People with Type 1 diabetes (T1D) may utilize specific clinical parameters to manage their insulin deliveries, such as basal programs. However, it is difficult to manually determine the optimal values of these clinical parameters, and patients may compensate for an observed deficiency in certain outcomes by modifying parameters that only tangentially address the issue but cause deficiencies in other areas. For instance, the user may have a basal program that is set to be too low but considers that their resulting hyperglycemia is due to insufficient meal boluses, and thus decides to increase their insulin-to-carbohydrate (I:C) ratios beyond the norm. It would be beneficial to have a “Ground truth” value of at least one fundamental clinical parameter, such as the basal parameter.
Further, the insulin needs of these patients may vary over time. As users begin utilizing automated insulin delivery (AID) systems for a majority of their diabetes care, their open loop parameters may remain untouched—consequently, their clinical parameters may become out of date with the user's true needs based on the changes in their lifestyles or physiology. Accurate and updated open loop parameters will still be needed for these users given that there will be cases where AID is not available, such as sensor unavailability. Methods for utilizing closed loop glucose control outcomes to inform insulin delivery parameters for user's manual control are lacking.
Disclosed is a device that includes a processor, a memory, a wireless communication device and an artificial pancreas application executable by the processor. The processor may be operable to execute programming code and applications including the artificial pancreas application. The memory may be coupled to the processor and operable to store programming code, an artificial pancreas application and data. The wireless communication device may be operable to wirelessly communicate with a paired device and communicatively coupled to the processor. The artificial pancreas application may be operable to determine a total amount of insulin delivered to the user over the predetermined time period. The total amount of insulin may be a sum of a total basal dosage amount of insulin delivered in the basal dosages over the predetermined time period and a total bolus dosage amount of insulin delivered in the bolus dosages over the predetermined time period. A proportion of the total amount of insulin delivered to the user provided via the total basal dosage amount over the predetermined time period may be determined. The processor may determine whether the proportion of the total amount of insulin attributed to the total basal dosage amount of insulin exceeds a threshold. In response to determining the threshold is exceeded, an average basal dosage to be delivered within a subsequent time period that is approximately equal to the threshold may be determined. An instruction may be generated to deliver a modified basal dosage that substantially maintains the average basal dosage over the subsequent time period. The instruction may be output to cause an actuation of a pump mechanism of the paired device to deliver the modified basal dosage.
Disclosed is a non-transitory computer readable medium embodied with programming code executable by a processor, and the processor when executing the programming code is operable to perform functions, and a process. A processor may be operable to determine a total amount of insulin delivered to the user over the predetermined time period. The total amount of insulin may be a sum of a total basal dosage amount of insulin delivered in the basal dosages over the predetermined time period and a total bolus dosage amount of insulin delivered in the bolus dosages over the predetermined time period. A proportion of the total amount of insulin delivered to the user provided via the total basal dosage amount relative to the sum total amount of insulin delivered over the predetermined time period may be determined. The processor may determine whether the proportion of the total amount of insulin attributed to the total basal dosage amount of insulin exceeds a threshold. In response to determining the threshold is exceeded, an average basal dosage to be delivered within a subsequent time period that is approximately equal to the threshold may be determined. An instruction may be generated to deliver a modified basal dosage that substantially maintains the average basal dosage over the subsequent time period. The instruction may be output to cause an actuation of a pump mechanism of a wearable drug delivery device to deliver the modified basal dosage.
It would be advantageous if automatic insulin delivery (AID) systems, which may use an AID algorithm, were properly tuned to compensate for a user's basal insulin needs. Therefore, the AID systems can determine the users' optimized basal needs following examination of insulin delivery records from automated delivery. Basal insulin profile recommendations can also include elements of time dependence based on the insulin delivery patterns instructed by the AID system, to provide time-dependent basal profiles instead of a constant estimate of the user's basal needs. The following description of the examples provided herein describe techniques and devices that enable optimization of proposed open-loop insulin delivery basal parameters based on insulin delivery records and the utilization of closed-loop glucose control outcomes to inform insulin delivery parameters for a user's manual control.
An example provides a process that may be used with any additional algorithms or computer applications that manage blood glucose levels and insulin therapy. Such algorithms may be referred to as an “artificial pancreas” algorithm-based system, or more generally, an artificial pancreas (AP) application or automatic insulin delivery (AID) algorithm that provides automatic delivery of an insulin based on a blood glucose sensor input, such as that received from a CGM or the like. In an example, the artificial pancreas (AP) application when executed by a processor may enable a system to monitor a user's glucose values, determine an appropriate level of insulin for the user based on the monitored glucose values (e.g., blood glucose concentrations or blood glucose measurement values) and other information, such as user-provided information, such as carbohydrate intake, exercise times, meal times or the like, and take actions to maintain a user's blood glucose value within an appropriate range. The appropriate blood glucose value range may be considered a target blood glucose value of the particular user. For example, a target blood glucose value may be acceptable if it falls within the range of 80 mg/dL to 120 mg/dL, which is a range satisfying the clinical standard of care for treatment of diabetes. Alternatively, or in addition, an AP application (or AID algorithm) as described herein may be able to establish a target blood glucose value more precisely and may set the target blood glucose value at, for example, 110 mg/dL, or the like. As described in more detail with reference to the examples of
Due to the complicated and dynamic nature of the human body's response to insulin users may end up in a hypoglycemic or hyperglycemic state after being treated with insulin therapy. This outcome is undesirable for many reasons: hypoglycemia creates an immediate risk of a severe medical event (such as a seizure, a coma, or a death) while hyperglycemia creates long term negative health effects as well as the risk of ketoacidosis. Whether a person ends up in one of these states depends on a very complicated combination of many factors and sources of error.
Individuals affected with diabetes have a plethora of complicated decisions to make throughout the day to ensure a user is providing themselves with adequate insulin therapy. An AID system that utilizes AID algorithms and/or an artificial pancreas (AP) application is operable to make many insulin delivery and insulin therapy-related decisions for a user so that the user may live their lives as close to the average non-diabetic individual as possible.
The intersection of closed-loop and open-loop systems is difficult to navigate for most diabetics. In an optimal scenario, a diabetic user obtains half (i.e., 50%) of their total daily insulin from basal delivery of insulin and the other half (i.e., 50%) from bolus deliveries. The basal-delivered insulin as part of a basal program that may be a daily schedule for continuous insulin delivery. The daily schedule may include one or more segments, each defining a basal rate that together cover a 24 hour period. Basal rates are specified in units per hour (U/hr). Alternatively, or in addition, the basal-delivered insulin may be considered background insulin that is used to manage the user's fluctuating needs for insulin in an attempt to maintain the user's blood glucose measurement values within the appropriate range (approximately 70 mg/dL-120 mg/dL for a typical user).
While an optimal scenario provides for a diabetic user obtains half (i.e., 50%) of their total daily insulin from basal delivery of insulin and the other half (i.e., 50%) from bolus deliveries, it may not be possible to regularly achieve such a balance and acceptable variations may occur. The sources of the acceptable variations may be numerous, but the following examples are provided to illustrate possible scenarios that achieve a sufficient balance for users.
In an example a user's insulin needs may vary, and, although the average insulin delivery proportion covered by basal is 50%, a user may have temporary periods where their needs may exceed that amount (which may typically be averaged out by periods when they need less insulin). For example, a user may need 48 U of insulin per day. This translates to an estimated basal need of 2 U/h throughout the day. However, the user's actual insulin need may be 0.5 U/h for the first 12 hours, and 1.5 U/h for the second 12 hours. This still averages to 50% of total daily insulin (TDI) being covered by basal, but the user requires 25% of TDI as basal for first 12 hours, and 75% of TDI as basal for the second 12 hours. Also, some users may ingest significantly more food compared to their physiology—e.g., a 100 lb. person and 250 lb. person may both ingest 300 g of carbohydrates (CHO) per day, in which case the basal insulin needs for the 100 lb. person compared to their total insulin needs may likely be significantly below 50%.
Another source of variations to the diabetes treatment program may be in response to a user's behavior. For example, even if a user would only need 50% of their TDI as basal, the user may neglect to bolus for a significant portion of their meals when using automated insulin delivery. In this case, the automated insulin delivery may deliver 50% of TDI for the user's basal needs, plus another 20% of TDI to cover for the user's bolus needs that were not actually delivered.
So, while an optimal diabetes treatment program may deliver 50% of a user's TDI via basal insulin delivery and 50% via bolus insulin delivery, the above examples of variations from the optimal diabetes treatment program that may alter the responses to the variations by the disclosed examples.
In contrast to the basal dosage, a bolus delivery is administered to cope with large fluctuations in the user's blood glucose measurement values due to, for example, the ingestion of a meal, snack, sugary drink, in response to exercise, or other causes of large fluctuations between blood glucose measurement values. Depending upon a person's lifestyle patterns, this 50-50 split may not be attainable because of their behaviors. However, while attaining this 50-50 split is difficult, the AID algorithm or AP application as described herein may be operable to optimize a user's balance between basal dosages and bolus dosages.
In typical examples, AID systems that utilize an AID algorithm or AP application may be designed with sufficient robustness to provide safe glucose control through their insulin deliveries even if the input parameters may be slightly mistuned, as long as other unknown disturbances are sufficiently compensated (such as meals with accompanying meal boluses). Therefore, these automated insulin delivery records may be utilized by the AID systems to also provide an updated estimate of the user's true basal needs and enable improved optimization of the basal dosage in view of safety constraints around the basal-bolus distribution.
In the following examples, there are two factors that may be utilized to convert records of automated insulin delivery, thereby enabling tuning of the user's basal needs: 1) insulin deliveries separate from meal boluses, and 2) safety constraints using known basal/bolus distributions (e.g., the above mentioned 50-50 basal-bolus dosage distribution).
Details for tuning the basal insulin dosages of a user are described with reference to the examples illustrated in the figures.
