Optical scanners, such as hand-held optical scanners

Information

  • Patent Grant
  • 8600196
  • Patent Number
    8,600,196
  • Date Filed
    Tuesday, July 6, 2010
    13 years ago
  • Date Issued
    Tuesday, December 3, 2013
    10 years ago
Abstract
A hand-held optical scanner is described. The hand-held optical scanner has an image sensor, as well as a scan window through which image light is directed toward the image sensor.
Description
TECHNICAL FIELD

The following disclosure relates generally to optical scanning devices and related systems.


BACKGROUND

Optical scanning devices digitize images and text and translate the information into a machine-readable form a computer can use. The image data can then be used in a number of different ways. For example, the data can be used by a personal computer to reproduce an image of the scanned object on a display device or a printer. The data can also be used by a computer to find and retrieve an electronic version of all or a portion of the original document or source.


There are numerous types of optical scanners, including both fixed scanners (e.g., conventional copy machines) and portable scanners (e.g., hand-held scanning devices). As the name implies, a hand-held optical scanner can be held in a user's hand and moved over the text or image the user desires to scan. The image data can then be stored in scanner memory for later download, or downloaded directly to an associated computer or other processing device via a cable or wireless connection.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D are top, side, bottom, and end views, respectively, of a configuration of a hand-held optical scanner.



FIG. 2 is a cross-sectional top view of a portion of the optical scanner of FIG. 1, illustrating a scan window and other features of the optical scanner.



FIG. 3 is a cross-sectional top view of a portion of an optical scanner configuration having internal light shields for minimizing or reducing specular reflection.



FIGS. 4A and 4B are cross-sectional top views of a portion of an optical scanner illustrating various stages in a method of sequential lighting, and FIGS. 4C and 4D are schematic diagrams illustrating various stages in a related method of image processing.



FIG. 5 is a cross-sectional top view of a portion of an optical scanner configuration that utilizes one or more diffused light sources.



FIG. 6 is a cross-sectional top view of a portion of an optical scanner configuration that utilizes one or more light polarizing filters.



FIGS. 7A and 7B are cross-sectional top views of optical scanner configurations having scan windows with varying cross-sectional thicknesses.



FIGS. 8A-8B are cross-sectional side views of optical scanner configurations having scan windows with varying cross-sectional thicknesses.



FIG. 9 is an isometric view of a hand-held optical scanner configuration having a first image sensor proximate a first facet and a second image sensor proximate a second facet.



FIG. 10 is a partially cut-away, cross-sectional top view taken through a side portion of the optical scanner of FIG. 9, illustrating various features associated with the second image sensor.



FIGS. 11A-11C are isometric, end, and cross-sectional side views, respectively, of another configuration of a hand-held optical scanner.



FIG. 12 is a cross-sectional top view of a portion of an optical scanner having a scan window and other features arranged in another configuration.



FIGS. 13A and 13B are schematic diagrams of sequential scan images illustrating various stages in a method of image processing.



FIG. 14 is a schematic diagram of a processed image composed of portions of the scan images illustrated in FIGS. 13A and 13B.



FIG. 15 is a cross-sectional top view of a portion of an optical scanner having a scan window and other features arranged in yet another configuration.





DETAILED DESCRIPTION

The following disclosure describes various embodiments of optical scanners, such as hand-held optical scanners, and related features. For example, many of the scanner configurations described below can include transparent or translucent scan windows through which internal light sources (e.g., LEDs) illuminate a scan region. Various features are also described below to minimize or reduce specular reflection of light off the scan window, as this could adversely affect the scan image. These features can include partial light shields, sequential lighting/image processing, diffuse light sources, polarizing filters, etc.


Other scanner configurations described below can include scan windows which have contoured or shaped surfaces to magnify or reduce the scan image, thereby altering the field of view or otherwise enhancing the imaging characteristics of the scanner. Still other scanner configurations described below can include a first image sensor positioned toward one end of the scanner and a second image sensor positioned toward one side of the scanner. In one scanner configuration, for example, the first image sensor can be a two-dimensional image sensor for capturing a particular set of markings (e.g., a particular sentence), and the second image sensor can be a one-dimensional image sensor for capturing a broader portion of markings (e.g., a full paragraph or page of text) in a single pass of the scanner.


Certain details are set forth in the following description to provide a thorough understanding of the different embodiments of the invention. However, other details describing well-known features, systems and methods often associated with optical scanners and related processing systems are not set forth below, to avoid unnecessarily obscuring the description of the various embodiments.


Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments described herein. Accordingly, other embodiments can have other details, dimensions, angles and features without departing from the scope of the present disclosure. Furthermore, additional embodiments can be practiced without several of the details described below.


In the Figures, identical reference numbers identify identical or at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. For example, element 110 is first introduced and discussed with reference to FIG. 1.



FIGS. 1A-1D are related top, side, bottom, and end views, respectively, of a hand-held optical scanner 100. Referring first to FIG. 1A, the hand-held optical scanner 100 (“scanner 100”) includes a durable body 102 suitable for single-handed operation by a user (not shown). The body 102 can be formed from, e.g., aluminum, plastic, and/or other suitable materials. The scanner 100 also includes an operating button 104 conveniently disposed in a mid-portion of the body 102, and a transparent or translucent scan window 110 disposed toward an end portion of the body 102. The scan window 110 can be produced from a number of different materials, including various types of plastic, glass, and/or other materials known in the art that are suitably transparent or translucent.


In the illustrated embodiment, the top surface of the scanner 100 includes a scan diagnostics area 106 and a text area 108. The scan diagnostics area 106 can include various types of lights and/or other features to indicate the mode of operation or status of the scanner. For example, the scan diagnostics area 106 can include a light (e.g., a red light) that illuminates to indicate that scanning has begun. Additionally, such a light can be aligned with the scan window 110 to help the user center the scanner 100 over the text or other image he or she wishes to scan. In another aspect of this particular embodiment, the light on the scan diagnostics area can be illuminated in a different color (for example, green) to indicate that a scanned document has been identified.


The text area 108 can include, for example, an organic light emitting diode (OLED) for providing textual information about the operation of the scanner 100. For example, in one embodiment, the text area 108 can illuminate a “scanning” text message once scanning has begun, and a “document found” text message when the scanned document has been identified by an associated computer system. Although not illustrated in FIGS. 1A-1D, the scanner 100 can be operably connected to an associated computer or other suitable processing device via a wireless connection (e.g., a Bluetooth), or a cable connection (e.g., a mini-USB cable connection).


In addition to the foregoing features, the scanner 100 can also include a microphone (not shown) that is enabled when the user depresses the operating button 104. With this feature, the user can record verbal notes with the scanner 100 by speaking into the microphone before, after, or while positioning the scan window 110 in view of text or other images.


In some embodiments, at times at which the scanner is enabled, such as subsequent to the button 104 being depressed, the scanner automatically determines whether the optical channel, the voice channel, or both are active. For example, in some embodiments, if the scanner is receiving consistently high-volume audio, the scanner determines that the audio channel is active, and records audio data received via the audio channel. In some embodiments, the scanner determines whether the optical sensor is receiving data corresponding to in-focus text that is moving through the field of view, and, if so, determines that the visual channel is active, and records image data received via the visual channel.


Referring next to FIG. 1C, a capacity indicator 114 on the bottom surface of the scanner 100 can provide a visual indication of how much life remains in the scanner battery(ies). In addition, the bottom surface of the scanner 100 can also include a memory low indicator (not shown) that illuminates when storage capacity becomes low, or reads “memory full” when there is no more storage space available. Moving a hold switch 112 to an “off” position disables the scanner 100 and prevents inadvertently depressing the button 104 and turning the scanner 100 on during, e.g., transportation in the user's pocket.


Although various features of the scanner 100 have been described above for purposes of illustration and completeness, the various configurations and features disclosed herein are not limited to this particular scanner configuration. Indeed, many, if not all, of the inventive features described below can be incorporated into a wide variety of scanning devices, as will be clear to those of ordinary skill in the art.



FIG. 2 is a cross-sectional top view of the scanner 100 taken substantially along line 2-2 in FIG. 1D. In one aspect of this embodiment, the scanner 100 can include one or more light sources 220 (identified individually as a first light source 220a and a second light source 220b) positioned within the body 102. The light sources 220 can include various types of lights including, for example, light emitting diodes (LEDs), incandescent lights, fluorescent lights, etc. During operation of the scanner 100, light from the sources 220 passes through the scan window 110 to illuminate text, images, and/or other markings (not shown) in a scan region on a page or other document 214. In the illustrated embodiment, an optical system 224 (shown schematically) directs image light from the illuminated scan region to an image sensor 222. Although not shown in detail, the optical system 224 can include one or more lenses to focus the image light on the sensor 222.


The image sensor 222 can include a coupled-charge device (CCD), a complementary metal oxide semiconductor (CMOS) device, a contact image sensor (CIS) device, and/or other suitable image sensing devices known in the art. The image sensor 222 is operably connected to scanner circuitry 230 (shown schematically) for, e.g., amplification, noise filtering, and/or analog-to-digital conversion of signals passing from the image sensor 222 to a scanner CPU (not shown). Although not shown, the scanner CPU can be operably connected to memory, one or more display devices, and/or one or more input/output devices associated with the scanner 100.


Although the scan window 110 is positioned slightly above the document 214 in FIG. 2 for purposes of clarity, in practice the scanner 100 can have other positions relative to the surface of the document 214. For example, in one embodiment the scan window 110 can be positioned directly on the image surface. In other embodiments, the scan window 110 can be held further away from the image surface than depicted in FIG. 2.


As mentioned above, during operation of the scanner 100, light from the light sources 220 passes through the scan window 110 to illuminate the adjacent portion of the document 214. In some instances, however, at least a portion of the light from the sources 220 may be reflected by the scan window 110, causing glare which strikes the image sensor 222 and adversely affects the resulting image. By way of example, this specular reflection can be illustrated by a first light ray 202a emitted from the first light source 220a, and a second light ray 202b emitted from the second light source 220b. Various approaches for minimizing or at least reducing this specular reflection and its adverse effects are described in more detail below with reference to FIGS. 3-6.



FIG. 3 is a cross-sectional top view of a portion of a scanner 300 that is at least generally similar in structure and function to this scanner 100 described above with reference to FIGS. 1A-2. In one aspect of this particular embodiment, however, the scanner 300 includes a first light shield 326a and a second light shield 326b positioned within the scanner body 102. Each of the light shields 326 is positioned to block the portion of light from the corresponding light source 220 that would otherwise reflect off the scan window 110 and adversely affect the resulting scan image. For example, in the illustrated embodiment, the first light shield 326a extends inwardly from the scanner body 102 to block the first light ray 202a from reaching the scan window 110. Similarly, the second light shield 326b extends inwardly from an opposing side of the scanner body 102 to block the second light ray 202b from striking the scan window 110. As a result, little or no specular reflection from the scan window 110 reaches the image sensor 222 to obscure the resulting scan image. Furthermore, although the light shields 326 block a portion of the light from the light sources 220, the light sources 220 together still provide enough illumination for a suitable scan of the document 214.


Although one arrangement of the light sources 220 and the light shields 326 is shown in FIG. 3 for illustrative purposes, various other arrangements of light sources and light shields can be used without departing from the scope of the present disclosure. For example, in other embodiments, a single light shield can be used to block specular reflection from two or more light sources. In some embodiments, light shields can be attached to one or both of the front or back walls of the scanner body 102, instead of the side wall as shown if FIG. 3. In such embodiments, the light shield can extend in front of the light source to block the rays causing the specular reflection, while still allowing light to pass on either side of the light shield and illuminate the scan region. In some embodiments, opaque cylindrical sleeves surrounding all or a portion of the light source not facing the scan window are used as light shields. In some embodiments, light emitting diodes or other light sources manufactured to emit light only at the end of their structure facing the scan window are used to create a similar effect.



FIGS. 4A and 4B are cross-sectional top views of a portion of a hand-held optical scanner 400. Many features of the scanner 400 are at least generally similar in structure and function to corresponding features of the scanner 100 described above with reference to FIGS. 1A-2. For example, the scanner 400 can include the light sources 220 for illuminating the scan region, the image sensor 222 for capturing the illuminated image, and scanner circuitry 430 for processing information from the image sensor 222.


In one aspect of this particular embodiment, however, the individual light sources 220 are operatively connected to a controller (not shown), and are sequentially cycled off and on in relatively short time intervals during operation of the scanner 400. More specifically, when the first light source 220a is cycled on as shown in FIG. 4A, the second light source 220b is cycled off. Conversely, when the first light source 220a is cycled off as shown in FIG. 4B, the second light source 220b is cycled on. When the first light source 220a is on, it can cause specular reflection that adversely affects the scan image on a first sensor region 402a. Conversely, when the second light source is on, it can cause specular reflection that adversely affects the scan image on a second sensor region 402b.


To minimize or reduce any adverse affects from the specular reflection described above, the scanner circuitry 430 is configured to only record a portion of the scan image received by the image sensor 222 at any given time. More specifically, when the first light source 220a is on and possibly causing specular reflection in the first sensor region 402a, then the scanner circuitry 430 only records the portion of the scan image corresponding to the second sensor region 402b. Similarly, when the second light source 220b is on and possibly causing specular reflection in the second sensor region 402b, then the scanner circuitry 430 only records the portion of the scan image corresponding to the first sensor region 402a. The recorded scan image portions are then assembled or “stitched” together by the scanner circuitry 430 to form a complete and unobscured scan image, as described in more detail below with reference to FIGS. 4C and 4D.



FIG. 4C illustrates a scan image of the letter “d” captured by the image sensor 222 when the first light source 220a is on and the second light source 220b is off, as shown in FIG. 4A. As shown in FIG. 4C, the first light source 220a may produce some glare (represented by the “X”) that obscures a portion of the scan image in the first sensor region 402a. At this time, the scanner circuitry 430 (FIGS. 4A and 4B) only records the portion of the scan image in the second sensor region 402b. For ease of reference, this recorded image portion is referred to herein as frame A. A fraction of a second later, the first light source 220a is turned off and the second light source is turned on. At that time, the scanner circuitry 430 only records the portion of the scan image in the first sensor region 402a. This results in frame B as shown in FIG. 4D which the scanner circuitry 430 orients to frame A to form the complete letter “d.” The foregoing process repeats as the scanner 400 moves across the page or other object it is scanning, thereby assembling an accurate representation of the scanned subject matter.



FIG. 5 is a cross-sectional top view of a portion of a hand-held optical scanner 500. Many features of the scanner 500 are at least generally similar in structure and function to corresponding features of the scanner 100 described above with reference to FIGS. 1A-2. For example, the scanner 500 includes the scan window 110, the optical system 224, and the image sensor 222. In one aspect of this particular embodiment, however, the scanner 500 can include one or more diffuse light sources 540 (identified individually as a first diffuse light source 540a and a second diffuse light source 540b) for illuminating the scan region (not shown). The diffuse light sources 540 can be various types of light sources including, for example, fluorescent light sources. In other embodiments, the diffuse light sources 540 can be incandescent and/or LED light sources that utilize a suitable diffusing element to diffuse the light. One advantage of using diffuse light sources is that the diffuse light may produce little or no specular reflection off the scan window 110, thereby providing an unobscured view to the image sensor 222.



FIG. 6 is a cross-sectional top view of a portion of an optical scanner 600. Many features of the scanner 600 are at least generally similar in structure and function to corresponding features of the scanner 100 described above with reference to FIGS. 1A-2. In this particular embodiment, however, the scanner 600 can include one or more polarizing filters 650 (identified individually as a first polarizing filter 650a, a second polarizing filter 650b, and a third polarizing filter 650c) to reduce or eliminate any specular reflection from the light sources 220 off the scan window 110. For example, in the illustrated embodiment, the first polarizing filter 650a is positioned in front of the first light source 220a to polarize the light emitted from the first light source 220a. If, however, the first polarizing filter 650a is insufficient to eliminate the specular reflection caused by the first light source 220a, then the third polarizing filter 650c can be placed in front of the image sensor 222 to filter out any remaining glare.


In one embodiment, the first polarizing filter 650a can be configured to polarize the light emitted by the first light source 220a along a first axis (not shown), and the third polarizing filter 650c can be configured to cross-polarize the light entering the image sensor 222 along a second axis that is at least approximately perpendicular to the first axis. In other embodiments, other types of polarizing filters and other filter arrangements can be used to reduce or eliminate glare from the light sources 220. In one other embodiment, for example, a single polarizing filter in the position of the third polarizing filter 650c may be sufficient to reduce or minimize any adverse specular reflection off the scan window 110.



FIGS. 7A and 7B are cross-sectional top views of hand-held optical scanners 700a and 700b, respectively. In one aspect of these embodiments, each of the scanners 700 includes a scan window 710 that is shaped in one more dimensions to produce desirable scan image characteristics. The scan window 710a of FIG. 7A, for example, has a convex inner surface 711a which results in a cross-sectional thickness Ta that increases toward a mid-portion of the scan window 710a and decreases toward the outer ends. This convex shape is illustrated by comparing the inner surface 711a to a constant thickness reference line 714a. Shaping the inner surface 711a as shown in FIG. 7A can have the effect of enlarging or magnifying the scanned image in the W direction, thereby reducing the field of view in this direction. Such magnification may be desirable, for example, to increase the level of detail available for character recognition.


In contrast to the scan window 710a, the scan window 710b of FIG. 7B has a concave inner surface 711b. As a result, the scan window 710b has a cross-sectional thickness Tb that decreases toward a mid-portion of the scan window and increases toward the outer ends. This concavity is illustrated by comparing the inner surface 711b to a constant thickness reference line 714b. Shaping the inner surface 711b in this manner can have the effect of reducing the size of the scan image in the W direction, thereby increasing the field of view in this direction. Increasing the field of view may be desirable, for example, to increase the amount of text imaged in a single pass of the scanner, or to reduce the depth or aperture of the optical system 224.



