Pad transfer apparatus for chemical mechanical planarization

Information

  • Patent Grant
  • 6450860
  • Patent Number
    6,450,860
  • Date Filed
    Friday, October 20, 2000
    24 years ago
  • Date Issued
    Tuesday, September 17, 2002
    22 years ago
Abstract
A system provides a polishing pad for chemical mechanical planarization of an object larger in diameter than the polishing pad. The system comprises a magazine including a bottom for exposing at least a portion of a puck which holds a polishing pad, and a transfer apparatus for transferring the puck from the magazine in the first region to a pickup stand in a second region. The transfer apparatus includes a puck support being movable to retrieve the puck from the bottom of the magazine by coupling a capture portion of the puck support with an exposed portion of the puck and moving the puck with the puck support away from the magazine.
Description




BACKGROUND OF THE INVENTION




The present invention relates to the manufacture of objects. More particularly, the invention provides a technique including a device for planarizing a film of material of an article such as a semiconductor wafer. However, it will be recognized that the invention has a wider range of applicability; it can also be applied to flat panel displays, hard disks, raw wafers, MEMS wafers, and other objects that require a high degree of planarity.




The fabrication of integrated circuit devices often begins by producing semiconductor wafers cut from an ingot of single crystal silicon which is formed by pulling a seed from a silicon melt rotating in a crucible. The ingot is then sliced into individual wafers using a diamond cutting blade. Following the cutting operation, at least one surface (process surface) of the wafer is polished to a relatively flat, scratch-free surface. The polished surface area of the wafer is first subdivided into a plurality of die locations at which integrated circuits (IC) are subsequently formed. A series of wafer masking and processing steps are used to fabricate each IC. Thereafter, the individual dice are cut or scribed from the wafer and individually packaged and tested to complete the device manufacture process.




During IC manufacturing, the various masking and processing steps typically result in the formation of topographical irregularities on the wafer surface. For example, topographical surface irregularities are created after metallization, which includes a sequence of blanketing the wafer surface with a conductive metal layer and then etching away unwanted portions of the blanket metal layer to form a metallization interconnect pattern on each IC. This problem is exacerbated by the use of multilevel interconnects.




A common surface irregularity in a semiconductor wafer is known as a step. A step is the resulting height differential between the metal interconnect and the wafer surface where the metal has been removed. A typical VLSI chip on which a first metallization layer has been defined may contain several million steps, and the whole wafer may contain several hundred ICs.




Consequently, maintaining wafer surface planarity during fabrication is important. Photolithographic processes are typically pushed close to the limit of resolution in order to create maximum circuit density. Typical device geometries call for line widths on the order of 0.5 μM. Since these geometries are photolithographically produced, it is important that the wafer surface be highly planar in order to accurately focus the illumination radiation at a single plane of focus to achieve precise imaging over the entire surface of the wafer. A wafer surface that is not sufficiently planar, will result in structures that are poorly defined, with the circuits either being nonfunctional or, at best, exhibiting less than optimum performance. To alleviate these problems, the wafer is “planarized” at various points in the process to minimize non-planar topography and its adverse effects. As additional levels are added to multilevel-interconnection schemes and circuit features are scaled to submicron dimensions, the required degree of planarization increases. As circuit dimensions are reduced, interconnect levels must be globally planarized to produce a reliable, high density device. Planarization can be implemented in either the conductor or the dielectric layers.




In order to achieve the degree of planarity required to produce high density integrated circuits, chemical-mechanical planarization processes (“CMP”) are being employed with increasing frequency. A conventional rotational CMP apparatus includes a wafer carrier for holding a semiconductor wafer. A soft, resilient pad is typically placed between the wafer carrier and the wafer, and the wafer is generally held against the resilient pad by a partial vacuum. The wafer carrier is designed to be continuously rotated by a drive motor. In addition, the wafer carrier typically is also designed for transverse movement. The rotational and transverse movement is intended to reduce variability in material removal rates over the surface of the wafer. The apparatus further includes a rotating platen on which is mounted a polishing pad. The platen is relatively large in comparison to the wafer, so that during the CMP process, the wafer may be moved across the surface of the polishing pad by the wafer carrier. A polishing slurry containing chemically-reactive solution, in which are suspended abrasive particles, is deposited through a supply tube onto the surface of the polishing pad.