In the example process 100 of
In response to the calculated proportion (e.g., 0.713 or 71.3%), the processor may be operable to determine whether the proportion of the total amount of insulin attributed to the total basal dosage amount of insulin exceeds a threshold (130). The threshold may be a value that is determined based on clinical data over a number of diabetic patients. For example, the threshold may be determined based on a determination that a user may overdeliver (or underdeliver) insulin by a high percentage compared to the standard amount of 50% of the user's average total daily insulin (TDI) during the course of a predetermined time period (e.g., a day, 24 hours or the like) and by how much (the user over or under delivers). The threshold may be a threshold value, such as the 0.713, a threshold percentage, such as the 71.3%, or the like. In this example, the threshold value may be 0.700, and the process 100 may cause the generation of an indication by the processor that the threshold is exceeded.
In response to determining the threshold is exceeded, the processor may be operable to calculate an average basal dosage to be delivered within a subsequent time period that is approximately equal to the threshold (140). The threshold may be determined by evaluating the foregoing recommendations based on clinical data over a number of diabetic patients that are provided by the AID algorithm or AP application, but can also be augmented by other considerations, such as a user's history of over-delivery or under-delivery, and the like. First, if the automated insulin delivery is more than the expected range of insulin dosage distributions which result in optimal glucose control behavior, the open-loop basal recommendation may be limited, for example, to approximately 70% of the user's total insulin delivery during automated mode. For example, an expected range of insulin dosage distributions that provide a user with near optimal glucose control may be approximately 25% to approximately 75% of a user's total daily insulin (TDI) as automated delivery. These variations be caused by variations in the user's insulin needs over time, or variations in the user's behaviors over time. A user may have dietary habits that result in their basal insulin needs to be significantly varying from the typical ideal distributions of 50% of their TDI, such as having a keto (low CHO) diet which would bias the distribution to a higher proportion, or ingesting much larger CHO amounts than the norm, which would bias the distribution to a lower proportion. In addition, the user may not bolus for a majority of their bolus needs, resulting in an automated delivery system compensating from bolus needs as part of increased basal delivery. In this case, although the automated insulin delivery's basal coverage may compose a greater proportion than 50% of their TDI, the user's actual basal insulin needs would not exceed 50% of their TDI.
Based on these ranges, the open-loop basal recommendation can be limited, for example, to approximately 70% of the user's total insulin delivered by the automated mode, as in
For example, the processor may use the following equation to determine an average basal dosage to be delivered over the predetermined time period: (0.7*(12+29.85 U))/24=1.22 U as an average that is less than a threshold, where 0.7 is the threshold, 12 U is the total amount of insulin delivered by bolus dosages at mealtimes, 29.85 U is the total amount of insulin delivered as basal dosages by the AID system and the value 24 is the number of hours in the predetermined time period. The AVG value may be considered a modified basal dosage value. This example shows that if the user's split in insulin needs are indicated to be significantly different from the typical 50/50 ratio, the proposed threshold only adjusts the total amount up to the threshold. This example illustrates practical application of 70% example threshold. So, in cases in which a user's basal/bolus split is 75%/25%, for example, the adjustment may only be modified up to 70% in this example. Of course, other thresholds may be used depending upon a user's specific physiology.
An instruction may be generated by the processor to deliver the modified basal dosage that substantially maintains the average basal dosage over the subsequent time period (150). At 160, the instruction may be output to cause an actuation of a pump mechanism of a wearable drug delivery device to deliver the modified basal dosage. The modified basal dosage may be delivered hourly with a predetermined start time based on, for example, a start time of the immediately previous basal dosage (e.g., the basal dosage delivered at 1 hour since midnight, if the current time is 2 hours since midnight). The modified basal dosage may also be delivered at a ramping rate over a variable duration (e.g. from 1 minute to 3 hours) based on a difference between the dosages, from the initial basal dosage to the modified basal dosage, to attempt to substantially match the body's continuous transition between states of varying insulin needs. Of course, other timing schemes for delivery of the modified basal dosage may be used to satisfy delivery of the average basal dosage over the predetermined time period.
Additional steps may be applied or included in the process 100. For example, with reference to the example process 100 of
Alternatively, in another example, the recommended basal dosage may be either reduced by the modification value or increased by the modification value to be approximately equal to the average basal dosage, wherein the modification value is a value that is either added or subtracted from the recommended basal dosage. For example, the processor may determine the modified basal dosage by determining a modification value that is based on the average basal dosage. For example, the modification value may be −0.02 U/24 hours, +0.02 U/24 hours, or the like. The modification value may be applied to a recommended basal dosage to be administered during a subsequent time period. For example, in
Alternatively, in another example, the recommended basal dosage may be modified by a modification coefficient. The modification coefficient may be applied to the recommended basal dosage to provide the modified basal dosage, which may be approximately equal to the average basal dosage. Application of the modification coefficient may be by a multiplication or division operation.
For example, the processor, when executing the programming code to determine the modified basal dosage, may be further operable to generate a modification coefficient determined based on the average basal dosage. The example may also include a step in which a recommended basal dosage to be administered during the subsequent time period may be multiplied by the modification coefficient to produce the modified basal dosage. For example, the modification coefficient may be 0.1, 0.5, 1.0, 1.5, 2, 3, or the like, which may be representative of a percentage to reduce (or increase) the basal dosage amount. Using the values in
In a further example with reference to the graph 400 of
In this example of
In the example of
The process 100 may be implemented by a processor that is operable to utilize the values from the predetermined time period to determine a modified basal dosage. The total amount of insulin provided by basal dosages (minus any basal dosages delivered during the post-bolus time period) may be equal to 25 U (i.e., 8.5 (from first segment 431)+6.9 (from second segment 432)+9.6 (from third segment 433)). The calculation performed by the processor may be 12 U+25 U (=37 U) to determine the total amount of insulin delivered (i.e., 37 U) during the predetermined time period 425. The processor may be operable to determine the proportion of the total amount of insulin that was delivered via the basal dosages, but dividing 25 U (i.e., the total amount of insulin delivered by basal dosages) by the total amount of insulin delivered (i.e., 37 U) during the predetermined time period 425. The quotient of the division is 0.6756, which is compared to the threshold. For example, if the threshold is 0.70, the amount of basal dosages is below the threshold and therefore, closer to the 50-50 distribution of basal dosages to bolus dosages. In the example, the recommended basal dosage may be calculated as 25 U/24 hours or 1.38 U/hr. The example of
As shown in
In an example, the process 100 may be operable to communicatively couple with a wearable drug delivery device. The processor may output a control signal including the instruction for receipt by a controller of the wearable drug delivery device to actuate the pump mechanism to administer insulin according to the modified basal dosage.
A user insulin delivery history of insulin delivered to a user may be maintained by the processor. Note that the phrase “delivered to the user” may also refer to the output of insulin from a reservoir in response to a control signal from a processor to actuate a pump mechanism, rather than the control signal itself, which may be relevant in cases where the actual insulin delivery may be a modified amount compared to the processor's outputs. The user insulin delivery history may include amounts of insulin delivered to the user in basal dosages and bolus dosages over a predetermined time period. Alternatively, or in addition, the user insulin delivery history may include data from a plurality of predetermined time periods and the data includes each basal delivery dosage, a respective time of when each respective basal delivery dosage was delivered within a respective predetermined time period of the plurality of predetermined time periods. In one example, the user insulin delivery history may refer to basal delivery dosages and/or bolus dosages recommended to be delivered by the AID algorithm or AP application. In another example, the user insulin delivery history may refer to basal delivery dosages and/or bolus doses actually output from the reservoir. In yet another example, the user insulin delivery history may refer to basal delivery dosages and/or bolus dosages that are both recommended to be delivered by the AID algorithm or AP application and the basal delivery dosages and/or bolus dosages actually output from the reservoir.
In the example, a basal dosage may be delivered more often over the predetermined time period than a bolus dosage, and the bolus dosage may include a greater amount of insulin than a basal dosage. In the example, prior to when the processor is determining a total amount of insulin delivered to the user, the processor may be operable to retrieve the total basal dosage amount of insulin delivered in the basal dosages over the predetermined time period from the user insulin delivery history. The processor may also retrieve the total basal dosage amount of insulin delivered in the basal dosages over the predetermined time period from the user insulin deliver history.
In contrast to other examples that may provide a single manual basal delivery recommendation to the user, time of day and clustering algorithms can be used to determine basal delivery profiles on an hourly basis, as shown in
For example, the processor may access a user insulin delivery history that may include data from a plurality of predetermined time periods. The data may include each basal delivery dosage, a respective time of when each respective basal delivery dosage was delivered within a respective predetermined time period of a number of predetermined time periods. Using the retrieved total basal dosage amount of insulin delivered in basal dosages, the processor may apply a clustering algorithm to the data from each of a number of predetermined time periods. For example, in the graph 500 of
As shown in graph 502 of
In the examples of
It may be helpful to discuss an example of a drug delivery system that may implement the process example of
The drug delivery system 200 may be operable to implement the process examples illustrated in and described with reference to
In addition, further considerations may be implemented in terms of the safety of this recommendation as additions to the proportion of total basal deliveries during automated delivery. For instance, the system 200 may review the user's actual glucose control performance based on information provided by a sensor 204 and find that the user experiences a significantly increased time in hypoglycemic range at certain hours of the day. In response, the PDM device 206 may be operable to revise the limit to the maximum recommended basal proportion of the user's total daily insulin (TDI). For example, the response may be for the AP application to reduce the maximum recommended basal proportion to a lower value for improved user safety. For instance, if the user's glucose control performance shows a percent (%) of time per day in hypoglycemic range (<70 mg/dL glucose reading) of greater than a certain percentage of time, e.g. >10%, then the described system may reduce a user's maximum daily basal proportion to a lower value (e.g. 55%) than the original limit (e.g. 75%). In an example, this lower value can be made dependent on the percentage of time in the hypoglycemic range, e.g. if the user's percentage (%) of time in the hypoglycemic range is 2.5%, the system may reduce the original limit by 5%, whereas if the user's percentage of time in the hypoglycemic range is 5%, the original limit may be reduced by 10%, and so on. As such, the system may apply the following exemplary equation: Reduction of user's maximum daily basal proportion=2*user's percentage of time in hypoglycemic range.
