S_25375
UUACACAUA
 46
AGGAGTCAAATTACATTACACATAAAC
154



AACGAACUU

GAACTTATGGATTTGTTT




AU








3a_25413
CUUCACAAU
 47
TTTGTTTATGAGAATCTTCACAATTGG
155



UGGAACUGU

AACTGTAACTTTGAAGCA




AA








3a_25630
GUUUGCAAC
 48
AAGGGTGTTCACTTTGTTTGCAACTTG
156



UUGCUGUUG

CTGTTGTTGTTTGTAACA




UU








3a_25717
UAUGCUUUA
 49
CCTTTTCTCTATCTTTATGCTTTAGTCT
157



GUCUACUUC

ACTTCTTGCAGAGTATA




UU








3a_25734
CUUGCAGAG
 50
TGCTTTAGTCTACTTCTTGCAGAGTAT
158



UAUAAACUU

AAACTTTGTAAGAATAAT




UG








3a_25736
UGCAGAGUA
 51
CTTTAGTCTACTTCTTGCAGAGTATAA
159



UAAACUUUG

ACTTTGTAAGAATAATAA




UA








3a_25745
UAAACUUUG
 52
ACTTCTTGCAGAGTATAAACTTTGTAA
160



UAAGAAUA

GAATAATAATGAGGCTTT




AUA








3a_25868
CUUACAAUA
 53
ACGACTATTGTATACCTTACAATAGTG
161



GUGUAACUU

TAACTTCTTCAATTGTCA




CU








3a_25870
UACAAUAGU
 54
GACTATTGTATACCTTACAATAGTGTA
162



GUAACUUCU

ACTTCTTCAATTGTCATT




UC








3a_25914
CACAACAAG
 55
TACTTCAGGTGATGGCACAACAAGTCC
163



UCCUAUUUC

TATTTCTGAACATGACTA




UG








3a_25992
UGUUGUAU
 56
TGGAGTAAAAGACTGTGTTGTATTACA
164



UACACAGUU

CAGTTACTTCACTTCAGA




ACU








3a_26018
CAGACUAUU
 57
ACAGTTACTTCACTTCAGACTATTACC
165



ACCAGCUGU

AGCTGTACTCAACTCAAT




AC








3a_26066
UUGAACAUG
 58
GTACAGACACTGGTGTTGAACATGTTA
166



UUACCUUCU

CCTTCTTCATCTACAATA




UC








E_26258
UUUCGGAAG
 59
TTATGTACTCATTCGTTTCGGAAGAGA
167



AGACAGGUA

CAGGTACGTTAATAGTTA




CG








E_26261
CGGAAGAGA
 60
TGTACTCATTCGTTTCGGAAGAGACAG
168



CAGGUACGU

GTACGTTAATAGTTAATA




UA








E_26269
ACAGGUACG
 61
TTCGTTTCGGAAGAGACAGGTACGTTA
169



UUAAUAGU

ATAGTTAATAGCGTACTT




UAA








E_26277
GUUAAUAG
 62
GGAAGAGACAGGTACGTTAATAGTTA
170



UUAAUAGCG

ATAGCGTACTTCTTTTTCT




UAC








E_26305
CUUGCUUUC
 63
AGCGTACTTCTTTTTCTTGCTTTCGTGG
171



GUGGUAUUC

TATTCTTGCTAGTTACA




UU








E_26313
CGUGGUAUU
 64
TCTTTTTCTTGCTTTCGTGGTATTCTTG
172



CUUGCUAGU

CTAGTTACACTAGCCAT




UA








E_26369
ACUGCUGCA
 65
TTCGATTGTGTGCGTACTGCTGCAATA
173



AUAUUGUU

TTGTTAACGTGAGTCTTG




AAC








E_26374
UGCAAUAUU
 66
TTGTGTGCGTACTGCTGCAATATTGTT
174



GUUAACGUG

AACGTGAGTCTTGTAAAA




AG








E_26455
CCUGAUCUU
 67
AATTCTTCTAGAGTTCCTGATCTTCTGG
175



CUGGUCUAA

TCTAAACGAACTAAATA




AC








E_26463
UCUGGUCUA
 68
TAGAGTTCCTGATCTTCTGGTCTAAAC
176



AACGAACUA

GAACTAAATATTATATTA




AA








E_26467
GUCUAAACG
 69
GTTCCTGATCTTCTGGTCTAAACGAAC
177



AACUAAAUA

TAAATATTATATTAGTTT




UU








E_26470
UAAACGAAC
 70
CCTGATCTTCTGGTCTAAACGAACTAA
178



UAAAUAUU

ATATTATATTAGTTTTTC




AUA








M_26573
UGAACAAUG
 71
GCTTAAAAAGCTCCTTGAACAATGGAA
179



GAACCUAGU

CCTAGTAATAGGTTTCCT




AA








M_26581
GGAACCUAG
 72
AGCTCCTTGAACAATGGAACCTAGTAA
180



UAAUAGGU

TAGGTTTCCTATTCCTTA




UUC








M_26602
UAUUCCUUA
 73
TAGTAATAGGTTTCCTATTCCTTACAT
181



CAUGGAUUU

GGATTTGTCTTCTACAAT




GU








M_26624
UCUACAAUU
 74
TACATGGATTTGTCTTCTACAATTTGCC
182



UGCCUAUGC

TATGCCAACAGGAATAG




CA








M_26637
UAUGCCAAC
 75
CTTCTACAATTTGCCTATGCCAACAGG
183



AGGAAUAG

AATAGGTTTTTGTATATA




GUU








M_26638
AUGCCAACA
 76
TTCTACAATTTGCCTATGCCAACAGGA
184



GGAAUAGG

ATAGGTTTTTGTATATAA




UUU








M_26693
AUGGCCAGU
 77
TTTCCTCTGGCTGTTATGGCCAGTAAC
185



AACUUUAGC

TTTAGCTTGTTTTGTGCT




UU








M_26717
UGUGCUUGC
 78
AACTTTAGCTTGTTTTGTGCTTGCTGCT
186



UGCUGUUUA

GTTTACAGAATAAATTG




CA








M_27014
GCCUAAAGA
 79
TGACATCAAGGACCTGCCTAAAGAAA
187



AAUCACUGU

TCACTGTTGCTACATCACG




UG








M_27032
UGCUACAUC
 80
TAAAGAAATCACTGTTGCTACATCACG
188



ACGAACGCU

AACGCTTTCTTATTACAA




UU








M_27035
UACAUCACG
 81
AGAAATCACTGTTGCTACATCACGAAC
189



AACGCUUUC

GCTTTCTTATTACAAATT




UU








M_27123
AUUGGCAAC
 82
TACAGTCGCTACAGGATTGGCAACTAT
190



UAUAAAUU

AAATTAAACACAGACCAT




AAA








7a_27455
AAGAGUGU
 83
AGCTTTATCACTACCAAGAGTGTGTTA
191



GUUAGAGG

GAGGTACAACAGTACTTT




UACA








7a_27522
UUCACCAUU
 84
AACATACGAGGGCAATTCACCATTTCA
192



UCAUCCUCU

TCCTCTAGCTGATAACAA




AG








7a_27537
UCUAGCUGA
 85
TTCACCATTTCATCCTCTAGCTGATAA
193



UAACAAAUU

CAAATTTGCACTGACTTG




UG








7a_27553
UUUGCACUG
 86
CTAGCTGATAACAAATTTGCACTGACT
194



ACUUGCUUU

TGCTTTAGCACTCAATTT




AG








7a_27565
UGCUUUAGC
 87
AAATTTGCACTGACTTGCTTTAGCACT
195



ACUCAAUUU

CAATTTGCTTTTGCTTGT




GC








7a_27633
AUCAGUUUC
 88
TCAGTTACGTGCCAGATCAGTTTCACC
196



ACCUAAACU

TAAACTGTTCATCAGACA




GU








7a_27656
UCAGACAAG
 89
CACCTAAACTGTTCATCAGACAAGAGG
197



AGGAAGUUC

AAGTTCAAGAACTTTACT




AA








7a_27671
UUCAAGAAC
 90
TCAGACAAGAGGAAGTTCAAGAACTT
198



UUUACUCUC

TACTCTCCAATTTTTCTTA




CA








7a_27705
UGCGGCAAU
 91
AATTTTTCTTATTGTTGCGGCAATAGT
199



AGUGUUUA

GTTTATAACACTTTGCTT




UAA








7a_27715
GUGUUUAU
 92
ATTGTTGCGGCAATAGTGTTTATAACA
200



AACACUUUG

CTTTGCTTCACACTCAAA




CUU








7a_27720
UAUAACACU
 93
TGCGGCAATAGTGTTTATAACACTTTG
201



UUGCUUCAC

CTTCACACTCAAAAGAAA




AC








7a_27751
ACAGAAUGA
 94
ACACTCAAAAGAAAGACAGAATGATT
202



UUGAACUUU

GAACTTTCATTAATTGACT




CA








8b_27932
AGCUGCAUU
 95
AATCATCACAACTGTAGCTGCATTTCA
203



UCACCAAGA

CCAAGAATGTAGTTTACA




AU








8b_27940
UUCACCAAG
 96
CAACTGTAGCTGCATTTCACCAAGAAT
204



AAUGUAGU

GTAGTTTACAGTCATGTA




UUA








8b_27986
UGUAGUUG
 97
TCAACATCAACCATATGTAGTTGATGA
205



AUGACCCGU

CCCGTGTCCTATTCACTT




GUC








8b_28002
UGUCCUAUU
 98
GTAGTTGATGACCCGTGTCCTATTCAC
206



CACUUCUAU

TTCTATTCTAAATGGTAT




UC








8b_28024
AAUGGUAU
 99
TTCACTTCTATTCTAAATGGTATATTAG
207



AUUAGAGU

AGTAGGAGCTAGAAAAT




AGGA








8b_28091
UUCUAAAUC
100
CGTGGATGAGGCTGGTTCTAAATCACC
208



ACCCAUUCA

CATTCAGTACATCGATAT




GU








8b_28119
AUCGGUAAU
101
ATTCAGTACATCGATATCGGTAATTAT
209



UAUACAGUU

ACAGTTTCCTGTTTACCT




UC








8b_28127
UUAUACAGU
102
CATCGATATCGGTAATTATACAGTTTC
210



UUCCUGUUU

CTGTTTACCTTTTACAAT




AC








8b_28128
UAUACAGUU
103
ATCGATATCGGTAATTATACAGTTTCC
211



UCCUGUUUA

TGTTTACCTTTTACAATT




CC








8b_28163
CCAGGAACC
104
TTTTACAATTAATTGCCAGGAACCTAA
212



UAAAUUGG

ATTGGGTAGTCTTGTAGT




GUA








8b_28218
UUAGAGUA
105
TTCTATGAAGACTTTTTAGAGTATCAT
213



UCAUGACGU

GACGTTCGTGTTGTTTTA




UCG








8b_28222
AGUAUCAUG
106
ATGAAGACTTTTTAGAGTATCATGACG
214



ACGUUCGUG

TTCGTGTTGTTTTAGATT




UU








N_28407
UACCCAAUA
107
GTCGGCCCCAAGGTTTACCCAATAATA
215



AUACUGCGU

CTGCGTCTTGGTTCACCG




CU








N_28655
GACGGCAUC
108
TATGGTGCTAACAAAGACGGCATCATA
216



AUAUGGGU

TGGGTTGCAACTGAGGGA




UGC








N_28945
UGACAGAUU
109
TGCTTTGCTGCTGCTTGACAGATTGAA
217



GAACCAGCU

CCAGCTTGAGAGCAAAAT




UG








N_28992
AACAACAAG
110
CTGGTAAAGGCCAACAACAACAAGGC
218



GCCAAACUG

CAAACTGTCACTAAGAAAT




UC








N_29141
GAACUAAUC
111
AATTTTGGGGACCAGGAACTAATCAG
219



AGACAAGGA

ACAAGGAACTGATTACAAA




AC








N_29276
GGUGCCAUC
112
TGGTTGACCTACACAGGTGCCATCAAA
220



AAAUUGGA

TTGGATGACAAAGATCCA




UGA








N_29292
AUGACAAAG
113
GTGCCATCAAATTGGATGACAAAGATC
221



AUCCAAAUU

CAAATTTCAAAGATCAAG




UC








N_29293
UGACAAAGA
114
TGCCATCAAATTGGATGACAAAGATCC
222



UCCAAAUUU

AAATTTCAAAGATCAAGT




CA








N_29303
CCAAAUUUC
115
TTGGATGACAAAGATCCAAATTTCAAA
223



AAAGAUCAA

GATCAAGTCATTTTGCTG




GU








N_29307
AUUUCAAAG
116
ATGACAAAGATCCAAATTTCAAAGATC
224



AUCAAGUCA

AAGTCATTTTGCTGAATA




UU








N_29328
UGCUGAAUA
117
AAGATCAAGTCATTTTGCTGAATAAGC
225



AGCAUAUUG

ATATTGACGCATACAAAA




AC








N_29464
UGCAGAUUU
118
GACTCTTCTTCCTGCTGCAGATTTGGA
226



GGAUGAUU

TGATTTCTCCAAACAATT




UCU
















TABLE 6B







Modified antisense strand (21 nucleotide length for screening)











SEQ


Sequence ID
Modified AS strand (21mer for screening)
ID NO:





orflab_14080
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_14361
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_14830
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_15376
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_15786
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_17107
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_17370
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_18025
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_18571
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_20497
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_20892
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orflab_21391
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_416
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_2290
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_6059
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_6322
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_6499
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_7643
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_8200
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_8201
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_8744
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_9679
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_11594
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


orfla_12932
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_21944
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_22223
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_22550
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_22820
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_22898
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_23174
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_23239
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_23240
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_23774
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_24056
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_24289
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


S_25375
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25413
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25630
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25717
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25734
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25736
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25745
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25868
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25870
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25914
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_25992
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_26018
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


3a_26066
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26258
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26261
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26269
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26277
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26305
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26313
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26369
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26374
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26455
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26463
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26467
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


E_26470
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26573
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26581
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26602
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26624
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26637
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26638
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26693
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_26717
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_27014
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_27032
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_27035
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


M_27123
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27455
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27522
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27537
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27553
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a 27565
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27633
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27656
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27671
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27705
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27715
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27720
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


7a_27751
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_27932
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_27940
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_27986
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28002
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28024
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28091
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28119
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28127
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28128
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28163
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28218
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


8b_28222
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_28407
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_28655
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_28945
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_28992
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29141
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29276
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29292
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29293
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29303
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29307
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29328
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227


N_29464
P(mU)#(fA)#(mA)(mC)(mA)(fU)(mG)(mA)(mA)(mU)(mA)(mC)(mU)(fU)#(mG)#(fG)#(mC)#(mU)#(mU)#(mU)#(mU)
227
















TABLE 6C







Modified sense strand - 16 nucleotides in length











SEQ


Sequence

ID


ID
Modified sense strand 16 nt
NO:





orflab_14080
(mA)#(mU)#(mC)(mA)(fU)(fA)(fC)(mC)(fA)(mG)(mU)(mU)(mA)#(mC)#(mA)-TegChol
228


orflab_14361
(mG)#(mU)#(mU)(mU)(mG)(fC)(fA)(fC)(mA)(fA)(mU)(mG)(mC)(mA)#(mG)#(mA)-TegChol
229


orflab_14830
(mU)#(mU)#(mU)(mG)(fC)(fA)(fC)(mA)(fA)(mU)(mG)(mC)(mA)#(mG)#(mA)-TegChol
230


orflab_15376
(mG)#(mU)#(mG)(mU)(fG)(fA)(fC)(mA)(fA)(mG)(mC)(mU)(mA)#(mC)#(mA)-TegChol
231


orflab_15786
(mU)#(mA)#(mA)(mA)(fG)(fA)(fA)(mC)(fU)(mG)(mA)(mC)(mU)#(mU)#(mA)-TegChol
232


orflab_17107
(mU)#(mA)#(mG)(mG)(fC)(fC)(fA)(mA)(fU)(mA)(mG)(mC)(mA)#(mA)#(mA)-TegChol
233


orflab_17370
(mU)#(mC)#(mA)(mU)(fA)(fA)(fU)(mU)(fU)(mG)(mU)(mG)(mG)#(mC)#(mA)-TegChol
234


orflab_18025
(mU)#(mU)#(mG)(mU)(fA)(fA)(fA)(mG)(fU)(mU)(mG)(mC)(mC)#(mA)#(mA)-TegChol
235


orflab_18571
(mU)#(mA)#(mC)(mG)(fA)(fC)(fU)(mC)(fU)(mG)(mU)(mC)(mA)#(mG)#(mA)-TegChol
236


orflab_20497
(mU)#(mA)#(mA)(mA)(fU)(fC)(fA)(mA)(fU)(mA)(mA)(mC)(mA)#(mG)#(mA)-TegChol
237


orflab_20892
(mG)#(mC)#(mU)(mG)(fU)(fA)(fC)(mC)(fU)(mG)(mG)(mU)(mG)#(mC)#(mA)-TegChol
238


orflab_21391
(mU)#(mU)#(mU)(mA)(fC)(fU)(fC)(mA)(fU)(mG)(mU)(mC)(mA)#(mA)#(mA)-TegChol
239


orfla_416
(mU)#(mU)#(mC)(mU)(fA)(fC)(fU)(mA)(fA)(mG)(mC)(mC)(mA)#(mC)#(mA)-TegChol
240


orfla_2290
(mU)#(mU)#(mA)(mA)(fA)(fG)(fA)(mA)(fU)(mG)(mU)(mC)(mU)#(mG)#(mA)-TegChol
241


orfla_6059
(mU)#(mU)#(mU)(mG)(fA)(fU)(fA)(mU)(fU)(mA)(mU)(mC)(mA)#(mC)#(mA)-TegChol
242


orfla_6322
(mG)#(mA)#(mA)(mU)(fU)(fU)(fG)(mA)(fU)(mG)(mU)(mU)(mU)#(mC)#(mA)-TegChol
243


orfla_6499
(mC)#(mU)#(mA)(mU)(fU)(fA)(fU)(mU)(fU)(mG)(mC)(mU)(mG)#(mG)#(mA)-TegChol
244


orfla_7643
(mA)#(mA)#(mA)(mU)(fG)(fU)(fA)(mC)(fU)(mA)(mC)(mC)(mA)#(mG)#(mA)-TegChol
245


orfla_8200
(mU)#(mC)#(mU)(mU)(fU)(fA)(fG)(mU)(fU)(mU)(mC)(mU)(mA)#(mC)#(mA)-TegChol
246


orfla_8201
(mA)#(mU)#(mC)(mU)(fU)(fU)(fA)(mG)(fU)(mU)(mU)(mC)(mU)#(mA)#(mA)-TegChol
247


orfla_8744
(mA)#(mU)#(mG)(mU)(fU)(fU)(fG)(mU)(fU)(mA)(mG)(mC)(mA)#(mA)#(mA)-TegChol
248


orfla_9679
(mG)#(mC)#(mA)(mA)(fU)(fU)(fG)(mU)(fU)(mA)(mU)(mC)(mC)#(mA)#(mA)-TegChol
249


orfla_11594
(mU)#(mA)#(mG)(mC)(fA)(fU)(fU)(mA)(fU)(mA)(mC)(mA)(mC)#(mU)#(mA)-TegChol
250


orfla_12932
(mA)#(mU)#(mA)(mC)(fU)(fU)(fC)(mA)(fC)(mU)(mU)(mU)(mA)#(mG)#(mA)-TegChol
251


S_21944
(mU)#(mU)#(mC)(mA)(fC)(fA)(fG)(mA)(fC)(mU)(mU)(mU)(mA)#(mA)#(mA)-TegChol
252


S_22223
(mU)#(mG)#(mG)(mU)(fU)(fC)(fU)(mA)(fA)(mA)(mG)(mC)(mC)#(mG)#(mA)-TegChol
253


S_22550
(mG)#(mU)#(mU)(mU)(fG)(fU)(fA)(mA)(fU)(mA)(mU)(mU)(mA)#(mG)#(mA)-TegChol
254


S_22820
(mU)#(mU)#(mU)(mA)(fU)(fA)(fA)(mU)(fU)(mA)(mU)(mA)(mA)#(mU)#(mA)-TegChol
255


S_22898
(mA)#(mU)#(mU)(mA)(fU)(fA)(fA)(mU)(fU)(mA)(mC)(mC)(mA)#(mC)#(mA)-TegChol
256


S_23174
(mG)#(mU)#(mU)(mG)(fA)(fA)(fA)(mU)(fU)(mG)(mA)(mC)(mA)#(mC)#(mA)-TegChol
257


S_23239
(mU)#(mG)#(mU)(mU)(fG)(fG)(fA)(mA)(fA)(mG)(mG)(mC)(mA)#(mG)#(mA)-TegChol
258


S_23240
(mU)#(mU)#(mG)(mU)(fU)(fG)(fG)(mA)(fA)(mA)(mG)(mG)(mC)#(mA)#(mA)-TegChol
259


S_23774
(mA)#(mA)#(mU)(mG)(fU)(fA)(fC)(mA)(fU)(mU)(mG)(mU)(mA)#(mC)#(mA)-TegChol
260


S_24056
(mU)#(mU)#(mG)(mU)(fU)(fU)(fG)(mA)(fU)(mG)(mA)(mA)(mG)#(mC)#(mA)-TegChol
261


S_24289
(mU)#(mU)#(mC)(mU)(fG)(fU)(fG)(mU)(fA)(mA)(mC)(mU)(mC)#(mC)#(mA)-TegChol
262


S_25375
(mU)#(mU)#(mC)(mG)(fU)(fU)(fU)(mA)(fU)(mG)(mU)(mG)(mU)#(mA)#(mA)-TegChol
263


3a_25413
(mG)#(mU)#(mU)(mC)(fC)(fA)(fA)(mU)(fU)(mG)(mU)(mG)(mA)#(mA)#(mA)-TegChol
264


3a_25630
(mC)#(mA)#(mG)(mC)(fA)(fA)(fG)(mU)(fU)(mG)(mC)(mA)(mA)#(mA)#(mA)-TegChol
265


3a_25717
(mG)#(mU)#(mA)(mG)(fA)(fC)(fU)(mA)(fA)(mA)(mG)(mC)(mA)#(mU)#(mA)-TegChol
266


3a_25734
(mU)#(mU)#(mU)(mA)(fU)(fA)(fC)(mU)(fC)(mU)(mG)(mC)(mA)#(mA)#(mA)-TegChol
267


3a_25736
(mA)#(mG)#(mU)(mU)(fU)(fA)(fU)(mA)(fC)(mU)(mC)(mU)(mG)#(mC)#(mA)-TegChol
268


3a_25745
(mU)#(mU)#(mC)(mU)(fU)(fA)(fC)(mA)(fA)(mA)(mG)(mU)(mU)#(mU)#(mA)-TegChol
269


3a_25868
(mU)#(mU)#(mA)(mC)(fA)(fC)(fU)(mA)(fU)(mU)(mG)(mU)(mA)#(mA)#(mA)-TegChol
270


3a_25870
(mA)#(mG)#(mU)(mU)(fA)(fC)(fA)(mC)(fU)(mA)(mU)(mU)(mG)#(mU)#(mA)-TegChol
271


3a_25914
(mA)#(mU)#(mA)(mG)(fG)(fA)(fC)(mU)(fU)(mG)(mU)(mU)(mG)#(mU)#(mA)-TegChol
272


3a_25992
(mC)#(mU)#(mG)(mU)(fG)(fU)(fA)(mA)(fU)(mA)(mC)(mA)(mA)#(mC)#(mA)-TegChol
273


3a_26018
(mG)#(mC)#(mU)(mG)(fG)(fU)(fA)(mA)(fU)(mA)(mG)(mU)(mC)#(mU)#(mA)-TegChol
274


3a_26066
(mA)#(mG)#(mG)(mU)(fA)(fA)(fC)(mA)(fU)(mG)(mU)(mU)(mC)#(mA)#(mA)-TegChol
275


E_26258
(mC)#(mU)#(mG)(mU)(fC)(fU)(fC)(mU)(fU)(mC)(mC)(mG)(mA)#(mA)#(mA)-TegChol
276


E_26261
(mU)#(mA)#(mC)(mC)(fU)(fG)(fU)(mC)(fU)(mC)(mU)(mU)(mC)#(mC)#(mA)-TegChol
277


E_26269
(mU)#(mA)#(mU)(mU)(fA)(fA)(fC)(mG)(fU)(mA)(mC)(mC)(mU)#(mG)#(mA)-TegChol
278


E_26277
(mC)#(mU)#(mA)(mU)(fU)(fA)(fA)(mC)(fU)(mA)(mU)(mU)(mA)#(mA)#(mA)-TegChol
279


E_26305
(mU)#(mA)#(mC)(mC)(fA)(fC)(fG)(mA)(fA)(mA)(mG)(mC)(mA)#(mA)#(mA)-TegChol
280


E_26313
(mA)#(mG)#(mC)(mA)(fA)(fG)(fA)(mA)(fU)(mA)(mC)(mC)(mA)#(mC)#(mA)-TegChol
281


E_26369
(mC)#(mA)#(mA)(mU)(fA)(fU)(fU)(mG)(fC)(mA)(mG)(mC)(mA)#(mG)#(mA)-TegChol
282


E_26374
(mG)#(mU)#(mU)(mA)(fA)(fC)(fA)(mA)(fU)(mA)(mU)(mU)(mG)#(mC)#(mA)-TegChol
283


E_26455
(mG)#(mA)#(mC)(mC)(fA)(fG)(fA)(mA)(fG)(mA)(mU)(mC)(mA)#(mG)#(mA)-TegChol
284


E_26463
(mU)#(mU)#(mC)(mG)(fU)(fU)(fU)(mA)(fG)(mA)(mC)(mC)(mA)#(mG)#(mA)-TegChol
285


E_26467
(mU)#(mU)#(mA)(mG)(fU)(fU)(fC)(mG)(fU)(mU)(mU)(mA)(mG)#(mA)#(mA)-TegChol
286


E_26470
(mU)#(mA)#(mU)(mU)(fU)(fA)(fG)(mU)(fU)(mC)(mG)(mU)(mU)#(mU)#(mA)-TegChol
287


M_26573
(mA)#(mG)#(mG)(mU)(fU)(fC)(fC)(mA)(fU)(mU)(mG)(mU)(mU)#(mC)#(mA)-TegChol
288


M_26581
(mC)#(mU)#(mA)(mU)(fU)(fA)(fC)(mU)(fA)(mG)(mG)(mU)(mU)#(mC)#(mA)-TegChol
289


M_26602
(mU)#(mC)#(mC)(mA)(fU)(fG)(fU)(mA)(fA)(mG)(mG)(mA)(mA)#(mU)#(mA)-TegChol
290


M_26624
(mU)#(mA)#(mG)(mG)(fC)(fA)(fA)(mA)(fU)(mU)(mG)(mU)(mA)#(mG)#(mA)-TegChol
291


M_26637
(mA)#(mU)#(mU)(mC)(fC)(fU)(fG)(mU)(fU)(mG)(mG)(mC)(mA)#(mU)#(mA)-TegChol
292


M_26638
(mU)#(mA)#(mU)(mU)(fC)(fC)(fU)(mG)(fU)(mU)(mG)(mG)(mC)#(mA)#(mA)-TegChol
293


M_26693
(mA)#(mA)#(mA)(mG)(fU)(fU)(fA)(mC)(fU)(mG)(mG)(mC)(mC)#(mA)#(mA)-TegChol
294


M_26717
(mA)#(mC)#(mA)(mG)(fC)(fA)(fG)(mC)(fA)(mA)(mG)(mC)(mA)#(mC)#(mA)-TegChol
295


M_27014
(mG)#(mU)#(mG)(mA)(fU)(fU)(fU)(mC)(fU)(mU)(mU)(mA)(mG)#(mG)#(mA)-TegChol
296


M_27032
(mG)#(mU)#(mU)(mC)(fG)(fU)(fG)(mA)(fU)(mG)(mU)(mA)(mG)#(mC)#(mA)-TegChol
297


M_27035
(mA)#(mG)#(mC)(mG)(fU)(fU)(fC)(mG)(fU)(mG)(mA)(mU)(mG)#(mU)#(mA)-TegChol
298


M_27123
(mU)#(mU)#(mU)(mA)(fU)(fA)(fG)(mU)(fU)(mG)(mC)(mC)(mA)#(mA)#(mA)-TegChol
299


7a_27455
(mC)#(mU)#(mC)(mU)(fA)(fA)(fC)(mA)(fC)(mA)(mC)(mU)(mC)#(mU)#(mA)-TegChol
300


7a_27522
(mG)#(mG)#(mA)(mU)(fG)(fA)(fA)(mA)(fU)(mG)(mG)(mU)(mG)#(mA)#(mA)-TegChol
301


7a_27537
(mU)#(mU)#(mG)(mU)(fU)(fA)(fU)(mC)(fA)(mG)(mC)(mU)(mA)#(mG)#(mA)-TegChol
302


7a_27553
(mG)#(mC)#(mA)(mA)(fG)(fU)(fC)(mA)(fG)(mU)(mG)(mC)(mA)#(mA)#(mA)-TegChol
303


7a_27565
(mU)#(mU)#(mG)(mA)(fG)(fU)(fG)(mC)(fU)(mA)(mA)(mA)(mG)#(mC)#(mA)-TegChol
304


7a_27633
(mU)#(mU)#(mA)(mG)(fG)(fU)(fG)(mA)(fA)(mA)(mC)(mU)(mG)#(mA)#(mA)-TegChol
305


7a_27656
(mC)#(mU)#(mU)(mC)(fC)(fU)(fC)(mU)(fU)(mG)(mU)(mC)(mU)#(mG)#(mA)-TegChol
306


7a_27671
(mA)#(mG)#(mU)(mA)(fA)(fA)(fG)(mU)(fU)(mC)(mU)(mU)(mG)#(mA)#(mA)-TegChol
307


7a_27705
(mA)#(mA)#(mC)(mA)(fC)(fU)(fA)(mU)(fU)(mG)(mC)(mC)(mG)#(mC)#(mA)-TegChol
308


7a_27715
(mA)#(mA)#(mG)(mU)(fG)(fU)(fU)(mA)(fU)(mA)(mA)(mA)(mC)#(mA)#(mA)-TegChol
309


7a_27720
(mA)#(mA)#(mG)(mC)(fA)(fA)(fA)(mG)(fU)(mG)(mU)(mU)(mA)#(mU)#(mA)-TegChol
310


7a_27751
(mG)#(mU)#(mU)(mC)(fA)(fA)(fU)(mC)(fA)(mU)(mU)(mC)(mU)#(mG)#(mA)-TegChol
311


8b_27932
(mU)#(mG)#(mG)(mU)(fG)(fA)(fA)(mA)(fU)(mG)(mC)(mA)(mG)#(mC)#(mA)-TegChol
312


8b_27940
(mU)#(mA)#(mC)(mA)(fU)(fU)(fC)(mU)(fU)(mG)(mG)(mU)(mG)#(mA)#(mA)-TegChol
313


8b_27986
(mG)#(mG)#(mG)(mU)(fC)(fA)(fU)(mC)(fA)(mA)(mC)(mU)(mA)#(mC)#(mA)-TegChol
314


8b_28002
(mG)#(mA)#(mA)(mG)(fU)(fG)(fA)(mA)(fU)(mA)(mG)(mG)(mA)#(mC)#(mA)-TegChol
315


8b_28024
(mC)#(mU)#(mC)(mU)(fA)(fA)(fU)(mA)(fU)(mA)(mC)(mC)(mA)#(mU)#(mA)-TegChol
316


8b_28091
(mA)#(mU)#(mG)(mG)(fG)(fU)(fG)(mA)(fU)(mU)(mU)(mA)(mG)#(mA)#(mA)-TegChol
317


8b_28119
(mU)#(mG)#(mU)(mA)(fU)(fA)(fA)(mU)(fU)(mA)(mC)(mC)(mG)#(mA)#(mA)-TegChol
318


8b_28127
(mC)#(mA)#(mG)(mG)(fA)(fA)(fA)(mC)(fU)(mG)(mU)(mA)(mU)#(mA)#(mA)-TegChol
319


8b_28128
(mA)#(mC)#(mA)(mG)(fG)(fA)(fA)(mA)(fC)(mU)(mG)(mU)(mA)#(mU)#(mA)-TegChol
320


8b_28163
(mA)#(mA)#(mU)(mU)(fU)(fA)(fG)(mG)(fU)(mU)(mC)(mC)(mU)#(mG)#(mA)-TegChol
321


8b_28218
(mG)#(mU)#(mC)(mA)(fU)(fG)(fA)(mU)(fA)(mC)(mU)(mC)(mU)#(mA)#(mA)-TegChol
322


8b_28222
(mG)#(mA)#(mA)(mC)(fG)(fU)(fC)(mA)(fU)(mG)(mA)(mU)(mA)#(mC)#(mA)-TegChol
323


N_28407
(mC)#(mA)#(mG)(mU)(fA)(fU)(fU)(mA)(fU)(mU)(mG)(mG)(mG)#(mU)#(mA)-TegChol
324


N_28655
(mC)#(mC)#(mA)(mU)(fA)(fU)(fG)(mA)(fU)(mG)(mC)(mC)(mG)#(mU)#(mA)-TegChol
325


N_28945
(mU)#(mG)#(mG)(mU)(fU)(fC)(fA)(mA)(fU)(mC)(mU)(mG)(mU)#(mC)#(mA)-TegChol
326


N_28992
(mU)#(mU)#(mU)(mG)(fG)(fC)(fC)(mU)(fU)(mG)(mU)(mU)(mG)#(mU)#(mA)-TegChol
327


N_29141
(mU)#(mU)#(mG)(mU)(fC)(fU)(fG)(mA)(fU)(mU)(mA)(mG)(mU)#(mU)#(mA)-TegChol
328


N_29276
(mC)#(mA)#(mA)(mU)(fU)(fU)(fG)(mA)(fU)(mG)(mG)(mC)(mA)#(mC)#(mA)-TegChol
329


N_29292
(mU)#(mU)#(mG)(mG)(fA)(fU)(fC)(mU)(fU)(mU)(mG)(mU)(mC)#(mA)#(mA)-TegChol
330


N_29293
(mU)#(mU)#(mU)(mG)(fG)(fA)(fU)(mC)(fU)(mU)(mU)(mG)(mU)#(mC)#(mA)-TegChol
331


N_29303
(mA)#(mU)#(mC)(mU)(fU)(fU)(fG)(mA)(fA)(mA)(mU)(mU)(mU)#(mG)#(mA)-TegChol
332


N_29307
(mC)#(mU)#(mU)(mG)(fA)(fU)(fC)(mU)(fU)(mU)(mG)(mA)(mA)#(mA)#(mA)-TegChol
333


N_29328
(mU)#(mA)#(mU)(mG)(fC)(fU)(fU)(mA)(fU)(mU)(mC)(mA)(mG)#(mC)#(mA)-TegChol
334


N_29464
(mU)#(mC)#(mA)(mU)(fC)(fC)(fA)(mA)(fA)(mU)(mC)(mU)(mG)#(mC)#(mA)-TegChol
335
















TABLE 6D







Modified sense strand - 18 nucleotides in length











SEQ


Sequence ID
Modified sense strand 18 nt
ID NO:





orf1ab_14080
(mG)#(mA)#(mA)(mA)(mU)(mC)(mA)(mU)(mA)(mC)(mC)(mA)(mG)(mU)(mU)(mA)#(mC)#(mA)
336


orf1ab_14361
(mA)#(mA)#(mG)(mU)(mU)(mU)(mG)(mC)(mA)(mC)(mA)(mA)(mU)(mG)(mC)(mA)#(mG)#(mA)
337


orf1ab_14830
(mU)#(mA)#(mG)(mU)(mU)(mG)(mU)(mC)(mU)(mG)(mA)(mU)(mA)(mU)(mC)(mA)#(mC)#(mA)
338


orf1ab_15376
(mA)#(mC)#(mG)(mG)(mU)(mG)(mU)(mG)(mA)(mC)(mA)(mA)(mG)(mC)(mU)(mA)#(mC)#(mA)
339


orf1ab_15786
(mU)#(mA)#(mA)(mU)(mA)(mA)(mA)(mG)(mA)(mA)(mC)(mU)(mG)(mA)(mC)(mU)#(mU)#(mA)
340


orf1ab_17107
(mA)#(mG)#(mC)(mU)(mA)(mG)(mG)(mC)(mC)(mA)(mA)(mU)(mA)(mG)(mC)(mA)#(mA)#(mA)
341


orf1ab_17370
(mA)#(mA)#(mA)(mU)(mC)(mA)(mU)(mA)(mA)(mU)(mU)(mU)(mG)(mU)(mG)(mG)#(mC)#(mA)
342


orf1ab_18025
(mA)#(mG)#(mC)(mU)(mU)(mG)(mU)(mA)(mA)(mA)(mG)(mU)(mU)(mG)(mC)(mC)#(mA)#(mA)
343


orf1ab_18571
(mA)#(mA)#(mA)(mU)(mA)(mC)(mG)(mA)(mC)(mU)(mC)(mU)(mG)(mU)(mC)(mA)#(mG)#(mA)
344


orf1ab_20497
(mU)#(mA)#(mA)(mU)(mA)(mA)(mA)(mU)(mC)(mA)(mA)(mU)(mA)(mA)(mC)(mA)#(mG)#(mA)
345


orf1ab_20892
(mA)#(mC)#(mA)(mG)(mC)(mU)(mG)(mU)(mA)(mC)(mC)(mU)(mG)(mG)(mU)(mG)#(mC)#(mA)
346


orf1ab_21391
(mA)#(mA)#(mA)(mU)(mU)(mU)(mA)(mC)(mU)(mC)(mA)(mU)(mG)(mU)(mC)(mA)#(mA)#(mA)
347


orf1a_416
(mA)#(mA)#(mC)(mU)(mU)(mC)(mU)(mA)(mC)(mU)(mA)(mA)(mG)(mC)(mC)(mA)#(mC)#(mA)
348


orf1a_2290
(mA)#(mG)#(mC)(mU)(mU)(mA)(mA)(mA)(mG)(mA)(mA)(mU)(mG)(mU)(mC)(mU)#(mG)#(mA)
349


orf1a_6059
(mA)#(mA)#(mA)(mU)(mU)(mU)(mG)(mA)(mU)(mA)(mU)(mU)(mA)(mU)(mC)(mA)#(mC)#(mA)
350


orf1a_6322
(mA)#(mA)#(mC)(mG)(mA)(mA)(mU)(mU)(mU)(mG)(mA)(mU)(mG)(mU)(mU)(mU)#(mC)#(mA)
351


orf1a_6499
(mA)#(mA)#(mA)(mC)(mU)(mA)(mU)(mU)(mA)(mU)(mU)(mU)(mG)(mC)(mU)(mG)#(mG)#(mA)
352


orf1a_7643
(mA)#(mA)#(mU)(mA)(mA)(mA)(mU)(mG)(mU)(mA)(mC)(mU)(mA)(mC)(mC)(mA)#(mG)#(mA)
353


orf1a_8200
(mA)#(mC)#(mA)(mU)(mC)(mU)(mU)(mU)(mA)(mG)(mU)(mU)(mU)(mC)(mU)(mA)#(mC)#(mA)
354


orf1a_8201
(mA)#(mA)#(mC)(mA)(mU)(mC)(mU)(mU)(mU)(mA)(mG)(mU)(mU)(mU)(mC)(mU)#(mA)#(mA)
355


orf1a_8744
(mA)#(mG)#(mC)(mA)(mU)(mG)(mU)(mU)(mU)(mG)(mU)(mU)(mA)(mG)(mC)(mA)#(mA)#(mA)
356


orf1a_9679
(mU)#(mA)#(mA)(mG)(mC)(mA)(mA)(mU)(mU)(mG)(mU)(mU)(mA)(mU)(mC)(mC)#(mA)#(mA)
357


orf1a_11594
(mA)#(mA)#(mC)(mU)(mA)(mG)(mC)(mA)(mU)(mU)(mA)(mU)(mA)(mC)(mA)(mC)#(mU)#(mA)
358


orf1a_12932
(mU)#(mA)#(mA)(mA)(mU)(mA)(mC)(mU)(mU)(mC)(mA)(mC)(mU)(mU)(mU)(mA)#(mG)#(mA)
359


