Not Applicable
Not Applicable
Not Applicable
1. Field of the Invention
This invention relates to a method and apparatus for overlay alignment measurement during various stages of integrated circuit processing for microelectronic fabrication.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
Planar technology that is conventionally used in high volume production of integrated circuits used in computers, communication equipment, cellular phones and other consumer electronic devices, relies on successive processing of materials deposited in the form of thin films on top of silicon or other substrates. If two successive layers are misaligned with respect to each other, the device performance degrades and it may fail. For example, without any limitations, a misalignment can lead to an increase in the resistance of via's and contacts and hence an increase in the RC time delay of the circuit, leading to a reduction in the operable speed of the device. It is of great interest to measure the alignment accuracy of one layer's placement or registration with respect to a preceding layer's position with high precision and repeatability and with good matching between metrology tools. “Perfect alignment” rarely happens; every integrated circuit design allows for some misalignment between two succeeding layers; it is of great importance to know how well two layers are aligned with regard to each other and to know whether or not the “misalignment” is outside a prescribed tolerance band. Overlay error is the mis-registration in placement of a layer above a previously processed layer. As used herein “overlay error” or “alignment error” is defined as the deviation from perfect alignment in the x and the y direction as noted by Δx or Δy; when rotational misalignment is present, Δx or Δy is a function of the exact location of the measurement.
Overlay error measurement is normally done with specially designed targets (or marks) placed at pre-selected locations on the wafer. These targets are typically several tens of microns large and fit within the scribe or kerf area between rows and columns of die. Traditionally overlay targets consisted of box-in-box or bar-in-bar structures. However, recently, grating-based overlay metrology techniques have emerged which require targets periodic in nature. These gratings can be one-dimensional (i.e. rows of lines) or two-dimensional, for example, rows or columns of squares, rectangles, triangles, parallelograms, circles, trapezoids or any other shape that is lithographically printable. U.S. Pat. No. 6,985,618 describes a wide variety of overlay targets. Typically, a grating is placed on the previous layer and another grating on the current layer that is being processed. Normally a grating placed on a previous layer is fully processed (i.e. etched or filled, etc.) and the grating on the current layer is in a photo-resist layer. An overlay metrology tool measures a deviation in placement of a grating in a photo-resist layer with respect to a grating in the processed layer. “Overlay error” is defined as the deviation from ideal, rotational and translational, of the layer being processed to a layer previously processed.
In an overlay metrology tool described in U.S. Pat. No. 6,023,338, issued to Bareket, the system requires mechanical scanning of a focused spot on the gratings. In U.S. Pat. No. 6,710,876, issued to Nikoonahad et al, optical phase of the first order diffracted beams is used to extract the overlay error. In U.S. Pat. No. 7,009,704 issued to Nikoonahad et al the overlay target is imaged with a CCD using a mid numerical aperture (NA) lens and the shift between the adjacent gratings are computed by software. Mechanical systems suffer from wear and tear, friction, instability and drift over time leading to unreliable overlay error measurement. With reference to the optical phase techniques as described in U.S. Pat. No. 6,710,876, the information content in the first diffracted orders is insufficient and it does not adequately address the overlay measurement needs. Also, measuring the optical phase from first order diffraction alone suffers from complications in separating large phase shift arising from the height of the resist layer and the periodic phase shifts embedded in the phase of the reflection coefficient of the previously processed layer. The use of linear mechanical translation of a Wallaston prism or the use of an acousto-optic deflector has been proposed but these add to the complexity of the system. The overlay error control necessary for sub-100 nm integrated circuit devices is less than about five percent of the minimum feature size with a 3σ precision of less than one percent. This resolution is certainly below the imaging capability of any optical imaging system and, as a result, current imaging systems, as described in 7,009,704, resort to a significant amount of algorithmic post processing to attain meaningful overlay information. None of the techniques described above are fully satisfactory. Clearly additional sensitivity to “overlay-only” errors is of great value. It is, therefore, desirable to develop a system with better performance and a simpler characteristic.