The drug delivery system 200 may be an automatic drug delivery system that may include a wearable drug delivery device 202 (also referred to as “a drug delivery device,” a medical device,” or “a delivery device,”), a blood glucose sensor 204 (also referred to as “a continuous glucose monitor” or “a blood glucose measurement device”), and a personal diabetes management device (PDM) 206. The system 200, in an example, may also include a smart device 207, which may be operable to communicate with the PDM device 206 and/or other components of system 200 either via a wired or wireless communication link, such as 291, 292 or 293. In a specific example, the smart device 207 may only be coupled to the PDM device 206 via a wireless communication link 293, which may be a wireless communication link that utilizes the Bluetooth communication protocol, or the like.
In an example, the wearable drug delivery device 202 may be attached to the body of a user, such as a patient or diabetic, and may deliver any therapeutic agent, including any drug or medicine, such as insulin, morphine, or the like, to the user. The wearable drug delivery device 202 may, for example, be a wearable device worn by the user. For example, the wearable drug delivery device 202 may be directly coupled to a user (e.g., directly attached to a body part and/or skin of the user via an adhesive or the like). In an example, a surface of the wearable drug delivery device 202 may include an adhesive (not shown) to facilitate attachment to a user.
The wearable drug delivery device 202 may include a number of components to facilitate automatic delivery of a drug (also referred to as a therapeutic agent) to the user. The wearable drug delivery device 202 may be operable to store the drug (e.g., insulin) and to provide the drug to the user. The wearable drug delivery device 202 is often referred to as a pump, or an insulin pump, in reference to the operation of expelling insulin from the reservoir 225 for delivery to the user. While the examples refer to the reservoir 225 storing insulin, the reservoir 225 may be operable to store other drugs or therapeutic agents, such as morphine, or the like, that are suitable for automatic delivery.
In various examples, the wearable drug delivery device 202 may be an automatic, wearable drug delivery device. For example, the wearable drug delivery device 202 may include a reservoir 225 for storing the drug (such as insulin), a needle or cannula (not shown) for delivering the drug into the body of the user (which may be done subcutaneously, intraperitoneally, or intravenously), and a pump mechanism (mech.) 224, or other drive mechanism, for transferring the drug from the reservoir 225, through a needle or cannula (not shown), and into the user. The pump mechanism 224 may be fluidly coupled to reservoir 225, and communicatively coupled to the controller 221 of the wearable drug delivery device 202. The wearable drug delivery device 202 may also include a power source 228, such as a battery, a piezoelectric device, or the like, for supplying electrical power to the pump mechanism 224 and/or other components (such as the controller 221, memory 223, and the communication device 226) of the wearable drug delivery device 202. Although not shown, an electrical power supply for supplying electrical power may similarly be included in each of the sensor 204, the smart device 207 and the PDM device 206.
The blood glucose sensor 204 may be a device communicatively coupled to the PDM processor 261 or controller 221 and may be operable to measure a blood glucose value at a predetermined time interval, such as every 5 minutes, or the like. The blood glucose sensor 204 may provide a number of blood glucose measurement values to the AP applications (e.g., 229, 249, 269, or 279) operating on the respective devices (e.g., 202, 204, 206, or 207). While the AP applications 229, 249, 269 and 279 were discussed in detail and shown in the system 200 example of
In a further example, as shown in the example of
The wearable drug delivery device 202 may provide the insulin stored in reservoir 225 to the user based on information (e.g., blood glucose measurement values, predicted future blood glucose measurements, evaluations based on a user request for a bolus, a user interaction with PDM device 206, wearable drug delivery device 202, sensor 204 or smart device 207), evaluations of missing blood glucose measurements and the other information provided by the sensor 204, smart device 207, and/or the management device (PDM) 206. For example, the wearable drug delivery device 202 may contain analog and/or digital circuitry that may be implemented as a controller 221 for controlling the delivery of the drug or therapeutic agent. The circuitry used to implement the controller 221 may include discrete, specialized logic and/or components, an application-specific integrated circuit (ASIC), a microcontroller or processor that executes software instructions, firmware, programming instructions or programming code (enabling, for example, the artificial pancreas application (AP App) 229 as well as the process examples of
In an operational example, the AP application 269 executing in the personal diabetes management device 206 may be operable to control delivery of insulin to a user. For example, the AP application 269 may be operable to determine timing of an insulin dose and may output a command signal to the wearable drug delivery device 202 that actuates the pump mechanism 224 to deliver an insulin dose. In addition, the AP application (or AID algorithm) 269 when loaded with programmed code, provides instructions to carry out the functionality represented in
The other devices in the system 200, such as personal diabetes management device 206, smart device 207 and sensor 204, may also be operable to perform various functions including controlling the wearable drug delivery device 202. For example, the PDM device 206 may include a communication device 264, a PDM processor 261, and a personal diabetes management device memory 263. The personal diabetes management device memory 263 may store an instance of the AP application 269 that includes programming code, that when executed by the PDM processor 261 provides the process examples described with reference to the examples of
The smart device 207 may be, for example, a smart phone, an Apple Watch®, another wearable smart device, including eyeglasses, provided by other manufacturers, a global positioning system-enabled wearable, a wearable fitness device, smart clothing, or the like. Similar to the personal diabetes management device 206, the smart device 207 may also be operable to perform various functions including controlling the wearable drug delivery device 202. For example, the smart device 207 may include a communication device 274, a processor 271, and a memory 273. The memory 273 may store an instance of the AP application 279 and/or an instance of an AID application (not shown) that includes programming code for providing the process examples described with reference to the examples of
The sensor 204 of system 200 may be a continuous glucose monitor (CGM) as described above, that may include a processor 241, a memory 243, a sensing or measuring device 244, and a communication device 246. The memory 243 may, for example, store an instance of an AP application 249 as well as other programming code and be operable to store data related to the AP application 249 and process examples described with reference to
Instructions for determining the delivery of the drug or therapeutic agent (e.g., as a bolus dosage) to the user (e.g., the size and/or timing of any doses of the drug or therapeutic agent) may originate locally by the wearable drug delivery device 202 or may originate remotely and be provided to the wearable drug delivery device 202. In an example of a local determination of drug or therapeutic agent delivery, programming instructions, such as an instance of the artificial pancreas application 229, stored in the memory 223 that is coupled to the wearable drug delivery device 202 may be used to make determinations by the wearable drug delivery device 202. In addition, the wearable drug delivery device 202 may be operable to communicate with the cloud-based services 211 via the communication device 226 and the wireless communication link 288. In an example, the system 200 may include one or more components operable to implement the process examples of
Alternatively, the remote instructions may be provided to the wearable drug delivery device 202 over a wired or wireless link (such as 231) by the personal diabetes management device (PDM) 206, which has a PDM processor 261 that executes an instance of the artificial pancreas application 269, or the smart device 207 (via wireless communication link 291), which has a processor 271 that executes an instance of the artificial pancreas application 269 as well as other programming code for controlling various devices, such as the wearable drug delivery device 202, smart device 207 and/or sensor 204. In an example, a message may be sent to a server, for example, in the cloud-based services 211 or the like, requesting downloading of the one or more clustering algorithms, a user's insulin delivery history, a user's blood glucose measurement value history, or the like to a personal diabetes management (PDM) 206 or smart device 207. The wearable drug delivery device 202 may execute any received instructions (originating internally or from the personal diabetes management device 206) for the delivery of the drug or therapeutic agent to the user. In this way, the delivery of the drug or therapeutic agent to a user may be automatic.
In various examples, the wearable drug delivery device 202 may communicate via a wireless link 231 with the personal diabetes management device 206. The personal diabetes management device 206 may be an electronic device such as, for example, a smart phone, a tablet, a dedicated diabetes therapy personal diabetes management device, or the like. The personal diabetes management device 206 may be a wearable wireless accessory device. The wireless links 208, 231, 232, 291, 292 and 293 may be any type of wireless link provided by any known wireless standard. As an example, the wireless links 208, 231, 232, 291, 292 and 293 may enable communications between the wearable drug delivery device 202, the personal diabetes management device 206 and sensor 204 based on, for example, Bluetooth®, Wi-Fi®, a near-field communication standard, a cellular standard, or any other wireless optical or radio-frequency protocol.
The sensor 204 may be a glucose sensor operable to measure blood glucose and output a blood glucose value or data that is representative of a blood glucose value. For example, the sensor 204 may be a glucose monitor or a continuous glucose monitor (CGM). The sensor 204 may include a processor 241, a memory 243, a sensing/measuring device 244, and communication device 246. The communication device 246 of sensor 204 may include one or more sensing elements, an electronic transmitter, receiver, and/or transceiver for communicating with the personal diabetes management device 206 over a wireless link 232 or with wearable drug delivery device 202 over the wireless link 208. The sensing/measuring device 244 may include one or more sensing elements, such as a glucose measurement, heart rate monitor, or the like. The processor 241 may include discrete, specialized logic and/or components, an application-specific integrated circuit, a microcontroller or processor that executes software instructions, firmware, programming instructions stored in memory (such as memory 243), or any combination thereof. For example, the memory 243 may store an instance of an AP application 249 that is executable by the processor 241.
Although the sensor 204 is depicted as separate from the wearable drug delivery device 202, in various examples, the sensor 204 and wearable drug delivery device 202 may be incorporated into the same unit. That is, in various examples, the sensor 204 may be a part of the wearable drug delivery device 202 and contained within the same housing of the wearable drug delivery device 202 (e.g., the sensor 304 may be positioned within or embedded within the wearable drug delivery device 202). Glucose monitoring data (e.g., measured blood glucose values) determined by the sensor 204 may be provided to the wearable drug delivery device 202, smart device 207 and/or the personal diabetes management device 206 and may be used to perform the functions and deliver doses of insulin for automatic delivery of insulin by the wearable drug delivery device 202 as described with reference to the examples of
The sensor 204 may also be coupled to the user by, for example, adhesive or the like and may provide information or data on one or more medical conditions and/or physical attributes of the user. The information or data provided by the sensor 204 may be used to adjust drug delivery operations of the wearable drug delivery device 202.
