The present invention relates to the manufacture of objects. More particularly, the invention provides a technique including a device for planarizing a film of material of an article such as a semiconductor wafer. However, it will be recognized that the invention has a wider range of applicability; it can also be applied to flat panel displays, hard disks, raw wafers, MEMS wafers, and other objects that require a high degree of planarity.
The fabrication of integrated circuit devices often begins by producing semiconductor wafers cut from an ingot of single crystal silicon which is formed by pulling a seed from a silicon melt rotating in a crucible. The ingot is then sliced into individual wafers using a diamond cutting blade. Following the cutting operation, at least one surface (process surface) of the wafer is polished to a relatively flat, scratch-free surface. The polished surface area of the wafer is first subdivided into a plurality of die locations at which integrated circuits (IC) are subsequently formed. A series of wafer masking and processing steps are used to fabricate each IC. Thereafter, the individual dice are cut or scribed from the wafer and individually packaged and tested to complete the device manufacture process.
During IC manufacturing, the various masking and processing steps typically result in the formation of topographical irregularities on the wafer surface. For example, topographical surface irregularities are created after metallization, which includes a sequence of blanketing the wafer surface with a conductive metal layer and then etching away unwanted portions of the blanket metal layer to form a metallization interconnect pattern on each IC. This problem is exacerbated by the use of multilevel interconnects.
A common surface irregularity in a semiconductor wafer is known as a step. A step is the resulting height differential between the metal interconnect and the wafer surface where the metal has been removed. A typical VLSI chip on which a first metallization layer has been defined may contain several million steps, and the whole wafer may contain several hundred ICs.
Consequently, maintaining wafer surface planarity during fabrication is important. Photolithographic processes are typically pushed close to the limit of resolution in order to create maximum circuit density. Typical device geometries call for line widths on the order of 0.5 μM. Since these geometries are photolithographically produced, it is important that the wafer surface be highly planar in order to accurately focus the illumination radiation at a single plane of focus to achieve precise imaging over the entire surface of the wafer. A wafer surface that is not sufficiently planar, will result in structures that are poorly defined, with the circuits either being nonfunctional or, at best, exhibiting less than optimum performance. To alleviate these problems, the wafer is “planarized” at various points in the process to minimize non-planar topography and its adverse effects. As additional levels are added to multilevel-interconnection schemes and circuit features are scaled to submicron dimensions, the required degree of planarization increases. As circuit dimensions are reduced, interconnect levels must be globally planarized to produce a reliable, high density device. Planarization can be implemented in either the conductor or the dielectric layers.
In order to achieve the degree of planarity required to produce high density integrated circuits, chemical-mechanical planarization processes (“CMP”) are being employed with increasing frequency. A conventional rotational CMP apparatus includes a wafer carrier for holding a semiconductor wafer. A soft, resilient pad is typically placed between the wafer carrier and the wafer, and the wafer is generally held against the resilient pad by a partial vacuum. The wafer carrier is designed to be continuously rotated by a drive motor. In addition, the wafer carrier typically is also designed for transverse movement. The rotational and transverse movement is intended to reduce variability in material removal rates over the surface of the wafer. The apparatus further includes a rotating platen on which is mounted a polishing pad. The platen is relatively large in comparison to the wafer, so that during the CMP process, the wafer may be moved across the surface of the polishing pad by the wafer carrier. A polishing slurry containing chemically-reactive solution, in which are suspended abrasive particles, is deposited through a supply tube onto the surface of the polishing pad.
CMP is advantageous because it can be performed efficiently, in contrast to past planarization techniques which are complex, involving multiple steps. Moreover, CMP has been demonstrated to maintain high material removal rates of high surface features and low removal rates of low surface features, thus allowing for uniform planarization. CMP can also be used to remove different layers of material and various surface defects. CMP thus can improve the quality and reliability of the ICs formed on the wafer.
Many other limitations, however, exist with CMP. Specifically, CMP often involves a large polishing pad, which uses a large quantity of slurry material. The large polishing pad is often difficult to control and requires expensive and difficult to control slurries. Additionally, the large polishing pad is often difficult to remove and replace. The large pad is also expensive and consumes a large foot print in the fabrication facility. These and other limitations still exist with CMP and the like.