FIGS. 8A and 8B are cross-sectional side views of hand-held optical scanners 800a and 800b, respectively, taken at a location indicated by line 8-8 in FIG. 1A. In FIGS. 8A and 8B, the scanners 800 are shown at an incline to the document 214 to illustrate one possible orientation during use. Use of the scanners 800, however, is not limited to this particular orientation. Indeed, the scanners 800 can be used in many other orientations including, for example, an orientation that is more perpendicular to the page 214.


As shown in FIG. 8A, the scanner 800a includes a scan window 810a having an inner surface 811a and an outer surface 813a. In this particular embodiment, the outer surface 813a is at least approximately cylindrical, and the inner surface 811a moves gradually inward and away from a constant-thickness reference line 814a toward a mid-portion of the scan window 810a. This shape results in a cross-sectional thickness Ta that increases toward the mid-portion of the scan window 810a. One effect of varying the scan window thickness as illustrated in FIG. 8A can be to magnify the scan image focused on the image sensor 222 (not shown in FIG. 8A) in a height direction H. Such magnification or enlargement may be desirable to improve character recognition and/or resolution parameters.


In one embodiment, the cross-section of the scan window 810a illustrated in FIG. 8A can be constant over the entire length of the scan window in the W direction (see FIG. 7A). In other embodiments, the cross-section of the scan window 810a can vary over its length in the W direction. For example, in one embodiment, the cross-section of the scan window 810a can vary over its length in the W direction in the manner illustrated by the scan window 710a of FIG. 7A.


In contrast to the scan window 810a of FIG. 8A, the scan window 810b of FIG. 8B has an inner surface 811b that moves outwardly and away from a constant-thickness reference line 814b toward a mid-portion of the scan window. This increases the concavity of the inner surface 811b relative to an outer surface 813b, and results in a cross-sectional thickness Tb that decreases toward the mid-portion of the scan window 810b. One effect of varying the cross-sectional thickness of the scan window 810b as shown in FIG. 8B can be to reduce the size of the scan image in the H direction. Such reduction may be advantageous if increasing the field of view in the H direction is desired.


In one embodiment, the scan window cross-section illustrated in FIG. 8B can remain constant over the entire length of the scan window and the W direction. In another embodiment, the cross-section of the scan window 810b can vary over its length in the manner illustrated by the scan window 710b of FIG. 7B.


Although various scan window shapes and surface contours have been discussed above with reference to FIGS. 7A-8B, other embodiments can include scan windows having other shapes and/or other surface contours. For example, other scan windows configured in accordance with the present disclosure can include combinations of the cross-sectional variations discussed above with reference to FIGS. 7A-8B. In yet other embodiments, the different thickness variations discussed above can be achieved by contouring the outer surface of the scan window, as opposed to the inner surface. In still further embodiments, the cross-sectional thickness of the scan window can be varied by contouring both the inner and outer surfaces to achieve favorable image magnification or reduction characteristics. Furthermore, the various scanner configurations disclosed herein are not limited to cylindrical, or generally cylindrical, scan windows, but instead can include other scan windows including, for example, flat windows, round windows, conical windows, parabolic windows, etc. Accordingly, those of ordinary skill in the art will appreciate that the various scanner features disclosed herein are not limited to use with the particular scan window configurations discussed above.



FIG. 9 is an isometric view of a hand-held optical scanner 900. Many features of the scanner 900 can be at least generally similar in structure and function to corresponding features of the scanners described above with reference to FIGS. 1A-8B. For example, the scanner 900 includes a first image sensor 922 positioned toward one end of a body 902 that is at least generally similar in structure and function to the image sensor 222 described above with reference to FIG. 2. In this regard, the scanner 900 also includes a scan window 910 that is at least generally similar in structure and function to one or more of the scan windows 110, 710 or 810 described above.


In one aspect of this particular embodiment, however, the scanner 900 further includes a second image sensor 924 positioned toward one side of the body 902. The body 902 includes an aperture 926 through which the second image sensor 924 can scan images. In one embodiment, the aperture 926 can be covered by a transparent or translucent window or a lens. In another embodiment, the aperture 924 can remain open and the image sensor 924 can be inset slightly from the aperture. In still further embodiments, the second image sensor 924 can be positioned at least generally flush with the side surface of the body 902 so that the second image sensor 924 is in contact (or near contact) with the surface of the document or other object it is scanning.


In one embodiment, the first image sensor 922 can be a two-dimensional (2D) image sensor for scanning text or other images in the manner described above with reference to FIGS. 1A-1D, and the second image sensor 924 can be a one-dimensional (1D) image sensor having a length L for scanning or copying broader portions of text or other images in a relatively fast manner. As used herein, the term 1D image sensor is used to refer to an image sensor having a generally linear array of sensing elements (e.g., pixels), although it will be understood by those of skill in the art that such a sensor will likely include a plurality of sensing elements (e.g., two or three rows of sensing elements) in the height direction H.



FIG. 10 is a partially cut away, cross-sectional top view of the hand-held optical scanner 900 of FIG. 9. In this embodiment, the second image sensor 924 is inset slightly from the body aperture 926. In addition, an optical system 1024 comprising one or more of lenses can be positioned in front of the second image sensor 924 to focus the scanned image on the sensor. In other embodiments, a contact image sensor (CIS) may be used to focus the image of the illuminated scan region onto the surface of the image sensor 924. Although not shown in detail in FIG. 10, the scanner 900 can include an arrangement of one or more light sources 1020 to illuminate the scan region. Like the scanner 100 described above with reference to FIG. 2, the second image sensor 924 is operably connected to suitable scanner circuitry 1030 for processing the data signals from the image sensor 924 before transmission to the scanner CPU (not shown).


Although the second image sensor 924 is offset from the aperture 926 in the embodiment of FIG. 10, as discussed above with reference to FIG. 9, in other embodiments, the second image sensor 924 can be positioned closer to the aperture 926 so that it is in contact, or near-contact, with the surface of the document or other object being scanned.


The second image sensor 924 can be used to capture relatively large areas of text, images, or other markings in a single scanner pass. For example, this sensor can be employed when the user desires to scan a particular paragraph or larger section of text and identify the corresponding document (or version of the document) and/or the particular page. In contrast, the user may elect to use the first image sensor 922 when the user wishes to capture all or a portion of a particular sentence or other relatively small marking.



FIGS. 11A-11C are isometric, end, and cross-sectional side views, respectively, of a hand-held optical scanner 1100. Referring first to FIG. 11A, the scanner 1100 includes a scan window 1110 positioned toward an end portion of a body 1102. Many features of the scanner 1100 can be at least generally similar in structure and function to corresponding features of the various hand-held optical scanners described above with reference to FIGS. 1A-10.



FIG. 11C is a cross-sectional side view taken substantially along line C-C in FIG. 11B. In the illustrated configuration, the scan window 1110 can include a curved lens (e.g., a curved clear lens) that is inset slightly from the end of the scanner body 1102. In other configurations, however, the scan window can include other suitably transparent or translucent materials in other positions relative to the scanner body 1102. In one aspect of this particular configuration, the scanner 1100 includes a light turning or folding element 1125 (e.g., a light folding prism) which directs the image light from an optical system 1124 onto an image sensor 1122. The optical system 1124 can include an array of one or more lenses to suitably focus the image light onto the light folding element 1125. In another aspect of this configuration, the image sensor 1122 is oriented at an angle (e.g., a right angle or at least approximately 90 degrees) relative to the image light. The image sensor 1122 can be operatively connected to image circuitry 1130 for amplification, A/D conversion, and/or other processing of the signals from the image sensor 1122. In this regard, the scanner circuitry 1130 can include a printed circuit board assembly and/or other electrical/processing systems.



FIG. 12 is a cross-sectional top view of a scanner 1200 which is at least generally similar in structure and function to the scanner 200 described above with reference to FIG. 2. For example, the scanner 1200 includes a transparent or translucent scan window 1210 positioned toward one end of a scanner body 1202. A plurality of light sources 1220 (identified individually as a first light source 1220a and a second light source 1220b) illuminate a region in front of the scan window 1210 during operation of the scanner 1200. An optical system 1224 (shown schematically) directs image light from the illuminated scan region to an image sensor 1222. The scan window 1210, the optical system 1224, the image sensor 1222 and associated scanner circuitry 1230 can be at least generally similar in structure and function to corresponding features of the scanner 200 described above.


The scanner configuration illustrated in FIG. 12 differs from that shown in FIG. 2 in that there is little or no space between the optical system 1224 and the scan window 1210. For example, in one configuration, the optical system 1224 can contact, or be in near contact with, the scan window 1210 as illustrated in FIG. 12. In this configuration, the optical system 1224 (or image sensor 1222) can be positioned from about 0.0 inch to about 0.1 inch away from the inner surface of the scan window 1210. In another configuration, the optical system 1224 (and/or image sensor 1222) can be positioned from about 0.0 inch to about 0.25 inch away from the inner surface of the scan window 1210. In other configurations, the optical system 1224 (and/or the image sensor 1222 and associated scanner circuitry 1230) can be inset from the scan window 1210, but not as far inset as the optical system 224 illustrated in FIG. 2.


When the optical system 1224 and the image sensor 1222 move closer to the scan window 1210 as shown in FIG. 12, the light sources 1220 can be suitably located in various positions to provide ample illumination of the scan region. For example, in one configuration the light sources 1220 can be positioned relatively close the scan window 1220 as illustrated in FIG. 12. In other configurations, the light sources 1210 (or a single light source 1220) can be positioned in more inboard, or in more remote, locations than illustrated in FIG. 12.



FIGS. 13A and 13B are schematic diagrams of successive scan images of a letter “B” captured by the image sensor 222 as the associated scanner (not shown) moves across a document (also not shown) in direction F. In this example, the cross-hatched regions 1302a and 1302b represent portions of the scan image that are obscured or otherwise adversely affected by glare from specular reflection. In the position of FIG. 13A, the scanner circuitry records a first portion 1 and a second portion 2 of the first scan image. Shortly thereafter, the scanner moves to the position of FIG. 13B and the scanner circuitry records a third portion 3 and a fourth portion 4 of the second scan image. As will be noted, the recorded portions of the scan images omit the regions 1302 which are adversely affected by specular reflection. Once the scanner circuitry has recorded the scan image portions 1-4 in the foregoing manner, the portions can be assembled or “stitched” together to form a complete and unobscured scanned image of the letter “B,” as described in more detail below with reference to FIG. 14.



FIG. 14 is a schematic diagram of a composite image that the scanner circuitry has assembled from the scan image portions 1-4 discussed above. The first portion 1 and the second portion 2 of the image shown in FIG. 14 were recorded from the scan image of FIG. 13A. The third portion 3 and the fourth portion 4 of the image shown in FIG. 14 were recorded from the scan image of FIG. 13B. The foregoing process illustrates one method for recording a complete scan image using portions of captured images that may include regions obscured from glare.



FIG. 15 is a cross-sectional top view of a scanner 1500 which is at least generally similar in structure and function to the scanner 200 described above with reference to FIG. 2. In this regard, the scanner 1500 includes a plurality of light sources 1520 (identified individually as a first light source 1520a and a second light source 1520b) which illuminate a region in front of a transparent or translucent scan window 1510 during operation of the scanner 1500. An optical system 1524 (shown schematically) directs image light from the illuminated scan region to an image sensor 1522.


In the illustrated configuration, the scan window 1510 has a thickness t which is relatively thick. For example, the thickness t can range from about 0.10 inch to about 1.5 inch. In another configuration, the thickness t can range from about 0.25 inch to about 1.25 inch; or from about 0.5 inch to about 1.0 inch. In a further configuration, the thickness t can range from about 0.75 inch to about 1.0 inch. In other configurations, the scan window 1510 can have other thicknesses depending on various factors such as optical quality, manufacturability, etc. In one aspect of this configuration, there is little or no space between the optical system 1524 and the inner surface of the scan window 1510. For example, in one configuration, the optical system 1524 can contact, or be in near contact with, the scan window 1510 as illustrated in FIG. 15.


From the foregoing, it will be appreciated that various embodiments of hand-held optical scanners and related features have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the present disclosure. Accordingly, the invention is not limited, except as by the appended claims.

Claims
  • 1. A hand-held optical scanner, comprising: a scan window;a first light source and a second light source that are positioned within the hand-held optical scanner, wherein the first light source and the second light source emit light for passing through the scan window to illuminate an adjacent scan region;a controller operatively connected to the first light source and the second light source, wherein the controller is configured to cause the first light source and the second light source to cycle on and off in sequence such that no more than one of the first light source and the second light source is on at any time;an image sensor that captures light that passes from the adjacent scan region into the hand-held optical scanner through the scan window and provides an electrical signal based on the captured light; andscanner circuitry that is operatively connected to the image sensor, wherein the scanner circuitry is configured to selectively record a first portion of light captured by a first region of the image sensor when the first light source is on and the second light source is off and record a second portion of light captured by a second region of the image sensor when the second light source is on and the first light source is off.
  • 2. The hand-held optical scanner of claim 1, further comprising: a light shield that is configured to block at least a portion of the emitted light from reaching the scan window.
  • 3. The hand-held optical scanner of claim 1 wherein the first light source and the second light source each include a diffuse light source.
  • 4. The hand-held optical scanner of claim 1, further comprising: a first light polarizing filter through which at least a portion of the emitted light passes; anda second light polarizing filter through which at least a portion of the emitted light that is reflecting off the scan window passes, the first and second polarizing filters being rotationally aligned in a way that produces a cross-polarization effect.
  • 5. The hand-held optical scanner of claim 1 wherein the scan window has an inner surface spaced apart from an outer surface to define a cross-sectional thickness of the scan window, and wherein the cross-sectional thickness of the scan window varies in a first direction.
  • 6. The hand-held optical scanner of claim 1 wherein the scan window has an inner surface spaced apart from an outer surface to define a cross-sectional thickness of the scan window, and wherein the cross-sectional thickness of the scan window varies in a first direction and a second direction.
  • 7. The hand-held optical scanner of claim 1 wherein the scan window is configured to magnify at least a portion of a scan image that is focused on the image sensor.
  • 8. The hand-held optical scanner of claim 1 wherein the scan window is configured to reduce the size of at least a portion of a scan image that is focused on the image sensor.
  • 9. The hand-held optical scanner of claim 1 wherein the scan window has a thickness of from about 0.50 inch to about 1.0 inch.
  • 10. The hand-held optical scanner of claim 1, further comprising a single light polarizing filter through which at least a portion of the emitted light that is reflecting off the scan window passes.
  • 11. The hand-held optical scanner of claim 1 wherein the scanner circuitry is further configured to combine the first portion of light and the second portion of light to form an image.
  • 12. The hand-held optical scanner of claim 1 wherein the scanning window comprises a translucent material.
  • 13. The hand-held optical scanner of claim 1 wherein the scanning window comprises a transparent material.
  • 14. A hand-held optical scanner having a roughly rectangular body, the hand-held optical scanner comprising: a scan window in a first side of the body, the scan window occupying at least 75% of the larger of a first dimension and a second dimension of the first side of the body;an aperture in a second side of the body, the aperture occupying at least 75% of the larger of a first dimension and a second dimension of the second side of the body;one or more light sources that are positioned within the hand-held optical scanner, wherein the one or more light sources emit light to illuminate an adjacent scan region;a first image sensor configured to receive light that passes from the adjacent scan region into the hand-held optical scanner through the scan window;a second image sensor configured to receive light that passes from the adjacent scan region into the hand-held optical scanner through the aperture; anda reflection-reducing component that reduces an amount of the emitted light that reflects off of the scan window so that the first image sensor receives less of the emitted light that reflects off of the scan window;wherein the second side of the body is approximately perpendicular to the first side of the body and the larger of the first and second dimensions of the second side of the body is at least twice as large as the larger of the first and second dimensions of the first side of the body.
  • 15. A hand-held optical scanner, comprising: a first scan window in a first side of the hand-held optical scanner;a second scan window in a second side of the hand-held optical scanner;one or more light sources that are positioned within the hand-held optical scanner, wherein the one or more light sources emit light to illuminate an adjacent scan region;a first image sensor configured to receive light that passes from the adjacent scan region into the hand-held optical scanner through the first scan window; anda second image sensor configured to receive light that passes from the adjacent scan region into the hand-held optical scanner through the second scan window,wherein each of the first side and the second side have a first dimension and a second dimension, and the larger of the first and second dimensions of the second side is at least twice as large as the larger of the first and second dimensions of the first side.
  • 16. The hand-held optical scanner of claim 15, further comprising a reflection-reducing component configured to reduce an amount of the emitted light that reflects off of the first scan window so that the first image sensor receives less of the emitted light that reflects off of the first scan window.
  • 17. The hand-held optical scanner of claim 16, further comprising a second reflection-reducing component configured to reduce an amount of the emitted light that reflects off of the second scan window so that the second image sensor receives less of the emitted light that reflects off of the second scan window.
  • 18. The hand-held optical scanner of claim 15, wherein the first image sensor comprises a two-dimensional image sensor having a two-dimensional array of sensing elements, andwherein the second image sensor comprises a one-dimensional image sensor having a linear array of sensing elements.
CROSS-REFERENCE TO RELATED APPLICATIONS INCORPORATED BY REFERENCE