S_21944
(mA)#(mA)#(mA)(mU)(mU)(mC)(mA)(mC)(mA)(mG)(mA)(mC)(mU)(mU)(mU)(mA)#(mA)#(mA)
360


S_22223
(mC)#(mA)#(mA)(mU)(mG)(mG)(mU)(mU)(mC)(mU)(mA)(mA)(mA)(mG)(mC)(mC)#(mG)#(mA)
361


S_22550
(mC)#(mA)#(mA)(mG)(mU)(mU)(mU)(mG)(mU)(mA)(mA)(mU)(mA)(mU)(mU)(mA)#(mG)#(mA)
362


S_22820
(mU)#(mA)#(mA)(mU)(mU)(mU)(mA)(mU)(mA)(mA)(mU)(mU)(mA)(mU)(mA)(mA)#(mU)#(mA)
363


S_22898
(mG)#(mU)#(mA)(mA)(mU)(mU)(mA)(mU)(mA)(mA)(mU)(mU)(mA)(mC)(mC)(mA)#(mC)#(mA)
364


S_23174
(mG)#(mA)#(mA)(mG)(mU)(mU)(mG)(mA)(mA)(mA)(mU)(mU)(mG)(mA)(mC)(mA)#(mC)#(mA)
365


S_23239
(mA)#(mA)#(mU)(mU)(mG)(mU)(mU)(mG)(mG)(mA)(mA)(mA)(mG)(mG)(mC)(mA)#(mG)#(mA)
366


S_23240
(mA)#(mA)#(mA)(mU)(mU)(mG)(mU)(mU)(mG)(mG)(mA)(mA)(mA)(mG)(mG)(mC)#(mA)#(mA)
367


S_23774
(mA)#(mC)#(mA)(mA)(mA)(mU)(mG)(mU)(mA)(mC)(mA)(mU)(mU)(mG)(mU)(mA)#(mC)#(mA)
368


S_24056
(mA)#(mU)#(mA)(mU)(mU)(mG)(mU)(mU)(mU)(mG)(mA)(mU)(mG)(mA)(mA)(mG)#(mC)#(mA)
369


S_24289
(mA)#(mC)#(mA)(mU)(mU)(mC)(mU)(mG)(mU)(mG)(mU)(mA)(mA)(mC)(mU)(mC)#(mC)#(mA)
370


S_25375
(mA)#(mA)#(mG)(mU)(mU)(mC)(mG)(mU)(mU)(mU)(mA)(mU)(mG)(mU)(mG)(mU)#(mA)#(mA)
371


3a_25413
(mA)#(mC)#(mA)(mG)(mU)(mU)(mC)(mC)(mA)(mA)(mU)(mU)(mG)(mU)(mG)(mA)#(mA)#(mA)
372


3a_25630
(mC)#(mA)#(mA)(mC)(mA)(mG)(mC)(mA)(mA)(mG)(mU)(mU)(mG)(mC)(mA)(mA)#(mA)#(mA)
373


3a_25717
(mG)#(mA)#(mA)(mG)(mU)(mA)(mG)(mA)(mC)(mU)(mA)(mA)(mA)(mG)(mC)(mA)#(mU)#(mA)
374


3a_25734
(mA)#(mA)#(mG)(mU)(mU)(mU)(mA)(mU)(mA)(mC)(mU)(mC)(mU)(mG)(mC)(mA)#(mA)#(mA)
375


3a_25736
(mC)#(mA)#(mA)(mA)(mG)(mU)(mU)(mU)(mA)(mU)(mA)(mC)(mU)(mC)(mU)(mG)#(mC)#(mA)
376


3a_25745
(mU)#(mU)#(mA)(mU)(mU)(mC)(mU)(mU)(mA)(mC)(mA)(mA)(mA)(mG)(mU)(mU)#(mU)#(mA)
377


3a_25868
(mA)#(mA)#(mG)(mU)(mU)(mA)(mC)(mA)(mC)(mU)(mA)(mU)(mU)(mG)(mU)(mA)#(mA)#(mA)
378


3a_25870
(mA)#(mG)#(mA)(mA)(mG)(mU)(mU)(mA)(mC)(mA)(mC)(mU)(mA)(mU)(mU)(mG)#(mU)#(mA)
379


3a_25914
(mG)#(mA)#(mA)(mA)(mU)(mA)(mG)(mG)(mA)(mC)(mU)(mU)(mG)(mU)(mU)(mG)#(mU)#(mA)
380


3a_25992
(mU)#(mA)#(mA)(mC)(mU)(mG)(mU)(mG)(mU)(mA)(mA)(mU)(mA)(mC)(mA)(mA)#(mC)#(mA)
381


3a_26018
(mA)#(mC)#(mA)(mG)(mC)(mU)(mG)(mG)(mU)(mA)(mA)(mU)(mA)(mG)(mU)(mC)#(mU)#(mA)
382


3a_26066
(mA)#(mG)#(mA)(mA)(mG)(mG)(mU)(mA)(mA)(mC)(mA)(mU)(mG)(mU)(mU)(mC)#(mA)#(mA)
383


E_26258
(mU)#(mA)#(mC)(mC)(mU)(mG)(mU)(mC)(mU)(mC)(mU)(mU)(mC)(mC)(mG)(mA)#(mA)#(mA)
384


E_26261
(mA)#(mC)#(mG)(mU)(mA)(mC)(mC)(mU)(mG)(mU)(mC)(mU)(mC)(mU)(mU)(mC)#(mC)#(mA)
385


E_26269
(mA)#(mA)#(mC)(mU)(mA)(mU)(mU)(mA)(mA)(mC)(mG)(mU)(mA)(mC)(mC)(mU)#(mG)#(mA)
386


E_26277
(mA)#(mC)#(mG)(mC)(mU)(mA)(mU)(mU)(mA)(mA)(mC)(mU)(mA)(mU)(mU)(mA)#(mA)#(mA)
387


E_26305
(mG)#(mA)#(mA)(mU)(mA)(mC)(mC)(mA)(mC)(mG)(mA)(mA)(mA)(mG)(mC)(mA)#(mA)#(mA)
388


E_26313
(mA)#(mC)#(mU)(mA)(mG)(mC)(mA)(mA)(mG)(mA)(mA)(mU)(mA)(mC)(mC)(mA)#(mC)#(mA)
389


E_26369
(mU)#(mA)#(mA)(mC)(mA)(mA)(mU)(mA)(mU)(mU)(mG)(mC)(mA)(mG)(mC)(mA)#(mG)#(mA)
390


E_26374
(mC)#(mA)#(mC)(mG)(mU)(mU)(mA)(mA)(mC)(mA)(mA)(mU)(mA)(mU)(mU)(mG)#(mC)#(mA)
391


E_26455
(mU)#(mU)#(mA)(mG)(mA)(mC)(mC)(mA)(mG)(mA)(mA)(mG)(mA)(mU)(mC)(mA)#(mG)#(mA)
392


E_26463
(mU)#(mA)#(mG)(mU)(mU)(mC)(mG)(mU)(mU)(mU)(mA)(mG)(mA)(mC)(mC)(mA)#(mG)#(mA)
393


E_26467
(mU)#(mA)#(mU)(mU)(mU)(mA)(mG)(mU)(mU)(mC)(mG)(mU)(mU)(mU)(mA)(mG)#(mA)#(mA)
394


E_26470
(mU)#(mA)#(mA)(mU)(mA)(mU)(mU)(mU)(mA)(mG)(mU)(mU)(mC)(mG)(mU)(mU)#(mU)#(mA)
395


M_26573
(mA)#(mC)#(mU)(mA)(mG)(mG)(mU)(mU)(mC)(mC)(mA)(mU)(mU)(mG)(mU)(mU)#(mC)#(mA)
396


M_26581
(mA)#(mA)#(mC)(mC)(mU)(mA)(mU)(mU)(mA)(mC)(mU)(mA)(mG)(mG)(mU)(mU)#(mC)#(mA)
397


M_26602
(mA)#(mA)#(mA)(mU)(mC)(mC)(mA)(mU)(mG)(mU)(mA)(mA)(mG)(mG)(mA)(mA)#(mU)#(mA)
398


M_26624
(mG)#(mC)#(mA)(mU)(mA)(mG)(mG)(mC)(mA)(mA)(mA)(mU)(mU)(mG)(mU)(mA)#(mG)#(mA)
399


M_26637
(mC)#(mC)#(mU)(mA)(mU)(mU)(mC)(mC)(mU)(mG)(mU)(mU)(mG)(mG)(mC)(mA)#(mU)#(mA)
400


M_26638
(mA)#(mC)#(mC)(mU)(mA)(mU)(mU)(mC)(mC)(mU)(mG)(mU)(mU)(mG)(mG)(mC)#(mA)#(mA)
401


M_26693
(mG)#(mC)#(mU)(mA)(mA)(mA)(mG)(mU)(mU)(mA)(mC)(mU)(mG)(mG)(mC)(mC)#(mA)#(mA)
402


M_26717
(mU)#(mA)#(mA)(mA)(mC)(mA)(mG)(mC)(mA)(mG)(mC)(mA)(mA)(mG)(mC)(mA)#(mC)#(mA)
403


M_27014
(mA)#(mC)#(mA)(mG)(mU)(mG)(mA)(mU)(mU)(mU)(mC)(mU)(mU)(mU)(mA)(mG)#(mG)#(mA)
404


M_27032
(mA)#(mG)#(mC)(mG)(mU)(mU)(mC)(mG)(mU)(mG)(mA)(mU)(mG)(mU)(mA)(mG)#(mC)#(mA)
405


M_27035
(mG)#(mA)#(mA)(mA)(mG)(mC)(mG)(mU)(mU)(mC)(mG)(mU)(mG)(mA)(mU)(mG)#(mU)#(mA)
406


M_27123
(mU)#(mA)#(mA)(mU)(mU)(mU)(mA)(mU)(mA)(mG)(mU)(mU)(mG)(mC)(mC)(mA)#(mA)#(mA)
407


7a_27455
(mU)#(mA)#(mC)(mC)(mU)(mC)(mU)(mA)(mA)(mC)(mA)(mC)(mA)(mC)(mU)(mC)#(mU)#(mA)
408


7a_27522
(mA)#(mG)#(mA)(mG)(mG)(mA)(mU)(mG)(mA)(mA)(mA)(mU)(mG)(mG)(mU)(mG)#(mA)#(mA)
409


7a_27537
(mA)#(mA)#(mU)(mU)(mU)(mG)(mU)(mU)(mA)(mU)(mC)(mA)(mG)(mC)(mU)(mA)#(mG)#(mA)
410


7a_27553
(mA)#(mA)#(mA)(mG)(mC)(mA)(mA)(mG)(mU)(mC)(mA)(mG)(mU)(mG)(mC)(mA)#(mA)#(mA)
411


7a_27565
(mA)#(mA)#(mA)(mU)(mU)(mG)(mA)(mG)(mU)(mG)(mC)(mU)(mA)(mA)(mA)(mG)#(mC)#(mA)
412


7a_27633
(mA)#(mG)#(mU)(mU)(mU)(mA)(mG)(mG)(mU)(mG)(mA)(mA)(mA)(mC)(mU)(mG)#(mA)#(mA)
413


7a_27656
(mG)#(mA)#(mA)(mC)(mU)(mU)(mC)(mC)(mU)(mC)(mU)(mU)(mG)(mU)(mC)(mU)#(mG)#(mA)
414


7a_27671
(mG)#(mA)#(mG)(mA)(mG)(mU)(mA)(mA)(mA)(mG)(mU)(mU)(mC)(mU)(mU)(mG)#(mA)#(mA)
415


7a_27705
(mA)#(mU)#(mA)(mA)(mA)(mC)(mA)(mC)(mU)(mA)(mU)(mU)(mG)(mC)(mC)(mG)#(mC)#(mA)
416


7a_27715
(mG)#(mC)#(mA)(mA)(mA)(mG)(mU)(mG)(mU)(mU)(mA)(mU)(mA)(mA)(mA)(mC)#(mA)#(mA)
417


7a_27720
(mG)#(mU)#(mG)(mA)(mA)(mG)(mC)(mA)(mA)(mA)(mG)(mU)(mG)(mU)(mU)(mA)#(mU)#(mA)
418


7a_27751
(mA)#(mA)#(mA)(mG)(mU)(mU)(mC)(mA)(mA)(mU)(mC)(mA)(mU)(mU)(mC)(mU)#(mG)#(mA)
419


8b_27932
(mU)#(mC)#(mU)(mU)(mG)(mG)(mU)(mG)(mA)(mA)(mA)(mU)(mG)(mC)(mA)(mG)#(mC)#(mA)
420


8b_27940
(mA)#(mA)#(mC)(mU)(mA)(mC)(mA)(mU)(mU)(mC)(mU)(mU)(mG)(mG)(mU)(mG)#(mA)#(mA)
421


8b_27986
(mC)#(mA)#(mC)(mG)(mG)(mG)(mU)(mC)(mA)(mU)(mC)(mA)(mA)(mC)(mU)(mA)#(mC)#(mA)
422


8b_28002
(mA)#(mU)#(mA)(mG)(mA)(mA)(mG)(mU)(mG)(mA)(mA)(mU)(mA)(mG)(mG)(mA)#(mC)#(mA)
423


8b_28024
(mC)#(mU)#(mA)(mC)(mU)(mC)(mU)(mA)(mA)(mU)(mA)(mU)(mA)(mC)(mC)(mA)#(mU)#(mA)
424


8b_28091
(mU)#(mG)#(mA)(mA)(mU)(mG)(mG)(mG)(mU)(mG)(mA)(mU)(mU)(mU)(mA)(mG)#(mA)#(mA)
425


8b_28119
(mA)#(mA)#(mC)(mU)(mG)(mU)(mA)(mU)(mA)(mA)(mU)(mU)(mA)(mC)(mC)(mG)#(mA)#(mA)
426


8b_28127
(mA)#(mA)#(mA)(mC)(mA)(mG)(mG)(mA)(mA)(mA)(mC)(mU)(mG)(mU)(mA)(mU)#(mA)#(mA)
427


8b_28128
(mU)#(mA)#(mA)(mA)(mC)(mA)(mG)(mG)(mA)(mA)(mA)(mC)(mU)(mG)(mU)(mA)#(mU)#(mA)
428


8b_28163
(mC)#(mC)#(mC)(mA)(mA)(mU)(mU)(mU)(mA)(mG)(mG)(mU)(mU)(mC)(mC)(mU)#(mG)#(mA)
429


8b_28218
(mA)#(mA)#(mC)(mG)(mU)(mC)(mA)(mU)(mG)(mA)(mU)(mA)(mC)(mU)(mC)(mU)#(mA)#(mA)
430


8b_28222
(mC)#(mA)#(mC)(mG)(mA)(mA)(mC)(mG)(mU)(mC)(mA)(mU)(mG)(mA)(mU)(mA)#(mC)#(mA)
431


N_28407
(mA)#(mC)#(mG)(mC)(mA)(mG)(mU)(mA)(mU)(mU)(mA)(mU)(mU)(mG)(mG)(mG)#(mU)#(mA)
432


N_28655
(mA)#(mA)#(mC)(mC)(mC)(mA)(mU)(mA)(mU)(mG)(mA)(mU)(mG)(mC)(mC)(mG)#(mU)#(mA)
433


N_28945
(mA)#(mG)#(mC)(mU)(mG)(mG)(mU)(mU)(mC)(mA)(mA)(mU)(mC)(mU)(mG)(mU)#(mC)#(mA)
434


N_28992
(mC)#(mA)#(mG)(mU)(mU)(mU)(mG)(mG)(mC)(mC)(mU)(mU)(mG)(mU)(mU)(mG)#(mU)#(mA)
435


N_29141
(mU)#(mC)#(mC)(mU)(mU)(mG)(mU)(mC)(mU)(mG)(mA)(mU)(mU)(mA)(mG)(mU)#(mU)#(mA)
436


N_29276
(mA)#(mU)#(mC)(mC)(mA)(mA)(mU)(mU)(mU)(mG)(mA)(mU)(mG)(mG)(mC)(mA)#(mC)#(mA)
437


N_29292
(mA)#(mA)#(mU)(mU)(mU)(mG)(mG)(mA)(mU)(mC)(mU)(mU)(mU)(mG)(mU)(mC)#(mA)#(mA)
438


N_29293
(mA)#(mA)#(mA)(mU)(mU)(mU)(mG)(mG)(mA)(mU)(mC)(mU)(mU)(mU)(mG)(mU)#(mC)#(mA)
439


N_29303
(mU)#(mU)#(mG)(mA)(mU)(mC)(mU)(mU)(mU)(mG)(mA)(mA)(mA)(mU)(mU)(mU)#(mG)#(mA)
440


N_29307
(mU)#(mG)#(mA)(mC)(mU)(mU)(mG)(mA)(mU)(mC)(mU)(mU)(mU)(mG)(mA)(mA)#(mA)#(mA)
441


N_29328
(mC)#(mA)#(mA)(mU)(mA)(mU)(mG)(mC)(mU)(mU)(mA)(mU)(mU)(mC)(mA)(mG)#(mC)#(mA)
442


N_29464
(mA)#(mA)#(mA)(mU)(mC)(mA)(mU)(mC)(mC)(mA)(mA)(mA)(mU)(mC)(mU)(mG)#(mC)#(mA)
443
















TABLE 7







SARS-CoV2-Additional target sequences













SEQ

SEQ




ID

ID


Sequence ID 
20 nt Sequence
NO:
45 nt Gene Region
NO:





3a_25688
CUGGCCUUGAAGCC
444
TTTTGCTCGTTGCTGCT
642



CCUUUU

GGCCTTGAAGCCCCTT






TTCTCTATCTTT






3a_25570
UCCAAAAUCAUAAC
445
GTTTTTCAGAGCGCTTC
643



CCUCAA

CAAAATCATAACCCTC






AAAAAGAGATGG






3a_25852
UACGACUAUUGUA
446
TGGCATACTAATTGTT
644



UACCUUA

ACGACTATTGTATACC






TTACAATAGTGTA






3a_25518
UUUCGGAUGGCUU
447
ACAAGCCTCACTCCCT
645



AUUGUUG

TTCGGATGGCTTATTGT






TGGCGTTGCACT






3a_25974
AUCUGGAGUAAAA
448
TACTGAAAAATGGGAA
646



GACUGUG

TCTGGAGTAAAAGACT






GTGTTGTATTACA



3a_25835
GCUGGCAUACUAA
449
CCAACTATTTTCTTTGC
647



UUGUUAC

TGGCATACTAATTGTT






ACGACTATTGTA






3a_25645
UUGUUGUUUGUAA
450
GTTTGCAACTTGCTGTT
648



CAGUUUA

GTTGTTTGTAACAGTTT






ACTCACACCTT






3a_25773
UUGGCUUUGCUGG
451
AATAATAATGAGGCTT
649



AAAUGCC

TGGCTTTGCTGGAAAT






GCCGTTCCAAAAA






3a_25921
AGUCCUAUUUCUG
452
GGTGATGGCACAACAA
650



AACAUGA

GTCCTATTTCTGAACAT






GACTACCAGATT






3a_26114
AAGAACAUGUCCA
453
TTGTTGATGAGCCTGA
651



AAUUCAC

AGAACATGTCCAAATT






CACACAATCGACG






3a_25750
UUUGUAAGAAUAA
454
TTGCAGAGTATAAACT
652



UAAUGAG

TTGTAAGAATAATAAT






GAGGCTTTGGCTT






3a_25862
GUAUACCUUACAA
455
ATTGTTACGACTATTGT
653



UAGUGUA

ATACCTTACAATAGTG






TAACTTCTTCAA






3a_25847
AUUGUUACGACUA
456
TTTGCTGGCATACTAA
654



UUGUAUA

TTGTTACGACTATTGTA






TACCTTACAATA






3a_26105
AUGAGCCUGAAGA
457
ACAATAAAATTGTTGA
655



ACAUGUC

TGAGCCTGAAGAACAT






GTCCAAATTCACA






3a_25863
UAUACCUUACAAU
458
TTGTTACGACTATTGTA
656



AGUGUAA

TACCTTACAATAGTGT






AACTTCTTCAAT






3a_26164
CCAGUAAUGGAACC
459
TCCGGAGTTGTTAATC
657



AAUUUA

CAGTAATGGAACCAAT






TTATGATGAACCG






3a_25706
UUCUCUAUCUUUA
460
GCCTTGAAGCCCCTTTT 
658



UGCUUUA

CTCTATCTTTATGCTTT






AGTCTACTTCT






3a_25595
GAUGGCAACUAGC
461
TAACCCTCAAAAAGAG
659



ACUCUCC

ATGGCAACTAGCACTC






TCCAAGGGTGTTC






3a_25611
CUCCAAGGGUGUUC
462
ATGGCAACTAGCACTC
660



ACUUUG

TCCAAGGGTGTTCACT






TTGTTTGCAACTT






3a_25405
AUGAGAAUCUUCA
463
CTTATGGATTTGTTTAT
661



CAAUUGG

GAGAATCTTCACAATT






GGAACTGTAACT






3a_25535
UUGGCGUUGCACU
464
TCGGATGGCTTATTGTT
662



UCUUGCU

GGCGTTGCACTTCTTG






CTGTTTTTCAGA






3a_25653
UGUAACAGUUUAC
465
CTTGCTGTTGTTGTTTG
663



UCACACC

TAACAGTTTACTCACA






CCTTTTGCTCGT






7a_27598
GACGGCGUAAAAC
466
GCTTTTGCTTGTCCTGA
664



ACGUCUA

CGGCGTAAAACACGTC






TATCAGTTACGT






7a_27483
UUUAAAAGAACCU
467
AGGTACAACAGTACTT
665



UGCUCUU

TTAAAAGAACCTTGCT






CTTCTGGAACATA






7a_27258
GAGGACUUUUAAA
468
ATTACTAATTATTATG
666



GUUUCCA

AGGACTTTTAAAGTTT






CCATTTGGAATCT






7a_27264
UUUUAAAGUUUCC
469
AATTATTATGAGGACT
667



AUUUGGA

TTTAAAGTTTCCATTTG






GAATCTTGATTA






7a_27257
UGAGGACUUUUAA
470
TATTACTAATTATTATG
668



AGUUUCC

AGGACTTTTAAAGTTT






CCATTTGGAATC






7a_27334
ACUGAGAAUAAAU
471
TTATCTAAGTCACTAA
669



AUUCUCA

CTGAGAATAAATATTC






TCAATTAGATGAA






7a_27595
CCUGACGGCGUAAA
472
TTTGCTTTTGCTTGTCC
670



ACACGU

TGACGGCGTAAAACAC






GTCTATCAGTTA






7a_27466
AGAGGUACAACAG
473
TACCAAGAGTGTGTTA
671



UACUUUU

GAGGTACAACAGTACT






TTTAAAAGAACCT






7a_27237
AGAGAUAUUACUA
474
TCAGGTTACTATAGCA
672



AUUAUUA

GAGATATTACTAATTA






TTATGAGGACTTT






7a_27395
UGAAAAUUAUUCU
475
TTGATTAAACGAACAT
673



UUUCUUG

GAAAATTATTCTTTTCT






TGGCACTGATAA






7a_27289
GAUUACAUCAUAA
476
TCCATTTGGAATCTTG
674



ACCUCAU

ATTACATCATAAACCT






CATAATTAAAAAT






7a_27243
AUUACUAAUUAUU
477
TACTATAGCAGAGATA
675



AUGAGGA

TTACTAATTATTATGA






GGACTTTTAAAGT






7a_27319
UUAUCUAAGUCAC
478
CTCATAATTAAAAATT
676



UAACUGA

TATCTAAGTCACTAAC






TGAGAATAAATAT






7a_27226
GUUACUAUAGCAG
479
CTCGTTGACTTTCAGGT
677



AGAUAUU

TACTATAGCAGAGATA






TTACTAATTATT






7a_27256
AUGAGGACUUUUA
480
ATATTACTAATTATTAT
678



AAGUUUC

GAGGACTTTTAAAGTT






TCCATTTGGAAT






7a_27203
UGUUUCAUCUCGU
481
GTAAGTGACAACAGAT
679



UGACUUU

GTTTCATCTCGTTGACT






TTCAGGTTACTA






7a_27292
UACAUCAUAAACCU
482
ATTTGGAATCTTGATT
680



CAUAAU

ACATCATAAACCTCAT






AATTAAAAATTTA






7a_27333
AACUGAGAAUAAA
483
TTTATCTAAGTCACTA
681



UAUUCUC

ACTGAGAATAAATATT






CTCAATTAGATGA






7a_27255
UAUGAGGACUUUU
484
GATATTACTAATTATT
682



AAAGUUU

ATGAGGACTTTTAAAG






TTTCCATTTGGAA






7a_27381
UGAUUAAACGAAC
485
GCAACCAATGGAGATT
683



AUGAAAA

GATTAAACGAACATGA






AAATTATTCTTTT






7a_27750
GACAGAAUGAUUG
486
CACACTCAAAAGAAAG
684



AACUUUC

ACAGAATGATTGAACT






TTCATTAATTGAC






7a_27445
UAUCACUACCAAGA
487
GCTACTTGTGAGCTTT
685



GUGUGU

ATCACTACCAAGAGTG






TGTTAGAGGTACA






8b_27795
UUAGCCUUUCUGCU
488
TTCTATTTGTGCTTTTT
686



AUUCCU

AGCCTTTCTGCTATTCC






TTGTTTTAATT






8b_27803
UCUGCUAUUCCUUG
489
GTGCTTTTTAGCCTTTC
687



UUUUAA

TGCTATTCCTTGTTTTA






ATTATGCTTAT






8b_27888
ACGAACAUGAAAU
490
ACTTGTCACGCCTAAA
688



UUCUUGU

CGAACATGAAATTTCT






TGTTTTCTTAGGA






8b_28236
CGUGUUGUUUUAG
491
GAGTATCATGACGTTC
689



AUUUCAU

GTGTTGTTTTAGATTTC






ATCTAAACGAAC






8b_27895
UGAAAUUUCUUGU
492
ACGCCTAAACGAACAT
690



UUUCUUA

GAAATTTCTTGTTTTCT






TAGGAATCATCA






8b_28142
UUUACCUUUUACA
493
TTATACAGTTTCCTGTT
691



AUUAAUU

TACCTTTTACAATTAAT






TGCCAGGAACC






8b_27802
UUCUGCUAUUCCUU
494
TGTGCTTTTTAGCCTTT
692



GUUUUA

CTGCTATTCCTTGTTTT






AATTATGCTTA



8b_27808
UAUUCCUUGUUUU
495
TTTTAGCCTTTCTGCTA
693



AAUUAUG

TTCCTTGTTTTAATTAT






GCTTATTATCT






8b_27796
UAGCCUUUCUGCUA
496
TCTATTTGTGCTTTTTA
694



UUCCUU

GCCTTTCTGCTATTCCT






TGTTTTAATTA






8b_27815
UGUUUUAAUUAUG
497
CTTTCTGCTATTCCTTG
695



CUUAUUA

TTTTAATTATGCTTATT






ATCTTTTGGTT






8b_28044
GCUAGAAAAUCAG
498
TATATTAGAGTAGGAG
696



CACCUUU

CTAGAAAATCAGCACC






TTTAATTGAATTG






8b_27794
UUUAGCCUUUCUGC
499
CTTCTATTTGTGCTTTT
697



UAUUCC

TAGCCTTTCTGCTATTC






CTTGTTTTAAT






8b_28234
UUCGUGUUGUUUU
500
TAGAGTATCATGACGT
698



AGAUUUC

TCGTGTTGTTTTAGATT






TCATCTAAACGA






8b_27817
UUUUAAUUAUGCU
501
TTCTGCTATTCCTTGTT
699



UAUUAUC

TTAATTATGCTTATTAT






CTTTTGGTTCT






8b_27970
CUCAACAUCAACCA
502
GTTTACAGTCATGTAC
700



UAUGUA

TCAACATCAACCATAT






GTAGTTGATGACC






8b_28043
AGCUAGAAAAUCA
503
GTATATTAGAGTAGGA
701



GCACCUU

GCTAGAAAATCAGCAC






CTTTAATTGAATT






8b_28219
UAGAGUAUCAUGA
504
TCTATGAAGACTTTTTA
702



CGUUCGU

GAGTATCATGACGTTC






GTGTTGTTTTAG






8b_27764
ACUUUCAUUAAUU
505
AGACAGAATGATTGAA
703



GACUUCU

CTTTCATTAATTGACTT






CTATTTGTGCTT






8b_27963
UCAUGUACUCAACA
506
GAATGTAGTTTACAGT
704



UCAACC

CATGTACTCAACATCA






ACCATATGTAGTT






8b_28104
AUUCAGUACAUCG
507
GGTTCTAAATCACCCA
705



AUAUCGG

TTCAGTACATCGATAT






CGGTAATTATACA






8b_28018
AUUCUAAAUGGUA
503
GTCCTATTCACTTCTAT
706



UAUUAGA

TCTAAATGGTATATTA






GAGTAGGAGCTA






8b_27892
ACAUGAAAUUUCU
509
GTCACGCCTAAACGAA
707



UGUUUUC

CATGAAATTTCTTGTTT






TCTTAGGAATCA






E_26390
UGAGUCUUGUAAA
510
GCAATATTGTTAACGT
708



ACCUUCU

GAGTCTTGTAAAACCT






TCTTTTTACGTTT






E_26391
GAGUCUUGUAAAA
511
CAATATTGTTAACGTG
709



CCUUCUU

AGTCTTGTAAAACCTT






CTTTTTACGTTTA






E_26392
AGUCUUGUAAAAC
512
AATATTGTTAACGTGA
710



CUUCUUU

GTCTTGTAAAACCTTCT






TTTTACGTTTAC






E_26468
UCUAAACGAACUA
513
TTCCTGATCTTCTGGTC
711



AAUAUUA

TAAACGAACTAAATAT






TATATTAGTTTT






E_26321
UCUUGCUAGUUAC
514
TTGCTTTCGTGGTATTC
712



ACUAGCC

TTGCTAGTTACACTAG






CCATCCTTACTG






E_26259
UUCGGAAGAGACA
515
TATGTACTCATTCGTTT
713



GGUACGU

CGGAAGAGACAGGTAC






GTTAATAGTTAA






E_26460
UCUUCUGGUCUAA
516
TTCTAGAGTTCCTGATC
714



ACGAACU

TTCTGGTCTAAACGAA






CTAAATATTATA






E_26284
GUUAAUAGCGUAC
517
ACAGGTACGTTAATAG
715



UUCUUUU

TTAATAGCGTACTTCTT






TTTCTTGCTTTC






E_26314
GUGGUAUUCUUGC
518
CTTTTTCTTGCTTTCGT
716



UAGUUAC

GGTATTCTTGCTAGTTA






CACTAGCCATC






E_26274
UACGUUAAUAGUU
519
TTCGGAAGAGACAGGT
717



AAUAGCG

ACGTTAATAGTTAATA






GCGTACTTCTTTT






E_26260
UCGGAAGAGACAG
520
ATGTACTCATTCGTTTC
718



GUACGUU

GGAAGAGACAGGTAC






GTTAATAGTTAAT






E_26308
GCUUUCGUGGUAU
521
GTACTTCTTTTTCTTGC
719



UCUUGCU

TTTCGTGGTATTCTTGC






TAGTTACACTA






E_26411
UUUACGUUUACUC
522
TTGTAAAACCTTCTTTT
720



UCGUGUU

TACGTTTACTCTCGTGT






TAAAAATCTGA






E_26265
AGAGACAGGUACG
523
CTCATTCGTTTCGGAA
721



UUAAUAG

GAGACAGGTACGTTAA






TAGTTAATAGCGT






E_26279
UAAUAGUUAAUAG
524
AAGAGACAGGTACGTT
722



CGUACUU

AATAGTTAATAGCGTA






CTTCTTTTTCTTG






E_26312
UCGUGGUAUUCUU
525
TTCTTTTTCTTGCTTTC
723



GCUAGUU

GTGGTATTCTTGCTAGT






TACACTAGCCA






E_26464
CUGGUCUAAACGA
526
AGAGTTCCTGATCTTCT
724



ACUAAAU

GGTCTAAACGAACTAA






ATATTATATTAG






E_26231
AUGAGUACGAACU
527
TGTAAGCACAAGCTGA
725



UAUGUAC

TGAGTACGAACTTATG






TACTCATTCGTTT






E_26469
CUAAACGAACUAA
528
TCCTGATCTTCTGGTCT
726



AUAUUAU

AAACGAACTAAATATT






ATATTAGTTTTT






E_26413
UACGUUUACUCUCG
529
GTAAAACCTTCTTTTTA
727



UGUUAA

CGTTTACTCTCGTGTTA






AAAATCTGAAT






E_26281
AUAGUUAAUAGCG
530
GAGACAGGTACGTTAA
728



UACUUCU

TAGTTAATAGCGTACT






TCTTTTTCTTGCT






E_26462
UUCUGGUCUAAAC
531
CTAGAGTTCCTGATCTT
729



GAACUAA

CTGGTCTAAACGAACT






AAATATTATATT






M_26517
UUAGCCAUGGCAG
532
TTTGGAACTTTAATTTT
730



AUUCCAA

AGCCATGGCAGATTCC






AACGGTACTATT






M_26522
CAUGGCAGAUUCCA
533
AACTTTAATTTTAGCC
731



ACGGUA

ATGGCAGATTCCAACG






GTACTATTACCGT






M_26656
UUUUGUAUAUAAU
534
CCAACAGGAATAGGTT
732



UAAGUUA

TTTGTATATAATTAAGT






TAATTTTCCTCT






M_26603
AUUCCUUACAUGG
535
AGTAATAGGTTTCCTA
733



AUUUGUC

TTCCTTACATGGATTTG






TCTTCTACAATT






M_26572
UUGAACAAUGGAA
536
AGCTTAAAAAGCTCCT
734



CCUAGUA

TGAACAATGGAACCTA






GTAATAGGTTTCC






M_27101
UGCUGCAUACAGUC
537
AGGTGACTCAGGTTTT
735



GCUACA

GCTGCATACAGTCGCT






ACAGGATTGGCAA






M_27049
UUUCUUAUUACAA
538
CTACATCACGAACGCT
736



AUUGGGA

TTCTTATTACAAATTGG






GAGCTTCGCAGC






M_26580
UGGAACCUAGUAA
539
AAGCTCCTTGAACAAT
737



UAGGUUU

GGAACCTAGTAATAGG






TTTCCTATTCCTT






M_26733
UACAGAAUAAAUU
540
GTGCTTGCTGCTGTTTA
738



GGAUCAC

CAGAATAAATTGGATC






ACCGGTGGAATT






M_26495
UUUUCUGUUUGGA
541
AAATATTATATTAGTTT
739



ACUUUAA

TTCTGTTTGGAACTTTA






ATTTTAGCCAT






M_26608
UUACAUGGAUUUG
542
TAGGTTTCCTATTCCTT
740



UCUUCUA

ACATGGATTTGTCTTCT






ACAATTTGCCT






M_26590
UAAUAGGUUUCCU
543
AACAATGGAACCTAGT
741



AUUCCUU

AATAGGTTTCCTATTCC






TTACATGGATTT






M_26501
GUUUGGAACUUUA
544
TATATTAGTTTTTCTGT
742



AUUUUAG

TTGGAACTTTAATTTTA






GCCATGGCAGA






M_26796
UGGCUCAGCUACUU
545
CTTGTAGGCTTGATGT
743



CAUUGC

GGCTCAGCTACTTCAT






TGCTTCTTTCAGA






M_26570
CCUUGAACAAUGG
546
AGAGCTTAAAAAGCTC
744



AACCUAG

CTTGAACAATGGAACC






TAGTAATAGGTTT






M_27124
UUGGCAACUAUAA
547
ACAGTCGCTACAGGAT
745



AUUAAAC

TGGCAACTATAAATTA






AACACAGACCATT






M_26814
GCUUCUUUCAGACU
548
CTCAGCTACTTCATTGC
746



GUUUGC

TTCTTTCAGACTGTTTG






CGCGTACGCGT






M_26694
UGGCCAGUAACUU
549
TTCCTCTGGCTGTTATG
747



UAGCUUG

GCCAGTAACTTTAGCT






TGTTTTGTGCTT






M_27047
GCUUUCUUAUUAC
550
TGCTACATCACGAACG
748



AAAUUGG

CTTTCTTATTACAAATT






GGGAGCTTCGCA






M_27153
UCCAGUAGCAGUG
551
TTAAACACAGACCATT
749



ACAAUAU

CCAGTAGCAGTGACAA






TATTGCTTTGCTT






M_27163
GUGACAAUAUUGC
552
ACCATTCCAGTAGCAG
750



UUUGCUU

TGACAATATTGCTTTG






CTTGTACAGTAAG






M_26473
ACGAACUAAAUAU
553
GATCTTCTGGTCTAAA
751



UAUAUUA

CGAACTAAATATTATA






TTAGTTTTTCTGT






N_29327
UUGCUGAAUAAGC
554
AAAGATCAAGTCATTT
752



AUAUUGA

TGCTGAATAAGCATAT






TGACGCATACAAA






N_29216
UUCGGAAUGUCGC
555
AGCGCTTCAGCGTTCT
753



GCAUUGG

TCGGAATGTCGCGCAT






TGGCATGGAAGTC






N_28486
CGUUCCAAUUAACA
556
CCCTCGAGGACAAGGC
754



CCAAUA

GTTCCAATTAACACCA






ATAGCAGTCCAGA






N_28755
UUCCUCAAGGAACA
557
CAATCGTGCTACAACT
755



ACAUUG

TCCTCAAGGAACAACA






TTGCCAAAAGGCT






N_28585
CAGUCCAAGAUGG
558
TAAAATGAAAGATCTC
756



UAUUUCU

AGTCCAAGATGGTATT






TCTACTACCTAGG






N_28565
GACGGUAAAAUGA
559
CGAATTCGTGGTGGTG
757



AAGAUCU

ACGGTAAAATGAAAGA






TCTCAGTCCAAGA






N_28961
CUUGAGAGCAAAA
560
GACAGATTGAACCAGC
758



UGUCUGG

TTGAGAGCAAAATGTC






TGGTAAAGGCCAA






N_29310
UCAAAGAUCAAGU
561
ACAAAGATCCAAATTT
759



CAUUUUG

CAAAGATCAAGTCATT






TTGCTGAATAAGC






N_29177
CCGCAAAUUGCACA
562
GATTACAAACATTGGC
760



AUUUGC

CGCAAATTGCACAATT






TGCCCCCAGCGCT






N_28261
CGAACAAACUAAA
563
TAGATTTCATCTAAAC
761



AUGUCUG

GAACAAACTAAAATGT






CTGATAATGGACC






N_28476
GAGGACAAGGCGU
564
ACCTTAAATTCCCTCG
762



UCCAAUU

AGGACAAGGCGTTCCA






ATTAACACCAATA






N_29130
UUGGGGACCAGGA
565
AAACCCAAGGAAATTT
763



ACUAAUC

TGGGGACCAGGAACTA






ATCAGACAAGGAA






N_29455
UCUUCCUGCUGCAG
566
GCAAACTGTGACTCTT
764



AUUUGG

CTTCCTGCTGCAGATTT






GGATGATTTCTC






N_29465
GCAGAUUUGGAUG
567
ACTCTTCTTCCTGCTGC
765



AUUUCUC

AGATTTGGATGATTTC






TCCAAACAATTG






N_29132
GGGGACCAGGAAC
568
ACCCAAGGAAATTTTG
766



UAAUCAG

GGGACCAGGAACTAAT






CAGACAAGGAACT






N_29148
UCAGACAAGGAAC
569
GGGACCAGGAACTAAT
767



UGAUUAC

CAGACAAGGAACTGAT






TACAAACATTGGC






N_29291
GAUGACAAAGAUC
570
GGTGCCATCAAATTGG
768



CAAAUUU

ATGACAAAGATCCAAA






TTTCAAAGATCAA






N_29342
AUUGACGCAUACA
571
TTGCTGAATAAGCATA
769



AAACAUU

TTGACGCATACAAAAC






ATTCCCACCAACA






N_28589
CCAAGAUGGUAUU
572
ATGAAAGATCTCAGTC
770



UCUACUA

CAAGATGGTATTTCTA






CTACCTAGGAACT






N_29133
GGGACCAGGAACU
573
CCCAAGGAAATTTTGG
771



AAUCAGA

GGACCAGGAACTAATC






AGACAAGGAACTG






N_29057
CGUACUGCCACUAA
574
AAGCCTCGGCAAAAAC
772



AGCAUA

GTACTGCCACTAAAGC






ATACAATGTAACA






N_28682
GGAGCCUUGAAUA
575
TGGGTTGCAACTGAGG
773



CACCAAA

GAGCCTTGAATACACC






AAAAGATCACATT






orf1a_7249
UUUGGCAUAUAUU
576
AGTTGCAGAGTGGTTT
774



CUUUUCA

TTGGCATATATTCTTTT






CACTAGGTTTTT






orf1a_1066
UGGGGAAUGUCCA
577
ATTTGACACCTTCAAT
775



AAUUUUG

GGGGAATGTCCAAATT






TTGTATTTCCCTT






orf1a_11197
UGCCACUGUAGCUU
578
TTTGTTACCTTCTCTTG
776



AUUUUA

CCACTGTAGCTTATTTT






AATATGGTCTA






orf1a_13292
UGUGACUUAAAAG
579
AATCCTAAAGGATTTT
777



GUAAGUA

GTGACTTAAAAGGTAA






GTATGTACAAATA






orf1a_12931
UCCUAAAGUGAAG
580
AGACACACCTAAAGGT
778



UAUUUAU

CCTAAAGTGAAGTATT






TATACTTTATTAA






orf1a_4598
CUUGUUACAAUGCC
581
GATCTAAATGAAACTC
779



ACUUGG

TTGTTACAATGCCACTT






GGCTATGTAACA






orf1a_12515
UGUGAUGGUACAA
582
ACATATAAAAATACGT
780



CAUUUAC

GTGATGGTACAACATT






TACTTATGCATCA






orf1a_9060
AUUGUUAUGAUAC
583
GTAAGCCAGTACCATA
781



CAAUGUA

TTGTTATGATACCAAT






GTACTAGAAGGTT






orf1a_1286 
UGCGAAUUUUGUG
584
TTTGTTAAAGCCACTT
782



GCACUGA

GCGAATTTTGTGGCAC






TGAGAATTTGACT






orf1a_9707
AUUUCCACAAAGC
585
GCTTATATCATTTGTAT
783



AUUUCUA

TTCCACAAAGCATTTC






TATTGGTTCTTT






orf1a_5110
UAAAACAUUUUAU
586
TAATTCACATGAAGGT
784



GUUUUAC

AAAACATTTTATGTTTT






ACCTAATGATGA






orf1a_9041
UCUGGUAAGCCAG
587
ATTTTTAAAGATGCTTC
785



UACCAUA

TGGTAAGCCAGTACCA






TATTGTTATGAT






orf1a_11687
CUUGGUGUUUAUG
588
TACTTTAGACTGACTCT
786



AUUACUU

TGGTGTTTATGATTACT






TAGTTTCTACA






orf1a_12215
UUGAAUGUGGCUA
589
AAGTTGAAGAAGTCTT
787



AAUCUGA

TGAATGTGGCTAAATC






TGAATTTGACCGT






orf1a_11254
UAUGACAUGGUUG
590
TTGGGTGATGCGTATT
788



GAUAUGG

ATGACATGGTTGGATA






TGGTTGATACTAG






orf1a_6963
UUUUACUAUUAAG
591
ATATTATAATTTGGTTT
789



UGUUUGC

TTACTATTAAGTGTTTG






CCTAGGTTCTT






orf1a_2969
AUGGCUACAUACU
592
TTAGATGAGTGGAGTA
790



ACUUAUU

TGGCTACATACTACTT






ATTTGATGAGTCT






orf1a_5449
UAGAGAAACAAUG
593
TGAGTTAGGTGATGTT
791



AGUUACU

AGAGAAACAATGAGTT






ACTTGTTTCAACA






orf1a_5238
ACCCACAAGUUAAU
594
CTAAAAAGTGGAAATA
792



GGUUUA

CCCACAAGTTAATGGT






TTAACTTCTATTA






orf1a_8059
UUCAUCAACUUUU
595
TTACGTTAATACGTTTT
793



AACGUAC

CATCAACTTTTAACGT






ACCAATGGAAAA






orf1a_12276
UGGCUGAUCAAGC
596
GTAAGTTGGAAAAGAT
794



UAUGACC

GGCTGATCAAGCTATG






ACCCAAATGTATA






orf1a_4097
UUCUUAAAGAAAG
597
GACATTGACATCACTT
795



AUGCUCC

TCTTAAAGAAAGATGC






TCCATATATAGTG






orf1ab_19120
UAUAAAAUAGAAG
598
TGTAGTGACAAAGCTT
796



AAUUAUU

ATAAAATAGAAGAATT






ATTCTATTCTTAT






orf1ab_17193
GAAGGCAUUAAAA
599
TGATGCACTATGTGAG
797



UAUUUGC

AAGGCATTAAAATATT






TGCCTATAGATAA






orf1ab_17034
UGCAAAUUAUCAA
600
GTTTTCTAGCAATGTTG
798



AAGGUUG

CAAATTATCAAAAGGT






TGGTATGCAAAA






orf1ab_19748
UUGAAAAUAAAAC
601
TTGATGTAGAATTGTTT
799



AACAUUA

GAAAATAAAACAACAT






TACCTGTTAATG






orf1ab_17980
UAUGACAAGUUGC
602
TCTGATAGAGACCTTT
800



AAUUUAC

ATGACAAGTTGCAATT






TACAAGTCTTGAA






orf1ab_21482
UUAGUAAAGGUAG
603
TGATTTTATCTCTTCTT
801



ACUUAUA

AGTAAAGGTAGACTTA






TAATTAGAGAAA






orf1ab_13842
UGAUGAAGGUAAU
604
TGCTTTAAGGCATTTTG
802



UGUGACA

ATGAAGGTAATTGTGA






CACATTAAAAGA






orf1ab_19071
UGAUGUAGAAUGG
605
GTGTGTACCTCAAGCT
803



AAGUUCU

GATGTAGAATGGAAGT






TCTATGATGCACA






orf1ab_13878
UGUCACAUACAAU
606
ATTAAAAGAAATACTT
804



UGUUGUG

GTCACATACAATTGTT






GTGATGATGATTA






orf1ab_16555
AAUGCAAUUGCAA
607
AATGTTACTGACTTTA
805



CAUGUGA

ATGCAATTGCAACATG






TGACTGGACAAAT






orf1ab_17284
UCAACAUUAGAAC
608
AAATTCAAAGTGAATT
806



AGUAUGU

CAACATTAGAACAGTA






TGTCTTTTGTACT






orf1ab_17852
CAGAAUAUGACUA
609
ATTCATCACAGGGCTC
807



UGUCAUA

AGAATATGACTATGTC






ATATTCACTCAAA






orf1ab_17671
GUUAUCACGCAUG
610
ATGTTTTATAAGGGTG
808



AUGUUUC

TTATCACGCATGATGT






TTCATCTGCAATT






orf1ab_21331
CAUGCAAAUUACA
611
GATGGTTATGTCATGC
809



UAUUUUG

ATGCAAATTACATATT






TTGGAGGAATACA






orf1ab_18612
GUUGACAUCUAUG
612
GGCACATGGCTTTGAG
810



AAGUAUU

TTGACATCTATGAAGT






ATTTTGTGAAAAT






orf1ab_19345
UUUGUUAAUUUAA
613
TTTGATAAAAGTGCTT
811



AACAAUU

TTGTTAATTTAAAACA






ATTACCATTTTTC






orf1ab_15409
AAUGAGUGUGCUC
614
TTCTATAGATTAGCTA
812



AAGUAUU

ATGAGTGTGCTCAAGT






ATTGAGTGAAATG






orf1ab_19617
UCAGAGUUUAGAA
615
CACTTTTACAAGACTT
813



AAUGUGG

CAGAGTTTAGAAAATG






TGGCTTTTAATGT






orf1ab_21444
AAAAGAAGGUCAA
616
TGCTGTTATGTCTTTA
814



AUCAAUG

AAAGAAGGTCAAATCA






ATGATATGATTTT






orf1ab_20511
AUUACUUGAUGAU
617
TTCTGTTATTGATTTA
815



UUUGUUG

TTACTTGATGATTTTG






TTGAAATAATAAA






orf1ab_21174
AGAACAUUCUUGG
618
GGCTATAAAGATAACA
816



AAUGCUG

GAACATTCTTGGAATG






CTGATCTTTATAA






orf1ab_19732
GUUGAUGUAGAAU
619
ACAAAAGTTGATGGTG
817



UGUUUGA

TTGATGTAGAATTGTT






TGAAAATAAAACA






S_24473
GGUGCAAUUUCAA
620
CTTAGCTCCAATTTTGG
818



GUGUUUU

TGCAATTTCAAGTGTTT






TAAATGATATC






S_22368
AUCUUCAACCUAGG
621
CTTATTATGTGGGTTAT
819



ACUUUU

CTTCAACCTAGGACTT






TTCTATTAAAAT






S_24635
GCUGCUACUAAAA
622
GCTTCTGCTAATCTTGC
820



UGUCAGA

TGCTACTAAAATGTCA






GAGTGTGTACTT






S_21952
CUGUGAAUUUCAA
623
TGTTGTTATTAAAGTCT
821



UUUUGUA

GTGAATTTCAATTTTGT






AATGATCCATT






S_23698
UGCCAUACCCACAA
624
CTCTAATAACTCTATTG
822



AUUUUA

CCATACCCACAAATTT






TACTATTAGTGT






S_23936
CCACCAAUUAAAGA
625
CAAATTTACAAAACAC
823



UUUUGG

CACCAATTAAAGATTT






TGGTGGTTTTAAT






S_22807
UGGAAAGAUUGCU
626
CGCTCCAGGGCAAACT
824



GAUUAUA

GGAAAGATTGCTGATT






ATAATTATAAATT






S_21938
GUUGUUAUUAAAG
627
AATAACGCTACTAATG
825



UCUGUGA

TTGTTATTAAAGTCTGT






GAATTTCAATTT






S_22138
UGUGUUUAAGAAU
628
AAATCTTAGGGAATTT
826



AUUGAUG

GTGTTTAAGAATATTG






ATGGTTATTTTAA






S_24828
UUCCUCGUGAAGG
629
ATGGAAAAGCACACTT
827



UGUCUUU

TCCTCGTGAAGGTGTC






TTTGTTTCAAATG






S_23315
CUUGACAUUACACC
630
CAGACACTTGAGATTC
828



AUGUUC

TTGACATTACACCATG






TTCTTTTGGTGGT






S_25376
UACACAUAAACGA
631
GGAGTCAAATTACATT
829



ACUUAUG

ACACATAAACGAACTT






ATGGATTTGTTTA






S_22259
AUUAACAUCACUA
632
GATTTGCCAATAGGTA
830



GGUUUCA

TTAACATCACTAGGTT






TCAAACTTTACTT






S_22129
UAGGGAAUUUGUG
633
TAATTTCAAAAATCTT
831



UUUAAGA

AGGGAATTTGTGTTTA






AGAATATTGATGG






S_24254
UUUGCUAUGCAAA
634
GCATTACAAATACCAT
832



UGGCUUA

TTGCTATGCAAATGGC






TTATAGGTTTAAT






S_22276
UCAAACUUUACUU
635
TAACATCACTAGGTTT
833



GCUUUAC

CAAACTTTACTTGCTTT






ACATAGAAGTTA






S_23270
GCUGACACUACUGA
636
TTTGGCAGAGACATTG
834



UGCUGU

CTGACACTACTGATGC






TGTCCGTGATCCA






S_25235
AUUGCCAUAGUAA
637
TTTATAGCTGGCTTGAT
835



UGGUGAC

TGCCATAGTAATGGTG






ACAATTATGCTT






S_23842
UACACAAUUAAACC
638
ATATGGCAGTTTTTGT
836



GUGCUU

ACACAATTAAACCGTG






CTTTAACTGGAAT






S_23307
UUGAGAUUCUUGA
639
GTGATCCACAGACACT
837



CAUUACA

TGAGATTCTTGACATT






ACACCATGTTCTT






S_21808
UGUCCUACCAUUUA
640
GAGGTTTGATAACCCT
838



AUGAUG

GTCCTACCATTTAATG






ATGGTGTTTATTT






S_23935
ACCACCAAUUAAAG
641
ACAAATTTACAAAACA
839



AUUUUG

CCACCAATTAAAGATT






TTGGTGGTTTTAA
















TABLE 8







Top SARS-CoV-2 based on homology.













SEQ

SEQ




ID

ID


Sequence ID
20 nt Sequence
NO:
45 nt Gene Region
NO:





E_26313
CGUGGUAUUCU
 64
TCTTTTTCTTGCTTTCGTGGTATT
172



UGCUAGUUA

CTTGCTAGTTACACTAGCCAT






8b_27986
UGUAGUUGAUG
 97
TCAACATCAACCATATGTAGTTG
205



ACCCGUGUC

ATGACCCGTGTCCTATTCACTT






7a27720
UAUAACACUUU
 93
TGCGGCAATAGTGTTTATAACAC
201



GCUUCACAC

TTTGCTTCACACTCAAAAGAAA






orf1ab_14080
GGUAACUGGUA
 11
AATCAAGATCTCAATGGTAACTG
119



UGAUUUCGG

GTATGATTTCGGTGATTTCATA






M_26581
GGAACCUAGUA
 72
AGCTCCTTGAACAATGGAACCTA
180



AUAGGUUUC

GTAATAGGTTTCCTATTCCTTA






522820
GAUUAUAAUUA
 38
ACTGGAAAGATTGCTGATTATAA
146



UAAAUUACC

TTATAAATTACCAGATGATTTT






orf1ab_21391
UUUGACAUGAG
 22
TCTTCCTATTCTTTATTTGACATG
130



UAAAUUUCC

AGTAAATTTCCCCTTAAATTA






orf1ab_17107
UUUGCUAUUGG
 16
ACTGGTAAGAGTCATTTTGCTAT
124



CCUAGCUCU

TGGCCTAGCTCTCTACTACCCT






orf1ab_20892
UGCACCAGGUA
 21
TTCTGATAAAGGAGTTGCACCAG
129



CAGCUGUUU

GTACAGCTGTTTTAAGACAGTG






orf1ab_20497
UCUGUUAUUGA
 20
TCTAAGTGTGTGTGTTCTGTTATT
128



UUUAUUACU

GATTTATTACTTGATGATTTT






N_28655
GACGGCAUCAU
108
TATGGTGCTAACAAAGACGGCAT
216



AUGGGUUGC

CATATGGGTTGCAACTGAGGGA






524289
UGGAGUUACAC
 45
TAGGTTTAATGGTATTGGAGTTA
153



AGAAUGUUC

CACAGAATGTTCTCTATGAGAA






M_26624
UCUACAAUUUG
 74
TACATGGATTTGTCTTCTACAATT
182



CCUAUGCCA

TGCCTATGCCAACAGGAATAG






orf1a_7643
GCUGGUAGUAC
 28
TGTGATACATTCTGTGCTGGTAG
136



AUUUAUUAG

TACATTTATTAGTGATGAAGTT






orf1a_12932 
CCUAAAGUGAA
 34
GACACACCTAAAGGTCCTAAAGT
142



GUAUUUAUA

GAAGTATTTATACTTTATTAAA






E_26305
CUUGCUUUCGU
 63
AGCGTACTTCTTTTTCTTGCTTTC
171



GGUAUUCUU

GTGGTATTCTTGCTAGTTACA






M_26602
UAUUCCUUACA
 73
TAGTAATAGGTTTCCTATTCCTTA
181



UGGAUUUGU

CATGGATTTGTCTTCTACAAT






3a_25630
GUUUGCAACUU
 48
AAGGGTGTTCACTTTGTTTGCAA
156



GCUGUUGUU

CTTGCTGTTGTTGTTTGTAACA






E_26455
CCUGAUCUUCU
 67
AATTCTTCTAGAGTTCCTGATCTT
175



GGUCUAAAC

CTGGTCTAAACGAACTAAATA






E_26463
UCUGGUCUAAA
 68
TAGAGTTCCTGATCTTCTGGTCTA
176



CGAACUAAA

AACGAACTAAATATTATATTA






522550
CCUAAUAUUAC
 37
TCTATTGTTAGATTTCCTAATATT
145



AAACUUGUG

ACAAACTTGTGCCCTTTTGGT






orf1a_8744
UUUGCUAACAA
 31
TCTACAGATACTTGTTTTGCTAAC
139



ACAUGCUGA

AAACATGCTGATTTTGACACA






orf1ab_17370
GGCCACAAAUU
 17
TGATGAAATTTCAATGGCCACAA
125



AUGAUUUGA

ATTATGATTTGAGTGTTGTCAA






7a_27633
AUCAGUUUCAC
 88
TCAGTTACGTGCCAGATCAGTTT
196



CUAAACUGU

CACCTAAACTGTTCATCAGACA






M_27014
GCCUAAAGAAA
 79
TGACATCAAGGACCTGCCTAAAG
187



UCACUGUUG

AAATCACTGTTGCTACATCACG






S_25375
UUACACAUAAA
 46
AGGAGTCAAATTACATTACACAT
154



CGAACUUAU

AAACGAACTTATGGATTTGTTT






7a_27715
GUGUUUAUAAC
 92
ATTGTTGCGGCAATAGTGTTTAT
200



ACUUUGCUU

AACACTTTGCTTCACACTCAAA
















TABLE 9







Antisense oligonucleotides targeting viral factors











SEQ ID


Oligo ID
Sequence
NO:





orf1a_416
ACTTCTACTAAGCCAC
840





orf1a_2290
AAGCTTAAAGAATGTC
841





orf1a_8744-1
CAGCATGTTTGTTAGC
842





orf1a_8744-2
GCATGTTTGTTAGCAA
843





orf1a_9679-1
AAGCAATTGTTATCCA
844





orf1a_9679-2
TAAGCAATTGTTATCC
845





orf1ab_14361
GTTTGCACAATGCAGA
846





orf1ab_17107
AGAGCTAGGCCAATAG
847





orf1ab_18025
AGCTTGTAAAGTTGCC
848





orf1ab_20892-1
CAGCTGTACCTGGTGC
849





orf1ab_20892-2
ACAGCTGTACCTGGTG
850





orf1ab_20892-3
AACAGCTGTACCTGGT
851





S_22223-1
AATGGTTCTAAAGCCG
852





S_22223-2
CAATGGTTCTAAAGCC
853





S_23174
TGAAGTTGAAATTGAC
854





S_23774
CCACAAATGTACATTG
855





S_23778
CAATGTACATTTGTGG
856





S_25375-1
AGTTCGTTTATGTGTA
857





S_25375-2
TAAGTTCGTTTATGTG
858





3a_25717
GAAGTAGACTAAAGCA
859





3a_25914
AATAGGACTTGTTGTG
860





3a_25992
AACTGTGTAATACAAC
861





3a_26018-1
ACAGCTGGTAATAGTC
862





3a_26018-2
CAGCTGGTAATAGTCT
863





3a_26018-3
TACAGCTGGTAATAGT
864





E_26258
TACCTGTCTCTTCCGA
865





E_26261
TAACGTACCTGTCTCT
866





E_26369-1
AACAATATTGCAGCAG
867





E_26369-2
TAACAATATTGCAGCA
868





E_26374-1
CGTTAACAATATTGCA
869





E_26374-2
CTCACGTTAACAATAT
870





M_26581-1
ACCTATTACTAGGTTC
871





M_26581-2
AAACCTATTACTAGGT
872





M_26602-1
ACAAATCCATGTAAGG
873





M_26602-2
CAAATCCATGTAAGGA
874





M_26624
TGGCATAGGCAAATTG
875





M_26717
GTAAACAGCAGCAAGC
876





7a_27455
GTACCTCTAACACACT
877





7a_27553
AGCAAGTCAGTGCAAA
878





7a_27565-1
ATTGAGTGCTAAAGCA
879





7a_27565-2
GCAAATTGAGTGCTAA
880





7a_27705
AAACACTATTGCCGCA
881





7a_27720
GTGTGAAGCAAAGTGT
882





8b_27940
AAACTACATTCTTGGT
883





8b_28002
AGAAGTGAATAGGACA
884





8b_28091-1
TGAATGGGTGATTTAG
885





8b_28091-2
GAATGGGTGATTTAGA
886





8b_28119
AAACTGTATAATTACC
887





8b_28163
CCCAATTTAGGTTCCT
888





N_28655
ACCCATATGATGCCGT
889





N_28945-1
CAAGCTGGTTCAATCT
890





N_28945-2
GCTGGTTCAATCTGTC
891





N_29141-1
CCTTGTCTGATTAGTT
892





N_29141-2
CTTGTCTGATTAGTTC
893





N_29307
AATGACTTGATCTTTG
894









An alignment of siRNA and ASO selected for synthesis to six closely-related CoVs using the novel algorithm is shown in FIG. 3. Aligned genome regions of CoVs are shaded based on homology with darker coloring indicating higher homology with respect to SARS-CoV-2. The siRNA position is indicated on the top. Per position percent homology of SARS-CoV-2 to the six related CoVs is plotted on the bottom. SiRNA with low homology scores of 59 are shown in FIG. 3A. SiRNA with a high homology scores of score of 78 are shown in FIG. 3B. Gaps in alignment are indicated with dashes (-).


SiRNA and ASO target selections were based on the ability to target many SARS-CoV-2 genomes from patient isolates. siRNAs and ASOs were selected to target regions of the 9 selection genes with low mutation rates in other coronaviruses (FIG. 4A). The proportion of SARS-CoV-2 variants from patient isolates targeted by all selected siRNAs is plotted at the bottom. siRNAs and ASOs were selected to target regions of the 9 selection genes with low mutation rates in other coronaviruses (see previous figure), which resulted in selecting siRNAs that together target all isolates from SARS-CoV-infected patients, with >90% of siRNAs and ASOs selected targeting >95% of these genomes. The proportion of SARS-CoV-2 variants from patient isolates targeted by all selected siRNAs is plotted at the bottom. The coloured gradient indicates proportion of variant genomes targeted, with red indicating siRNAs that target fewer variants (with the lowest value being 77% of all variants targeted) and white indicating higher number of genomes targeted. Arrows in the gene diagram indicate siRNA and ASO target positions in the SARS-CoV2 genome and are coloured based on proportion of SARS-CoV-2 variants targeted and correlate with the colored gradient in the bottom plot. Dark red arrows indicate siRNAs that target <85% of genomes from patient isolates, while white and light pink arrows indicate siRNAs that target >90% of genomes SARS-CoV-2 isolates patients.


The scoring scheme methodology resulted in the selection of siRNAs that target all 708 SARS-CoV2 patient isolates available at the time of design with >95% of siRNAs (103 siRNAs) selected targeting more than 90% of the SARS-CoV2 genomes obtained from patient isolates. Furthermore, >60% of siRNAs (66 siRNAs) selected target more than 97% of these patient isolates.


SiRNAs targeting different genes in the SARS-CoV2 genome were tested for silencing efficacy of the orf1a, 3a, 7a, orf1ab, E, gene 8b, S, M and N genes (FIG. 5, FIG. 7). For each target, at least 3 siRNAs were identified that that reduced target mRNA expression below 75% compared to untreated controls. siRNAs were tested in Hela cells and silencing was assessed using the psi-check reporter system, using an siRNA concentration of 1.5 uM and an assessment timepoint of 72 hours. Likewise, ASOs targeting the different genes in the SARS-CoV2 genome were tested for silencing efficacy, as depicted in FIG. 6 and FIG. 8. For each target, at least 3 ASOs were identified that reduced target mRNA expression below 75% compared to untreated controls. SiRNAs targeting the orf1a, 3a, 7a, orf1ab, E, gene 8b, S, M and N genes in the SARS-CoV2 genome were subsequently tested for silencing efficacy in 8-point dose response studies. Each siRNA showed potent and efficacious target silencing with IC50 values in the low nanomolar range.



FIG. 10 depicts a schematic showing genes comprising genome and their functions. Comprised of structural and non-structural genes. Non-structural genes undergo primary translation while structural and accessory proteins are translated from sub-genomic mRNAs. The secondary structure of sub-genomic mRNAs may enhance targetability by siRNAs.


Development and optimization of siRNA cocktails targeting SARS-CoV2. Like other RNA viruses, SARS-CoV2 mutates. Therefore, multiple siRNAs in cocktails are necessary to minimize the chances of mutant development. Several siRNA cocktails were developed targeting g+ strand only, g+ strand and terminal 3′UTR (region shared by all secondary mRNA variants), as well as a variety of other combinations. The cocktails are screened in SARS-CoV-2 infected VERO6 cells to define optimal siRNA combinations against the live virus. The strategy of targeting the + strand (orf1a and orf1ab with S and N protein) is particularly novel and active in blocking SARS-CoV-2 infection. The cocktails are combinations of at least 3 siRNAs targeting different regions of the viral genome. Table 10 shows the compositions of the various cocktails tested.









TABLE 10







List of siRNA combinations for targeting SARS-COV-2










Combo
Code name
Strategy
Compounds (Sequence IDs)















1
Cosmopolitan
Replication
416
9679
21391


2
Screwdriver
Replication
416
8744
21391


3
Long Island
Replication
9679
8744
21391


4
Negroni
Rep/Immun
416
9679
27565


5
Old Fashioned
Rep/Immun
416
21391
27565


6
Manhattan
Rep/Immun
21391
27656
27751


7
Moscow Mule
Rep/capsid
416
23174
26305


8
Daiquiri
Rep/capsid
9679
23174
29293


9
Martini
Rep/capsid
21391
26305
29293


10
Jaegger Bomb
Immun/capsid
23174
26470
27565


11
Bloody Mary
Immun/capsid
23174
27123
27656


12
White Russian
Immun/capsid
23174
27032
27751


13
Mojito
Rep/imm/cap
416
26305
27565


14
Salty Dog
Rep/imm/cap
9679
26369
27656


15
Hanky Panky
Rep/imm/cap
21391
27032
27751









The validation and determination of IC50 values for siRNA cocktails targeting SARS-CoV-2 genes are depicted in FIG. 11. SiRNA cocktails targeting different genes in the SARS-CoV2 genome were tested for silencing efficacy in 8-point dose response studies. Each siRNA showed potent and efficacious target silencing with IC50 values in the low nanomolar range. Results for replication cocktails are shown in FIG. 11A, for Replication/Immuno cocktails in FIG. 11B, for Replication/Capsid cocktails in FIG. 11C, for Immuno/Capsid cocktails in FIG. 11D, and for Replication/Immuno/Capsid cocktails in FIG. 11E.


Example 2. Targeting of Human Genes

SiRNAs targeting of ACE2, FURIN, TMPRSS2, IL-6, and IL-6 Receptor (IL-6R) can be used alone or in combination with siRNAs targeting SARS-CoV2 for comprehensive treatment of SARS-CoV-2 treatment. Hyper functional, fully chemical stabilized siRNAs were identified targeting these a selection of these host cell genes involved in infection and spread.


Studies of ACE2 knock out mice show some toxicity in the heart and muscle, thus limiting the use of traditional small molecules and antibodies that do not differentiate between tissues. EPA-conjugates have no functional delivery to muscle and heart, and thus might be a better option for ACE2 modulation. In addition, local intratracheal delivery of di-valent compounds results in minimal heart and muscle delivery, representing a very powerful option for modulation of host genes, where lung-selective targeting with minimized overall exposure is required.


Host target 45 nucleotide gene regions and 20 nucleotide target regions are summarized in Table 11A-11D and Table 12A-12E.