In an example, the personal diabetes management device 206 may be a mobile computing device operable to manage a personal diabetes treatment plan via an AP application or an AID algorithm. The personal diabetes management device 206 may be used to program or adjust operation of the wearable drug delivery device 202 and/or the sensor 204. The personal diabetes management device 206 may be any portable electronic, computing device including, for example, a dedicated controller, such as PDM processor 261, a smartphone, or a tablet. In an example, the personal diabetes management device (PDM) 206 may include a PDM processor 261, a personal diabetes management device memory 263, and a communication device 264. The personal diabetes management device 206 may contain analog and/or digital circuitry that may be implemented as a PDM processor 261 (or controller) for executing processes to manage a user's blood glucose levels and for controlling the delivery of the drug or therapeutic agent to the user. The PDM processor 261 may also be operable to execute programming code stored in the personal diabetes management device memory 263. For example, the personal diabetes management device memory 263 may be operable to store an artificial pancreas (AP) application 269 that may be executed by the PDM processor 261. The PDM processor 261, when executing the artificial pancreas application 269, may be operable to perform various functions, such as those described with respect to the examples in
The wearable drug delivery device 202 may communicate with the sensor 204 over a wireless link 208 and may communicate with the personal diabetes management device 206 over a wireless link 231. The sensor 204 and the personal diabetes management device 206 may communicate over a wireless link 232. The smart device 207, when present, may communicate with the wearable drug delivery device 202, the sensor 204 and the personal diabetes management device 206 over wireless links 291, 292 and 293, respectively. The wireless links 208, 231, 232, 291, 292 and 293 may be any type of wireless link operating using known wireless standards or proprietary standards. As an example, the wireless links 208, 231, 232, 291, 292 and 293 may provide communication links based on Bluetooth®, Wi-Fi, a near-field communication standard, a cellular standard, or any other wireless protocol via the respective communication devices 226, 246 and 264. As such, the wearable drug delivery device 202, the smart device 207, blood glucose sensor 204 and/or the personal diabetes management device 206 may be paired to one another using known pairing protocols and procedures that enable wireless communication between one or more of the devices 202, 204, 206 and 207. In some examples, the wearable drug delivery device 202 and/or the personal diabetes management device 206 may include a user interface 227, 278 and 268, respectively, such as a keypad, a touchscreen display, levers, buttons, a microphone, a speaker, a light, a display, or the like, that is operable to allow a user to enter information and allow the personal diabetes management device to output information for presentation to the user. Note that the respective user interface devices 227, 278 and 268 may serve with the associated hardware, such as a touchscreen display, as both an input device and an output device. For example, the user interface devices may present graphical user interfaces that guide a user, for example, through the presentation of prompts, to input information or provide data to the user as well as other functions.
In various examples, the drug delivery system 200 may implement the artificial pancreas (AP) algorithm (and/or provide AP functionality) to govern or control automatic delivery of insulin to a user (e.g., to maintain euglycemia—a normal level of glucose in the blood). The AP application (or an AID algorithm) may be implemented by the wearable drug delivery device 202 and/or the sensor 204. The AP application may be operable to determine an initial total daily insulin dosage as described with reference to the examples of
As described herein, the drug delivery system 200 or any component thereof, such as the wearable drug delivery device 202 may be considered to provide AP functionality or to implement an AP application. Accordingly, references to the AP application (e.g., functionality, operations, or capabilities thereof) are made for convenience and may refer to and/or include operations and/or functionalities of the drug delivery system 200 or any constituent component thereof (e.g., the wearable drug delivery device 202 and/or the personal diabetes management device 206). The drug delivery system 200—for example, as an insulin delivery system implementing an AP application—may be considered to be a drug delivery system or an AP application-based delivery system that uses sensor inputs (e.g., data collected by the sensor 204).
In an example, one or more of the devices, 202, 204, 206 or 207 may be operable to communicate via a wireless communication link 288 with cloud-based services 211. The cloud-based services 211 may utilize servers and data storage (not shown). The communication link 288 may be a cellular link, a Wi-Fi link, a Bluetooth link, or a combination thereof, that is established between the respective devices 202, 204, 206 or 207 of system 200. The data storage provided by the cloud-based services 211 may store insulin delivery history related to the user, cost function data related to general delivery of insulin to users, or the like. In addition, the cloud-based services 211 may process anonymized data from multiple users to provide generalized information related to the various parameters used by the AP application.
In an example, the wearable drug delivery device 202 includes a communication device 264, which as described above may be a receiver, a transmitter, or a transceiver that operates according to one or more radio-frequency protocols, such as Bluetooth, Wi-Fi, a near-field communication standard, a cellular standard, that may enable the respective device to communicate with the cloud-based services 211. For example, outputs from the sensor 204 or the wearable drug delivery device 202 may be transmitted to the cloud-based services 211 for storage or processing via the transceivers of communication device 264. Similarly, wearable drug delivery device 202, personal diabetes management device 206 and sensor 204 may be operable to communicate with the cloud-based services 211 via the communication link 288.
In an example, the respective receiver or transceiver of each respective device, 202, 206 or 207, may be operable to receive signals containing respective blood glucose measurement values of the number of blood glucose measurement values that may be transmitted by the sensor 204. The respective processor of each respective device 202, 206 or 207 may be operable to store each of the respective blood glucose measurement values in a respective memory, such as 223, 263 or 273. The respective blood glucose measurement values may be stored as data related to the artificial pancreas algorithm, such as 229, 249, 269 or 279. In a further example, the AP application operating on any of the personal diabetes management device 206, the smart device 207, or sensor 204 may be operable to transmit, via a transceiver implemented by a respective communication device, such as 264, 274, 246, a control signal for receipt by another medical device of the system 200. In the example, the control signal may indicate an amount of insulin to be expelled by the wearable drug delivery device 202.
Various operational scenarios and examples of processes performed by the system 200 are described herein. For example, the system 200 may be operable to implement the process examples of
The techniques described herein for providing functionality to set an adjusted total daily insulin factor and determine whether the adjusted total daily insulin factor exceeds a maximum algorithm delivery threshold. In response to a result of the determination, set a total daily insulin dosage using the attained information and obtain blood glucose measurement values over a period of time. Based on the obtained blood glucose measurement values, a level of glycated hemoglobin of a user may be determined. The set total daily insulin dosage may be modified to provide a modified total daily insulin dosage in response to the determined level of glycated hemoglobin. A control signal including the modified total daily insulin dosage may be output instructing a controller to actuate delivery of insulin according to the modified total daily insulin dosage.
For example, the system 200 or any component thereof may be implemented in hardware, software, or any combination thereof. Software related implementations of the techniques described herein may include, but are not limited to, firmware, application specific software, or any other type of computer readable instructions that may be executed by one or more processors. Hardware related implementations of the techniques described herein may include, but are not limited to, integrated circuits (ICs), application specific ICs (ASICs), field programmable arrays (FPGAs), and/or programmable logic devices (PLDs). In some examples, the techniques described herein, and/or any system or constituent component described herein may be implemented with a processor executing computer readable instructions stored on one or more memory components.
In addition, or alternatively, while the examples may have been described with reference to a closed loop algorithmic implementation, variations of the disclosed examples may be implemented to enable open loop use. The open loop implementations allow for use of different modalities of delivery of insulin such as smart pen, syringe or the like. For example, the disclosed AP application and algorithms may be operable to perform various functions related to open loop operations, such as the generation of prompts requesting the input of information such as weight or age. Similarly, a dosage amount of insulin may be received by the AP application or algorithm from a user via a user interface. Other open-loop actions may also be implemented by adjusting user settings or the like in an AP application or algorithm.
Some examples of the disclosed device may be implemented, for example, using a storage medium, a computer-readable medium, or an article of manufacture which may store an instruction or a set of instructions that, if executed by a machine (i.e., processor or microcontroller), may cause the machine to perform a method and/or operation in accordance with examples of the disclosure. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The computer-readable medium or article may include, for example, any suitable type of memory unit, memory, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory (including non-transitory memory), removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, programming code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language. The non-transitory computer readable medium embodied programming code may cause a processor when executing the programming code to perform functions, such as those described herein.
Certain examples of the present disclosure were described above. It is, however, expressly noted that the present disclosure is not limited to those examples, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the disclosed examples. Moreover, it is to be understood that the features of the various examples described herein were not mutually exclusive and may exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the disclosed examples. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the disclosed examples. As such, the disclosed examples are not to be defined only by the preceding illustrative description.
Program aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of executable code and/or associated data that is carried on or embodied in a type of non-transitory, machine readable medium. Storage type media include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. It is emphasized that the Abstract of the Disclosure is provided to allow a reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features are grouped together in a single example for streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed example. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate example. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” “third,” and so forth, are used merely as labels and are not intended to impose numerical requirements on their objects.
The foregoing description of examples has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future filed applications claiming priority to this application may claim the disclosed subject matter in a different manner and may generally include any set of one or more limitations as variously disclosed or otherwise demonstrated herein.