What is needed is an improvement of the CMP technique to improve the degree of global planarity that can be achieved using CMP.
According to specific embodiments of the present invention, a technique including an apparatus for chemical mechanical planarization of objects is provided. In an exemplary embodiment, the invention provides an apparatus, which allows the polishing pad to be easily replaced. The apparatus includes a smaller polishing pad, relative to the size of the object being polished.
In a specific embodiment, the present invention provides an apparatus for chemical mechanical planarization. The apparatus has a platen assembly for holding an object (e.g., wafer, disk, flat panel, glass) to be planarized. The apparatus also has a polishing head coupled to a polishing pad, which has a smaller diameter than the object. The polishing head is movable (e.g., pivotable, rotatable, translational) from a first region overlying the platen assembly to a second region, which is outside the first region. A removable puck is coupled between the polishing pad and the polishing head. The removable puck is removably coupled to a coupling on the polishing head. The apparatus also has a first magazine disposed in the second region. The first magazine houses at least one puck comprising a first polishing pad to be placed on the coupling on the polishing head. In a specific embodiment, the magazine houses a polishing pad or a plurality of them to be used to replace a used, worn, or faulty polishing pad in an improved manner.
In accordance with an aspect of the present invention, a system for chemical mechanical planarization comprises a platen assembly for holding an object to be planarized and a polishing head comprising a puck holder assembly for coupling to a substrate for holding a polishing pad. The polishing pad is smaller in surface area than the object. The polishing head is movable from a first region overlying the platen assembly to a second region. The puck holder assembly comprises a backing surface for positioning the substrate, and a clamp ring positioned proximate to the backing surface for supplying mechanical force to the substrate to hold the substrate in place during a polishing operation.
In accordance with another aspect of the invention, a chemical mechanical planarization apparatus comprises a housing including a backing surface for positioning a substrate holding a polishing pad which is smaller in surface area than an object to be planarized by the polishing pad in a polishing operation. A clamp ring is positioned in the housing proximate to the backing surface and being movable between a contracted position to clamp the perimeter of the substrate and an expanded position to release the substrate. A spring mechanism is disposed in the housing for resiliently biasing the clamp ring toward the contracted position.
In accordance with another aspect of the invention, a method for chemical mechanical planarization of an object comprises coupling a polishing head to a substrate for holding a polishing pad which is smaller in area than the object. A resilient mechanical force is applied to the perimeter of the substrate with the polishing head to hold the substrate in place during a polishing operation. The polishing pad is placed in contact with the object and rotated with the polishing head.
Numerous benefits are achieved by way of the present invention over other techniques. In some embodiments, the present invention provides an improved way to attach and remove the polishing pad. Additionally, the invention provides an improved technique for the manufacture of objects. In other embodiments, specific embodiments of the invention provide an easy way to replace used or worn or faulty polishing pads. Depending upon the embodiment, one or more of these benefits may exist. These and others will be described in more detail throughout the present specification and more particularly below.
Embodiments of the present invention achieve these benefits in the context of known process technology and known techniques in the mechanical arts. However, a further understanding of the nature and advantages of the present invention may be realized by reference to the latter portions of the specification and attached drawings.
According to specific embodiments of the present invention, a technique including an apparatus for chemical mechanical planarization of objects is provided. In an exemplary embodiment, the invention provides an apparatus, which allows the polishing pad to be easily replaced. The apparatus includes a smaller polishing pad, relative to the size of the object being polished.
Referring to
The chuck includes a drive spindle 104 which is coupled to a motor 172 via a drive belt 174 to rotate the wafer about its axis 120. Preferably, the motor is a variable-speed device so that the rotational speed of the wafer can be varied. In addition, the direction of rotation of the motor can be reversed so that the wafer can be spun in either a clockwise direction or a counterclockwise direction. Typically, stepper motors are used since their speed can be easily controlled, as well as their direction of rotation. Servo motors can also be used, in other applications.