TABLE 11A







Host target TMPRSS-20 nucleotide targets and 45 nucleotide gene target regions












SEQUENCE

SEQ ID

SEQ ID



ID
20 nt Sequence
NO:
45 nt Gene Region
NO:
Species





TMPRSS
UCCCGCAU
 895
AGTGACTCATGTTCAT
1095
mouse


2_924
GGUGGUUU

CCCGCATGGTGGTTTC





CUUU

TTTGCGCTGTATA







TMPRSS
UACCACAG
 896
CTCTATAAAAAACTCT
1096
mouse


2_903
UGACUCAU

ACCACAGTGACTCATG





GUUC

TTCATCCCGCATG







TMPRSS
UGAGCUCA
 897
TTATGAAGCTGAATGT
1097
mouse


2_868
GGCAACGU

GAGCTCAGGCAACGT





UGAC

TGACCTCTATAAAA







TMPRSS
UCUUCAAA
 898
CACAGTGATGCCTGTT
1098
human


2_866
AGCAGUGG

CTTCAAAAGCAGTGGT





UUUC

TTCTTTACGCTGT







TMPRSS
UGUGAGCU
 899
CTTTATGAAGCTGAAT
1099
mouse


2_866
CAGGCAAC

GTGAGCTCAGGCAAC





GUUG

GTTGACCTCTATAA







TMPRSS
ACCACAGU
 900
TCTATAAAAAACTGTA
1100
human


2_849
GAUGCCUG

CCACAGTGATGCCTGT





UUCU

TCTTCAAAAGCAG







TMPRSS
CCGGCAAU
 901
AACTGAACACAAGTG
1101
human


2_819
GUCGAUAU

CCGGCAATGTCGATAT





CUAU

CTATAAAAAACTGT







TMPRSS
AGUGCCGG
 902
ATGAAACTGAACACA
1102
human


2_815
CAAUGUCG

AGTGCCGGCAATGTC





AUAU

GATATCTATAAAAAA







TMPRSS
AAAGACAU
 903
GGGAGAGCAGCATGT
1103
mouse


2_783
GGGAUACA

AAAGACATGGGATAC





AGAA

AAGAACAATTTTTAT







TMPRSS
UUUACUCU
 904
GCTATAAGAATAATTT
1104
human


2_753
AGCCAAGG

TTACTCTAGCCAAGGA





AAUA

ATAGTGGATGACA







TMPRSS
GCUUCAUC
 905
GTCTCTACGGACAAA
1105
mouse


2_691
CUCCAGGU

GCTTCATCCTCCAGGT





UUAC

TTACTCATCTCAGA







TMPRSS
ACGGACAA
 906
GTTGTGTTCGTCTCTA
1106
mouse


2_682
AGCUUCAU

CGGACAAAGCTTCATC





CCUC

CTCCAGGTTTACT







TMPRSS
UGGGUCUU
 907
GTCTGAGATGGAGTGT
1107
mouse


2_587
CAGGCACA

GGGTCTTCAGGCACAT





UGCA

GCATCAGCTCTTC







TMPRSS
UCUGGGAC
 908
TCTTGCTTTGGAGGTT
1108
mouse


2_550
AGCAACUG

CTGGGACAGCAACTG





UUCU

TTCTACGTCTGAGA







TMPRSS
ACCUGCAU
 909
TGCGACTCCTCAGGTA
1109
human


2_545
CAACCCCU

CCTGCATCAACCCCTC





CUAA

TAACTGGTGTGAT







TMPRSS
CUUGCUUU
 910
TGCTGTGGCTGCTGTC
1110
mouse


2_536
GGAGGUUC

TTGCTTTGGAGGTTCT





UGGG

GGGACAGCAACTG







TMPRSS
AUGGGCAG
 911
CTACTCTGGAAGTTCA
1111
human


2_497
CAAGUGCU

TGGGCAGCAAGTGCT





CCAA

CCAACTCTGGGATA







TMPRSS
UAAGAAAU
 912
GTGCACCTCAAAGTCT
1112
mouse


2_470
CGCUGUGU

AAGAAATCGCTGTGTT





UUAG

TAGCCCTCGCCCT







TMPRSS
CUCAAAGU
 913
AGGAGCACTGTGCAC
1113
mouse


2_461
CUAAGAAA

CTCAAAGTCTAAGAA





UCGC

ATCGCTGTGTTTAGC







TMPRSS
UAAGAAAG
 914
GTGCACCTCAAAGACT
1114
human


2_415
CACUGUGC

AAGAAAGCACTGTGC





AUCA

ATCACCTTGACCCT







TMPRSS
CUCAACAU
 915
GATTACAACGCAAGC
1115
mouse


2_410
CUGUCAUC

CTCAACATCTGTCATC





CACA

CACACACATCCCAA







TMPRSS
AUCAUGCA
 916
ATTGTGAAAATGAAT
1116
human


2_3204
AAUAAAUU

ATCATGCAAATAAATT





AUGC

ATGCAATTTTTTTT







TMPRSS
UAUCAUGC
 917
AATTGTGAAAATGAA
1117
human


2_3203
AAAUAAAU

TATCATGCAAATAAAT





UAUG

TATGCAATTTTTTT







TMPRSS
GUGAAAAU
 918
CTGTAAAGTTCAATTG
1118
human


2_3192
GAAUAUCA

TGAAAATGAATATCAT





UGCA

GCAAATAAATTAT







TMPRSS
UUGUGAAA
 919
AACTGTAAAGTTCAAT
1119
human


2_3190
AUGAAUAU

TGTGAAAATGAATATC





CAUG

ATGCAAATAAATT







TMPRSS
UUCAAUUG
 920
TTTTAAACTGTAAAGT
1120
human


2_3185
UGAAAAUG

TCAATTGTGAAAATGA





AAUA

ATATCATGCAAAT







TMPRSS
GUUCAAUU
 921
TTTTTAAACTGTAAAG
1121
human


2_3184
GUGAAAAU

TTCAATTGTGAAAATG





GAAU

AATATCATGCAAA







TMPRSS
UGUAAAGU
 922
GTATCTTTTTTAAACT
1122
human


2_3178
UCAAUUGU

GTAAAGTTCAATTGTG





GAAA

AAAATGAATATCA







TMPRSS
AACUGUAA
 923
TTTGTATCTTTTTTAA
1123
human


2_3175
AGUUCAAU

ACTGTAAAGTTCAATT





UGUG

GTGAAAATGAATA







TMPRSS
UUAAACUG
 924
TTTTTTGTATCTTTTTT
1124
human


2_3172
UAAAGUUC

AAACTGTAAAGTTCA





AAUU

ATTGTGAAAATGA







TMPRSS
UUUAAACU
 925
TTTTTTTGTATCTTTTT
1125
human


2_3171
GUAAAGUU

TAAACTGTAAAGTTCA





CAAU

ATTGTGAAAATG







TMPRSS
GUGAACAA
 926
CCCCTTCTTATTTATG
1126
human


2_3139
CUGUUUGU

TGAACAACTGTTTGTC





CUUU

TTTTTTTGTATCT







TMPRSS
AUGUGAAC
 927
TGCCCCTTCTTATTTA
1127
human


2_3137
AACUGUUU

TGTGAACAACTGTTTG





GUCU

TCTTTTTTTGTAT







TMPRSS
UAUGUGAA
 928
TTGCCCCTTCTTATTT
1128
human


2_3136
CAACUGUU

ATGTGAACAACTGTTT





UGUC

GTCTTTTTTTGTA







TMPRSS
UUAUGUGA
 929
ATTGCCCCTTCTTATT
1129
human


2_3135
ACAACUGU

TATGTGAACAACTGTT





UUGU

TGTCTTTTTTTGT







TMPRSS
AUUUAUGU
 930
TTATTGCCCCTTCTTA
1130
human


2_3133
GAACAACU

TTTATGTGAACAACTG





GUUU

TTTGTCTTTTTTT







TMPRSS
AAAUAUAU
 931
TGAGATTCCACTGTGA
1131
mouse


2_3130
GAAUAAAG

AATATATGAATAAAG





UAUA

TATATAATTCTTTT







TMPRSS
UCUUAUUU
 932
TTCTTTATTGCCCCTTC
1132
human


2_3129
AUGUGAAC

TTATTTATGTGAACAA





AACU

CTGTTTGTCTTT







TMPRSS
AUUGCCCC
 933
ACGTCTTCCTTCTTTA
1133
human


2_3120
UUCUUAUU

TTGCCCCTTCTTATTT





UAUG

ATGTGAACAACTG







TMPRSS
GAUUCCAC
 934
TGTTCTGAGCTGTGAG
1134
mouse


2_3118
UGUGAAAU

ATTCCACTGTGAAATA





AUAU

TATGAATAAAGTA







TMPRSS
UCUGAGCU
 935
CTGCTTTGTGTCTGTT
1135
mouse


2_3106
GUGAGAUU

CTGAGCTGTGAGATTC





CCAC

CACTGTGAAATAT







TMPRSS
UGUGUCUG
 936
GGTTATTTCCTGCTTT
1136
mouse


2_3097
UUCUGAGC

GTGTCTGTTCTGAGCT





UGUG

GTGAGATTCCACT







TMPRSS
UAAUGGUG
 937
TCCTAAAAGGTGTTGT
1137
human


2_3094
AAAACGUC

AATGGTGAAAACGTC





UUCC

TTCCTTCTTTATTG







TMPRSS
GUAAUGGU
 938
ATCCTAAAAGGTGTTG
1138
human


2_3093
GAAAACGU

TAATGGTGAAAACGT





CUUC

CTTCCTTCTTTATT







TMPRSS
CCUGCUUU
 939
GTTGGTTGGTTATTTC
1139
mouse


2_3090
GUGUCUGU

CTGCTTTGTGTCTGTT





UCUG

CTGAGCTGTGAGA







TMPRSS
UUGGUUAU
 940
TGTCTTTGCTGTTGGT
1140
mouse


2_3080
UUCCUGCU

TGGTTATTTCCTGCTT





UUGU

TGTGTCTGTTCTG







TMPRSS
ACAUCCUA
 941
CTTGCTCCCCAAGACA
1141
human


2_3076
AAAGGUGU

CATCCTAAAAGGTGTT





UGUA

GTAATGGTGAAAA







TMPRSS
CUGUGCAC
 942
ATTTGCAGGATCTGTC
1142
human


2_2994
AUGCCUCU

TGTGCACATGCCTCTG





GUAG

TAGAGAGCAGCAT







TMPRSS
GCUGUAAG
 943
GGGACCTTCTTAGATG
1143
mouse


2_2988
GUACCUAC

CTGTAAGGTACCTACA





AUAC

TACAGACTAAATG







TMPRSS
UUUGCAGG
 944
AGTCATGCAATCCCAT
1144
human


2_2980
AUCUGUCU

TTGCAGGATCTGTCTG





GUGC

TGCACATGCCTCT







TMPRSS
AAUCCCAU
 945
AATGGAAAGTCATGC
1145
human


2_2973
UUGCAGGA

AATCCCATTTGCAGGA





UCUG

TCTGTCTGTGCACA







TMPRSS
GGGACCUU
 946
CCTCATGCGTCCTCTG
1146
mouse


2_2973
CUUAGAUG

GGACCTTCTTAGATGC





CUGU

TGTAAGGTACCTA







TMPRSS
UGGGACCU
 947
CCCTCATGCGTCCTCT
1147
mouse


2_2972
UCUUAGAU

GGGACCTTCTTAGATG





GCUG

CTGTAAGGTACCT







TMPRSS
UGGAAAGU
 948
GACTTAACCTTGAAAT
1148
human


2_2960
CAUGCAAU

GGAAAGTCATGCAAT





CCCA

CCCATTTGCAGGAT







TMPRSS
CCUUGAAA
 949
ACAGCTAGGACTTAA
1149
human


2_2952
UGGAAAGU

CCTTGAAATGGAAAG





CAUG

TCATGCAATCCCATT







TMPRSS
UACAGCUA
 950
TGAAATGAATGATTCT
1150
human


2_2936
GGACUUAA

ACAGCTAGGACTTAA





CCUU

CCTTGAAATGGAAA







TMPRSS
UUCUACAG
 951
GAATGAAATGAATGA
1151
human


2_2933
CUAGGACU

TTCTACAGCTAGGACT





UAAC

TAACCTTGAAATGG







TMPRSS
UGAAUGAU
 952
TTTGCAAGAATGAAAT
1152
human


2_2926
UCUACAGC

GAATGATTCTACAGCT





UAGG

AGGACTTAACCTT







TMPRSS
GUUUGCAA
 953
TGGCCAAGCAGGCTG
1153
human


2_2910
GAAUGAAA

GTTTGCAAGAATGAA





UGAA

ATGAATGATTCTACA







TMPRSS
CCAAGCAG
 954
GGTTCTGCCTCCTGGC
1154
human


2_2898
GCUGGUUU

CAAGCAGGCTGGTTTG





GCAA

CAAGAATGAAATG







TMPRSS
UGGGUCAU
 955
TCAGAAGGCAGTGAA
1155
mouse


2_2877
AACUGGGA

TGGGTCATAACTGGG





CUCC

ACTCCATCTTTGCTG







TMPRSS
ACCAAAUA
 956
AGCCATGCCAGAATT
1156
mouse


2_2796
UGAAGUAU

ACCAAATATGAAGTA





GAAU

TGAATGTCTTACCCA







TMPRSS
AUUACCAA
 957
GAAAGCCATGCCAGA
1157
mouse


2_2793
AUAUGAAG

ATTACCAAATATGAA





UAUG

GTATGAATGTCTTAC







TMPRSS
UGUGGUCC
 958
TTGTTTTGGACTCTCT
1158
human


2_2792
CUUCCAAU

GTGGTCCCTTCCAATG





GCUG

CTGTGGGTTTCCA







TMPRSS
GCCAGAAU
 959
TACCAGGAAAGCCAT
1159
mouse


2_2787
UACCAAAU

GCCAGAATTACCAAA





AUGA

TATGAAGTATGAATG







TMPRSS
UGCCAGAA
 960
ATACCAGGAAAGCCA
1160
mouse


2_2786
UUACCAAA

TGCCAGAATTACCAA





UAUG

ATATGAAGTATGAAT







TMPRSS
CAUGCCAG
 961
TTATACCAGGAAAGC
1161
mouse


2_2784
AAUUACCA

CATGCCAGAATTACCA





AAUA

AATATGAAGTATGA







TMPRSS
AAAGCCAU
 962
TGGGTTTATACCAGGA
1162
mouse


2_2779
GCCAGAAU

AAGCCATGCCAGAAT





UACC

TACCAAATATGAAG







TMPRSS
UAUACCAG
 963
TTCTGGCCCTGGGTTT
1163
mouse


2_2770
GAAAGCCA

ATACCAGGAAAGCCA





UGCC

TGCCAGAATTACCA







TMPRSS
GAAGAAGA
 964
GCCCATGGTGGCGGC
1164
human


2_2757
GAAAGAUG

GAAGAAGAGAAAGAT





UGUU

GTGTTTTGTTTTGGA







TMPRSS
CGGCGAAG
 965
AAGTGCCCATGGTGG
1165
human


2_2753
AAGAGAAA

CGGCGAAGAAGAGAA





GAUG

AGATGTGTTTTGTTT







TMPRSS
AGAGAGGA
 966
TCAGATAAAGATGAA
1166
mouse


2_2727
GAUCAUUG

AGAGAGGAGATCATT





UCUU

GTCTTCTGTCTTCTT







TMPRSS
UCAGAUAA
 967
TAGAAGTTCCTAGCTT
1167
mouse


2_2712
AGAUGAAA

CAGATAAAGATGAAA





GAGA

GAGAGGAGATCATT







TMPRSS
CCUAGCUU
 968
ATGAGATTAGAAGTTC
1168
mouse


2_2705
CAGAUAAA

CTAGCTTCAGATAAAG





GAUG

ATGAAAGAGAGGA







TMPRSS
CUCCUGAC
 969
TGACAAAATGACTGG
1169
human


2_2699
UUAACGUU

CTCCTGACTTAACGTT





CUAU

CTATAAATGAATGT







TMPRSS
GCUCCUGA
 970
TTGACAAAATGACTG
1170
human


2_2698
CUUAACGU

GCTCCTGACTTAACGT





UCUA

TCTATAAATGAATG







TMPRSS
GGCUCCUG
 971
TTTGACAAAATGACTG
1171
human


2_2697
ACUUAACG

GCTCCTGACTTAACGT





UUCU

TCTATAAATGAAT







TMPRSS
AUUAGAAG
 972
TAGACTGGCAATGAG
1172
mouse


2_2695
UUCCUAGC

ATTAGAAGTTCCTAGC





UUCA

TTCAGATAAAGATG







TMPRSS
AAUGAGAU
 973
GTTCTGTAGACTGGCA
1173
mouse


2_2689
UAGAAGUU

ATGAGATTAGAAGTTC





CCUA

CTAGCTTCAGATA







TMPRSS
GCAAUGAG
 974
TTGTTCTGTAGACTGG
1174
mouse


2_2687
AUUAGAAG

CAATGAGATTAGAAG





UUCC

TTCCTAGCTTCAGA







TMPRSS
UGACAAAA
 975
CTATTTCAGCTGCTTT
1175
human


2_2684
UGACUGGC

GACAAAATGACTGGC





UCCU

TCCTGACTTAACGT







TMPRSS
UUUGACAA
 976
GCCTATTTCAGCTGCT
1176
human


2_2682
AAUGACUG

TTGACAAAATGACTG





GCUC

GCTCCTGACTTAAC







TMPRSS
UAGGUUGU
 977
CCTCTTCCAGATGGTT
1177
mouse


2_2668
UCUGUAGA

AGGTTGTTCTGTAGAC





CUGG

TGGCAATGAGATT







TMPRSS
UUAGGUUG
 978
ACCTCTTCCAGATGGT
1178
mouse


2_2667
UUCUGUAG

TAGGTTGTTCTGTAGA





ACUG

CTGGCAATGAGAT







TMPRSS
UUCCAGAU
 979
CAGACACTAGACCTCT
1179
mouse


2_2657
GGUUAGGU

TCCAGATGGTTAGGTT





UGUU

GTTCTGTAGACTG







TMPRSS
AUCAUCUU
 980
ACTCTTTGAAACTGTA
1180
human


2_2641
UGCCAAGU

TCATCTTTGCCAAGTA





AAGA

AGAGTGGTGGCCT







TMPRSS
UCAGACAC
 981
CTGTGTGATTGTGCCT
1181
mouse


2_2641
UAGACCUC

CAGACACTAGACCTCT





UUCC

TCCAGATGGTTAG







TMPRSS
UGAAACUG
 982
CTTCATTTAACTCTTT
1182
human


2_2632
UAUCAUCU

GAAACTGTATCATCTT





UUGC

TGCCAAGTAAGAG







TMPRSS
UUUGAAAC
 983
ACCTTCATTTAACTCT
1183
human


2_2630
UGUAUCAU

TTGAAACTGTATCATC





CUUU

TTTGCCAAGTAAG







TMPRSS
AACUCUUU
 984
AGTCCACCTTCATTTA
1184
human


2_2625
GAAACUGU

ACTCTTTGAAACTGTA





AUCA

TCATCTTTGCCAA







TMPRSS
UUGGACUG
 985
GGAGTTCACCTGCATT
1185
mouse


2_2621
UGUGAUUG

TGGACTGTGTGATTGT





UGCC

GCCTCAGACACTA







TMPRSS
CCACCUUC
 986
ATGTCTCCAAGTAGTC
1186
human


2_2613
AUUUAACU

CACCTTCATTTAACTC





CUUU

TTTGAAACTGTAT







TMPRSS
UAGUCCAC
 987
TTTGATGTCTCCAAGT
1187
human


2_2609
CUUCAUUU

AGTCCACCTTCATTTA





AACU

ACTCTTTGAAACT







TMPRSS
UUUGAUGU
 988
CCTGGAAACTTAGCTT
1188
human


2_2594
CUCCAAGU

TTGATGTCTCCAAGTA





AGUC

GTCCACCTTCATT







TMPRSS
UUAGCUUU
 989
AGTGCTCCTGGAAACT
1189
human


2_2588
UGAUGUCU

TAGCTTTTGATGTCTC





CCAA

CAAGTAGTCCACC







TMPRSS
CCUGGAAA
 990
TGCTACCTCAGTGCTC
1190
human


2_2579
CUUAGCUU

CTGGAAACTTAGCTTT





UUGA

TGATGTCTCCAAG







TMPRSS
UACUACCU
 991
TTGTGTTTCTTCTCTTA
1191
mouse


2_2564
CACUGCAC

CTACCTCACTGCACCT





CUGG

GGACACTAGAGT







TMPRSS
UCUGGGUU
 992
TTCAGTCACCTTGCTT
1192
mouse


2_2543
GUGUUUCU

CTGGGTTGTGTTTCTT





UCUC

CTCTTACTACCTC







TMPRSS
UUUCCAUG
 993
GTTTAAGGTACACTGT
1193
human


2_2540
UUAUGUUU

TTCCATGTTATGTTTC





CUAC

TACACATTGCTAC







TMPRSS
UACACUGU
 994
ATGCTCAGTTTAAGGT
1194
human


2_2533
UUCCAUGU

ACACTGTTTCCATGTT





UAUG

ATGTTTCTACACA







TMPRSS
GUUUAAGG
 995
AATCAAGGATGCTCA
1195
human


2_2525
UACACUGU

GTTTAAGGTACACTGT





UUCC

TTCCATGTTATGTT







TMPRSS
AGUUUAAG
 996
AAATCAAGGATGCTC
1196
human


2_2524
GUACACUG

AGTTTAAGGTACACTG





UUUC

TTTCCATGTTATGT







TMPRSS
AUCAGAAU
 997
TGGAGGCTCAGGTCC
1197
mouse


2_2506
CAGGGACU

ATCAGAATCAGGGAC





UGUG

TTGTGATTTCAGTCA







TMPRSS
GGGGAAAU
 998
AAATTGAGGTCCATG
1198
human


2_2505
CAAGGAUG

GGGGAAATCAAGGAT





CUCA

GCTCAGTTTAAGGTA







TMPRSS
AGGUCCAU
 999
ATCAAATGGAGGCTC
1199
mouse


2_2500
CAGAAUCA

AGGTCCATCAGAATC





GGGA

AGGGACTTGTGATTT







TMPRSS
UCAGGUCC
1000
TAATCAAATGGAGGC
1200
mouse


2_2498
AUCAGAAU

TCAGGTCCATCAGAAT





CAGG

CAGGGACTTGTGAT







TMPRSS
UGGAGCCU
1001
TGGCCTAGTACCTGAT
1201
mouse


2_2463
GUAUAGCU

GGAGCCTGTATAGCTC





CAGC

AGCTAATCAAATG







TMPRSS
ACAGGCAU
1002
CTCTTAGCTTTGGCTA
1202
mouse


2_2441
GGCCUAGU

CAGGCATGGCCTAGT





ACCU

ACCTGATGGAGCCT







TMPRSS
CCUGAAAC
1003
CTCAGCCTCTCAGAGC
1203
mouse


2_2414
UUACCUCU

CTGAAACTTACCTCTT





UAGC

AGCTTTGGCTACA







TMPRSS
UCUCAGAG
1004
CTGTTTCTCTCAGCCT
1204
mouse


2_2406
CCUGAAAC

CTCAGAGCCTGAAACT





UUAC

TACCTCTTAGCTT







TMPRSS
UGGGUGAG
1005
TGCCGGCATGTCCCTT
1205
mouse


2_2341
CUCUACAU

GGGTGAGCTCTACATG





GGUG

GTGTTATTCAGTC







TMPRSS
AGAGCAAG
1006
CTAGGCAGATCTCTCA
1206
mouse


2_2311
AAGCUAAU

GAGCAAGAAGCTAAT





GCCG

GCCGGCATGTCCCT







TMPRSS
UUCCCAAG
1007
AGGGTGATGGAGGCT
1207
mouse


2_2280
CUAAGGGC

TTCCCAAGCTAAGGGC





CUAG

CTAGGCAGATCTCT







TMPRSS
AUAGACAG
1008
TTATGGGGTGAGAAT
1208
human


2_2257
UGCCCUUG

ATAGACAGTGCCCTTG





GUGC

GTGCGAGGGAAGCA







TMPRSS
GGUGACGU
1009
CAGCCCTTCATGGGTG
1209
human


2_2196
GGUAGUCA

GTGACGTGGTAGTCAC





CUUG

TTGTAAGGGGAAC







TMPRSS
UGGGCUGG
1010
ATCTGCTGTGCAGGTT
1210
mouse


2_2165
UCAUACUG

GGGCTGGTCATACTGT





UCAU

CATGATTTCATTA







TMPRSS
GUUGGGCU
1011
AAATCTGCTGTGCAGG
1211
mouse


2_2163
GGUCAUAC

TTGGGCTGGTCATACT





UGUC

GTCATGATTTCAT







TMPRSS
UGAGUAAC
1012
AAGGACTATGACCTCT
1212
mouse


2_2047
CUGAUGAC

GAGTAACCTGATGAC





CUGA

CTGAGAAAGAGTAA







TMPRSS
GACCUCUG
1013
ATCACTAAGGACTATG
1213
mouse


2_2041
AGUAACCU

ACCTCTGAGTAACCTG





GAUG

ATGACCTGAGAAA







TMPRSS
UGGAUCAC
1014
TGCTCAGGCCTTTTTT
1214
mouse


2_2023
UAAGGACU

GGATCACTAAGGACT





AUGA

ATGACCTCTGAGTA







TMPRSS
UUGGAUCA
1015
ATGCTCAGGCCTTTTT
1215
mouse


2_2022
CUAAGGAC

TGGATCACTAAGGACT





UAUG

ATGACCTCTGAGT







TMPRSS
ACUCUCAU
1016
GCAGAGGAGGGTGGC
1216
mouse


2_1978
GUUGGAAC

ACTCTCATGTTGGAAC





UUCU

TTCTTTTGGGCTCA







TMPRSS
CUUUCCAG
1017
TCTTCCTGCTGAGTCC
1217
human


2_1952
GGGCCAAU

TTTCCAGGGGCCAATT





UUUG

TTGGATGAGCATG







TMPRSS
ACCACCAG
1018
TTTGAACTCAGGGTCA
1218
human


2_193
CUAUUGGA

CCACCAGCTATTGGAC





CCUU

CTTACTATGAAAA







TMPRSS
UGCCCCAU
1019
GAGAGGGGTGGAGGC
1219
human


2_1924
UGAGAUCU

TGCCCCATTGAGATCT





UCCU

TCCTGCTGAGTCCT







TMPRSS
GAUGACCA
1020
GCTCCCACCAGAATG
1220
mouse


2_1922
GAUUCUGU

GATGACCAGATTCTGT





UGGG

TGGGTTTGGGCACA







TMPRSS
CCCACCAG
1021
GCCACTTCTGCAGCTC
1221
mouse


2_1910
AAUGGAUG

CCACCAGAATGGATG





ACCA

ACCAGATTCTGTTG







TMPRSS
UUCACUUU
1022
TGATTCGAAGGGCCTT
1222
mouse


2_1821
UAUUAAAC

TCACTTTTATTAAACA





AGUG

GTGACTTGTTTGA







TMPRSS
UUUCACUU
1023
ATGATTCGAAGGGCCT
1223
mouse


2_1820
UUAUUAAA

TTCACTTTTATTAAAC





CAGU

AGTGACTTGTTTG







TMPRSS
CGAAGGGC
1024
CCTTTTGAGATGATTC
1224
mouse


2_1811
CUUUCACU

GAAGGGCCTTTCACTT





UUUA

TTATTAAACAGTG







TMPRSS
UUUGAGAU
1025
GTGCACAATGTACCTT
1225
mouse


2_1799
GAUUCGAA

TTGAGATGATTCGAAG





GGGC

GGCCTTTCACTTT







TMPRSS
UGUACCUU
1026
ACTTCCTGTGCACAAT
1226
mouse


2_1792
UUGAGAUG

GTACCTTTTGAGATGA





AUUC

TTCGAAGGGCCTT







TMPRSS
GUGCACAA
1027
GAATTTTAACTTCCTG
1227
mouse


2_1784
UGUACCUU

TGCACAATGTACCTTT





UUGA

TGAGATGATTCGA







TMPRSS
CUGUGCAC
1028
CTGAATTTTAACTTCC
1228
mouse


2_1782
AAUGUACC

TGTGCACAATGTACCT





UUUU

TTTGAGATGATTC







TMPRSS
CCUGAAUU
1029
CAAGAAAACCAAGGG
1229
mouse


2_1766
UUAACUUC

CCTGAATTTTAACTTC





CUGU

CTGTGCACAATGTA







TMPRSS
UAAACAGU
1030
TCACTTCATTTTTATT
1230
human


2_1764
GAACUUGU

AAACAGTGAACTTGTC





CUGG

TGGCTTTGGCACT







TMPRSS
UUAAACAG
1031
GTCACTTCATTTTTAT
1231
human


2_1763
UGAACUUG

TAAACAGTGAACTTGT





UCUG

CTGGCTTTGGCAC







TMPRSS
AGGGCCUG
1032
TCTGCAAGAAAACCA
1232
mouse


2_1762
AAUUUUAA

AGGGCCTGAATTTTAA





CUUC

CTTCCTGTGCACAA







TMPRSS
AAGGGCCU
1033
TTCTGCAAGAAAACC
1233
mouse


2_1761
GAAUUUUA

AAGGGCCTGAATTTTA





ACUU

ACTTCCTGTGCACA







TMPRSS
CAAGAAAA
1034
TTCAACAACCTTCTGC
1234
mouse


2_1751
CCAAGGGC

AAGAAAACCAAGGGC





CUGA

CTGAATTTTAACTT







TMPRSS
UGCAAGAA
1035
TCTTCAACAACCTTCT
1235
mouse


2_1749
AACCAAGG

GCAAGAAAACCAAGG





GCCU

GCCTGAATTTTAAC







TMPRSS
CUGCAAGA
1036
GTCTTCAACAACCTTC
1236
mouse


2_1748
AAACCAAG

TGCAAGAAAACCAAG





GGCC

GGCCTGAATTTTAA







TMPRSS
UUCUGCAA
1037
TTGTCTTCAACAACCT
1237
mouse


2_1746
GAAAACCA

TCTGCAAGAAAACCA





AGGG

AGGGCCTGAATTTT







TMPRSS
AUUCAGAG
1038
TTACTCTTAGAGATGA
1238
human


2_1740
GUCACUUC

TTCAGAGGTCACTTCA





AUUU

TTTTTATTAAACA







TMPRSS
UGAUUCAG
1039
ATTTACTCTTAGAGAT
1239
human


2_1738
AGGUCACU

GATTCAGAGGTCACTT





UCAU

CATTTTTATTAAA







TMPRSS
UUAGAGAU
1040
GTGCATGATTTACTCT
1240
human


2_1731
GAUUCAGA

TAGAGATGATTCAGA





GGUC

GGTCACTTCATTTT







TMPRSS
UUUACUCU
1041
CTTCCCCGTGCATGAT
1241
human


2_1724
UAGAGAUG

TTACTCTTAGAGATGA





AUUC

TTCAGAGGTCACT







TMPRSS
UGUCCCAG
1042
TAATCCACGTGGCTTT
1242
mouse


2_1716
ACUUCCUU

GTCCCAGACTTCCTTT





UGUC

GTCTTCAACAACC







TMPRSS
CCGUGCAU
1043
GCTGGTTTTGCTTCCC
1243
human


2_1714
GAUUUACU

CGTGCATGATTTACTC





CUUA

TTAGAGATGATTC







TMPRSS
GGCUUUGU
1044
ACAGCTAATCCACGTG
1244
mouse


2_1711
CCCAGACU

GCTTTGTCCCAGACTT





UCCU

CCTTTGTCTTCAA







TMPRSS
UUCCCCGU
1045
TGGGGCTGGTTTTGCT
1245
human


2_1710
GCAUGAUU

TCCCCGTGCATGATTT





UACU

ACTCTTAGAGATG







TMPRSS
UUACAAGA
1046
GTCCTTGACGTCGTTT
1246
human


2_1681
AAACAAUG

TACAAGAAAACAATG





GGGC

GGGCTGGTTTTGCT







TMPRSS
UUUACAAG
1047
CGTCCTTGACGTCGTT
1247
human


2_1680
AAAACAAU

TTACAAGAAAACAAT





GGGG

GGGGCTGGTTTTGC







TMPRSS
UUUUACAA
1048
TCGTCCTTGACGTCGT
1248
human


2_1679
GAAAACAA

TTTACAAGAAAACAA





UGGG

TGGGGCTGGTTTTG







TMPRSS
UUCGUCCU
1049
CTAATCCACATGGTCT
1249
human


2_1663
UGACGUCG

TCGTCCTTGACGTCGT





UUUU

TTTACAAGAAAAC







TMPRSS
ACGGUAUU
1050
GTATACGGGAACGTG
1250
mouse


2_1656
UACAGAUU

ACGGTATTTACAGATT





GGAU

GGATCTACCAGCAA







TMPRSS
GACGGUAU
1051
AGTATACGGGAACGT
1251
mouse


2_1655
UUACAGAU

GACGGTATTTACAGAT





UGGA

TGGATCTACCAGCA







TMPRSS
ACGGGAAC
1052
TCAGACCTGGAGTATA
1252
mouse


2_1645
GUGACGGU

CGGGAACGTGACGGT





AUUU

ATTTACAGATTGGA







TMPRSS
AUGGUAUU
1053
GTGTACGGGAATGTG
1253
human


2_1604
CACGGACU

ATGGTATTCACGGACT





GGAU

GGATTTATCGACAA







TMPRSS
GAUGGUAU
1054
AGTGTACGGGAATGT
1254
human


2_1603
UCACGGAC

GATGGTATTCACGGAC





UGGA

TGGATTTATCGACA







TMPRSS
GGGAAUGU
1055
AGACCAGGAGTGTAC
1255
human


2_1595
GAUGGUAU

GGGAATGTGATGGTA





UCAC

TTCACGGACTGGATT







TMPRSS
ACGGGAAU
1056
ACAGACCAGGAGTGT
1256
human


2_1593
GUGAUGGU

ACGGGAATGTGATGG





AUUC

TATTCACGGACTGGA







TMPRSS
GUUGAUAA
1057
TCATTACTCGATGCTG
1257
human


2_158
CAGCAAGA

TTGATAACAGCAAGA





UGGC

TGGCTTTGAACTCA







TMPRSS
CUGUUGAU
1058
TATCATTACTCGATGC
1258
human


2_156
AACAGCAA

TGTTGATAACAGCAA





GAUG

GATGGCTTTGAACT







TMPRSS
UCUGGCUG
1059
GATACAAGCTGGGGT
1259
human


2_1559
UGCCAAAG

TCTGGCTGTGCCAAAG





CUUA

CTTACAGACCAGGA







TMPRSS
GGUUACUU
1060
CAGTGGAGGGCCGCT
1260
mouse


2_1559
UGAAGAAU

GGTTACTTTGAAGAAT





GGGA

GGGATCTGGTGGCT







TMPRSS
UGUAAUAG
1061
ATCGAGCCCTCCAAAT
1261
mouse


2_1452
UAAAUACA

GTAATAGTAAATACAT





UAUA

ATACAACAACCTA







TMPRSS
CCAAAUGU
1062
CCTTGATCGAGCCCTC
1262
mouse


2_1447
AAUAGUAA

CAAATGTAATAGTAA





AUAC

ATACATATACAACA







TMPRSS
CUCCAAAU
1063
ACCCTTGATCGAGCCC
1263
mouse


2_1445
GUAAUAGU

TCCAAATGTAATAGTA





AAAU

AATACATATACAA







TMPRSS
CGAGCCCU
1064
CATGGTACCCTTGATC
1264
mouse


2_1439
CCAAAUGU

GAGCCCTCCAAATGTA





AAUA

ATAGTAAATACAT







TMPRSS
GAUCGAGC
1065
TGCCATGGTACCCTTG
1265
mouse


2_1436
CCUCCAAA

ATCGAGCCCTCCAAAT





UGUA

GTAATAGTAAATA







TMPRSS
AUGUCUAU
1066
GATGCAACAGCAGAT
1266
human


2_1413
GACAACCU

ATGTCTATGACAACCT





GAUC

GATCACACCAGCCA







TMPRSS
UCGGACGU
1067
GAGAAAGGGAAGACC
1267
mouse


2_1404
GUUGAAUG

TCGGACGTGTTGAATG





CUGC

CTGCCATGGTACCC







TMPRSS
AACAGCAG
1068
GAGACACAGAGATGC
1268
human


2_1403
AUAUGUCU

AACAGCAGATATGTCT





AUGA

ATGACAACCTGATC







TMPRSS
CUCGGACG
1069
TGAGAAAGGGAAGAC
1269
mouse


2_1403
UGUUGAAU

CTCGGACGTGTTGAAT





GCUG

GCTGCCATGGTACC







TMPRSS
AGAUGCAA
1070
CTCATTGAGACACAG
1270
human


2_1397
CAGCAGAU

AGATGCAACAGCAGA





AUGU

TATGTCTATGACAAC







TMPRSS
UGAGAAAG
1071
GTGGGGGGCCACCTA
1271
mouse


2_1388
GGAAGACC

TGAGAAAGGGAAGAC





UCGG

CTCGGACGTGTTGAA







TMPRSS
AUACCUAU
1072
TATTGAACATTCCAGA
1272
human


2_136
CAUUACUC

TACCTATCATTACTCG





GAUG

ATGCTGTTGATAA







TMPRSS
UCAGAAGU
1073
GAGAAAGGGAAGACC
1273
human


2_1352
GCUGAACG

TCAGAAGTGCTGAAC





CUGC

GCTGCCAAGGTGCTT







TMPRSS
CUCAGAAG
1074
GGAGAAAGGGAAGAC
1274
human


2_1351
UGCUGAAC

CTCAGAAGTGCTGAA





GCUG

CGCTGCCAAGGTGCT







TMPRSS
CCAGAUAC
1075
GTCATATTGAACATTC
1275
human


2_132
CUAUCAUU

CAGATACCTATCATTA





ACUC

CTCGATGCTGTTG







TMPRSS
UCCAGAUA
1076
GGTCATATTGAACATT
1276
human


2_131
CCUAUCAU

CCAGATACCTATCATT





UACU

ACTCGATGCTGTT







TMPRSS
UUGGCUUU
1077
AAGCTGCAGACACCTT
1277
mouse


2_1287
UAAUGAUC

TGGCTTTTAATGATCT





UAGU

AGTGAAGCCAGTG







TMPRSS
UGAAGCUG
1078
ACGACATTGCTCTCAT
1278
mouse


2_1270
CAGACACC

GAAGCTGCAGACACC





UUUG

TTTGGCTTTTAATG







TMPRSS
AACGACAU
1079
TCTAAGACCAAGAAT
1279
mouse


2_1254
UGCUCUCA

AACGACATTGCTCTCA





UGAA

TGAAGCTGCAGACA







TMPRSS
GCAGAAGC
1080
TGCGCTGATGAAGCTG
1280
human


2_1225
CUCUGACU

CAGAAGCCTCTGACTT





UUCA

TCAACGACCTAGT







TMPRSS
UUCCCAUC
1081
GGTAGAAAAAGTAAT
1281
mouse


2_1220
CAAAUUAC

TTCCCATCCAAATTAC





GACU

GACTCTAAGACCAA







TMPRSS
GGAAGUAG
1082
TCTCTCATGTTCTATG
1282
mouse


2_1191
ACACCAGG

GAAGTAGACACCAGG





UAGA

TAGAAAAAGTAATT







TMPRSS
UGGAAGUA
1083
GTCTCTCATGTTCTAT
1283
mouse


2_1190
GACACCAG

GGAAGTAGACACCAG





GUAG

GTAGAAAAAGTAAT







TMPRSS
UGUUCUAU
1084
TGAGACAGTCTCTCAT
1284
mouse


2_1183
GGAAGUAG

GTTCTATGGAAGTAGA





ACAC

CACCAGGTAGAAA







TMPRSS
UAUGACUC
1085
ATTTCTCATCCAAATT
1285
human


2_1181
CAAGACCA

ATGACTCCAAGACCA





AGAA

AGAACAATGACATT







TMPRSS
UUCUCAUC
1086
AGTAGAAAAAGTGAT
1286
human


2_1168
CAAAUUAU

TTCTCATCCAAATTAT





GACU

GACTCCAAGACCAA







TMPRSS
UGAGACAG
1087
CATTTGCGGGAATTCT
1287
mouse


2_1168
UCUCUCAU

GAGACAGTCTCTCATG





GUUC

TTCTATGGAAGTA







TMPRSS
CUGAGACA
1088
GCATTTGCGGGAATTC
1288
mouse


2_1167
GUCUCUCA

TGAGACAGTCTCTCAT





UGUU

GTTCTATGGAAGT







TMPRSS
UGCGGGAA
1089
GTACTGGACGGCATTT
1289
mouse


2_1157
UUCUGAGA

GCGGGAATTCTGAGA





CAGU

CAGTCTCTCATGTT







TMPRSS
CAGGUCAU
1090
CCGCCTGGAGCGCGG
1290
human


2_114
AUUGAACA

CAGGTCATATTGAACA





UUCC

TTCCAGATACCTAT







TMPRSS
GAGACAAU
1091
ATTTGCGGGGATTTTG
1291
human


2_1117
CUUUCAUG

AGACAATCTTTCATGT





UUCU

TCTATGGAGCCGG







TMPRSS
CGCGGCAG
1092
GAGCGCCGCCTGGAG
1292
human


2_109
GUCAUAUU

CGCGGCAGGTCATATT





GAAC

GAACATTCCAGATA







TMPRSS
AUGGCAUU
1093
ACCTCTTAACAATCCA
1293
human


2_1087
GGACGGCA

TGGCATTGGACGGCAT





UUUG

TTGCGGGGATTTT







TMPRSS
CAUGGCAU
1094
AACCTCTTAACAATCC
1294
human


2_1086
UGGACGGC

ATGGCATTGGACGGC





