OPTICAL SYSTEM FOR GENERATING A PATTERN WHICH CHANGES OVER TIME FOR A CONFOCAL MICROSCOPE

Abstract
The invention relates to an optical system for generating a pattern which changes over time for a confocal microscope comprising a light source arrangement (1, 12a, 12b, 12c) from which light beams travel to an object (7) which reflects the light beams, a beam splitter (3) for allowing passage of the light beams proceeding from the light source arrangement (1, 12a, 12b, 12c) in the direction of the object (7) and for deflecting the light beams reflected by the object (7) in a focal plane in the direction of a detector (8) with a detector pattern for detecting an image of the object (7) and a lens arrangement (4a, 4b) between the beam splitter (3) and the object (7). In particular the light source arrangement (1, 12a, 12b, 12c) has at least one light source (1) and an arrangement (12a, 12b, 12c) which switches over the light beams emitted by the at least one light source (1) with respect to their direction of polarization for generating a changing projector pattern (2) without moving a mask with the projector (2) pattern.
Description
TECHNICAL FIELD

The invention relates to an optical system for generating a pattern which changes over time for a confocal microscope.


PRIOR ART

There are various types of confocal microscopes that detect a surface of an object to be scanned based on the fact that the surface is in focus. Examples of such systems are laser confocal microscopes, such as are known from US2007/0109559 A1, or pOFPT (=parallel Focal Point Optical Tomography), as described in the Swiss patent application 016247/07.


In a pOFPT scanner, a moving pattern is projected onto an object to be scanned. This is advantageous because it is a simpler and more accurate signal technology to detect changing patterns than static ones. This movement is realized there such that a mask with the pattern is mechanically moved quickly. The movement is oscillating or continuous.


However, this mechanical motion has some significant disadvantages. The mechanism requires space, which makes a compact design impossible. The mechanism is also relatively expensive. In addition, the mechanical movement is not entirely precise. In particular, the accuracy of the rate of change is limited, which substantially increases the cost of the analysis. It can even cause operational failures in the mechanical movement.


There are optical elements that would allow a movement or change of the pattern. These elements are used, for example, in projectors. However, they are too slow for the desired scan. For example, the LCDs for LCD projectors allow a maximum of 200 image changes per second. However, for an application with scanning using the system described here, at least 2,000 image changes per second are necessary, but 20,000 are even better.


It is therefore the object of the present invention to provide an optical system for a confocal microscope and an associated method in which a moving or changing of the pattern in particular is simplified, and the change is very precisely time-controlled and can be exactly synchronized with the subsequent evaluation of the signals.


DESCRIPTION OF THE INVENTION

This object is achieved by an optical system and method as set forth, respectively, in claim 1 and in claim 18. Advantageous developments of the invention are specified in the dependent claims.


According to the invention, an optical system for a confocal microscope is provided comprising a light source arrangement from which light beams travel to an object that reflects the light beams, a beam splitter for allowing passage of the light beams proceeding from the light source arrangement in the direction of the object and for deflecting light beams reflected by the object in a focal plane in the direction of a detector with a detector pattern for detecting an image of the object and a lens arrangement between the beam splitter and the object. In particular, the light source arrangement has at least one light source and a device that switches the direction of polarization of the light beams emitted by the at least one light source to generate a changing projector pattern without moving a mask having the projector pattern.


Preferably, the beam splitter is a polarizing beam splitter. Therefore, the light of the movable projector pattern should always have the same polarization direction.


According to the invention, the mechanical movement is thus replaced by a fixed, special optical arrangement and at least one polarized light source, in which the polarization direction is changed. The projected pattern or projector pattern then changes as fast as the polarization direction of the light source arrangement changes. The change in the polarization direction can be carried out as quickly as desired.


Preferably, the device for switching the light beams emitted by the at least one light source is fixedly arranged downstream with respect to their polarization direction of the light source, and a controllable optical retarder, which switches the polarization direction between two different polarization directions. A fast switching and a change in the polarization direction is thus possible.


The controllable optical retarder is preferably a Pockels cell that rotates the polarization direction, depending on the voltage applied to electrical terminals, from entrance to exit, the voltage being switched between two voltages V1 and V2 in such a way that the retardation changes by lambda/2 or an odd multiple thereof. Fast and well-controlled switching is possible.


Alternatively, the controllable optical retarder is preferably a stationary rotating lambda/4 retarder. Fast and simple switching can also be realized using such a lambda/4 retarder.