This application claims the benefit to U.S. Provisional Application No. 63/055,096, filed Jul. 22, 2020, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
303013 | Horton | Aug 1884 | A |
2797149 | Skeggs | Jun 1957 | A |
3631847 | Hobbs | Jan 1972 | A |
3634039 | Brondy | Jan 1972 | A |
3812843 | Wootten et al. | May 1974 | A |
3841328 | Jensen | Oct 1974 | A |
3963380 | Thomas, Jr. et al. | Jun 1976 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4151845 | Clemens | May 1979 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4368980 | Aldred et al. | Jan 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4403984 | Ash et al. | Sep 1983 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4526569 | Bernardi | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4559033 | Stephen et al. | Dec 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4573968 | Parker | Mar 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4657529 | Prince et al. | Apr 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4743243 | Vaillancourt | May 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4781688 | Thoma et al. | Nov 1988 | A |
4781693 | Martinez et al. | Nov 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4854170 | Brimhall et al. | Aug 1989 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4900292 | Berry et al. | Feb 1990 | A |
4919596 | Slate et al. | Apr 1990 | A |
4925444 | Orkin et al. | May 1990 | A |
4940527 | Kazlauskas et al. | Jul 1990 | A |
4975581 | Robinson et al. | Dec 1990 | A |
4976720 | Machold et al. | Dec 1990 | A |
4981140 | Wyatt | Jan 1991 | A |
4994047 | Walker et al. | Feb 1991 | A |
5007286 | Malcolm et al. | Apr 1991 | A |
5097834 | Skrabal | Mar 1992 | A |
5102406 | Arnold | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5125415 | Bell | Jun 1992 | A |
5134079 | Cusack et al. | Jul 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165406 | Wong | Nov 1992 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5178609 | Ishikawa | Jan 1993 | A |
5207642 | Orkin et al. | May 1993 | A |
5232439 | Campbell et al. | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5273517 | Barone et al. | Dec 1993 | A |
5281808 | Kunkel | Jan 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5308982 | Ivaldi et al. | May 1994 | A |
5342298 | Michaels et al. | Aug 1994 | A |
5377674 | Kuestner | Jan 1995 | A |
5380665 | Cusack et al. | Jan 1995 | A |
5385539 | Maynard | Jan 1995 | A |
5389078 | Zalesky | Feb 1995 | A |
5411889 | Hoots et al. | May 1995 | A |
5421812 | Langley et al. | Jun 1995 | A |
5468727 | Phillips et al. | Nov 1995 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5558640 | Pfeiler et al. | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5609572 | Lang | Mar 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5678539 | Schubert et al. | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5685859 | Kornerup | Nov 1997 | A |
5693018 | Kriesel et al. | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5700695 | Yassinzadeh et al. | Dec 1997 | A |
5703364 | Rosenthal | Dec 1997 | A |
5714123 | Sohrab | Feb 1998 | A |
5716343 | Kriesel et al. | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5741228 | Lambrecht et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5758643 | Wong et al. | Jun 1998 | A |
5800405 | McPhee | Sep 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5804048 | Wong et al. | Sep 1998 | A |
5817007 | Fodgaard et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5823951 | Messerschmidt | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858005 | Kriesel | Jan 1999 | A |
5865806 | Howell | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5902253 | Pfeiffer et al. | May 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5932175 | Knute et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5947911 | Wong et al. | Sep 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5993423 | Choi | Nov 1999 | A |
5997501 | Gross et al. | Dec 1999 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6050978 | Orr et al. | Apr 2000 | A |
6058934 | Sullivan | May 2000 | A |
6066103 | Duchon et al. | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6072180 | Kramer et al. | Jun 2000 | A |
6077055 | Vilks | Jun 2000 | A |
6090092 | Fowles et al. | Jul 2000 | A |
6101406 | Hacker et al. | Aug 2000 | A |
6102872 | Doneen et al. | Aug 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6123827 | Wong et al. | Sep 2000 | A |
6124134 | Stark | Sep 2000 | A |
6126637 | Kriesel et al. | Oct 2000 | A |
6128519 | Say | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6157041 | Thomas et al. | Dec 2000 | A |
6161028 | Braig et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6196046 | Braig et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6200338 | Solomon et al. | Mar 2001 | B1 |
6214629 | Freitag et al. | Apr 2001 | B1 |
6226082 | Roe | May 2001 | B1 |
6244776 | Wiley | Jun 2001 | B1 |
6261065 | Nayak et al. | Jul 2001 | B1 |
6262798 | Shepherd et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271045 | Douglas et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285448 | Kuenstner | Sep 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6312888 | Wong et al. | Nov 2001 | B1 |
6334851 | Hayes et al. | Jan 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6402689 | Scarantino et al. | Jun 2002 | B1 |
6470279 | Samsoondar | Oct 2002 | B1 |
6475196 | Vachon | Nov 2002 | B1 |
6477901 | Tadigadapa et al. | Nov 2002 | B1 |
6484044 | Lilienfeld-Toal | Nov 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6512937 | Blank et al. | Jan 2003 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
6528809 | Thomas et al. | Mar 2003 | B1 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6553841 | Blouch | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6556850 | Braig et al. | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562014 | Lin et al. | May 2003 | B2 |
6569125 | Jepson et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6575905 | Knobbe et al. | Jun 2003 | B2 |
6580934 | Braig et al. | Jun 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6645142 | Braig et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6669663 | Thompson | Dec 2003 | B1 |
6678542 | Braig et al. | Jan 2004 | B2 |
6699221 | Vaillancourt | Mar 2004 | B2 |
6718189 | Rohrscheib et al. | Apr 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6751490 | Esenaliev et al. | Jun 2004 | B2 |
6758835 | Close et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6837988 | Leong et al. | Jan 2005 | B2 |
6846288 | Nagar et al. | Jan 2005 | B2 |
6862534 | Sterling et al. | Mar 2005 | B2 |
6865408 | Abbink et al. | Mar 2005 | B1 |
6890291 | Robinson et al. | May 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6958809 | Sterling et al. | Oct 2005 | B2 |
6989891 | Braig et al. | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
7008404 | Nakajima | Mar 2006 | B2 |
7009180 | Sterling et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7025744 | Utterberg et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7043288 | Davis, III et al. | May 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7061593 | Braig et al. | Jun 2006 | B2 |
7096124 | Sterling et al. | Aug 2006 | B2 |
7115205 | Robinson et al. | Oct 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7139593 | Kavak et al. | Nov 2006 | B2 |
7139598 | Hull et al. | Nov 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7171252 | Scarantino et al. | Jan 2007 | B1 |
7190988 | Say et al. | Mar 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7248912 | Gough et al. | Jul 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7271912 | Sterling et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7291497 | Holmes et al. | Nov 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7303622 | Loch et al. | Dec 2007 | B2 |
7303922 | Jeng et al. | Dec 2007 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7388202 | Sterling et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7429255 | Thompson | Sep 2008 | B2 |
7460130 | Salganicoff | Dec 2008 | B2 |
7481787 | Gable et al. | Jan 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7500949 | Gottlieb et al. | Mar 2009 | B2 |
7509156 | Flanders | Mar 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7608042 | Goldberger et al. | Oct 2009 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7680529 | Kroll | Mar 2010 | B2 |
7734323 | Blomquist et al. | Jun 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7785258 | Braig et al. | Aug 2010 | B2 |
7806854 | Damiano et al. | Oct 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7918825 | OConnor et al. | Apr 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
8221345 | Blomquist | Jul 2012 | B2 |
8251907 | Sterling et al. | Aug 2012 | B2 |
8449524 | Braig et al. | May 2013 | B2 |
8452359 | Rebec et al. | May 2013 | B2 |
8454576 | Mastrototaro et al. | Jun 2013 | B2 |
8467980 | Campbell et al. | Jun 2013 | B2 |
8478557 | Hayter et al. | Jul 2013 | B2 |
8547239 | Peatfield et al. | Oct 2013 | B2 |
8597274 | Sloan et al. | Dec 2013 | B2 |
8622988 | Hayter | Jan 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
9061097 | Holt et al. | Jun 2015 | B2 |
9171343 | Fischell et al. | Oct 2015 | B1 |
9233204 | Booth et al. | Jan 2016 | B2 |
9486571 | Rosinko | Nov 2016 | B2 |
9579456 | Budiman et al. | Feb 2017 | B2 |
9743224 | San Vicente et al. | Aug 2017 | B2 |
9907515 | Doyle, III et al. | Mar 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9984773 | Gondhalekar et al. | May 2018 | B2 |
10248839 | Levy et al. | Apr 2019 | B2 |
10335464 | Michelich et al. | Jul 2019 | B1 |
10583250 | Mazlish et al. | Mar 2020 | B2 |
10737024 | Schmid | Aug 2020 | B2 |
10987468 | Mazlish et al. | Apr 2021 | B2 |
11197964 | Sjolund et al. | Dec 2021 | B2 |
11260169 | Estes | Mar 2022 | B2 |
20010021803 | Blank et al. | Sep 2001 | A1 |
20010034023 | Stanton, Jr. et al. | Oct 2001 | A1 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20010051377 | Hammer et al. | Dec 2001 | A1 |