AUUU

ATTTGCGGGGATTT
















TABLE 11B







Host target IL-6 - 20 nucleotide targets and 45 nucleotide gene


target regions














SEQ

SEQ



SEQUENCE

ID

ID



ID
20 nt Sequence
NO:
45 nt Gene Region
NO:
Species





IL6_999
UUGUAUUU
1295
AAAGAAATATTTATATTG
1495
human



AUAUAAUG

TATTTATATAATGTATAAA





UAUA

TGGTTTTT







IL6_998
AUUGUAUU
1296
TAAAGAAATATTTATATT
1496
human



UAUAUAAU

GTATTTATATAATGTATAA





GUAU

ATGGTTTT







IL6_995
UAUAUUGU
1297
TTTTAAAGAAATATTTATA
1497
human



AUUUAUAU

TTGTATTTATATAATGTAT





AAUG

AAATGGT







IL6_994
UUAUAUUG
1298
TTTTTAAAGAAATATTTAT
1498
human



UAUUUAUA

ATTGTATTTATATAATGTA





UAAU

TAAATGG







IL6_989
AAUAUUUA
1299
ACATATTTTTAAAGAAAT
1499
human



UAUUGUAU

ATTTATATTGTATTTATAT





UUAU

AATGTATA







IL6_984
AAAGAAAU
1300
CTTATACATATTTTTAAAG
1500
human



AUUUAUAU

AAATATTTATATTGTATTT





UGUA

ATATAAT







IL6_982
UUAAAGAA
1301
AACTTATACATATTTTTAA
1501
human



AUAUUUAU

AGAAATATTTATATTGTAT





AUUG

TTATATA







IL6_980
UUUUAAAG
1302
CTAACTTATACATATTTTT
1502
human



AAAUAUUU

AAAGAAATATTTATATTG





AUAU

TATTTATA







IL6_963
GGCUAACUU
1303
TTACCTCAAATAAATGGC
1503
human



AUACAUAUU

TAACTTATACATATTTTTA





UU

AAGAAATA







IL6_962
UGGCUAACU
1304
CTTACCTCAAATAAATGG
1504
human



UAUACAUAU

CTAACTTATACATATTTTT





UU

AAAGAAAT







IL6_955
AAAUAAAU
1305
GTGTAGGCTTACCTCAAA
1505
human



GGCUAACUU

TAAATGGCTAACTTATAC





AUA

ATATTTTTA







IL6_951
CCUCAAAUA
1306
GAAAGTGTAGGCTTACCT
1506
human



AAUGGCUAA

CAAATAAATGGCTAACTT





CU

ATACATATT







IL6_950
ACCUCAAAU
1307
GGAAAGTGTAGGCTTACC
1507
human



AAAUGGCUA

TCAAATAAATGGCTAACT





AC

TATACATAT







IL6_949
UACCUCAAA
1308
TGGAAAGTGTAGGCTTAC
1508
human



UAAAUGGCU

CTCAAATAAATGGCTAAC





AA

TTATACATA







IL6_948
UUACCUCAA
1309
TTGGAAAGTGTAGGCTTA
1509
human



AUAAAUGGC

CCTCAAATAAATGGCTAA





UA

CTTATACAT







IL6_947
CUUACCUCA
1310
CTTGGAAAGTGTAGGCTT
1510
human



AAUAAAUG

ACCTCAAATAAATGGCTA





GCU

ACTTATACA







IL6_943
UAGGCUUAC
1311
ATTTCTTGGAAAGTGTAG
1511
human



CUCAAAUAA

GCTTACCTCAAATAAATG





AU

GCTAACTTA







IL6_934
UGGAAAGU
1312
AGCCAGATCATTTCTTGG
1512
human



GUAGGCUUA

AAAGTGTAGGCTTACCTC





CCU

AAATAAATG







IL6_932
CUUGGAAAG
1313
AGAGCCAGATCATTTCTT
1513
human



UGUAGGCUU

GGAAAGTGTAGGCTTACC





AC

TCAAATAAA







IL6_917
AGAGCCAGA
1314
AATATCCTTTGTTTCAGAG
1514
human



UCAUUUCUU

CCAGATCATTTCTTGGAA





GG

AGTGTAGG







IL6_912
GUUUCAGAG
1315
GTTTGAATATCCTTTGTTT
1515
human



CCAGAUCAU

CAGAGCCAGATCATTTCTT





UU

GGAAAGT







IL6_894
GCAGUUUGA
1316
ATGGAAAGTGGCTATGCA
1516
human



AUAUCCUUU

GTTTGAATATCCTTTGTTT





GU

CAGAGCCA







IL6_878
AAUGGAAA
1317
TAGTTTTGAAATAATAAT
1517
human



GUGGCUAUG

GGAAAGTGGCTATGCAGT





CAG

TTGAATATC







IL6_870
GAAAUAAU
1318
TTATGTATTAGTTTTGAAA
1518
human



AAUGGAAA

TAATAATGGAAAGTGGCT





GUGG

ATGCAGTT







IL6_867
UUUGAAAU
1319
ATTTTATGTATTAGTTTTG
1519
human



AAUAAUGG

AAATAATAATGGAAAGTG





AAAG

GCTATGCA







IL6_858
UGUAUUAG
1320
ACTTGAAACATTTTATGTA
1520
human



UUUUGAAA

TTAGTTTTGAAATAATAAT





UAAU

GGAAAGT







IL6_856
UAUGUAUU
1321
CCACTTGAAACATTTTATG
1521
human



AGUUUUGA

TATTAGTTTTGAAATAATA





AAUA

ATGGAAA







IL6_851
CAUUUUAUG
1322
AAGTACCACTTGAAACAT
1522
human



UAUUAGUU

TTTATGTATTAGTTTTGAA





UUG

ATAATAAT







IL6_843
ACUUGAAAC
1323
TTTTTAAGAAGTACCACTT
1523
human



AUUUUAUG

GAAACATTTTATGTATTAG





UAU

TTTTGAA







IL6_840
ACCACUUGA
1324
ATATTTTTAAGAAGTACC
1524
human



AACAUUUUA

ACTTGAAACATTTTATGTA





UG

TTAGTTTT







IL6_839
UACCACUUG
1325
TATATTTTTAAGAAGTACC
1525
human



AAACAUUUU

ACTTGAAACATTTTATGTA





AU

TTAGTTT







IL6_838
GUACCACUU
1326
TTATATTTTTAAGAAGTAC
1526
human



GAAACAUUU

CACTTGAAACATTTTATGT





UA

ATTAGTT







IL6_831
UUAAGAAG
1327
GTCATATTTATATTTTTAA
1527
human



UACCACUUG

GAAGTACCACTTGAAACA





AAA

TTTTATGT







IL6_830
UUUAAGAA
1328
AGTCATATTTATATTTTTA
1528
human



GUACCACUU

AGAAGTACCACTTGAAAC





GAA

ATTTTATG







IL6_829
UUUUAAGA
1329
AAGTCATATTTATATTTTT
1529
human



AGUACCACU

AAGAAGTACCACTTGAAA





UGA

CATTTTAT







IL6_809
UAUGUAAG
1330
GAAGCTGAGTTAATTTAT
1530
human



UCAUAUUUA

GTAAGTCATATTTATATTT





UAU

TTAAGAAG







IL6_808
UUAUGUAA
1331
TGAAGCTGAGTTAATTTAT
1531
human



GUCAUAUUU

GTAAGTCATATTTATATTT





AUA

TTAAGAA







IL6_805
AAUUUAUG
1332
ATGTGAAGCTGAGTTAAT
1532
human



UAAGUCAUA

TTATGTAAGTCATATTTAT





UUU

ATTTTTAA







IL6_804
UAAUUUAU
1333
TATGTGAAGCTGAGTTAA
1533
human



GUAAGUCAU

TTTATGTAAGTCATATTTA





AUU

TATTTTTA







IL6_803
UUAAUUUA
1334
ATATGTGAAGCTGAGTTA
1534
human



UGUAAGUCA

ATTTATGTAAGTCATATTT





UAU

ATATTTTT







IL6_801
AGUUAAUU
1335
AAATATGTGAAGCTGAGT
1535
human



UAUGUAAG

TAATTTATGTAAGTCATAT





UCAU

TTATATTT







IL6_800
GAGUUAAU
1336
TAAATATGTGAAGCTGAG
1536
human



UUAUGUAA

TTAATTTATGTAAGTCATA





GUCA

TTTATATT







IL6_799
UGAGUUAA
1337
TTAAATATGTGAAGCTGA
1537
human



UUUAUGUA

GTTAATTTATGTAAGTCAT





AGUC

ATTTATAT







IL6_798
CUGAGUUAA
1338
TTTAAATATGTGAAGCTG
1538
human



UUUAUGUA

AGTTAATTTATGTAAGTCA





AGU

TATTTATA







IL6_794
GAAGCUGAG
1339
AATATTTAAATATGTGAA
1539
human



UUAAUUUA

GCTGAGTTAATTTATGTAA





UGU

GTCATATT







IL6_793
UGAAGCUGA
1340
TAATATTTAAATATGTGA
1540
human



GUUAAUUU

AGCTGAGTTAATTTATGTA





AUG

AGTCATAT







IL6_792
GUGAAGCUG
1341
TTAATATTTAAATATGTGA
1541
human



AGUUAAUU

AGCTGAGTTAATTTATGTA





UAU

AGTCATA







IL6_790
AUGUGAAGC
1342
TATTAATATTTAAATATGT
1542
human



UGAGUUAA

GAAGCTGAGTTAATTTAT





UUU

GTAAGTCA







IL6_788
AUAUGUGA
1343
TTTATTAATATTTAAATAT
1543
human



AGCUGAGUU

GTGAAGCTGAGTTAATTT





AAU

ATGTAAGT







IL6_784
UUAAAUAU
1344
TTAATTTATTAATATTTAA
1544
human



GUGAAGCUG

ATATGTGAAGCTGAGTTA





AGU

ATTTATGT







IL6_783
UUUAAAUA
1345
TTTAATTTATTAATATTTA
1545
human



UGUGAAGCU

AATATGTGAAGCTGAGTT





GAG

AATTTATG







IL6_782
AUUUAAAU
1346
TTTTAATTTATTAATATTT
1546
human



AUGUGAAGC

AAATATGTGAAGCTGAGT





UGA

TAATTTAT







IL6_778
UAAUAUUU
1347
TTATTTTTAATTTATTAAT
1547
human



AAAUAUGU

ATTTAAATATGTGAAGCT





GAAG

GAGTTAAT







IL6_776
AUUAAUAU
1348
AATTATTTTTAATTTATTA
1548
human



UUAAAUAU

ATATTTAAATATGTGAAG





GUGA

CTGAGTTA







IL6_774
UUAUUAAU
1349
TTAATTATTTTTAATTTAT
1549
human



AUUUAAAU

TAATATTTAAATATGTGA





AUGU

AGCTGAGT







IL6_770
UAAUUUAU
1350
TATTTTAATTATTTTTAAT
1550
human



UAAUAUUU

TTATTAATATTTAAATATG





AAAU

TGAAGCT







IL6_768
UUUAAUUU
1351
ACTATTTTAATTATTTTTA
1551
human



AUUAAUAU

ATTTATTAATATTTAAATA





UUAA

TGTGAAG







IL6_747
UAGGACACU
1352
TAAAAGTATGAGCGTTAG
1552
human



AUUUUAAU

GACACTATTTTAATTATTT





UAU

TTAATTTA







IL6_746
UUAGGACAC
1353
CTAAAAGTATGAGCGTTA
1553
human



UAUUUUAA

GGACACTATTTTAATTATT





UUA

TTTAATTT







IL6_745
GUUAGGACA
1354
ACTAAAAGTATGAGCGTT
1554
human



CUAUUUUAA

AGGACACTATTTTAATTAT





UU

TTTTAATT







IL6_743
GCGUUAGGA
1355
GAACTAAAAGTATGAGCG
1555
human



CACUAUUUU

TTAGGACACTATTTTAATT





AA

ATTTTTAA







IL6_742
AGCGUUAGG
1356
AGAACTAAAAGTATGAGC
1556
human



ACACUAUUU

GTTAGGACACTATTTTAAT





UA

TATTTTTA







IL6_741
GAGCGUUAG
1357
GAGAACTAAAAGTATGAG
1557
human



GACACUAUU

CGTTAGGACACTATTTTAA





UU

TTATTTTT







IL6_740
UGAGCGUUA
1358
GGAGAACTAAAAGTATGA
1558
human



GGACACUAU

GCGTTAGGACACTATTTTA





UU

ATTATTTT







IL6_739
AUGAGCGUU
1359
TGGAGAACTAAAAGTATG
1559
human



AGGACACUA

AGCGTTAGGACACTATTTT





UU

AATTATTT







IL6_731
CUAAAAGUA
1360
GTTCTCTATGGAGAACTA
1560
human



UGAGCGUUA

AAAGTATGAGCGTTAGGA





GG

CACTATTTT







IL6_723
AUGGAGAAC
1361
CTTATGTTGTTCTCTATGG
1561
human



UAAAAGUA

AGAACTAAAAGTATGAGC





UGA

GTTAGGAC







IL6_717
UUCUCUAUG
1362
ACAGAACTTATGTTGTTCT
1562
human



GAGAACUAA

CTATGGAGAACTAAAAGT





AA

ATGAGCGT







IL6_697
UGGGCACAG
1363
CAGAAACCTGTCCACTGG
1563
human



AACUUAUGU

GCACAGAACTTATGTTGTT





UG

CTCTATGG







IL6_691
GUCCACUGG
1364
TCTGGTCAGAAACCTGTC
1564
human



GCACAGAAC

CACTGGGCACAGAACTTA





UU

TGTTGTTCT







IL6_654
GUUGUUAA
1365
GCACCTCAGATTGTTGTTG
1565
human



UGGGCAUUC

TTAATGGGCATTCCTTCTT





CUU

CTGGTCA







IL6_629
UGUAGCAUG
1366
GGGCTCTTCGGCAAATGT
1566
human



GGCACCUCA

AGCATGGGCACCTCAGAT





GA

TGTTGTTGT







IL6_580
CGCAGCUUU
1367
ACTCATCTCATTCTGCGCA
1567
human



AAGGAGUUC

GCTTTAAGGAGTTCCTGC





CU

AGTCCAGC







IL6_58
CCAGCUAUG
1368
CTCCCCTCCAGGAGCCCA
1568
human



AACUCCUUC

GCTATGAACTCCTTCTCCA





UC

CAATACCC







IL6_561
GACAACUCA
1369
GTGGCTGCAGGACATGAC
1569
human



UCUCAUUCU

AACTCATCTCATTCTGCGC





GC

AGCTTTAA







IL6_54
GAGCCCAGC
1370
CTATCTCCCCTCCAGGAGC
1570
human



UAUGAACUC

CCAGCTATGAACTCCTTCT





CU

CCACAAT







IL6_427
AUGAGUACA
1371
GCCAGAGCTGTGCAGATG
1571
human



AAAGUCCUG

AGTACAAAAGTCCTGATC





AU

CAGTTCCTG







IL6_423
GCAGAUGAG
1372
ACAAGCCAGAGCTGTGCA
1572
human



UACAAAAGU

GATGAGTACAAAAGTCCT





CC

GATCCAGTT







IL6_404
AGGAACAAG
1373
GATTTGAGAGTAGTGAGG
1573
human



CCAGAGCUG

AACAAGCCAGAGCTGTGC





UG

AGATGAGTA







IL6_382
CAGAACAGA
1374
TACCTAGAGTACCTCCAG
1574
human



UUUGAGAG

AACAGATTTGAGAGTAGT





UAG

GAGGAACAA







IL6_381
CCAGAACAG
1375
ATACCTAGAGTACCTCCA
1575
human



AUUUGAGA

GAACAGATTTGAGAGTAG





GUA

TGAGGAACA







IL6_352
UUGGAGUU
1376
ATCATCACTGGTCTTTTGG
1576
human



UGAGGUAU

AGTTTGAGGTATACCTAG





ACCU

AGTACCTC







IL6_343
ACUGGUCUU
1377
CTGGTGAAAATCATCACT
1577
human



UUGGAGUU

GGTCTTTTGGAGTTTGAGG





UGA

TATACCTA







IL6_339
CAUCACUGG
1378
TTGCCTGGTGAAAATCAT
1578
human



UCUUUUGGA

CACTGGTCTTTTGGAGTTT





GU

GAGGTATA







IL6_331
GUGAAAAUC
1379
GAGGAGACTTGCCTGGTG
1579
human



AUCACUGGU

AAAATCATCACTGGTCTTT





CU

TGGAGTTT







IL6_325
UGCCUGGUG
1380
TTCAATGAGGAGACTTGC
1580
human



AAAAUCAUC

CTGGTGAAAATCATCACT





AC

GGTCTTTTG







IL6_324
UUGCCUGGU
1381
ATTCAATGAGGAGACTTG
1581
human



GAAAAUCAU

CCTGGTGAAAATCATCAC





CA

TGGTCTTTT







IL6_311
UCAAUGAGG
1382
GCTTCCAATCTGGATTCAA
1582
human



AGACUUGCC

TGAGGAGACTTGCCTGGT





UG

GAAAATCA







IL6_309
AUUCAAUGA
1383
ATGCTTCCAATCTGGATTC
1583
human



GGAGACUUG

AATGAGGAGACTTGCCTG





CC

GTGAAAAT







IL6_296
GCUUCCAAU
1384
CTGAAAAAGATGGATGCT
1584
human



CUGGAUUCA

TCCAATCTGGATTCAATG





AU

AGGAGACTT







IL6_248
UGGCAGAAA
1385
GCAGCAAAGAGGCACTGG
1585
human



ACAACCUGA

CAGAAAACAACCTGAACC





AC

TTCCAAAGA







IL6_217
AGUAACAUG
1386
GAGACATGTAACAAGAGT
1586
human



UGUGAAAGC

AACATGTGTGAAAGCAGC





AG

AAAGAGGCA







IL6_210
UAACAAGAG
1387
GAGAAAGGAGACATGTAA
1587
human



UAACAUGUG

CAAGAGTAACATGTGTGA





UG

AAGCAGCAA







IL6_209
GUAACAAGA
1388
TGAGAAAGGAGACATGTA
1588
human



GUAACAUGU

ACAAGAGTAACATGTGTG





GU

AAAGCAGCA







IL6_203
AGACAUGUA
1389
CAGCCCTGAGAAAGGAGA
1589
human



ACAAGAGUA

CATGTAACAAGAGTAACA





AC

TGTGTGAAA







IL6_201
GGAGACAUG
1390
CTCAGCCCTGAGAAAGGA
1590
human



UAACAAGAG

GACATGTAACAAGAGTAA





UA

CATGTGTGA







IL6_1008
UAUAAUGU
1391
TTTATATTGTATTTATATA
1591
human



AUAAAUGG

ATGTATAAATGGTTTTTAT





UUUU

ACCAATA







IL6_1007
AUAUAAUG
1392
ATTTATATTGTATTTATAT
1592
human



UAUAAAUG

AATGTATAAATGGTTTTTA





GUUU

TACCAAT







IL6_1006
UAUAUAAU
1393
TATTTATATTGTATTTATA
1593
human



GUAUAAAU

TAATGTATAAATGGTTTTT





GGUU

ATACCAA







IL6_1000
UGUAUUUA
1394
AAGAAATATTTATATTGT
1594
human



UAUAAUGU

ATTTATATAATGTATAAAT





AUAA

GGTTTTTA







IL6_937
UGUUAUAU
1395
AAGTGTCACTTGAAATGT
1595
mouse



GUUAUAGU

TATATGTTATAGTTTTGAA





UUUG

ATGATAAC







IL6_402
UUGCCUAUU
1396
ATATAATCAGGAAATTTG
1596
mouse



GAAAAUUUC

CCTATTGAAAATTTCCTCT





CU

GGTCTTCT







IL6_1044
UUGCUAAUU
1397
GTTTACCTCAATGAATTGC
1597
mouse



UAAAUAUG

TAATTTAAATATGTTTTTA





UUU

AAGAAAT







IL6_891
UAAUUUAU
1398
AAGTAAACTTTAAGTTAA
1598
mouse



GAUUGAUA

TTTATGATTGATATTTATT





UUUA

ATTTTTAT







IL6_855
UAAUUUAU
1399
TATTTTAATTATTTTTAAT
1599
mouse



UGAUAAUU

TTATTGATAATTTAAATAA





UAAA

GTAAACT







IL6_1036
UCAAUGAAU
1400
ATGTATAAGTTTACCTCAA
1600
mouse



UGCUAAUUU

TGAATTGCTAATTTAAATA





AA

TGTTTTT







IL6_886
UAAGUUAA
1401
TAAATAAGTAAACTTTAA
1601
mouse



UUUAUGAU

GTTAATTTATGATTGATAT





UGAU

TTATTATT







IL6_884
UUUAAGUU
1402
TTTAAATAAGTAAACTTTA
1602
mouse



AAUUUAUG

AGTTAATTTATGATTGATA





AUUG

TTTATTA







IL6_827
AAUGUUGG
1403
AGAACTGACAATATGAAT
1603
mouse



GACACUAUU

GTTGGGACACTATTTTAAT





UUA

TATTTTTA







IL6_1029
GUUUACCUC
1404
TCTTGGAATGTATAAGTTT
1604
mouse



AAUGAAUU

ACCTCAATGAATTGCTAA





GCU

TTTAAATA







IL6_1016
UUGGAAUG
1405
TAGCCAGATGGTTTCTTGG
1605
mouse



UAUAAGUU

AATGTATAAGTTTACCTCA





UACC

ATGAATT







IL6_779
UGUCAGGUA
1406
GAAAATATATCCTGTTGTC
1606
mouse



UCUGACUUA

AGGTATCTGACTTATGTTG





UG

TTCTCTA







IL6_1066
AAAGAAAUC
1407
TTTAAATATGTTTTTAAAG
1607
mouse



UUUGUGAU

AAATCTTTGTGATGTATTT





GUA

TTATAAT







IL6_854
UUAAUUUA
1408
CTATTTTAATTATTTTTAA
1608
mouse



UUGAUAAU

TTTATTGATAATTTAAATA





UUAA

AGTAAAC







IL6_830
GUUGGGACA
1409
ACTGACAATATGAATGTT
1609
mouse



CUAUUUUAA

GGGACACTATTTTAATTAT





UU

TTTTAATT







IL6_1089
UUAUAAUG
1410
CTTTGTGATGTATTTTTAT
1610
mouse



UUUAGACUG

AATGTTTAGACTGTCTTCA





UCU

AACAAAT







IL6_931
UUGAAAUG
1411
TTTATGAAGTGTCACTTGA
1611
mouse



UUAUAUGU

AATGTTATATGTTATAGTT





UAUA

TTGAAAT







IL6_538
AACCAAGAG
1412
CTAATTCATATCTTCAACC
1612
mouse



GUAAAAGA

AAGAGGTAAAAGATTTAC





UUU

ATAAAATA







IL6_887
AAGUUAAU
1413
AAATAAGTAAACTTTAAG
1613
mouse



UUAUGAUU

TTAATTTATGATTGATATT





GAUA

TATTATTT







IL6_408
AUUGAAAA
1414
TCAGGAAATTTGCCTATTG
1614
mouse



UUUCCUCUG

AAAATTTCCTCTGGTCTTC





GUC

TGGAGTA







IL6_235
GGCUUAAUU
1415
ACTTCACAAGTCGGAGGC
1615
mouse



ACACAUGUU

TTAATTACACATGTTCTCT





CU

GGGAAATC







IL6_725
CUAAGCAUA
1416
CCTAGTGCGTTATGCCTAA
1616
mouse



UCAGUUUGU

GCATATCAGTTTGTGGAC





GG

ATTCCTCA







IL6_401
UUUGCCUAU
1417
GATATAATCAGGAAATTT
1617
mouse



UGAAAAUU

GCCTATTGAAAATTTCCTC





UCC

TGGTCTTC







IL6_973
AUCUAUUUG
1418
AATGATAACCTAAAAATC
1618
mouse



AUAUAAAU

TATTTGATATAAATATTCT





AUU

GTTACCTA







IL6_926
GUCACUUGA
1419
TTATTTTTATGAAGTGTCA
1619
mouse



AAUGUUAU

CTTGAAATGTTATATGTTA





AUG

TAGTTTT







IL6_862
UUGAUAAU
1420
ATTATTTTTAATTTATTGA
1620
mouse



UUAAAUAA

TAATTTAAATAAGTAAAC





GUAA

TTTAAGTT







IL6_868
AUUUAAAU
1421
TTTAATTTATTGATAATTT
1621
mouse



AAGUAAACU

AAATAAGTAAACTTTAAG





UUA

TTAATTTA







IL6_869
UUUAAAUA
1422
TTAATTTATTGATAATTTA
1622
mouse



AGUAAACUU

AATAAGTAAACTTTAAGT





UAA

TAATTTAT







IL6_885
UUAAGUUA
1423
TTAAATAAGTAAACTTTA
1623
mouse



AUUUAUGA

AGTTAATTTATGATTGATA





UUGA

TTTATTAT







IL6_871
UAAAUAAG
1424
AATTTATTGATAATTTAAA
1624
mouse



UAAACUUUA

TAAGTAAACTTTAAGTTA





AGU

ATTTATGA







IL6_652
UUCAUCUUG
1425
ACCAAGACCATCCAATTC
1625
mouse



AAAUCACUU

ATCTTGAAATCACTTGAA





GA

GAATTTCTA







IL6_816
CUGACAAUA
1426
GTTCTCTACGAAGAACTG
1626
mouse



UGAAUGUU

ACAATATGAATGTTGGGA





GGG

CACTATTTT







IL6_802
UUCUCUACG
1427
ATCTGACTTATGTTGTTCT
1627
mouse



AAGAACUGA

CTACGAAGAACTGACAAT





CA

ATGAATGT







IL6_761
UCAGAAAAU
1428
CATTCCTCACTGTGGTCAG
1628
mouse



AUAUCCUGU

AAAATATATCCTGTTGTCA





UG

GGTATCT







IL6_1007
GAUGGUUUC
1429
TCTGTTACCTAGCCAGATG
1629
mouse



UUGGAAUG

GTTTCTTGGAATGTATAAG





UAU

TTTACCT







IL6_923
AGUGUCACU
1430
TTATTATTTTTATGAAGTG
1630
mouse



UGAAAUGU

TCACTTGAAATGTTATATG





UAU

TTATAGT







IL6_978
UUUGAUAU
1431
TAACCTAAAAATCTATTTG
1631
mouse



AAAUAUUCU

ATATAAATATTCTGTTACC





GUU

TAGCCAG







IL6_1063
UUUAAAGA
1432
TAATTTAAATATGTTTTTA
1632
mouse



AAUCUUUGU

AAGAAATCTTTGTGATGT





GAU

ATTTTTAT







IL6_953
UUUGAAAU
1433
GTTATATGTTATAGTTTTG
1633
mouse



GAUAACCUA

AAATGATAACCTAAAAAT





AAA

CTATTTGA







IL6_389
AUAAUCAGG
1434
GCTACCAAACTGGATATA
1634
mouse



AAAUUUGCC

ATCAGGAAATTTGCCTATT





UA

GAAAATTT







IL6_541
CAAGAGGUA
1435
ATTCATATCTTCAACCAAG
1635
mouse



AAAGAUUU

AGGTAAAAGATTTACATA





ACA

AAATAGTC







IL6_268
GAAAUGAG
1436
CTCTGGGAAATCGTGGAA
1636
mouse



AAAAGAGU

ATGAGAAAAGAGTTGTGC





UGUG

AATGGCAAT







IL6_880
AAACUUUAA
1437
ATAATTTAAATAAGTAAA
1637
mouse



GUUAAUUU

CTTTAAGTTAATTTATGAT





AUG

TGATATTT







IL6_861
AUUGAUAA
1438
AATTATTTTTAATTTATTG
1638
mouse



UUUAAAUA

ATAATTTAAATAAGTAAA





AGUA

CTTTAAGT







IL6_875
UAAGUAAAC
1439
TATTGATAATTTAAATAA
1639
mouse



UUUAAGUU

GTAAACTTTAAGTTAATTT





AAU

ATGATTGA







IL6_256
UGGGAAAUC
1440
ATTACACATGTTCTCTGGG
1640
mouse



GUGGAAAU

AAATCGTGGAAATGAGAA





GAG

AAGAGTTG







IL6_351
AGAGAUACA
1441
CAATCTGAAACTTCCAGA
1641
mouse



AAGAAAUG

GATACAAAGAAATGATGG





AUG

ATGCTACCA







IL6_824
AUGAAUGU
1442
CGAAGAACTGACAATATG
1642
mouse



UGGGACACU

AATGTTGGGACACTATTTT





AUU

AATTATTT







IL6_332
AAAACAAUC
1443
ATGATGCACTTGCAGAAA
1643
mouse



UGAAACUUC

ACAATCTGAAACTTCCAG





CA

AGATACAAA







IL6_403
UGCCUAUUG
1444
TATAATCAGGAAATTTGC
1644
mouse



AAAAUUUCC

CTATTGAAAATTTCCTCTG





UC

GTCTTCTG







IL6_762
CAGAAAAUA
1445
ATTCCTCACTGTGGTCAGA
1645
mouse



UAUCCUGUU

AAATATATCCTGTTGTCAG





GU

GTATCTG







IL6_879
UAAACUUUA
1446
GATAATTTAAATAAGTAA
1646
mouse



AGUUAAUU

ACTTTAAGTTAATTTATGA





UAU

TTGATATT







IL6_947
UAUAGUUU
1447
TGAAATGTTATATGTTATA
1647
mouse



UGAAAUGA

GTTTTGAAATGATAACCT





UAAC

AAAAATCT







IL6_649
CAAUUCAUC
1448
AGGACCAAGACCATCCAA
1648
mouse



UUGAAAUCA

TTCATCTTGAAATCACTTG





CU

AAGAATTT







IL6_897
AUGAUUGA
1449
ACTTTAAGTTAATTTATGA
1649
mouse



UAUUUAUU

TTGATATTTATTATTTTTA





AUUU

TGAAGTG







IL6_1043
AUUGCUAAU
1450
AGTTTACCTCAATGAATTG
1650
mouse



UUAAAUAU

CTAATTTAAATATGTTTTT





GUU

AAAGAAA







IL6_576
UACCCCAAU
1451
TAAAATAGTCCTTCCTACC
1651
mouse



UUCCAAUGC

CCAATTTCCAATGCTCTCC





UC

TAACAGA







IL6_90
CUCUGCAAG
1452
CGCTATGAAGTTCCTCTCT
1652
mouse



AGACUUCCA

GCAAGAGACTTCCATCCA





UC

GTTGCCTT







IL6_378
CCAAACUGG
1453
AAATGATGGATGCTACCA
1653
mouse



AUAUAAUCA

AACTGGATATAATCAGGA





GG

AATTTGCCT







IL6_853
UUUAAUUU
1454
ACTATTTTAATTATTTTTA
1654
mouse



AUUGAUAA

ATTTATTGATAATTTAAAT





UUUA

AAGTAAA







IL6_367
GAUGGAUGC
1455
GAGATACAAAGAAATGAT
1655
mouse



UACCAAACU

GGATGCTACCAAACTGGA





GG

TATAATCAG







IL6_992
UCUGUUACC
1456
ATTTGATATAAATATTCTG
1656
mouse



UAGCCAGAU

TTACCTAGCCAGATGGTTT





GG

CTTGGAA







IL6_939
UUAUAUGU
1457
GTGTCACTTGAAATGTTAT
1657
mouse



UAUAGUUU

ATGTTATAGTTTTGAAATG





UGAA

ATAACCT







IL6_1037
CAAUGAAUU
1458
TGTATAAGTTTACCTCAAT
1658
mouse



GCUAAUUUA

GAATTGCTAATTTAAATAT





AA

GTTTTTA







IL6_661
AAAUCACUU
1459
ATCCAATTCATCTTGAAAT
1659
mouse



GAAGAAUU

CACTTGAAGAATTTCTAA





UCU

AAGTCACT







IL6_1042
AAUUGCUAA
1460
AAGTTTACCTCAATGAATT
1660
mouse



UUUAAAUA

GCTAATTTAAATATGTTTT





UGU

TAAAGAA







IL6_995
GUUACCUAG
1461
TGATATAAATATTCTGTTA
1661
mouse



CCAGAUGGU

CCTAGCCAGATGGTTTCTT





UU

GGAATGT







IL6_1017
UGGAAUGU
1462
AGCCAGATGGTTTCTTGG
1662
mouse



AUAAGUUU

AATGTATAAGTTTACCTCA





ACCU

ATGAATTG







IL6_929
ACUUGAAAU
1463
TTTTTATGAAGTGTCACTT
1663
mouse



GUUAUAUG

GAAATGTTATATGTTATA





UUA

GTTTTGAA







IL6_878
GUAAACUUU
1464
TGATAATTTAAATAAGTA
1664
mouse



AAGUUAAU

AACTTTAAGTTAATTTATG





UUA

ATTGATAT







IL6_945
GUUAUAGU
1465
CTTGAAATGTTATATGTTA
1665
mouse



UUUGAAAU

TAGTTTTGAAATGATAAC





GAUA

CTAAAAAT







IL6_285
GUGCAAUGG
1466
AATGAGAAAAGAGTTGTG
1666
mouse



CAAUUCUGA

CAATGGCAATTCTGATTGT





UU

ATGAACAA







IL6_662
AAUCACUUG
1467
TCCAATTCATCTTGAAATC
1667
mouse



AAGAAUUUC

ACTTGAAGAATTTCTAAA





UA

AGTCACTT







IL6_852
UUUUAAUU
1468
CACTATTTTAATTATTTTT
1668
mouse



UAUUGAUA

AATTTATTGATAATTTAAA





AUUU

TAAGTAA







IL6_348
UCCAGAGAU
1469
AAACAATCTGAAACTTCC
1669
mouse



ACAAAGAAA

AGAGATACAAAGAAATGA





UG

TGGATGCTA







IL6_883
CUUUAAGUU
1470
ATTTAAATAAGTAAACTTT
1670
mouse



AAUUUAUG

AAGTTAATTTATGATTGAT





AUU

ATTTATT







IL6_1033
ACCUCAAUG
1471
GGAATGTATAAGTTTACC
1671
mouse



AAUUGCUAA

TCAATGAATTGCTAATTTA





UU

AATATGTT







IL6_758
UGGUCAGAA
1472
GGACATTCCTCACTGTGGT
1672
mouse



AAUAUAUCC

CAGAAAATATATCCTGTT





UG

GTCAGGTA







IL6_1090
UAUAAUGU
1473
TTTGTGATGTATTTTTATA
1673
mouse



UUAGACUGU

ATGTTTAGACTGTCTTCAA





CUU

ACAAATA







IL6_979
UUGAUAUA
1474
AACCTAAAAATCTATTTG
1674
mouse



AAUAUUCUG

ATATAAATATTCTGTTACC





UUA

TAGCCAGA







IL6_916
UUUAUGAA
1475
TTGATATTTATTATTTTTA
1675
mouse



GUGUCACUU

TGAAGTGTCACTTGAAAT





GAA

GTTATATG







IL6_328
GCAGAAAAC
1476
AACGATGATGCACTTGCA
1676
mouse



AAUCUGAAA

GAAAACAATCTGAAACTT





CU

CCAGAGATA







IL6_831
UUGGGACAC
1477
CTGACAATATGAATGTTG
1677
mouse



UAUUUUAA

GGACACTATTTTAATTATT





UUA

TTTAATTT







IL6_385
GGAUAUAA
1478
GGATGCTACCAAACTGGA
1678
mouse



UCAGGAAAU

TATAATCAGGAAATTTGC





UUG

CTATTGAAA







IL6_1087
UUUUAUAA
1479
ATCTTTGTGATGTATTTTT
1679
mouse



UGUUUAGAC

ATAATGTTTAGACTGTCTT





UGU

CAAACAA







IL6_249
UGUUCUCUG
1480
AGGCTTAATTACACATGTT
1680
mouse



GGAAAUCGU

CTCTGGGAAATCGTGGAA





GG

ATGAGAAA







IL6_670
GAAGAAUU
1481
ATCTTGAAATCACTTGAA
1681
mouse



UCUAAAAGU

GAATTTCTAAAAGTCACTT





CAC

TGAGATCT







IL6_653
UCAUCUUGA
1482
CCAAGACCATCCAATTCA
1682
mouse



AAUCACUUG

TCTTGAAATCACTTGAAG





AA

AATTTCTAA







IL6_283
UUGUGCAAU
1483
GAAATGAGAAAAGAGTTG
1683
mouse



GGCAAUUCU

TGCAATGGCAATTCTGATT





GA

GTATGAAC







IL6_532
AUCUUCAAC
1484
GAAACTCTAATTCATATCT
1684
mouse



CAAGAGGUA

TCAACCAAGAGGTAAAAG





AA

ATTTACAT







IL6_996
UUACCUAGC
1485
GATATAAATATTCTGTTAC
1685
mouse



CAGAUGGUU

CTAGCCAGATGGTTTCTTG





UC

GAATGTA







IL6_1032
UACCUCAAU
1486
TGGAATGTATAAGTTTAC
1686
mouse



GAAUUGCUA

CTCAATGAATTGCTAATTT





AU

AAATATGT







IL6_657
CUUGAAAUC
1487
GACCATCCAATTCATCTTG
1687
mouse



ACUUGAAGA

AAATCACTTGAAGAATTT





AU

CTAAAAGT







IL6_895
UUAUGAUU
1488
AAACTTTAAGTTAATTTAT
1688
mouse



GAUAUUUA

GATTGATATTTATTATTTT





UUAU

TATGAAG







IL6_400
AUUUGCCUA
1489
GGATATAATCAGGAAATT
1689
mouse



UUGAAAAU

TGCCTATTGAAAATTTCCT





UUC

CTGGTCTT







IL6_1014
UCUUGGAAU
1490
CCTAGCCAGATGGTTTCTT
1690
mouse



GUAUAAGU

GGAATGTATAAGTTTACC





UUA

TCAATGAA







IL6_866
UAAUUUAA
1491
TTTTTAATTTATTGATAAT
1691
mouse



AUAAGUAA

TTAAATAAGTAAACTTTA





ACUU

AGTTAATT







IL6_339
UCUGAAACU
1492
ACTTGCAGAAAACAATCT
1692
mouse



UCCAGAGAU

GAAACTTCCAGAGATACA





AC

AAGAAATGA







IL6_233
GAGGCUUAA
1493
CCACTTCACAAGTCGGAG
1693
mouse



UUACACAUG

GCTTAATTACACATGTTCT





UU

CTGGGAAA







IL6_877
AGUAAACUU
1494
TTGATAATTTAAATAAGT
1694
mouse



UAAGUUAA

AAACTTTAAGTTAATTTAT





UUU

GATTGATA
















TABLE 11C







Host target FURIN - 20 nucleotide targets and 45 nucleotide gene


target regions














SEQ

SEQ



SEQUENCE

ID

ID



ID
20 nt Sequence
NO:
45 nt Gene Region
NO:
Species





FURIN_4183
AUGGACAUGAG
1695
TGCTGGTTCTATTTAATGGACAT
1795
human



AUAAUGUUA

GAGATAATGTTAGAGGTTTTAA







FURIN_3561
UUUAGAUGCUG
1696
TTGTGATTATTTCACTTTAGATG
1796
human



AUGAUUUGU

CTGATGATTTGTTTTTGTATTT







FURIN_3555
UUUCACUUUAG
1697
TTCACTTTGTGATTATTTCACTTT
1797
human



AUGCUGAUG

AGATGCTGATGATTTGTTTTT







FURIN_3563
UAGAUGCUGAU
1698
GTGATTATTTCACTTTAGATGCT
1798
human



GAUUUGUUU

GATGATTTGTTTTTGTATTTTT







FURIN_3529
GAGGAUAUAUU
1699
TCTCAGGGGCTGTTTGAGGATAT
1799
human



UUCACUUUG

ATTTTCACTTTGTGATTATTTC







FURIN_4161
CCAGCAUUGCU
1700
GTAATTTAAACAGGCCCAGCATT
1800
human



GGUUCUAUU

GCTGGTTCTATTTAATGGACAT







FURIN_3537
AUUUUCACUUU