Alternatively, the light source arrangement preferably has two light sources and a switching device as a device for switching the light beams emitted by the at least one light source with respect to its direction of polarization, the light paths of the two light sources being combined into a single light path, the two light sources emitting polarized light and the respective polarization directions of the two light sources being rotated 90°, and the switching device in each case switching only one of the light sources into an on state and thereby changing the respective polarization direction of the combined light.


The two light sources can be provided side by side in such close proximity that their light paths are combined into the single light path. A diffusion disk is preferably connected downstream of the light sources. Such a diffusion disk serves to better focus the incident light and radiate it in the desired direction.


The two light sources may be arranged offset by 90°, a beam combiner then combining their light paths into a single light path.


Through the above-described embodiments having two light sources and one switching device, a particularly accurate switching to a respective polarization direction is possible.


The respective light sources are preferably laser diodes which emit already naturally polarized light, or LEDs with downstream polarizers. Such light sources are to be used in a simple manner.


The light is preferably linearly polarized, and the two polarization directions are preferably rotated by 90° with respect to each other, so that simply structured polarization directions are used.


Preferably, a lambda/4 retarder downstream of the light source arrangement is provided that converts the polarization directions into two circular polarization directions, one counterclockwise and one clockwise. Due to this conversion of the polarization direction, a projector pattern can be generated in a simple manner.


Preferably provided between a structured retarder downstream of the lambda/4 retarder and the lens arrangement is a linear polarizer that blocks the light from positions at which the polarization is rotated 90°, and allows the light to pass through from positions at which the direction of polarization is present, so that the illumination pattern is transparent at these positions. This measure can also simplify the generation of a projector pattern, and it ensures that the light that goes toward the subsequent beam splitter always has the same polarization direction.


The illumination pattern or projector pattern is preferably a pattern that can be controlled as desired, a fixed line pattern or a fixed checkerboard pattern. These patterns are easy to use in practice.


Controllable patterns can be easily realized by employing a transparent LCD as used in LCD projectors. Creating a suitable image generates a structured retarder.


Preferably, means for aligning projector patterns and detector patterns are provided. The alignment of the pattern is necessary, so that a good image can be produced when the optical system is employed as a scanner.


As means for evaluating received signals, a filter is preferably provided whose switching frequency is synchronized with the switching frequency of the polarization direction of the light source. Preferably, the filter is realized as a lock-in amplifier. The synchronization serves to achieve an easily detectable signal during scanning.


Furthermore, the invention relates to a method of scanning using the optical system according to the invention for a confocal microscope and having the following steps:


Aligning the projector pattern and the detector pattern, tuning the focal plane while the projector pattern is changed with a high switching frequency, obtaining a signal having a frequency corresponding to the switching frequency, narrow-band filtering of the received signal and searching for the maximum intensity of the signal after the narrow band filtering, and searching for a signal peak having a constant width.


Because of its compact design, the optical system according to the invention is especially well-suited for use in an intra-oral scanner for measuring teeth.





BRIEF DESCRIPTION OF THE DRAWINGS

The specified and other features and details of the invention will become clear to a person skilled in the art from the following detailed description and the accompanying drawings that illustrate features of the present invention based on an example, in which



FIG. 1 shows a general structure of an optical system for a confocal microscope according to the present invention,



FIG. 2 shows a light source arrangement having a switchable polarization direction via a Pockels cell according to the present invention,



FIG. 3 shows a light source arrangement having a switchable polarization direction via (stationary rotating) waveplate according to the present invention,



FIG. 4 shows a light source arrangement having a switchable polarization direction via two light sources according to the present invention,



FIG. 5 shows another light source arrangement having a switchable polarization direction via two light sources according to the present invention,



FIG. 6 shows an arrangement for generating an alternating stripe pattern according to the present invention,



FIG. 7 shows a structured retarder according to the present invention,



FIG. 8 is an illustration for positioning the changing pattern,



FIG. 9 shows a projector pattern,



FIG. 10 shows a detector pattern,



FIG. 11 shows a projector pattern and a detector pattern seen from the measurement object having a correct orientation,



FIG. 12 shows a projector pattern and a detector pattern seen from the measurement object having an incorrect orientation,



FIG. 13 shows a signal at a pixel during tuning of the focus position,



FIG. 14 shows a resulting signal at a pixel after a narrow-band filtering, and



FIG. 15 shows a resulting signal at a pixel after a narrow-band filtering for a scan of natural teeth.





