The present invention relates to an on-vehicle image processing device having an image sensor.
An on-vehicle camera (hereinafter referred to as the stereo camera), serving as an on-vehicle image processing device, uses a pair of images captured by two imaging sections, calculates the distance to a target by triangulation, and recognizes the target accordingly, is now beginning to be applied to an on-vehicle system for facilitating safe driving of a vehicle.
In an environment where the device is mounted on vehicles, in particular, it is necessary to properly measure the distance to a remote target and recognize it due to application requirements that demand the detection of preceding vehicles, humans, and obstacles in order to take safety precautions.
Further, when a stereo image processing system is to be used as an on-vehicle system, it is also requested that the system be compact, low-priced, and highly reliable.
The above system generally includes a dedicated LSI that checks pixel information included in a pair of images, identifies positions of pixels indicative of feature points common to the pair of images, and determines the number of displaced pixels indicative of feature points in the pair of images (hereinafter referred to as disparity).
As the above principles apply, it is ideal that no displacement except disparity is found in the pair of images. All imaging means need to be structured so that they can be accurately adjusted to avoid any discrepancies in optical characteristics and signal characteristics and maintained in the accurately adjusted state.
An invention disclosed in Patent Document 1 is related to the above-described background art. Patent Document 1 describes that an on-vehicle camera formed of a pair of cameras includes a camera stay and an installation area. The installation area is structured integrally with the camera stay and fastened to a chassis of a vehicle, the camera stay holding the pair of cameras in predetermined positions. The on-vehicle camera is securely screwed into the installation holes in the chassis of the vehicle by use of three installation holes disposed in the installation area and of three screws. As the camera is screwed in this way, it is possible to accurately maintain the relative positions of the pair of cameras.
Patent Document 2 describes a compound-eye camera. Two or more light rays are emitted from two or more light sources disposed at a position at which the compound-eye camera is mounted. A target is disposed at an intersection of the two or more light sources. The compound-eye camera is adjusted by photographing the target. This adjustment makes it possible to accurately adjust the optical axis and focus of the compound-eye camera.
Patent Document 1: JP-2009-68906-A
Patent Document 2: JP-2002-218504-A
To improve the measurement accuracy of a stereo camera, it is necessary to increase the accuracy of the relative positions of left and right imaging sections as mentioned above. However, simply increasing the mechanical accuracy of the enclosure will not result in adequate performance of the stereo camera. Therefore, electrical adjustments need to be made (corrections need to be made with images captured by the stereo camera) during a manufacturing process.
As such being the case, the stereo camera needs to be adjusted while it is mounted on a manufacturing equipment jig with higher accuracy than that when the stereo camera is mounted on a vehicle during the manufacturing process.
An idea described in Patent Document 1 is for mounting the stereo camera on a vehicle with high accuracy and making the enclosure unlikely to deform due to temperature changes. However, this idea is not adequate to provide high mounting accuracy for stereo camera adjustment during a manufacturing process. Further, Patent Document 2 states that the compound-eye camera is accurately mounted on a reference surface of a jig. However, Patent Document 2 does not describe in detail a method of accurately mounting the compound-eye camera.
In view of the above circumstances, the present invention has an object to provide an on-vehicle image processing device that achieves low cost and provides high mounting accuracy with respect to a manufacturing equipment jig in order to increase the accuracy of electrical adjustments during a manufacturing process.
In order to solve the above problems, the on-vehicle image processing device according to the present invention includes a first imaging section, a second imaging section, and an enclosure having the first imaging section at one end and the second imaging section at the other end. The on-vehicle image processing device generates a range image from images captured by the first and second imaging sections. The on-vehicle image processing device further includes an enclosure reference surface that comes in contact with an equipment jig during manufacture, the enclosure reference surface being provided at two locations between the first and second imaging sections.
The present invention provides an on-vehicle image processing device that achieves low cost and provides high mounting accuracy on a manufacturing equipment jig in order to increase the accuracy of electrical adjustments during a manufacturing process.
Embodiments of the present invention will now be described with reference to the accompanying drawings.
An embodiment of an on-vehicle image processing device according to the present invention will be described below.
As shown in
The imaging sections 12 each include an image sensor, a lens, left and right imaging circuit boards, and a signal processing circuit board. The lens causes the image sensor to form an image representing the visual information about the outside world. The imaging circuit boards have a processing function of introducing, into an image processing LSI, image information formed on the image sensor. The signal processing circuit board drives the image sensor.
