Optimized multiple heat pipe blocks for electronics cooling

Abstract
A plate is thermally coupled to a heat generating device and thermally coupled to two heat pipes. Each heat pipe is configured to have a predetermined boiling point temperature selected according to design criteria. One or more additional heat pipes can be coupled to the plate. A heat spreader can be in thermal contact with the heat generating device and with at least one of the heat pipes. The heat pipes can differ in outer cross-sectional dimensions depending on thermal distance position relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.
Description
FIELD OF THE INVENTION

The present invention generally relates to a method of and apparatus for removing heat from a heat source, in which boiling temperatures of heat pipes are optimized to ensure that the heat pipes start to boil at approximately the same heat load condition from the chip, thereby utilizing the full heat removal capacity of the heat pipes.


BACKGROUND OF THE INVENTION

The increasing power of electronic devices is motivating the semiconductor industry to seek effective thermal management solutions. A number of techniques for cooling electronic devices and packages have become widespread. Currently, fin array heat sinks with fans are the most common cooling technique. These devices are typically attached to a package lid or directly to a die. A primary purpose of heat sinks is to increase the area for heat rejection to air.


Another common technique that has emerged in the past decade is the use of heat pipes. The heat pipe has become a widely used thermal management tool in the notebook industry. Most current notebooks utilize heat pipes in their thermal management solution. Their primary purpose is to remove heat from a heat source to a heat sink where the heat is dissipated. Heat pipes are vacuum-tight vessels that are evacuated and partially filled with a small amount of water or other working fluid with a wicking structure. FIG. 1 shows an illustration of how a heat pipe works. As heat is directed into a heat pipe 110 from a heat source 120, fluid evaporates creating a pressure gradient in the heat pipe 110. This forces vapor 130 to flow along the heat pipe 110 to a cooler section or condenser 160 where it condenses. The condensed fluid wicks 140 back to the evaporator 150 near the heat source 120.


Heat removal capacity of the heat pipe is controlled by wicking media and heat pipe geometry, among which important parameters are heat pipe cross-sectional dimensions and heat pipe length. Currently, available heat pipes with 6 cm outer diameter (OD) can only dissipate about 30 to 50 W of heat. High performance electronic devices often dissipate more than 100 W of heat. Therefore, multiple heat pipes are used for thermal management. These heat pipes, usually 3 or more, are often embedded in a cooper enclosure or block to form a cooling module.


The current designs have an important limitation. Due to their OD sizes, the heat pipes are much comparable with a typical die size. Spreading thermal resistance from the die to each individual heat pipe becomes significant. FIG. 2 shows an illustration of multiple heat pipes embedded in a copper block 200 and coupled to a heat spreader 210. The heat spreader 210 sits on top of a heat source 220, such as a chip. A center heat pipe 230 is positioned closest to the heat source 220, with outer heat pipes 240 located farther away from the heat source 220. The center heat pipe 230 and the outer heat pipes 240 have identical boiling points of 50 degrees Celsius. The spreading thermal resistance causes the outer heat pipes 240 to remove much less heat than the center heat pipe 230. The center heat pipe 230 could reach its boiling limit and exceed its heat removal capacity, causing it to “burn out” before the outer heat pipes 240 have approached their full heat removal potential. Therefore, heat load carried by the outer heat pipes 240 will be far less that the amount carried by heat pipes closer to the heat source, such as the center heat pipe 230. Thus, the center heat pipe 230 will approach and exceed its heat load capacity before the outer heat pipes 240 reach their heat load capacity, resulting in a system poorly adapted for handling high heat load.


What is needed is an apparatus for and method of optimizing boiling points of heat pipes to achieve simultaneous onset of boiling.


SUMMARY OF THE INVENTION

According to a first aspect of the present invention, an apparatus for removing heat from a heat generating device is provided. The apparatus comprises a plate thermally coupled to the heat generating device and thermally coupled to two heat pipes wherein each heat pipe is configured to have a predetermined boiling point temperature selected according to design criteria.