A channel 106 formed through spindle 104 is coupled to a vacuum pump (not shown). Chuck 102 may be a porous material, open to ambient at its upper surface so that air drawn in from the surface through channel 106 creates a low pressure region near the surface. A wafer placed on the chuck surface is consequently held in place by the resulting vacuum created between the wafer and the chuck. Alternatively, chuck 102 may be a solid material having numerous channels formed through the upper surface, each having a path to channel 106, again with the result that a wafer placed atop the chuck will be held in position by a vacuum. Such vacuum-type chucks are known and any of a variety of designs can be used with the invention. In fact, mechanical clamp chucks can be used. However, these types are less desirable because the delicate surfaces of the wafer to be polished can be easily damaged by the clamping mechanism. In general, any equivalent method for securing the wafer in a stationary position and allowing the wafer to be rotated would be equally effective for practicing the invention.
A wafer backing film 101 is disposed atop the surface of chuck 102. The backing film is a polyurethane material. The material provides compliant support structure which is typically required when polishing a wafer. High spots on a wafer prevent the pad from contacting the thinner areas (low spots) of the wafer. The compliant backing material permits the wafer to deflect enough to flatten its face against the polish pad. There can be a deflection of several thousands of an inch deflection under standard polishing forces. Polyurethane is not necessary, however, as any appropriate compliant support material will work equally well. In addition, the wafer typically includes a pressure sensitive adhesive (PSA) film on its bottom surface for coupling with the chuck 102. The PSA film desirably includes a plurality of holes that may be formed by laser to permit application of a vacuum from the chuck 102 on the bottom of the wafer.
Referring to
It is noted that the function of traverse mechanism 150 can be provided by other known translation mechanisms as alternatives to the aforementioned x-y translation stage. Alternative mechanisms include pulley-driven devices and pneumatically operated mechanisms. The present invention would be equally effective regardless of the particular mechanical implementation selected for the translation mechanism.
For example,
Continuing with
The pad assembly is arranged on the translation stage of traverse mechanism 150 to allow for motion in the vertical direction which is indicated in
A slurry delivery mechanism 112 is provided to dispense a polishing slurry onto process surface 12 of wafer 10 during a polishing operation. Although
A splash shield 110 is provided to catch the polishing fluids and to protect the surrounding equipment from the caustic properties of any slurries that might be used during polishing. The shield material can be polypropylene or stainless steel, or some other stable compound that is resistant to the corrosive nature of polishing fluids.
A controller 190 in communication with a data store 192 issues various control signals 191 to the foregoing-described components of polishing apparatus 100. The controller provides the sequencing control and manipulation signals to the mechanics to effectuate a polishing operation. The data store 192 preferably is externally accessible. This permits user-supplied data to be loaded into the data store to provide polishing apparatus 100 with the parameters for performing a polishing operation. This aspect of the preferred embodiment will be further discussed below.
Any of a variety of controller configurations are contemplated for the present invention. The particular configuration will depend on considerations such as throughput requirements, available footprint for the apparatus, system features other than those specific to the invention, implementation costs, and the like. In one embodiment, controller 190 is a personal computer loaded with control software. The personal computer includes various interface circuits to each component of polishing apparatus 100. The control software communicates with these components via the interface circuits to control apparatus 100 during a polishing operation. In this embodiment, data store 192 can be an internal hard drive containing desired polishing parameters. User-supplied parameters can be keyed in manually via a keyboard (not shown). Alternatively, data store 192 is a floppy drive in which case the parameters can be determined elsewhere, stored on a floppy disk, and carried over to the personal computer. In yet another alternative, data store 192 is a remote disk server accessed over a local area network. In still yet another alternative, the data store is a remote computer accessed over the Internet; for example, by way of the world wide web, via an FTP (file transfer protocol) site, and so on.
In another embodiment, controller 190 includes one or more microcontrollers which cooperate to perform a polishing sequence in accordance with the embodiment of the invention. Data store 192 serves as a source of externally-provided data to the microcontrollers so they can perform the polish in accordance with user-supplied polishing parameters. It should be apparent that numerous configurations for providing user-supplied polishing parameters are possible. Similarly, it should be clear that numerous approaches for controlling the constituent components of the CMP are possible.