EXEMPLARY EMBODIMENT

Hereinafter, the present invention will be explained in detail based on preferred embodiments with reference to the figures.



FIG. 1 shows the general structure of an optical system according to the invention for a confocal microscope, wherein a light source arrangement 1 is provided, and a projector pattern 2 is a projected pattern that changes depending on the polarization of the light source arrangement 1. The light source arrangement 1 in FIG. 1 is shown in detail in FIGS. 2 to 4 as a light source arrangement 1 with switchable polarization. Furthermore, a beam splitter 3 is provided which can be a polarizing beam splitter. In the case of a double arrow 4, a displacement of the focal plane is performed by moving the second lens 4b of a lens arrangement having a first lens 4a and a second lens 4b. Shown also are a reflecting mirror 5, a ¼ waveplate 6, an object 7 such as a tooth, a detector pattern 8 and a sensor 9. The detector pattern need not be used if the pixel pattern of the sensor is used as the detector pattern. The sensor may be, for example, a smart-pixel image sensor for pOCT.


Light beams from the projector pattern 2 run through the beam splitter 3 toward the object 7 through the first lens 4a and the second lens 4b up to a focal plane at the object 7. The light beams reflected by the object 7 run back through the lenses 4a and 4b and the beam splitter 3 toward the sensor 9 where an image of the object 7 is detected. In a laser confocal microscope, the illumination pattern or projector pattern comprises at least one point light source, the laser, and in a pOFPT device, the illumination pattern comprises an image transilluminated by a light source. The double arrow 4 at the second lens 4b indicates a movement of the second lens 4b, said movement resulting in a corresponding movement of the focal plane at the object 7. To move the second lens 4b, a drive device is provided which may be a controlled motor, for example.



FIG. 2 shows a light source arrangement 1, 12a having a switchable polarization direction via a Pockels cell 12a with electrical connections 14, an optical beam path 13, a light entrance 15 and a light exit 16.


The light source 1 emits polarized light. It may, for example, be a laser diode which emits already naturally polarized light, or else an LED having a downstream polarizer. The Pockels cell 12a is a controllable optical retarder that can rotate the polarization direction, depending on the voltage applied to the electrical connections 14, from light entrance 15 to light exit 16.


The voltage is preferably switched between two voltages V1 and V2 that changes the delay by lambda/2 or an odd multiple thereof. Thus, the light at the light outlet 16 has two different polarization directions for the voltages V1 and V2, for example, two linearly polarized directions preferably rotated 90° or two circular polarization directions, one counterclockwise and one clockwise, or corresponding mixtures.



FIG. 3 shows a light source arrangement comprising a light source 1 and a stationary rotating lambda/4 retarder 12b, an optical beam path 13, a light entrance 15 and a light exit 16. Instead of the Pockels cell 12a of FIG. 2, the delay and thus the polarization is changed at the light exit 16 by means of mechanical movement (in this case rotation) in a structure according to FIG. 3.



FIG. 4 shows a light source arrangement comprising a first light source 1a and a second light source 1b. The two light sources 1a and 1b are arranged side by side. If they are arranged side by side very close to each other, an optical beam path 13a of the first light source 1a light path and an optical beam path 13b of the second light source 1b light path become an optical beam path 20 of the light path of the combined light paths of the first light source 1a and the second light source 1b.


The polarization direction of the combined light can now be switched via a switching device 12c by alternatively switching on only the light source 1a and only the light source 1b.


The two light sources 1a and 1b emit polarized light, and the respective polarization directions of the two light sources 1a and 1b are rotated 90°. The switching device 12c in each case switches only one of the light sources 1a and 1b into an on state and thereby changes the respective polarization direction of the combined light.


According to FIG. 4, a diffusion disk is downstream of the light sources 1a and 1b to focus the light better and radiate it in the desired direction.



FIG. 5 also shows a light source arrangement having a first light source 1a and a second light source 1b. The two light sources 1a and 1b are arranged offset by 90°, and a polarizing beam combiner/beam splitter 30 combines its light paths into a single light path. FIG. 5 further shows an optical beam path 13a of the light path of the first light source 1a, an optical beam path 13b of the light path of the second light source 1b, and an optical beam path 20 of the light path of the combined light paths of the first light source 1a and the second light source 1b.