The apparatus can further include a heat spreader. The apparatus can also include one or more additional heat pipes. Preferably, the heat spreader is in thermal contact with the heat generating device and with at least one of the heat pipes. The heat spreader can be made of copper. The heat pipes can differ in boiling point temperature by at least 1 degree Celsius. The heat pipes can differ in outer cross-sectional dimensions depending on thermal distance relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.


According to an alternative embodiment of the present invention, an apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure is disclosed, wherein the heat pipes have an outer cross-sectional dimension greater than the outer cross-sectional dimension of the heat generating device. The enclosure is coupled to a heat spreader. The apparatus includes a first heat pipe positioned at a first thermal distance from the heat generating device and a second heat pipe positioned at a second thermal distance from the heat generating device, wherein the first heat pipe has a boiling point corresponding to the first thermal distance and the second heat pipe has a boiling point corresponding to the second thermal distance to achieve substantially simultaneous onset of boiling of the heat pipes.


The second heat pipe can be separated by a predetermined from the first heat pipe. The boiling points of heat pipes can be predetermined.


According to another embodiment of the present invention, an apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure is disclosed. The apparatus includes a first heat pipe positioned at a first thermal distance from the heat generating device; a second heat pipe positioned a second thermal distance from the heat generating device; and means for achieving simultaneous onset of boiling of the heat pipes.


According to another embodiment of the present invention, a method of removing heat from a heat generating device by optimizing boiling of heat pipes in an enclosure is disclosed. The method comprises the steps of: positioning a first heat pipe at a first thermal distance from the heat generating device; providing a second heat pipe positioned at a second thermal distance from the heat generating device; and providing means for achieving simultaneous onset of boiling of the heat pipes.


According to another embodiment of the present invention, an apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure is disclosed. The apparatus comprises a plurality of heat pipes each having a predetermined thermal distance from the heat generating device wherein a boiling point for each of the plurality of heat pipes is selected in accordance with the thermal distance.


According to another embodiment of the present invention, an apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure is disclosed. The apparatus comprises a plurality of heat pipes each having a predetermined thermal distance from the heat generating device wherein a boiling point for each of the plurality of heat pipes is selected in accordance with the thermal distance, such that each of the plurality of heat pipes boils at substantially the same time in response to heat generated by the heat generating device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram which illustrates how a prior art heat pipe works.



FIG. 2 is a schematic side view prior art illustration of three pipes embedded in a plate having similar boiling points.



FIG. 3 is a schematic side view of three heat pipes embedded in a plate, with a center heat pipe having a higher boiling point than adjacent heat pipes, in accordance with the present invention.



FIG. 4 is a schematic side view of three pipes embedded in a plate, with a center heat pipe having a greater outer cross-sectional dimension than adjacent heat pipes, in accordance with the present invention.



FIG. 5 is a schematic side view of stacked heat pipes embedded in a plate, with a center heat pipe having a higher boiling point than heat pipes a farther thermal distance away from a heat generating device, in accordance with the present invention.



FIG. 6 is a schematic flow chart illustrating steps of a preferred method of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference will now be made in detail to the preferred and alternative embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it should be noted that the present invention may be practiced without these specific details. In other instances, well known methods, procedures and components have not been described in detail as not to unnecessarily obscure aspects of the present invention.


In accordance with a preferred embodiment of the present invention, an apparatus for removing heat from a heat generating device is shown in a side view of FIG. 3. In particular, the preferred embodiment of this invention includes a first heat pipe 310 and a second or additional heat pipes 320 which are maintained in a fixed spaced-apart position and embedded in a plate 300 constructed of, e.g., copper or aluminum. Cylindrical heat pipes can be placed in holes within the plate 300. The heat pipes 310 and 320 are thermally coupled to a heat generating device 340, such as a chip. A heat spreader 330 is provided to couple the chip to the heat pipes 310 and 320. The heat spreader 330 can be made of solid copper or other heat conductive material. Other designs include heat spreaders within the chip or chip package. The heat spreader 330 helps spread heat generated by the chip at hot-spots on the chip to a much larger area, such as heat pipes. The heat pipes 310 and 320 carry heat away from the heat generating device 340.