The enclosure 11 includes a processing circuit board, a vehicle-mounting surface 15, a reference hole 14, and an enclosure reference surface 13. The processing circuit board includes a circuit that causes the image processing LSI to extract a target in accordance with the image information sent from the imaging circuit boards and calculates the distance to and the size of the target. The vehicle-mounting surface 15 has a base and holes into which screws are introduced for fixing the enclosure to a vehicle. The reference hole 14 engages with a pin on the vehicle to ensure that the stereo camera, serving as the on-vehicle image processing device, is accurately oriented when it is mounted on the vehicle. The enclosure reference surface 13 comes into contact with an equipment jig when the stereo camera is manufactured.
After the stereo camera is mounted on the equipment jig, the image of a random pattern needs to be captured for electrical adjustments of the stereo camera. To generate accurate adjustment data from the pattern, the imaging direction (hereinafter referred to as the optical axis) of the stereo camera needs to be fixed in a desired direction by causing the up-down, left-right, and front-rear positions of the enclosure reference surface 13 to coincide with desired positions when it is mounted on the equipment jig.
Further, the orientation of the optical axis in manufacturing equipment is most likely to be affected by displacement in the rotating direction of the up-down, left-right, and front-rear axes, the displacement arising when the stereo camera is mounted on the equipment jig. Therefore, such displacement needs to be minimized.
In a case where a plurality of reference holes 14 for mounting vehicles are used to mount the stereo camera on the equipment jig during manufacture, the intervals between the plurality of reference holes 14 for vehicle-mounting would be short because the plurality of reference holes 14 for vehicle-mounting are generally centered on the center of the enclosure 11. Accordingly, a larger mounting error would occur if the stereo camera is mounted on the equipment.
The present invention is characterized in that two enclosure reference surfaces 13 are provided between the first and second imaging sections and brought into contact with the equipment jig during manufacture. More specifically, the enclosure reference surface 13 is disposed between the first imaging section on one hand and the middle of the first and second imaging sections (or the vehicle-mounting surface 15) on the other as well as disposed between the second imaging section and the middle (or the vehicle-mounting surface 15). In other words, two enclosure reference surfaces 13 are provided on the enclosure 11 or the imaging sections 12 in addition to the plurality of reference holes 14 for vehicle-mounting, as shown in
With reference to
In order to minimize the mounting error, it is preferred that the two enclosure reference surfaces 13 be positioned outward of the lenses of the imaging sections 12. However, the imaging sections 12 have to be mechanically adjusted, for instance, by adjusting the focus of each lens. Therefore, it is most appropriate that the two enclosure reference surfaces 13 be positioned as outward as possible within the limits of the enclosure 11.
When the contact with the equipment jig is taken into consideration, it is preferred that the enclosure reference surface 13 be rectangular in shape as shown in
It should be noted, however, that the enclosure reference surface 13 can be used not only as the contact with an equipment jig for adjustment but also as the contact with a jig for processing.
Further, as the enclosure 11 is generally made of aluminum die cast, the enclosure reference surface 13 may also serve as an extrusion pin position for removing the enclosure from a die cast mold.
In the above cases, the enclosure reference surface 13 may be circular in shape as well.
The enclosure reference surface 13 that is to be processed and removed from a mold may be used as is, so that the enclosure reference surface 13 is as parallel a surface as possible. However, the degree of parallelism of the enclosure reference surface 13 can be increased by cutting or grinding.
The stereo camera needs to be properly positioned when it is mounted. Therefore, as shown in
In the above instance, only one enclosure reference surface 13 may suffice. However, as the enclosure reference surface 13 needs to be processed, it is preferred that the size of the enclosure reference surface 13 be minimized to reduce the cost.
Consequently, it is preferred that two or more enclosure reference surfaces 13 be provided and minimized in size.
When two enclosure reference surfaces 13 are to be provided and accurately mounted on the equipment, it is most appropriate that they be parallel and flush with each other. If the enclosure is shaped so that they cannot be flush with each other, they may be merely parallel to each other.