CMP is advantageous because it can be performed efficiently, in contrast to past planarization techniques which are complex, involving multiple steps. Moreover, CMP has been demonstrated to maintain high material removal rates of high surface features and low removal rates of low surface features, thus allowing for uniform planarization. CMP can also be used to remove different layers of material and various surface defects. CMP thus can improve the quality and reliability of the ICs formed on the wafer.




Many other limitations, however, exist with CMP. Specifically, CMP often involves a large polishing pad, which uses a large quantity of slurry material. The large polishing pad is often difficult to control and requires expensive and difficult to control slurries. Additionally, the large polishing pad is often difficult to remove and replace. The large pad is also expensive and consumes a large foot print in the fabrication facility. These and other limitations still exist with CMP and the like.




What is needed is an improvement of the CMP technique to improve the degree of global planarity that can be achieved using CMP.




SUMMARY OF THE INVENTION




According to specific embodiments of the present invention, a technique including an apparatus for chemical mechanical planarization of objects is provided. In an exemplary embodiment, the invention provides an apparatus, which allows the polishing pad to be easily replaced. The apparatus includes a smaller polishing pad, relative to the size of the object being polished.




In a specific embodiment, the present invention provides an apparatus for chemical mechanical planarization. The apparatus has a platen assembly for holding an object (e.g., wafer, disk, flat panel, glass) to be planarized. The apparatus also has a polishing head coupled to a polishing pad, which has a smaller diameter than the object. The polishing head is movable (e.g., pivotable, rotatable, translational) from a first region overlying the platen assembly to a second region, which is outside the first region. A removable puck is coupled between the polishing pad and the polishing head. The removable puck is removably coupled to a coupling on the polishing head. The apparatus also has a first magazine disposed in the second region. The first magazine houses at least one puck comprising a first polishing pad to be placed on the coupling on the polishing head. In a specific embodiment, the magazine houses a polishing pad or a plurality of them to be used to replace a used, worn, or faulty polishing pad in an improved manner.




An aspect of the present invention is directed to a system for providing a polishing pad for chemical mechanical planarization of an object larger in diameter than the polishing pad. The system comprises a magazine including a bottom for exposing at least a portion of a puck which holds a polishing pad, and a transfer apparatus for transferring the puck from the magazine in the first region to a pickup stand in a second region. The transfer apparatus includes a puck support being movable to retrieve the puck from the bottom of the magazine by coupling a capture portion of the puck support with an exposed portion of the puck and moving the puck with the puck support away from the magazine.




In accordance with another aspect of the invention, a system is provided for retrieving a puck from a magazine including a bottom for exposing at least a portion of the puck which holds a polishing pad to be used for chemical mechanical planarization of an object larger in diameter than the polishing pad. The system comprises a transfer apparatus for transferring the puck from the magazine in the first region to a pickup stand in a second region. The transfer apparatus includes a puck support being movable to retrieve the puck from the bottom of the magazine by coupling a capture portion of the puck support with an exposed portion of the puck and moving the puck with the puck support away from the magazine. The puck support comprises a support surface for supporting a bottom surface of the exposed puck. The capture portion of the puck support comprises a rear projection for contacting a rear edge of the exposed puck to slide the exposed puck out of the bottom of the magazine as the puck support moves in a forward direction across the bottom of the magazine.




In accordance with another aspect of the invention, a method for providing a polishing pad for chemical mechanical planarization of an object comprises providing at least one puck in a magazine having a bottom which exposes at least a portion of a puck. A puck support is placed below the exposed puck, and a capture portion of the puck support is coupled with the exposed portion of the exposed puck. The exposed puck is moved out of the magazine onto the puck support with the capture portion.