Additionally, the chemical mechanical polishing apparatus 100 includes a base panel 501, which houses a variety of systems and sub-systems. The base panel 501 is a frame support structure, which has doors for enclosing the frame support structure. The panel has a region, which houses a variety of sites used for replacing polishing pads according to as aspect of the present invention. As shown in
The apparatus also includes a variety of other sites. For example, the sites include a site 513, which holds new caps, each with a polishing pad. In a specific embodiment, the cap can be a hard pad material. In other embodiments, the sites also include one for new caps 509, each with a polishing pad for a soft pad. The soft pad can be made from a suitable material. Here, the apparatus can be attached to a hard pad for a specific application. Then, the apparatus can be attached to a soft pad, or alternatively, if desirable. Further details of the magazine are provided below.
The apparatus also includes a site 511 for conditioning the pad. The conditioning site has a conditioning pad and/or conditioning solution. The conditioning pad can include a diamond like pad, or the like. The conditioning pad can also include movement to help move away residual material from the polishing pad. In other embodiments, the conditioning pad can also be immersed in solvent, which is used to carry away residual material. Further details of the conditioning site are provided below.
Now to secure the removable cap onto the coupling, the cap is brought into contact and is aligned to the coupling. Here, each of the threads 325 is aligned with a respective thread opening 327, inserted along a first direction toward the support structure, until each thread bottoms against a stop 329 in the opening. Next, the cap is rotated in a counter clockwise manner, where the groove 331 guides each thread such that the cap biases against the coupling to secure it in place. Once the cap is secured, the drive 305 rotates the pad in a counter clockwise circular manner during a process operation. By way of the counter clockwise manner, the cap does not loosen up and continues to be biased against the coupling. In other embodiments, the rotatable cap and coupling are mated to each other in a clockwise manner, where the drive rotates the pad in a clockwise manner.
To remove the cap from the coupling, the drive is secured in place manually or by a brake, where the rotatable coupling cannot be rotated through the drive. The cap is grasped and turned in a clockwise manner, which guides each thread away from the bias to release the cap from the coupling. Once each thread is aligned with its opening, the cap is dropped to free it from the coupling. Again, in other embodiments, the rotatable cap and coupling have been mated to each other in a clockwise manner, where the drive rotates the pad in a clockwise manner. In a preferred embodiment, the present cap is removed from the coupling by way of the technique illustrated by
The present cap, which is rotatably attached, can be replaced by other types of coupling devices. Of course, the type of coupling device used depends upon the application.
The polishing head also includes a sensing device 309, which is coupled to a processing unit, such as the one noted but can be others. The sensing device can look through an inner opening 311 of the drive shaft 305 to the polishing pad. In some embodiments, the polishing pad is annular in structure with an opening 321 in the center. The opening allows the sensor to sense a fluid level or slurry level at the workpiece surface, which is exposed through the center opening in the pad. Of course, the type of coupling device used depends upon the application.
The cap can be made of a suitable material to withstand both chemical and physical conditions. Here, the cap can be made of a suitable material. The cap is also preferably transparent, which allows the sensing device to pick up optical signals from the workpiece surface. The cap is also sufficiently rigid to withstand torque from the drive shaft. The cap can also withstand exposure to acids, bases, water, and other types of chemicals, depending upon the embodiment. The cap also has a resilient outer surface to prevent it from damage from slurries, abrasive, and other physical materials. Further details of removing the cap are provided below.
Next, the removed cap is placed into a disposal. Here, the handling arms can move the cap from a removal location to a disposal location.
The panel includes a polishing head 515 (or arm), which pivots about member 517. The polishing head extends from member 517 to a region overlying the object 507 to be polished. The object can be a variety of work pieces, such as a semiconductor wafer, a glass plate, a flat panel, a blank wafer, a disk, and other objects with surfaces that need polishing or planarization. The object often rests on and is attached to a base plate or platen 505. The base plate can often rotate the object in either direction. Additionally, the base plate can ramp up in speed, or step up in speed, or perform other functions.
The polishing head includes a polishing pad 19, which is coupled to the polishing head. The polishing pad rotates in a circular or orbital manner and traverses across the surface of the object. The polishing pad can also move in the vertical direction to a selected height. Other functions of the polishing pad have been previously noted and also apply here, but should not unduly limit this embodiment.