The present application is a Continuation of U.S. application Ser. No. 12/517,352 filed Jun. 2, 2009, now abandoned which application is a National Stage Entry of PCT/EP2007/007824, filed Sep. 7, 2007 and claims priority to the following U.S. Provisional Patent Applications, each of which is hereby incorporated by reference in its entirety: U.S. Provisional Patent Application No. 60/843,362, filed on Sep. 8, 2006, entitled OPTICAL SCANNERS, SUCH AS HAND-HELD OPTICAL SCANNERS, U.S. Provisional Patent Application No. 60/844,894, filed on Sep. 15, 2006, entitled OPTICAL SCANNERS, SUCH AS HAND-HELD OPTICAL SCANNERS, and U.S. Provisional Patent Application No. 60/845,604, filed on Sep. 18, 2006, entitled OPTICAL SCANNERS, SUCH AS HAND-HELD OPTICAL SCANNERS. This application is also related to the following U.S. Patent Applications, each of which is hereby incorporated by reference in its entirety: U.S. patent application Ser. No. 11/004,637 filed on Dec. 3, 2004, U.S. patent application Ser. No. 11/097,103, filed on Apr. 1, 2005, entitled TRIGGERING ACTIONS IN RESPONSE TO OPTICALLY OR ACOUSTICALLY CAPTURING KEYWORDS FROM A RENDERED DOCUMENT, U.S. patent application Ser. No. 11/097,961, filed Apr. 1, 2005, entitled METHODS AND SYSTEMS FOR INITIATING APPLICATION PROCESSES BY DATA CAPTURE FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,093, filed Apr. 1, 2005, entitled DETERMINING ACTIONS INVOLVING CAPTURED INFORMATION AND ELECTRONIC CONTENT ASSOCIATED WITH RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/098,038, filed Apr. 1, 2005, entitled CONTENT ACCESS WITH HANDHELD DOCUMENT DATA CAPTURE DEVICES, U.S. patent application Ser. No. 11/098,014, filed Apr. 1, 2005, entitled SEARCH ENGINES AND SYSTEMS WITH HANDHELD DOCUMENT DATA CAPTURE DEVICES, U.S. patent application Ser. No. 11/098,043, filed Apr. 1, 2005, entitled SEARCHING AND ACCESSING DOCUMENTS ON PRIVATE NETWORKS FOR USE WITH CAPTURES FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,981, filed Apr. 1, 2005, entitled INFORMATION GATHERING SYSTEM AND METHOD, U.S. patent application Ser. No. 11/097,089, filed Apr. 1, 2005, entitled DOCUMENT ENHANCEMENT SYSTEM AND METHOD, U.S. patent application Ser. No. 11/097,835, filed Apr. 1, 2005, entitled PUBLISHING TECHNIQUES FOR ADDING VALUE TO A RENDERED DOCUMENT, U.S. patent application Ser. No. 11/098,016, filed Apr. 1, 2005, entitled ARCHIVE OF TEXT CAPTURES FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,828, filed Apr. 1, 2005, entitled ADDING INFORMATION OR FUNCTIONALITY TO A RENDERED DOCUMENT VIA ASSOCIATION WITH AN ELECTRONIC COUNTERPART, U.S. patent application Ser. No. 11/097,833, filed Apr. 1, 2005, entitled AGGREGATE ANALYSIS OF TEXT CAPTURES PERFORMED BY MULTIPLE USERS FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/097,836, filed Apr. 1, 2005, entitled ESTABLISHING AN INTERACTIVE ENVIRONMENT FOR RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/098,042, filed Apr. 1, 2005, entitled DATA CAPTURE FROM RENDERED DOCUMENTS USING HANDHELD DEVICE, U.S. patent application Ser. No. 11/096,704, filed Apr. 1, 2005, entitled CAPTURING TEXT FROM RENDERED DOCUMENTS USING SUPPLEMENTAL INFORMATION, U.S. patent application Ser. No. 11/110,353, filed Apr. 19, 2005, entitled PROCESSING TECHNIQUES FOR VISUAL CAPTURE DATA FROM A RENDERED DOCUMENT, U.S. patent application Ser. No. 11/131,945, filed May 17, 2005, entitled PROCESSING TECHNIQUES FOR TEXT CAPTURE FROM A RENDERED DOCUMENT, U.S. patent application Ser. No. 11/185,908, filed Jul. 19, 2005, entitled AUTOMATIC MODIFICATION OF WEB PAGES, U.S. patent application Ser. No. 11/208,408, filed Aug. 18, 2005, entitled SCANNER HAVING CONNECTED AND UNCONNECTED OPERATIONAL BEHAVIORS, U.S. patent application Ser. No. 11/208,457, filed Aug. 18, 2005, entitled LOCATING ELECTRONIC INSTANCES OF DOCUMENTS BASED ON RENDERED INSTANCES, DOCUMENT FRAGMENT DIGEST GENERATION, AND DIGEST BASED DOCUMENT FRAGMENT DETERMINATION, U.S. patent application Ser. No. 11/208,458, filed Aug. 18, 2005, entitled METHODS, SYSTEMS AND COMPUTER PROGRAM PRODUCTS FOR DATA GATHERING IN A DIGITAL AND HARD COPY DOCUMENT ENVIRONMENT, U.S. patent application Ser. No. 11/208,461, filed Aug. 18, 2005, entitled APPLYING SCANNED INFORMATION TO IDENTIFY CONTENT, U.S. patent application Ser. No. 11/209,333, filed Aug. 23, 2005, entitled A PORTABLE SCANNING DEVICE, U.S. patent application Ser. No. 11/210,260, filed Aug. 23, 2005, entitled A METHOD AND SYSTEM FOR CHARACTER RECOGNITION, U.S. patent application Ser. No. 11/236,440, filed Sep. 27, 2005, entitled SECURE DATA GATHERING FROM RENDERED DOCUMENTS, U.S. patent application Ser. No. 11/236,330, filed Sep. 27, 2005, entitled HANDHELD DEVICE FOR CAPTURING TEXT FROM BOTH A DOCUMENT PRINTED ON PAPER AND A DOCUMENT DISPLAYED ON A DYNAMIC DISPLAY DEVICE, U.S. patent application Ser. No. 11/365,983, filed Feb. 28, 2006, entitled ASSOCIATION OF A PORTABLE SCANNER WITH INPUT/OUTPUT AND STORAGE DEVICES, U.S. patent application Ser. No. 11/432,731, filed May 11, 2006, entitled A PORTABLE SCANNING AND MEMORY DEVICE, International Patent Application No. PCT/US05/11533, filed Apr. 1, 2005, entitled A SYSTEM AND METHOD FOR CHARACTER RECOGNITION, International Patent Application No. PCT/US05/13586, filed Apr. 6, 2005, entitled SCANNING APPARATUS AND RELATED TECHNIQUES, International Patent Application No. PCT/US05/12510, filed Apr. 12, 2005, entitled ADDING VALUE TO A RENDERED DOCUMENT. This application is further related to the following U.S. Provisional Patent Applications, each of which is hereby incorporated by reference in its entirety: Application No. 60/559,226 filed on Apr. 1, 2004, Application No. 60/558,893 filed on Apr. 1, 2004, Application No. 60/558,968 filed on Apr. 1, 2004, Application No. 60/558,867 filed on Apr. 1, 2004, Application No. 60/559,278 filed on Apr. 1, 2004, Application No. 60/559,279 filed on Apr. 1, 2004, Application No. 60/559,265 filed on Apr. 1, 2004, Application No. 60/559,277 filed on Apr. 1, 2004, Application No. 60/558,969 filed on Apr. 1, 2004, Application No. 60/558,892 filed on Apr. 1, 2004, Application No. 60/558,760 filed on Apr. 1, 2004, Application No. 60/558,717 filed on Apr. 1, 2004, Application No. 60/558,499 filed on Apr. 1, 2004, Application No. 60/558,370 filed on Apr. 1, 2004, Application No. 60/558,789 filed on Apr. 1, 2004, Application No. 60/558,791 filed on Apr. 1, 2004, Application No. 60/558,527 filed on Apr. 1, 2004, Application No. 60/559,125 filed on Apr. 2, 2004, Application No. 60/558,909 filed on Apr. 2, 2004, Application No. 60/559,033 filed on Apr. 2, 2004, Application No. 60/559,127 filed on Apr. 2, 2004, Application No. 60/559,087 filed on Apr. 2, 2004, Application No. 60/559,131 filed on Apr. 2, 2004, Application No. 60/559,766 filed on Apr. 6, 2004, Application No. 60/561,768 filed on Apr. 12, 2004, Application No. 60/563,520 filed on Apr. 19, 2004, Application No. 60/563,485 filed on Apr. 19, 2004, Application No. 60/564,688 filed on Apr. 23, 2004, Application No. 60/564,846 filed on Apr. 23, 2004, Application No. 60/566,667, filed on Apr. 30, 2004, Application No. 60/571,381 filed on May 14, 2004, Application No. 60/571,560 filed on May 14, 2004, Application No. 60/571,715 filed on May 17, 2004, Application No. 60/589,203 filed on Jul. 19, 2004, Application No. 60/589,201 filed on Jul. 19, 2004, Application No. 60/589,202 filed on Jul. 19, 2004, Application No. 60/598,821 filed on Aug. 2, 2004, Application No. 60/602,956 filed on Aug. 18, 2004, Application No. 60/602,925 filed on Aug. 18, 2004, Application No. 60/602,947 filed on Aug. 18, 2004, Application No. 60/602,897 filed on Aug. 18, 2004, Application No. 60/602,896 filed on Aug. 18, 2004, Application No. 60/602,930 filed on Aug. 18, 2004, Application No. 60/602,898 filed on Aug. 18, 2004, Application No. 60/603,466 filed on Aug. 19, 2004, Application No. 60/603,082 filed on Aug. 19, 2004, Application No. 60/603,081 filed on Aug. 19, 2004, Application No. 60/603,498 filed on Aug. 20, 2004, Application No. 60/603,358 filed on Aug. 20, 2004, Application No. 60/604,103 filed on Aug. 23, 2004, Application No. 60/604,098 filed on Aug. 23, 2004, Application No. 60/604,100 filed on Aug. 23, 2004, Application No. 60/604,102 filed on Aug. 23, 2004, Application No. 60/605,229 filed on Aug. 27, 2004, Application No. 60/605,105 filed on Aug. 27, 2004, Application No. 60/613,243 filed on Sep. 27, 2004, Application No. 60/613,628 filed on Sep. 27, 2004, Application No. 60/613,632 filed on Sep. 27, 2004, Application No. 60/613,589 filed on Sep. 27, 2004, Application No. 60/613,242 filed on Sep. 27, 2004, Application No. 60/613,602 filed on Sep. 27, 2004, Application No. 60/613,340 filed on Sep. 27, 2004, Application No. 60/613,634 filed on Sep. 27, 2004, Application No. 60/613,461 filed on Sep. 27, 2004, Application No. 60/613,455 filed on Sep. 27, 2004, Application No. 60/613,460 filed on Sep. 27, 2004, Application No. 60/613,400 filed on Sep. 27, 2004, Application No. 60/613,456 filed on Sep. 27, 2004, Application No. 60/613,341 filed on Sep. 27, 2004, Application No. 60/613,361 filed on Sep. 27, 2004, Application No. 60/613,454 filed on Sep. 27, 2004, Application No. 60/613,339 filed on Sep. 27, 2004, Application No. 60/613,633 filed on Sep. 27, 2004, Application No. 60/615,378 filed on Oct. 1, 2004, Application No. 60/615,112 filed on Oct. 1, 2004, Application No. 60/615,538 filed on Oct. 1, 2004, Application No. 60/617,122 filed on Oct. 7, 2004, Application No. 60/622,906 filed on Oct. 28, 2004, Application No. 60/633,452 filed on Dec. 6, 2004, Application No. 60/633,678 filed on Dec. 6, 2004, Application No. 60/633,486 filed on Dec. 6, 2004, Application No. 60/633,453 filed on Dec. 6, 2004, Application No. 60/634,627 filed on Dec. 9, 2004, Application No. 60/634,739 filed on Dec. 9, 2004, Application No. 60/647,684 filed on Jan. 26, 2005, Application No. 60/648,746 filed on Jan. 31, 2005, Application No. 60/653,372 filed on Feb. 15, 2005, Application No. 60/653,663 filed on Feb. 16, 2005, Application No. 60/653,669 filed on Feb. 16, 2005, Application No. 60/653,899 filed on Feb. 16, 2005, Application No. 60/653,679 filed on Feb. 16, 2005, Application No. 60/653,847 filed on Feb. 16, 2005, Application No. 60/654,379 filed on Feb. 17, 2005, Application No. 60/654,368 filed on Feb. 18, 2005, Application No. 60/654,326 filed on Feb. 18, 2005, Application No. 60/654,196 filed on Feb. 18, 2005, Application No. 60/655,279 filed on Feb. 22, 2005, Application No. 60/655,280 filed on Feb. 22, 2005, Application No. 60/655,987 filed on Feb. 22, 2005, Application No. 60/655,697 filed on Feb. 22, 2005, Application No. 60/655,281 filed on Feb. 22, 2005, and Application No. 60/657,309 filed on Feb. 28, 2005; Application No. 60/811,623, filed Jun. 6, 2006 and 60/833,131, filed Jul. 24, 2006.