The first heat pipe 310 is preferably positioned a first thermal distance from the heat generating device 340. The additional heat pipes 320, adjacent to the first heat pipe 310, are preferably positioned a second thermal distance from the heat generating device 340. The additional heat pipes 320 can be a plurality of heat pipes located a thermal distance from the heat generating device 340.


It will be appreciated that when a heat source in steady state is positioned to provide heat energy to a solid body, eventually the system will reach equilibrium. Because heat can be removed from boundaries of the solid body by convection or radiation or, if it is in contact with other structures heat can be removed by conduction, there will be a temperature gradient across the solid body. The shape, construction and materials of the solid body will determine the difficulty of calculating the equilibrium temperature at any given point in the solid body. For purposes of this document, each point within the solid body that has a same temperature is said to be the same thermal distance from the heat source. By way of example, consider an idealized point heat source at the center of a uniform solid spherical body in space. All points on each concentric sphere having a center at the heat source will be the same temperature and thus the same thermal distance from the heat source.


Still referring to FIG. 3, the first heat pipe 310 has a boiling point corresponding to a first thermal distance from the heat generating device 340. The additional heat pipes 320 have a boiling point corresponding to a second thermal distance from the heat generating device 340 to achieve simultaneous onset of boiling of the heat pipes 310 and 320. The fluid in the additional heat pipes 320 boils at a slightly lower temperature than the center heat pipe 310 to compensate for spreading thermal resistance in the plate 300. Setting the boiling points of the additional heat pipes 320 at a lower temperature compensates for the spreading thermal resistance by inducing an additional temperature drop to force the heat to spread even further. Boiling temperature of the heat pipes 310 and 320 can be fixed by adjusting the pressure inside the heat pipes 310 and 320.


One reason to optimize boiling points of the heat pipes is to ensure that the heat pipes start to boil at approximately same heat load conditions from heat generating devices. Spreading thermal resistances cause heat pipes located a thermal distance away from the heat generating device to remove less heat than heat pipes located a closer thermal distance to the device. A goal of the present invention is to ensure that all of heat pipes start to boil at approximately similar heat load conditions from the heat generating device, resulting in an optimal and efficient system for handling high heat loads.


Another goal of the present invention is optimization of heat load capabilities, which correspond to cross-sectional dimensions, of the heat pipes. In FIG. 4, the heat pipes farther from the heat generating device 440 may or may not receive less heat owing to thermal resistances in the plate 400. An optimal heat removal plate may include heat pipes of varying cross-sectional dimensions, such that the heat pipes a farther thermal distance from a heat generating source have smaller cross-sectional dimensions and lower heat removal capability than the heat pipes a closer thermal distance from the heat generating device.


Referring again to FIG. 3, the heat spreader 330 is in thermal contact with the heat generating device 340 and with at least one of the heat pipes 310 and 320. In this example, the first heat pipe 310 can have a boiling point temperature difference of at least 4 degrees, such as a boiling point temperature between 48 degrees Celsius and 52 degrees Celsius. The additional heat pipes 320 can be characterized as having a boiling point temperature difference of at least 10 degrees, such as a boiling point temperature between 37 degrees Celsius and 47 degrees Celsius. To tailor heat toad capabilities, the additional heat pipes 320 can have a lower boiling temperature than the first heat pipe 310. Preferably, the heat pipes 310 and 320 differ in boiling point temperature by at least 1 degree Celsius. Moreover, the additional heat pipes 320 can have a lower heat removal capacity than the heat removal capacity of the first heat pipe 310. As shown in FIG. 3, the additional heat pipes 320 can be separated by a predetermined distance from the first heat pipe 310. Alternatively, heat pipes can be stacked in a plate as shown in FIG. 5. In this example, four outer heat pipes 520 and one center pipe 510 are enclosed in a copper plate. The four outer heat pipes 520 are separated by a predetermined distance and have boiling points lower than the boiling point of the center heat pipe 510. The boiling points of the outer heat pipes 520 can be same or different. The boiling points of all the heat pipes can be predetermined.


