The present invention relates to integrated circuit verification systems, and in particular, to optical and process correction (OPC) tools.
As the density of features to be created in an integrated circuit (IC) increases and the size of individual features decrease, such features are increasingly more difficult to accurately form with a photolithographic process. It is a well documented phenomenon in photolithographic processing that as a feature size becomes smaller than the wavelength of the light that is used to illuminate a mask or reticle pattern onto a wafer, the fringing effects of the illumination light produce errors on the wafer. Such errors distort the patterns created on a wafer in a manner that may decrease the performance of the resulting IC or cause it to fail completely.
To reduce or eliminate the illumination distortion, circuit designers use a variety of techniques including the use of optical and process correction (OPC) tools that, in effect, counteract the illumination distortions so that a feature will print as desired on the wafer. One example of an OPC correction tool is the CalibreĀ® Software Suite, produced by Mentor Graphics Corporation of Wilsonville, Oreg., the assignee of the present invention.
Even when using an OPC tool, some features in an IC design may not print as desired on a wafer. In many instances, a less than desired OPC correction is made by the OPC tool due to manufacturing constraints that can affect the OPC tool in a non-intuitive manner. In these instances, users sometimes send test cases to the OPC software developers who debug the OPC software to determine why the less than optimal correction was made. A process of manual debugging takes time, increases the cost and decreases the throughput of overall circuit design process.
Given these problems, there is a need for a system that can alert a user when a less than desired OPC correction is being made and why a better correction is not possible under current system constraints.
The present invention is a tool for alerting a user to conflicts between an optical and process correction (OPC) tool and other system constraints that are preventing a better OPC correction from being made for a feature in an IC layout. Such system constraints are typically user-defined or are process dependent. Upon receiving the alert, the user may be able to change the layout or relax or suspend the system constraint in order to achieve a better OPC result.
In another embodiment of the invention, an OPC tool assigns a priority to individual edge segments of a feature to be OPC corrected such that movement of a less important edge does not hinder the OPC correction of a more important edge. Pattern recognition or other techniques are used to assign the priority of an edge so that a better OPC result can be obtained.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
As indicated above, one aspect of the present invention is a system for performing IC layout data verification that alerts a circuit designer where an optical and process correction (OPC) tool may produce a less than optimal result due to a conflict with other system constraints. As shown in
In accordance with one aspect of the present invention, the computer system 10 executes a sequence of programmed instructions that are stored on a computer readable media or embedded in a data signal transmitted over a datalink. The instructions cause the computer to indicate to a user where there is a conflict between an OPC suggested modification and a manufacturing rule 16 in the IC layout design. The indication allows a user to readily determine where a less than optimal OPC result is being selected for a feature unless a modification is made. Upon viewing the conflict, the user can either accept the OPC result suggested, elect to modify the layout design or relax or suspend the particular rule that is causing the conflict in order to obtain a better OPC result.
In accordance with another embodiment of the present invention, the computer system 10 assigns a priority to certain edge segments of polygons within the IC layout design such that the OPC correction of a lower priority edge segment does not hinder the OPC correction of a higher priority edge segment. Upon completion of the OPC and other design verification tools, the computer system writes the verified and corrected layout data onto a computer-readable media 18. The computer readable media 18 is provided to a mask or reticle writer in order to create a corresponding photolithographic mask or reticle, which is then used in a photolithographic process to produce the IC on a semiconductor wafer. Alternatively, the corrected IC layout data could be transmitted over a data network such as an intranet or the Internet to the mask writer. Although the computer system 10 is shown as a single stand-alone computer, it will be appreciated that a multi-computer or distributed computer network could also be used to implement the present invention.
To provide an indication of OPC and manufacturing rule conflicts, the computer system 10 keeps track of which edges can not be moved to their desired OPC corrected position without causing a conflict. A script, datafile, database or other mechanism for storing instructions that are executed by the computer to produce a display that highlights the edge segments in question and where the conflict will occur if additional OPC corrections are made. By viewing the display, the user can easily check a layout design for edge segments that are not given their desired OPC correction, and a decision can be made regarding how to better the result if necessary. In addition, the conflict indication given to the user may also specify what manufacturing rule or rules would be violated by giving the edge segment its desired, or additional, OPC correction so that the user can modify or suspend the rule if desired.