Numerous benefits are achieved by way of the present invention over other techniques. In some embodiments, the present invention provides an improved way to attach and remove the polishing pad. Additionally, specific embodiments of the invention provide an improved technique for the manufacture of objects. In other embodiments, the invention provides an easy way to replace used or worn or faulty polishing pads. Depending upon the embodiment, one or more of these benefits may exist. These and others will be described in more detail throughout the present specification and more particularly below.




Embodiments of the present invention achieves these benefits in the context of known process technology and known techniques in the mechanical arts. However, a further understanding of the nature and advantages of the present invention may be realized by reference to the latter portions of the specification and attached drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a simplified polishing apparatus according to an embodiment of the present invention;





FIG. 1B

is an alternative detailed diagram of a polishing apparatus according to an embodiment of the present invention;





FIG. 2

is a simplified top plan view of a polishing apparatus according to another embodiment of the present invention;





FIG. 3

is a simplified diagram of a drive and cap assembly according to an embodiment of the present invention;





FIG. 3A

is a simplified diagram of a combined cap and pad assembly according to an embodiment of the present invention;





FIG. 4

is a simplified diagram of a polishing pad according to an embodiment of the present invention;





FIG. 5

is a simplified diagram of a polishing apparatus according to an alternative embodiment of the present invention;





FIG. 6

is an exploded perspective view of a polishing head according to still an alternative embodiment of the present invention;





FIG. 7

is a cross-sectional view of the polishing head of

FIG. 6

;





FIG. 8

is a cross-sectional view of the polishing head of

FIG. 6

illustrating loading of a puck disposed on a pickup stand;





FIG. 8A

is a simplified sectional view illustrating another embodiment of the pickup stand;





FIG. 8B

is a simplified sectional view illustrating another embodiment of the pickup stand;





FIGS. 9A and 9B

are cross-sectional views of the polishing head of

FIG. 6

illustrating release of a puck onto a discharge or disposal stand;





FIG. 10

is a simplified diagram of a puck transfer system according to an embodiment of the present invention; and





FIG. 11

is a simplified sectional view of a puck magazine illustrating loading of a puck onto a puck support of the puck transfer system of FIG.


10


.











DESCRIPTION OF THE SPECIFIC EMBODIMENTS




According to specific embodiments of the present invention, a technique including an apparatus for chemical mechanical planarization of objects is provided. In an exemplary embodiment, the invention provides an apparatus, which allows the polishing pad to be easily replaced. The apparatus includes a smaller polishing pad, relative to the size of the object being polished.




Referring to

FIG. 1A

, a chemical-mechanical polishing apparatus


100


according to the embodiment shown includes a chuck


102


for holding a wafer


10


in position during a polishing operation. The apparatus shown is merely an example and has been simplified to facilitate a discussion of the salient aspects of the invention. As such, the figure should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, alternatives, and modifications.




The chuck includes a drive spindle


104


which is coupled to a motor


172


via a drive belt


174


to rotate the wafer about its axis


120


. Preferably, the motor is a variable-speed device so that the rotational speed of the wafer can be varied. In addition, the direction of rotation of the motor can be reversed so that the wafer can be spun in either a clockwise direction or a counterclockwise direction. Typically, stepper motors are used since their speed can be easily controlled, as well as their direction of rotation. Servo motors can also be used, in other applications.




A channel


106


formed through spindle


104


is coupled to a vacuum pump (not shown). Chuck


102


may be a porous material, open to ambient at its upper surface so that air drawn in from the surface through channel


106


creates a low pressure region near the surface. A wafer placed on the chuck surface is consequently held in place by the resulting vacuum created between the wafer and the chuck. Alternatively, chuck


102


may be a solid material having numerous channels formed through the upper surface, each having a path to channel


106


, again with the result that a wafer placed atop the chuck will be held in position by a vacuum. Such vacuum-type chucks are known and any of a variety of designs can be used with the invention. In fact, mechanical clamp chucks can be used. However, these types are less desirable because the delicate surfaces of the wafer to be polished can be easily damaged by the clamping mechanism. In general, any equivalent method for securing the wafer in a stationary position and allowing the wafer to be rotated would be equally effective for practicing the invention.