A second embodiment of the present invention will now be described with reference to an exemplary structure in which a certain enclosure reference surface is provided in addition to the enclosure reference surface 13 shown in
Elements that perform the same functions and are designated by the same reference numerals as the elements shown in
As is the case with the enclosure reference surface 13, the upper enclosure reference surface 21 may also use the vehicle-mounting surface 15 that comes into contact with the vehicle at times of vehicle-mounting. However, the surface brought into contact with the vehicle is centered on the middle of the enclosure 11, as is the case with the enclosure reference surface 13. Therefore, in order to dispose the vehicle-mounting surface 15 at an adequate distance wherever possible, it is preferred that the upper enclosure reference surface 21 be provided in addition to the vehicle-mounting surface 15 which comes into contact with the vehicle, as shown in
In the above instance, it is most appropriate that the two upper enclosure reference surfaces 21 be parallel and flush with each other. Even if they cannot easily be flush with each other, the same advantage can be obtained as long as they are parallel to each other.
As shown in
As shown in
A third embodiment of the present invention will now be described with reference to an exemplary structure in which an enclosure reference hole 41 is provided instead of the enclosure reference surface 13.
Elements that perform the same functions and are designated by the same reference numerals as the elements shown in
Being positioned with relation to the equipment jig, two enclosure reference holes 41 should preferably be provided as shown in
The enclosure reference hole 41 may be disposed on the enclosure 11 instead of the imaging sections 12. In this case, too, it is preferred that the two enclosure reference holes 41 be positioned at the maximum possible distance from each other.
Moreover, the enclosure reference hole 41 may be formed integrally with the upper enclosure reference surface 21. This makes it possible to achieve positioning in the front-rear direction, up-down direction, and left-right direction.
The present invention is not limited to the foregoing embodiments but may be variously modified. The foregoing embodiments have been described in detail to facilitate the understanding of the present invention. The present invention is not necessarily limited to a configuration having all the above-described elements.
Some of the elements included in a certain embodiment may be replaced by the elements of another embodiment. Further, the elements included in a certain embodiment may be added to the elements included in another embodiment.
Furthermore, some elements of each embodiment may be subjected to the addition of other elements, deleted, or replaced by other elements.
Number | Date | Country | Kind |
---|---|---|---|
2012-169073 | Jul 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/066772 | 6/19/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/021011 | 2/6/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6803961 | Ezawa | Oct 2004 | B1 |
6811330 | Tozawa | Nov 2004 | B1 |
8077295 | Inagaki | Dec 2011 | B2 |
20050140818 | Uemura | Jun 2005 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070109527 | Wenstrand | May 2007 | A1 |
20080001727 | Ohsumi | Jan 2008 | A1 |
20090268013 | Katahira | Oct 2009 | A1 |
20100128245 | Inagaki et al. | May 2010 | A1 |
20110050855 | Nobis | Mar 2011 | A1 |
20120081550 | Sewell | Apr 2012 | A1 |
20120086784 | Oh | Apr 2012 | A1 |
20140247390 | Ohsumi | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2001-51966 | Feb 2001 | JP |
2001-242521 | Sep 2001 | JP |
2002-218504 | Aug 2002 | JP |
2008-70774 | Mar 2008 | JP |
2009-68906 | Apr 2009 | JP |
2009-265412 | Nov 2009 | JP |
2010-106919 | May 2010 | JP |
2011-123078 | Jun 2011 | JP |
2011242521 | Dec 2011 | JP |
2012-189324 | Oct 2012 | JP |
Entry |
---|
International Search Report (PCT/ISA/210) dated Aug. 6, 2013, with English translation (Four (4) pages). |
Japanese-language Office Action issued in counterpart Japanese Application No. 2012-169073 dated Mar. 3, 2015 with English translation (Six (6) pages). |
English translation of Japanese-language Office Action issued in counterpart Japanese Application No. 2015-156594 dated Feb. 14, 2017 (Four (4) pages). |
English translation of German Office Action issued in counterpart German Application No. 11 2013 003 795.5 dated Apr. 24, 2017 (three pages). |
English-language Japanese Office Action issued in counterpart Japanese Application No. 2017-109654 dated May 8, 2018 (three (3) pages). |
English translation of Japanese-language Office Action issued in counterpart Japanese Application No. 2017-109654 dated Jul. 11, 2018 (three (3) pages). |
Number | Date | Country | |
---|---|---|---|
20150158435 A1 | Jun 2015 | US |