20010053895 | Vaillancourt | Dec 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020010423 | Gross et al. | Jan 2002 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020123740 | Flaherty et al. | Sep 2002 | A1 |
20020128543 | Leonhardt | Sep 2002 | A1 |
20020147423 | Burbank et al. | Oct 2002 | A1 |
20020155425 | Han et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030023148 | Lorenz et al. | Jan 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030086074 | Braig et al. | May 2003 | A1 |
20030086075 | Braig et al. | May 2003 | A1 |
20030090649 | Sterling et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030163097 | Fleury et al. | Aug 2003 | A1 |
20030195404 | Knobbe et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208154 | Close et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216627 | Lorenz et al. | Nov 2003 | A1 |
20030220605 | Bowman, Jr. et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040034295 | Salganicoff | Feb 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040051368 | Caputo et al. | Mar 2004 | A1 |
20040064259 | Haaland et al. | Apr 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040116847 | Wall | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133166 | Moberg et al. | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040203357 | Nassimi | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040215492 | Choi | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040241736 | Hendee et al. | Dec 2004 | A1 |
20040249308 | Forssell | Dec 2004 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050033148 | Haueter et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050075624 | Miesel | Apr 2005 | A1 |
20050105095 | Pesach et al. | May 2005 | A1 |
20050137573 | McLaughlin | Jun 2005 | A1 |
20050143864 | Blomquist | Jun 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050272640 | Doyle, III et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060009727 | OMahony et al. | Jan 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060100494 | Kroll | May 2006 | A1 |
20060134323 | OBrien | Jun 2006 | A1 |
20060167350 | Monfre et al. | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060189925 | Gable et al. | Aug 2006 | A1 |
20060189926 | Hall et al. | Aug 2006 | A1 |
20060197015 | Sterling et al. | Sep 2006 | A1 |
20060200070 | Callicoat et al. | Sep 2006 | A1 |
20060204535 | Johnson | Sep 2006 | A1 |
20060229531 | Goldberger et al. | Oct 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060270983 | Lord et al. | Nov 2006 | A1 |
20060276771 | Galley et al. | Dec 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070016127 | Staib et al. | Jan 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070083160 | Hall et al. | Apr 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070116601 | Patton | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070129690 | Rosenblatt et al. | Jun 2007 | A1 |
20070142720 | Ridder et al. | Jun 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070173974 | Lin et al. | Jul 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191716 | Goldberger et al. | Aug 2007 | A1 |
20070197163 | Robertson | Aug 2007 | A1 |
20070225675 | Robinson et al. | Sep 2007 | A1 |
20070244381 | Robinson et al. | Oct 2007 | A1 |
20070249007 | Rosero | Oct 2007 | A1 |
20070264707 | Liederman et al. | Nov 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20070287985 | Estes et al. | Dec 2007 | A1 |
20070293843 | Ireland et al. | Dec 2007 | A1 |
20080033272 | Gough et al. | Feb 2008 | A1 |
20080051764 | Dent et al. | Feb 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080065050 | Sparks et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080078400 | Martens et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080132880 | Buchman | Jun 2008 | A1 |
20080161664 | Mastrototaro et al. | Jul 2008 | A1 |
20080172026 | Blomquist | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200838 | Goldberger et al. | Aug 2008 | A1 |
20080206067 | De Corral et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080228056 | Blomquist et al. | Sep 2008 | A1 |
20080249386 | Besterman et al. | Oct 2008 | A1 |
20080269585 | Ginsberg | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080287906 | Burkholz et al. | Nov 2008 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090018406 | Yodfat et al. | Jan 2009 | A1 |
20090030398 | Yodfat et al. | Jan 2009 | A1 |
20090036753 | King | Feb 2009 | A1 |
20090043240 | Robinson et al. | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090069743 | Krishnamoorthy et al. | Mar 2009 | A1 |
20090069745 | Estes et al. | Mar 2009 | A1 |
20090069787 | Estes et al. | Mar 2009 | A1 |
20090099521 | Gravesen et al. | Apr 2009 | A1 |
20090105573 | Malecha | Apr 2009 | A1 |
20090131861 | Braig et al. | May 2009 | A1 |
20090156922 | Goldberger et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163781 | Say et al. | Jun 2009 | A1 |
20090198350 | Thiele | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090228214 | Say et al. | Sep 2009 | A1 |
20090318791 | Kaastrup | Dec 2009 | A1 |
20090326343 | Gable et al. | Dec 2009 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100114026 | Karratt et al. | May 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100137784 | Cefai et al. | Jun 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100174228 | Buckingham et al. | Jul 2010 | A1 |
20100211003 | Sundar et al. | Aug 2010 | A1 |
20100228110 | Tsoukalis | Sep 2010 | A1 |
20100262117 | Magni et al. | Oct 2010 | A1 |
20100262434 | Shaya | Oct 2010 | A1 |
20100295686 | Sloan et al. | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20110021584 | Berggren et al. | Jan 2011 | A1 |
20110028817 | Jin et al. | Feb 2011 | A1 |
20110054390 | Searle et al. | Mar 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110124996 | Reinke et al. | May 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110160652 | Yodfat et al. | Jun 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110190694 | Lanier, Jr. et al. | Aug 2011 | A1 |
20110202005 | Yodfat et al. | Aug 2011 | A1 |
20110218495 | Remde | Sep 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20110251509 | Beyhan et al. | Oct 2011 | A1 |
20110313680 | Doyle et al. | Dec 2011 | A1 |
20110316562 | Cefai et al. | Dec 2011 | A1 |
20120003935 | Lydon et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120030393 | Ganesh et al. | Feb 2012 | A1 |
20120053556 | Lee | Mar 2012 | A1 |
20120078067 | Kovatchev et al. | Mar 2012 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20120078181 | Smith et al. | Mar 2012 | A1 |
20120101451 | Boit et al. | Apr 2012 | A1 |
20120123234 | Atlas et al. | May 2012 | A1 |
20120136336 | Mastrototaro et al. | May 2012 | A1 |
20120190955 | Rao et al. | Jul 2012 | A1 |
20120191063 | Brauker | Jul 2012 | A1 |
20120203085 | Rebec | Aug 2012 | A1 |
20120203178 | Tverskoy | Aug 2012 | A1 |
20120215087 | Cobelli et al. | Aug 2012 | A1 |
20120225134 | Komorowski | Sep 2012 | A1 |
20120226259 | Yodfat et al. | Sep 2012 | A1 |
20120232520 | Sloan et al. | Sep 2012 | A1 |
20120238851 | Kamen et al. | Sep 2012 | A1 |
20120271655 | Knobel et al. | Oct 2012 | A1 |
20120277668 | Chawla | Nov 2012 | A1 |
20120282111 | Nip et al. | Nov 2012 | A1 |
20120295550 | Wilson et al. | Nov 2012 | A1 |
20130030358 | Yodfat et al. | Jan 2013 | A1 |
20130158503 | Kanderian, Jr. et al. | Jun 2013 | A1 |
20130178791 | Javitt | Jul 2013 | A1 |
20130231642 | Doyle et al. | Sep 2013 | A1 |
20130253472 | Cabiri | Sep 2013 | A1 |
20130261406 | Rebec et al. | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130317753 | Kamen et al. | Nov 2013 | A1 |
20130338576 | OConnor et al. | Dec 2013 | A1 |
20140005633 | Finan | Jan 2014 | A1 |
20140200426 | Taub et al. | Jan 2014 | A1 |
20140066886 | Roy et al. | Mar 2014 | A1 |
20140074033 | Sonderegger et al. | Mar 2014 | A1 |
20140121635 | Hayter | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140135880 | Baumgartner et al. | May 2014 | A1 |
20140146202 | Boss et al. | May 2014 | A1 |
20140180203 | Budiman et al. | Jun 2014 | A1 |
20140180240 | Finan et al. | Jun 2014 | A1 |
20140200559 | Doyle et al. | Jul 2014 | A1 |
20140230021 | Birthwhistle et al. | Aug 2014 | A1 |
20140276554 | Finan et al. | Sep 2014 | A1 |
20140276556 | Saint et al. | Sep 2014 | A1 |
20140278123 | Prodhom et al. | Sep 2014 | A1 |
20140309615 | Mazlish | Oct 2014 | A1 |
20140316379 | Sonderegger et al. | Oct 2014 | A1 |
20140325065 | Birtwhistle et al. | Oct 2014 | A1 |
20150018633 | Kovachev et al. | Jan 2015 | A1 |
20150025329 | Amarasingham et al. | Jan 2015 | A1 |
20150025495 | Peyser | Jan 2015 | A1 |
20150120317 | Mayou et al. | Apr 2015 | A1 |
20150134265 | Kohlbrecher et al. | May 2015 | A1 |
20150165119 | Palerm et al. | Jun 2015 | A1 |
20150173674 | Hayes et al. | Jun 2015 | A1 |
20150213217 | Amarasingham et al. | Jul 2015 | A1 |
20150217052 | Keenan et al. | Aug 2015 | A1 |
20150217053 | Booth et al. | Aug 2015 | A1 |
20150265767 | Vazquez et al. | Sep 2015 | A1 |
20150306314 | Doyle et al. | Oct 2015 | A1 |
20150351671 | Vanslyke et al. | Dec 2015 | A1 |
20150366945 | Greene | Dec 2015 | A1 |
20160015891 | Papiorek | Jan 2016 | A1 |
20160038673 | Morales | Feb 2016 | A1 |
20160038689 | Lee et al. | Feb 2016 | A1 |
20160051749 | Istoc | Feb 2016 | A1 |
20160082187 | Schaible et al. | Mar 2016 | A1 |
20160089494 | Guerrini | Mar 2016 | A1 |
20160175520 | Palerm et al. | Jun 2016 | A1 |
20160228641 | Gescheit et al. | Aug 2016 | A1 |
20160243318 | Despa et al. | Aug 2016 | A1 |
20160256087 | Doyle et al. | Sep 2016 | A1 |
20160287512 | Cooper et al. | Oct 2016 | A1 |
20160302054 | Kimura et al. | Oct 2016 | A1 |
20160331310 | Kovatchev | Nov 2016 | A1 |
20160354543 | Cinar et al. | Dec 2016 | A1 |
20170049386 | Abraham et al. | Feb 2017 | A1 |
20170143899 | Gondhalekar et al. | May 2017 | A1 |
20170143900 | Rioux et al. | May 2017 | A1 |
20170156682 | Doyle et al. | Jun 2017 | A1 |
