The present invention relates to an optimal voicemail deposit system for a roaming user whose voicemail is on a home network, which is different from the network where he is currently roaming, and, more particularly, but not exclusively to an optimal voicemail deposit system which is suitable for both prepaid and postpaid users.
Mobile subscribers usually set call forwarding to the voicemail, so that if they cannot answer a call for whatever reason, then the caller has an opportunity to leave them a message. Call forwarding may be divided into two categories, early call forwarding and late call forwarding. Late call forwarding is performed conditionally, due to the subscriber's inability to answer a call routed to the handset. Conversely, early call forwarding is performed without the network attempting to route the call to the handset. This happens when the handset is shut off or when the subscriber requests unconditional forwarding of all incoming calls. Late Call Forwarding for busy/no-answer/not-reachable conditions can be configured to any number and is usually configured to the subscriber's voice mailbox.
Mobile subscribers roaming abroad want to stay in touch with work and home, and to continue to use their mobile services, such as voicemail. Naturally, they also want the same user experience as that in the home network—such as seamless caller access to mailbox, caller-ID indication upon retrieval and direct forwarding of calls to their voice mailbox or to any of their pre-set forwarding destinations. It goes without saying that they expect the same user experience for their callers.
However, when a roamer cannot take a call, he may either be unavailable, busy or simply may choose not to answer—the visited network routes the call back to the home voicemail system, which is the default setting for most roamers. As the originating call was most probably made in the home network, the rerouting in turn causes inefficient international tromboning, that is to say the call is connected from the home country to the roaming country and back to the home country. The result is that the called party has to pay for two International legs, resulting in a negative impact on the caller and in subscriber experience and forces roamers to pay international tariffs for voicemail deposits.
Higher subscriber costs—The high cost to the user caused by the international tromboning of voicemail causes many roamers to disable voicemail forwarding while roaming. Some home networks disable call forwarding for their outbound roaming subscribers, in order to avoid subscriber frustration.
Complicated use—Due to the filtering of signaling data by switch vendors and by some international networks, the original dialed number may not be transferred to the home network's voicemail system via these doubled International links. This forces the caller to re-enter the original dialed number. For the same reason, Caller ID is not available to the voicemail system and the phone number of the caller is not provided during message retrieval, resulting in a voicemail message whose origin cannot be traced if not self-explanatory from the message itself.
Higher operator costs—Roaming subscribers, unaware of the high cost of forwarding calls, may be surprised and angered when receiving their monthly bills. The immediate response is usually to call Customer Care to complain and inquire about the charges. In addition to customer dissatisfaction, this in turn engages operator's manpower and communications resources.
Loss of potential revenue—Disabling call forwarding to voicemail while roaming—either by the subscriber or by the operator—means loss of potential revenue that otherwise would have come from:
There is thus a widely recognized need for, and it would be highly advantageous to have, a late call forwarding system for roaming users which is devoid of the above limitations.
According to one aspect of the present invention there is provided apparatus for management of optimal voicemail deposit to the voicemail of currently roaming mobile telephony user during late call forwarding, the apparatus being located at the home network of said user, the apparatus comprising:
a triggering unit configured to set a trigger for a mobile terminated call directed to a subscriber of the home network roaming in a visited network, such that when the call is disconnected, the control of the call is handed over for direct forwarding, said setting being irrespective of triggering being required for other purposes;
a disconnection unit for disconnecting an international link in a mobile terminated call following subjecting of said call to a late call forwarding;
a direct forwarding unit for forwarding a caller to said voicemail, thereby providing an optimal voicemail deposit.
According to a second aspect of the present invention there is provided a method for management of optimal voicemail deposit to the voicemail of currently roaming mobile telephony user during late call forwarding, the method being carried out at the home network of said user, the method comprising:
providing a trigger signal for passing control of a late forwarded call to allow direct forwarding to a respective voicemail;
disconnecting an international link associated with said call; and
using said trigger making said direct forwarding to said voicemail.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
Implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of preferred embodiments of the method and system of the present invention, several selected steps could be implemented by hardware or by software on any operating system of any firmware or a combination thereof. For example, as hardware, selected steps of the invention could be implemented as a chip or a circuit. As software, selected steps of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In any case, selected steps of the method and system of the invention could be described as being performed by a data processor, such as a computing platform for executing a plurality of instructions.
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
The present embodiments comprise apparatus and methods for alerting the home network about call forwarding involving a roamer so that the home network can forward the caller directly to the voicemail and disconnect the International link. In this way not only is tromboning avoided, but also the connection to the voicemail works better because the caller ID is correctly forwarded to the voicemail.