1701
GCTGTTTGAGGATATATTTTCAC
1801
human



GUGAUUAUU

TTTGTGATTATTTCACTTTAGA







FURIN_1873
GCCUUCAUGAC
1702
GGGTTTAATGACTGGGCCTTCAT
1802
human



AACUCAUUC

GACAACTCATTCCTGGGATGAG







FURIN_3545
UUUGUGAUUAU
1703
AGGATATATTTTCACTTTGTGAT
1803
human



UUCACUUUA

TATTTCACTTTAGATGCTGATG







FURIN_3525
GUUUGAGGAUA
1704
GGGATCTCAGGGGCTGTTTGAGG
1804
human



UAUUUUCAC

ATATATTTTCACTTTGTGATTA







FURIN_4184
UGGACAUGAGA
1705
GCTGGTTCTATTTAATGGACATG
1805
human



UAAUGUUAG

AGATAATGTTAGAGGTTTTAAA







FURIN_3995
UCUGGGAGUCC
1706
ATCAGTCCCCTCCCATCTGGGAG
1806
human



CCUUUUCUU

TCCCCTTTTCTTTTCTACCCTA







FURIN_4152
UAAACAGGCCC
1707
TTTTTTCTTGTAATTTAAACAGG
1807
human



AGCAUUGCU

CCCAGCATTGCTGGTTCTATTT







FURIN_1878
CAUGACAACUC
1708
TAATGACTGGGCCTTCATGACAA
1808
human



AUUCCUGGG

CTCATTCCTGGGATGAGGATCC







FURIN_4192
AGAUAAUGUUA
1709
TATTTAATGGACATGAGATAATG
1809
human



GAGGUUUUA

TTAGAGGTTTTAAAGTGATTAA







FURIN_1969
ACCAAGUUCAC
1710
AACTATGGGACGCTGACCAAGTT
1810
human



CCUCGUACU

CACCCTCGTACTCTATGGCACC







FURIN_312
AGCAGCAACAG
1711
GTTGCTATGGGTGGTAGCAGCAA
1811
human



GAACCUUGG

CAGGAACCTTGGTCCTGCTAGC







FURIN_3538
UUUUCACUUUG
1712
CTGTTTGAGGATATATTTTCACT
1812
human



UGAUUAUUU

TTGTGATTATTTCACTTTAGAT







FURIN_4193
GAUAAUGUUAG
1713
ATTTAATGGACATGAGATAATGT
1813
human



AGGUUUUAA

TAGAGGTTTTAAAGTGATTAAA







FURIN_3957
UUUGCACCCCU
1714
TCTTCTGACGTGCCTTTTGCACC
1814
human



CCCAUUAGG

CCTCCCATTAGGACAATCAGTC







FURIN_1925
UAGAGAUUGAA
1715
CTGGCGAGTGGGTCCTAGAGATT
1815
human



AACACCAGC

GAAAACACCAGCGAAGCCAACA







FURIN_2894
AAAGGAGUGAA
1716
CCCTTCCATGTGGAGAAAGGAGT
1816
human



ACCUUUAGG

GAAACCTTTAGGGCAGCTTGCC







FURIN_4117
CUGGGUUGGUG
1717
TGGTTTTGTAAGATGCTGGGTTG
1817
human



CACAGUGAU

GTGCACAGTGATTTTTTTCTTG







FURIN_3534
UAUAUUUUCAC
1718
GGGGCTGTTTGAGGATATATTTT
1818
human



UUUGUGAUU

CACTTTGTGATTATTTCACTTT







FURIN_4150
UUUAAACAGGC
1719
ATTTTTTTCTTGTAATTTAAACAG
1819
human



CCAGCAUUG

GCCCAGCATTGCTGGTTCTAT







FURIN_3929
CCCUCAAACCU
1720
TGACCTGTCATGCCCCCCTCAAA
1820
human



CCUCUUCUG

CCTCCTCTTCTGACGTGCCTTT







FURIN_3560
CUUUAGAUGCU
1721
TTTGTGATTATTTCACTTTAGATG
1821
human



GAUGAUUUG

CTGATGATTTGTTTTTGTATT







FURIN_4100
GCUGGUUUUGU
1722
CTCGTGGCCAGCCCGGCTGGTTT
1822
human



AAGAUGCUG

TGTAAGATGCTGGGTTGGTGCA







FURIN_712
CACGGCAUUGU
1723
CAGGGCTACACAGGGCACGGCA
1823
human



GGUCUCCAU

TTGTGGTCTCCATTCTGGACGAT







FURIN_3541
UCACUUUGUGA
1724
TTTGAGGATATATTTTCACTTTGT
1824
human



UUAUUUCAC

GATTATTTCACTTTAGATGCT







FURIN_4169
GCUGGUUCUAU
1725
AACAGGCCCAGCATTGCTGGTTC
1825
human



UUAAUGGAC

TATTTAATGGACATGAGATAAT







FURIN_1303
AGCAGUGGCAA
1726
CTGGCCACGACCTACAGCAGTG
1826
human



CCAGAAUGA

GCAACCAGAATGAGAAGCAGATC







FURIN_765
CUUGGCAGGCA
1727
GAAGAACCACCCGGACTTGGCA
1827
human



AUUAUGAUC

GGCAATTATGATCCTGGGGCCAG







FURIN_1942
AGCGAAGCCAA
1728
GAGATTGAAAACACCAGCGAAG
1828
human



CAACUAUGG

CCAACAACTATGGGACGCTGACC







FURIN_1945
GAAGCCAACAA
1729
ATTGAAAACACCAGCGAAGCCA
1829
human



CUAUGGGAC

ACAACTATGGGACGCTGACCAAG







FURIN_2780
GGAGACUGCUU
1730
GGAGGCAAGAGGGGTGGAGACT
1830
human



CCCAUCCUA

GCTTCCCATCCTACCCTCGGGCC







FURIN_3827
UCAUAGGUCAC
1731
CGCCATGCCGGGGGTTCATAGGT
1831
human



UGGCUCUCC

CACTGGCTCTCCAAGTGCCAGA







FURIN_3547
UGUGAUUAUUU
1732
GATATATTTTCACTTTGTGATTAT
1832
human



CACUUUAGA

TTCACTTTAGATGCTGATGAT







FURIN_3559
ACUUUAGAUGC
1733
CTTTGTGATTATTTCACTTTAGAT
1833
human



UGAUGAUUU

GCTGATGATTTGTTTTTGTAT







FURIN_4177
UAUUUAAUGGA
1734
CAGCATTGCTGGTTCTATTTAAT
1834
human



CAUGAGAUA

GGACATGAGATAATGTTAGAGG







FURIN_2158
UAUAGCACCGA
1735
GTCCTCGATACGCACTATAGCAC
1835
human



GAAUGACGU

CGAGAATGACGTGGAGACCATC







FURIN_4165
CAUUGCUGGUU
1736
TTTAAACAGGCCCAGCATTGCTG
1836
human



CUAUUUAAU

GTTCTATTTAATGGACATGAGA







FURIN_4186
GACAUGAGAUA
1737
TGGTTCTATTTAATGGACATGAG
1837
human



AUGUUAGAG

ATAATGTTAGAGGTTTTAAAGT







FURIN_779
AUGAUCCUGGG
1738
ACTTGGCAGGCAATTATGATCCT
1838
human



GCCAGUUUU

GGGGCCAGTTTTGATGTCAATG







FURIN_1871
GGGCCUUCAUG
1739
ATGGGTTTAATGACTGGGCCTTC
1839
human



ACAACUCAU

ATGACAACTCATTCCTGGGATG







FURIN_3552
UUAUUUCACUU
1740
ATTTTCACTTTGTGATTATTTCAC
1840
human



UAGAUGCUG

TTTAGATGCTGATGATTTGTT







FURIN_4180
UUAAUGGACAU
1741
CATTGCTGGTTCTATTTAATGGA
1841
human



GAGAUAAUG

CATGAGATAATGTTAGAGGTTT







FURIN_1429
GCCAAUAAGAA
1742
GCTCTCACCCTGGAGGCCAATAA
1842
human



CCUCACAUG

GAACCTCACATGGCGGGACATG







FURIN_1654
AAAGACAUCGG
1743
ATCCTCACCGAGCCCAAAGACAT
1843
human



GAAACGGCU

CGGGAAACGGCTCGAGGTGCGG







FURIN_3968
CCCAUUAGGAC
1744
GCCTTTTGCACCCCTCCCATTAG
1844
human



AAUCAGUCC

GACAATCAGTCCCCTCCCATCT







FURIN_1855
GAUGGGUUUAA
1745
CATGACTACTCCGCAGATGGGTT
1845
human



UGACUGGGC

TAATGACTGGGCCTTCATGACA







FURIN_3513
AUCUCAGGGGC
1746
CTTTCCCCTGTGGGGATCTCAGG
1846
human



UGUUUGAGG

GGCTGTTTGAGGATATATTTTC







FURIN_4108
UGUAAGAUGCU
1747
CAGCCCGGCTGGTTTTGTAAGAT
1847
human



GGGUUGGUG

GCTGGGTTGGTGCACAGTGATT







FURIN_4170
CUGGUUCUAUU
1748
ACAGGCCCAGCATTGCTGGTTCT
1848
human



UAAUGGACA

ATTTAATGGACATGAGATAATG







FURIN_367
UUCACCAACAC
1749
CAGGGCCAGAAGGTCTTCACCA
1849
human



GUGGGCUGU

ACACGTGGGCTGTGCGCATCCCT







FURIN_2492
UGCGCUCUGGC
1750
TCCTGGTCCTGCAGCTGCGCTCT
1850
human



UUUAGUUUU

GGCTTTAGTTTTCGGGGGGTGA







FURIN_2882
UUCCAUGUGGA
1751
CACCCTCAGCACCCCTTCCATGT
1851
human



GAAAGGAGU

GGAGAAAGGAGTGAAACCTTTA







FURIN_4175
UCUAUUUAAUG
1752
CCCAGCATTGCTGGTTCTATTTA
1852
human



GACAUGAGA

ATGGACATGAGATAATGTTAGA







FURIN_4201
UAGAGGUUUUA
1753
GACATGAGATAATGTTAGAGGTT
1853
human



AAGUGAUUA

TTAAAGTGATTAAACGTGCAGA







FURIN_749
AGAAGAACCAC
1754
TGGACGATGGCATCGAGAAGAA
1854
human



CCGGACUUG

CCACCCGGACTTGGCAGGCAATT







FURIN_3523
CUGUUUGAGGA
1755
TGGGGATCTCAGGGGCTGTTTGA
1855
human



UAUAUUUUC

GGATATATTTTCACTTTGTGAT







FURIN_1856
AUGGGUUUAAU
1756
ATGACTACTCCGCAGATGGGTTT
1856
human



GACUGGGCC

AATGACTGGGCCTTCATGACAA







FURIN_1859
GGUUUAAUGAC
1757
ACTACTCCGCAGATGGGTTTAAT
1857
human



UGGGCCUUC

GACTGGGCCTTCATGACAACTC







FURIN_2638
UUUAUCAAAGA
1758
GGCGAGAGGACCGCCTTTATCA
1858
human



CCAGAGCGC

AAGACCAGAGCGCCCTCTGATGA







FURIN_3516
UCAGGGGCUGU
1759
TCCCCTGTGGGGATCTCAGGGGC
1859
human



UUGAGGAUA

TGTTTGAGGATATATTTTCACT







FURIN_3554
AUUUCACUUUA
1760
TTTCACTTTGTGATTATTTCACTT
1860
human



GAUGCUGAU

TAGATGCTGATGATTTGTTTT







FURIN_1936
AACACCAGCGA
1761
GTCCTAGAGATTGAAAACACCA
1861
human



AGCCAACAA

GCGAAGCCAACAACTATGGGACG







FURIN_2458
CUGGUCUUCGU
1762
TGCGCCTTCATCGTGCTGGTCTT
1862
human



CACUGUCUU

CGTCACTGTCTTCCTGGTCCTG







FURIN_313
GCAGCAACAGG
1763
TTGCTATGGGTGGTAGCAGCAAC
1863
human



AACCUUGGU

AGGAACCTTGGTCCTGCTAGCA







FURIN_2520
GAAGGUGUACA
1764
TAGTTTTCGGGGGGTGAAGGTGT
1864
human



CCAUGGACC

ACACCATGGACCGTGGCCTCAT







FURIN_1310
GCAACCAGAAU
1765
CGACCTACAGCAGTGGCAACCA
1865
human



GAGAAGCAG

GAATGAGAAGCAGATCGTGACGA







FURIN_1752
CACCCUGUCCU
1766
CGCTCAGGCGCGGCTCACCCTGT
1866
human



AUAAUCGCC

CCTATAATCGCCGTGGCGACCT







FURIN_4166
AUUGCUGGUUC
1767
TTAAACAGGCCCAGCATTGCTGG
1867
human



UAUUUAAUG

TTCTATTTAATGGACATGAGAT







FURIN_834
GUACACACAGA
1768
TGACCCCCAGCCTCGGTACACAC
1868
human



UGAAUGACA

AGATGAATGACAACAGGCACGG







FURIN_3517
CAGGGGCUGUU
1769
CCCCTGTGGGGATCTCAGGGGCT
1869
human



UGAGGAUAU

GTTTGAGGATATATTTTCACTT







FURIN_3550
GAUUAUUUCAC
1770
ATATTTTCACTTTGTGATTATTTC
1870
human



UUUAGAUGC

ACTTTAGATGCTGATGATTTG







FURIN_2694
UCCCCUCCUUG
1771
ACCCCCTCAAGCCAATCCCCTCC
1871
human



GGCACUUUU

TTGGGCACTTTTTAATTCACCA







FURIN_578
UGGCAAAGCGA
1772
GGCTGGAACAGCAGGTGGCAAA
1872
human



CGGACUAAA

GCGACGGACTAAACGGGACGTGT







FURIN_1246
UUUGGCAACGU
1773
AGCAGCGCCACGCAGTTTGGCA
1873
human



GCCGUGGUA

ACGTGCCGTGGTACAGCGAGGCC







FURIN_1425
GGAGGCCAAUA
1774
CATTGCTCTCACCCTGGAGGCCA
1874
human



AGAACCUCA

ATAAGAACCTCACATGGCGGGA







FURIN_1018
AUCCACAUCUA
1775
CTGAACCCCAACCACATCCACAT
1875
human



CAGUGCCAG

CTACAGTGCCAGCTGGGGCCCC







FURIN_1858
GGGUUUAAUGA
1776
GACTACTCCGCAGATGGGTTTAA
1876
human



CUGGGCCUU

TGACTGGGCCTTCATGACAACT







FURIN_1924
CUAGAGAUUGA
1777
TCTGGCGAGTGGGTCCTAGAGAT
1877
human



AAACACCAG

TGAAAACACCAGCGAAGCCAAC







FURIN_293
CCUGGUUGCUA
1778
CCATGGAGCTGAGGCCCTGGTTG
1878
human



UGGGUGGUA

CTATGGGTGGTAGCAGCAACAG







FURIN_790
GCCAGUUUUGA
1779
AATTATGATCCTGGGGCCAGTTT
1879
human



UGUCAAUGA

TGATGTCAATGACCAGGACCCT







FURIN_962
AUGGCGAGGUG
1780
GGGTGCGCATGCTGGATGGCGA
1880
human



ACAGAUGCA

GGTGACAGATGCAGTGGAGGCAC







FURIN_1757
UGUCCUAUAAU
1781
AGGCGCGGCTCACCCTGTCCTAT
1881
human



CGCCGUGGC

AATCGCCGTGGCGACCTGGCCA







FURIN_1848
CUCCGCAGAUG
1782
CAGGCCACATGACTACTCCGCAG
1882
human



GGUUUAAUG

ATGGGTTTAATGACTGGGCCTT







FURIN_3020
GUCCCUCUAAA
1783
CTCTTGCCCTTCCCTGTCCCTCTA
1883
human



GCAAUAAUG

AAGCAATAATGGTCCCATCCA







FURIN_3511
GGAUCUCAGGG
1784
TGCTTTCCCCTGTGGGGATCTCA
1884
human



GCUGUUUGA

GGGGCTGTTTGAGGATATATTT







FURIN_760
CCGGACUUGGC
1785
ATCGAGAAGAACCACCCGGACT
1885
human



AGGCAAUUA

TGGCAGGCAATTATGATCCTGGG







FURIN_770
CAGGCAAUUAU
1786
ACCACCCGGACTTGGCAGGCAA
1886
human



GAUCCUGGG

TTATGATCCTGGGGCCAGTTTTG







FURIN_827
AGCCUCGGUAC
1787
AGGACCCTGACCCCCAGCCTCGG
1887
human



ACACAGAUG

TACACACAGATGAATGACAACA







FURIN_1199
GCUACACCAAC
1788
GCTGCAACTGCGACGGCTACACC
1888
human



AGUAUCUAC

AACAGTATCTACACGCTGTCCA







FURIN_2459
UGGUCUUCGUC
1789
GCGCCTTCATCGTGCTGGTCTTC
1889
human



ACUGUCUUC

GTCACTGTCTTCCTGGTCCTGC







FURIN_4106
UUUGUAAGAUG
1790
GCCAGCCCGGCTGGTTTTGTAAG
1890
human



CUGGGUUGG

ATGCTGGGTTGGTGCACAGTGA







FURIN_4173
GUUCUAUUUAA
1791
GGCCCAGCATTGCTGGTTCTATT
1891
human



UGGACAUGA

TAATGGACATGAGATAATGTTA







FURIN_4199
GUUAGAGGUUU
1792
TGGACATGAGATAATGTTAGAG
1892
human



UAAAGUGAU

GTTTTAAAGTGATTAAACGTGCA







FURIN_773
GCAAUUAUGAU
1793
ACCCGGACTTGGCAGGCAATTAT
1893
human



CCUGGGGCC

GATCCTGGGGCCAGTTTTGATG







FURIN_786
UGGGGCCAGUU
1794
AGGCAATTATGATCCTGGGGCCA
1894
human



UUGAUGUCA

GTTTTGATGTCAATGACCAGGA
















TABLE 11D







Host target ACE2-20 nucleotide targets and 45 nucleotide gene target regions












SE-

SEQ

SEQ



QUENCE

ID

ID



ID
20 nt Sequence
NO:
45 nt Gene Region
NO:
Species





ACE2_
UUGGAUUUCAUAC
1895
TGACATAGATACTCTTTGGATTT
2095
human


52
CAUGUGG

CATACCATGTGGAGGCTTTCTT







ACE2_
UGUCAAAACUAUG
1896
AAAGATATCATTAAATGTCAAA
2096
human


2730
ACUCUGU

ACTATGACTCTGTTCAGAAAAAA







ACE2_
CCUAGCAUUGGAA
1897
ATCAGAACCCTGGACCCTAGCAT
2097
human


1918
AAUGUUG

TGGAAAATGTTGTAGGAGCAAA







ACE2_
AUGUAAAUGUUAA
1898
AGGTGATTTTGTTGTATGTAAAT
2098
human


2674
UUUCAUG

GTTAATTTCATGGTATAGAAAA







ACE2_
UCUGUUUCUUAAU
1899
GGATTTGACTTCTGTTCTGTTTCT
2099
human


2849
AAGGAUU

TAATAAGGATTTTGTATTAGA







ACE2_
CAGGAGUUGACAU
1900
ATGGCTACAGAGGATCAGGAGT
2100
human


30
AGAUACU

TGACATAGATACTCTTTGGATTT







ACE2_
AAUGAUUACUCAU
1901
CTGTTCCATGTTTCTAATGATTA
2101
human


1739
UCAUUCG

CTCATTCATTCGATATTACACA







ACE2_
AUCGAUAUUAGCA
1902
AATCCTTATGCCTCCATCGATAT
2102
human


2567
AAGGAGA

TAGCAAAGGAGAAAATAATCCA







ACE2_
CAUGGUAUAGAAA
1903
TGTAAATGTTAATTTCATGGTAT
2103
human


2690
AUAUAAG

AGAAAATATAAGATGATAAAGA







ACE2_
UUUGAAACCAAGA
1904
TGTGCGAGTGGCTAATTTGAAAC
2104
human


2239
AUCUCCU

CAAGAATCTCCTTTAATTTCTT







ACE2_
AUGGGAGUGAUAG
1905
GTTTTTGGAGTTGTGATGGGAGT
2105
human


2465
UGGUUGG

GATAGTGGTTGGCATTGTCATC







ACE2_
UUGAAGAGAUUAA
1906
ATGTGGAACATACCTTTGAAGAG
2106
human


906
ACCAUUA

ATTAAACCATTATATGAACATC







ACE2_
UUUGUUGUAUGUA
1907
TCCTCTTGAGGTGATTTTGTTGT
2107
human


2666
AAUGUUA

ATGTAAATGTTAATTTCATGGT







ACE2_
UUCAUGGUAUAGA
1908
TATGTAAATGTTAATTTCATGGT
2108
human


2688
AAAUAUA

ATAGAAAATATAAGATGATAAA







ACE2_
CUCUGGAUUUGAC
1909
AGTATTTATTTCTGTCTCTGGATT
2109
human


2830
UUCUGUU

TGACTTCTGTTCTGTTTCTTA







ACE2_
UAAACCAUUAUAU
1910
TACCTTTGAAGAGATTAAACCAT
2110
human


916
GAACAUC

TATATGAACATCTTCATGCCTA







ACE2_
UUCCUCUUGAGGU
1911
GAAAAATCTATGTTTTTCCTCTT
2111
human


2650
GAUUUUG

GAGGTGATTTTGTTGTATGTAA







ACE2_
CAUUAAAUGUCAA
1912
AGATGATAAAGATATCATTAAAT
2112
human


2723
AACUAUG

GTCAAAACTATGACTCTGTTCA







ACE2_
GGAGAAAAUAAUC
1913
ATCGATATTAGCAAAGGAGAAA
2113
human


2582
CAGGAUU

ATAATCCAGGATTCCAAAACACT







ACE2_
UGGCCAAGGAGAG
1914
TGTCCAAAGACAACATGGCCAA
2114
human


2778
AGCAUCU

GGAGAGAGCATCTTCATTGACAT







ACE2_
UCAGGGAUAAUCU
1915
GGTCTCACAGGCTGTTCAGGGAT
2115
human


2918
AAAUGUA

AATCTAAATGTAAATGTCTGTT







ACE2_
UUCAAGAAGACAA
1916
TTCTGTCACCCGATTTTCAAGAA
2116
human


1500
UGAAACA

GACAATGAAACAGAAATAAACT







ACE2_
AGGACCCUUUACC
1917
ATTCGATATTACACAAGGACCCT
2117
human


1769
AAUUCCA

TTACCAATTCCAGTTTCAAGAA







ACE2_
UGUAGGAGCAAAG
1918
AGCATTGGAAAATGTTGTAGGA
2118
human


1936
AACAUGA

GCAAAGAACATGAATGTAAGGCC







ACE2_
AGGAGCAAAGAAC
1919
ATTGGAAAATGTTGTAGGAGCA
2119
human


1939
AUGAAUG

AAGAACATGAATGTAAGGCCACT







ACE2_
UGGAGAAAAUCCU
1920
AAATAAAGCAAGAAGTGGAGAA
2120
human


2545
UAUGCCU

AATCCTTATGCCTCCATCGATAT







ACE2_
GGUGAUUUUGUUG
1921
TGTTTTTCCTCTTGAGGTGATTTT
2121
human


2660
UAUGUAA

GTTGTATGTAAATGTTAATTT







ACE2_
UUCUGCAGCCACA
1922
GGAAATCATGTCACTTTCTGCAG
2122
human


1447
CCUAAGC

CCACACCTAAGCATTTAAAATC







ACE2_
AAAACUAUGACUC
1923
ATATCATTAAATGTCAAAACTAT
2123
human


2734
UGUUCAG

GACTCTGTTCAGAAAAAAAATT







ACE2_
AUCUAAAUGUAAA
1924
GGCTGTTCAGGGATAATCTAAAT
2124
human


2927
UGUCUGU

GTAAATGTCTGTTGAATTTCTG







ACE2_
UUAGUCUAGGGAA
1925
TCTCATGAGGAGGTTTTAGTCTA
2125
human


167
AGUCAUU

GGGAAAGTCATTCAGTGGATGT







ACE2_
GGAGCAAGUGUUG
1926
CAAGGATATATCATTGGAGCAA
2126
human


2982
GAUCUUG

GTGTTGGATCTTGTATGGAATAT







ACE2_
UUUGACUUCUGUU
1927
ATTTCTGTCTCTGGATTTGACTTC
2127
human


2837
CUGUUUC

TGTTCTGTTTCTTAATAAGGA







ACE2_
UUUUGUAUUAGAG
1928
GTTTCTTAATAAGGATTTTGTAT
2128
human


2867
UAUAUUA

TAGAGTATATTAGGGAAAGTGT







ACE2_
GAGGCCAUUAUAU
1929
GGTCGGCAAGCAGCTGAGGCCA
2129
human


745
GAAGAGU

TTATATGAAGAGTATGTGGTCTT







ACE2_
CCAAGAAUCUCCU
1930
GTGGCTAATTTGAAACCAAGAAT
2130
human


2246
UUAAUUU

CTCCTTTAATTTCTTTGTCACT







ACE2_
GAUGAUGUUCAGA
1931
GGATTCCAAAACACTGATGATGT
2131
human


2612
CCUCCUU

TCAGACCTCCTTTTAGAAAAAT







ACE2_
UCUGGAUUUGACU
1932
GTATTTATTTCTGTCTCTGGATTT
2132
human


2831
UCUGUUC

GACTTCTGTTCTGTTTCTTAA







ACE2_
UCCACCAUUGAGG
1933
GTAACTGCTGCTCAGTCCACCAT
2133
human


272
AACAGGC

TGAGGAACAGGCCAAGACATTT







ACE2_
UUAUUACUUGAAC
1934
AATCCACAAGAATGCTTATTACT
2134
human


641
CAGGUUU

TGAACCAGGTTTGAATGAAATA







ACE2_
UGAACCAGGUUUG
1935
AGAATGCTTATTACTTGAACCAG
2135
human


649
AAUGAAA

GTTTGAATGAAATAATGGCAAA







ACE2_
UGUGGGAUGGAGU
1936
GAACAAGAATTCTTTTGTGGGAT
2136
human


2026
ACCGACU

GGAGTACCGACTGGAGTCCATA







ACE2_
UGAGGUGAUUUUG
1937
CTATGTTTTTCCTCTTGAGGTGAT
2137
human


2657
UUGUAUG

TTTGTTGTATGTAAATGTTAA







ACE2_
UGUAUUUGCUCAC
1938
GTCTCTTAAATCTTTTGTATTTGC
2138
human


3435
AGUGUUU

TCACAGTGTTTGAGCAGTGCT







ACE2_
AUUACUUGAACCA
1939
TCCACAAGAATGCTTATTACTTG
2139
human


643
GGUUUGA

AACCAGGTTTGAATGAAATAAT







ACE2_
AUGGCAAGAGCAA
1940
GTCTTGAAAAATGAGATGGCAA
2140
human


785
AUCAUUA

GAGCAAATCATTATGAGGACTAT







ACE2_
UGGACAGAAACCA
1941
TTTGACAGTTCCCTTTGGACAGA
2141
human


1072
AACAUAG

AACCAAACATAGATGTTACTGA







ACE2_
UGUAUUAGAGUAU
1942
TCTTAATAAGGATTTTGTATTAG
2142
human


2870
AUUAGGG

AGTATATTAGGGAAAGTGTGTA







ACE2_
AUAUCAUUGGAGC
1943
GTTGAAAACAAGGATATATCATT
2143
human


2974
AAGUGUU

GGAGCAAGTGTTGGATCTTGTA







ACE2_
GUAAAUGUUAAUU
1944
GTGATTTTGTTGTATGTAAATGT
2144
human


2676
UCAUGGU

TAATTTCATGGTATAGAAAATA







ACE2_
CUUAAUAAGGAUU
1945
ACTTCTGTTCTGTTTCTTAATAAG
2145
human


2856
UUGUAUU

GATTTTGTATTAGAGTATATT







ACE2_
CCCAAGUUCAAAG
1946
TTGAATAGCGCCCAACCCAAGTT
2146
human


122
GCUGAUA

CAAAGGCTGATAAGAGAGAAAA







ACE2_
UCUGCCAUUUACU
1947
CACGATTGTTGGGACTCTGCCAT
2147
human


1564
UACAUGU

TTACTTACATGTTAGAGAAGTG







ACE2_
AAGGCCACUGCUC
1948
AAAGAACATGAATGTAAGGCCA
2148
human


1960
AACUACU

CTGCTCAACTACTTTGAGCCCTT







ACE2_
GGGACGAUGUCAA
1949
GATCTTGGCTCACAGGGGACGAT
2149
human


212
GCUCUUC

GTCAAGCTCTTCCTGGCTCCTT







ACE2_
CACGAAGCCGAAG
1950
TTGGACAAGTTTAACCACGAAGC
2150
human


317
ACCUGUU

CGAAGACCTGTTCTATCAAAGT







ACE2_
ACAAGAAAUUCAG
1951
CCAAATGTATCCACTACAAGAA
2151
human


472
AAUCUCA

ATTCAGAATCTCACAGTCAAGCT







ACE2_
UGUGUCUGAUAUC
1952
CACTGCACCTAAAAATGTGTCTG
2152
human


2287
AUUCCUA

ATATCATTCCTAGAACTGAAGT







ACE2_
CAGGGAUAAUCUA
1953
GTCTCACAGGCTGTTCAGGGATA
2153
human


2919
AAUGUAA

ATCTAAATGTAAATGTCTGTTG







ACE2_
CUGAUAGAAACUC
1954
ACTCCCAGAGCATGCCTGATAGA
2154
human


3334
AUUUCUA

AACTCATTTCTACTGTTCTCTA







ACE2_
UAUGAUAUGGCAU
1955
ATGGGGCATATCCAGTATGATAT
2155
human


1358
AUGCUGC

GGCATATGCTGCACAACCTTTT







ACE2_
CACGAUUGUUGGG
1956
GCTCAAACAAGCACTCACGATTG
2156
human


1549
ACUCUGC

TTGGGACTCTGCCATTTACTTA







ACE2_
GAUGUUCAGACCU
1957
TTCCAAAACACTGATGATGTTCA
2157
human


2615
CCUUUUA

GACCTCCTTTTAGAAAAATCTA







ACE2_
AUAAGAUGAUAAA
1958
CATGGTATAGAAAATATAAGAT
2158
human


2705
GAUAUCA

GATAAAGATATCATTAAATGTCA







ACE2_
UGAUAAAGAUAUC
1959
ATAGAAAATATAAGATGATAAA
2159
human


2711
AUUAAAU

GATATCATTAAATGTCAAAACTA







ACE2_
GUUUCUUAAUAAG
1960
TTTGACTTCTGTTCTGTTTCTTAA
2160
human


2852
GAUUUUG

TAAGGATTTTGTATTAGAGTA







ACE2_
UUUGUAUUAGAGU
1961
TTTCTTAATAAGGATTTTGTATT
2161
human


2868
AUAUUAG

AGAGTATATTAGGGAAAGTGTG







ACE2_
CUUGGAAUUAUAA
1962
AAAGTTCACTTGCTTCTTGGAAT
2162
human


357
CACCAAU

TATAACACCAATATTACTGAAG







ACE2_
AGCCGUAUCAAUG
1963
ATCAGGATGTCCCGGAGCCGTAT
2163
human


2342
AUGCUUU

CAATGATGCTTTCCGTCTGAAT







ACE2_
AUUUCUGUCUCUG
1964
TTGCTTTCAGTATTTATTTCTGTC
2164
human


2822
GAUUUGA

TCTGGATTTGACTTCTGTTCT







ACE2_
GAGCACAAAGCAG
1965
TGTTTGAGCAGTGCTGAGCACAA
2165
human


3465
ACACUCA

AGCAGACACTCAATAAATGCTA







ACE2_
AAAGAUAUCAUUA
1966
AAAATATAAGATGATAAAGATA
2166
human


2715
AAUGUCA

TCATTAAATGTCAAAACTATGAC







ACE2_
GUGACCUUGACUG
1967
CTTTCTTACTTCCACGTGACCTTG
2167
human


90
AGUUUUG

ACTGAGTTTTGAATAGCGCCC







ACE2_
UGUGGAACAUACC
1968
CCAGTTGATTGAAGATGTGGAAC
2168
human


892
UUUGAAG

ATACCTTTGAAGAGATTAAACC







ACE2_
UAUGCUAUGAGGC
1969
CGATCATCTGTTGCATATGCTAT
2169
human


2162
AGUACUU

GAGGCAGTACTTTTTAAAAGTA







ACE2_
UUCCAUAUGGCUG
1970
TAACCAGCCCCCTGTTTCCATAT
2170
human


2434
AUUGUUU

GGCTGATTGTTTTTGGAGTTGT







ACE2_
ACUACAAUGAGAG
1971
TGGCAAACAGTTTAGACTACAAT
2171
human


687
GCUCUGG

GAGAGGCTCTGGGCTTGGGAAA







ACE2_
AUUUGAAACCAAG
1972
ATGTGCGAGTGGCTAATTTGAAA
2172
human


2238
AAUCUCC

CCAAGAATCTCCTTTAATTTCT







ACE2_
UGUUGAAUUUCUG
1973
CTAAATGTAAATGTCTGTTGAAT
2173
human


2944
AAGUUGA

TTCTGAAGTTGAAAACAAGGAT







ACE2_
CCCAGUCUCUUAA
1974
CCTCTGAAGTGGGTACCCAGTCT
2174
human


3416
AUCUUUU

CTTAAATCTTTTGTATTTGCTC







ACE2_
GAUGGGAGUGAUA
1975
TGTTTTTGGAGTTGTGATGGGAG
2175
human


2464
GUGGUUG

TGATAGTGGTTGGCATTGTCAT







ACE2_
UGAUGAUGUUCAG
1976
AGGATTCCAAAACACTGATGAT
2176
human


2611
ACCUCCU

GTTCAGACCTCCTTTTAGAAAAA







ACE2_
UGCUUCUUGGAAU
1977
CTATCAAAGTTCACTTGCTTCTT
2177
human


352
UAUAACA

GGAATTATAACACCAATATTAC







ACE2_
CUAAAUGUAAAUG
1978
CTGTTCAGGGATAATCTAAATGT
2178
human


2929
UCUGUUG

AAATGTCTGTTGAATTTCTGAA







ACE2_
AAUGCUGGGGACA
1979
GTCCAAAACATGAATAATGCTG
2179
human


407
AAUGGUC

GGGACAAATGGTCTGCCTTTTTA







ACE2_
UUUUCAAGAAGAC
1980
TCTTCTGTCACCCGATTTTCAAG
2180
human


1498
AAUGAAA

AAGACAATGAAACAGAAATAAA







ACE2_
UCUUGGAGAUAAA
1981
AAGCCTAAAATCAGCTCTTGGAG
2181
human


2098
GCAUAUG

ATAAAGCATATGAATGGAACGA







ACE2_
AAUGAAAUGUACC
1982
TATGAATGGAACGACAATGAAA
2182
human


2129
UGUUCCG

TGTACCTGTTCCGATCATCTGTT







ACE2_
AAUAUAAGAUGAU
1983
TTTCATGGTATAGAAAATATAAG
2183
human


2702
AAAGAUA

ATGATAAAGATATCATTAAATG







ACE2_
UGUUCUGUUUCUU
1984
TCTGGATTTGACTTCTGTTCTGTT
2184
human


2846
AAUAAGG

TCTTAATAAGGATTTTGTATT







ACE2_
UUUGCCUACAGUG
1985
CAAGTACTATGGTGATTTGCCTA
2185
human


3156
AUGUUUG

CAGTGATGTTTGGAATCGATCA







ACE2_
AAUCUCAUGAGGA
1986
GCTGATAAGAGAGAAAATCTCA
2186
human


150
GGUUUUA

TGAGGAGGTTTTAGTCTAGGGAA







ACE2_
UAAGAUGAUAAAG
1987
ATGGTATAGAAAATATAAGATG
2187
human


2706
AUAUCAU

ATAAAGATATCATTAAATGTCAA







ACE2_
GAUGUUUGGAAUC
1988
TGATTTGCCTACAGTGATGTTTG
2188
human


3168
GAUCAUG

GAATCGATCATGCTTTCTTCAA







ACE2_
CCACACUUGCCCA
1989
TTTTAAAGGAACAGTCCACACTT
2189
human


447
AAUGUAU

GCCCAAATGTATCCACTACAAG







ACE2_
GAGACUAUGAAGU
1990
GGGATTATTGGAGAGGAGACTA
2190
human


831
AAAUGGG

TGAAGTAAATGGGGTAGATGGCT







ACE2_
CUUCAUUGACAUU
1991
CCAAGGAGAGAGCATCTTCATTG
2191
human


2796
GCUUUCA

ACATTGCTTTCAGTATTTATTT







ACE2_
AAAUGUCUGUUGA
1992
GGATAATCTAAATGTAAATGTCT
2192
human


2937
AUUUCUG

GTTGAATTTCTGAAGTTGAAAA







ACE2_
UGUAGCUGCAAGG
1993
GTGCCTGGGAACTGGTGTAGCTG
2193
human


3049
AUUGAGA

CAAGGATTGAGAATGGCATGCA







ACE2_
GUUGACAUAGAUA
1994
TACAGAGGATCAGGAGTTGACA
2194
human


35
CUCUUUG

TAGATACTCTTTGGATTTCATAC







ACE2_
UGUCCAAAACAUG
1995
TATTACTGAAGAGAATGTCCAAA
2195
human


391
AAUAAUG

ACATGAATAATGCTGGGGACAA







ACE2_
GAUGAUAAAGAUA
1996
GTATAGAAAATATAAGATGATA
2196
human


2709
UCAUUAA

AAGATATCATTAAATGTCAAAAC







ACE2_
UUGUAUUAGAGUA
1997
TTCTTAATAAGGATTTTGTATTA
2197
human


2869
UAUUAGG

GAGTATATTAGGGAAAGTGTGT







ACE2_
UUCACAGUAACUC
1998
GGATGACATGCTTTCTTCACAGT
2198
human


3124
AGUUCAA

AACTCAGTTCAAGTACTATGGT







ACE2_
UCAGGAGUUGACA
1999
CATGGCTACAGAGGATCAGGAG
2199
human


29
UAGAUAC

TTGACATAGATACTCTTTGGATT







ACE2_
UGUACUCUUUGAC
2000
GATTTTGGACAAATCTGTACTCT
2200
human


1050
AGUUCCC

TTGACAGTTCCCTTTGGACAGA







ACE2_
GGAGCUAAUGAAG
2001
TTTCTGCTAAGAAATGGAGCTAA
2201
human


1400
GAUUCCA

TGAAGGATTCCATGAAGCTGTT







ACE2_
UGAGCCCUUAUUU
2002
ACTGCTCAACTACTTTGAGCCCT
2202
human


1981
ACCUGGC

TATTTACCTGGCTGAAAGACCA







ACE2_
UGCUAUGAGGCAG
2003
ATCATCTGTTGCATATGCTATGA
2203
human


2164
UACUUUU

GGCAGTACTTTTTAAAAGTAAA







ACE2_
GUAUGUAAAUGUU
2004
TGAGGTGATTTTGTTGTATGTAA
2204
human


2672
AAUUUCA

ATGTTAATTTCATGGTATAGAA







ACE2_
UCUUCAUUGACAU
2005
GCCAAGGAGAGAGCATCTTCATT
2205
human


2795
UGCUUUC

GACATTGCTTTCAGTATTTATT







ACE2_
UUUGGUCUCACAG
2006
TAGGGAAAGTGTGTATTTGGTCT
2206
human


2900
GCUGUUC

CACAGGCTGTTCAGGGATAATC







ACE2_
UAAGAGAGAAAAU
2007
AAGTTCAAAGGCTGATAAGAGA
2207
human


140
CUCAUGA

GAAAATCTCATGAGGAGGTTTTA







ACE2_
CAUGAGAUGGGGC
2008
TTCCTGACAGCTCATCATGAGAT
2208
human


1337
AUAUCCA

GGGGCATATCCAGTATGATATG







ACE2_
UUCUAAUGAUUAC
2009
ATCTCTGTTCCATGTTTCTAATG
2209
human


1735
UCAUUCA

ATTACTCATTCATTCGATATTA







ACE2_
GUAUCAAUGAUGC
2010
GGATGTCCCGGAGCCGTATCAAT
2210
human


2346
UUUCCGU

GATGCTTTCCGTCTGAATGACA







ACE2_
GUUGAAAACAAGG
2011
TGTTGAATTTCTGAAGTTGAAAA
2211
human


2959
AUAUAUC

CAAGGATATATCATTGGAGCAA







ACE2_
GAAGAUGUGGAAC
2012
CGCGGCCAGTTGATTGAAGATGT
2212
human


887
AUACCUU

GGAACATACCTTTGAAGAGATT







ACE2_
UUUGAAGAGAUUA
2013
GATGTGGAACATACCTTTGAAGA
2213
human


905
AACCAUU

GATTAAACCATTATATGAACAT







ACE2_
AGAACAAGAAUUC
2014
CCTGGCTGAAAGACCAGAACAA
2214
human


2010
UUUUGUG

GAATTCTTTTGTGGGATGGAGTA







ACE2_
UAGCAAAGGAGAA
2015
TGCCTCCATCGATATTAGCAAAG
2215
human


2575
AAUAAUC

GAGAAAATAATCCAGGATTCCA







ACE2_
GAAAACAAGGAUA
2016
TGAATTTCTGAAGTTGAAAACAA
2216
human


2962
UAUCAUU

GGATATATCATTGGAGCAAGTG







ACE2_
CAUGCUUUCUUCA
2017
ATGTTTGGAATCGATCATGCTTT
2217
human


3184
AGGUGAC

CTTCAAGGTGACAGGTCTAAAG







ACE2_
AACCCAAGUUCAA
2018
TTTTGAATAGCGCCCAACCCAAG
2218
human


120
AGGCUGA

TTCAAAGGCTGATAAGAGAGAA







ACE2_
AUGAACAUCUUCA
2019
AGATTAAACCATTATATGAACAT
2219
human


927
UGCCUAU

CTTCATGCCTATGTGAGGGCAA







ACE2_
ACUGGGAUCAGAG
2020
GTCATCCTGATCTTCACTGGGAT
2220
human


2504
AUCGGAA

CAGAGATCGGAAGAAGAAAAAT