In the embodiments of FIGS. 4 and 5, the light sources 1a and 1b emit polarized light. They can be, for example, laser diodes which emit already naturally polarized light, or an LED with a downstream polarizer. The two light sources 1a and 1b are configured in such a way that the polarization directions are rotated between them by 90°. According to the embodiment of FIG. 5, the beam combiner 30 combines the light paths 13a and 13b of the two light sources 1a and 1b into a single light path 20. According to the embodiment of FIG. 4, the single light path 20 is produced by arranging the two light sources 1a and 1b side by side very close to each other. The bundling and alignment can be improved by providing the depicted diffusion disk.


The polarization direction of the combined light can now be switched via the switching device 12c by alternatively switching on only the light source 1a and only the light source 1b.


In this arrangement, the light is linearly polarized, and the two polarization directions are rotated 90° with respect to each other. If required, by connecting a lambda/4 retarder downstream, the polarization directions can be converted into two circular polarization directions, one counterclockwise and one clockwise.


Using a structured retarder and a linear polarizer downstream can generate an alternating pattern; one pattern or the other is projected depending on the polarization direction of the illumination unit.



FIG. 6 shows an arrangement for generating an alternating stripe pattern, in which are shown in particular: a light source 1, an unpatterned lambda/4 retarder 21, a structured retarder 22, a linear polarizer 23, light 24 from the source, light 25 with a switching pattern, a first polarization direction 26 of light source 1, a second polarization direction 27 of the light source and a polarization direction 28 of the light with the pattern.


The light source 1 emits light with a changing polarization direction 26, 27, such as linearly polarized light. The lambda/4 retarder 21 converts linearly polarized light into circular polarized light, switching between clockwise and counterclockwise. The structured retarder 22 is structured in such a way that it is retarded at certain positions by +lambda/4 and at other positions by −lambda/4.


The light from light source 1 at certain positions therefore undergoes a delay by lambda/2, namely +lambda/4 from the retarder 21 and +lambda/4 from the structured retarder 22, and at other positions there is no delay, namely +lambda/4 from the retarder 21 and −lambda/4 from the structured retarder 22.


At the positions at which the light undergoes a delay of lambda/2, the polarization direction is rotated by 90°. At the other positions, it is not rotated.


If light source 1 is then switched in such a way that the polarization direction 26 is present, those positions of the pattern are transparent at which no rotation of the polarization takes place. The light from the positions at which the polarization is rotated by 90° is blocked at the linear polarizer 23. Conversely, if the light source 1 is switched so that the polarization direction 27 is present, then the other positions of the pattern are transparent.


The arrangement of FIG. 6 is a possible and logical arrangement for generating a suitable projector pattern. However, the delay may also be distributed in other ways, and the unstructured lambda/4 retarder 21 is not always necessary, and it can also be arranged between elements 22 and 23.


However, it is important that the differences between the delays at the structured retarder 22 be at least approximately lambda/2 or an odd multiple thereof, so that linearly polarized light having a polarization direction rotated 90° is present upstream of the linear polarizer 23.


To generate a switching stripe pattern as a projector pattern, for example through the arrangement shown in FIG. 5, the patterned retarder appears, for example, as it is shown in FIG. 7. In FIG. 7, points with +lambda/4 delay 31 and points with −lambda/4 delay 32 can be seen.


Such structured retarders are now state-of-the-art and are used, for example, in 3D televisions. It is also possible to use a transparent LCD such as is used, for example, in projectors. This is also a structured retarder in which the zones can be switched with the delay corresponding to the image on the LCD. The structured retarder may have any pattern. Suitable patterns for the use according to the invention are, for example, line or checkerboard patterns.


To achieve a good signal when using the optical system according to the invention, the projector pattern and detector pattern of the system must be aligned and positioned accordingly. Such a positioning of the changing pattern will now be described with reference to FIG. 8. In FIG. 8, a projector pattern 2 is to be seen as a projected pattern that changes as a function of the polarization of the light source. Also shown are a detector pattern 8 which must not be used when the pixel pattern of the sensor is used as a detector pattern, a sensor 9 which may be a smart pixel image sensor for pOCT, a beam splitter 3 which may be a polarizing beam splitter, and a measurement object 7.


Seen from the measurement object 7, the projector pattern 2 and the detector pattern 8 must be optically arranged at the same location. The projector pattern 2 sees the object directly, and the detector pattern 8 sees the object through the beam splitter 3. But both patterns appear in the same place.


It should be noted that the arrangement of projector pattern 2 and detector pattern 8 can be reversed. In the following, the reference is always to detector pattern 8, even if no such component need be used. Ideally, the pixel structure of the sensor is used directly as a detector pattern.