The GSM standard includes features to avoid International tromboning but these have never effectively been implemented. The present inventors, in one embodiment, instead of relying on the eventual implementation of these features, make use of the roaming trigger that the home network in fact does issue. This raises the problem that the roaming trigger may be required for other purposes, in particular for alerting the system in the case of a pre-paid subscriber to ensure that his prepayment covers the roaming interaction. The present inventors have inter alia solved the problem in such a way that call forwarding to the voicemail is carried out regardless of other requirements of the roaming trigger. As a result there is a call forwarding system that is equally applicable to pre-paid and post-paid users.
In an alternative embodiment the present inventors have found a way of taking advantage of the partial adoption of the features in the GSM standard to allow a given network that at least partly uses the features to view other networks as if they use the features.
The above embodiments are jointly or severally incorporated into an Optimal Voicemail Deposit (OVMD) service, in order to overcome the above-described problem of international tromboning that is caused by incomplete signaling when a called party traveling abroad cannot answer a call and the call is diverted to the home VMS or to another pre-set forwarding destination.
Optimal voicemail deposit is intended to improve the caller's experience and to significantly reduce the cost of voicemail deposits billed to the roaming subscriber, thereby allowing mobile operators to regain previously lost revenue. The OVMD system is supported by gateways provided at the networks of the mobile operators to support roaming users, and the gateways provide a comprehensive package of connectivity services to their outbound roaming subscribers. The roaming gateways are alternately referred to herein as Intelligates.
The Optimal Voicemail Deposit service provides the following benefits:
The principles and operation of an apparatus and method according to the present invention may be better understood with reference to the drawings and accompanying description.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Reference is now made to
The Optimal Voicemail Deposit system can be integrated with the operator's network via the GMSC 24 in one of the following two ways, essentially two signaling methods:
Based on these two alternative signaling methods, the present embodiments provide a generic technical solution for the service. The final delivered solution to the operator however, is preferably adjusted to the specific network configuration and parameters, such as: network size and topology, traffic volume, INAP vendor's variant, CAMEL version—if relevant and to the operator's preferences. All these parameters are usually discussed prior to specifying the final technical solution.
Reference is now made to
A first solution for obtaining a trigger is simply to provide a double trigger. The DP12 trigger is the trigger provided by the IN for an MT (Mobile Terminated) call. The DP12 trigger is used by the prepaid system if the MT is directed to a roaming subscriber. Double triggering is possible at the local MSC based on the ability of the switch at the home network to send the trigger twice, which is to two different addresses. The idea is that one address used is the prepaid feature or any other feature needed by the specific user, and the second address is the anti-tromboning feature which is described in greater detail elsewhere herein. The anti-tromboning feature once triggered is able to cut the International links and forward the caller directly to the voicemail as necessary.
In fact, the double trigger may be intended as part of the CAMEL system for inbound roamers. The present system for the first time utilizes the trigger for outbound roamers. However, the double trigger solution does not have to be CAMEL. The switch need only have Intelligent Network (IN), with double triggering support. Double triggering support includes a prefix that can be added after the first trigger, in order to process the second trigger.
A difficulty with the double trigger solution is that it is not widely available, in that many switches are unable to produce a roaming trigger that can be directed to two addresses. A comprehensive solution utilizes the double trigger where available but requires other solutions for other cases.
A second solution uses a software or firmware entity referred to as a broker. A broker can be provided as part of the Intelligent Network IN system for cellular networks. This is referred to hereinbelow as the IN service broker. A regular trigger is used, and the broker is provided as the single address by the trigger. The broker receives the trigger and looks at the service profile for the associated callee. Based on the callee the broker then decides what to do with the trigger. If the user is a prepaid user then the broker sends its own trigger to the prepaid system, and the broker retains the ability to trigger the anti-tromboning and voicemail deposit.
The caller profile can be used to allow a range of features for the roaming user, in that the profile allows the broker to make a decision which is as simple or complex as necessary to trigger any combination of services for the roaming user. A prepaid user would automatically have a trigger provided to the prepaid system but users in general could have triggers provided to any IN services relevant for the current call.
A third solution makes use of call status triggers. A set of what may be termed late call triggers, because they occur after the call has begun, may be used. Such triggers include the “no answer” notification, the “busy” notification etc. The call goes to the prepaid system in the normal way using the roaming trigger. Likewise the call is forwarded to the callee, who does not answer etc. The no-answer status returns to the home network, which can now be used to trigger the anti-tromboning system, and direct it to disconnect the International branch of the call at the gateway, and forward the caller directly to the voicemail.
A busy notification may likewise be used as a trigger for the anti-tromboning feature. The busy trigger also reaches the home network.