Once the conflict results have been determined, the actual display of the conflict results can be any one of those widely employed currently by layout display tools. For example, a bounding box of contrasting color can be drawn around the edge segment found to have a conflict. The edge segment can also be made to blink on and off, drawing attention to the location. A text box describing the rule causing the conflict can also be made to appear near the edge segment in question as an additional means of identifying the conflict locations. This text information can also be hidden, appearing only when a user's on screen indicator of the computer mouse position is moved into close proximity to the edge segment in question. The text can indicate a rule number, a rule name, or any other information used to identify and index the various design rules that may be in conflict. Different colors for the bounding boxes around the edge segments in violation can also be used to indicate different specific rules that are in conflict.
To determine which edge segments have priority over other edge segments, a search algorithm and/or a knowledge base is used to search the layout for patterns of features whereby the priority of similarly positioned edge segments have been determined in the past. However, there are other ways of assigning priority to edges. For example, one embodiment may estimate the magnitude of the uncorrected EPE of an edge segment such that edge segments having a larger error may be corrected prior to adjusting edge segments with a smaller estimated EPE. Furthermore, the EPE used for assigning priorities may be dynamic in accordance with the OPC corrections made to the edge segments. In another embodiment, edge segments can be categorized or tagged based on their location in a feature or with their MRC constraint information. For example, segments may be categorized as being part of a gate, a line end, a signal wire, etc., so that critical portions of circuit features are corrected before non-critical or less critical portions of circuit elements. In an alternative embodiment, the function of the feature may be used in assigning priorities. For example, edge segments that define gates of transistors may be assigned a higher priority than edge segments that define connection pads etc.
In many instances the OPC corrections are determined with an iterative process where edges are moved outward or inward until an acceptable solution is found. Therefore, a lower priority edge may be assigned a position during one iteration that prevents an OPC correction for a more important edge before being moved in another iteration to allow the better OPC correction for the higher priority edge.
Although the present invention has been described with respect to its currently preferred embodiments, it will be appreciated that changes may be made without departing from the scope of the invention. For example, the steps described may be performed in alternative orders. Furthermore, different processing steps may be used to achieve the same functional result. Although the present invention is described with respect to visually highlighting conflicts between an OPC suggested correction and a manufacturing rule, it will be appreciated that other indications such as written, audible or other sensory indications could be produced as well. Therefore, the scope of the invention is to be determined from the following claims and equivalents thereto.
This application is a divisional of U.S. patent application Ser. No. 10/859,920, filed Jun. 2, 2004, now U.S. Pat. No. 7,240,305.
Number | Name | Date | Kind |
---|---|---|---|
4532650 | Wihl et al. | Jul 1985 | A |
4762396 | Dumant et al. | Aug 1988 | A |
5297150 | Clark | Mar 1994 | A |