There now follows a description of a lateral alignment of the projector pattern and detector pattern. In the following example, the projector pattern is a stripe pattern, and the detector pattern is the pixel structure of an image sensor, as can be seen in FIGS. 9 and 10. Here, a projector pattern 41 is a stripe pattern, and a detector pattern 42 is a pixel pattern of an image sensor. Shown also are a first area type 44 which is bright if a polarization of the source 1 is in a first state and dark if the polarization is in a second state, and a second area type 45 which is bright if a polarization of source 1 is in the second state and dark if the polarization in the first state.



FIG. 11 now shows a projector pattern and a detector pattern seen from the measurement object with correct alignment, and FIG. 12 shows a projector pattern and a detector pattern seen from the measurement object with misalignment.


Also shown in FIGS. 11 and 12—in addition to the projector pattern 41 as a stripe pattern, the detector pattern 42 as a pixel pattern of an image sensor, the first area type 44 and the second area type 45 of FIGS. 9 and 10—are pixels 43, which will supply no signal.


When aligned correctly, as can be seen in FIG. 11, all detector pixels will provide a signal. In the case of faulty alignment as can be seen in FIG. 12, such detector pixels 43 which are in a transition of the projector pattern, provide no signal or only a weak signal.


The lateral (side) mutual alignment can be simplified in certain cases. If e.g. a LCD display having a pixel pattern which is finer than the structure of the detector pattern is used for the projector pattern, the position of the pattern can be adapted by means of software to the position of the detector pattern. If a detector pattern is used having a structure that is finer than the required lateral resolution, such as a high-resolution image sensor, an alignment can be omitted by eliminating the pixels that deliver too weak a signal.


A description of the evaluation of the signal follows. In the following description, it is assumed that a light source 1a and a light source 1b are used as shown in FIG. 5. However, with appropriate adjustments, the description also applies to other arrangements of FIGS. 2 to 4.


The scanning with the scanner is done then as follows: The position of the focal plane is tuned. During the tuning, the polarization of the light source is continuously switched, such as with a frequency f1. If the object to be scanned is far enough away from the focal plane of the projector pattern, a single detector pixel sees the projector pattern so unfocused that the same amount of light from the two surface types 44 and 45 of FIG. 8 strikes the pixel. The two light sources 1a and 1b of the illumination unit are adjusted, for example by application of current, in such a way that the measured amount of light is then actually equal.


If the object to be scanned is in the focal plane of the projector pattern, differences in intensity strike each pixel depending on whether the surface type 44 or 45 is in fact bright.


The signal then appears at a pixel somewhat as is shown in FIG. 13.


In the example of FIG. 13, there is an object at the position of the corresponding pixel at 5.15 mm. The frequency of the signal corresponds to the frequency f1 with which the polarization of the light source is switched.


To find the position where the object is located, the following procedure is followed: Narrow band filtering of the signal is performed at the frequency f1, and the maximum intensity of the signal after the narrow band filtering is searched.


Preferably, the switching frequency is relatively high, so many periods of the alternating signal occur for the surface. This allows a very narrow-band filtering of the alternating signal, thereby also filtering out noise and hum of the signal.


The filtering is ideally realized as a digital filter, the switching frequency of the filter being exactly synchronized with the switching of the polarization direction of the source. For this purpose, a lock-in amplifier is ideally used.


Through conscious asymmetries in the filtering, asymmetries can thus also be compensated in the illumination unit as needed: If the signal is not exactly the same strength in the two polarization directions, a certain alternating signal results even at a distance from the focus. This can be corrected by the light levels being adjusted relative to each other, or else by targeted asymmetrically filtering.


This narrow-band filtering is done ideally using smart pixel sensors for OCT (OCT=Optical Coherence Tomography) applications. In that context, this filtering is performed for each pixel on the sensor.


The resulting signal at a pixel after narrow band filtering then looks like it appears in FIG. 14.


The z-position is a measure of the position of the focal plane. Located at the position of the local maximum or minimum is the surface for the corresponding pixel.


Less cooperative surfaces, such as the material of natural teeth, produce a similar, although weaker signal, as can be seen in FIG. 15.


Ideally, the signal regarding the Z position would be constant and would have a maximum or minimum only at the point at which the pattern is sharply projected onto the object. In practice, the signal is not really constant in any focal region. The reasons for this are noise superimposed on the signal and drift of the signal due to the fact that the two light sources with respective different polarization are not perfectly equal.