In either case, on receipt of the notification, the system has to determine if there is a voicemail to forward the call to. The voicemail is defined by a forward to number (FTN). In fact it should be noted that users on many systems are free to define other numbers to which their calls can be forwarded, not just voicemail, and the present embodiments encompass forwarding of calls to these numbers as well. The FTN is obtained from the home location register (HLR) of the callee. If there is no FTN defined then the call is disconnected. It is noted that a call being forwarded to a voicemail includes a notification in its header that it is for voicemail. Thus the very presence of a call with a voicemail deposit notification in its header may be used to trigger the anti-tromboning feature. As above, once triggered, the anti-tromboning feature may disconnect the International call and subsequently allow connection of the caller to the callee's voicemail. The anti-tromboning feature is responsible for the trombone disconnect, but it is noted that the forwarding to the voicemail is done by another component, the component that receives the trigger, checks the FTN and then decides if or where to route the call.
In general, when a call is forwarded back to the home network with a voicemail notification, and disconnected by the anti-tromboning feature, then a TDP13/14 trigger at the MSC enquires what to do with the call. As long as the TDP13 is answered within a certain time delay then the call can be handled. If not then the call is cut off. It is added that some roaming network switches do not release the call on time. A workaround can be provided by playing a ring back tone from the Intelligate. The ring back tone operates to prevent the home MSC from disconnecting the call until the release trigger is received from the visited network.
Summarizing the 3rd method, the call is routed to the mobile handset. If the handset is busy or does not answer, then the call is forwarded to the FTN destination, which is typically a voicemail. Then the International leg of the call that reaches the voicemail is disconnected. At that point, the TDP 13/14 trigger arrives at the roaming gateway or Intelligate, asking what to do. As mentioned above, there are two main steps involved, firstly disconnecting the trombone, and secondly obtaining the trigger.
A fourth method is based on Standard Optimal Routing (SOR), otherwise referred to as standard-based late call forwarding. SOR is the optimal routing system defined in the GSM standard that was always intended to avoid the existence of tromboning. Standard optimal routing is supported by certain International switches, particular those provided by Ericsson. Such optimal routing typically only works if the switches at both networks have SOR support and this is rare.
The ETSI/3GPP standard 23.079, the contents of which are hereby incorporated by reference, provides the description for the optimal routing of late call forwarding, using the Support of Optimal Routing (SOR) feature. This standard solution requires interoperability between the home network or HPMN and the visited network or VPMN, in order to provide the service. The present solution eliminates the need for such cooperation between the home network and each one of the visited networks. Such cooperation has not happened so far, due to the complexity of upgrading the network components to support this feature, and the requirement of having agreements to be signed with all visited networks or a portion of them.
The present solution comprises placing apparatus at the home network which emulates SOR functions. If the roaming network has SOR then the roaming network simply produces the necessary signals to provide optimal routing and allows the home network to respond to these signals. The apparatus is not required to do anything when the roaming network has SOR. If, on the other hand, the roamer is in a network without SOR support, then the apparatus sends to the home network signals that simulate the roamer having SOR. In essence the apparatus serves as a home network based SOR emulator, for providing the SOR signaling that the roaming network should be providing but does not. Upon receipt of this signaling the home network is able to connect the caller directly to the voicemail. Equipped with such apparatus the home network sees all roaming networks as having SOR support.
It is noted that in the above solution, the home network has SOR capability. However for the present solution the SOR feature need only be activated in the HLR and the GMSC. SOR does not need to be activated in all of the MSCs, as it would be in the general SOR solution. The method is described in greater detail hereinbelow, where it is explained how probes can be used by the emulator for it to obtain the information it needs in order to carry out the emulation.
The solution relies on the Intelligate, with the following interfaces to the HPMN's network, as will be explained in greater detail below:
SCCP relay (PRN & PRN ACK messages) or an SS7 probe
INAP/ISUP
There now follows a description of three methods for disconnecting the trombone.
The first way to disconnect the trombone is to capture the call according to the voicemail deposit number. The second is simply to cancel the FTN, either through the HLR, or through the roaming gateway, by sending a new ISD profile to the VLR. An ISD profile is the subscriber profile stored in the HLR and downloaded to the current VLR, using the MAP Insert Subscriber Data message.
Canceling the FTN preferably causes the first international leg to disconnect without creating the tromboning in the first place.
A third way to disconnect the trombone comprises setting a CAMEL trigger to the subscriber, at the roaming VLR. In that case, the roaming gateway or Intelligate receives a trigger before setting the second leg to the voicemail or the FTN. In this case a trigger is obtained before the disconnect occurs, but then the TDP 13/14 trigger is obtained later on, after the disconnect. In all the above three methods, the TDP 13/14 trigger is received after the trombone disconnects. In fact, the same applies to the other methods explained herein including the TDP12, the IN service broker, and the SOR, the latter of which is explained below.
In the following is a description of the two signaling options referred to above, IN and ISUP.