20170173261 | OConnor et al. | Jun 2017 | A1 |
20170189625 | Cirillo et al. | Jul 2017 | A1 |
20170281877 | Marlin et al. | Oct 2017 | A1 |
20170296746 | Chen et al. | Oct 2017 | A1 |
20170311903 | Davis et al. | Nov 2017 | A1 |
20170348482 | Duke et al. | Dec 2017 | A1 |
20180036495 | Searle et al. | Feb 2018 | A1 |
20180040255 | Freeman et al. | Feb 2018 | A1 |
20180075200 | Davis et al. | Mar 2018 | A1 |
20180075201 | Davis et al. | Mar 2018 | A1 |
20180075202 | Davis et al. | Mar 2018 | A1 |
20180092576 | O'Connor et al. | Apr 2018 | A1 |
20180126073 | Wu et al. | May 2018 | A1 |
20180169334 | Grosman et al. | Jun 2018 | A1 |
20180200434 | Mazlish et al. | Jul 2018 | A1 |
20180200438 | Mazlish et al. | Jul 2018 | A1 |
20180200441 | Desborough et al. | Jul 2018 | A1 |
20180204636 | Edwards et al. | Jul 2018 | A1 |
20180277253 | Gondhalekar et al. | Sep 2018 | A1 |
20180289891 | Finan et al. | Oct 2018 | A1 |
20180296757 | Finan et al. | Oct 2018 | A1 |
20180342317 | Skirble et al. | Nov 2018 | A1 |
20180369479 | Hayter et al. | Dec 2018 | A1 |
20190076600 | Grosman et al. | Mar 2019 | A1 |
20190240403 | Palerm et al. | Aug 2019 | A1 |
20190290844 | Monirabbasi et al. | Sep 2019 | A1 |
20190336683 | O'Connor et al. | Nov 2019 | A1 |
20190336684 | O'Connor et al. | Nov 2019 | A1 |
20190348157 | Booth et al. | Nov 2019 | A1 |
20200046268 | Patek et al. | Feb 2020 | A1 |
20200101222 | Lintereur et al. | Apr 2020 | A1 |
20200101223 | Lintereur et al. | Apr 2020 | A1 |
20200101225 | O'Connor et al. | Apr 2020 | A1 |
20200219625 | Kahlbaugh | Jul 2020 | A1 |
20200342974 | Chen et al. | Oct 2020 | A1 |
20210050085 | Hayter et al. | Feb 2021 | A1 |
20210098105 | Lee et al. | Apr 2021 | A1 |
20220023536 | Graham et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2015200834 | Mar 2015 | AU |
2015301146 | Mar 2017 | AU |
1297140 | May 2001 | CN |
19756872 | Jul 1999 | DE |
0341049 | Nov 1989 | EP |
0496305 | Jul 1992 | EP |
0549341 | Jun 1993 | EP |
1491144 | Dec 2004 | EP |
0801578 | Jul 2006 | EP |
2666520 | Oct 2009 | EP |
2139382 | Jan 2010 | EP |
2397181 | Dec 2011 | EP |
2695573 | Feb 2014 | EP |
2830499 | Feb 2015 | EP |
2943149 | Nov 2015 | EP |
3177344 | Jun 2017 | EP |
3314548 | May 2018 | EP |
1571582 | Apr 2019 | EP |
2897071 | May 2019 | EP |
3607985 | Feb 2020 | EP |
2443261 | Apr 2008 | GB |
S51125993 | Nov 1976 | JP |
02131777 | May 1990 | JP |
2004283378 | Oct 2007 | JP |
2017525451 | Sep 2017 | JP |
2018153569 | Oct 2018 | JP |
2019525276 | Sep 2019 | JP |
200740148 | Oct 2007 | TW |
M452390 | May 2013 | TW |
9800193 | Jan 1998 | WO |
9956803 | Nov 1999 | WO |
0030705 | Jun 2000 | WO |
0032258 | Jun 2000 | WO |
0172354 | Oct 2001 | WO |
2002015954 | Feb 2002 | WO |
0243866 | Jun 2002 | WO |
02082990 | Oct 2002 | WO |
03016882 | Feb 2003 | WO |
03039362 | May 2003 | WO |
03045233 | Jun 2003 | WO |
05110601 | May 2004 | WO |
2004043250 | May 2004 | WO |
04092715 | Oct 2004 | WO |
2005051170 | Jun 2005 | WO |
2005082436 | Sep 2005 | WO |
2005113036 | Dec 2005 | WO |
2006053007 | May 2006 | WO |
2007064835 | Jun 2007 | WO |
2007078937 | Jul 2007 | WO |
2008024810 | Feb 2008 | WO |
2008029403 | Mar 2008 | WO |
2008133702 | Nov 2008 | WO |
2009045462 | Apr 2009 | WO |
2009049252 | Apr 2009 | WO |
2009066287 | May 2009 | WO |
2009066288 | May 2009 | WO |
2009098648 | Aug 2009 | WO |
2009134380 | Nov 2009 | WO |
2010053702 | May 2010 | WO |
2010132077 | Nov 2010 | WO |
2010138848 | Dec 2010 | WO |
2010147659 | Dec 2010 | WO |
2011095483 | Aug 2011 | WO |
2012045667 | Apr 2012 | WO |
2012108959 | Aug 2012 | WO |
2012134588 | Oct 2012 | WO |
2012177353 | Dec 2012 | WO |
2012178134 | Dec 2012 | WO |
2013078200 | May 2013 | WO |
2013134486 | Sep 2013 | WO |
20130149186 | Oct 2013 | WO |
2013177565 | Nov 2013 | WO |
2013182321 | Dec 2013 | WO |
2014109898 | Jul 2014 | WO |
2014110538 | Jul 2014 | WO |
2014194183 | Dec 2014 | WO |
2015056259 | Apr 2015 | WO |
2015061493 | Apr 2015 | WO |
2015073211 | May 2015 | WO |
2015081337 | Jun 2015 | WO |
2015187366 | Dec 2015 | WO |
2016004088 | Jan 2016 | WO |
2016022650 | Feb 2016 | WO |
2016041873 | Mar 2016 | WO |
2016089702 | Jun 2016 | WO |
2016141082 | Sep 2016 | WO |
2016161254 | Oct 2016 | WO |
2017004278 | Jan 2017 | WO |
2017091624 | Jun 2017 | WO |
2017105600 | Jun 2017 | WO |
2017184988 | Oct 2017 | WO |
2017205816 | Nov 2017 | WO |
2018009614 | Jan 2018 | WO |
2018067748 | Apr 2018 | WO |
2018120104 | Jul 2018 | WO |
2018136799 | Jul 2018 | WO |
2018204568 | Nov 2018 | WO |
2019077482 | Apr 2019 | WO |
2019094440 | May 2019 | WO |
2019213493 | Nov 2019 | WO |
2019246381 | Dec 2019 | WO |
2020081393 | Apr 2020 | WO |
2021011738 | Jan 2021 | WO |
Entry |
---|
US 5,954,699 A, 09/1999, Jost et al. (withdrawn) |
Anonymous: “Artificial pancreas—Wikipedia”, Mar. 13, 2018 (Mar. 13, 2018), XP055603712, Retrieved from the Internet: URL: https://en.wikipedia.org/wiki/Artificial_pancreas [retrieved on Jul. 9, 2019] section “Medical Equipment” and the figure labeled “The medical equipment approach to an artifical pancreas”. |
Kaveh et al., “Blood Glucose Regulation via Double Loop Higher Order Sliding Mode Control and Multiple Sampling Rate.” Paper presented at the proceedings of the 17th IFAC World Congress, Seoul, Korea (Jul. 2008). |
Dassau et al., “Real-Time Hypoglycemia Prediction Suite Using Contineous Glucose Monitoring,” Diabetes Care, vol. 33, No. 6, 1249-1254 (2010). |
International Search Report and Written Opinion for International Patent Application No. PCT/US17/53262, mailed on Dec. 13, 2017, 8 pages. |
Van Heusden et al., “Control-Relevant Models for Glucose Control using A Priori Patient Characteristics”, IEEE Transactions on Biomedical Engineering, vol. 59, No. 7, (Jul. 1, 2012) pp. 1839-1849. |
Doyle III et al., “Run-to-Run Control Strategy for Diabetes Management.” Paper presented at 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey. (Oct. 2001). |
Bequette, B.W., and Desemone, J., “Intelligent Dosing Systems”: Need for Design and Analysis Based on Control Theory, Diabetes Technology and Therapeutics 9(6): 868-873 (2004). |
Parker et al., “A Model-Based Agorithm for Blood Gucose Control in Type 1 Diabetic Patients.” IEEE Transactions on Biomedical Engineering, 46 (2) 148-147 (1999). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2017/015601, mailed May 16, 2017, 12 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2018/018901, mailed on Aug. 6, 2018, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/052467, mailed Jan. 4, 2019, 13 pages. |
“How to Create a QR Code that Deep Links to Your Mobile App”, Pure Oxygen Labs, web<https://pureoxygenlabs.com/how-to-create-a-qr-codes-that-deep-link-to-your-mobile-app/>. Year:2017. |
“Read NFC Tags with an iPHone App on iOS 11”, GoToTags, Sep. 11, 2017, web <https://gototags.com/blog/read-hfc-tags-with-an-iphone-app-on-ios-11/>. (Year:2017). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2016/063350, mailed on Mar. 27, 2017, 9 pages. |
Extended Search Report mailed Aug. 13, 2018, issued in European Patent Application No. 16753053.4, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US16/18452, mailed on Apr. 29, 2015, 9 pages. |
International Preliminary Report on Patentability mailed Aug. 31, 2017, issued in PCT Patent Application No. PCT/US2016/018452, 7 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055862, mailed on Mar. 11, 2020. |
International Search Report and Written Opinion for Application No. PCT/US2019/030652, Sep. 25, 2019, 19 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013470, mailed May 6, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/013473, mailed May 6, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/019079, mailed Jun. 2, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/018453, mailed Jun. 2, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/018700, mailed Jun. 7, 2022, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019080, mailed Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US22/019664, mailed Jun. 7, 2022, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US21/060618, mailed Mar. 21, 2022, 15 pages. |
Herrero Pau et al: “Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator-in silicoevaluation under intra-day variability”, Computer Methods and Programs in Biomedicine, Elsevier, Amsterdam, NL, vol. 146, Jun. 1, 2017 (Jun. 1, 2017), pp. 125-131, XP085115607, ISSN: 0169-2607, DOI:10.1016/J.CMPB.2017.05.010. |
Marie Aude Qemerais: “Preliminary Evaluation of a New Semi-Closed-Loop Insulin Therapy System over the prandial period in Adult Patients with type I diabetes: the WP6. 0 Diabeloop Study”, Journal of Diabetes Science and Technology Diabetes Technology Society Reprints and permissions, Jan. 1, 2014, pp. 1177-1184, Retrieved from the Internet: URL:http://journals.sagepub.com/doi/pdf/10.1177/1932296814545668 [retrieved on Jun. 6, 2022] chapter “Functioning of the Algorithm” chapter “Statistical Analysis” p. 1183, left-hand column, line 16-line 23. |
Anonymous: “Kernel density estimation”, Wikipedia, Nov. 13, 2020 (Nov. 13, 2020), pp. 1-12, XP055895569, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation&oldid=988508333 [retrieved on Jun. 6, 2022]. |
Anonymous: “openaps / oref0 /lib/determine-basal-js”, openaps repository, Nov. 9, 2019 (Nov. 9, 2019), pp. 1-17, XP055900283, Retrieved from the Internet: URL:https://github.com/openaps/oref0/blob/master/lib/determine-basal/determine-basal.js [retrieved on Jun. 6, 2022] line 116-line 118, line 439-line 446. |
Anonymous: “AndroidAPS screens”, AndroidAPS documentation, Oct. 4, 2020 (Oct. 4, 2020), pp. 1-12, XP055894824, Retrieved from the Internet: URL:https://github.com/openaps/AndroidAPSdocs/blob/25d8acf8b28262b411b34f416f173ac0814d7e14/docs/EN/Getting-Started/Screenshots.md [retrieved on Jun. 6, 2022]. |
Kozak Milos et al: “Issue #2473 of AndroidAPS”, MilosKozak / AndroidAPS Public repository, Mar. 4, 2020 (Mar. 4, 2020), pp. 1-4, XP055900328, Retrieved from the Internet: URL:https://github.com/MilosKozak/AndroidAPS/issues/2473 [retrieved on Jun. 6, 2022]. |