In an alternative embodiment, a method of removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure is disclosed, as shown in the flow diagram of FIG. 6. In the Step 600, a first heat pipe is positioned at a first thermal distance from a heat generating device. In the Step 610, a second heat pipe is positioned a second thermal distance from the heat generating device. In the Step 620, means for achieving simultaneous onset of boiling of the heat pipes is provided. The first heat pipe can be a center heat pipe and the second heat pipe can be many additional heat pipes or a plurality of heat pipes.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.

Claims
  • 1. An apparatus for removing heat from a heat generating device comprising a plate thermally coupled to the heat generating device and thermally coupled to two heat pipes wherein the thermal distances relative to the heat generating device are not the same and wherein each heat pipe is configured to have a predetermined boiling point temperature selected according to design criteria and thermal distance position relative to the heat generating device whereby the boiling point temperatures are not the same, to achieve substantially simultaneous onset of boiling within the two heat pipes in response to heat energy from the heat generating device.
  • 2. The apparatus of claim 1, further including one or more additional heat pipes coupled to the plate.
  • 3. The apparatus of claim 1, further including a heat spreader, wherein the heat spreader is in thermal contact with the heat generating device and with at least one of the heat pipes.
  • 4. The apparatus of claim 1, wherein the heat pipes differing in boiling point temperature by at least 1 degree Celsius.
  • 5. The apparatus of claim 1, wherein the heat pipes differing in outer cross-sectional dimensions depending on the thermal distance position relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.
  • 6. The apparatus of claim 3, wherein the heat spreader is made of copper.
  • 7. An apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure, the enclosure being coupled to a heat spreader, the apparatus comprising: a first heat pipe positioned at a first thermal distance from the heat generating device; anda second heat pipe positioned at a second thermal distance from the heat generating device, wherein the first heat pipe has a first boiling point corresponding to the first thermal distance and the second heat pipe has a second boiling point different from the first boiling point and corresponding to the second thermal distance to achieve substantially simultaneous onset of boiling of the heat pipes, wherein the first thermal distance and the second thermal distance are not the same.
  • 8. The apparatus of claim 7, further including one or more additional heat pipes, each additional heat pipe located a thermal distance from the heat generating device.
  • 9. The apparatus of claim 7, wherein the heat spreader is in thermal contact with the heat generating device and with at least one of the heat pipes.
  • 10. The apparatus of claim 7, wherein the heat pipes differing in boiling point temperature by at least 1 degree Celsius.
  • 11. The apparatus of claim 7, wherein the heat pipes differing in outer cross-sectional dimensions depending on thermal distance position relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.
  • 12. The apparatus of claim 7, wherein the second heat pipe is separated by a predetermined distance from the first heat pipe.
  • 13. The apparatus of claim 7, wherein the boiling points of heat pipes are predetermined.
  • 14. The apparatus of claim 7, wherein the heat spreader is made of copper.
  • 15. An apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure, comprising: a first heat pipe positioned at a first thermal distance from a heat generating device;a second heat pipe positioned at a second thermal distance from the heat generating device; andmeans for achieving substantially simultaneous onset of boiling of the heat pipes according to thermal distance positions relative to the heat generating device.