Intelligent Network (IN)—Including CAMEL
Using the IN architecture, the IntelliGate 22 controls mobile terminated calls delivered to outbound roaming subscribers. The IN solution suits networks that are already IN or CAMEL ready, that is IN or Camel compatible, and/or networks that experience relatively high outbound roaming traffic.
Using INAP or CAP protocols, call control is performed using a combination of Trigger Detection Points and Event Detection points.
ISUP—Including Loop Around
In particular cases—such as: a non-IN network environment, cases where there is relatively low outbound roaming traffic, or, when specifically requested by the operator, call control is performed using ISUP signaling—In this case all MT roaming calls are physically routed to the Intelligate platform. The Loop Around method is a much better method, where only the ISUP signaling is routed to the Intelligate, while the physical voice part actually stays on the MSC. This is achieved by connecting the E1/T1 lines back to the MSC, creating a physical loop. This method avoids the transfer of the huge amount of voice traffic to the Intelligate, by having a “semi IN” solution.
GSM-MAP
Using GSM-MAP, the IntelliGate automatically deactivates the forwarding settings of roaming subscribers in the visited network, when registering to a foreign network, as well as when returning to the operator's network. It should be noted that in some networks the deactivation of the FTN for a roamer is performed by the network. The IntelliGate can use this network feature and provide a complete service
Probe Interface
Referring again to
The probe interface obtains for the OVMD from the signaling links the relevant subscriber information, such as the MSISDN and the forwarding-to-number (FTN) referred to above.
It is noted that in many networks, the OVMD service can be implemented without using a probe and probe interface to monitor the signaling links.
Provisioning Interface
The application provides a provisioning interface 30 to enable the management of application parameters and subscriber lists. For example OVMD may be a restricted service, available only to certain subscribers, say those who have complained in the past about tromboning, and the operator may allow the provisioning of IMSI/MSISDN numbers of those subscribers who are entitled to use the Optimal Voicemail Deposit service (white list).
Service Structure and Processes
Considering
The different embodiments discussed herein may be mixed and matched in whatever way is most appropriate to provide a highly customizable solution to support different networks and constellations of networks in terms of diverting calls to voicemail as well as in releasing the forwarded trombone.
Methods for Releasing the Trombone
Above was discussed in general terms the issue of releasing the trombone. One of the alternatives for releasing the trombone is explicitly to release the returning leg of the trombone.
A set of methods for releasing the returning leg of the trombone waits until the forwarded call returns from the visited network and only then releases the call, thus causing the release of the trombone.
ISUP/INAP Trigger at GMSC to IntelliGate
In one method, a routing rule/IN trigger is defined in the GMSC 24 for all incoming calls from abroad with a specific DN value. The DN value would be a pointer to the Voicemail Deposit number, and the trigger is handed to the IntelliGate 22. The Intelligate 22 then releases the call.
By GMSC
Another method is similar to the above. However, instead of triggering the IntelliGate 22 the GMSC 24 itself has the capability of releasing those calls. To provide the GMSC with such an ability, a special patch may need to be installed in the GMSC.
SCCP Relay
Yet a further method intercepts CAMEL O-CSI triggers coming from the visited network before the trombone occurs and releases the mobile-forwarded calls, thus causing the trombone to be released. It will be appreciated that such a method requires the visited network to produce such triggers.
Suppression of FTN while Roaming.
One method to prevent tromboning is to suppress the FTN and such suppression may be carried out in a number of ways including the following.
By HLR
The FTN may be suppressed by the HLR 26. A feature in the HLR that causes the HLR not to send the FTNs is the MAP_ISD message that is used when the subscriber is roaming.
By Probe & Additional ISD
Another method for suppressing the FTN relies on the IntelliGate 22 monitoring MAP_ISD messages sent by the HLR 26. After each MAP_ISD message is sent by the HLR 26 to the VLR at which the roaming user is located, the IntelliGate 22 issues a consecutive MAP_ISD message in which the FTN is marked as disabled. Such a disablement prevents the VLR, which is at the visited network, from forwarding unanswered calls. Thus the trombone is never formed in the first place.
Maximum Redirection Counter
A further method is applicable when the IntelliGate 22 itself handles mobile terminated (MT) calls before they leave the home network 20, also referred to as the HPMN. The method involves DP12 redirection using the redirection counter field of an initial address message (IAM). When the call is sent to the visited network, IntelliGate 22, which is handling the call, is able to place a maximum value in the redirection counter field in the IAM message.
It is noted that due to inconsistency in International carrier behavior the redirection parameter is sometimes omitted on the way.
Methods for Forwarding Unanswered Calls to Voicemail
The OVMD preferably includes a variety of methods for diverting unanswered calls to the voicemail (or other destinations). Due to the variance between mobile networks, each solution may best suit specific networks, and a complete package preferably includes multiple options.