In the present invention, overlay targets, or alignment targets, on two adjacent layers of an integrated circuit, are illuminated by coherent radiation. In some embodiments, a Fourier transform lens optically computes a Fourier transform of the diffraction pattern created by the periodic targets. Analysis of the spatial frequencies at the Fourier plane yields overlay alignment information. For example, without any limitations, from the shifting theorem of the Fourier transforms, any overlay deviation or error translates into a phase term in the field amplitude in the Fourier transform plan and hence a sinusoidal variation in intensity versus alignment of the targets on the two layers.
An apparatus or system of the present invention employs one or more illuminators that illuminate a target grating using at least one wavelength of coherent radiation such as from a laser. For the purposes of this description, an illuminator is defined to be a single head for delivery of light; illumination optics refers to an entire sub-system for illumination. As such, illumination optics may encompass one or more illuminators and lasers. In some embodiments, a laser wavelength, without any limitation, may be 920 nm, 890 nm, 670 nm, 633 nm, 532 nm, 488 nm, 405 nm, 364 nm, 266 nm, 257 nm, or 193 nm or any other wavelength available from gas or solid-state lasers or other convenient sources. Multiple wavelengths may also be used. An illumination optics comprises an ensemble of optical components which may include, without limitation, optical fiber, fiber couplers, lenses, lens systems, annular lenses, bright-field microscope objectives, dark-field microscope objectives, reflective microscope objectives, optical filters, diffraction gratings, polarizers, wave-plates, windows, pinholes, beam-splitters, optical-mechanical holders and fixtures, mirrors, dichroic mirrors and beam-splitters, optical modulators, telescopes, beam-expanders, collimators, spatial light modulators and spatial filters. An illumination optics comprises means for conditioning an optical beam, or beams, and means for delivering a beam or multiple beams to a surface of an overlay target. In addition, optionally, means for rotating a polarizer or a wave-plate may be part of the illumination optics. In an example, an illumination optics illuminates an uniform or Gaussian illumination spot of about 1 to 100 microns in diameter to an overlay target. More specifically, an illumination spot diameter may be between about 5 to 50 microns. It is important that an illumination spot 210 cover the overlay targets of the two layers of interest and more importantly a multitude of elements from a top grating, or first target, 220 and a multitude of elements from a bottom grating, or second target, 230 as shown in
Alternative embodiments may use alternative means for collecting diffraction patterns comprising one or more of lenses or mirrors. An image sensor 1035 may be located at alternative locations depending on the means for collecting the scattered and reflected radiation comprising various diffraction patterns. An image sensor constitutes a means for converting a received diffraction pattern into two or more electrical signals; the image sensor must maintain the relative locations and intensities, or gray scales, of the overall diffraction pattern signal, and thus the individual spatial frequencies received from the upper and lower grating targets, 1010 and 1011. The image sensor pixel size and gray scale sensitivity, e.g. 256 bits, for instance, must be sufficient for the desired resolution in alignment measurement and alignment error. A clear advantage of the instant invention is that a pixel size may be on the order of 1 micron for error resolution on the order of 1 nm. Additionally, an image sensor must be of some sufficient responsiveness to as many different wavelengths as an illumination source is projecting.
A processor, 1050, also constitutes a means for analyzing; in some embodiments a means for analyzing comprises a processor and resident software comprising capability for addition, subtraction, multiplication, division and Boolean operations, comprising AND, OR, NAND, NOR, XOR, and employing algorithms based on various mathematical models such as RCWA, modal, finite element, or finite difference time domain models; various degrees of “analysis” can be performed on diffraction orders and/or spatial frequencies to yield accurate overlay alignment information acceptable for various alignment criteria.
Although the invention does not wish to be bound by a certain mathematical formulation, for the purposes of illustrating this invention, a formulation is presented.