  • 16. The apparatus of claim 15, further including one or more additional heat pipes.
  • 17. The apparatus of claim 15, further including a heat spreader, wherein the heat spreader is in thermal contact with the heat generating device and with at least one of the heat pipes.
  • 18. The apparatus of claim 15, wherein the heat pipes differing in boiling point temperature by at least 1 degree Celsius.
  • 19. The apparatus of claim 15, wherein the heat pipes differing in outer cross-sectional dimensions depending on the thermal distance positions relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.
  • 20. The apparatus of claim 15, wherein the second heat pipe is separated by a predetermined distance from the first heat pipe.
  • 21. The apparatus of claim 15, wherein the boiling points of heat pipes are predetermined.
  • 22. The apparatus of claim 17, wherein the heat spreader is made of copper.
  • 23. A method of removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure, the method comprising the steps of: positioning a first heat pipe having a first boiling point at a first thermal distance from the heat generating device; andpositioning a second heat pipe having a second boiling point different from the first boiling point at a second thermal distance from the heat generating device, wherein the first thermal distance and the second thermal distance are not the same for achieving substantially simultaneous onset of boiling of the heat pipes according to thermal distance positions relative to the heat generating device.
  • 24. The method of claim 23, further including one or more additional heat pipes.
  • 25. The method of claim 23, further including a heat spreader, wherein the heat spreader is in thermal contact with the heat generating device and with at least one of the heat pipes.
  • 26. The method of claim 23, wherein the heat pipes differing in boiling point temperature by at least 1 degree Celsius.
  • 27. The method of claim 23, wherein the heat pipes differing in outer cross-sectional dimensions depending on the thermal distance positions relative to the heat generating device, such that the heat pipes located a farther thermal distance from the heat generating device have smaller outer cross-sectional dimensions than the heat pipes located a shorter thermal distance from the heat generating device.
  • 28. The method of claim 23, wherein the second heat pipe is separated by a predetermined distance from the first heat pipe.
  • 29. The method of claim 23, wherein the boiling points of heat pipes are predetermined.
  • 30. The method of claim 23, wherein the heat spreader is made of copper.
  • 31. An apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure, comprising: a plurality of heat pipes each having a predetermined thermal distance from the heat generating device wherein the thermal distances of the heat pipes from the heat generating device are not all the same and wherein a boiling point for each of the plurality of heat pipes is selected in accordance with the thermal distance whereby the boiling points are not all the same to achieve substantially simultaneous onset of boiling within the plurality of heat pipes in response to heat energy from the heat generating device.
  • 32. An apparatus for removing heat from a heat generating device by optimizing boiling points of heat pipes in an enclosure, comprising: a plurality of heat pipes each having a predetermined thermal distance from the heat generating device wherein the thermal distances of the heat pipes from the heat generating device are not all the same and wherein a boiling point for each of the plurality of heat pipes is selected in accordance with the thermal distance whereby the boiling points are not all the same, such that each of the plurality of heat pipes begins to boils at substantially the same time in response to heat generated by the heat generating device.
Parent Case Info