US Referenced Citations (1058)
Number Name Date Kind
3899687 Jones Aug 1975 A
3917317 Ryan Nov 1975 A
4052058 Hintz Oct 1977 A
4065778 Harvey Dec 1977 A
4135791 Govignon Jan 1979 A
4358824 Glickman et al. Nov 1982 A
4526078 Chadabe Jul 1985 A
4538072 Immler et al. Aug 1985 A
4553261 Froessl Nov 1985 A
4610025 Blum et al. Sep 1986 A
4633507 Cannistra et al. Dec 1986 A
4636848 Yamamoto Jan 1987 A
4713008 Stocker et al. Dec 1987 A
4716804 Chadabe Jan 1988 A
4748678 Takeda et al. May 1988 A
4776464 Miller et al. Oct 1988 A
4804949 Faulkerson Feb 1989 A
4805099 Huber Feb 1989 A
4829453 Katsuta et al. May 1989 A
4829872 Topic et al. May 1989 A
4890230 Tanoshima et al. Dec 1989 A
D306162 Faulkerson et al. Feb 1990 S
4901364 Faulkerson et al. Feb 1990 A
4903229 Schmidt et al. Feb 1990 A
4914709 Rudak Apr 1990 A
4941125 Boyne Jul 1990 A
4947261 Ishikawa et al. Aug 1990 A
4949391 Faulkerson et al. Aug 1990 A
4955693 Bobba Sep 1990 A
4958379 Yamaguchi et al. Sep 1990 A
4968877 McAvinney et al. Nov 1990 A
4985863 Fujisawa et al. Jan 1991 A
4988981 Zimmerman et al. Jan 1991 A
5010500 Makkuni et al. Apr 1991 A
5012349 de Fay et al. Apr 1991 A
5062143 Schmitt Oct 1991 A
5083218 Takasu et al. Jan 1992 A
5093873 Takahashi Mar 1992 A
5107256 Ueno et al. Apr 1992 A
5109439 Froessl Apr 1992 A
5119081 Ikehira Jun 1992 A
5133024 Froessl et al. Jul 1992 A
5133052 Bier et al. Jul 1992 A
5136687 Edelman et al. Aug 1992 A
5142161 Brackmann Aug 1992 A
5146404 Calloway et al. Sep 1992 A
5146552 Cassorla et al. Sep 1992 A
5157384 Greanias et al. Oct 1992 A
5159668 Kaasila Oct 1992 A
5168147 Bloomberg Dec 1992 A
5168565 Morita Dec 1992 A
5179652 Rozmanith et al. Jan 1993 A
5185857 Rozmanith et al. Feb 1993 A
5201010 Deaton et al. Apr 1993 A
5202985 Goyal Apr 1993 A
5203704 McCloud Apr 1993 A
5212739 Johnson May 1993 A
5229590 Harden et al. Jul 1993 A
5231698 Forcier Jul 1993 A
5243149 Comerford et al. Sep 1993 A
5247285 Yokota et al. Sep 1993 A
5251106 Hui Oct 1993 A
5251316 Anick et al. Oct 1993 A
5252951 Tannenbaum et al. Oct 1993 A
RE34476 Norwood Dec 1993 E
5272324 Blevins Dec 1993 A
5288938 Wheaton Feb 1994 A
5301243 Olschafskie et al. Apr 1994 A
5347295 Agulnick et al. Sep 1994 A
5347306 Nitta Sep 1994 A
5347477 Lee Sep 1994 A
5355146 Chiu et al. Oct 1994 A
5360971 Kaufman et al. Nov 1994 A
5367453 Capps et al. Nov 1994 A
5371348 Kumar et al. Dec 1994 A
5377706 Huang Jan 1995 A
5398310 Tchao et al. Mar 1995 A
5404442 Foster et al. Apr 1995 A
5404458 Zetts Apr 1995 A
5418684 Koenck et al. May 1995 A
5418717 Su et al. May 1995 A
5418951 Damashek May 1995 A
5423554 Davis Jun 1995 A
5430558 Sohaei et al. Jul 1995 A
5438630 Chen et al. Aug 1995 A
5444779 Daniele Aug 1995 A
5452442 Kephart Sep 1995 A
5454043 Freeman Sep 1995 A
5462473 Sheller Oct 1995 A
5465325 Capps et al. Nov 1995 A
5465353 Hull et al. Nov 1995 A
5467425 Lau et al. Nov 1995 A
5481278 Shigematsu et al. Jan 1996 A
5485565 Saund et al. Jan 1996 A
5488196 Zimmerman et al. Jan 1996 A
5499108 Cotte et al. Mar 1996 A
5500920 Kupiec Mar 1996 A
5500937 Thompson-Rohrlich Mar 1996 A
5502803 Yoshida et al. Mar 1996 A
5512707 Ohshima Apr 1996 A
5517331 Murai et al. May 1996 A
5517578 Altman et al. May 1996 A
5522798 Johnson et al. Jun 1996 A
5532469 Shepard et al. Jul 1996 A
5533141 Futatsugi et al. Jul 1996 A
5539427 Bricklin et al. Jul 1996 A
5541419 Arackellian Jul 1996 A
5543591 Gillespie et al. Aug 1996 A
5550930 Berman et al. Aug 1996 A
5555363 Tou et al. Sep 1996 A
5563996 Tchao Oct 1996 A
5568452 Kronenberg Oct 1996 A
5570113 Zetts Oct 1996 A
5574804 Olschafskie et al. Nov 1996 A
5581276 Cipolla et al. Dec 1996 A
5581670 Bier et al. Dec 1996 A
5581681 Tchao et al. Dec 1996 A
5583542 Capps et al. Dec 1996 A
5583543 Takahashi et al. Dec 1996 A
5583980 Anderson Dec 1996 A
5590219 Gourdol Dec 1996 A
5590256 Tchao et al. Dec 1996 A
5592566 Pagallo et al. Jan 1997 A
5594469 Freeman et al. Jan 1997 A
5594640 Capps et al. Jan 1997 A
5594810 Gourdol Jan 1997 A
5595445 Bobry Jan 1997 A
5596697 Foster et al. Jan 1997 A
5600765 Ando et al. Feb 1997 A
5602376 Coleman et al. Feb 1997 A
5602570 Capps et al. Feb 1997 A
5608778 Partridge, III Mar 1997 A
5612719 Beernink et al. Mar 1997 A
5624265 Redford et al. Apr 1997 A
5625711 Nicholson et al. Apr 1997 A
5625833 Levine et al. Apr 1997 A
5627960 Clifford et al. May 1997 A
5638092 Eng et al. Jun 1997 A
5649060 Ellozy et al. Jul 1997 A
5652849 Conway et al. Jul 1997 A
5656804 Barkan et al. Aug 1997 A
5659638 Bengtson Aug 1997 A
5663514 Usa Sep 1997 A
5663808 Park Sep 1997 A
5668573 Favot et al. Sep 1997 A
5677710 Thompson-Rohrlich Oct 1997 A
5680607 Brueckheimer Oct 1997 A
5682439 Beernink et al. Oct 1997 A
5684873 Tiilikainen Nov 1997 A
5684891 Tanaka et al. Nov 1997 A
5687254 Poon et al. Nov 1997 A
5692073 Cass Nov 1997 A
5699441 Sagawa et al. Dec 1997 A
5701424 Atkinson Dec 1997 A
5701497 Yamauchi et al. Dec 1997 A
5708825 Sotomayor Jan 1998 A
5710831 Beernink et al. Jan 1998 A
5713045 Berdahl Jan 1998 A
5714698 Tokioka et al. Feb 1998 A
5717846 Iida et al. Feb 1998 A
5724521 Dedrick Mar 1998 A
5724985 Snell et al. Mar 1998 A
5732214 Subrahmanyam Mar 1998 A
5732227 Kuzunuki et al. Mar 1998 A
5734923 Sagawa et al. Mar 1998 A
5737507 Smith Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5748805 Withgott et al. May 1998 A
5748926 Fukuda et al. May 1998 A
5752051 Cohen May 1998 A
5754308 Lopresti et al. May 1998 A
5754939 Herz et al. May 1998 A
5756981 Roustaei et al. May 1998 A
5764794 Perlin Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5768418 Berman et al. Jun 1998 A
5768607 Drews et al. Jun 1998 A
5774357 Hoffberg et al. Jun 1998 A
5774591 Black et al. Jun 1998 A
5777614 Ando et al. Jul 1998 A
5781662 Mori et al. Jul 1998 A
5781723 Yee et al. Jul 1998 A
5784061 Moran et al. Jul 1998 A
5784504 Anderson et al. Jul 1998 A
5796866 Sakurai et al. Aug 1998 A
5798693 Engellenner Aug 1998 A
5798758 Harada et al. Aug 1998 A
5799219 Moghadam et al. Aug 1998 A
5805167 Van Cruyningen Sep 1998 A
5809172 Melen Sep 1998 A
5809267 Moran et al. Sep 1998 A
5809476 Ryan Sep 1998 A
5815577 Clark Sep 1998 A
5818612 Segawa et al. Oct 1998 A
5818965 Davies Oct 1998 A
5821925 Carey et al. Oct 1998 A
5822539 van Hoff Oct 1998 A
5825943 DeVito et al. Oct 1998 A
5832474 Lopresti et al. Nov 1998 A
5832528 Kwatinetz et al. Nov 1998 A
5837987 Koenck et al. Nov 1998 A
5838326 Card et al. Nov 1998 A
5838889 Booker Nov 1998 A
5845301 Rivette et al. Dec 1998 A
5848187 Bricklin et al. Dec 1998 A
5852676 Lazar Dec 1998 A
5861886 Moran et al. Jan 1999 A
5862256 Zetts et al. Jan 1999 A
5862260 Rhoads Jan 1999 A
5864635 Zetts et al. Jan 1999 A
5864848 Horvitz et al. Jan 1999 A
5867150 Bricklin et al. Feb 1999 A
5867597 Peairs et al. Feb 1999 A
5867795 Novis et al. Feb 1999 A
5880411 Gillespie et al. Mar 1999 A
5880731 Liles et al. Mar 1999 A
5880743 Moran et al. Mar 1999 A
5884267 Goldenthal et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5889523 Wilcox et al. Mar 1999 A
5889896 Meshinsky et al. Mar 1999 A
5890147 Peltonen et al. Mar 1999 A
5893095 Jain et al. Apr 1999 A
5893126 Drews et al. Apr 1999 A
5893130 Inoue et al. Apr 1999 A
5895470 Pirolli et al. Apr 1999 A
5899700 Williams et al. May 1999 A
5905251 Knowles May 1999 A
5907328 Brush, II et al. May 1999 A
5913185 Martino et al. Jun 1999 A
5917491 Bauersfeld Jun 1999 A
5920477 Hoffberg et al. Jul 1999 A
5920694 Carleton et al. Jul 1999 A
5932863 Rathus et al. Aug 1999 A
5933829 Durst et al. Aug 1999 A
5937422 Nelson et al. Aug 1999 A
5946406 Frink et al. Aug 1999 A
5949921 Kojima et al. Sep 1999 A
5952599 Dolby et al. Sep 1999 A
5953541 King et al. Sep 1999 A
5956423 Frink et al. Sep 1999 A
5960383 Fleischer Sep 1999 A
5963966 Mitchell et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970455 Wilcox et al. Oct 1999 A
5982853 Liebermann Nov 1999 A
5982928 Shimada et al. Nov 1999 A
5982929 Ilan et al. Nov 1999 A
5983171 Yokoyama et al. Nov 1999 A
5983295 Cotugno Nov 1999 A
5986200 Curtin Nov 1999 A
5986655 Chiu et al. Nov 1999 A
5990878 Ikeda et al. Nov 1999 A
5990893 Numazaki Nov 1999 A
5991441 Jourjine Nov 1999 A
5995643 Saito Nov 1999 A
5999664 Mahoney et al. Dec 1999 A
6002491 Li et al. Dec 1999 A
6002798 Palmer et al. Dec 1999 A
6002808 Freeman Dec 1999 A
6003775 Ackley Dec 1999 A
6009420 Fagg, III et al. Dec 1999 A
6011905 Huttenlocher et al. Jan 2000 A
6012071 Krishna et al. Jan 2000 A
6018342 Bristor Jan 2000 A
6018346 Moran et al. Jan 2000 A
6021218 Capps et al. Feb 2000 A
6021403 Horvitz et al. Feb 2000 A
6025844 Parsons Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6028271 Gillespie et al. Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6029195 Herz Feb 2000 A
6031525 Perlin Feb 2000 A
6033086 Bohn Mar 2000 A
6036086 Sizer, II et al. Mar 2000 A
6038342 Bernzott et al. Mar 2000 A
6040840 Koshiba et al. Mar 2000 A
6042012 Olmstead et al. Mar 2000 A
6044378 Gladney Mar 2000 A
6049034 Cook Apr 2000 A
6049327 Walker et al. Apr 2000 A
6052481 Grajski et al. Apr 2000 A
6053413 Swift et al. Apr 2000 A
6055333 Guzik et al. Apr 2000 A
6055513 Katz et al. Apr 2000 A
6057844 Strauss May 2000 A
6057845 Dupouy May 2000 A
6061050 Allport et al. May 2000 A
6064854 Peters et al. May 2000 A
6066794 Longo May 2000 A
6069622 Kurlander May 2000 A
6072494 Nguyen Jun 2000 A
6072502 Gupta Jun 2000 A
6075895 Qiao et al. Jun 2000 A
6078308 Rosenberg et al. Jun 2000 A
6081621 Ackner Jun 2000 A
6081629 Browning Jun 2000 A
6085162 Cherny Jul 2000 A
6088484 Mead Jul 2000 A
6088731 Kiraly et al. Jul 2000 A
6092038 Kanevsky et al. Jul 2000 A
6092068 Dinkelacker Jul 2000 A
6094689 Embry et al. Jul 2000 A
6095418 Swartz et al. Aug 2000 A
6097392 Leyerle Aug 2000 A
6098106 Philyaw et al. Aug 2000 A
6104401 Parsons Aug 2000 A
6104845 Lipman et al. Aug 2000 A
6107994 Harada et al. Aug 2000 A
6108656 Durst et al. Aug 2000 A
6111580 Kazama et al. Aug 2000 A
6111588 Newell Aug 2000 A
6115053 Perlin Sep 2000 A
6115482 Sears et al. Sep 2000 A
6115724 Booker Sep 2000 A
6118888 Chino et al. Sep 2000 A
6118899 Bloomfield et al. Sep 2000 A
D432539 Philyaw Oct 2000 S
6128003 Smith et al. Oct 2000 A
6134532 Lazarus et al. Oct 2000 A
6138915 Danielson et al. Oct 2000 A
6140140 Hopper Oct 2000 A
6144366 Numazaki et al. Nov 2000 A
6145003 Sanu et al. Nov 2000 A
6147678 Kumar et al. Nov 2000 A
6151208 Bartlett Nov 2000 A
6154222 Haratsch et al. Nov 2000 A
6154723 Cox et al. Nov 2000 A
6154737 Inaba et al. Nov 2000 A
6154758 Chiang Nov 2000 A
6157465 Suda et al. Dec 2000 A
6157935 Tran et al. Dec 2000 A
6164534 Rathus et al. Dec 2000 A
6167369 Schulze Dec 2000 A
6169969 Cohen Jan 2001 B1
6175772 Kamiya et al. Jan 2001 B1
6175922 Wang Jan 2001 B1
6178261 Williams et al. Jan 2001 B1
6178263 Fan et al. Jan 2001 B1
6181343 Lyons Jan 2001 B1
6181778 Ohki et al. Jan 2001 B1
6184847 Fateh et al. Feb 2001 B1
6192165 Irons Feb 2001 B1
6192478 Elledge Feb 2001 B1
6195104 Lyons Feb 2001 B1
6195475 Beausoleil, Jr. et al. Feb 2001 B1
6199048 Hudetz et al. Mar 2001 B1
6201903 Wolff et al. Mar 2001 B1
6204852 Kumar et al. Mar 2001 B1
6208355 Schuster Mar 2001 B1
6208435 Zwolinski Mar 2001 B1
6212299 Yuge Apr 2001 B1
6215890 Matsuo et al. Apr 2001 B1
6218964 Ellis Apr 2001 B1
6219057 Carey et al. Apr 2001 B1
6222465 Kumar et al. Apr 2001 B1
6226631 Evans May 2001 B1
6229137 Bohn May 2001 B1
6229542 Miller May 2001 B1
6233591 Sherman et al. May 2001 B1
6240207 Shinozuka et al. May 2001 B1
6243683 Peters Jun 2001 B1
6244873 Hill et al. Jun 2001 B1
6249292 Christian et al. Jun 2001 B1
6249606 Kiraly et al. Jun 2001 B1
6252598 Segen Jun 2001 B1
6256400 Takata et al. Jul 2001 B1
6265844 Wakefield Jul 2001 B1
6269187 Frink et al. Jul 2001 B1
6269188 Jamali Jul 2001 B1
6270013 Lipman et al. Aug 2001 B1
6285794 Georgiev et al. Sep 2001 B1
6289304 Grefenstette Sep 2001 B1
6292274 Bohn Sep 2001 B1
6304674 Cass et al. Oct 2001 B1
6307952 Dietz Oct 2001 B1
6307955 Zank et al. Oct 2001 B1
6310971 Shiiyama Oct 2001 B1
6310988 Flores et al. Oct 2001 B1
6311152 Bai et al. Oct 2001 B1
6312175 Lum Nov 2001 B1
6313853 Lamontagne et al. Nov 2001 B1
6314406 O'Hagan et al. Nov 2001 B1
6314457 Schena et al. Nov 2001 B1
6316710 Lindemann Nov 2001 B1
6317132 Perlin Nov 2001 B1
6318087 Baumann et al. Nov 2001 B1
6321991 Knowles Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6326962 Szabo Dec 2001 B1
6330976 Dymetman et al. Dec 2001 B1
6335725 Koh et al. Jan 2002 B1
6341280 Glass et al. Jan 2002 B1
6341290 Lombardo et al. Jan 2002 B1
6344906 Gatto et al. Feb 2002 B1
6345104 Rhoads Feb 2002 B1
6346933 Lin Feb 2002 B1
6347290 Bartlett Feb 2002 B1
6349308 Whang et al. Feb 2002 B1
6351222 Swan et al. Feb 2002 B1
6356281 Isenman Mar 2002 B1
6356899 Chakrabarti et al. Mar 2002 B1
6360949 Shepard et al. Mar 2002 B1
6360951 Swinehart Mar 2002 B1
6363160 Bradski et al. Mar 2002 B1
RE37654 Longo Apr 2002 E
6366288 Naruki et al. Apr 2002 B1
6369811 Graham et al. Apr 2002 B1
6377296 Zlatsin et al. Apr 2002 B1
6377712 Georgiev et al. Apr 2002 B1
6377986 Philyaw et al. Apr 2002 B1
6378075 Goldstein et al. Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6381602 Shoroff et al. Apr 2002 B1
6384744 Philyaw et al. May 2002 B1
6384829 Prevost et al. May 2002 B1
6393443 Rubin et al. May 2002 B1
6396523 Segal et al. May 2002 B1
6396951 Grefenstette May 2002 B1
6400845 Volino Jun 2002 B1
6404438 Hatlelid et al. Jun 2002 B1
6408257 Harrington et al. Jun 2002 B1
6409401 Petteruti et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6417797 Cousins et al. Jul 2002 B1
6418433 Chakrabarti et al. Jul 2002 B1
6421453 Kanevsky et al. Jul 2002 B1
6421675 Ryan et al. Jul 2002 B1
6427032 Irons et al. Jul 2002 B1
6429899 Nio et al. Aug 2002 B1
6430554 Rothschild Aug 2002 B1
6430567 Burridge Aug 2002 B2
6433784 Merrick et al. Aug 2002 B1
6434561 Durst, Jr. et al. Aug 2002 B1
6434581 Forcier Aug 2002 B1
6438523 Oberteuffer et al. Aug 2002 B1
6448979 Schena et al. Sep 2002 B1
6449616 Walker et al. Sep 2002 B1
6454626 An Sep 2002 B1
6459823 Altunbasak et al. Oct 2002 B2
6460036 Herz Oct 2002 B1
6466198 Feinstein Oct 2002 B1
6466336 Sturgeon et al. Oct 2002 B1
6476830 Farmer et al. Nov 2002 B1
6476834 Doval et al. Nov 2002 B1
6477239 Ohki et al. Nov 2002 B1
6483513 Haratsch et al. Nov 2002 B1
6484156 Gupta et al. Nov 2002 B1
6486874 Muthuswamy et al. Nov 2002 B1
6486892 Stern Nov 2002 B1
6489970 Pazel Dec 2002 B1
6490553 Van Thong et al. Dec 2002 B2
6491217 Catan Dec 2002 B2
6493707 Dey et al. Dec 2002 B1
6498970 Colmenarez et al. Dec 2002 B2
6504138 Mangerson Jan 2003 B1
6507349 Balassanian Jan 2003 B1
6508706 Sitrick et al. Jan 2003 B2
6509707 Yamashita et al. Jan 2003 B2
6509912 Moran et al. Jan 2003 B1
6510387 Fuchs et al. Jan 2003 B2