5396584 | Lee et al. | Mar 1995 | A |
5473748 | Date et al. | Dec 1995 | A |
5502654 | Sawahata | Mar 1996 | A |
5655110 | Krivokapic et al. | Aug 1997 | A |
5723233 | Garza et al. | Mar 1998 | A |
5815685 | Kamon | Sep 1998 | A |
5825647 | Tsudaka | Oct 1998 | A |
5879844 | Yamamoto et al. | Mar 1999 | A |
5991006 | Tsudaka | Nov 1999 | A |
6016357 | Neary et al. | Jan 2000 | A |
6033814 | Burdorf et al. | Mar 2000 | A |
6042257 | Tsudaka | Mar 2000 | A |
6049660 | Ahn et al. | Apr 2000 | A |
6077310 | Yamamoto et al. | Jun 2000 | A |
6080527 | Huang et al. | Jun 2000 | A |
6120952 | Pierrat et al. | Sep 2000 | A |
6128067 | Hashimoto | Oct 2000 | A |
6187483 | Capodieci et al. | Feb 2001 | B1 |
6243855 | Kobayashi et al. | Jun 2001 | B1 |
6249904 | Cobb | Jun 2001 | B1 |
6263299 | Aleshin et al. | Jul 2001 | B1 |
6269472 | Garza et al. | Jul 2001 | B1 |
6301697 | Cobb | Oct 2001 | B1 |
6317859 | Papadopoulou | Nov 2001 | B1 |
6370679 | Chang et al. | Apr 2002 | B1 |
6425117 | Pasch et al. | Jul 2002 | B1 |
6430737 | Cobb et al. | Aug 2002 | B1 |
6453452 | Chang et al. | Sep 2002 | B1 |
6453457 | Pierrat et al. | Sep 2002 | B1 |
6467076 | Cobb | Oct 2002 | B1 |
6470489 | Chang et al. | Oct 2002 | B1 |
6499003 | Jones et al. | Dec 2002 | B2 |
6574784 | Lippincott et al. | Jun 2003 | B1 |
6643616 | Granik et al. | Nov 2003 | B1 |
6649309 | Mukherjee | Nov 2003 | B2 |
6665845 | Aingaran et al. | Dec 2003 | B1 |
6668367 | Cobb et al. | Dec 2003 | B2 |
6704921 | Liu | Mar 2004 | B2 |
6748578 | Cobb | Jun 2004 | B2 |
6792590 | Pierrat et al. | Sep 2004 | B1 |
6817003 | Lippincott et al. | Nov 2004 | B2 |
6857109 | Lippincott | Feb 2005 | B2 |
6887633 | Tang | May 2005 | B2 |
6899981 | Galan et al. | May 2005 | B1 |
6928634 | Granik et al. | Aug 2005 | B2 |
6973633 | Lippincott et al. | Dec 2005 | B2 |
7010776 | Gallatin et al. | Mar 2006 | B2 |
7013439 | Robles et al. | Mar 2006 | B2 |
7017141 | Anderson et al. | Mar 2006 | B2 |
7024655 | Cobb | Apr 2006 | B2 |
7028284 | Cobb et al. | Apr 2006 | B2 |
7047516 | Futatsuya | May 2006 | B2 |
7062748 | Mellmann | Jun 2006 | B2 |
7073162 | Cobb et al. | Jul 2006 | B2 |
7155689 | Pierrat et al. | Dec 2006 | B2 |
7155699 | Cobb | Dec 2006 | B2 |
7172838 | Maurer et al. | Feb 2007 | B2 |
7181721 | Lippincott et al. | Feb 2007 | B2 |
7237221 | Granik et al. | Jun 2007 | B2 |
7240305 | Lippincott | Jul 2007 | B2 |
7240321 | Cobb et al. | Jul 2007 | B2 |
7281234 | Lippincott | Oct 2007 | B2 |
7293249 | Torres Robles et al. | Nov 2007 | B2 |
7324930 | Cobb | Jan 2008 | B2 |
7367009 | Cobb et al. | Apr 2008 | B2 |
20020140920 | Rosenbluth et al. | Oct 2002 | A1 |
20040063000 | Maurer et al. | Apr 2004 | A1 |
20040133871 | Granik et al. | Jul 2004 | A1 |
20050076316 | Pierrat et al. | Apr 2005 | A1 |
20050149901 | Tang | Jul 2005 | A1 |
20050229130 | Wu et al. | Oct 2005 | A1 |
20050229131 | Wu et al. | Oct 2005 | A1 |
20050251771 | Robles | Nov 2005 | A1 |
20050273733 | Lippincott | Dec 2005 | A1 |
20050278686 | Word et al. | Dec 2005 | A1 |
20060188796 | Word | Aug 2006 | A1 |
20060199084 | Word | Sep 2006 | A1 |
20060200790 | Shang et al. | Sep 2006 | A1 |
20060240342 | Tang | Oct 2006 | A1 |
20070074143 | Cobb et al. | Mar 2007 | A1 |
20070118826 | Lippincott | May 2007 | A1 |
20070124708 | Torres Robles et al. | May 2007 | A1 |
20080141195 | Torres Robles et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
09319067 | Dec 1997 | JP |
11-102380 | Apr 1999 | JP |
2004-502961 | Jan 2004 | JP |
WO 9914637 | Mar 1999 | WO |
WO 9914638 | Mar 1999 | WO |
WO 0165315 | Sep 2001 | WO |
WO 0197096 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070118826 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10859920 | Jun 2004 | US |
Child | 11626307 | US |