The polishing pad can move from the object to one of a plurality of sites. These sites include a disposal site 502, where the polishing pad can be removed. The disposal site can also include a device, such as the handling arms, which are used to remove the polishing pad and cap from the polishing head. Here, the polishing arm completes a polishing process, is elevated, and traverse to the disposal site 502, where the handling arms clamp the cap, the drive motor turns the drive shaft to free the cap, and the polishing head lifts up to free itself from the cap. Next, the arms release the cap, including the pad, into the disposal site. In a specific embodiment, the disposal site can be covered, when it is not in use to prevent particulate contamination from being released from the disposal site to the object.
The polishing head 600 includes a housing 602 including a backing surface 606 for positioning a polishing pad puck or substrate 610 for supporting a polishing pad. The substrate 610 is desirably a hard substrate made of a substantially firm and rigid material such as metal, plastic, or the like. The substrate 610 may be an insulator or a semiconductor. A channel 604 in the housing 602 and an orifice 612 in the substrate 610 may be provided for injecting a polishing slurry onto the wafer surface for polishing. The backing surface 606 desirably is planar for supporting a planar backside of the substrate 610. A pattern of release grooves 613 are desirably provided on the backing surface 606 for assisting ejection of the substrate 610 as described below.
A clamp ring 614 is disposed around the substrate 610 for clamping the substrate 610 around its perimeter. As shown in
An annular wave spring 620 is used to applying a spring force on the clamp ring 614 for clamping the substrate 610, as shown in
To load the substrate 610, the housing 602 is pushed downward onto the substrate 610 disposed on a loading or pickup stand or load platform 800 as shown in
The split clamp ring mechanism enhances clamping force on the substrate and produces self-alignment of the substrate. The use of the annular wave spring provides self-energized clamping and release of the substrate. The clamp ring and spring may be made of a variety of materials. For example, the ring may include Delrin AF™ made by Dupont Corporation, PET. The spring may be-made of stainless steel or titanium.
As shown in
The transfer apparatus 1002 positions the puck support 1010 below the exposed puck 1012, for example, by sliding the puck support 1010 in the y-direction below the magazine 1014. The puck support 1010 includes a hook-like projection or raised edge 1110 which hooks on the rear edge of the exposed puck and slides it out of the magazine 1014 in the x-direction. To secure the puck in place, the puck support 1010 may include a vacuum port on the puck support surface coupled to a vacuum source to draw a suction on the puck against the support surface of the puck support 1010. Of course, other ways of securing the puck 1012 may be used.
After the x-actuator 1004 moves the substrate support 1010 in the x-direction away from the magazine 1014, the angular actuator 1024 rotates the substrate support 1010 to flip the puck 1012 onto the pickup stand 1020 from polish side up to polish side down, as seen in
The transfer system 1000 of
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents known to those of ordinary skill in the relevant arts may be used. For example, while the description above is in terms of a semiconductor wafer, it would be possible to implement the present invention with almost any type of article having a surface or the like. Moreover, the use of the term cap and puck to refer to the substrate disposed between the polishing pad and the polishing head is not intended to limit the substrate to specific shapes or structures. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 09/693,148, filed Oct. 20, 2000, now U.S. Pat. No. 6,602,121, which is based on and claims the benefit of U.S. Provisional Patent Application No. 60/162,171, filed Oct. 28, 1999, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4128968 | Jones | Dec 1978 | A |
4490948 | Hanstein et al. | Jan 1985 | A |
5542874 | Chikaki | Aug 1996 | A |
5664987 | Renteln | Sep 1997 | A |
5792709 | Robinson et al. | Aug 1998 | A |
5800253 | Ikemoto | Sep 1998 | A |
5938504 | Talieh | Aug 1999 | A |
6022807 | Lindsey et al. | Feb 2000 | A |
6106369 | Konishi et al. | Aug 2000 | A |
6346036 | Halley | Feb 2002 | B1 |
6435957 | Stemm | Aug 2002 | B1 |
6464574 | Halley | Oct 2002 | B1 |
20010041650 | Senga et al. | Nov 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
60162171 | Oct 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09693148 | Oct 2000 | US |
Child | 10379962 | US |