The width of the signal peaks, however, depends on the optical system of the measuring device and is independent of the measurement object surface type. Thus, the position of the surface can be found by searching for a signal peak of known width. The surface is therefore preferably calculated by searching for a signal peak of this width. The surface is then located at the position of maximum or minimum intensity of such a peak.


According to the invention, an optical system and an associated method are provided for generating a pattern for a confocal microscope that changes over time in which a movement of the projector pattern is simplified.

Claims
  • 1. An optical system for generating a pattern that changes over time for a confocal microscope comprising a light source arrangement from which light beams travel to an object that reflects the light beams, a beam splitter for allowing passage of the light beams proceeding from the light source arrangement in the direction of the object and for deflecting the light beams reflected by the object in a focal plane in the direction of a detector with detector patterns for detecting an image of the object, and a lens arrangement between the beam splitter and the object, characterized in that the light source arrangement has at least one light source and an arrangement that switches over the light beams emitted by the at least one light source with respect to their direction of polarization for generating a changing projector pattern without moving a mask having the projector pattern.
  • 2. The optical system according to claim 1, characterized in that the device for switching the polarization direction of the light source is fixedly downstream and is a controllable optical retarder.
  • 3. The optical system according to claim 2, characterized in that the controllable optical retarder is a Pockels cell that rotates the direction of polarization from entrance to exit depending on the voltage applied to electric terminals, the voltage being switched between two voltages V1 and V2 in such a way that the retardation changes by lambda/2 or an odd multiple thereof.
  • 4. The optical system according to claim 2, characterized in that the controllable optical retarder is a stationary rotating lambda/4 retarder.
  • 5. The optical system according to claim 1, characterized in that the light source arrangement comprises two light sources and a switching arrangement as a device for switching the direction of polarization of the light sources, the light paths of the two light sources being combined into a single light path, the two light sources emitting polarized light, and the respective polarization directions of the two light sources being rotated by 90° and the switching arrangement changing only one of the light sources at a time into a switched-on state and thereby switching the direction of polarization of the combined light in each case.
  • 6. The optical system according to claim 5, characterized in that the two light sources are provided side by side so close to each other that their respective light paths are combined into the single light path.
  • 7. The optical system according to claim 6, characterized in that a diffusion disk is downstream of the light sources.
  • 8. The optical system according to claim 6, characterized in that the two light sources are arranged offset by 90°, a beam combiner combining their light paths into the single light path.
  • 9. The optical system according to claim 1, characterized in that the respective light source is a laser diode that emits already naturally polarized light, or is an LED having a downstream polarizer.
  • 10. The optical system according to claim 5, characterized in that the light is linearly polarized, and the two polarization directions are rotated 90° with respect to each other.
  • 11. The optical system according to claim 10, characterized in that a lambda/4 retarder arranged downstream from the light source arrangement is provided that converts the polarization directions into two circular polarization directions, one counterclockwise and one clockwise.
  • 12. The optical system according to claim 11, characterized in that, between a structured retarder downstream of the lambda/4 retarder and the lens arrangement, a linear polarizer is provided that blocks the light from positions at which the polarization is rotated 90°, and allows the light to pass through from positions at which the polarization direction is present so that the projector pattern is transparent at these positions.
  • 13. The optical system according to claim 1, characterized in that the projector pattern is a pattern that can be controlled as desired, a fixed line pattern or a fixed checkerboard pattern.
  • 14. The optical system according to claim 1, characterized in that means are provided for the alignment of the projector pattern and detector pattern.
  • 15. The optical system according to claim 1, characterized in that a transparent LCD that generates the projector pattern is provided.
  • 16. The optical system according to claim 1, characterized in that a filter is provided as a means for evaluating received signals, the filter's switching frequency being synchronized with the switching frequency for the polarization direction of the light source.
  • 17. The optical system according to claim 16, characterized in that the filter is realized as a lock-in amplifier.
  • 18. A method for scanning surfaces of an object using the optical system according to any of the preceding claims, the method comprising the steps of: aligning the projector pattern and the detector pattern;tuning the focal plane during a change of the projector pattern with a high switching frequency;receiving a signal having a frequency corresponding to the switching frequency;narrow-band filtering of the received signal and searching for the maximum intensity of the signal after the narrow band filtering; andsearching for a signal peak of constant width.
Priority Claims (1)
Number Date Country Kind
10 2013 218 231.7 Sep 2013 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/069365 9/11/2014 WO 00