The following describes several possibilities for providing late call forwarding without international tromboning. The offered solutions have been outlined above and can be divided into two groups of solutions:
1. IN-based solutions
a. Double Triggering on DP12
b. IN Service Broker for DP12
c. Call status triggers such as “call busy” or “no answer”
2. NSS-based solution
a. Standard-based late call forwarding
Double Triggering on DP12
Reference is now made to
The first trigger, that using CAP, is rerouted to the IntelliGate 22 by using a GT translation rule in the STP and the IntelliGate 22 responds with a CAP-Connect message with a predefined prefix on the directory number (DN) to activate the second trigger in the MSC based on this prefix.
Postpaid Call Flow based on a foreign mobile station roaming number (MSRN) is illustrated in the figure and the flow is explained according to table 1 below.
Prepaid Roamer in a CAMEL Enabled VPMN
Reference is now made to
Prepaid Roamer in a Non CAMEL VPMN
Reference is now made to
Service Flow Using IN Service Broker
Reference is now made to
As the DP12 trigger is already taken for prepaid mobile-terminated calls while roaming, an IN Service Broker can be used in order to allow another service such as Optimal Voicemail Deposit for prepaid roamers to share the same DP12 IN trigger. In the following are discussed the call flows of the service when an IN Service Broker is in use.
It is noted that the service broker is totally separated from the OVMD Service, logically and even physically.
Prepaid Roamer in Non CAMEL VPMN
Reference is now made to
Service Flow Using INAP/CAP Call Status Triggers (“Such as “Call Busy” or “no Answer”)
In the following are described different service flows for the methods based on making use of the call status triggers as outlined above. Specifically, use is made of INAP/CAP call status triggers, such as the triggers for “call busy” or “call not answered”. By using these triggers, the service overcomes the conflict with other services that use the TDP12, such as: Prepaid, Call Screening, VPN, etc services. The system is based on the TDP 13 and TDP 14, that is the busy and no answer triggers respectively.
Reference is now made to
Prepaid Roamer in CAMEL VPMN Service Flow
Reference is now made to
Service Flow Using Standard-Based Late Call Forwarding
In the following is described the fourth triggering option outlined above. As explained, GSM includes support for optimal routing (SOR). The following methods are possible when the home network (HPMN) supports the 3GPP standard Support for Optimal Routing (SOR). The home based IntelliGate includes a module that emulates Support for Optimal Routing with all visited networks. That is to say the emulator supplies the signals that the visited network is supposed to supply but usually does not in order to provide optimal routing. As a result of using the emulator the home network sees a universe of neighboring networks which all appear to behave as if they are SOR compatible and thus tromboning can be prevented.
The emulator preferably uses probes that monitor the International signaling links and is thus able to obtain sufficient information to provide the emulation. Typically the emulator uses the SCCP relay module for relaying specific MAP messages before the call is initially routed to the visited network.
Reference is now made to
Reference is now made to
All of the optimal voicemail deposit methods have the advantages that they eliminate tromboning, meaning they bypass international leg for voicemail, significantly reducing costs to the subscriber. They thus encourage greater use of the mobile phone and voicemail, in particular by optimizing user experience and significantly reducing voicemail deposit costs. In each case described there is no dependency on the visited network since different workflows are available for each different visited network configuration. That is to say the same solution enables the elimination of voicemail trombone and recovery of lost revenue without any dependency on the visited network.
