Optical sensor and method for optically inspecting surfaces

Abstract
In one aspect, an optical sensor is used to detect defects, which can appear on smooth surfaces, is provided. The sensor includes a telecentric laser scanner and a detection unit. The scanner includes a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, and a telecentric optical system for guiding illumination and detection beams the detection unit includes an optical detector system, a central diaphragm, which is concentrically positioned in the vicinity of the optical detector system in the direction toward the telecentric laser scanner, a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, and a slit diaphragm arranged upstream of the photomultiplier.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are described below with reference to schematic figures which do not restrict the invention.



FIG. 1 shows the main design of a sensor comprising a detection unit and a telecentric laser scanner,



FIG. 2 shows a variant of a sensor according to FIG. 1, with a diagram rotated about 90° about the optical axis of the lens being selected.





DETAILED DESCRIPTION OF INVENTION


FIG. 1, which reproduces the main design of a described sensor, shows that the collimated light of a laser is deflected from a scanner in a specific angular range. A laser 1 generates a laser beam, which is deflected by means of a scanning mirror 2. A telecentric optical scanning system 4 focuses the deflected light onto the smooth surface 5 to be examined or onto a glass specimen. The light beams hit the surface perpendicularly, and as a result of the deflection of the scanning mirror, the laser focus on the surface describes a line. The laminar scanning of the glass specimen is achieved by the infeed of the specimen perpendicular to the scanning line. The scattered light reflected by the glass surface is collimated by the telecentric optical scanning system 4 and is focused onto a slit diaphragm 7 using a downstream optical detector system 8. The focused light flows through the slit diaphragm 7 and hits the receiving surface of a photomultiplier 6. The slit diaphragm 7 arranged upstream of the photomultiplier 6 shields this considerably from outside light, which does not emanate from the site of the laser focus on the glass surface. The diaphragm 9 in the center of the optical detector system blocks the light reflected in a mirror-like manner from the glass surface, which, by virtue of the telecentric illumination, flows back on the detection beam path, shown left in FIG. 1.


With the size of the central diaphragm 9, which can to a certain extent be of a variable design, a certain independency of the sensor compared with angular deviations is produced, so that the surface to be examined can to a certain extent be inclined toward the vertical illumination direction. The central diaphragm of the optical detector system effects an annular detector aperture irrespective of the site of the scanning beam. This annular aperture enables a uniform detection sensitivity for linear defects, irrespective of their direction on the surface to be examined.



FIG. 2 shows a variant of the diagram in FIG. 1, with an arrangement rotated about 90° about the optical axis of the lenses being selected. The optical scanning system 4 consists in this example of a further optical system, in order for instance to increase the scanning angle. As this optical component is not to be radiated from the reflected scattered light, it must be arranged outside the detection beam path. It is consequently supplied by way of a tilted mirror 3. At the same time, this tilted mirror replaces the central diaphragm 9, which can be seen in FIG. 1. In this way, the tilted mirror 3 is significantly wider than the central diaphragm 9. The detection aperture is consequently no longer annular in this example, but instead consists of two opposite circular segments. The rotation symmetry of the aperture thus lapsed results in the linear defects being clearly recognizable in all circumstances. This angular gap in the detection region can be covered by a further sensor, the scanning line of which is rotated compared with that of the first sensor such that its detection region covers the angular gap of the first sensor.


A complete examination of flat glass is thus possible, and defects, which are punctiform, laminar or linear, can be recognized and localized in the submicrometer range. In particular, the complete inspection of the surface with a rough localization of the defects is carried out using a first sensor with high depth of field and the decision as to on which side of a flat glass panel the defect lies is made using a second sensor with lower depth of field.


With a corresponding infeed of a flat glass panel, a laminar scanning of the object and thus the detection of different types of defects is achieved using the oscillating movement of the laser beam.


Fine scratches scatter the illuminating light only perpendicularly to its longitudinal axis. They are thus only visible if they are viewed perpendicularly to their longitudinal axis. To ensure that scratches of this type can be identified irrespective of their position on the glass, the aperture of the optical receiver system must be arranged rotationally-symmetrical to the illumination direction. If the aperture is not completely rotationally symmetrical for technical reasons, several sensors with overlapping aperture ranges can be used. In this way, an object surface is scanned in succession. The high measurement speed is achieved by the parallel use of several sensors. Furthermore, this illustrated modular design enables the inspection system to be adapted to glass plates of different widths.