ACE2_
UCUUCAAGGUGAC
2021
GAATCGATCATGCTTTCTTCAAG
2221
human


3191
AGGUCUA

GTGACAGGTCTAAAGAGAGAAG







ACE2_
UCAGCAAAAUGGG
2022
TCAGCTGCAGGCTCTTCAGCAAA
2222
human


517
UCUUCAG

ATGGGTCTTCAGTGCTCTCAGA







ACE2_
GCAAACAGUUUAG
2023
TTGAATGAAATAATGGCAAACA
2223
human


674
ACUACAA

GTTTAGACTACAATGAGAGGCTC







ACE2_
AAACCAUUAUAUG
2024
ACCTTTGAAGAGATTAAACCATT
2224
human


917
AACAUCU

ATATGAACATCTTCATGCCTAT







ACE2_
UCUGUACUCUUUG
2025
TAGATTTTGGACAAATCTGTACT
2225
human


1048
ACAGUUC

CTTTGACAGTTCCCTTTGGACA







ACE2_
UUUGACAGUUCCC
2026
GACAAATCTGTACTCTTTGACAG
2226
human


1057
UUUGGAC

TTCCCTTTGGACAGAAACCAAA







ACE2_
GAAACAGAAAUAA
2027
TTTCAAGAAGACAATGAAACAG
2227
human


1514
ACUUCCU

AAATAAACTTCCTGCTCAAACAA







ACE2_
CAGUAUUUAUUUC
2028
CATTGACATTGCTTTCAGTATTT
2228
human


2814
UGUCUCU

ATTTCTGTCTCTGGATTTGACT







ACE2_
CAGUUCAAGUACU
2029
TTCTTCACAGTAACTCAGTTCAA
2229
human


3136
AUGGUGA

GTACTATGGTGATTTGCCTACA







ACE2_
GUCCAAAACAUGA
2030
ATTACTGAAGAGAATGTCCAAA
2230
human


392
AUAAUGC

ACATGAATAATGCTGGGGACAAA







ACE2_
UUGAUGAAUGCCU
2031
TATGTGAGGGCAAAGTTGATGA
2231
human


959
AUCCUUC

ATGCCTATCCTTCCTATATCAGT







ACE2_
UGCAUAUGCUAUG
2032
GTTCCGATCATCTGTTGCATATG
2232
human


2158
AGGCAGU

CTATGAGGCAGTACTTTTTAAA







ACE2_
UAUGCCUCCAUCG
2033
AGTGGAGAAAATCCTTATGCCTC
2233
human


2558
AUAUUAG

CATCGATATTAGCAAAGGAGAA







ACE2_
AGUUGACAUAGAU
2034
CTACAGAGGATCAGGAGTTGAC
2234
human


34
ACUCUUU

ATAGATACTCTTTGGATTTCATA







ACE2_
UUUAGUCUAGGGA
2035
ATCTCATGAGGAGGTTTTAGTCT
2235
human


166
AAGUCAU

AGGGAAAGTCATTCAGTGGATG







ACE2_
UCCACACUUGCCC
2036
TTTTTAAAGGAACAGTCCACACT
2236
human


446
AAAUGUA

TGCCCAAATGTATCCACTACAA







ACE2_
UCUUCUGUCACCC
2037
TTTAAAATCCATTGGTCTTCTGT
2237
human


1483
GAUUUUC

CACCCGATTTTCAAGAAGACAA







ACE2_
AUAGAAAAUAUAA
2038
TGTTAATTTCATGGTATAGAAAA
2238
human


2696
GAUGAUA

TATAAGATGATAAAGATATCAT







ACE2_
UAUGCUGCACAAC
2039
CAGTATGATATGGCATATGCTGC
2239
human


1370
CUUUUCU

ACAACCTTTTCTGCTAAGAAAT







ACE2_
UGGAUUUGACUUC
2040
ATTTATTTCTGTCTCTGGATTTGA
2240
human


2833
UGUUCUG

CTTCTGTTCTGTTTCTTAATA







ACE2_
GACUUCUGUUCUG
2041
TCTGTCTCTGGATTTGACTTCTGT
2241
human


2840
UUUCUUA

TCTGTTTCTTAATAAGGATTT







ACE2_
CUUUCAUUUAAUC
2042
GCATGCATTAGCTCACTTTCATT
2242
human


3087
CAUUGUC

TAATCCATTGTCAAGGATGACA







ACE2_
AAGGAUGACAUGC
2043
ATTTAATCCATTGTCAAGGATGA
2243
human


3107
UUUCUUC

CATGCTTTCTTCACAGTAACTC







ACE2_
AGGUAGAGGACAU
2044
AAGAATCCAGGGAACAGGTAGA
2244
human


3233
UGCUUUU

GGACATTGCTTTTTCACTTCCAA







ACE2_
UUUGUAUCUGUUG
2045
GAGGCCGAGAAGTTCTTTGTATC
2245
human


1160
GUCUUCC

TGTTGGTCTTCCTAATATGACT







ACE2_
AUUCCCAAAGACC
2046
GTCTTTAAAGGGGAAATTCCCAA
2246
human


1619
AGUGGAU

AGACCAGTGGATGAAAAAGTGG







ACE2_
AAGACCAGAACAA
2047
TATTTACCTGGCTGAAAGACCAG
2247
human


2004
GAAUUCU

AACAAGAATTCTTTTGTGGGAT







ACE2_
UAAAGCAUAUGAA
2048
ATCAGCTCTTGGAGATAAAGCAT
2248
human


2107
UGGAACG

ATGAATGGAACGACAATGAAAT







ACE2_
CUGGAUUUGACUU
2049
TATTTATTTCTGTCTCTGGATTTG
2249
human


2832
CUGUUCU

ACTTCTGTTCTGTTTCTTAAT







ACE2_
UAGGGAAAGUGUG
2050
TGTATTAGAGTATATTAGGGAAA
2250
human


2885
UAUUUGG

GTGTGTATTTGGTCTCACAGGC







ACE2_
GCAUGCAUUAGCU
2051
CAAGGATTGAGAATGGCATGCA
2251
human


3072
CACUUUC

TTAGCTCACTTTCATTTAATCCA







ACE2_
UUGGUCUUCCUAA
2052
AGTTCTTTGTATCTGTTGGTCTTC
2252
human


1170
UAUGACU

CTAATATGACTCAAGGATTCT







ACE2_
GUUUCUAAUGAUU
2053
GCATCTCTGTTCCATGTTTCTAAT
2253
human


1733
ACUCAUU

GATTACTCATTCATTCGATAT







ACE2_
UUACACAAGGACC
2054
CTCATTCATTCGATATTACACAA
2254
human


1762
CUUUACC

GGACCCTTTACCAATTCCAGTT







ACE2_
UUGAAACCAAGAA
2055
GTGCGAGTGGCTAATTTGAAACC
2255
human


2240
UCUCCUU

AAGAATCTCCTTTAATTTCTTT







ACE2_
UCUGAUAUCAUUC
2056
GCACCTAAAAATGTGTCTGATAT
2256
human


2291
CUAGAAC

CATTCCTAGAACTGAAGTTGAA







ACE2_
AGUGCCUGGGAAC
2057
ATCACTTGTAAGGACAGTGCCTG
2257
human


3033
UGGUGUA

GGAACTGGTGTAGCTGCAAGGA







ACE2_
UGAGAAUGGCAUG
2058
TGTAGCTGCAAGGATTGAGAAT
2258
human


3064
CAUUAGC

GGCATGCATTAGCTCACTTTCAT







ACE2_
UGCAUUAGCUCAC
2059
GGATTGAGAATGGCATGCATTA
2259
human










3075
UUUCAUU

GCTCACTTTCATTTAATCCATTG















ACE2_
UCACCCUCUGAAG
2060
ATTCCAACTGTATGTTCACCCTC
2260
human


3397
UGGGUAC

TGAAGTGGGTACCCAGTCTCTT







ACE2_
UGAGGAGGUUUUA
2061
AGAGAGAAAATCTCATGAGGAG
2261
human


157
GUCUAGG

GTTTTAGTCTAGGGAAAGTCATT







ACE2_
UUUGCUUGGUGAU
2062
ATGCCTCCCTGCTCATTTGCTTG
2262
human


1012
AUGUGGG

GTGATATGTGGGGTAGATTTTG







ACE2_
UGGGGCAUAUCCA
2063
CAGCTCATCATGAGATGGGGCAT
2263
human


1344
GUAUGAU

ATCCAGTATGATATGGCATATG







ACE2_
AUAUGAAUGGAAC
2064
TCTTGGAGATAAAGCATATGAAT
2264
human


2113
GACAAUG

GGAACGACAATGAAATGTACCT







ACE2_
UUUCAUGGUAUAG
2065
GTATGTAAATGTTAATTTCATGG
2265
human


2687
AAAAUAU

TATAGAAAATATAAGATGATAA







ACE2_
UACUGAAGAGAAU
2066
TTATAACACCAATATTACTGAAG
2266
human


379
GUCCAAA

AGAATGTCCAAAACATGAATAA







ACE2_
GGCAAGAGCAAAU
2067
CTTGAAAAATGAGATGGCAAGA
2267
human


787
CAUUAUG

GCAAATCATTATGAGGACTATGG







ACE2_
UGCUGCACAACCU
2068
GTATGATATGGCATATGCTGCAC
2268
human


1372
UUUCUGC

AACCTTTTCTGCTAAGAAATGG







ACE2_
AAAGACCAGAACA
2069
TTATTTACCTGGCTGAAAGACCA
2269
human


2003
AGAAUUC

GAACAAGAATTCTTTTGTGGGA







ACE2_
AACGACAAUGAAA
2070
AAAGCATATGAATGGAACGACA
2270
human


2123
UGUACCU

ATGAAATGTACCTGTTCCGATCA







ACE2_
UGUGCGAGUGGCU
2071
TTTTGGGGAGGAGGATGTGCGA
2271
human


2224
AAUUUGA

GTGGCTAATTTGAAACCAAGAAT







ACE2_
UUAGCAAAGGAGA
2072
ATGCCTCCATCGATATTAGCAAA
2272
human


2574
AAAUAAU

GGAGAAAATAATCCAGGATTCC







ACE2_
GGAACAGGUAGAG
2073
GAGAGAAGAATCCAGGGAACAG
2273
human


3228
GACAUUG

GTAGAGGACATTGCTTTTTCACT







ACE2_
CUUAAAUCUUUUG
2074
GTGGGTACCCAGTCTCTTAAATC
2274
human


3424
UAUUUGC

TTTTGTATTTGCTCACAGTGTT







ACE2_
UAUCCACUACAAG
2075
ACACTTGCCCAAATGTATCCACT
2275
human


464
AAAUUCA

ACAAGAAATTCAGAATCTCACA







ACE2_
AAACCAAACAUAG
2076
GTTCCCTTTGGACAGAAACCAAA
2276
human


1079
AUGUUAC

CATAGATGTTACTGATGCAATG







ACE2_
CAAGGAUUCUGGG
2077
CTTCCTAATATGACTCAAGGATT
2277
human


1190
AAAAUUC

CTGGGAAAATTCCATGCTAACG







ACE2_
ACCAGAACAAGAA
2078
TTACCTGGCTGAAAGACCAGAA
2278
human


2007
UUCUUUU

CAAGAATTCTTTTGTGGGATGGA







ACE2_
AUGUUAAUUUCAU
2079
TTTTGTTGTATGTAAATGTTAATT
2279
human


2680
GGUAUAG

TCATGGTATAGAAAATATAAG







ACE2_
GAUAUCAUUAAAU
2080
ATATAAGATGATAAAGATATCAT
2280
human


2718
GUCAAAA

TAAATGTCAAAACTATGACTCT







ACE2_
UUAAAUGUCAAAA
2081
ATGATAAAGATATCATTAAATGT
2281
human


2725
CUAUGAC

CAAAACTATGACTCTGTTCAGA







ACE2_
CAGGCUGUUCAGG
2082
GTGTATTTGGTCTCACAGGCTGT
2282
human


2910
GAUAAUC

TCAGGGATAATCTAAATGTAAA







ACE2_
UGUCAAGGAUGAC
2083
TTTCATTTAATCCATTGTCAAGG
2283
human


3103
AUGCUUU

ATGACATGCTTTCTTCACAGTA







ACE2_
AUGGUGAUUUGCC
2084
CTCAGTTCAAGTACTATGGTGAT
2284
human


3149
UACAGUG

TTGCCTACAGTGATGTTTGGAA







ACE2_
UUGGACAAAUCUG
2085
TATGTGGGGTAGATTTTGGACAA
2285
human


1039
UACUCUU

ATCTGTACTCTTTGACAGTTCC







ACE2_
UCAAGAAGCACUU
2086
TTACCAATTCCAGTTTCAAGAAG
2286
human


1792
UGUCAAG

CACTTTGTCAAGCAGCTAAACA







ACE2_
UUUAAUUUCUUUG
2087
AAACCAAGAATCTCCTTTAATTT
2287
human


2258
UCACUGC

CTTTGTCACTGCACCTAAAAAT







ACE2_
GCAAGGAUUGAGA
2088
GGAACTGGTGTAGCTGCAAGGA
2288
human


3056
AUGGCAU

TTGAGAATGGCATGCATTAGCTC







ACE2_
UUGGAAUCGAUCA
2089
TGCCTACAGTGATGTTTGGAATC
2289
human


3173
UGCUUUC

GATCATGCTTTCTTCAAGGTGA







ACE2_
UCUCAUGAGGAGG
2090
TGATAAGAGAGAAAATCTCATG
2290
human


152
UUUUAGU

AGGAGGTTTTAGTCTAGGGAAAG







ACE2_
CAUUAUAUGAAGA
2091
GCAAGCAGCTGAGGCCATTATAT
2291
human


750
GUAUGUG

GAAGAGTATGTGGTCTTGAAAA







ACE2_
UCUGGGAAAAUUC
2092
ATATGACTCAAGGATTCTGGGAA
2292
human


1197
CAUGCUA

AATTCCATGCTAACGGACCCAG







ACE2_
UUCAGGAUCCUUA
2093
CTGGGGAAGGGCGACTTCAGGA
2293
human


1283
UGUGCAC

TCCTTATGTGCACAAAGGTGACA







ACE2_
AGGCCCUCUGCAC
2094
AGCAGCTAAACATGAAGGCCCT
2294
human


1825
AAAUGUG

CTGCACAAATGTGACATCTCAAA
















TABLE 12A







Host targets screened-TMPRSS-20 nucleotide targets and 45 nucleotide gene


target regions














SEQ

SEQ



Sequence

ID

ID



ID
Sequence
NO:
Gene Region
NO:
Species





TMPRSS
UGUGAAAAUGA
2295
ACTGTAAAGTTCAATTGTGAAAAT
2331
human


2_3153
AUAUCAUGC

GAATATCATGCAAATAAATTA







TMPRSS
ACCUUCAUUUA
2296
GTCTCCAAGTAGTCCACCTTCATT
2332
human


2_2577
ACUCUUUGA

TAACTCTTTGAAACTGTATCA







TMPRSS
UCGUCCUUGACG
2297
TAATCCACATGGTCTTCGTCCTTG
2333
human


2_1626
UCGUUUUA

ACGTCGTTTTACAAGAAAACA







TMPRSS
GGAGCCGGAUA
2298
TCTTTCATGTTCTATGGAGCCGGA
2334
human


2_1101
CCAAGUAGA

TACCAAGTAGAAAAAGTGATT







TMPRSS
UACCACAGUGA
2299
ATCTATAAAAAACTGTACCACAGT
2335
human


2_810
UGCCUGUUC

GATGCCTGTTCTTCAAAAGCA







TMPRSS
UCAUGCAAAUA
2300
TTGTGAAAATGAATATCATGCAAA
2336
human


2_3167
AAUUAUGCA

TAAATTATGCAATTTTTTTTT







TMPRSS
UUGAAACUGUA
2301
CCTTCATTTAACTCTTTGAAACTGT
2337
human


2_593
UCAUCUUUG

ATCATCTTTGCCAAGTAAGA







TMPRSS
GCCGGCAAUGUC
2302
AAACTGAACACAAGTGCCGGCAA
2338
human


2_780
GAUAUCUA

TGTCGATATCTATAAAAAACTG







TMPRSS
UGUAAUGGUGA
2303
CATCCTAAAAGGTGTTGTAATGGT
2339
human


2_3054
AAACGUCUU

GAAAACGTCTTCCTTCTTTAT







TMPRSS
GGUGGCCUAUU
2304
TTGCCAAGTAAGAGTGGTGGCCTA
2340
human


2_2625
UCAGCUGCU

TTTCAGCTGCTTTGACAAAAT







TMPRSS
ACAGCUAGGAC
2305
GAAATGAATGATTCTACAGCTAGG
2341
human


2_2899
UUAACCUUG

ACTTAACCTTGAAATGGAAAG







TMPRSS
CAGUUUAAGGU
2306
GAAATCAAGGATGCTCAGTTTAAG
2342
human


2_2485
ACACUGUUU

GTACACTGTTTCCATGTTATG







TMPRSS
GCCGCCAGAGCA
2307
TCAACTTGAACTCAAGCCGCCAGA
2343
human


2_886
GGAUUGUG

GCAGGATTGTGGGCGGCGAGA







TMPRSS
CCAGCCAUGAUC
2308
GACAACCTGATCACACCAGCCATG
2344
human


2_1398
UGUGCCGG

ATCTGTGCCGGCTTCCTGCAG







TMPRSS
UCCAUCAUCACC
2309
CACGTGTGCGGAGGCTCCATCATC
2345
human


2_984
CCCGAGUG

ACCCCCGAGTGGATCGTGACA







TMPRSS
AUGAUCUGUGC
2310
CTGATCACACCAGCCATGATCTGT
2346
human


2_1404
CGGCUUCCU

GCCGGCTTCCTGCAGGGGAAC







TMPRSS
GCUUUGAACUC
2311
GATAACAGCAAGATGGCTTTGAA
2347
human


2_138
AGGGUCACC

CTCAGGGTCACCACCAGCTATT







TMPRSS
AGGAGAAAGGG
2312
GGTGGGGGGCCACCGAGGAGAAA
2348
human


2_1297
AAGACCUCA

GGGAAGACCTCAGAAGTGCTGA







TMPRSS
CCUGGCAGGUCA
2313
TCCCGGGGGCCTGGCCCTGGCAGG
2349
human


2_937
GCCUGCAC

TCAGCCTGCACGTCCAGAACG







TMPRSS
GAGGAGAAAGG
2314
GGGTGGGGGGCCACCGAGGAGAA
2350
human


2_1296
GAAGACCUC

AGGGAAGACCTCAGAAGTGCTG







TMPRSS
CAGGUCAGCCUG
2315
GGGGCCTGGCCCTGGCAGGTCAG
2351
human


2_942
CACGUCCA

CCTGCACGTCCAGAACGTCCAC







TMPRSS
CAUUGGACGGC
2316
CTTAACAATCCATGGCATTGGACG
2352
human


2_1053
AUUUGCGGG

GCATTTGCGGGGATTTTGAGA







TMPRSS
GAGGCUCCAUCA
2317
ACGTCCACGTGTGCGGAGGCTCCA
2353
human


2_979
UCACCCCC

TCATCACCCCCGAGTGGATCG







TMPRSS
CAUGAUCUGUG
2318
CCTGATCACACCAGCCATGATCTG
2354
human


2_1403
CCGGCUUCC

TGCCGGCTTCCTGCAGGGGAA







TMPRSS
ACCAGCCAUGAU
2319
TGACAACCTGATCACACCAGCCAT
2355
human


2_1397
CUGUGCCG

GATCTGTGCCGGCTTCCTGCA







TMPRSS
AAAGCCAUGCCA
962
TGGGTTTATACCAGGAAAGCCATG
1162
mouse


2_2779
GAAUUACC

CCAGAATTACCAAATATGAAG







TMPRSS
UUUGUCUUCAA
2320
TTGTCCCAGACTTCCTTTGTCTTCA
2356
mouse


2_1730
CAACCUUCU

ACAACCTTCTGCAAGAAAAC







TMPRSS
UGCACAAUGUA
2321
AATTTTAACTTCCTGTGCACAATG
2357
mouse


2_1785
CCUUUUGAG

TACCTTTTGAGATGATTCGAA







TMPRSS
UGGGACAGCAA
2322
TTGCTTTGGAGGTTCTGGGACAGC
2358
mouse


2_552
CUGUUCUAC

AACTGTTCTACGTCTGAGATG







TMPRSS
UUCCACUGUGA
2323
TTCTGAGCTGTGAGATTCCACTGT
2359
mouse


2_3120
AAUAUAUGA

GAAATATATGAATAAAGTATA







TMPRSS
UCAGGCAACGU
2324
AAGCTGAATGTGAGCTCAGGCAA
2360
mouse


2_873
UGACCUCUA

CGTTGACCTCTATAAAAAACTC







TMPRSS
GGGAACGUGAC
2325
AGACCTGGAGTATACGGGAACGT
2361
mouse


2_1647
GGUAUUUAC

GACGGTATTTACAGATTGGATC







TMPRSS
UCUGCAAGAAA
2326
TGTCTTCAACAACCTTCTGCAAGA
2362
mouse


2_1747
ACCAAGGGC

AAACCAAGGGCCTGAATTTTA







TMPRSS
UUUGGCUUUUA
2327
GAAGCTGCAGACACCTTTGGCTTT
2363
mouse


2_1286
AUGAUCUAG

TAATGATCTAGTGAAGCCAGT







TMPRSS
UAAGCGAGAAC
2328
CCGCCTCCGGAGATTTAAGCGAGA
2364
mouse


2_88
UGGAGUAGG

ACTGGAGTAGGTCGTGTACTT







TMPRSS
GUUGACAUGAC
2329
CTTGCTCTCCTGCATGTTGACATG
2365
mouse


2_2243
GGCCCUUUC

ACGGCCCTTTCCAAGGGTGAT







TMPRSS
UGCUUCUGGGU
2330
TGATTTCAGTCACCTTGCTTCTGG
2366
mouse


2_2539
UGUGUUUCU

GTTGTGTTTCTTCTCTTACTA
















TABLE 12B







Host targets screened - IL-6-20 nucleotide targets and 45 nucleotide


gene target regions












Se- 

SEQ

SEQ



quence

ID

ID



ID
Sequence
NO:
Gene Region
NO:
Species





IL6_
UUGGAAAGUGUA
2367
GAGCCAGATCATTTCTTGGAAAG
2389
human


933
GGCUUACC

TGTAGGCTTACCTCAAATAAAT







IL6_
CUUGAAAUGUUA
2368
TTTTATGAAGTGTCACTTGAAAT
2390
mouse


930
UAUGUUAU

GTTATATGTTATAGTTTTGAAA







IL6_
UAUGAUUGAUAU
2369
AACTTTAAGTTAATTTATGATTG
2391
mouse


896
UUAUUAUU

ATATTTATTATTTTTATGAAGT







IL6_
UUAAAUAAGUAA
2370
TAATTTATTGATAATTTAAATAA
2392
mouse


870
ACUUUAAG

GTAAACTTTAAGTTAATTTATG







IL6_
GACACUAUUUUA
2371
CAATATGAATGTTGGGACACTAT
2393
mouse


835
AUUAUUUU

TTTAATTATTTTTAATTTATTG







IL6_
GGACACUAUUUU
2372
ACAATATGAATGTTGGGACACTA
2394
mouse


834
AAUUAUUU

TTTTAATTATTTTTAATTTATT







IL6_
UGGGACACUAUU
2373
TGACAATATGAATGTTGGGACAC
2395
mouse


832
UUAAUUAU

TATTTTAATTATTTTTAATTTA







IL6_
GUGGACAUUCCUC
2374
TAAGCATATCAGTTTGTGGACAT
2396
mouse


741
ACUGUGG

TCCTCACTGTGGTCAGAAAATA







IL6_
UGAAGAAUUUCU
2375
CATCTTGAAATCACTTGAAGAAT
2397
mouse


669
AAAAGUCA

TTCTAAAAGTCACTTTGAGATC







IL6_
AUGGGCACCUCAG
2376
TTCGGCAAATGTAGCATGGGCAC
2398
human


635
AUUGUUG

CTCAGATTGTTGTTGTTAATGG







IL6_
UCGGCAAAUGUA
2377
CAGCCTGAGGGCTCTTCGGCAAA
2399
human


621
GCAUGGGC

TGTAGCATGGGCACCTCAGATT







IL6_
UCGGCAAAUGUA
2377
CAGCCTGAGGGCTCTTCGGCAAA
2399
human


621
GCAUGGGC

TGTAGCATGGGCACCTCAGATT







IL6_
GAUAUAAUCAGG
2378
GATGCTACCAAACTGGATATAAT
2400
mouse


386
AAAUUUGC

CAGGAAATTTGCCTATTGAAAA







IL6_
UGAGGUAUACCU
2379
TGGTCTTTTGGAGTTTGAGGTAT
2401
human


360
AGAGUACC

ACCTAGAGTACCTCCAGAACAG







IL6_
GGUGAAAAUCAU
2380
TGAGGAGACTTGCCTGGTGAAAA
2402
human


330
CACUGGUC

TCATCACTGGTCTTTTGGAGTT







IL6_
GGUGAAAAUCAU
2380
TGAGGAGACTTGCCTGGTGAAAA
2402
human


330
CACUGGUC

TCATCACTGGTCTTTTGGAGTT







IL6_
CUUGCCUGGUGAA
2381
GATTCAATGAGGAGACTTGCCTG
2403
human


323
AAUCAUC

GTGAAAATCATCACTGGTCTTT







IL6_
CUUGCCUGGUGAA
2381
GATTCAATGAGGAGACTTGCCTG
2403
human


323
AAUCAUC

GTGAAAATCATCACTGGTCTTT







IL6_
UGUGCAAUGGCA
2382
AAATGAGAAAAGAGTTGTGCAA
2404
mouse


284
AUUCUGAU

TGGCAATTCTGATTGTATGAACA







IL6_
UGAACCUUCCAAA
2383
TGGCAGAAAACAACCTGAACCTT
2405
human


263
GAUGGCU

CCAAAGATGGCTGAAAAAGATG







IL6_
ACUGGCAGAAAAC
2384
AAGCAGCAAAGAGGCACTGGCA
2406
human


246
AACCUGA

GAAAACAACCTGAACCTTCCAAA







IL6_
ACUGGCAGAAAAC
2384
AAGCAGCAAAGAGGCACTGGCA
2406
human


246
AACCUGA

GAAAACAACCTGAACCTTCCAAA







IL6_
GAAAGCAGCAAA
2385
AAGAGTAACATGTGTGAAAGCA
2407
human


229
GAGGCACU

GCAAAGAGGCACTGGCAGAAAAC







IL6_
GAAAGCAGCAAA
2385
AAGAGTAACATGTGTGAAAGCA
2407
human


229
GAGGCACU

GCAAAGAGGCACTGGCAGAAAAC







IL6_
UCAGCCCUGAGAA
2386
ATCCTCGACGGCATCTCAGCCCT
2408
human


187
AGGAGAC

GAGAAAGGAGACATGTAACAAG







IL6_
UGCUAAUUUAAA
2387
TTTACCTCAATGAATTGCTAATTT
2409
mouse


1045
UAUGUUUU

AAATATGTTTTTAAAGAAATC







IL6_
CUUGGAAUGUAU
2388
CTAGCCAGATGGTTTCTTGGAAT
2410
mouse


1015
AAGUUUAC

GTATAAGTTTACCTCAATGAAT
















TABLE 12C







Host targets screened - ACE2_-20 nucleotide targets and 45 nucleotide


gene target regions












Se-

SEQ

SEQ



quence

ID

ID



ID
Sequence
NO:
Gene Region
NO:
Species





ACE2_
CAACCCAAGUUC
2411
GTTTTGAATAGCGCCCAACCCAAG
2435
human


119
AAAGGCUG

TTCAAAGGCTGATAAGAGAGA







ACE2_
UCUAUCAAAGUU
2412
AAGCCGAAGACCTGTTCTATCAAA
2436
human


336
CACUUGCU

GTTCACTTGCTTCTTGGAATT







ACE2_
ACUUGCUUCUUG
2413
GTTCTATCAAAGTTCACTTGCTTCT
2437
human


349
GAAUUAUA

TGGAATTATAACACCAATAT







ACE2_
UUGGAAUUAUAA
2414
AAGTTCACTTGCTTCTTGGAATTA
2438
human


358
CACCAAUA

TAACACCAATATTACTGAAGA







ACE2_
AAUCCACAAGAA
2415
GTTTGTAACCCAGATAATCCACAA
2439
human


626
UGCUUAUU

GAATGCTTATTACTTGAACCA







ACE2_
GAUGGCAAGAGC
2416
GGTCTTGAAAAATGAGATGGCAA
2440
human


784
AAAUCAUU

GAGCAAATCATTATGAGGACTA







ACE2_
GAAGAGAUUAAA
2417
GTGGAACATACCTTTGAAGAGATT
2441
human


908
CCAUUAUA

AAACCATTATATGAACATCTT







ACE2_
AGAUUUUGGACA
2418
GGTGATATGTGGGGTAGATTTTGG
2442
human


1034
AAUCUGUA

ACAAATCTGTACTCTTTGACA







ACE2_
UUGGACAGAAAC
2419
CTTTGACAGTTCCCTTTGGACAGA
2443
human


1071
CAAACAUA

AACCAAACATAGATGTTACTG







ACE2_
CCUAAUAUGACU
2420
GTATCTGTTGGTCTTCCTAATATG
2444
human


1178
CAAGGAUU

ACTCAAGGATTCTGGGAAAAT







ACE2_
UCUGCUAAGAAA
2421
TGCTGCACAACCTTTTCTGCTAAG
2445
human


1387
UGGAGCUA

AAATGGAGCTAATGAAGGATT







ACE2_
GGGGAAAUCAUG
2422
TTCCATGAAGCTGTTGGGGAAATC
2446
human


1430
UCACUUUC

ATGTCACTTTCTGCAGCCACA







ACE2_
UGAAACAGAAAU
2423
TTTTCAAGAAGACAATGAAACAG
2447
human


1513
AAACUUCC

AAATAAACTTCCTGCTCAAACA







ACE2_
UCACGAUUGUUG
2424
TGCTCAAACAAGCACTCACGATTG
2448
human


1548
GGACUCUG

TTGGGACTCTGCCATTTACTT







ACE2_
GUGGAGGUGGAU
2425
TTACATGTTAGAGAAGTGGAGGTG
2449
human


1591
GGUCUUUA

GATGGTCTTTAAAGGGGAAAT







ACE2_
CUAAUGAUUACU
2426
CTCTGTTCCATGTTTCTAATGATTA
2450
human


1737
CAUUCAUU

CTCATTCATTCGATATTACA







ACE2_
UUCGAUAUUACA
2427
ATGATTACTCATTCATTCGATATT
2451
human


1755
CAAGGACC

ACACAAGGACCCTTTACCAAT







ACE2_
CUUUACCAAUUC
2428
TATTACACAAGGACCCTTTACCAA
2452
human


1775
CAGUUUCA

TTCCAGTTTCAAGAAGCACTT







ACE2_
CUGCACAAAUGU
2429
AAACATGAAGGCCCTCTGCACAA
2453
human


1832
GACAUCUC

ATGTGACATCTCAAACTCTACA







ACE2_
UAGAAAAUAUAA
2430
GTTAATTTCATGGTATAGAAAATA
2454
human


2697
GAUGAUAA

TAAGATGATAAAGATATCATT







ACE2_
AUGGCCAAGGAG
2431
TTGTCCAAAGACAACATGGCCAAG
2455
human


2777
AGAGCAUC

GAGAGAGCATCTTCATTGACA







ACE2_
AUUGACAUUGCU
2432
GGAGAGAGCATCTTCATTGACATT
2456
human


2800
UUCAGUAU

GCTTTCAGTATTTATTTCTGT







ACE2_
UUCAGUAUUUAU
2433
TTCATTGACATTGCTTTCAGTATTT
2457
human


2812
UUCUGUCU

ATTTCTGTCTCTGGATTTGA







ACE2_
UUUGGAAUCGAU
2434
TTGCCTACAGTGATGTTTGGAATC
2458
human


3172
CAUGCUUU

GATCATGCTTTCTTCAAGGTG
















TABLE 12D







Host targets screened - FURIN-20 nucleotide targets and 45 nucleotide


gene target regions












Se-

SEQ

SEQ



quence 

ID

ID



ID
Sequence
NO:
Gene Region
NO:
Species





FURIN_
UCAACCUGGG
2459
GGAAGCATGGGTTCCTCAACCTGG
2483
human


443
CCAGAUCUUC

GCCAGATCTTCGGGGACTATT







FURIN_
AUUACCACUU
2460
AGATCTTCGGGGACTATTACCACTT
2484
human


470
CUGGCAUCGA

CTGGCATCGAGGAGTGACGA







FURIN_
GCAGGCAAUU
2461
AACCACCCGGACTTGGCAGGCAAT
2485
human


769
AUGAUCCUGG

TATGATCCTGGGGCCAGTTTT







FURIN_
UUUGAUGUCA
2462
GATCCTGGGGCCAGTTTTGATGTCA
2486
human


796
AUGACCAGGA

ATGACCAGGACCCTGACCCC







FURIN_
GAGGCCAAUA
2463
ATTGCTCTCACCCTGGAGGCCAAT
2487
human


1426
AGAACCUCAC

AAGAACCTCACATGGCGGGAC







FURIN_
UUCAUGACAA
2464
TTTAATGACTGGGCCTTCATGACAA
2488
human


1876
CUCAUUCCUG

CTCATTCCTGGGATGAGGAT







FURIN_
UGGGACGCUG
2465
CGAAGCCAACAACTATGGGACGCT
2489
human


1959
ACCAAGUUCA

GACCAAGTTCACCCTCGTACT







FURIN_
UGACCAAGUU
2466
ACAACTATGGGACGCTGACCAAGT
2490
human


1967
CACCCUCGUA

TCACCCTCGTACTCTATGGCA







FURIN_
UUUUAAUUCA
2467
CCCTCCTTGGGCACTTTTTAATTCA
2491
human


2711
CCAAAGUAUU

CCAAAGTATTTTTTTATCTT







FURIN_
UUUAAUUCAC
2468
CCTCCTTGGGCACTTTTTAATTCAC
2492
human


2712
CAAAGUAUUU

CAAAGTATTTTTTTATCTTG







FURIN_
UGUUUGAGGA
2469
GGGGATCTCAGGGGCTGTTTGAGG
2493
human


3524
UAUAUUUUCA

ATATATTTTCACTTTGTGATT







FURIN_
UUUGAGGAUA
2470
GGATCTCAGGGGCTGTTTGAGGAT
2494
human


3526
UAUUUUCACU

ATATTTTCACTTTGTGATTAT







FURIN_
UGAGGAUAUA
2471
ATCTCAGGGGCTGTTTGAGGATAT
2495
human


3528
UUUUCACUUU

ATTTTCACTTTGTGATTATTT







FURIN_
UUUCACUUUG
2472
TGTTTGAGGATATATTTTCACTTTG
2496
human


3539
UGAUUAUUUC

TGATTATTTCACTTTAGATG







FURIN_
UAUUUCACUU
2473
TTTTCACTTTGTGATTATTTCACTTT
2497
human


3553
UAGAUGCUGA

AGATGCTGATGATTTGTTT







FURIN_
UUAGAUGCUG
2474
TGTGATTATTTCACTTTAGATGCTG
2498
human


3562
AUGAUUUGUU

ATGATTTGTTTTTGTATTTT







FURIN_
CUGGUUUUGU
2475
TCGTGGCCAGCCCGGCTGGTTTTGT
2499
human


4101
AAGAUGCUGG

AAGATGCTGGGTTGGTGCAC







FURIN_
UGGGUUGGUG
2476
GGTTTTGTAAGATGCTGGGTTGGTG
2500
human


4118
CACAGUGAUU

CACAGTGATTTTTTTCTTGT







FURIN_
CUUGUAAUUU
2477
CACAGTGATTTTTTTCTTGTAATTT
2501
human


4143
AAACAGGCCC

AAACAGGCCCAGCATTGCTG







FURIN_
UUAAACAGGC
2478
TTTTTTTCTTGTAATTTAAACAGGC
2502
human


4151
CCAGCAUUGC

CCAGCATTGCTGGTTCTATT







FURIN_
CCCAGCAUUG
2479
TGTAATTTAAACAGGCCCAGCATT
2503
human


4160
CUGGUUCUAU

GCTGGTTCTATTTAATGGACA







FURIN_
UGAGAUAAUG
2480
TCTATTTAATGGACATGAGATAAT
2504
human


4190
UUAGAGGUUU

GTTAGAGGTTTTAAAGTGATT







FURIN_
GAGAUAAUGU
2481
CTATTTAATGGACATGAGATAATG
2505
human


4191
UAGAGGUUUU

TTAGAGGTTTTAAAGTGATTA







FURIN_
UUAGAGGUUU
2482
GGACATGAGATAATGTTAGAGGTT
2506
human


4200
UAAAGUGAUU

TTAAAGTGATTAAACGTGCAG
















TABLE 12E







Host targets screened - IL-6R-20 nucleotide targets and 45 nucleotide 


gene target regions












Se-

SEQ

SEQ



quence

ID

ID



ID
Sequence
NO:
Gene Region
NO:
Species





IL6R_
UGAGUCAUGUG
2507
GACCGTCCGCCGCTCTGAGTCAT
2529
human


38
CGAGUGGGA

GTGCGAGTGGGAAGTCGCACTG







IL6R_
AGAGCCGGAAG
2508
GACCTGCCCGGGGGTAGAGCCG
2530
human


437
ACAAUGCCA

GAAGACAATGCCACTGTTCACTG







IL6R_
CUCAGCAAUGU
2509
TTCCGGAAGAGCCCCCTCAGCAA
2531
human


666
UGUUUGUGA

TGTTGTTTGTGAGTGGGGTCCT







IL6R_
GCUCUUGGUGA
2510
GACGACAAAGGCTGTGCTCTTGG
2532
human


728
GGAAGUUUC

TGAGGAAGTTTCAGAACAGTCC







IL6R_
AGUGUCGGGAG
2511
ATGTGCGTCGCCAGTAGTGTCGG
2533
human


876
CAAGUUCAG

GAGCAAGTTCAGCAAAACTCAA







IL6R_
UUCAGCAAAAC
2512
AGTGTCGGGAGCAAGTTCAGCA
2534
human


891
UCAAACCUU

AAACTCAAACCTTTCAGGGTTGT







IL6R_
UCAAACCUUUCA
2513
CAAGTTCAGCAAAACTCAAACCT
2535
human


902
GGGUUGUG

TTCAGGGTTGTGGAATCTTGCA







IL6R_
UUCAGGGUUGU
2514
GCAAAACTCAAACCTTTCAGGGT
2536
human


910
GGAAUCUUG

TGTGGAATCTTGCAGCCTGATC







IL6R_
CACUCCUGGAAC
2515
ACCTGGCAAGACCCCCACTCCTG
2537
human


1011
UCAUCUUU

GAACTCATCTTTCTACAGACTA







IL6R_
ACUCCUGGAACU
2516
CCTGGCAAGACCCCCACTCCTGG
2538
human


1012
CAUCUUUC

AACTCATCTTTCTACAGACTAC







IL6R_
GGUUUGAGCUC
2517
CTTTCTACAGACTACGGTTTGAG
2539
human


1042
AGAUAUCGG

CTCAGATATCGGGCTGAACGGT







IL6R_
UCAGAUAUCGG
2518
GACTACGGTTTGAGCTCAGATAT
2540
human


1051
GCUGAACGG

CGGGCTGAACGGTCAAAGACAT







IL6R_
CUGAACGGUCA
2519
AGCTCAGATATCGGGCTGAACG
2541
human


1063
AAGACAUUC

GTCAAAGACATTCACAACATGGA







IL6R_
AAAGACAUUCA
2520
TCGGGCTGAACGGTCAAAGACA
2542
human


1073
CAACAUGGA

TTCACAACATGGATGGTCAAGGA







IL6R_
UCCAGCAUCACU
2521
GGATGGTCAAGGACCTCCAGCA
2543
human


1105
GUGUCAUC

TCACTGTGTCATCCACGACGCCT







IL6R_
UUGGACAGAAG
2522
GGCCATGGGCACGCCTTGGACA
2544
human


1229
GUCUCCUGA

GAAGGTCTCCTGAGAGGGTCACT







IL6R_
CCUGAGAGGGU
2523
TTGGACAGAAGGTCTCCTGAGA
2545
human


1244
CACUGCAAA

GGGTCACTGCAAAAGAGAATCTC







IL6R_
CACUGCAAAAG
2524
GTCTCCTGAGAGGGTCACTGCAA
2546
human


1255
AGAAUCUCG

AAGAGAATCTCGTTCCAACCTC







IL6R_
UGCAAAAGAGA
2525
TCCTGAGAGGGTCACTGCAAAA
2547
human


1258
AUCUCGUUC

GAGAATCTCGTTCCAACCTCCCT







IL6R_
GUGGACCACGCC
2526
CCTGTCAATCTGAACGTGGACCA
2548
human


1350
UAAACUAA

CGCCTAAACTAATTTTTGACTG







IL6R_
UGGACCACGCCU
2527
CTGTCAATCTGAACGTGGACCAC
2549
human


1351
AAACUAAU

GCCTAAACTAATTTTTGACTGC







IL6R_
UGUGCCAGCUG
2528
CTAATTTTTGACTGCTGTGCCAG
2550
human


1381
GAGUGAUGA

CTGGAGTGATGATAGGCTCACT









Using a novel algorithm, a panel of siRNAs targeting various regions of ACE2 and FURIN mRNA were designed (FIG. 12). For ASOs, a second step of selection involved testing the secondary structure (accessibility) of the target using the online algorithm lncASO. The sequences of ASOs targeting ACE2 and FURIN are summarized in Table 13A and Table 131B, respectively.