A wafer backing film


101


is disposed atop the surface of chuck


102


. The backing film is a polyurethane material. The material provides compliant support structure which is typically required when polishing a wafer. High spots on a wafer prevent the pad from contacting the thinner areas (low spots) of the wafer. The compliant backing material permits the wafer to deflect enough to flatten its face against the polish pad. There can be a deflection of several thousands of an inch deflection under standard polishing forces. Polyurethane is not necessary, however, as any appropriate compliant support material will work equally well. In addition, the wafer typically includes a pressure sensitive adhesive (PSA) film on its bottom surface for coupling with the chuck


102


. The PSA film desirably includes a plurality of holes that may be formed by laser to permit application of a vacuum from the chuck


102


on the bottom of the wafer.





FIG. 1A

also shows a polishing pad assembly comprising a polishing pad


140


, a chuck


142


for securing the pad in position, and a pad spindle


144


coupled to the chuck for rotation of the pad about its axis


122


. In the embodiment shown, the pad diameter is less than the diameter of wafer


10


, typically 20% of the wafer diameter. A drive motor (not shown) is coupled to pad spindle


144


to provide rotation of the pad. Preferably, the drive motor is a variable-speed device so that the rotational speed of pad


140


during a particular polishing operation can be controlled. The drive motor preferably is reversible.




Referring to

FIGS. 1A and 1B

, a traverse mechanism


150


provides translational displacement of the polishing pad assembly across the wafer surface. In one embodiment of the invention, the traverse mechanism is an x-y translation stage that includes a platform


151


for carrying the pad assembly. The traverse mechanism


150


further includes drive screws


154


and


158


, each respectively driven by motors


152


and


156


to move platform


151


. Motors


152


and


156


respectively translate platform


151


in the x-direction, indicated by reference numeral


136


, and in the y-direction, indicated by reference numeral


138


. Motors


152


and


156


preferably are variable-speed devices so that the translation speed can be controlled during polishing. Stepper motors are typically used to provide high accuracy translation and repeatability.




It is noted that the function of traverse mechanism


150


can be provided by other known translation mechanisms as alternatives to the aforementioned x-y translation stage. Alternative mechanisms include pulley-driven devices and pneumatically operated mechanisms. The present invention would be equally effective regardless of the particular mechanical implementation selected for the translation mechanism.




For example,

FIG. 2

shows another traverse mechanism


250


which provides angular displacement of the polishing pad assembly across the surface of the wafer


210


. A rotational arm


220


is driven by an actuator


222


to rotate the polishing pad


240


coupled to its end, as indicated by arrows


224


,


226


. The pad


240


spins around its axis as shown by arrows


242


. The wafer


210


rotates as shown by arrows


230


. These rotations allow the pad


240


to contact and planarize the entire surface of the wafer


210


. An optional translation of the arm


220


to move the pad


240


along arrows


236


may be provided.




Continuing with

FIG. 1A

, the pad


140


is oriented relative to wafer


10


such that process surface


12


of the wafer is substantially horizontal and faces upwardly. The polishing surface of pad


140


is lowered onto process surface


12


of the wafer. This arrangement of wafer surface to pad surface is preferred. If a power failure occurs, the various components in the CMP apparatus will likely cease to operate. In particular, the vacuum system is likely to stop functioning. Consequently, wafer


10


will no longer be held securely in place by vacuum chuck


102


. However, since the wafer is already in a neutral position, the wafer will not fall and become damaged when the chuck loses vacuum but will simply rest upon the chuck.




