The present application is related to U.S. patent application Ser. No. 12/061,696, entitled “ON CHIP TEMPERATURE MEASURING AND MONITORING METHOD” to Robert L. FRANCH et al., filed coincident herewith; a divisional application of U.S. patent application Ser. No. 11/867,338, entitled “ON CHIP TEMPERATURE MEASURING AND MONITORING CIRCUIT AND METHOD” to Robert L. FRANCH et al., filed Oct. 4, 2007, and of U.S. patent application Ser. No. 11/747,620, entitled “ON CHIP TEMPERATURE MEASURING AND MONITORING CIRCUIT AND METHOD” to Robert L. FRANCH et al., filed May 11, 2007, and of U.S. Pat. No. 7,255,476 entitled “ON CHIP TEMPERATURE MEASURING AND MONITORING CIRCUIT AND METHOD” to Robert L. FRANCH et al., all assigned to the assignee of the present invention and incorporated herein by reference.
1. Field of the Invention
The present invention is related to integrated circuits (ICs) and more particularly to circuits and methods of measuring and monitoring device temperature on ICs.
2. Background Description
It is well known that diode current can be approximated by I=I0(eqV/kT−1), where I0 is the diode turn on current, q is the charge magnitude, V is the junction bias voltage, k is the Boltzmann's constant and T is junction temperature. Similarly, field effect transistor (FET) characteristics, including threshold voltage (VT), device drain to source current (Ids) and leakage currents are related to the temperature of the material (e.g., semiconductor) embodying the FET by well known relationships. In a typical integrated circuit (IC), individual circuit device currents combine to drive capacitive loads at circuit nodes. So, if local (device or junction) temperature is known, device current and, correspondingly, circuit performance can be calculated very precisely. Consequently, an accurate device model requires an accurate device current description.
Current through semiconductor (e.g., silicon) junctions and devices generates heat locally. On a typical IC chip, each such junction or device may act as a local heat source and, more particularly, as a point heat source. How heat is conducted away from each point source depends upon its surrounding and thermally connected structures. For example, how the point source cools may depend in part on whether the circuit is in bulk silicon (Si) or silicon on insulator (SOI), whether the heat source is a single isolated device on a silicon island or is one heat source amongst a group of heat sources, whether metal directly contacts the heat source and etc. Glass (Si/SiO) is a poor heat conductor. So, circuits and even individual devices on a silicon island may be thermally insulated from each other, even though they reside on the same chip. Unfortunately, heat dissipation in modern SOI is not well understood. Previously, only crude imprecise temperature measurements have been available, e.g., chip level thermal measurements or using thermal imaging to characterize circuit-wide temperatures. Measuring gate resistance has provided the temperature of a structure one or two layers above the device active region, the region of concern and, still provides a somewhat distorted reflection of the channel temperature. So, for example, each junction/device is simulated, normally, at the same temperature as every other junction/device on the same circuit or a chip.
Further, device temperature may vary depending upon its immediate history. For example, a device in memory select logic may be switched on after several cycles of dormancy and so, may add little to ambient temperature. By contrast a device in a multiplexor may be switching aperiodically, making a variable contribution to ambient; an inverter in a clock buffer may be switching every cycle, cumulatively contributing to ambient and, itself being at a significantly higher temperature than ambient.
Consequently, because so little information is available about instantaneous thermal conditions at and for any particular device, normally, device current is modeled at one or more particular temperatures, e.g., nominal and both expected extremes. In addition, because it has been difficult, if not impossible, to characterize heat variations other than for large areas, individual device temperature and thermal time constants are not well known. However, without an accurate description of these parameters, e.g., a temperature to time relationship, it has not been possible to construct thermally accurate device models, much less monitor local circuit/device temperature during actual operation, e.g., to signal a shut down when device temperature exceeds an acceptable limit.
Thus, there is a need for an accurate characterization of IC structure temperatures and for a way to monitor junction and device temperatures during chip operation.