It is expected that during the life of this patent many relevant devices and systems will be developed and the scope of the terms herein, is intended to include all such new technologies a priori.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This application claims the benefit of U.S. Provisional Patent Applications Nos. 60/754,198, filed on Dec. 28, 2005, 60/755,080 filed on Jan. 3, 2006, 60/776,696 filed on Feb. 27, 2006 and 60/788,071 filed on Apr. 3, 2006. The contents of the above applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2776377 | Anger | Jan 1957 | A |
3340866 | Nöller | Sep 1967 | A |
3684887 | Hugonin | Aug 1972 | A |
3690309 | Pluzhnikov et al. | Sep 1972 | A |
3719183 | Schwartz | Mar 1973 | A |
3739279 | Hollis | Jun 1973 | A |
3971362 | Pope et al. | Jul 1976 | A |
4015592 | Bradley-Moore | Apr 1977 | A |
4278077 | Mizumoto | Jul 1981 | A |
4364377 | Smith | Dec 1982 | A |
4521688 | Yin | Jun 1985 | A |
H000012 | Bennett et al. | Jan 1986 | H |
4595014 | Barrett et al. | Jun 1986 | A |
4674107 | Urban et al. | Jun 1987 | A |
4689041 | Corday et al. | Aug 1987 | A |
4689621 | Kleinberg | Aug 1987 | A |
4731536 | Rische et al. | Mar 1988 | A |
4773430 | Porath | Sep 1988 | A |
4828841 | Porter et al. | May 1989 | A |
4844067 | Ikada et al. | Jul 1989 | A |
4844076 | Lesho et al. | Jul 1989 | A |
4893013 | Denen et al. | Jan 1990 | A |
4928250 | Greenberg et al. | May 1990 | A |
4929832 | Ledley | May 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4959547 | Carroll et al. | Sep 1990 | A |
4995396 | Inaba et al. | Feb 1991 | A |
5014708 | Hayashi et al. | May 1991 | A |
5032729 | Charpak | Jul 1991 | A |
5033998 | Corday et al. | Jul 1991 | A |
5070878 | Denen | Dec 1991 | A |
5088492 | Takayama et al. | Feb 1992 | A |
5119818 | Carroll et al. | Jun 1992 | A |
5151598 | Denen | Sep 1992 | A |
5170055 | Carroll et al. | Dec 1992 | A |
5170789 | Narayan et al. | Dec 1992 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5246005 | Carroll et al. | Sep 1993 | A |
5249124 | DeVito | Sep 1993 | A |
5279607 | Schentag et al. | Jan 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5307808 | Dumoulin et al. | May 1994 | A |
5349190 | Hines et al. | Sep 1994 | A |
5383456 | Arnold et al. | Jan 1995 | A |
5386446 | Fujimoto et al. | Jan 1995 | A |
5395366 | D'Andrea | Mar 1995 | A |
5399868 | Jones et al. | Mar 1995 | A |
5415181 | Hogrefe et al. | May 1995 | A |
5440614 | Sonberg et al. | Aug 1995 | A |
5441050 | Thurston et al. | Aug 1995 | A |
5448073 | Jeanguillaume | Sep 1995 | A |
5475219 | Olson | Dec 1995 | A |
5484384 | Fearnot | Jan 1996 | A |
5489782 | Wernikoff | Feb 1996 | A |
5493595 | Schoolman | Feb 1996 | A |
5506888 | Hayes et al. | Apr 1996 | A |
5519221 | Weinberg | May 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5579766 | Gray | Dec 1996 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5617858 | Taverna et al. | Apr 1997 | A |
5635717 | Popescu | Jun 1997 | A |
5657759 | Essen-Moller | Aug 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5682888 | Olson et al. | Nov 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5694933 | Madden et al. | Dec 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5716595 | Goldenberg | Feb 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5732704 | Thurston et al. | Mar 1998 | A |
5734700 | Hauser et al. | Mar 1998 | A |
5744805 | Raylman et al. | Apr 1998 | A |
5784432 | Kurtz et al. | Jul 1998 | A |
5803914 | Ryals et al. | Sep 1998 | A |
5811814 | Leone et al. | Sep 1998 | A |
5821541 | Tümer | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5846513 | Carroll et al. | Dec 1998 | A |
5857463 | Thurston et al. | Jan 1999 | A |
5871013 | Wainer et al. | Feb 1999 | A |