6510417 Quilici et al. Jan 2003 B1
6518950 Dougherty et al. Feb 2003 B1
6520407 Nieswand et al. Feb 2003 B1
6522333 Hatlelid et al. Feb 2003 B1
6525749 Moran et al. Feb 2003 B1
6526395 Morris Feb 2003 B1
6526449 Philyaw et al. Feb 2003 B1
6532007 Matsuda Mar 2003 B1
6537324 Tabata et al. Mar 2003 B1
6538187 Beigi Mar 2003 B2
6539931 Trajkovic et al. Apr 2003 B2
6540141 Dougherty et al. Apr 2003 B1
6542933 Durst, Jr. et al. Apr 2003 B1
6543052 Ogasawara Apr 2003 B1
6545669 Kinawi et al. Apr 2003 B1
6546385 Mao et al. Apr 2003 B1
6546405 Gupta et al. Apr 2003 B2
6549751 Mandri Apr 2003 B1
6549891 Rauber et al. Apr 2003 B1
6554433 Holler Apr 2003 B1
6560281 Black et al. May 2003 B1
6564144 Cherveny May 2003 B1
6570555 Prevost et al. May 2003 B1
6571193 Unuma et al. May 2003 B1
6571235 Marpe et al. May 2003 B1
6573883 Bartlett Jun 2003 B1
6577329 Flickner et al. Jun 2003 B1
6577953 Swope et al. Jun 2003 B1
6587835 Treyz et al. Jul 2003 B1
6593723 Johnson Jul 2003 B1
6594616 Zhang et al. Jul 2003 B2
6594705 Philyaw Jul 2003 B1
6597443 Boman Jul 2003 B2
6597812 Fallon et al. Jul 2003 B1
6599130 Moehrle Jul 2003 B2
6600475 Gutta et al. Jul 2003 B2
6610936 Gillespie et al. Aug 2003 B2
6611598 Hayosh Aug 2003 B1
6615136 Swope et al. Sep 2003 B1
6615268 Philyaw et al. Sep 2003 B1
6616038 Olschafskie et al. Sep 2003 B1
6616047 Catan Sep 2003 B2
6617369 Parfondry et al. Sep 2003 B2
6618504 Yoshino Sep 2003 B1
6618732 White et al. Sep 2003 B1
6622165 Philyaw Sep 2003 B1
6624833 Kumar et al. Sep 2003 B1
6625335 Kanai Sep 2003 B1
6625581 Perkowski Sep 2003 B1
6628295 Wilensky Sep 2003 B2
6629133 Philyaw et al. Sep 2003 B1
6630924 Peck Oct 2003 B1
6631404 Philyaw Oct 2003 B1
6636763 Junker et al. Oct 2003 B1
6636892 Philyaw Oct 2003 B1
6636896 Philyaw Oct 2003 B1
6638314 Meyerzon et al. Oct 2003 B1
6638317 Nakao Oct 2003 B2
6640145 Hoffberg et al. Oct 2003 B2
6641037 Williams Nov 2003 B2
6643661 Polizzi et al. Nov 2003 B2
6643692 Philyaw et al. Nov 2003 B1
6643696 Davis et al. Nov 2003 B2
6650761 Rodriguez et al. Nov 2003 B1
6651053 Rothschild Nov 2003 B1
6658151 Lee et al. Dec 2003 B2
6661919 Nicholson et al. Dec 2003 B2
6664991 Chew et al. Dec 2003 B1
6669088 Veeneman Dec 2003 B2
6671684 Hull et al. Dec 2003 B1
6677969 Hongo Jan 2004 B1
6678075 Tsai et al. Jan 2004 B1
6678664 Ganesan Jan 2004 B1
6678687 Watanabe et al. Jan 2004 B2
6681031 Cohen et al. Jan 2004 B2
6686844 Watanabe et al. Feb 2004 B2
6687612 Cherveny Feb 2004 B2
6688081 Boyd Feb 2004 B2
6688522 Philyaw et al. Feb 2004 B1
6688523 Koenck Feb 2004 B1
6688525 Nelson et al. Feb 2004 B1
6690358 Kaplan Feb 2004 B2
6691107 Dockter et al. Feb 2004 B1
6691123 Guliksen Feb 2004 B1
6691151 Cheyer et al. Feb 2004 B1
6691194 Ofer Feb 2004 B1
6691914 Isherwood et al. Feb 2004 B2
6692259 Kumar et al. Feb 2004 B2
6694356 Philyaw Feb 2004 B1
6697838 Jakobson Feb 2004 B1
6697949 Philyaw et al. Feb 2004 B1
H2098 Morin Mar 2004 H
6701354 Philyaw et al. Mar 2004 B1
6701369 Philyaw Mar 2004 B1
6704024 Robotham et al. Mar 2004 B2
6704699 Nir Mar 2004 B2
6707581 Browning Mar 2004 B1
6708208 Philyaw Mar 2004 B1
6714677 Stearns et al. Mar 2004 B1
6714969 Klein et al. Mar 2004 B1
6718308 Nolting Apr 2004 B1
6720984 Jorgensen et al. Apr 2004 B1
6721921 Altman Apr 2004 B1
6725125 Basson et al. Apr 2004 B2
6725203 Seet et al. Apr 2004 B1
6725260 Philyaw Apr 2004 B1
6728000 Lapstun et al. Apr 2004 B1
6735632 Kiraly et al. May 2004 B1
6738519 Nishiwaki May 2004 B1
6741745 Dance et al. May 2004 B2
6741871 Silverbrook et al. May 2004 B1
6744938 Rantze et al. Jun 2004 B1
6745234 Philyaw et al. Jun 2004 B1
6745937 Walsh et al. Jun 2004 B2
6747632 Howard Jun 2004 B2
6748306 Lipowicz Jun 2004 B2
6750852 Gillespie et al. Jun 2004 B2
6752317 Dymetman et al. Jun 2004 B2
6752498 Covannon et al. Jun 2004 B2
6753883 Schena et al. Jun 2004 B2
6754632 Kalinowski et al. Jun 2004 B1
6754698 Philyaw et al. Jun 2004 B1
6757715 Philyaw Jun 2004 B1
6757783 Koh Jun 2004 B2
6758398 Philyaw et al. Jul 2004 B1
6760661 Klein et al. Jul 2004 B2
6763386 Davis et al. Jul 2004 B2
6766494 Price et al. Jul 2004 B1
6766956 Boylan, III et al. Jul 2004 B1
6771283 Carro Aug 2004 B2
6772047 Butikofer Aug 2004 B2
6772338 Hull Aug 2004 B1
6773177 Denoue et al. Aug 2004 B2
6775422 Altman Aug 2004 B1
6778988 Bengtson Aug 2004 B2
6783071 Levine et al. Aug 2004 B2
6785421 Gindele et al. Aug 2004 B1
6786793 Wang Sep 2004 B1
6788809 Grzeszczuk et al. Sep 2004 B1
6788815 Lui et al. Sep 2004 B2
6791536 Keely et al. Sep 2004 B2
6791588 Philyaw Sep 2004 B1
6792112 Campbell et al. Sep 2004 B1
6792452 Philyaw Sep 2004 B1
6798429 Bradski Sep 2004 B2
6801637 Voronka et al. Oct 2004 B2
6801658 Morita et al. Oct 2004 B2
6801907 Zagami Oct 2004 B1
6804396 Higaki et al. Oct 2004 B2
6804659 Graham et al. Oct 2004 B1
6812961 Parulski et al. Nov 2004 B1
6813039 Silverbrook et al. Nov 2004 B1
6816894 Philyaw et al. Nov 2004 B1
6820237 Abu-Hakima et al. Nov 2004 B1
6822639 Silverbrook et al. Nov 2004 B1
6823075 Perry Nov 2004 B2
6823388 Philyaw et al. Nov 2004 B1
6824044 Lapstun et al. Nov 2004 B1
6824057 Rathus et al. Nov 2004 B2
6825956 Silverbrook et al. Nov 2004 B2
6826592 Philyaw et al. Nov 2004 B1
6827259 Rathus et al. Dec 2004 B2
6827267 Rathus et al. Dec 2004 B2
6829650 Philyaw et al. Dec 2004 B1
6830187 Rathus et al. Dec 2004 B2
6830188 Rathus et al. Dec 2004 B2
6832116 Tillgren et al. Dec 2004 B1
6833936 Seymour Dec 2004 B1
6834804 Rathus et al. Dec 2004 B2
6836799 Philyaw et al. Dec 2004 B1
6837436 Swartz et al. Jan 2005 B2
6845913 Madding et al. Jan 2005 B2
6850252 Hoffberg Feb 2005 B1
6854642 Metcalf et al. Feb 2005 B2
6862046 Ko Mar 2005 B2
6865284 Mahoney et al. Mar 2005 B2
6868193 Gharbia et al. Mar 2005 B1
6877001 Wolf et al. Apr 2005 B2
6879957 Pechter et al. Apr 2005 B1
6880122 Lee et al. Apr 2005 B1
6880124 Moore Apr 2005 B1
6886104 McClurg et al. Apr 2005 B1
6889896 Silverbrook et al. May 2005 B2
6892264 Lamb May 2005 B2
6898592 Peltonen et al. May 2005 B2
6904171 van Zee Jun 2005 B2
6917722 Bloomfield Jul 2005 B1
6917724 Seder et al. Jul 2005 B2
6920431 Showghi et al. Jul 2005 B2
6922725 Lamming et al. Jul 2005 B2
6925182 Epstein Aug 2005 B1
6931592 Ramaley et al. Aug 2005 B1
6938024 Horvitz Aug 2005 B1
6947571 Rhoads et al. Sep 2005 B1
6947930 Anick et al. Sep 2005 B2
6952281 Irons et al. Oct 2005 B1
6957384 Jeffery et al. Oct 2005 B2
6970915 Partovi et al. Nov 2005 B1
6978297 Piersol Dec 2005 B1
6985169 Deng et al. Jan 2006 B1
6985962 Philyaw Jan 2006 B2
6990548 Kaylor Jan 2006 B1
6991158 Munte Jan 2006 B2
6992655 Ericson et al. Jan 2006 B2
6993580 Isherwood et al. Jan 2006 B2
7001681 Wood Feb 2006 B2
7004390 Silverbrook et al. Feb 2006 B2
7006881 Hoffberg et al. Feb 2006 B1
7010616 Carlson et al. Mar 2006 B2
7016084 Tsai Mar 2006 B2
7016532 Boncyk et al. Mar 2006 B2
7020663 Hay et al. Mar 2006 B2
7043489 Kelley May 2006 B1
7047491 Schubert et al. May 2006 B2
7051943 Leone et al. May 2006 B2
7057607 Mayoraz et al. Jun 2006 B2
7058223 Cox Jun 2006 B2
7062437 Kovales et al. Jun 2006 B2
7062706 Maxwell et al. Jun 2006 B2
7066391 Tsikos et al. Jun 2006 B2
7069240 Spero et al. Jun 2006 B2
7069272 Snyder Jun 2006 B2
7069582 Philyaw et al. Jun 2006 B2
7079713 Simmons Jul 2006 B2
7085755 Bluhm et al. Aug 2006 B2
7089330 Mason Aug 2006 B1
7093759 Walsh Aug 2006 B2
7096218 Schirmer et al. Aug 2006 B2
7103848 Barsness et al. Sep 2006 B2
7110576 Norris, Jr. et al. Sep 2006 B2
7111787 Ehrhart Sep 2006 B2
7117374 Hill et al. Oct 2006 B2
7121469 Dorai et al. Oct 2006 B2
7124093 Graham et al. Oct 2006 B1
7130885 Chandra et al. Oct 2006 B2
7131061 MacLean et al. Oct 2006 B2
7133862 Hubert et al. Nov 2006 B2
7136530 Lee et al. Nov 2006 B2
7136814 McConnell Nov 2006 B1
7137077 Iwema et al. Nov 2006 B2
7139445 Pilu et al. Nov 2006 B2
7151864 Henry et al. Dec 2006 B2
7165268 Moore et al. Jan 2007 B1
7167586 Braun et al. Jan 2007 B2
7174054 Manber et al. Feb 2007 B2
7174332 Baxter et al. Feb 2007 B2
7181761 Davis et al. Feb 2007 B2
7185275 Roberts et al. Feb 2007 B2
7188307 Ohsawa Mar 2007 B2
7190480 Sturgeon et al. Mar 2007 B2
7197716 Newell et al. Mar 2007 B2
7203158 Oshima et al. Apr 2007 B2
7216121 Bachman et al. May 2007 B2
7216224 Lapstun et al. May 2007 B2
7224480 Tanaka et al. May 2007 B2
7224820 Inomata et al. May 2007 B2
7225979 Silverbrook et al. Jun 2007 B2
7234645 Silverbrook et al. Jun 2007 B2
7239747 Bresler et al. Jul 2007 B2
7240843 Paul et al. Jul 2007 B2
7242492 Currans et al. Jul 2007 B2
7246118 Chastain et al. Jul 2007 B2
7257567 Toshima Aug 2007 B2
7260534 Gandhi et al. Aug 2007 B2
7262798 Stavely et al. Aug 2007 B2
7263521 Carpentier et al. Aug 2007 B2
7275049 Clausner et al. Sep 2007 B2
7277925 Warnock Oct 2007 B2
7283974 Katz et al. Oct 2007 B2
7283992 Liu et al. Oct 2007 B2
7284192 Kashi et al. Oct 2007 B2
7289806 Morris et al. Oct 2007 B2
7295101 Ward et al. Nov 2007 B2
7299186 Kuzunuki et al. Nov 2007 B2
7299969 Paul et al. Nov 2007 B2
7308483 Philyaw Dec 2007 B2
7318106 Philyaw Jan 2008 B2
7331523 Meier et al. Feb 2008 B2
7339467 Lamb Mar 2008 B2
7349552 Levy et al. Mar 2008 B2
7353199 DiStefano, III Apr 2008 B1
7362902 Baker et al. Apr 2008 B1
7373345 Carpentier et al. May 2008 B2
7376581 DeRose et al. May 2008 B2
7377421 Rhoads May 2008 B2
7383263 Goger Jun 2008 B2
7385736 Tseng et al. Jun 2008 B2
7392287 Ratcliff, III Jun 2008 B2
7392475 Leban et al. Jun 2008 B1
7404520 Vesuna Jul 2008 B2
7409434 Lamming et al. Aug 2008 B2
7412158 Kakkori Aug 2008 B2
7415670 Hull et al. Aug 2008 B2
7421155 King et al. Sep 2008 B2
7424543 Rice, III Sep 2008 B2
7424618 Roy et al. Sep 2008 B2
7426486 Treibach-Heck et al. Sep 2008 B2
7433068 Stevens et al. Oct 2008 B2
7433893 Lowry Oct 2008 B2
7437023 King et al. Oct 2008 B2
7437351 Page Oct 2008 B2
7437475 Philyaw Oct 2008 B2
7477780 Boncyk et al. Jan 2009 B2
7477783 Nakayama Jan 2009 B2
7477909 Roth Jan 2009 B2
7487112 Barnes, Jr. Feb 2009 B2
7493487 Phillips et al. Feb 2009 B2
7496638 Philyaw Feb 2009 B2
7505785 Callaghan et al. Mar 2009 B2
7505956 Ibbotson Mar 2009 B2
7506250 Hull et al. Mar 2009 B2
7512254 Vollkommer et al. Mar 2009 B2
7519397 Fournier et al. Apr 2009 B2
7523067 Nakajima Apr 2009 B1
7523126 Rivette et al. Apr 2009 B2
7533040 Perkowski May 2009 B2
7536547 Van Den Tillaart May 2009 B2
7542966 Wolf et al. Jun 2009 B2
7552075 Walsh Jun 2009 B1
7552381 Barrus Jun 2009 B2
7561312 Proudfoot et al. Jul 2009 B1
7574407 Carro et al. Aug 2009 B2
7587412 Weyl et al. Sep 2009 B2
7591597 Pasqualini et al. Sep 2009 B2
7593605 King et al. Sep 2009 B2
7596269 King et al. Sep 2009 B2
7599580 King et al. Oct 2009 B2
7599844 King et al. Oct 2009 B2
7599855 Sussman Oct 2009 B2
7606741 King et al. Oct 2009 B2
7613634 Siegel et al. Nov 2009 B2
7616840 Erol et al. Nov 2009 B2
7634407 Chelba et al. Dec 2009 B2
7634468 Stephan Dec 2009 B2
7647349 Hubert et al. Jan 2010 B2
7660813 Milic-Frayling et al. Feb 2010 B2
7664734 Lawrence et al. Feb 2010 B2
7672543 Hull et al. Mar 2010 B2
7672931 Hurst-Hiller et al. Mar 2010 B2
7680067 Prasad et al. Mar 2010 B2
7689712 Lee et al. Mar 2010 B2
7689832 Talmor et al. Mar 2010 B2
7698344 Sareen et al. Apr 2010 B2
7702624 King et al. Apr 2010 B2
7706611 King et al. Apr 2010 B2
7707039 King et al. Apr 2010 B2
7710598 Harrison, Jr. May 2010 B2
7742953 King et al. Jun 2010 B2
7761451 Cunningham Jul 2010 B2
7779002 Gomes et al. Aug 2010 B1
7783617 Lu et al. Aug 2010 B2
7788248 Forstall et al. Aug 2010 B2
7793326 McCoskey et al. Sep 2010 B2
7796116 Salsman et al. Sep 2010 B2
7806322 Brundage et al. Oct 2010 B2
7812860 King et al. Oct 2010 B2
7818178 Overend et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7831912 King et al. Nov 2010 B2
7844907 Watler et al. Nov 2010 B2
7870199 Galli et al. Jan 2011 B2
7872669 Darrell et al. Jan 2011 B2
7894670 King et al. Feb 2011 B2
7941433 Benson May 2011 B2
7949191 Ramkumar et al. May 2011 B1
8082258 Kumar et al. Dec 2011 B2
8146156 King et al. Mar 2012 B2
20010001854 Schena et al. May 2001 A1
20010003176 Schena et al. Jun 2001 A1
20010003177 Schena et al. Jun 2001 A1
20010032252 Durst, Jr. et al. Oct 2001 A1
20010034237 Garahi Oct 2001 A1
20010049636 Hudda et al. Dec 2001 A1
20010053252 Creque Dec 2001 A1
20010055411 Black Dec 2001 A1
20010056463 Grady et al. Dec 2001 A1
20020002504 Engel et al. Jan 2002 A1
20020012065 Watanabe Jan 2002 A1
20020013781 Petersen Jan 2002 A1
20020016750 Attia Feb 2002 A1
20020022993 Miller et al. Feb 2002 A1
20020023215 Wang et al. Feb 2002 A1
20020023957 Michaelis et al. Feb 2002 A1
20020023959 Miller et al. Feb 2002 A1
20020029350 Cooper et al. Mar 2002 A1
20020038456 Hansen et al. Mar 2002 A1
20020049781 Bengtson Apr 2002 A1
20020051262 Nuttall et al. May 2002 A1
20020052747 Sarukkai May 2002 A1
20020054059 Schneiderman May 2002 A1
20020055906 Katz et al. May 2002 A1
20020055919 Mikheev May 2002 A1
20020067308 Robertson Jun 2002 A1
20020073000 Sage Jun 2002 A1
20020091569 Kitaura et al. Jul 2002 A1
20020091928 Bouchard et al. Jul 2002 A1
20020099812 Davis et al. Jul 2002 A1
20020102966 Lev et al. Aug 2002 A1
20020111960 Irons et al. Aug 2002 A1
20020125411 Christy Sep 2002 A1
20020135815 Finn Sep 2002 A1
20020154817 Katsuyama et al. Oct 2002 A1
20020169509 Huang et al. Nov 2002 A1
20020191847 Newman et al. Dec 2002 A1
20020194143 Banerjee et al. Dec 2002 A1
20020199198 Stonedahl Dec 2002 A1
20030001018 Hussey et al. Jan 2003 A1
20030004724 Kahn et al. Jan 2003 A1
20030004991 Keskar et al. Jan 2003 A1
20030009495 Adjaoute Jan 2003 A1
20030019939 Sellen Jan 2003 A1
20030039411 Nada Feb 2003 A1
20030040957 Rodriguez et al. Feb 2003 A1
20030043042 Moores, Jr. et al. Mar 2003 A1
20030093384 Durst, Jr. et al. May 2003 A1
20030093400 Santosuosso May 2003 A1
20030093545 Liu et al. May 2003 A1
20030098352 Schnee et al. May 2003 A1
20030144865 Lin et al. Jul 2003 A1
20030149678 Cook Aug 2003 A1
20030160975 Skurdal et al. Aug 2003 A1
20030171910 Abir Sep 2003 A1
20030173405 Wilz, Sr. et al. Sep 2003 A1
20030182399 Silber Sep 2003 A1
20030187751 Watson et al. Oct 2003 A1
20030187886 Hull et al. Oct 2003 A1
20030195851 Ong Oct 2003 A1
20030200152 Divekar Oct 2003 A1
20030212527 Moore et al. Nov 2003 A1
20030214528 Pierce et al. Nov 2003 A1
20030220835 Barnes, Jr. Nov 2003 A1
20030223637 Simske et al. Dec 2003 A1
20030225547 Paradies Dec 2003 A1
20040001217 Wu Jan 2004 A1
20040006509 Mannik et al. Jan 2004 A1
20040006740 Krohn et al. Jan 2004 A1
20040015437 Choi et al. Jan 2004 A1
20040023200 Blume Feb 2004 A1
20040028295 Allen et al. Feb 2004 A1
20040036718 Warren et al. Feb 2004 A1
20040044576 Kurihara et al. Mar 2004 A1
20040044627 Russell et al. Mar 2004 A1
20040044952 Jiang et al. Mar 2004 A1
20040064453 Ruiz et al. Apr 2004 A1