This application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S. provisional patent application Ser. No. 60/444,269, filed on Jan. 31, 2003, and titled “REMEDIES FOR FREEZING IN CLOSED-LOOP LIQUID COOLING FOR ELECTRONIC DEVICES.” The provisional patent application Ser. No. 60/444,269, filed on Jan. 31, 2003, and titled “REMEDIES FOR FREEZING IN CLOSED-LOOP LIQUID COOLING FOR ELECTRONIC DEVICES” is hereby incorporated by reference.

US Referenced Citations (187)
Number Name Date Kind
596062 Firey Dec 1897 A
2039593 Hubbuch et al. May 1936 A
2273505 Florian Feb 1942 A
3361195 Meyerhoff et al. Jan 1968 A
3771219 Tuzi et al. Nov 1973 A
3817321 von Cube et al. Jun 1974 A
3948316 Souriau Apr 1976 A
4109707 Wilson et al. Aug 1978 A
4211208 Lindner Jul 1980 A
4312012 Frieser et al. Jan 1982 A
4450472 Tuckerman et al. May 1984 A
4485429 Mittal Nov 1984 A
4516632 Swift et al. May 1985 A
4540115 Hawrylo Sep 1985 A
4561040 Eastman et al. Dec 1985 A
4567505 Pease et al. Jan 1986 A
4573067 Tuckerman et al. Feb 1986 A
4574876 Aid Mar 1986 A
4644385 Nakanishi et al. Feb 1987 A
4675783 Murase et al. Jun 1987 A
4758926 Herrell et al. Jul 1988 A
4866570 Porter Sep 1989 A
4868712 Woodman Sep 1989 A
4893174 Yamada et al. Jan 1990 A
4894709 Phillips et al. Jan 1990 A
4896719 O'Neill et al. Jan 1990 A
4908112 Pace Mar 1990 A
4938280 Clark Jul 1990 A
5009760 Zare et al. Apr 1991 A
5016138 Woodman May 1991 A
5043797 Lopes Aug 1991 A
5057908 Weber Oct 1991 A
5070040 Pankove Dec 1991 A
5083194 Bartilson Jan 1992 A
5088005 Ciaccio Feb 1992 A
5095404 Chao Mar 1992 A
5099311 Bonde et al. Mar 1992 A
5099910 Walpole et al. Mar 1992 A
5125451 Matthews Jun 1992 A
5131233 Cray et al. Jul 1992 A
5161089 Chu et al. Nov 1992 A
5179500 Koubek et al. Jan 1993 A
5203401 Hamburgen et al. Apr 1993 A
5218515 Bernhardt Jun 1993 A
5228502 Chu et al. Jul 1993 A
5230564 Bartilson et al. Jul 1993 A
5232047 Matthews Aug 1993 A
5239200 Messina et al. Aug 1993 A
5239443 Fahey et al. Aug 1993 A
5263251 Matthews Nov 1993 A
5265670 Zingher Nov 1993 A
5274920 Matthews Jan 1994 A
5281026 Bartilson et al. Jan 1994 A
5308429 Bradley May 1994 A
5309319 Messina May 1994 A
5316077 Reichard May 1994 A
5317805 Hoopman et al. Jun 1994 A
5325265 Turlik et al. Jun 1994 A
5380956 Loo et al. Jan 1995 A
5383340 Larson et al. Jan 1995 A
5386143 Fitch Jan 1995 A
5421943 Tam et al. Jun 1995 A
5427174 Lomolino, Sr. et al. Jun 1995 A
5436793 Sanwo et al. Jul 1995 A
5459099 Hsu Oct 1995 A
5490117 Oda et al. Feb 1996 A
5508234 Dusablon, Sr. et al. Apr 1996 A
5514832 Dusablon, Sr. et al. May 1996 A
5514906 Love et al. May 1996 A
5544696 Leland Aug 1996 A
5548605 Benett et al. Aug 1996 A
5575929 Yu et al. Nov 1996 A
5585069 Zanzucchi et al. Dec 1996 A
5641400 Kaltenbach et al. Jun 1997 A
5651414 Suzuki et al. Jul 1997 A
5658831 Layton et al. Aug 1997 A
5675473 McDunn et al. Oct 1997 A
5692558 Hamilton et al. Dec 1997 A
5696405 Weld Dec 1997 A
5703536 Davis et al. Dec 1997 A
5704416 Larson et al. Jan 1998 A
5727618 Mundinger et al. Mar 1998 A
5740013 Roesner et al. Apr 1998 A
5763951 Hamilton et al. Jun 1998 A
5768104 Salmonson et al. Jun 1998 A
5774779 Tuchinskiy Jun 1998 A
5800690 Chow et al. Sep 1998 A
5801442 Hamilton et al. Sep 1998 A
5835345 Staskus et al. Nov 1998 A
5858188 Soane et al. Jan 1999 A
5863708 Zanzucchi et al. Jan 1999 A
5870823 Bezama et al. Feb 1999 A
5874795 Sakamoto Feb 1999 A
5880524 Xie Mar 1999 A