5880475 | Oka et al. | Mar 1999 | A |
5900533 | Chou | May 1999 | A |
5916167 | Kramer et al. | Jun 1999 | A |
5928150 | Call | Jul 1999 | A |
5932879 | Raylman et al. | Aug 1999 | A |
5939724 | Eisen et al. | Aug 1999 | A |
5961457 | Raylman et al. | Oct 1999 | A |
5984860 | Shan | Nov 1999 | A |
5987350 | Thurston | Nov 1999 | A |
5993378 | Lemelson | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6076009 | Raylman et al. | Jun 2000 | A |
6082366 | Andra et al. | Jul 2000 | A |
6107102 | Ferrari | Aug 2000 | A |
6115635 | Bourgeois | Sep 2000 | A |
6129670 | Burdette et al. | Oct 2000 | A |
6132372 | Essen-Moller | Oct 2000 | A |
6135955 | Madden et al. | Oct 2000 | A |
6138007 | Bharatia | Oct 2000 | A |
6147353 | Gagnon et al. | Nov 2000 | A |
6173201 | Front | Jan 2001 | B1 |
6205347 | Morgan et al. | Mar 2001 | B1 |
6212423 | Krakovitz | Apr 2001 | B1 |
6236880 | Raylman et al. | May 2001 | B1 |
6239438 | Schubert | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6242743 | DeVito | Jun 2001 | B1 |
6246901 | Benaron | Jun 2001 | B1 |
6261562 | Xu et al. | Jul 2001 | B1 |
6263229 | Atalar et al. | Jul 2001 | B1 |
6271524 | Wainer et al. | Aug 2001 | B1 |
6271525 | Majewski et al. | Aug 2001 | B1 |
6280704 | Schutt et al. | Aug 2001 | B1 |
6324418 | Crowley et al. | Nov 2001 | B1 |
6339652 | Hawkins et al. | Jan 2002 | B1 |
6346706 | Rogers et al. | Feb 2002 | B1 |
6368331 | Front et al. | Apr 2002 | B1 |
6389283 | Sanchez Herrero | May 2002 | B1 |
6407391 | Mastrippolito et al. | Jun 2002 | B1 |
6420711 | Tuemer | Jul 2002 | B2 |
6426917 | Tabanou et al. | Jul 2002 | B1 |
6429431 | Wilk | Aug 2002 | B1 |
6431175 | Penner et al. | Aug 2002 | B1 |
6438401 | Cheng et al. | Aug 2002 | B1 |
6453199 | Kobozev | Sep 2002 | B1 |
6459925 | Nields et al. | Oct 2002 | B1 |
6480732 | Tanaka et al. | Nov 2002 | B1 |
6484051 | Daniel | Nov 2002 | B1 |
6490476 | Townsend et al. | Dec 2002 | B1 |
6510336 | Daghighian et al. | Jan 2003 | B1 |
6516213 | Nevo | Feb 2003 | B1 |
6525320 | Juni | Feb 2003 | B1 |
6525321 | Juni | Feb 2003 | B2 |
6549646 | Yeh et al. | Apr 2003 | B1 |
6560354 | Maurer et al. | May 2003 | B1 |
6567687 | Front et al. | May 2003 | B2 |
6584348 | Glukhovsky | Jun 2003 | B2 |
6587710 | Wainer | Jul 2003 | B1 |
6592520 | Peszynski et al. | Jul 2003 | B1 |
6602488 | Daghighian | Aug 2003 | B1 |
6607301 | Glukhovsky et al. | Aug 2003 | B1 |
6611141 | Schulz et al. | Aug 2003 | B1 |
6614453 | Suri et al. | Sep 2003 | B1 |
6615037 | Bharatia et al. | Sep 2003 | B1 |
6628983 | Gagnon | Sep 2003 | B1 |
6628984 | Weinberg | Sep 2003 | B2 |
6632216 | Houzego et al. | Oct 2003 | B2 |
6638752 | Contag et al. | Oct 2003 | B2 |
6643538 | Majewski et al. | Nov 2003 | B1 |
6662036 | Cosman | Dec 2003 | B2 |
6680750 | Tournier et al. | Jan 2004 | B1 |
6684072 | Anvekar et al. | Jan 2004 | B1 |
6728583 | Hallett | Apr 2004 | B2 |
6748259 | Benaron et al. | Jun 2004 | B1 |
6771802 | Patt et al. | Aug 2004 | B1 |
6865266 | Pershan | Mar 2005 | B1 |
6943355 | Shwartz et al. | Sep 2005 | B2 |
6963770 | Scarantino et al. | Nov 2005 | B2 |
6996396 | Snapp | Feb 2006 | B1 |
7043063 | Noble et al. | May 2006 | B1 |
7142634 | Engler et al. | Nov 2006 | B2 |
7176466 | Rousso et al. | Feb 2007 | B2 |
7181210 | Zabawskyj et al. | Feb 2007 | B2 |
7187790 | Sabol et al. | Mar 2007 | B2 |
7468513 | Charron et al. | Dec 2008 | B2 |
7490085 | Walker et al. | Feb 2009 | B2 |
7505769 | Jiang | Mar 2009 | B2 |
20020072784 | Sheppard, Jr. et al. | Jun 2002 | A1 |
20020085748 | Baumberg | Jul 2002 | A1 |
20020087101 | Barrick et al. | Jul 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020103431 | Toker et al. | Aug 2002 | A1 |
20020148970 | Wong et al. | Oct 2002 | A1 |
20020168317 | Daighighian et al. | Nov 2002 | A1 |