Assume that a periodic function describing a grating within an overlay target is given by g(x, y) The periodicity may be in complex reflection coefficient, intensity reflectivity, or purely in phase. This depends on whether the lines of the gratings comprise resist, metal, dielectric films deposited, or whether a grating is formed by etched lines filled with another material such as metal or whether the grating lines are from a combination of these materials and structures. The Fourier transform-lens results in a two-dimensional Fourier transform in the form:
I(fx,fy)=|∫−∞+∞∫−∞+∞[g(x,y)+g(x−Δx,y−Δy)jφ
Assuming uniform illumination, which may be normal or oblique, the limits of the integrals in Equation (1) will be over the lateral dimensions of the overlay target. I(fx,fy) is the intensity of the Fourier transform of the target at the Fourier transform plane. Equation (1) shows that the two functions that are being Fourier transformed are (i) shifted by Δx in the x direction by Δy in the y direction and (ii) that one function is phase shifted with respect to the other by an amount φz which is due to the height difference of the two gratings as they are on two separate heights in the z (normal to the xy plane) direction. In the following formulation it is assumed that φz is independent of x and y but in practice φz may be a function of x and y. In Equation (1) fx and fy are spatial frequencies given by
Where xF and yF depict x and y coordinates in the Fourier transform plan, λ is the wavelength of radiation and F is the focal length of the Fourier transform lens. Using the shifting theorem of Fourier transform, it can be shown that
I(fx,fy)=|G(fx,fy)+G(fx,fy)e−j2πΔxf
which simplifies to
I(fx,fy)=|G(fx,fy)|2[1+cos 2 π(Δxfx+Δyfy)] (4)
Equation 4 means that overlay errors Δx in the x direction and Δy in the y direction lead to a sinusoidal variation with period's λF/Δf and λF/Δy respectively in the Fourier transform plan. In Equations (1) through (4) equal signs have been used and all proportionality constants have been omitted for clarity of communicating the essential elements of the invention. To obtain the absolute value of each of the quantities on the left side of these equations, additional constants may have to be multiplied by what is given on the right hand side.
Both the focal length of a Fourier transform lens and the wavelength act as scaling factors and provide ample opportunity for suitable system design. For the case of multiple wavelength illumination, it is clear from equations (2a) and (2b) that each wavelength maps onto a different spatial frequency periodicity in the Fourier plane providing additional information for extracting overlay errors. For the case of variable elevation and azimuthal angle illumination, each illumination angle translates into an input spatial frequency and this, in turn, will cause an offset in the spatial frequencies collected at the Fourier transform plane and again provide additional information for computing overlay error. In some embodiments, to within first order approximation, it is estimated that illuminating with N spatial frequencies will lead to √{square root over (N)} improvement in overlay error measurement resolution.
In one embodiment an image sensor such as a charged couple device (CCD) is placed directly at the Fourier transform plane. This CCD maps out the function I(fx,fy) and transmits it to a processor. Once the Fourier transform plane is imaged each pixel of the CCD will correspond to a unique spatial frequency carrying overlay alignment and error information in a unique way. For example, without any limitations, if a 1,000×1,000 pixel CCD is used, 1,000,000 spatial frequencies each of which carries overlay error information in a unique way is available. A variety of mathematical manipulations, comprising addition, subtraction, multiplication, division can be performed on the spatial frequencies in order to accurately extract overlay information. For example, without any limitations, all spatial frequencies can be normalized to the zero order diffraction to remove absolute value of the light intensity. In addition numerous Boolean operations, comprising AND, OR, NAND, NOR, XOR, can be performed on these spatial frequencies to yield accurate overlay alignment information. It is clear that this invention offers significant superiority over the technology disclosed in the U.S. Pat. No. 6,710,876 wherein only spatial frequencies corresponding to the first order diffracted waves, which occur at ±1/p, where p is the period or pitch of the elements of a grating target, are used in overlay error computation. In the instant invention data from at least two orders of diffracted waves is used in the overlay error analysis.