5901037 Hamilton et al. May 1999 A
5921087 Bhatia et al. Jul 1999 A
5936192 Tauchi Aug 1999 A
5940270 Puckett Aug 1999 A
5960866 Kimura et al. Oct 1999 A
5964092 Tozuka et al. Oct 1999 A
5965001 Chow et al. Oct 1999 A
5978220 Frey et al. Nov 1999 A
5993750 Ghosh et al. Nov 1999 A
5997713 Beetz, Jr. et al. Dec 1999 A
5998240 Hamilton et al. Dec 1999 A
6007309 Hartley Dec 1999 A
6054034 Soane et al. Apr 2000 A
6068752 Dubrow et al. May 2000 A
6090251 Sundberg et al. Jul 2000 A
6096656 Matzke et al. Aug 2000 A
6100541 Nagle et al. Aug 2000 A
6101715 Fuesser et al. Aug 2000 A
6119729 Oberholzer et al. Sep 2000 A
6126723 Drost et al. Oct 2000 A
6129145 Yamamoto et al. Oct 2000 A
6129260 Andrus et al. Oct 2000 A
6131650 North et al. Oct 2000 A
6140860 Sandhu et al. Oct 2000 A
6146103 Lee et al. Nov 2000 A
6159353 West et al. Dec 2000 A
6163073 Patel Dec 2000 A
6167948 Thomas Jan 2001 B1
6174675 Chow et al. Jan 2001 B1
6176962 Soane et al. Jan 2001 B1
6186660 Kopf-Sill et al. Feb 2001 B1
6206022 Tsai et al. Mar 2001 B1
6210986 Arnold et al. Apr 2001 B1
6216343 Leland et al. Apr 2001 B1
6221226 Kopf-Sill Apr 2001 B1
6234240 Cheon May 2001 B1
6238538 Parce et al. May 2001 B1
6253835 Chu et al. Jul 2001 B1
6277257 Paul et al. Aug 2001 B1
6301109 Chu et al. Oct 2001 B1
6313992 Hildebrandt Nov 2001 B1
6317326 Vogel et al. Nov 2001 B1
6321791 Chow Nov 2001 B1
6322753 Lindberg et al. Nov 2001 B1
6324058 Hsiao Nov 2001 B1
6337794 Agonafer et al. Jan 2002 B1
6351384 Daikoku et al. Feb 2002 B1
6366467 Patel et al. Apr 2002 B1
6388317 Reese May 2002 B1
6396706 Wohlfarth May 2002 B1
6397932 Calaman et al. Jun 2002 B1
6400012 Miller et al. Jun 2002 B1
6406605 Moles Jun 2002 B1
6415860 Kelly et al. Jul 2002 B1
6417060 Tavkhelidze et al. Jul 2002 B1
6424531 Bhatti et al. Jul 2002 B1
6437981 Newton et al. Aug 2002 B1
6438984 Novotny et al. Aug 2002 B1
6443222 Yun et al. Sep 2002 B1
6444461 Knapp et al. Sep 2002 B1
6457515 Vafai et al. Oct 2002 B1
6459581 Newton et al. Oct 2002 B1
6477045 Wang Nov 2002 B1
6492200 Park et al. Dec 2002 B1
6537437 Galambos et al. Mar 2003 B1
6543521 Sato et al. Apr 2003 B1
6553253 Chang Apr 2003 B1
6578626 Calaman et al. Jun 2003 B1
6581388 Novotny et al. Jun 2003 B1
6587343 Novotny et al. Jul 2003 B1
6588498 Reysin et al. Jul 2003 B1
6591625 Simon Jul 2003 B1
6600220 Barber et al. Jul 2003 B1
6606251 Kenny, Jr. et al. Aug 2003 B1
6632655 Mehta et al. Oct 2003 B1
6632719 DeBoer et al. Oct 2003 B1
6729383 Cannell et al. May 2004 B1
6743664 Liang et al. Jun 2004 B1
20010016985 Insley et al. Aug 2001 A1
20010024820 Mastromatteo et al. Sep 2001 A1
20010045270 Bhatti Nov 2001 A1
20010046703 Burns et al. Nov 2001 A1
20020075645 Kitano et al. Jun 2002 A1
20020121105 McCarthy, Jr. et al. Sep 2002 A1
20020134543 Estes et al. Sep 2002 A1
20030062149 Goodson et al. Apr 2003 A1
20030121274 Wightman Jul 2003 A1
20040040695 Chesser et al. Mar 2004 A1
20040052049 Wu et al. Mar 2004 A1
20040089008 Tilton et al. May 2004 A1
20040125561 Gwin et al. Jul 2004 A1
20040160741 Moss et al. Aug 2004 A1
20040188069 Tomioka et al. Sep 2004 A1
Foreign Referenced Citations (8)
Number Date Country
62152147 Jul 1987 JP
1-256775 Oct 1989 JP
02229455 Sep 1990 JP
H02-229455 Sep 1990 JP
03148160 Jun 1991 JP
06169038 Jun 1994 JP
10-99592 Apr 1998 JP
2001-326311 Nov 2001 JP
Related Publications (1)
Number Date Country
20040244950 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60444269 Jan 2003 US