20020183645 | Nachaliel | Dec 2002 | A1 |
20020188197 | Bishop et al. | Dec 2002 | A1 |
20030001837 | Baumberg | Jan 2003 | A1 |
20030013966 | Barnes et al. | Jan 2003 | A1 |
20030063787 | Natanzon et al. | Apr 2003 | A1 |
20030072425 | Hurst | Apr 2003 | A1 |
20030081716 | Tumer | May 2003 | A1 |
20030148755 | Bovo et al. | Aug 2003 | A1 |
20030191430 | D'Andrea et al. | Oct 2003 | A1 |
20030202629 | Dunham et al. | Oct 2003 | A1 |
20030208117 | Shwartz et al. | Nov 2003 | A1 |
20040003001 | Shimura | Jan 2004 | A1 |
20040010397 | Barbour et al. | Jan 2004 | A1 |
20040015075 | Kimchy et al. | Jan 2004 | A1 |
20040054248 | Kimchy et al. | Mar 2004 | A1 |
20040054278 | Kimchy et al. | Mar 2004 | A1 |
20040081623 | Eriksen et al. | Apr 2004 | A1 |
20040086437 | Jackson | May 2004 | A1 |
20040101176 | Mendonca et al. | May 2004 | A1 |
20040110489 | Murri et al. | Jun 2004 | A1 |
20040116807 | Amrami et al. | Jun 2004 | A1 |
20040153128 | Suresh et al. | Aug 2004 | A1 |
20040171924 | Mire et al. | Sep 2004 | A1 |
20040203678 | MacNamara et al. | Oct 2004 | A1 |
20040204646 | Nagler et al. | Oct 2004 | A1 |
20050020915 | Belardinelli et al. | Jan 2005 | A1 |
20050055174 | David et al. | Mar 2005 | A1 |
20050205792 | Rousso et al. | Sep 2005 | A1 |
20050215889 | Patterson, II | Sep 2005 | A1 |
20050250493 | Elkarat et al. | Nov 2005 | A1 |
20050253073 | Joram et al. | Nov 2005 | A1 |
20050266074 | Zilberstein et al. | Dec 2005 | A1 |
20060160157 | Zuckerman | Jul 2006 | A1 |
20060237652 | Kimchy et al. | Oct 2006 | A1 |
20060291418 | Singh | Dec 2006 | A1 |
20070156047 | Nagler et al. | Jul 2007 | A1 |
20070166227 | Liu et al. | Jul 2007 | A1 |
20070194241 | Rousso et al. | Aug 2007 | A1 |
20080033291 | Rousso et al. | Feb 2008 | A1 |
20080042067 | Rousso et al. | Feb 2008 | A1 |
20080128626 | Rousso et al. | Jun 2008 | A1 |
20080230705 | Rousso et al. | Sep 2008 | A1 |
20080237482 | Shahar et al. | Oct 2008 | A1 |
20080260228 | Dichterman et al. | Oct 2008 | A1 |
20080260637 | Dickman | Oct 2008 | A1 |
20080277591 | Shahar et al. | Nov 2008 | A1 |
20090005037 | Noldus et al. | Jan 2009 | A1 |
20090078875 | Rousso et al. | Mar 2009 | A1 |
20090152471 | Rousso et al. | Jun 2009 | A1 |
20090190807 | Rousso et al. | Jul 2009 | A1 |
20110045805 | Elkarat et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
1516429 | Dec 1969 | DE |
19814199 | Oct 1999 | DE |
19815362 | Oct 1999 | DE |
0543626 | May 1993 | EP |
0697193 | Feb 1996 | EP |
0887661 | Dec 1998 | EP |
1168856 | Jan 2002 | EP |
1531647 | May 2005 | EP |
1555835 | Jul 2005 | EP |
2031142 | Apr 1980 | GB |
06-109848 | Apr 1994 | JP |
WO 9200402 | Jan 1992 | WO |
WO 9903003 | Jan 1999 | WO |
WO 9930610 | Jun 1999 | WO |
WO 9939650 | Aug 1999 | WO |
WO 0010034 | Feb 2000 | WO |
WO 0018294 | Apr 2000 | WO |
WO 0022975 | Apr 2000 | WO |
WO 0031522 | Jun 2000 | WO |
WO 0189384 | Nov 2001 | WO |
WO 0216965 | Feb 2002 | WO |
WO 0219686 | Mar 2002 | WO |
WO 02058531 | Aug 2002 | WO |
WO 2004042546 | May 2004 | WO |
WO 2005067383 | Jul 2005 | WO |
WO 2005104939 | Nov 2005 | WO |
WO 2005118659 | Dec 2005 | WO |
WO 2005119025 | Dec 2005 | WO |
WO 2006042077 | Apr 2006 | WO |
WO 2006051531 | May 2006 | WO |
WO 2006054296 | May 2006 | WO |
WO 2006075333 | Jul 2006 | WO |
WO 2006129301 | Dec 2006 | WO |
WO 2007010534 | Jan 2007 | WO |
WO 2007010537 | Jan 2007 | WO |
WO 2007054935 | May 2007 | WO |
WO 2007074466 | Jul 2007 | WO |
WO 2007074467 | Jul 2007 | WO |
WO 2008010227 | Jan 2008 | WO |
WO 2008075362 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070197213 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60754198 | Dec 2005 | US | |
60755080 | Jan 2006 | US | |
60776696 | Feb 2006 | US | |
60788071 | Apr 2006 | US |