As the depth of field of the above-described sensor is greater than the glass thickness, defects on the front and rear sides can at first not be distinguished from one another. To this end, a second sensor is provided, the depth of field of which is smaller than the glass thickness and can thus emit distance and/or height values. In practice, a complete examination is not possible using only a second sensor of this type. This is thus only used if the lateral position of a defect, which is already found using the first sensor, is fixed and thus only the height position is still to be determined.

Claims
  • 1.-13. (canceled)
  • 14. An optical sensor for detecting punctiform, linear or laminar defects on smooth surfaces, comprising: a telecentric laser scanner having: a laser for the approximately perpendicular illumination of a smooth surface,a scanning mirror, anda telecentric optical system for guiding illumination and detection beams; anda detection unit having: an optical detector system,a central diaphragm positioned concentrically in the vicinity of the optical detector system toward the telecentric laser scanner,a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, anda slit diaphragm arranged upstream of the photomultiplier.
  • 15. The optical sensor system as claimed in claim 14, wherein an aperture of an optical receiver system is arranged in a rotationally symmetrical manner to the illumination direction.
  • 16. The optical sensor system as claimed in claim 15, wherein an aperture of an optical receiver system is designed to be annular.
  • 17. The optical sensor system as claimed in claim 14, wherein in the case of an incomplete rotationally-symmetrical configuration of the optical detection system, a second sensor is provided with an aperture range overlapping the first sensor, the scanning line of which forms an angle to the scanning line of the first sensor.
  • 18. The optical sensor system as claimed in claim 14, wherein an optical scanning system is arranged outside the detection beam path in order to increase a scanning angle, and the scanning laser beam is injected by way of a tilted mirror, which simultaneously represents the central diaphragm.
  • 19. The optical sensor system as claimed in claim 14, wherein the smooth surface to be scanned by the sensor is a flat glass panel.
  • 20. The optical sensor system as claimed in claim 14, wherein the optical sensor is designed to: laterally locate defects on both sides using a depth of field, which detects the two sides of a flat glass panel, anddetermine the extent of the defect and thus the side of the flat glass panel bearing the defect using a depth of field which is smaller than the material thickness of the flat glass panel.
  • 21. A method for detecting punctiform, linear or laminar defects on a smooth surface, comprising: providing an telecentric laser scanner having: a laser for the approximately perpendicular illumination of a smooth surface, a scanning mirror, anda telecentric optical system for guiding illumination and detection beams anda detection unit having an optical detector system,a central diaphragm, which is positioned concentrically in the vicinity of the optical detector system toward the telecentric laser scanner,a highly sensitive photomultiplier for detecting scattered light, which emanates from defects on smooth surfaces, anda slit diaphragm arranged upstream of the photomultiplier;illuminating a smooth surface of an object approximately perpendicularly via the telecentric laser scanner for the examination thereof;guiding scattered light emanating from a defect point to the highly sensitive photomultiplier for optical/electronic conversion;arranging the slit diaphragm upstream of the photomultiplier for eliminating outside light, on which the slit diaphragm the scattered light emanating from a defect point is focused and is conveyed further from here, before hitting the photomultiplier; andarranging a central diaphragm in the detection beam path to shield light reflected in a mirror-like manner by virtue of the telecentric design,wherein an annular aperture of the optical detector system with a uniform detection sensitivity results irrespective of the direction of the defect on the surface.
  • 22. The method as claimed in claim 21, wherein smooth surfaces are measured on both sides from one side on a transparent material.
  • 23. The method as claimed in claim 22, wherein the transparent material to be measured is flat glass.
  • 24. The method as claimed in claim 21, wherein a first and a second sensor each having illumination beams with a focus diameter, the first and second sensor having a different focus diameters, so that a depth of field results in each instance, with which a complete surface-related detection of defects on both sides of the surface is possible, and the position of defects previously detected using the first sensor can be distinguished in respect of the front and rear sides of the surface.
  • 25. The method as claimed in claim 21, wherein two sensor systems with different depths of field used in a time-offset manner are provided in order to detect the totality of all defects, and in order to determine the extent of individual defects.
  • 26. The method as claimed in claim 21, wherein a complete coverage is achieved with the inspection of the flat surface via the parallel use of a number of sensors or sensor combinations.
  • 27. The method as claimed in claim 21, wherein a complete coverage is achieved with the inspection of the flat surface via the parallel use of a number of sensors and sensor combinations.
Priority Claims (1)
Number Date Country Kind
102006019468.3 DE Apr 2006 DE national