In another embodiment for overlay alignment measurement the computed and measured intensities at the Fourier transform plane are compared. This is done through a two-dimensional surface fitting with a processor between the measured 1130 and computed 1120 I(fx,fy) to attain the best Goodness of Fit (GOF) over the entire Fourier transform plane. A flow chart for such algorithm is provided in
A system is further provided with a Fourier plane filter 1030 as shown in
In one embodiment an apparatus for overlay measurements, comprises at least two illumination beams substantially illuminating the same area of an overlay target, a means for collecting a diffraction pattern from the target, a means for converting the diffraction pattern to at least two electrical signals, and a means for analyzing the at least two electrical signals; wherein the signals have a spatial, or location, and intensity, or gray scale, relationship to each other based on the combined diffraction pattern transmitted from an overlay target comprising an upper and lower periodic grating. Optionally, at least two illuminating beams originate from at least one laser; optionally, at least two illuminating beams have different elevation angles; optionally, at least two illuminating beams have different azimuthal angles; optionally, at least two illuminating beams are 180 degrees offset azimuthally; optionally, at least two illuminating beams are at least four illuminating beams wherein at least groups of two said illuminating beams are 180 degrees offset azimuthally; optionally, a means for collecting the diffraction pattern comprises a Fourier transform lens; optionally, a means for converting the diffraction pattern to at least one electrical signal is at least one chosen from a group comprising a photodiode array, a CCD, a photomultiplier array, a CMOS image sensor array, a linear array, and an array of avalanche photodiodes; optionally, a means for analyzing at least one electrical signal comprises means for digitizing said at least one electrical signal and means for computation; optionally, a means for analyzing comprises Boolean operations chosen from a group comprising at least one of AND, OR, NAND, NOR or XOR; optionally, a means for analyzing comprises the step of constructing a mathematical model of the diffraction pattern from the overlay target and the step of comparing the measured diffraction pattern to the mathematical model; optionally, the apparatus further comprises at least one spatial filter wherein the at least one spatial filter preferentially suppresses parts of said diffraction pattern before means for converting converts said diffraction pattern to at least one electrical signal.
In an embodiment an apparatus for making overlay alignment and error measurements, comprises at least two illumination beams of coherent radiation substantially illuminating the same area of an overlay target wherein the overlay target comprises at least two periodic arrays, one in an upper layer and one in an adjacent lower layer, a means for collecting a diffraction pattern from the targets, a means for converting the diffraction pattern to at least two electrical signals, and a means for analyzing the at least two electrical signals; wherein the signals have a spatial and intensity, or gray scale, relationship to each other based on the combined diffraction pattern transmitted from an upper and lower periodic grating. Optionally, at least two illuminating beams originate from at least one laser; optionally, at least two illuminating beams have different elevation angles; optionally, at least two illuminating beams have different azimuthal angles; optionally, each beam of said at least two illuminating beams has independent polarization control; optionally, at least two illuminating beams are 180 degrees offset azimuthally and the elevation angle of the two beams substantially equals the diffraction angle of the gratings: θ=sin−1(λ/p), where θ is an illumination angle in the elevation direction and λ and p are wavelength and pitch (or period) of the gratings in the overlay target respectively; optionally, at least two illuminating beams are at least four illuminating beams wherein at least groups of two said illuminating beams are 180 degrees offset azimuthally; optionally, a means for collecting the diffraction pattern comprises a Fourier transform lens; optionally, a means for converting the diffraction pattern to at least one electrical signal is one from a group comprising a photodiode array, a CCD, a photomultiplier array, a CMOS image sensor array, a linear array, and an array of avalanche photodiodes; optionally, a means for analyzing at least one electrical signal comprises means for digitizing said at least one electrical signal and means for computation; optionally, a means for analyzing further comprises Boolean operations chosen from a group comprising at least one of AND, OR, NAND, NOR or XOR; optionally, the apparatus further comprises at least one spatial filter wherein the at least one spatial filter preferentially suppresses parts of said diffraction pattern before means for converting converts said diffraction pattern to at least one electrical signal; optionally, a means for analyzing comprises the step of constructing a mathematical model of the diffraction pattern from the overlay target and the step of comparing the measured diffraction pattern to the mathematical model wherein the mathematical model comprises at least one of RCWA, modal, finite element, or finite difference time domain models; optionally, the two illumination beams are formed from at least one of a group comprising a beam splitter, a diffraction grating and a fiber coupler; optionally, one beam of said two illumination beams is phase shifted with respect to the other beam of said two illumination beams by a pre-determined amount. The repeat distance, or period, or pitch, of a periodic grating divided by the width of an individual feature is termed the line space ratio; optionally a line space ratio of gratings may range from more than 10:1 to less than 2:1. Optionally, a pitch of a grating may range from about 0.1 to about 10 microns; different pitches may be used for applications requiring special considerations. In some embodiments the pitch to width ratio of the at least two periodic arrays is more than 1.05 to 1.