TABLE 13A







ASOs targeting host factors-ACE2 target












SEQ 
homology













Sequence
ID 


Mon-


Oligo ID
(anti sense)
NO:
Human
Mouse
key





ACE2_171
GCAAGTGAACTTTGAT
2551
Y
Y
Y


ACE2_250
AAAGGCAGACCATTTG
2552
Y
Y
N


ACE2_567
GGCCTCAGCTGCTTGC
2553
Y
Y
Y


ACE2_694
GCCGCGGCTGTAGTCA
2554
Y
N
N


ACE2_702
ATCAACTGGCCGCGGC
2555
Y
N
N


ACE2_851
TACCCCACATATCACC
2556
Y
Y
Y


ACE2_938
AGGCCTGGTCCACCAT
2557
Y
N
N


ACE2_1326
TCTTCTTGAAAATCGG
2558
Y
Y
N


ACE2_1425
AAGACCATCCACCTCC
2559
Y
Y
Y


ACE2_1533
GGGTCACAGTATGTTT
2560
Y
Y
Y


ACE2_1666
GATGTCACATTTGTGC
2561
Y
Y
Y


ACE2_2806
GAGTTCACGGAGGCCC
2562
Y
N
N
















TABLE 13B







ASOs targeting host factors-FURIN target












SEQ
homology













Sequence
ID 


Mon-


Oligo ID
(anti sense)
NO:
Human
Mouse
key





FURIN_176
CCGGGGCTGACTGGTG
2563
Y
Y
Y


FURIN_450
AAGATCTGGCCCAGGT
2564
Y
Y
N


FURIN_963
GTCACCTCGCCATCCA
2565
Y
Y
Y


FURIN_1044
TCATCCTCGGGGCCCC
2566
Y
N
Y


FURIN_1184
CGCAGTTGCAGCTGTC
2567
Y
N
Y


FURIN_1229
TGGCGCTGCTGATGGA
2568
Y
Y
Y


FURIN_1400
TGATGCCGGCTGCTAA
2569
Y
N
Y


FURIN_1610
GCTGGGGGGCCACTGT
2570
Y
Y
N


FURIN_2213
CACATGAGGCGTGGCA
2571
Y
Y
Y


FURIN_2217
GTGGCACATGAGGCGT
2572
Y
Y
Y


FURIN_2649
AGGGCGCTCTGGTCTT
2573
Y
Y
Y


FURIN_2653
TCAGAGGGCGCTCTGG
2574
Y
N
Y









SiRNAs targeting ACE2 and FURIN, two endogenous genes necessary for viral entry and spread were tested for silencing efficacy. FIG. 13A-13B depict the identification of siRNA hits for ACE2 and FURIN, respectively. For each target, at least 3 siRNAs were identified that reduced target mRNA expression below 75% compared to untreated controls. siRNAs were tested in human Hacat cells and silencing was assessed using the QuantiGene assay and confirmed using psicheck reporter system. FIG. 14A-14B depict validation and determination of IC50 values for siRNAs targeting ACE2 (FIG. 14A) and FURIN (FIG. 14B). SiRNAs targeting ACE2 and FURIN were tested for silencing efficacy in 8-point dose response studies. Each siRNA showed potent and efficacious target silencing with IC50 values in the low nanomolar range. FIG. 15A-15D depict validation and determination of IC50 values for four selected siRNAs, tested for silencing efficacy in 8-point dose response studies. Each siRNA showed potent and efficacious target silencing with IC50 values in the low nanomolar range. siRNAs were tested in HaCat cells and silencing was assessed using QuantiGene.


The identification of ASO hits for ACE2 and FURIN are shown in FIG. 16. Twelve LNA gapmers targeting ACE2 (FIG. 16A) and FURIN (FIG. 16B), two endogenous genes necessary for viral entry and spread, were tested for silencing efficacy. For each target, at least 3 ASOs were identified that reduced target mRNA expression below 75% compared to untreated controls. ASOs were tested in human U2OS cells and silencing was assessed using QRT-PCR assay. FIG. 17A-17B depict the identification of ASO hits for ACE2 and FURIN. Twelve LNA gapmers targeting ACE2 (FIG. 17A) and FURIN (FIG. 17B), two endogenous genes necessary for viral entry and spread for silencing efficacy. For each target, we identified at least 3 ASOs that reduced target mRNA expression below 75% compared to untreated controls. ASOs were tested in human U2OS cells and silencing was assessed using QRT-PCR assay. Concentration: 1.5 μM; Time point: 72 hours. FIG. 18 depict validation and determination of IC50 values for ASOs targeting ACE2 (FIG. 18A) and FURIN (FIG. 18B). ASOs targeting ACE2 and FURIN were tested for silencing efficacy in 3-point dose response and gene expression was measured using QRT-PCR. Concentration: Top=1.5 μM; Time point: 5 days.


Example 3. Delivery to the Lungs

In the present invention, methodologies are disclosed for a uniform and efficient delivery of fully stabilized siRNAs to the lung. Lung delivery was achieved after intratracheal administration (IT). This route might have significant advantages when using siRNA cocktails for prophylaxis and in the field as it is minimally invasive. Efficient delivery is observed to several cell types, including endothelial, epithelial, fibroblasts and immune cells in the lungs. Hydrophobically modified siRNAs often induce strong immune responses after local delivery and thus can't be widely used. Surprisingly therapeutic distribution of Phosphorothioate enriched, fully modified siRNAs was observed after intratracheal administration. Delivery to relevant cell types was observed after administration of both monovalent and divalent compounds, with increased delivery after administration of divalent versus monovalent entities.


The presence of a two-thymidine linker between the conjugate and the siRNA does not impact siRNA tissue distribution profile (FIG. 19). Three different siRNA structural configurations were studied to evaluate the impact of the nature of the linker on distribution of DCA-conjugated siRNA in liver, kidney, spleen, lung, heart, muscle and fat 1-week after a single SC injection with 20 mg/kg (n=5-6 mice per group ±SD), as measured by a PNA hybridization assay. Data show efficient delivery of all three siRNA configurations to the lung.


The presence of a two-thymidine linker was found to increase DCA-conjugated siRNA silencing in multiple tissues, as measured by huntingtin and cyclophilin B mRNA expression (FIG. 20). Six mice per group were injected with siRNA by SC injection (FVB/N mice); 20 mg/kg; and tissues were collected one week after injection. The mRNA levels were measured using QuantiGene® (Affymetrix), and normalized to a housekeeping gene, Hprt (Hypoxanthine-guanine phosphoribosyl transferase), and presented as percent of PBS (Phosphate buffered saline) control (mean±SD).


Six siRNAs were then designed containing different numbers of 3′ exNA modifications and phosphorothioates. (FIG. 21) for lung delivery via systemic (SC) delivery. In FIG. 22 the impact of the chemical composition on siRNA distribution and efficacy is evaluated. The data show increased accumulation of DCA-conjugated siRNAs with exNA modifications compared to those without exNAs in all tissues including the lungs. Injections were done SC, 20 mg/kg, in three mice, for 1 week, and distributions were assessed in the PNA hybridization assay. Results show for the p2 scaffold show that 4PS-exNa accumulation was comparable to 7PS in liver, spleen, and lung; 4PS-exNa>7 PS in heart, muscle, fat; 7PS>4PS-exNa in kidney. p5 scaffold: 4PS-exNa>2PO-exNa 2PS-exNa≥4 PS>2 PS.


Increased silencing of DCA-conjugated siRNAs was achieved with exNA modifications compared to those without exNAs in all tissues including the lungs (FIG. 23). Target mRNA silencing (Htt) after systemic administration of siRNAs conjugated to DCA and containing different numbers of 3′ exNA modifications and phosphorothioates was assessed in various organ tissues including the liver, kidney, spleen, muscle, lung, heart, adrenal glands, and fat. The delivery was done by SC injection, 20 mg/kg, in five mice per group for one week, and quantification was done with the bDNA QuantiGene assay.


SiRNAs were then designed for lung delivery, to evaluate the impact of the chemical composition on siRNA distribution and efficacy (FIG. 24). The distribution and delivery throughout the lung of mono- and divalent siRNAs (Cy-3) is shown in FIG. 25A, and of DCA and EPA conjugated siRNAs (Cy-3) in FIG. 25B. Delivery via intratracheal injection (mono and divalent conjugates) were at 20 nmol for monovalent, and 40 nmol for divalent siRNAs, in two mice per group, and tissues were harvested after 24 h. Subcutaneous delivery (EPA and DCA conjugates) was at 40 nmol per construct in three mice per group and tissues were harvested after 48 h. Magnification is 5×, and the scale=1 mm.


Divalent siRNAs distribute to all cells of the lungs and saturate both alveolar and epithelial (club) cells 24 hours after intratracheal administration. Accumulation of mono and di-valent siRNA (Cy-3, red) after intratracheal administration is shown in FIG. 26. Distribution is shown throughout the lung (FIG. 26A), in club cells (FIG. 26B; green), and in alveoli type II cells (FIG. 26C; green) as compared to PBS controls. FIG. 27 depict results obtained with EPA and DCA conjugates delivered by subcutaneous (SC) administration as assessed after 48 h.


Divalent siRNAs showed the highest amount of uptake among mon-divalent, EPA-conjugated and DCA-conjugated siRNA's, both in alveolar cells as well as in club cells (FIG. 28A and FIG. 28C, respectively, as quantitated in FIG. 28B. and FIG. 28D, respectively). Quantitation was performed using cy3 fluorescence signal intensity and colocalization with markers of different cell types, siRNA accumulation was quantified after systemic (SC) administration of EPA and DCA conjugated siRNAs, and intratracheal administration of mono and di-valent siRNAs. All siRNAs delivered to cells throughout the lung but to different extents.


Monovalent, divalent, EPA-conjugated and DCA-conjugated siRNA 1 siRNAs delivered to cells throughout the lung, but to a different extent. Cy-3 signals were quantitated in total cells, immune cells, endothelial cells, epithelial cells and fibroblasts, after systemic (SC) administration of EPA and DCA conjugated siRNAs (FIG. 29A-29C) and after intratracheal (IT) administration of mono- and divalent siRNAs (FIG. 30A-30C).


There is a clear increased accumulation of di-siRNA compared mono siRNA or DCA- or EPA-conjugated siRNA in the lungs. The distribution and accumulation of mono and di-siRNAs in various tissues were assessed after intratracheal injection, and for DCA- and EPA-conjugated siRNA after SC injection, as shown in FIG. 31. Amounts injected by intratracheal administration were 7.5 and 15 nmol, for mono- and divalent siRNA, respectively, and 40 nmol for EPA/DCA conjugated siRNA, in groups of three mice each, followed by quantitation of siRNA accumulation after a week using the PNA hybridization assay.


A low dose of di-siRNA achieved the best silencing in lungs without silencing the gene in other tissues. FIG. 32A-32H and FIG. 33 show target mRNA silencing (Htt) after intratracheal administration of mono and di-siRNAs (7.5 or 15 nmol, respectively) in liver, kidney, spleen, lung, heart, adrenal glands; muscle and fat tissues, showing that divalent siRNA selectively silences the Htt mRNA in the lung.


Example 4. Additional SARS-CoV-2 Target Sites

Materials and Methods for Example 4


siRNA Treatment and Infection Assay


siRNAs were complexed with Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's protocol and added to the wells of a 96-well plate at the desired final concentration (10 nM for screening, concentration range for dose response assays). To each of these wells was added A549 cells expressing the human ACE2 receptor at a final concentration of 15,000 cells/well. The plate was incubated for 36 hours at 37° C., 5% CO2. After 36 hours of siRNA treatment, SARS CoV-2 virus was added to each well at a final MOI of 0.1 (unless otherwise specified) and incubated for 1 hour. One hour after virus addition, wells were washed with PBS and incubated for a further 48 hours followed by processing for molecular biology analysis.


Viral RNA Abundance


Viral RNA abundance was measured from the supernatants of cells 48 hours post virus infection. Briefly, 100 μL of cell culture supernatant from cells was treated with Trizol-LS according to the manufacturer's recommendations. RNA was then isolated using standard protocols using chloroform and ethanol. The abundance of SARS-CoV-2 Nucleocapsid RNA was measured by real-time quantitative PCR using the QuantiFast Pathogen RT-PCR kit (Qiagen) with the 2019-nCoV CDC qPCR Probe (IDT).


Viral Protein Abundance


Viral protein abundance was measured using immunofluorescence staining with anti-SARS-CoV-2 spike antibody to detect viral spike protein. Briefly, cells were fixed using 4% paraformaldehyde and serial ethanol dehydration followed by standard immunofixation procedures to detect proteins. Cells staining positive for the viral spike protein were counted using a fluorescence microscope.


Additional siRNAs and ASOs were tested against various SARS-CoV2 genes. siRNAs and ASOs were tested in A549-ACE2 cells and silencing was assessed using the psi-check reporter system. siRNA concentration: 10 nM; ASO concentration: 25 nM; Time point: 72 hours. As shown in FIG. 34, numerous siRNAs and ASOs were capable of reducing SARS-CoV-2 mRNA levels by 99%, including several that reduce levels to a similar level as remdesivir, an approved therapy for COVID-19.


Based on the results of the screen performed in FIG. 34, several top hits were tested in dose response experiments. siRNAs 1a_2290, 7a_27751, 1ab_18571, and N_29293 were each tested at concentrations of 10 nM, 2 nM, 0.4 nM, and 0.08 nM. As shown in FIG. 35, each of the tested siRNAs were able to effectly silence SARS-CoV-2 mRNA at several doses. Moreover, the tested siRNAs led to reduction of SARS-CoV-2 spike protein positive cells.


An additional dose response experiment was performed as described above for FIG. 35. In this experiment, cells were infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.1 and 0.4. As shown in FIG. 36, the tested siRNAs were able to effectly silence SARS-CoV-2 mRNA at several doses and at both MOIs tested.


An additional screen of siRNAs was performed targeting the orf7a SARS-CoV2 gene. siRNAs were tested in in A549-ACE2 cells and the data reported was relative mRNA abundance of the targeted orf7a SARS-CoV2 gene and the percent of cells that are positive for the SARS-CoV2 spike protein. siRNA concentration: 10 nM; Time point: 72 hours. As shown in FIG. 37, numerous siRNAs were identified that effectively target orf7a.


The antisense and sense strands of the siRNAs tested in FIGS. 35 and 36 are shown below in Table 14.









TABLE 14





Antisense and Sense sequences of select siRNAs.


















Orf7a_27751
SEQ ID NO:


Antisense
5′ UGAAAGUUCAAUCAUUCUUUU 3′
2575


Sense
5′ AAUGAUUGAACUUUCA 3′
2576







N_29293









Antisense
5′ UGAAAUUUGGAUCUUUGUUUU 3′
2577


Sense
5′ AAAGAUCCAAAUUUCA 3′
2578







Orf1a_2290









Antisense
5′ UAAGCUUAAAGAAUGUCUUUU 3′
2579


Sense
5′ ACAUUCUUUAAGCUUA 3′
2580







Orf1ab_18571









Antisense
5′ UCAAAUACGACUCUGUCUUUU 3′
2581


Sense
5′ ACAGAGUCGUAUUUGA 3′
2582









INCORPORATION BY REFERENCE

The contents of all cited references (including literature references, patents, patent applications, and websites) that maybe cited throughout this application are hereby expressly incorporated by reference in their entirety for any purpose, as are the references cited therein. The disclosure will employ, unless otherwise indicated, conventional techniques of immunology, molecular biology and cell biology, which are well known in the art.


The present disclosure also incorporates by reference in their entirety techniques well known in the field of molecular biology and drug delivery. These techniques include, but are not limited to, techniques described in the following publications:

  • Atwell et al. J. Mol. Biol. 1997, 270: 26-35;
  • Ausubel et al. (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley &Sons, NY (1993);
  • Ausubel, F. M. et al. eds., SHORT PROTOCOLS IN MOLECULAR BIOLOGY (4th Ed. 1999) John Wiley & Sons, NY. (ISBN 0-471-32938-X);
  • CONTROLLED DRUG BIOAVAILABILITY, DRUG PRODUCT DESIGN AND PERFORMANCE, Smolen and Ball (eds.), Wiley, New York (1984);
  • Giege, R. and Ducruix, A. Barrett, CRYSTALLIZATION OF NUCLEIC ACIDS AND PROTEINS, a Practical Approach, 2nd ea., pp. 20 1-16, Oxford University Press, New York, New York, (1999);
  • Goodson, in MEDICAL APPLICATIONS OF CONTROLLED RELEASE, vol. 2, pp. 115-138 (1984);
  • Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981;
  • Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988);
  • Kabat et al., SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST (National Institutes of Health, Bethesda, Md. (1987) and (1991);
  • Kabat, E. A., et al. (1991) SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242;
  • Kontermann and Dubel eds., ANTIBODY ENGINEERING (2001) Springer-Verlag. New York. 790 pp. (ISBN 3-540-41354-5).
  • Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990);
  • Lu and Weiner eds., CLONING AND EXPRESSION VECTORS FOR GENE FUNCTION ANALYSIS (2001) BioTechniques Press. Westborough, MA 298 pp. (ISBN 1-881299-21-X).
  • MEDICAL APPLICATIONS OF CONTROLLED RELEASE, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974);
  • Old, R. W. & S. B. Primrose, PRINCIPLES OF GENE MANIPULATION: AN INTRODUCTION TO GENETIC ENGINEERING (3d Ed. 1985) Blackwell Scientific Publications, Boston. Studies in Microbiology; V.2:409 pp. (ISBN 0-632-01318-4).
  • Sambrook, J. et al. eds., MOLECULAR CLONING: A LABORATORY MANUAL (2d Ed. 1989) Cold Spring Harbor Laboratory Press, NY. Vols. 1-3. (ISBN 0-87969-309-6).
  • SUSTAINED AND CONTROLLED RELEASE DRUG DELIVERY SYSTEMS, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978
  • Winnacker, E. L. FROM GENES TO CLONES: INTRODUCTION TO GENE TECHNOLOGY (1987) VCH Publishers, NY (translated by Horst Ibelgaufts). 634 pp. (ISBN 0-89573-614-4).


EQUIVALENTS

The disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the disclosure. Scope of the disclosure is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.

Claims
  • 1. A double-stranded RNA oligonucleotide compound complementary to a SARS-CoV-2 nucleic acid sequence of SEQ ID NO:1, the compound comprising a sense strand and an antisense strand, the antisense strand consisting of a sequence selected from the group consisting of SEQ ID NO: 2575, SEQ ID NO: 2577, SEQ ID NO: 2579, and SEQ ID NO: 2581.
  • 2. The oligonucleotide compound of claim 1, wherein the compound is selected from the group consisting of: (a) a dsRNA comprising an antisense strand consisting of a sequence of SEQ ID NO: 2575 and a sense strand consisting of a sequence of SEQ ID NO: 2576,(b) a dsRNA comprising an antisense strand consisting of a sequence of SEQ ID NO: 2577 and a sense strand consisting of a sequence of SEQ ID NO: 2578,(c) a dsRNA comprising an antisense strand consisting of a sequence selected of SEQ ID NO: 2575 and a sense strand consisting of a sequence of SEQ ID NO: 2579, and(d) a dsRNA comprising an antisense strand consisting of a sequence selected of SEQ ID NO: 2580 and a sense strand consisting of a sequence of SEQ ID NO: 2581.
  • 3. The oligonucleotide compound of claim 1, wherein the oligonucleotide compound comprises one or more modified nucleotide.
  • 4. The oligonucleotide compound of claim 1, wherein the oligonucleotide compound comprises at least one modified internucleotide linkage of Formula I:
  • 5. The oligonucleotide compound of claim 1, wherein a functional moiety is linked to one or both of the 5′ end and 3′ end of the sense strand.
  • 6. A combination comprising two or more oligonucleotide compounds of claim 1.
  • 7. A vector comprising a regulatory sequence operably linked to a nucleotide sequence that encodes an oligonucleotide compound of claim 1.
  • 8. An isolated cell comprising the vector of claim 7.
  • 9. A recombinant adeno-associated virus (rAAV) comprising the vector of claim 7 and an AAV capsid.
  • 10. A branched oligonucleotide compound comprising two or more of the oligonucleotide compounds of claim 1 covalently bound to one another.
  • 11. A branched RNA oligonucleotide compound comprising: two or more RNA molecules each comprising 15 to 35 nucleotides in length, and wherein at least two of the RNA molecules each comprise a sequence that is perfectly complementary to at least 10 contiguous nucleotides of a 45 nucleotides target region sequence of SARS-CoV-2 selected from the group consisting of SEQ ID NOs: 127, 132, 202, and 222;wherein the two or more RNA molecules are connected to one another by one or more moieties independently selected from a linker, a spacer, a branching point, and a combination thereof.
  • 12. The oligonucleotide compound of claim 3, wherein the oligonucleotide compound comprises at least 80% chemically modified nucleotides or 100% chemically modified nucleotides.
  • 13. The oligonucleotide compound of claim 3, wherein the one or more modified nucleotides each independently comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.
  • 14. The oligonucleotide compound of claim 13, wherein each modification of the ribose group is independently selected from the group consisting of 2′-O-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, and a constrained nucleotide.
  • 15. The oligonucleotide compound of claim 14, wherein the constrained nucleotide is selected from the group consisting of a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, and any combination thereof.
  • 16. The oligonucleotide compound of claim 13, wherein each modification of the nucleobase group is independently selected from the group consisting of 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, and halogenated aromatic groups.
  • 17. The oligonucleotide compound of claim 13, wherein each modification of the phosphate group is independently selected from the group consisting of a phosphorothioate, phosphonoacetate (PACE), thiophosphonoacetate (thioPACE), amide, triazole, phosphonate, and phosphotriester modification.
  • 18. The oligonucleotide compound of claim 17, comprising 4-16 phosphorothioate modifications or 6-13 phosphorothioate modifications.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 63/031,222, filed May 28, 2020, and U.S. Provisional Application Ser. No. 63/084,817, filed Sep. 29, 2020, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (27)
Number Name Date Kind
5328470 Nabel et al. Jul 1994 A
5684143 Gryaznov et al. Nov 1997 A
5858988 Wang Jan 1999 A
6177403 Stedman Jan 2001 B1
6291438 Wang Sep 2001 B1
7459547 Zamore et al. Dec 2008 B2
7732593 Zamore et al. Jun 2010 B2
7750144 Zamore et al. Jul 2010 B2
7772203 Zamore et al. Aug 2010 B2
8304530 Zamore et al. Nov 2012 B2
8309704 Zamore et al. Nov 2012 B2
8309705 Zamore et al. Nov 2012 B2
8329892 Zamore et al. Dec 2012 B2
8431544 Agrawal et al. Apr 2013 B1
20050100885 Crooke May 2005 A1
20050220766 Amalfitano et al. Oct 2005 A1
20060078542 Mah et al. Apr 2006 A1
20070238681 Dobie et al. Oct 2007 A1
20080269149 Bowles et al. Oct 2008 A1
20090226921 Afar et al. Sep 2009 A1
20100119489 Stoffel May 2010 A1
20100186103 Gao et al. Jul 2010 A1
20110287025 Boylan et al. Nov 2011 A1
20140296486 Gao et al. Oct 2014 A1
20170312367 Khvorova et al. Nov 2017 A1
20200123543 Khvorova et al. Apr 2020 A1
20210277489 Donati et al. Sep 2021 A1
Foreign Referenced Citations (9)
Number Date Country
WO 1997005256 Feb 1997 WO
WO 2004092383 Oct 2004 WO
WO 2017030973 Feb 2017 WO
WO 2017132669 Aug 2017 WO
WO 2018031933 Feb 2018 WO
WO 2020198509 Oct 2020 WO
WO 2021188841 Sep 2021 WO
WO-2021224918 Nov 2021 WO
WO 2021243291 Dec 2021 WO
Non-Patent Literature Citations (52)
Entry
Appendix to 63021399, pp. 1-307 (Year: 2020).
Ambros, et al., MicroRNAs and Other Tiny Endogenous RNAs in C. elegans, Current Biology, vol. 13, Issue 10, pp. 807-818, May 13, 2003.
Atwell, et al., Stable Heterodimers From Remodeling the Domain Interface of a Homodimer Using a Phage Display Library, Journal of Molecular Biology, vol. 270, Issue 1, pp. 26-35, Jul. 4, 1997.
Billy, et al., Specific Interference With Gene Expression Induced by Long, Double-Stranded RNA in Mouse Embryonal Teratocarcinoma Cell Lines, Proceedings of the National Academy of Sciences, vol. 98, No. 25, pp. 14428-14433, Dec. 4, 2001.
Braasch, et al., “RNA Interference in Mammalian Cells by Chemically-Modified RNA”, Biochemistry, vol. 42, No. 26, pp. 7967-7975, Jun. 11, 2003.
Brummelkamp, et al., A System for Stable Expression of Short Interfering RNAs in Mammalian Cells, Science, vol. 296, Issue 5567, pp. 550-553, Apr. 19, 2002.
Carter, “Handbook of Parvoviruses”, ed., P. Tijsser, CRC Press, pp. 155-168, 1990.
Chen, et al., “Gene Therapy for Brain Tumors: Regression of Experimental Gliomas by Adenovirus-Mediated Gene Transfer In Vivo”, Proceedings of the National Academy of Sciences, vol. 91, No. 8, pp. 3054-3057, 1994.
Coutard, et al., The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade, Antiviral Research, vol. 176, Article No. 104742, pp. 1-5, Apr. 2020.
Doench, et al., siRNAs Can Function as miRNAs, Genes & Development, vol. 17, pp. 438-442, 2003.
Ducruix et al., “Crystallization of Nucleic Acids and Proteins: A Practical Approach”, Second Edition, Oxford University Press, New York, pp. 201-216, 1999.
Eckstein, Phosphorothioate Oligodeoxynucleotides: What Is Their Origin and What Is Unique About Them?, Antisense and Nucleic Acid Drug Development, vol. 10, Issue 2, pp. 117-121, Jan. 30, 2009.
Elmen, et al., Locked Nucleic Acid (LNA) Mediated Improvements in siRNA Stability and Functionality, Nucleic Acids Research, vol. 33, Issue 1, pp. 439-447, Jan. 14, 2005.
Fattal, et al., Biodegradable Polyalkylcyanoacrylate Nanoparticles for the Delivery of Oligonucleotides, Journal of Controlled Release, vol. 53, pp. 137-143, May 1998.
Fisher, et al., Transduction With Recombinant Adeno-Associated Virus for Gene Therapy Is Limited by Leading-Strand Synthesis, Journal of virology, vol. 70, No. 1, pp. 520-532, Jan. 1996.
Godard, et al., “Antisense Effects of Cholesterol-Oligodeoxynucleotide Conjugates Associated with Poly(alkylcyanoacrylate) Nanoparticles”, European Journal of Biochemistry banner, vol. 232, pp. 404-410, 1995.
Grad, et al., Computational and Experimental Identification of C. elegans microRNAs, Molecular Cell, vol. 11, Issue 5, pp. 1253-1263, May 2003.
Griffiths-Jones, San, The microRNA Registry, Nucleic Acids Research, vol. 32, Issue Supplement 1, pp. D109-D111, Jan. 1, 2004.
Hammerling et al., Monoclonal Antibodies and T-Cell Hybridomas, Research Monographs in Immunology, vol. 3, pp. 563-681, 1981.
Herdewijn, Piet, Heterocyclic Modifications of Oligonucleotides and Antisense Technology, Antisense and Nucleic Acid Drug Development, vol. 10, Issue 4, pp. 297-310, Jul. 8, 2004.
Hutvagner, et al., A microRNA in a Multiple-Turnover RNAi Enzyme Complex, Science, vol. 297, Issue 5589, pp. 2056-2060, Sep. 20, 2002.
Institut Pasteur, Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2, Retrieved Nov. 2, 2021 from: <<https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf>>, pp. 1-3.
International Search Report & Written Opinion for PCT International Patent Application No. PCT/US2021/035002, mailed Jan. 6, 2022.
Iwata-Yoshikawa, et al., TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection, Journal of Virology, vol. 93, No. 6, pp. e01815-e01818, Mar. 5, 2019.
Jung, et al., Comparative Analysis of Primer-probe Sets for the Laboratory Confirmation of SARS-CoV-2, Feb. 27, 2020, Retrieved from: <<https://web.archive.org/web/20200715075740id_/https://www.biorxiv.org/content/biorxiv/early/2020/Feb. 27, 2020.02.25.964775.full.pdf>>, 13 Pages.
Karlin, et al., Applications and Statistics for Multiple High-Scoring Segments in Molecular Sequences, Proceedings of the National Academy of Sciences of the USA, vol. 90, pp. 5873-5877, Jun. 1993.
Karlin, et al., Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes, Proceedings of the National Academy of science of the USA, vol. 87, No. 6, pp. 2264-2268, Mar. 1990.
Lagos-Quintana, et al., Identification of Novel Genes Coding for Small Expressed RNAs, Science, vol. 294, Issue 5543, pp. 853-858, Oct. 26, 2001.
Lagos-Quintana, et al., Identification of Tissue-Specific MicroRNAs from Mouse, Current Biology, vol. 12, Issue 9, pp. 735-739, Apr. 30, 2002.
Lai, et al., Computational Identification of Drosophila microRNA Genes, Genome Biology, vol. 4, No. 7, pp. 1-20, Jun. 30, 2003.
Lam, et al., “A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity”, Nature, vol. 354, pp. 82-84, Nov. 7, 1991.
Lambert, et al., “Nanoparticulate Systems for the Delivery of Antisense Oligonucleotides”, Advanced Drug Delivery Reviews, vol. 47, pp. 99-112, 2001.
Langer, et al., Medical Applications of Controlled Release, CRC Press, Boca Raton, Florida, pp. 115-138, 1974.
Lim, et al., The microRNAs of Caenorhabditis elegans, Genes & Development, vol. 17, No. 8, pp. 991-1008, 2003.
Lim, et al., Vertebrate MicroRNA Genes, Science, vol. 299, Issue 5612, p. 1540, Mar. 7, 2003.
Liu, et al., Can we use Interleukin-6 (IL-6) Blockade for Coronavirus Disease 2019 (COVID-19)-Induced Cytokine Release Syndrome (CRS)?, Journal of Autoimmunity, vol. 111, Article No. 102452, pp. 1-8, Jul. 2020.
Miyagishi, et al., U6 promoter-driven siRNAs With Four Uridine 3′ Overhangs Efficiently Suppress Targeted Gene Expression in Mammalian Cells, Nature Biotechnology, vol. 20, No. 5, pp. 497-500, May 1, 2002.
Mourelatos, et al., miRNPs: A Novel Class of Ribonucleoproteins Containing Numerous microRNAs, Genes & Development, vol. 16, No. 6, pp. 720-728, 2002.
Nielsen, et al., Sequence-Selective Recognition of DNA by Strand Displacement With a Thymine-Substituted Polyamide, Science, vol. 254, Issue 5037, pp. 1497-1500, Dec. 6, 1991.
Petersen, et al., LNA: A Versatile Tool for Therapeutics and Genomics, Trends in Biotechnology, vol. 21, Issue 2, pp. 74-81, Feb. 2003.
Reinhart, et al., Small RNAs Correspond to Centromere Heterochromatic Repeats, Science, vol. 297, No. 5588, 1 Page, Sep. 13, 2002.
Rusckowski, et al., Biodistribution and Metabolism of a Mixed Backbone Oligonucleotide (GEM 231) Following Single and Multiple Dose Administration in Mice, Antisense and Nucleic Acid Drug Development, vol. 10, Issue 5, pp. 333-345, Jan. 30, 2009.
Schwab, et al., An Approach for New Anticancer Drugs:Oncogene-Targeted Antisense DNA, Annals of Oncology, vol. 5, Issue 4, pp. 55-58, 1994.
Stein, et al., Inhibition of Vesivirus Infections in Mammalian Tissue Culture with Antisense Morpholino Oligomers, Antisense and Nucleic Acid Drug Development, vol. 11, Issue 5, pp. 317-325, Oct. 2001.
Vorobjev, et al., Nuclease Resistance and RNase H Sensitivity of Oligonucleotides Bridged by Oligomethylenediol and Oligoethylene Glycol Linkers, Antisense and Nucleic Acid Drug Development, vol. 11, No. 2, pp. 77-85, Apr. 2011.
Wright, et al., Identification of Factors That Contribute to Recombinant AAV2 Particle Aggregation and Methods to Prevent Its Occurrence During Vector Purification and Formulation, Molecular Therapy, vol. 12, Issue 1,, pp. 171-178, Jul. 2005.
Wu, et al., A New Coronavirus Associated With Human Respiratory Disease in China, Nature, vol. 579, pp. 265-269, Feb. 3, 2020.
Yekta et al., MicroRNA-directed cleavage of HOXB8 mRNA, Science, 304(5670):594-596, doi: 10.1126/science.1097434, (Apr. 23, 2004).
Zeng, et al., Both Natural and Designed Micro RNAs Can Inhibit the Expression of Cognate mRNAs When Expressed in Human Cells, Molecular Cell, vol. 9, pp. 1327-1333, Jun. 2002.
Zeng, et al., Sequence Requirements for Micro RNA Processing and Function in Human Cells, RNA, vol. 9, pp. 112-123, 2003.
Chowdury et al., “A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycopretoein gene of SARS-CoV-2”, Genomics, Jan. 2021, 113(1 Pt. 1): 331-343.
Partial Supplementary European Search Report for European Patent Application No. 21814500.1, dated Jun. 13, 2024.
Related Publications (1)
Number Date Country
20230021431 A1 Jan 2023 US
Provisional Applications (2)
Number Date Country
63084817 Sep 2020 US
63031222 May 2020 US