It is a purpose of the invention to improve semiconductor device models;
It is another purpose of the invention to accurately model device temperature in integrated circuits (ICs);
It is yet another purpose of the invention to accurately determine device operating temperature;
It is yet another purpose of the invention to monitor device temperature in real time and on the fly.
The present invention relates to a device temperature measurement circuit, an integrated circuit (IC) including a device temperature measurement circuit, a method of characterizing device temperature and a method of monitoring temperature. The circuit includes a constant current source and a clamping device. The clamping device selectively shunts current from the constant current source or allows the current to flow through a PN junction, which may be body to source/drain junction of a field effect transistor (FET). Voltage measurements are taken directly from the PN junction. Junction temperature is determined from measured junction voltage.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Turning now to the drawings and, more particularly,
In this example, the inverter 102 includes an N-type FET (NFET) 102N and a P-type FET (PFET) 102P. A clamping NFET 104 is connected to the body 106 of inverter NFET 102N. A constant current source 108, preferably in the range of 10 μA-100 nA and located on chip, is connected in parallel with the clamping NFET 104 to the body 106 of inverter NFET 102N, the device being characterized/monitored for temperature. Constant current source 108 may be, for example, an NFET current-mirror circuit. A diode 110 represents the natural PN junction between the body and the source of the NFET 102N in this example. Essentially, inverter NFET 102N heats up during use and that heat is reflected in the forward bias voltage (Vf) of diode 110. By forcing a known current through the diode 110 with NFET 102N off and measuring the voltage across the diode 110 (Vf) at various temperatures, a voltage to temperature relationship is defined for the diode. Thereafter, the junction temperature may be determined from the diode voltage at the same current. During normal operation, clamping NFET 104 is switched on, shunting the current from current source 108 and clamping the body 106 of inverter NFET 102N, more or less, to ground. Junction temperature may be monitored, periodically, by switching off both NFETs 102N, 104 and measuring junction voltage. Of course, it is understood that the present invention has application to any suitable circuit including, for example, complex logic circuits such as adders, multiplexers, repeaters, etc.
The resulting voltage-temperature calibration table can be used with a preferred embodiment device temperature measurement circuit (e.g., 100) to generate a temperature based relaxation curve and determine a relaxation thermal time constant for the particular device, e.g., 102N. Essentially, the circuit (inverter 102) is operated at its highest expected capacity with the switch dormant and temperature is monitored over a selected cooling period. The relaxation thermal time constant may be used to model the device or similar devices. So, turning on the clamping NFET 104 shunts current from current source 108 and provides a ground bias to the body 106 of inverter NFET 102N. Then, in step 134 the inverter 102 is switched, e.g., at maximum operating frequency. After sufficient time for the junction to reach an expected maximum operating temperature, in step 136 the switching inverter 102 is stopped and the clamping NFET 104 is switched off. Finally, in step 138 the junction voltage measured at regular intervals using an on-chip A/D converter. The digital output of the A/D converter (not shown) can be stored or sent off chip where the measurements are logged. Thereafter, the logged voltage measurements may be converted to temperature using the voltage-temperature calibration table. The converted information may be used in the junction model for a much more precise accurate device model.
Advantageously, the forward voltage (Vf) of the P-N junction (and therefore its temperature) may be sensed immediately and on the fly. Thus, the temperature of the device itself (which may be well above ambient) is being individually determined and time sensitive temperature data is not lost, e.g., due to line charging delays from using an external current source or from transient settling time delays. Sensing can be either off-chip or on-chip using an analog comparator or, an A/D converter in combination with a digital compare and a scannable typical threshold value. The result is much more accurate than measuring neighboring device temperatures and trying to extrapolate temperature for the actual device of interest. Instead, application of the present invention measures the actual device temperature in the actual logic gate. Temperature can be monitored in any circuit, even on a device embedded in an IC chip mounted in a module in active operation, e.g., a microprocessor in a computer.