20040068483 Sakurai et al. Apr 2004 A1
20040073874 Poibeau et al. Apr 2004 A1
20040098165 Butikofer May 2004 A1
20040128514 Rhoads Jul 2004 A1
20040139106 Bachman et al. Jul 2004 A1
20040139107 Bachman et al. Jul 2004 A1
20040139400 Allam et al. Jul 2004 A1
20040158492 Lopez et al. Aug 2004 A1
20040181688 Wittkotter Sep 2004 A1
20040186766 Fellenstein et al. Sep 2004 A1
20040186859 Butcher Sep 2004 A1
20040189691 Jojic et al. Sep 2004 A1
20040193488 Khoo et al. Sep 2004 A1
20040204953 Muir et al. Oct 2004 A1
20040205534 Koelle Oct 2004 A1
20040206809 Wood et al. Oct 2004 A1
20040229194 Yang Nov 2004 A1
20040236791 Kinjo Nov 2004 A1
20040250201 Caspi Dec 2004 A1
20040254795 Fujii et al. Dec 2004 A1
20040256454 Kocher Dec 2004 A1
20040258274 Brundage et al. Dec 2004 A1
20040260470 Rast Dec 2004 A1
20040260618 Larson Dec 2004 A1
20040267734 Toshima Dec 2004 A1
20040268237 Jones et al. Dec 2004 A1
20050005168 Dick Jan 2005 A1
20050022114 Shanahan et al. Jan 2005 A1
20050033713 Bala et al. Feb 2005 A1
20050076095 Mathew et al. Apr 2005 A1
20050091578 Madan et al. Apr 2005 A1
20050097335 Shenoy et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050108195 Yalovsky et al. May 2005 A1
20050132281 Pan et al. Jun 2005 A1
20050136949 Barnes, Jr. Jun 2005 A1
20050139649 Metcalf et al. Jun 2005 A1
20050144074 Fredregill et al. Jun 2005 A1
20050149538 Singh et al. Jul 2005 A1
20050154760 Bhakta et al. Jul 2005 A1
20050205671 Gelsomini et al. Sep 2005 A1
20050214730 Rines Sep 2005 A1
20050220359 Sun et al. Oct 2005 A1
20050222801 Wulff et al. Oct 2005 A1
20050228683 Saylor et al. Oct 2005 A1
20050231746 Parry et al. Oct 2005 A1
20050243386 Sheng Nov 2005 A1
20050251448 Gropper Nov 2005 A1
20050262058 Chandrasekar et al. Nov 2005 A1
20050270358 Kuchen et al. Dec 2005 A1
20050278314 Buchheit Dec 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20050289054 Silverbrook et al. Dec 2005 A1
20060011728 Frantz et al. Jan 2006 A1
20060023945 King et al. Feb 2006 A1
20060036462 King et al. Feb 2006 A1
20060041484 King et al. Feb 2006 A1
20060041538 King et al. Feb 2006 A1
20060041590 King et al. Feb 2006 A1
20060041605 King et al. Feb 2006 A1
20060045374 Kim et al. Mar 2006 A1
20060048046 Joshi et al. Mar 2006 A1
20060053097 King et al. Mar 2006 A1
20060069616 Bau Mar 2006 A1
20060075327 Sriver Apr 2006 A1
20060081714 King et al. Apr 2006 A1
20060085477 Phillips et al. Apr 2006 A1
20060098900 King et al. May 2006 A1
20060101285 Chen et al. May 2006 A1
20060103893 Azimi et al. May 2006 A1
20060104515 King et al. May 2006 A1
20060119900 King et al. Jun 2006 A1
20060122983 King et al. Jun 2006 A1
20060136629 King et al. Jun 2006 A1
20060138219 Brzezniak et al. Jun 2006 A1
20060146169 Segman Jul 2006 A1
20060173859 Kim et al. Aug 2006 A1
20060195695 Keys Aug 2006 A1
20060200780 Iwema et al. Sep 2006 A1
20060224895 Mayer Oct 2006 A1
20060229940 Grossman Oct 2006 A1
20060239579 Ritter Oct 2006 A1
20060256371 King et al. Nov 2006 A1
20060259783 Work et al. Nov 2006 A1
20060266839 Yavid et al. Nov 2006 A1
20060283952 Wang Dec 2006 A1
20070009245 Ito Jan 2007 A1
20070050712 Hull et al. Mar 2007 A1
20070061146 Jaramillo et al. Mar 2007 A1
20070173266 Barnes, Jr. Jul 2007 A1
20070194119 Vinogradov et al. Aug 2007 A1
20070208561 Choi et al. Sep 2007 A1
20070208732 Flowers et al. Sep 2007 A1
20070219940 Mueller et al. Sep 2007 A1
20070228306 Gannon et al. Oct 2007 A1
20070233806 Asadi Oct 2007 A1
20070238076 Burstein et al. Oct 2007 A1
20070249406 Andreasson Oct 2007 A1
20070279711 King et al. Dec 2007 A1
20070300142 King et al. Dec 2007 A1
20080023550 Yu et al. Jan 2008 A1
20080046417 Jeffery et al. Feb 2008 A1
20080071775 Gross Mar 2008 A1
20080072134 Balakrishnan et al. Mar 2008 A1
20080082903 McCurdy et al. Apr 2008 A1
20080091954 Morris et al. Apr 2008 A1
20080093460 Frantz et al. Apr 2008 A1
20080126415 Chaudhury et al. May 2008 A1
20080137971 King et al. Jun 2008 A1
20080141117 King et al. Jun 2008 A1
20080170674 Ozden et al. Jul 2008 A1
20080172365 Ozden et al. Jul 2008 A1
20080177825 Dubinko et al. Jul 2008 A1
20080195664 Maharajh et al. Aug 2008 A1
20080222166 Hultgren et al. Sep 2008 A1
20080235093 Uland Sep 2008 A1
20080313172 King et al. Dec 2008 A1
20090012806 Ricordi et al. Jan 2009 A1
20090018990 Moraleda Jan 2009 A1
20090077658 King et al. Mar 2009 A1
20090247219 Lin et al. Oct 2009 A1
20100092095 King et al. Apr 2010 A1
20100121848 Yaroslavskiy et al. May 2010 A1
20100177970 King et al. Jul 2010 A1
20100182631 King et al. Jul 2010 A1
20100183246 King et al. Jul 2010 A1
20100185538 King et al. Jul 2010 A1
20100185620 Schiller Jul 2010 A1
20100278453 King Nov 2010 A1
20100318797 King et al. Dec 2010 A1
20110019020 King et al. Jan 2011 A1
20110019919 King et al. Jan 2011 A1
20110022940 King et al. Jan 2011 A1
20110025842 King et al. Feb 2011 A1
20110026838 King et al. Feb 2011 A1
20110029443 King et al. Feb 2011 A1
20110029504 King et al. Feb 2011 A1
20110033080 King et al. Feb 2011 A1
20110035289 King et al. Feb 2011 A1
20110035656 King et al. Feb 2011 A1
20110035662 King et al. Feb 2011 A1
20110043652 King et al. Feb 2011 A1
20110044547 King et al. Feb 2011 A1
20110072012 Ah-Pine et al. Mar 2011 A1
20110072395 King et al. Mar 2011 A1
20110075228 King et al. Mar 2011 A1
20110078585 King et al. Mar 2011 A1
20110085211 King et al. Apr 2011 A1
20110096174 King et al. Apr 2011 A1
20110209191 Shah Aug 2011 A1
20110295842 King et al. Dec 2011 A1
20110299125 King et al. Dec 2011 A1
Foreign Referenced Citations (82)
Number Date Country
0424803 May 1991 EP
0544434 Jun 1993 EP
0596247 May 1994 EP
0697793 Feb 1996 EP
0887753 Dec 1998 EP
1054335 Nov 2000 EP
1087305 Mar 2001 EP
1318659 Jun 2003 EP
1398711 Mar 2004 EP
2 366 033 Feb 2002 GB
03-260768 Nov 1991 JP
10-133847 May 1998 JP
10200804 Jul 1998 JP
H11-213011 Aug 1999 JP
2001-345710 Dec 2001 JP
2003-216631 Jul 2003 JP
2004-500635 Jan 2004 JP
2004-050722 Feb 2004 JP
10-2000-0054268 Sep 2000 KR
10-2000-0054339 Sep 2000 KR
10-2004-0029895 Apr 2004 KR
10-2007-0051217 May 2007 KR
10-0741368 Jul 2007 KR
10-0761912 Sep 2007 KR
9419766 Sep 1994 WO
9803923 Jan 1998 WO
0041128 Jul 2000 WO
0056055 Sep 2000 WO
0067091 Nov 2000 WO
0103017 Jan 2001 WO
0124051 Apr 2001 WO
0133553 May 2001 WO
0211446 Feb 2002 WO
02061730 Aug 2002 WO
02091233 Nov 2002 WO
2004084109 Sep 2004 WO
2005071665 Aug 2005 WO
2005096750 Oct 2005 WO
2005096755 Oct 2005 WO
2005098596 Oct 2005 WO
2005098597 Oct 2005 WO
2005098598 Oct 2005 WO
2005098599 Oct 2005 WO
2005098600 Oct 2005 WO
2005098601 Oct 2005 WO
2005098602 Oct 2005 WO
2005098603 Oct 2005 WO
2005098604 Oct 2005 WO
2005098605 Oct 2005 WO
2005098606 Oct 2005 WO
2005098607 Oct 2005 WO
2005098609 Oct 2005 WO
2005098610 Oct 2005 WO
2005101192 Oct 2005 WO
2005101193 Oct 2005 WO
2005106643 Nov 2005 WO
2005114380 Dec 2005 WO
2006014727 Feb 2006 WO
2006023715 Mar 2006 WO
2006023717 Mar 2006 WO
2006023718 Mar 2006 WO
2006023806 Mar 2006 WO
2006023937 Mar 2006 WO
2006026188 Mar 2006 WO
2006029259 Mar 2006 WO
2006036853 Apr 2006 WO
2006037011 Apr 2006 WO
2006093971 Sep 2006 WO
2006124496 Nov 2006 WO
2007141020 Dec 2007 WO
2008002074 Jan 2008 WO
2008014255 Jan 2008 WO
2008028674 Mar 2008 WO
2008031625 Mar 2008 WO
2008072874 Jun 2008 WO
2010096191 Aug 2010 WO
2010096192 Aug 2010 WO
2010096193 Aug 2010 WO
2010105244 Sep 2010 WO
2010105245 Sep 2010 WO
2010105246 Sep 2010 WO
2010108159 Sep 2010 WO
Non-Patent Literature Citations (341)
Entry
Liddy, Elizabeth, “How a Search Engine Works,” InfoToday.com, vol. 9, No. 5, May 2001, pp. 1-7.
Brin et al., “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Computer Networks and ISDN Systems, Vo. 30, Issue 1-7, Apr. 1, 1998, pp. 1-22.
Bahl, et al., “Font Independent Character Recognition by Cryptanalysis,” IBM Technical Disclosure Bulletin, vol. 24, No. 3, pp. 1588-1589 (Aug. 1, 1981).
Ramesh, R.S. et al., “An Automated Approach to Solve Simple Substitution Ciphers,” Cryptologia, vol. 17. No. 2, pp. 202-218 (1993).
Nagy et al., “Decoding Substitution Ciphers by Means of Word Matching with Application to OCR,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, No. 5, pp. 710-715 (Sep. 1, 1987).
Wood et al., “Implementing a faster string search algorithm in Ada,” CM Sigada Ada Letters, vol. 8, No. 3, pp. 87-97 (Apr. 1, 1988).
Garain et al., “Compression of Scan-Digitized Indian Language Printed Text: A Soft Pattern Matching Technique,” Proceedings of the 2003 ACM Symposium on Document Engineering, pp. 185-192 (Jan. 1, 2003).
King et al., U.S. Appl. No. 13/186,908, filed Jul. 20, 2011, all pages.
King et al., U.S. Appl. No. 13/253,632, filed Oct. 5, 2011, all pages.
King et al., U.S. Appl. No. 13/614,770, filed Sep. 13, 2013, 102 pages.
King et al., U.S. Appl. No. 13/614,473, filed Sep. 13, 2013, 120 pages.
King et al., U.S. Appl. No. 13/615,517, filed Sep. 13, 2013, 114 pages.
Bagley, et al., Editing Images of Text, Communications of the ACM, 37(12):63-72 (Dec. 1994).
Agilent ADNK-2133 Optical Mouse Designer's Kit: Product Overview., Agilent Technologies (2004).
AirClic, “With AirClic, there's a product to meet your needs today. And tomorrow.,” AirClic, 2005, http://www.airclic.com/products.asp, accessed Oct. 3, 2005.
Arai et al., “PaperLink: A Technique for Hyperlinking from Real Paper to Electronic Content,” Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 97), Addison-Wesley, pp. 327-334 (Apr. 1997).
Aust “Augmenting Paper Documents with Digital Information in a Mobile Environment,” MS Thesis, University of Dortmund, Department of Computer Graphics (Sep. 3, 1996).
Babylon Ltd., “Babylon—Online Dictionary and Translation Software”, Jan. 4, 2008.
Bai et al., “An Approach to Extracting the Target Text Line from a Document Image Captured by a Pen Scanner,” Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003), Aug. 6, 2003, pp. 76-80.
Bell et al., “Modeling for Text Compression,” ACM Computing Surveys, 21(4):557-591 (Dec. 1989).
Bentley et al., “Fast Algorithms for Sorting and Searching Strings,” Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, CM Press, 360-369 (1997).
Black et al.,“The Festival Speech Synthesis System, Edition 1.4, for Festival Version 1.4.0”, http://www.cstr.ed.ac.uk/projects/festival/manual/ (Jun. 17, 1999).
Brickman et al., “Word Autocorrelation Redundancy Match (WARM) Technology,” IBM J. Res. Develop., 26(6):681-686 (Nov. 1982).
Burle Technical Memorandum 100. “Fiber Optics: Theory and Applications,” http://www.burle.com/cgi-bin/byteserver.pl/pdf/100r.pdf ( 2000).
C Technologies AB. “CPEN User's Guide.” (Jan. 2001).
C Technologies AB. “User's Guide for C-Pen 10.” (Aug. 2001).
Capobianco, Robert A., “Design Considerations for: Optical Coupling of Flashlamps and Fiber Optics,” 12 pages, PerkinElmer (1998-2003).
Casey et al., “An Autonomous Reading Machine,” IEEE Transactions on Computers, V. C-17, No. 5, pp. 492-503 (May 1968).
Casio Computer Co. Ltd, “Alliance Agreement on Development and Mass Production of Fingerprint Scanner for Mobile Devices,” Casio Computer Co. Ltd (Feb. 25, 2003).
Cenker, Christian, “Wavelet Packets and Optimization in Pattern Recognition,” Proceedings of the 21st International Workshop of the AAPR, Hallstatt, Austria, May 1997, pp. 49-58.
Clancy, Heather, “Cell Phones Get New Job: Portable Scanning.” CNet News.com (Feb. 12, 2005).
Computer Hope, “Creating a link without an underline in HTML:,” as evidenced by Internet Archive Wayback Machine: http://web.archive.org/web/20010329222623/http://www.computerhope.com/iss-ues/ch000074.htm, Mar. 29, 2001.
Curtain, D.P., “Image Sensors—Capturing the Photograph,” 2006, available at http://www.shortcourses.com/how/sensors/sensors.htm (last visited Sep. 4, 2006).
Cybertracker, “Homepage,” http://www.cybertracker.co.za/, accessed Oct. 3, 2005.
Digital Convergence Corp., “CueCat Barcode Scanner,” www.cuecat.com, accessed Oct. 3, 2005.
Docuport Inc., “DocuPen Operating Manual.” Montreal, Quebec (2004).
Doermann et al., “The Detection of Duplicates in Document Image Databases,” Technical Report. LAMP-TR-005/CAR-TR-850/CS-TR-3739, University of Maryland College Park (Feb. 1997).
Doermann et al., “The Development of a General Framework for Intelligent Document Image Retrieval,” Series in Machine Perception and Artificial Intelligence, vol. 29: Document Analysis Systems II., Washington DC: World Scientific Press, 28 pp. (1997).
Doermann, David, “The Indexing and Retrieval of Document Images: A Survey,” Technical Report. LAMP-TR-0013/CAR-TR-878/CS-TR-3876. University of Maryland College Park (Feb. 1998).
Duong et al., “Extraction of Text Areas in Printed Document Images,” Proceedings of the 2001 ACM Symposium on Document Engineering, Nov. 10, 2001, New York, NY, ACM Press, pp. 157-164.
EBooks, eBooks Quickstart Guide, nl-487 (2001).
Erol et al., “Linking Multimedia Presentations with their Symbolic Source Documents: Algorithm and Applications,” Proceedings of the Eleventh ACM International Conference on Multimedia, Nov. 2-8, 2003, Berkeley, CA, USA, pp. 498-507.
Fall et al., “Automated Categorization in the International Patent Classification,” ACM SIGIR Forum, 37(1):10-25 (Spring 2003).
Fehrenbacher, Katie, “Quick Frucall Could Save You Pennies (or $$$)”, GigaOM, http://gigaom.com/2006/07/10/frucall (Jul. 10, 2006).
Feldman, Susan, “The Answer Machine,” Searcher: The Magazine for Database Professionals, 8(1):58 (Jan. 2000).
Fitzgibbon et al., “‘Memories for life’ Managing information over a human lifetime,” UK Computing Research Committee's Grand Challenges in Computing Workshop (May 22, 2003).
Ghaly et al., “Sams Teach Yourself EJB in 21 Days,” Sams Publishing, pp. 1-2, 123 and 125 (2002-2003).
Ghani et al., “Mining the Web to Create Minority Language Corpora,” Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM) Nov. 5-10, 2001, pp. 279-286.
Globalink, Inc. “Globalink, Inc. announces Talk to Me, an interactive language learning software program,” The Free Library by Farlex, Jan. 21, 1997 (retrieved from internet Jan. 4, 2008).
Google Inc., “Google Search Appliance—Intranets.” (2004).
Google Inc., “Simplicity and Enterprise Search.” (2003).
Graham et al., “The Video Paper Multimedia Playback System,” Proceedings of the Eleventh ACM International Conference on Multimedia, Nov. 2-8, 2003, Berkeley, CA, USA, pp. 94-95.
Grossman et al., “Token Identification” Slideshow (2002).
Guimbretiere, Francois, “Paper Augmented Digital Documents,” Proceedings of 16th Annual ACM Symposium on User Interface Software and Technology, New York, NY, ACM Press, pp. 51-60 (2003).
Hansen, Jesse, “A Matlab Project in Optical Character Recognition (OCR),” DSP Lab, University of Rhode Island, 6 pp (May 15, 2002).