Medication Bar Code System Implementation Planning Section I: A Bar Code Primer for Leaders, Aug. 2013. |
Medication Bar Code System Implementation Planning Section II: Building the Case for Automated Identification of Medications, Aug. 2013. |
Villareal et al. (2009) in: Distr. Comp. Art. Intell. Bioninf. Soft Comp. Amb. Ass. Living; Int. Work Conf. Art. Neural Networks (IWANN) 2009, Lect. Notes Comp. Sci. vol. 5518; S. Omatu et al. (Eds.), pp. 870-877. |
Fox, Ian G.; Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management; University of Michigan. ProQuest Dissertations Publishing, 2020. 28240142. (Year: 2020). |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2022/012896, mailed Apr. 22, 2022, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/052125, mailed Aug. 12, 2020, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/050332, mailed Sep. 12, 2020, 12 pages. |
European Patent Office, “Notification of Transmittal of the ISR and the Written Opinion of the International Searching Authority, or the Declaration,” in PCT Application No. PCT/GB2015/050248, Jun. 23, 2015, 12 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/012246, mailed Apr. 13, 2021, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/013639, mailed Apr. 28, 2021, 14 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/063326, mailed May 3, 2021, 17 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/051027, mailed on Jan. 7, 2022, 16 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052372, mailed Jan. 26, 2022, 15 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/046607, mailed Jan. 31, 2022, 20 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/055745, mailed Feb. 14, 2022, 13 pages. |
International Preliminary Report on Patentability in PCT/US2021/041954 mailed on Feb. 2, 2023, 10 pages. |
European Search Report for the European Patent Application No. 21168591.2, mailed Oct. 13, 2021, 04 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/041954, mailed Oct. 25, 2021, 13 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/047771, mailed Dec. 22, 2021, 11 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/052855, mailed Dec. 22, 2021, 11 pages. |
Unger, Jeff, et al., “Glucose Control in the Hospitalized Patient,” Emerg. Med 36(9):12-18 (2004). |
“Glucommander FAQ” downloaded from https://adaendo.com/GlucommanderFAQ.html on Mar. 16, 2009. |
Finfer, Simon & Heritier, Stephane. (2009). The Nice-Sugar (Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation) Study: statistical analysis plan. Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine. 11. 46-57. |
Letters to the Editor regarding “Glucose Control in Critically Ill Patients,” N Engl J Med 361: 1, Jul. 2, 2009. |
“Medtronic is Leading a Highly Attractive Growth Market,” Jun. 2, 2009. |
Davidson, Paul C., et al. “Glucommander: An Adaptive, Computer-Directed System for IV Insulin Shown to be Safe, Simple, and Effective in 120,618 Hours of Operation,” Atlanta Diabetes Associates presentation. |
Davidson, Paul C., et al. “Pumpmaster and Glucommander,” presented at the MiniMed Symposium, Atlanta GA, Dec. 13, 2003. |
Kanji S., et al. “Reliability of point-of-care testing for glucose measurement in critically ill adults,” Critical Care Med, vol. 33, No. 12, pp. 2778-2785, 2005. |
Krinsley James S., “Severe hypoglycemia in critically ill patients: Risk factors and outcomes,” Critical Care Med, vol. 35, No. 10, pp. 1-6, 2007. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016283, mailed Jun. 2, 2021, 15 pages. |
Farkas et al. ““Single-Versus Triple-Lumen Central Catheter-Related Sepsis: A Prospective Randomized Study in a Critically Ill Population”” The American Journal of Medicine Sep. 1992vol. 93 p. 277-282. |
Davidson, Paul C., et al., A computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation, Diabetes Care, vol. 28, No. 10, Oct. 2005, pp. 2418-2423. |
R Anthony Shaw, et al., “Infrared Spectroscopy in Clinical and Dianostic Analysis,” Encyclopedia of Analytical Chemistry, ed. Robert A. Meyers, John Wiley & Sons, Ltd., pp. 1-20, 2006. |
Gorke, A ““Microbial Contamination of Haemodialysis Catheter Connections”” Journal of Renal Care,European Dialysis & Transplant Nurses Association. |
Lovich et al. “Central venous catheter infusions: A laboratory model shows large differences in drug delivery dynamics related to catheter dead volume” Critical Care Med 2007 vol. 35, No. 12. |
Van Den Berghe, Greet, M.D., Ph.D., et al., Intensive Insulin Therapy in Critically Ill Patients, The New England Journal of Medicine, vol. 345, No. 19, Nov. 8, 2001, pp. 1359-1367. |
Schlegel et al, “Multilumen Central Venous Catheters Increase Risk for Catheter-Related Bloodstream Infection: Prospective Surveillance Study”. |
Wilson, George S., et al., Progress toward the Development of an Implantable Sensor for Glucose, Clin. Chem., vol. 38, No. 9, 1992, pp. 1613-1617. |
Yeung et al. “Infection Rate for Single Lumen v Triple Lumen Subclavian Catheters” Infection Control and Hospital Epidemiology, vol. 9, No. 4 (Apr. 1988) pp. 154-158 The University of Chicago Press. |
International Search Report and Written Opinion, International Application No. PCT/US2010/033794 mailed Jul. 16, 2010 (OPTIS.247VPC). |
International Search Report and Written Opinion in PCT/US2008/079641 (Optis.203VPC) dated Feb. 25, 2009. |
Berger, ““Measurement of Analytes in Human Serum and Whole Blood Samples by Near-Infrared Raman Spectroscopy,”” Ph.D. Thesis, Massachusetts Institute of Technology, Chapter 4, pp. 50-73, 1998. |
Berger, “An Enhanced Algorithm for Linear Multivariate Calibration,” Analytical Chemistry, vol. 70, No. 3, pp. 623-627, Feb. 1, 1998. |
Billman et. al., “Clinical Performance of an in line Ex-Vivo Point of Care Monitor: A Multicenter Study,” Clinical Chemistry 48: 11, pp. 2030-2043, 2002. |
Widness et al., “Clinical Performance on an In-Line Point-of-Care Monitor in Neonates”; Pediatrics, vol. 106, No. 3, pp. 497-504, Sep. 2000. |
Finkielman et al., “Agreement Between Bedside Blood and Plasma Glucose Measurement in the ICU Setting”; retrieved from http://www.chestjournal.org; CHEST/127/5/May 2005. |
Glucon Critical Care Blood Glucose Monitor; Glucon; retrieved from http://www.glucon.com. |
Fogt, et al., “Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator)”; Clinical Chemistry, vol. 24, No. 8, pp. 1366-1372, 1978. |
Vonach et al., “Application of Mid-Infrared Transmission Spectrometry to the Direct Determination of Glucose in Whole Blood,” Applied Spectroscopy, vol. 52, No. 6, 1998, pp. 820-822. |
Muniyappa et al., “Current Approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage,” AJP-Endocrinol Metab, vol. 294, E15-E26, first published Oct. 23, 2007. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2019/053603, mailed Apr. 8, 2021, 9 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/053603, mailed Jan. 7, 2020, 16 pages. |
Dassau et al., “Detection of a meal using continuous glucose monitoring: Implications for an artificial [beta]-cell.” Diabetes Care, American Diabetes Association, Alexandria, VA, US, 31(2):295-300 (2008). |
Cameron et al., “Probabilistic Evolving Meal Detection and Estimation of Meal Total Glucose Appearance Author Affiliations”, J Diabetes Sci and Tech,vol., Diabetes Technology Society ;(5):1022-1030 (2009). |
Lee et al., “A closed-loop artificial pancreas based on model predictive control: Human-friendly identification and automatic meal disturbance rejection”, Biomedical Signal Processing and Control, Elsevier, Amsterdam, NL, 4 (4):1746-8094 (2009). |
Anonymous: “Fuzzy control system”, Wikipedia, Jan. 10, 2020. URL: https://en.wikipedia.org/w/index.php?title=Fuzzy_control_system&oldid=935091190. |
An Emilia Fushimi: “Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Annoucement”, Journal of Diabetes Science and Technology Diabetes Technology Society, Mar. 22, 2019, pp. 1025-1043. |
International Search Report and Written Opinion for the InternationalPatent Application No. PCT/US2021/017441, mailed May 25, 2021, 12 pages. |
Mirko Messori et al: “Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control”, IEEE Control Systems, vol. 38, No. 1, Feb. 1, 2018, pp. 86-104. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017662, mailed May 26, 2021, 14 pages. |
Anonymous: “Reservoir Best Practice and Top Tips” Feb. 7, 2016, URL: https://www.medtronic-diabetes.co.uk/blog/reservoir-best-practice-and-top-tips, p. 1. |
Gildon Bradford: “InPen Smart Insulin Pen System: Product Review and User Experience” Diabetes Spectrum, vol. 31, No. 4, Nov. 15, 2018, pp. 354-358. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/016050, mailed May 27, 2021, 16 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2020/065226, mailed May 31, 2021, 18 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/017659, mailed May 31, 2021, 13 pages. |
Montaser Eslam et al., “Seasonal Local Models for Glucose Prediction in Type 1 Diabetes”, IEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 24, No. 7, Nov. 29, 2019, pp. 2064-2072. |
Samadi Sediqeh et al., “Automatic Detection and Estimation of Unannouced Meals for Multivariable Artificial Pancreas System”, Diabetis Technology & Therapeutics, vol. 20m No. 3, Mar. 1, 2018, pp. 235-246. |
Samadi Sediqeh et al., “Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data” IEEE Journal of Biomedical and Health Informatics, IEEE, Piscataway, NJ, USA, vol. 21, No. 3, May 1, 2017, pp. 619-627. |
Khodaei et al., “Physiological Closed-Loop Contol (PCLC) Systems: Review of a Modern Frontier in Automation”, IEEE Access, IEEE, USA, vol. 8, Jan. 20, 2020, pp. 23965-24005. |
E. Atlas et al., “MD-Logic Artificial Pancreas System: A pilot study in adults with type 1 diabetes”, Diabetes Care, vol. 33, No. 5, Feb. 11, 2010, pp. 1071-1076. |
Number | Date | Country | |
---|---|---|---|
20220023536 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
63055096 | Jul 2020 | US |