While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3286138 | Shockley | Nov 1966 | A |
4039928 | Noftsker et al. | Aug 1977 | A |
4224537 | Glazer | Sep 1980 | A |
4395139 | Namiki | Jul 1983 | A |
4652144 | Gunther et al. | Mar 1987 | A |
4672175 | Niven | Jun 1987 | A |
4768170 | Hoff | Aug 1988 | A |
5039878 | Armstrong et al. | Aug 1991 | A |
5070322 | Fujihira | Dec 1991 | A |
5196827 | Allen | Mar 1993 | A |
5221888 | Moody | Jun 1993 | A |
5278461 | Bucksch | Jan 1994 | A |
5355123 | Nishiura et al. | Oct 1994 | A |
5357089 | Prentice | Oct 1994 | A |
5546041 | Szajda | Aug 1996 | A |
5639163 | Davidson et al. | Jun 1997 | A |
5686858 | Malherbe | Nov 1997 | A |
5748429 | Peterson | May 1998 | A |
5781075 | Bolton | Jul 1998 | A |
5796290 | Takahashi | Aug 1998 | A |
5918982 | Nagata et al. | Jul 1999 | A |
5973382 | Burgener | Oct 1999 | A |
5982221 | Tuthill | Nov 1999 | A |
5993060 | Sakurai | Nov 1999 | A |
6005434 | Tsukikawa | Dec 1999 | A |
6008685 | Kunst | Dec 1999 | A |
6019508 | Lien | Feb 2000 | A |
6049244 | Milanesi | Apr 2000 | A |
6166584 | De | Dec 2000 | A |
6225851 | Descombes | May 2001 | B1 |
6255891 | Matsuno | Jul 2001 | B1 |
6271710 | Ooishi | Aug 2001 | B1 |
6286996 | Molander | Sep 2001 | B1 |
6288596 | Johansson et al. | Sep 2001 | B1 |
6316971 | Ohashi | Nov 2001 | B1 |
6332710 | Aslan | Dec 2001 | B1 |
6363490 | Senyk | Mar 2002 | B1 |
6441679 | Ohshima | Aug 2002 | B1 |
6489831 | Matranga | Dec 2002 | B1 |
6496056 | Shoji | Dec 2002 | B1 |
6552945 | Cooper et al. | Apr 2003 | B2 |
6554469 | Thompson | Apr 2003 | B1 |
6567763 | Javanifard et al. | May 2003 | B1 |
6612738 | Beer et al. | Sep 2003 | B2 |
6635934 | Hidaka | Oct 2003 | B2 |
6674185 | Mizuta | Jan 2004 | B2 |
6679628 | Breinlinger | Jan 2004 | B2 |
6736540 | Sheehan et al. | May 2004 | B1 |
6737848 | Goetz | May 2004 | B2 |
6774653 | Gold | Aug 2004 | B2 |
6794921 | Abe | Sep 2004 | B2 |
6870357 | Falik | Mar 2005 | B1 |
6890097 | Tanaka | May 2005 | B2 |
6914470 | Watanabe | Jul 2005 | B2 |
6957910 | Wan | Oct 2005 | B1 |
6977849 | Tomishima | Dec 2005 | B2 |
7216064 | Pippin | May 2007 | B1 |
7417487 | Mori | Aug 2008 | B2 |
7595244 | Bulucea et al. | Sep 2009 | B1 |
20010021217 | Gunther et al. | Sep 2001 | A1 |
20030025514 | Benes | Feb 2003 | A1 |
20030076158 | Rajan | Apr 2003 | A1 |
20030086476 | Mizuta | May 2003 | A1 |
20040208227 | Hauenstein | Oct 2004 | A1 |
20050179575 | McLeod et al. | Aug 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080186035 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11867338 | Oct 2007 | US |
Child | 12061692 | US | |
Parent | 11747620 | May 2007 | US |
Child | 11867338 | US | |
Parent | 10824297 | Apr 2004 | US |
Child | 11747620 | US |