Heiner et al., “Linking and Messaging from Real Paper in the Paper PDA,” ACM Symposium on User Interface Software and Technology, New York, NY: ACM Press, pp. 179-186 (1999).
Henseler, Dr. Hans, “ZyIMAGE Security Whitepaper Functional and Document Level Security in ZyIMAGE,” Zylab Technologies B.V., Apr. 9, 2004.
Hewlett-Packard Company, “HP Capshare 920 Portable E-Copier an Information Appliance User Guide, First Edition,” 42 pp. (1999).
Hjaltason et al., “Distance Browsing in Spatial Databases,” ACM Transactions on Database Systems, 24(2):265-318 (Jun. 1999).
Hong et al., “Degraded Text Recognition Using Word Collocation and Visual Inter-Word Constraints,” Fourth ACL Conference on Applied Natural Language Processing, Stuttgart, Germany, pp. 186-187 (1994).
Hopkins et al., “A Semi-Imaging Light Pipe for Collecting Weakly Scattered Light,” HPL-98-116Hewlett Packard Company (Jun. 1998).
Hu et al., “Comparison and Classification of Documents Based on Layout Similarity,” Information Retrieval, vol. 2, Issues 2-3, May 2000, pp. 227-243.
Hull et al., “Simultaneous Highlighting of Paper and Electronic Documents,” Proceedings of the 15th International Conference on Pattern Recognition (ICPR '00), Sep. 3, 2000, vol. 4, IEEE, Barcelona, 401-404 (2000).
Hull et al., “Document Analysis Techniques for the Infinite Memory Multifunction Machine,” Proceedings of the 10th International Workshop in Database and Expert Systems Applications, Florence, Italy, Sep. 1-3, 1999, pp. 561-565.
Inglis et al., “Compression-Based Template Matching,” Data Compression Conference, Mar. 29-31, 1994, Snowbird, UT, pp. 106-115.
IPValue Management, Inc.., “Technology Licensing Opportunity: Xerox Mobile Camera Document Imaging,” Slideshow (Mar. 1, 2004).
IRIS, Inc “IRIS Business Card Reader II,” Brochure. (2000).
IRIS, Inc., “IRIS Pen Executive,” Brochure (2000).
ISRI Staff, “OCR Accuracy Produced by the Current DOE Document Conversion System,” Technical report Jun. 2002, Information Science Research Institute at the University of Nevada, Las Vegas (May 2002).
Jacobson et al., “The last book,” IBM Systems Journal, 36(3):457-463 (1997).
Jainschigg et al., “M-Commerce Alternatives,” Communications Convergence.com http://www.cconvergence.com/shared/article/showArticle.jhtml?articleId=8701069 (May 7, 2001).
Janesick, James, “Dueling Detectors,” Spie's OE Magazine, 30-33 (Feb. 2002).
Jenny, Reinhard, “Fundamentals of Fiber Optics an Introduction for Beginners,” Volpi Manufacturing USA Co., Inc. Auburn, NY (Apr. 26, 2000).
Jones, R., “Physics and the Visual Arts Notes on Lesson 4”, Sep. 12, 2004, University of South Carolina, available at http://www.physics.sc.edu/˜rjones/phys153/lec04.html.
Kahan et al., “Annotea: An Open RDF Infrastructure for Shared Web Annotations,” Proceedings of the 10th International World Wide Web Conference, Hong Kong, pp. 623-632 (May 1-5, 2001).
Kasabach et al., “Digital Ink: A Familiar Idea with Technological Might!” CHI 1998 Conference, Apr. 18-23, 1998, New York, NY: ACM Press, 175-176 (1997).
Keytronic, “F-SCAN-S001US Stand Alone Fingerprint Scanner,” http://www.keytronic.com/home/shop/Productlist.asp?CATID=62&SubCATID=1 accessed Oct. 4, 2005.
Khoubyari, Siamak, “The Application of Word Image Matching in Text Recognition,” MS Thesis, State University of New York at Buffalo (Jun. 1992).
Kia, Omid E., “Document Image Compression and Analysis,” PhD Thesis, University of Maryland at College Park, (1997).
Kia et al., “Integrated Segmentation and Clustering for Enhanced Compression of Document Images,” International Conference on Document Analysis and Recognition, Ulm, Germany, 1:406-11(Aug. 18-20, 1997).
Kia et al., “Symbolic Compression and Processing of Document Images”, Technical Report: LAMP-TR-004/CFAR-TR-849/CS-TR-3734., University of Maryland, College Park. (Jan. 1997).
Kopec, Gary E., “Multilevel Character Templates for Document Image Decoding,” IS&T/SPIE 1997 International Symposium on Electronic Imaging: Science & Technology, San Jose, CA, Feb. 8-14, 1997.
Kopec et al., “N-Gram Language Models for Document Image Decoding,” IS&T/SPIE Proceedings, 4670:191-202, Jan. 2002.
Kukich, Karen, “Techniques for Automatically Correcting Words in Text,” ACM Computing Surveys, 24(4);377-439 (Dec. 1992).
Lee, Dar-Shyang, “Substitution Deciphering Based on HMMs with Applications to Compressed Document Processing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12):1661-1666 (Dec. 2002).
Lee et al., “Detecting duplicates among symbolically compressed images in a large document database,” Pattern Recognition Letters, 22:545-550 (2001).
Lee et al., “Duplicate Detection for Symbolically Compressed Documents,” Fifth International Conference on Document Analysis and Recognition (ICDAR), pp. 305-308 (Sep. 20-22, 1999).
Lee et al., “Ultrahigh-resolution plastic graded-index fused image plates,” Optics Letters, 25(10):719-721 (May 15, 2000).
Lee et al., “Voice Response Systems,” ACM Computing Surveys 15(4):351-374 (Dec. 1983).
Lesher et al., “Effects of Ngram Order and Training Text Size on Word Prediction,” Proceedings of the RESNA '99 Annual Conference (1999).
Lieberman, Henry, “Out of Many, One: Reliable Results from Unreliable Recognition,” ACM Conference on Human Factors in Computing Systems (CHI 2002); 728-729 (Apr. 20-25, 2002).
Liu et al., “Adaptive Post-Processing of OCR Text Via Knowledge Acquisition,” Proceedings of the ACM 1991 Conference on Computer Science, New York, NY: ACM Press, 558-569 (1991).
Ljungstrand et al., “WebStickers: Using Physical Tokens to Access, Manage and Share Bookmarks to the Web,” Proceedings of Designing Augmented Reality Environments 2000, Elsinore, Denmark, pp. 23-31 (Apr. 12-14, 2000).
LTI Computer Vision Library, “LTI Image Processing Library Developers Guide,” Version 29.10.2003, Aachen, Germany, (2002).
Macholl et al., “Translation Pen Lacks Practicality,” BYTE.com (Jan. 1998).
Manolescu, Dragos-Anton, “Feature Extraction—A Pattern for Information Retrieval,” Proceedings of the 5th Pattern Languages of Programming Monticello, Illinois, (Aug. 1998).
McNamee et al., “Haircut: A System for Multilingual Text Retrieval in Java,” Journal of Computing Sciences in Small Colleges, 17(2):8-22 (Feb. 2002).
Miller et al., “How Children Learn Words,” Scientific American, 257(3):94-99 (Sep. 1987).
Mind Like Water, Inc., “Collection Creator Version 2.0.1 Now Available!,” www.collectioncreator.com, 2004, accessed Oct. 2, 2005.
Muddu, Prashant, “A Study of Image Transmission Through a Fiber-Optic Conduit and its Enhancement Using Digital Image Processing Techniques,” M.S. Thesis, Florida State College of Engineering (Nov. 18, 2003).
Munich et al., “Visual Input for Pen-Based Computers,” Proceedings of the International Conference on Pattern Recognition (ICPR '96) vol. III, pp. 33-37, IEEE CS Press (Aug. 25-29, 1996).
Murdoch et al., “Mapping Physical Artifacts to their Web Counterparts: A Case Study with Products Catalogs,” MHCI-2004 Workshop on Mobile and Ubiquitous Information Access, Strathclyde, UK (2004).
Nabeshima et al., “MEMO-PEN: A New Input Device,” CHI '95 Proceedings Short Papers, ACM Press, 256-257 (May 7-11, 1995).
Nagy et al., “A Prototype Document Image Analysis System for Technical Journals,” IEEE Computer, 10-22 (Jul. 1992).
Nautilus Hyosung, “New Software for Automated Teller Machines,” http://www.nautilus.hyosung.com/product—service/software—software05.html, 2002, accessed Oct. 4, 2005.
Neomedia Technologies, “Paperclick for Cellphones”, brochure (2004).
Neomedia Technologies, “Paperclick Linking Services ”, brochure (2004).
Neomedia Technologies, “For Wireless Communication Providers”, brochure (2004).
Pellissippi Library, “Skills Guide #4, Setting up your netlibrary Account,” Knoxville, TN, Sep. 21, 2001.
Neville, Sean “Project Atom, Amazon, Mobile Web Services, and Fireflies at Rest,” Artima Weblogs, http://www.artima.com/weblogs/viewpost.jsp?thread=18731 (Oct. 24, 2003).
Newman et al. “Camworks: A Video-Based Tool for Efficient Capture from Paper Source Documents,” Proceedings of the 1999 IEEE International Conference on Multimedia Computing and Systems, vol. 2, pp. 647-653 (1999).
Newman, William, “Document DNA: Camera Image Processing,” (Sep. 2003).
Newman et al., “A Desk Supporting Computer-based Interaction with Paper Documents,” Proceedings of ACM CHI'92 Conference on Human Factors in Computing Systems, 587-592 (May 3-7, 1992).
NSG America Inc.., “SELFOC Lens Arrays for Line Scanning Applications,” Intelligent Opto Sensor Designer's Notebook, No. 2, Revision B, (2002).
O'Gorman, “Image and Document Processing Techniques for the RightPages Electronic Library System,” IEEE 11th International Conference on Pattern Recognition, Aug. 30-Sep. 3, 1992, The Hague, The Netherlands, vol. II, pp. 260-263.
Onclick Corporation, “VIA Mouse VIA-251,” brochure (2003).
Pal et al., “Multi-Oriented Text Lines Detection and Their Skew Estimation,” Indian Conference on Computer Vision, Graphics, and Image Processing, Ahmedabad, India (Dec. 16-18, 2002).
Peacocks MD&B, “Peacocks MD&B, Releases Latest hands and Eyes Free Voice Recognition Barcode Scanner,” http://www.peacocks.com.au/store/page.pl?id=457 accessed Oct. 4, 2005.
Peterson, James L., “Computer Programs for Detecting and Correcting Spelling Errors,” Communications of the ACM, 23(12):676-687 (Dec. 1980).
Planon Systems Solutions Inc., “Docupen 700,” www.docupen.com, accessed Oct. 3, 2005.
Podio, Fernando L., “Biometrics—Technologies for Highly Secure Personal Authentication,” ITL Bulletin, National Institute of Standards and Technology, pp. 1-7, http://whitepapers.zdnet.com/search.aspx?compid=3968 (May 2001).
Abera Technologies Inc., “Abera Introduces Truly Portable & Wireless Color Scanners: Capture Images Anywhere in the World without Connection to PC,” PR Newswire (Oct. 9, 2000).
Precise Biometrics Inc., “Precise 200 MC,” http://www.precisebiometrics.com/data/content/DOCUMENTS/2005926919553200%20MC.pdf , accessed Oct. 4, 2005.
Price et al., “Linking by Inking: Trailblazing in a Paper-like Hypertext,” Proceedings of Hypertext '98, Pittsburgh, PA: ACM Press, pp. 30-39 (1998).
PSION Teklogix Inc., “Workabout Pro,” http;//www.psionteklogix.com/public.aspx?s=uk&p=Products&pCat=128&pID=1058, accessed Oct. 3, 2005.
Rao et al., “Protofoil: Storing and Finding the Information Worker's Paper Documents in an Electronic File Cabinet,” Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM Press, 180-185, 477 (Apr. 24-28, 1994).
Roberts et al., “1D and 2D laser line scan generation using a fibre optic resonant scanner,” EOS/SPIE Symposium on Applied Photonics (ISAP 2000), Glasgow, SPIE Proc. 4075:62-73 (May 21-25, 2000).
Rus et al., “Multi-media RISSC Informatics: Retrieving Information with Simple Structural Components,” Proceedings of the Second International Conference on Information and Knowledge Management, New York, NY, pp. 283-294 (1993).
Samet, Hanan, “Data Structures for Quadtree Approximation and Compression,” Communications of the ACM, 28(9):973-993 (Sep. 1985).
Sanderson et al., “The Impact on Retrieval Effectiveness of Skewed Frequency Distributions,” ACM Transactions on Information Systems, 17(4):440-465 (Oct. 1999).
Sarre et al. “HyperTex—a system for the automatic generation of Hypertext Textbooks from Linear Texts,” Database and Expert Systems Applications, Proceedings of the International Conference, Abstract (1990).
Schilit et al., “Beyond Paper: Supporting Active Reading with Free Form Digital Ink Annotations,” Proceedings of CHI 98, ACM Press, pp. 249-256 (1998).
Schott North America, Inc., “Clad Rod/ Image Conduit,” Version 10/01, (Nov. 2004).
Schuuring, Daniel, “Best practices in e-discovery and e-disclosure White Paper,” ZyLAB Information Access Solutions (Feb. 17, 2006).
Selberg et al., “On the Instability of Web Search Engines,” In the Proceedings of Recherche d'Information Assistée par Ordinateur (RIAO) '00, Paris, pp. 223-235(Apr. 2000).
Sheridon et al., “The Gyricon—A Twisting Ball Display,” Proceedings of the Society for Information Display, vol. 18/3 & 4, Third and Fourth Quarter, pp. 289-293 (May 1977).
Smithwick et al., “54.3: Modeling and Control of the Resonant Fiber Scanner for Laser Scanning Display or Acquisition,” SID Symposium Digest of Technical Papers, 34:1, pp. 1455-1457 (May 2003).
Solutions Software Corp., “Environmental Code of Federal Regulations (CFRs) including TSCA and SARA,” Solutions Software Corp., Enterprise, FL Abstract (Apr. 1994).
Sonka et al, Image Processing, Analysis, and Machine Vision: (Second Edition). International Thomson Publishing, Contents, Preface, and Index (1998).
Sony Electronics Inc., “Sony Puppy Fingerprint Identity Products,” http://bssc.sel.sony.com/Professional/puppy/ (2002).
Spitz, A. Lawrence, “Progress in Document Reconstruction,” 16th International Conference on Pattern Recognition (ICPR '02), pp. 464-467 (2002).
Spitz, A. Lawrence, “Shape-based Word Recognition,” International Journal on Document Analysis and Recognition, pp. 178-190 (Oct. 20, 1998).
Srihari et al., “Integrating Diverse Knowledge Sources in Text Recognition,” ACM Transactions in Office Information Systems, 1(1):66-87 (Jan. 1983).
Stevens et al., “Automatic Processing of Document Annotations,” British Machine Vision Conference 1998, pp. 438-448, available at http://www.bmva.org/bmvc/1998/pdf/p062.pdf (1998).
Stifelman, Lisa J., “Augmenting Real-World Objects: A Paper-Based Audio Notebook,” Proceedings of CHI '96, 199-200 (1996).
Story et al., “The RightPages Image-Based Electronic Library for Alerting and Browsing,” IEEE, Computer, pp. 17-26 (Sep. 1992).
Su et al., “Optical Scanners Realized by Surface-Micromachined Vertical Torsion Mirror,” IEEE Photonics Technology Letters, 11(5):587-589 (May 1999).
Syscan Imaging, “Travelscan 464,” http://www.syscaninc.com/prod—ts—464.html, 2 pp, accessed Oct. 3, 2005.
Taghva et al., “Results of Applying Probabilistic IR to OCR Text,” Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 202-211 (1994).
Tan et al., “Text Retrieval from Document Images Based on N-Gram Algorithm,” PRICAI Workshop on Text and Web Mining, pp. 1-12 (2000).
Trusted Reviews, “Digital Pen Roundup,” http://www.trustedreviews.com/article.aspx?art=183 (Jan. 24, 2004).
TYI Systems Ltd., “Bellus iPen,” http://www.bellus.com.tw/pen—scanner.htm accessed Oct. 3, 2005.
U.S. Precision Lens, “The Handbook of Plastic Optics”, 1983, 2nd Edition.
Van Eijkelenborg, Martijn A., “Imaging with Microstructured Polymer Fibre,” Optics Express, 12(2):342-346 (Jan. 26, 2004).
Vervoort, Marco, “Emile 4.1.6 User Guide,” University of Amsterdam (Jun. 12, 2003).