In general a grating size must be greater than λ/2 or one-half the wavelength used to illuminate the grating targets. In some embodiments a “means for collecting” is a Fourier transform lens.
The measurement systems described here in can either be the measurement engine for a stand-alone tool used in integrated circuit processing or they can serve as the measurement engine of an integrated tool. An integrated tool is one in which the tool is designed and built with a relatively smaller footprint and is integrated into a larger process tool such as lithography stepper.
Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently. Alternative construction techniques and processes are apparent to one knowledgeable with integrated circuit processing, optics and alignment measurement technologies. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by Claims following.
This application claims the benefit of U.S. provisional application Ser. No. 60/809,650 filed on May 30, 2006 and U.S. provisional application Ser. No. 60/811,051 filed on Jun. 5, 2006 which are incorporated fully herein by reference. Additionally, the following are incorporated fully herein by reference, U.S. Pat. No. 6,985,618, U.S. Pat. No. 6,897,957, U.S. Pat. No. 6,023,338, U.S. Pat. No. 6,710,876, U.S. Pat. No. 7,009,704, U.S. Pat. No. 6,867,862, U.S. Pat. No. 6,768,543, and US patent application number 2007/0091325.
Number | Name | Date | Kind |
---|---|---|---|
4710026 | Magome et al. | Dec 1987 | A |
5171999 | Komatsu et al. | Dec 1992 | A |
5204535 | Mizutani | Apr 1993 | A |
5216257 | Brueck et al. | Jun 1993 | A |
5333050 | Nose et al. | Jul 1994 | A |
5689339 | Ota et al. | Nov 1997 | A |
5712707 | Ausschnitt et al. | Jan 1998 | A |
5923041 | Cresswell et al. | Jul 1999 | A |
6023338 | Bareket | Feb 2000 | A |
6710876 | Nikoonahad et al. | Mar 2004 | B1 |
6768543 | Aiyer | Jul 2004 | B1 |
6897957 | Meeks | May 2005 | B2 |
6958819 | Heaton et al. | Oct 2005 | B1 |
6970255 | Spady et al. | Nov 2005 | B1 |
6985618 | Adel et al. | Jan 2006 | B2 |
7009704 | Nikoonahad et al. | Mar 2006 | B1 |
7061615 | Lowe-Webb | Jun 2006 | B1 |
7095499 | Monshouwer et al. | Aug 2006 | B2 |
7181057 | Adel et al. | Feb 2007 | B2 |
7230703 | Sezginer et al. | Jun 2007 | B2 |
7239213 | Dreps et al. | Jul 2007 | B2 |
20020192577 | Fay et al. | Dec 2002 | A1 |
20040002172 | Goo | Jan 2004 | A1 |
20040239934 | Bowes | Dec 2004 | A1 |
20040257571 | Mieher et al. | Dec 2004 | A1 |
20050046855 | Davidson | Mar 2005 | A1 |
20050094153 | Nikoonahad et al. | May 2005 | A1 |
20050195398 | Adel et al. | Sep 2005 | A1 |
20070064247 | Petit et al. | Mar 2007 | A1 |
20070091325 | Nikoonahad | Apr 2007 | A1 |
20080002213 | Weiss | Jan 2008 | A1 |
20080043212 | Shibazaki | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
60809650 | May 2006 | US | |
60811051 | Jun 2006 | US |