Vocollect, “Vocollect Voice for Handhelds,” http://www.vocollect.com/offerings/voice—handhelds.php accessed Oct. 3, 2005.
Vossler et al., “The Use of Context for Correcting Garbled English Text,” Cornell Aeronautical Laboratory, Proceedings of the 1964 19th ACM National Conference, ACM Press, pp. D2.4-1 to D2.4-13(1964).
Wang et al., “Segmentation of Merged Characters by Neural Network and Shortest-Path,” Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, ACM Press, 762-769 (1993).
Wang et al., “Micromachined Optical Waveguide Cantilever as a Resonant Optical Scanner,” Sensors and Actuators A (Physical), 102(1-2):165-175 (2002).
Wang et al., “A Study on the Document Zone Content Classification Problem,” Proceedings of the 5th International Workshop on Document Analysis Systems, pp. 212-223 (2002).
Whittaker et al., “Filochat: Handwritten Notes Provide Access to Recorded Conversations,” Human Factors in Computing Systems, CHI '94 Conference Proceedings, pp. 271-277 (Apr. 24-28, 1994).
Whittaker, Steve, “Using Cognitive Artifacts in the Design of Multimodal Interfaces,” AT&T Labs Research (May 24, 2004).
Wilcox et al., “Dynomite: A Dynamically Organized Ink and Audio Notebook,” Conference on Human Factors in Computing Systems, pp. 186-193 (1997).
Wizcom Technologies, “QuickLink-Pen Elite,” http://www.wizcomtech.com/Wizcom/products/product—info.asp?fid=1-1, accessed Oct. 3, 2005 (2004).
Wizcom Techonologies, “SuperPen Professional Product Page,” http://www.wizcomtech.com/Wizcom/proucts/product—info.asp?fid=88&cp=1, accessed Oct. 3, 2005 (2004).
Centre for Speech Technology Research, “The Festival Speech Synthesis System,” www.cstr.ed.ac.uk/projects/festival, accessed Jan. 4, 2008.
Ficstar Software Inc., “Welcome to Ficstar Software,” www.ficstar.com accessed Oct. 4, 2005.
Lingolex, “Automatic Computer Translation” http://www.lingolex.com/translationsoftware.htm (downloaded on Aug. 6, 2000).
Xerox, “Patented Technology Could Turn Camera Phone Into Portable Scanner,” Press Release Nov. 15, 2004.
Non-Final Office Action for U.S. Appl. No. 11/004,637 dated Dec. 21, 2007.
Final Office Action for U.S. Appl. No. 11/004,637 dated Oct. 2, 2008.
Non-Final Office Action for U.S. Appl. No. 11/004,637 dated Apr. 2, 2009.
Notice of Allowance for U.S. Appl. No. 11/004,637 dated Dec. 11, 2009.
Non-Final Office Action for U.S. Appl. No. 11/096,704 dated Sep. 10, 2008.
Notice of Allowance for U.S. Appl. No. 11/096,704 dated Mar. 11, 2009.
Notice of Allowance for U.S. Appl. No. 11/096,704 dated Jun. 5, 2009.
Non- Final Office Action for U.S. Appl. No. 11/097,089 dated Aug. 13, 2008.
Final Office Action for U.S. Appl. No. 11/097,089 dated Mar. 17, 2009.
Non-Final Office Action for U.S. Appl. No. 11/097,089 dated Dec. 23, 2009.
Final Office Action for U.S. Appl. No. 11/097,089 dated Sep. 23, 2010.
Non-Final Office Action for U.S. Appl. No. 11/097,089 dated Apr. 7, 2011.
Non-Final Office Action for U.S. Appl. No. 11/097,093 dated Jul. 10, 2007.
Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Jun. 25, 2007.
Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Jan. 28, 2008.
Non-Final Office Action for U.S. Appl. No. 11/097,103 dated Dec. 31, 2008.
Notice of Allowance for U.S. Appl. No. 11/097,103 dated May 14, 2009.
Non- Final Office Action for U.S. Appl. No. 11/097,828 dated May 22, 2008.
Final Office Action for U.S. Appl. No. 11/097,828 dated Feb. 4, 2009.
Notice of Allowance for U.S. Appl. No. 11/097,828 dated Feb. 5, 2010.
Non- Final Office Action for U.S. Appl. No. 11/097,833 dated Jun. 25, 2008.
Final Office Action for U.S. Appl. No. 11/097,833 dated Jul. 7, 2009.
Notice of Allowance for U.S. Appl. No. 11/097,833 dated Jan. 10, 2011.
Non-Final Office Action for U.S. Appl. No. 11/097,835 dated Oct. 9, 2007.
Final Office Action for U.S. Appl. No. 11/097,835 dated Jun. 23, 2008.
Non-Final Office Action for U.S. Appl. No. 11/097,835 dated Feb. 19, 2009.
Final Office Action for U.S. Appl. No. 11/097,835 dated Dec. 29, 2009.
Notice of Allowance for U.S. Appl. No. 11/097,835 dated Sep. 1, 2010.
Non- Final Office Action for U.S. Appl. No. 11/097,836 dated May 13, 2008.
Final Office Action for U.S. Appl. No. 11/097,836 dated Jan. 6, 2009.
Non-Final Office Action for U.S. Appl. No. 11/097,836 dated Jul. 30, 2009.
Final Office Action for U.S. Appl. No. 11/097,836 dated May 13, 2010.
Non-Final Office Action for U.S. Appl. No. 11/097,961 dated Sep. 15, 2008.
Non-Final Office Action for U.S. Appl. No. 11/097,961 dated Mar. 5, 2009.
Final Office Action for U.S. Appl. No. 11/097,961 dated Dec. 9, 2009.
Non-Final Office Action for U.S. Appl. No. 11/097,961 dated Jul. 9, 2010.
Non-Final Office Action for U.S. Appl. No. 11/097,981 dated Jan. 16, 2009.
Notice of Allowance for U.S. Appl. No. 11/097,981 dated Jul. 31, 2009.
Non- Final Office Action for U.S. Appl. No. 11/098,014 dated Jun. 18, 2008.
Final Office Action for U.S. Appl. No. 11/098,014 dated Jan. 23, 2009.
Non-Final Office Action for U.S. Appl. No. 11/098,014 dated Jun. 30, 2009.
Final Office Action for U.S. Appl. No. 11/098,014 dated Mar. 26, 2010.
Non-Final Office Action for U.S. Appl. No. 11/098,014 dated Nov. 3, 2010.
Notice of Allowance for U.S. Appl. No. 11/098,014 dated Mar. 16, 2011.
Non-Final Office Action for U.S. Appl. No. 11/098,016 dated Apr. 24, 2007.
Notice of Allowance for U.S. Appl. No. 11/098,016 dated Apr. 22, 2008.
Non-Final Office Action for U.S. Appl. No. 11/098,038 dated Aug. 28, 2006.
Final Office Action for U.S. Appl. No. 11/098,038 dated Jun. 7, 2007.
Non- Final Office Action for U.S. Appl. No. 11/098,038 dated Apr. 3, 2008.
Notice of Allowance for U.S. Appl. No. 11/098,038 dated Mar. 11, 2009.
Notice of Allowance for U.S. Appl. No. 11/098,038 dated May 29, 2009.
Non-Final Office Action for U.S. Appl. No. 11/098,042 dated Dec. 5, 2008.
Notice of Allowance for U.S. Appl. No. 11/098,042 dated Apr. 13, 2009.
Non-Final Office Action for U.S. Appl. No. 11/098,043 dated Jul. 23, 2007.
Final Office Action for U.S. Appl. No. 11/098,043 dated Apr. 17, 2008.
Non-Final Office Action for U.S. Appl. No. 11/098,043 dated Dec. 23, 2008.
Final Office Action for U.S. Appl. No. 11/098,043 dated Jul. 21, 2009.
Non-Final Office Action for U.S. Appl. No. 11/110,353 dated Jul. 27, 2007.
Non-Final Office Action for U.S. Appl. No. 11/110,353 dated Jun. 11, 2008.
Final Office Action for U.S. Appl. No. 11/110,353 dated Jan. 6, 2009.
Non-Final Office Action for U.S. Appl. No. 11/110,353 dated Sep. 15, 2009.
Notice of Allowance for U.S. Appl. No. 11/110,353 dated Dec. 2, 2009.
Non-Final Office Action for U.S. Appl. No. 11/131,945 dated Jan. 8, 2009.
Notice of Allowance for U.S. Appl. No. 11/131,945 dated Oct. 30, 2009.
Non-Final Office Action for U.S. Appl. No. 11/185,908 dated Dec. 14, 2009.
Final Office Action for U.S. Appl. No. 11/185,908 dated Jun. 28, 2010.
Non-Final Office Action for U.S. Appl. No. 11/208,408 dated Oct. 7, 2008.
Final Office Action for U.S. Appl. No. 11/208,408 dated May 11, 2009.
Non-Final Office Action for U.S. Appl. No. 11/208,408 dated Apr. 23, 2010.
Non-Final Office Action for U.S. Appl. No. 11/208,457 dated Oct. 9, 2007.
Non-Final Office Action for U.S. Appl. No. 11/208,458 dated Mar. 21, 2007.
Notice of Allowance for U.S. Appl. No. 11/208,458 dated Jun. 2, 2008.
Non-Final Office Action for U.S. Appl. No. 11/208,461 dated Sep. 29, 2009.
Non-Final Office Action for U.S. Appl. No. 11/208,461 dated Nov. 3, 2010.
Notice of Allowance for U.S. Appl. No. 11/208,461 dated Mar. 15, 2011.
Non-Final Office Action for U.S. Appl. No. 11/209,333 dated Apr. 29, 2010.
Notice of Allowance for U.S. Appl. No. 11/210,260 dated Jan. 13, 2010.
Non-Final Office Action for U.S. Appl. No. 11/236,330 dated Dec. 2, 2009.
Notice of Allowance for U.S. Appl. No. 11/236,330 dated Jun. 22, 2010.
Non-Final Office Action for U.S. Appl. No. 11/236,440 dated Jan. 22, 2009.
Final Office Action for U.S. Appl. No. 11/236,440 dated Jul. 22, 2009.
Non-Final Office Action for U.S. Appl. No. 11/365,983 dated Jan. 26, 2010.
Final Office Action for U.S. Appl. No. 11/365,983 dated Sep. 14, 2010.
Non-Final Office Action for U.S. Appl. No. 11/547,835 dated Dec. 29, 2010.
Non-Final Office Action for U.S. Appl. No. 11/672,014 dated May 6, 2010.
Notice of Allowance for U.S. Appl. No. 11/672,014 dated Feb. 28, 2011.
Non-Final Office Action for U.S. Appl. No. 11/758,866 dated Jun. 14, 2010.
Non-Final Office Action for U.S. Appl. No. 11/972,562 dated Apr. 21, 2010.
Non-Final Office Action for U.S. Appl. No. 12/538,731 dated Jun. 28, 2010.
Notice of Allowance for U.S. Appl. No. 12/538,731 dated Oct. 18, 2010.
Non-Final Office Action for U.S. Appl. No. 12/541,891 dated Dec. 9, 2010.
Non-Final Office Action for U.S. Appl. No. 12/542,816 dated Jun. 18, 2010.
Notice of Allowance for U.S. Appl. No. 12/542,816 dated Jan. 3, 2011.
Notice of Allowance for U.S. Appl. No. 12/542,816 dated Apr. 27, 2011.
Non-Final Office Action for U.S. Appl. No. 12/721,456 dated Mar. 1, 2011.
Non-Final Office Action for U.S. Appl. No. 12/887,473 dated Feb. 4, 2011.
Non-Final Office Action for U.S. Appl. No. 12/889,321 dated Mar. 31, 2011.
Non-Final Office Action for U.S. Appl. No. 12/904,064 dated Mar. 30, 2011.
King et al., U.S. Appl. No. 11/432,731, filed May 11, 2006.
King et al., U.S. Appl. No. 11/933,204, filed Oct. 21, 2007.
King et al., U.S. Appl. No. 11/952,885, filed Dec. 7, 2007.
King et al., U.S. Appl. No. 12/517,352, filed Jun. 2, 2009.
King et al., U.S. Appl. No. 12/517,541, filed Jun. 3, 2009.
King et al., U.S. Appl. No. 12/728,144, filed Mar. 19, 2010.
King et al., U.S. Appl. No. 12/884,139, filed Sep. 16, 2010.
King et al., U.S. Appl. No. 12/894,059, filed Sep. 29, 2010.
King et al., U.S. Appl. No. 12/902,081, filed Oct. 11, 2010.
King et al., U.S. Appl. No. 12/904,064, filed Oct. 13, 2010.
King et al., U.S. Appl. No. 12/961,407, filed Dec. 6, 2010.
King et al., U.S. Appl. No. 12/964,662, filed Dec. 9, 2010.
King et al., U.S. Appl. No. 13/031,316, filed Feb. 21, 2011.
European Search Report for EP Application No. 05731509 dated Apr. 23, 2009.
European Search Report for EP Application No. 05732913 dated Mar. 31, 2009.
European Search Report for EP Application No. 05733191 dated Apr. 23, 2009.
European Search Report for EP Application No. 05733819 dated Mar. 31, 2009.
European Search Report for EP Application No. 05733851 dated Sep. 2, 2009.
European Search Report for EP Application No. 05733915 dated Dec. 30, 2009.
European Search Report for EP Application No. 05734996 dated Mar. 23, 2009.
European Search Report for EP Application No. 05735008 dated Feb. 16, 2011.
European Search Report for EP Application No. 05737714 dated Mar. 31, 2009.
European Search Report for EP Application No. 05734796 dated Apr. 22, 2009.
European Search Report for EP Application No. 05734947 dated Mar. 20, 2009.
European Search Report for EP Application No. 05742065 dated Mar. 23, 2009.
European Search Report for EP Application No. 05745611 dated Mar. 23, 2009.
European Search Report for EP Application No. 05746428 dated Mar. 24, 2009.
European Search Report for EP Application No. 05746830 dated Mar. 23, 2009.
European Search Report for EP Application No. 05753019 dated Mar. 31, 2009.
European Search Report for EP Application No. 05789280 dated Mar. 23, 2009.
European Search Report for EP Application No. 05812073 dated Mar. 23, 2009.
European Search Report for EP Application No. 07813283 dated Dec. 10, 2010.
International Search Report for PCT/EP2007/005038 dated Sep. 17, 2007.
International Search Report for PCT/EP2007/007824 dated May 25, 2009.
International Search Report for PCT/EP2007/008075 dated Oct. 10, 2008.
International Search Report for PCT/US2005/011012 dated Sep. 29, 2006.
International Search Report for PCT/US2005/011013 dated Oct. 19, 2007.
International Search Report for PCT/US2005/011014 dated May 16, 2007.
International Search Report for PCT/US2005/011015 dated Dec. 1, 2006.
International Search Report for PCT/US2005/011016 dated May 29, 2007.
International Search Report for PCT/US2005/011017 dated Jul. 15, 2008.
International Search Report for PCT/US2005/011026 dated Jun. 11, 2007.
International Search Report for PCT/US2005/011042 dated Sep. 10, 2007.
International Search Report for PCT/US2005/011043 dated Sep. 20, 2007.
International Search Report for PCT/US2005/011084 dated Aug. 8, 2008.
International Search Report for PCT/US2005/011085 dated Sep. 14, 2006.
International Search Report for PCT/US2005/011088 dated Aug. 29, 2008.
International Search Report for PCT/US2005/011089 dated Jul. 8, 2008.
International Search Report for PCT/US2005/011090 dated Sep. 27, 2006.
International Search Report for PCT/US2005/011533 dated Jun. 4, 2007.
International Search Report for PCT/US2005/011534 dated Nov. 9, 2006.
International Search Report for PCT/US2005/012510 dated Jan. 6, 2011.
International Search Report for PCT/US2005/013297 dated Aug. 14, 2007.
International Search Report for PCT/US2005/013586 dated Aug. 7, 2009.
International Search Report for PCT/US2005/017333 dated Jun. 4, 2007.
International Search Report for PCT/US2005/025732 dated Dec. 5, 2005.
International Search Report for PCT/US2005/029534 dated May 15, 2007.
International Search Report for PCT/US2005/029536 dated Apr. 19, 2007.
International Search Report for PCT/US2005/029537 dated Sep. 28, 2007.
International Search Report for PCT/US2005/029539 dated Sep. 29, 2008.
International Search Report for PCT/US2005/029680 dated Jul. 13, 2010.
International Search Report for PCT/US2005/030007 dated Mar. 11, 2008.
International Search Report for PCT/US2005/034319 dated Apr. 17, 2006.
International Search Report for PCT/US2005/034734 dated Apr. 4, 2006.
International Search Report for PCT/US2006/007108 dated Oct. 30, 2007.
International Search Report for PCT/US2006/018198 dated Sep. 25, 2007.
International Search Report for PCT/US2007/074214 dated Sep. 9, 2008.
International Search Report for PCT/US2010/000497 dated Sep. 27, 2010.
International Search Report for PCT/US2010/000498 dated Aug. 2, 2010.
International Search Report for PCT/US2010/000499 dated Aug. 31, 2010.
International Search Report for PCT/US2010/027254 dated Oct. 22, 2010.
International Search Report for PCT/US2010/027255 dated Nov. 16, 2010.
International Search Report for PCT/US2010/027256 dated Nov. 15, 2010.
International Search Report for PCT/US2010/028066 dated Oct. 26, 2010.
Related Publications (1)
Number Date Country
20110142371 A1 Jun 2011 US
Provisional Applications (3)
Number Date Country
60843362 Sep 2006 US
60844894 Sep 2006 US
60845604 Sep 2006 US
Continuations (1)
Number Date Country
Parent 12517352 US
Child 12831213 US