The pad assembly is arranged on the translation stage of traverse mechanism


150


to allow for motion in the vertical direction which is indicated in

FIG. 1A

by reference numeral


134


. This allows for lowering the pad onto the wafer surface for the polishing operation. Preferably, the pad assembly is driven by an actuator (e.g., a piston-driven mechanism) having variable-force control in order to control the downward pressure of the pad upon the wafer surface. The actuator is typically equipped with a force transducer to provide a down force measurement which can be readily converted to a pad pressure reading. Numerous pressure-sensing actuator designs, known in the relevant engineering arts, can be used.




A slurry delivery mechanism


112


is provided to dispense a polishing slurry onto process surface


12


of wafer


10


during a polishing operation. Although

FIG. 1A

shows a single dispenser


122


, additional dispensers may be provided depending on the polishing requirements of the wafer. Polishing slurries are known in the art. For example, typical slurries include a mixture of colloidal silica or dispersed alumina in an alkaline solution such as KOH, NH


4


OH or CeO


2


. Alternatively, slurry-less pad systems can be used.




A splash shield


110


is provided to catch the polishing fluids and to protect the surrounding equipment from the caustic properties of any slurries that might be used during polishing. The shield material can be polypropylene or stainless steel, or some other stable compound that is resistant to the corrosive nature of polishing fluids.




A controller


190


in communication with a data store


192


issues various control signals


191


to the foregoing-described components of polishing apparatus


100


. The controller provides the sequencing control and manipulation signals to the mechanics to effectuate a polishing operation. The data store


192


preferably is externally accessible. This permits user-supplied data to be loaded into the data store to provide polishing apparatus


100


with the parameters for performing a polishing operation. This aspect of the preferred embodiment will be further discussed below.




Any of a variety of controller configurations are contemplated for the present invention. The particular configuration will depend on considerations such as throughput requirements, available footprint for the apparatus, system features other than those specific to the invention, implementation costs, and the like. In one embodiment, controller


190


is a personal computer loaded with control software. The personal computer includes various interface circuits to each component of polishing apparatus


100


. The control software communicates with these components via the interface circuits to control apparatus


100


during a polishing operation. In this embodiment, data store


192


can be an internal hard drive containing desired polishing parameters. User-supplied parameters can be keyed in manually via a keyboard (not shown). Alternatively, data store


192


is a floppy drive in which case the parameters can be determined elsewhere, stored on a floppy disk, and carried over to the personal computer. In yet another alternative, data store


192


is a remote disk server accessed over a local area network. In still yet another alternative, the data store is a remote computer accessed over the Internet; for example, by way of the world wide web, via an FTP (file transfer protocol) site, and so on.




In another embodiment, controller


190


includes one or more microcontrollers which cooperate to perform a polishing sequence in accordance with the embodiment of the invention. Data store


192


serves as a source of externally-provided data to the microcontrollers so they can perform the polish in accordance with user-supplied polishing parameters. It should be apparent that numerous configurations for providing user-supplied polishing parameters are possible. Similarly, it should be clear that numerous approaches for controlling the constituent components of the CMP are possible.




Additionally, the chemical mechanical polishing apparatus


100


includes a base panel


501


, which houses a variety of systems and sub-systems. The base panel


501


is a frame support structure, which has doors for enclosing the frame support structure. The panel has a region, which houses a variety of sites used for replacing polishing pads according to as aspect of the present invention. As shown in

FIG. 2

, the sites include a disposal site


502


, where the polishing pad can be removed. The removable polishing pad is described in commonly assigned U.S. application Ser. No. 09/432,882, filed on Nov. 2, 1999, which is hereby incorporated by reference in its entirety. The movable polishing pad is also described in more detail below. The disposal site can also include a device, such as the handling arms described below, which are used to remove the polishing pad and cap from the polishing head. Here, the polishing pad completes a polishing process, is elevated, and traverses to the disposal site


502


, where the handling arms clamp the cap, the drive motor turns the drive shaft to free the cap, and the polishing head lifts up to free itself from the cap. Next, the arms release the cap, including the pad, into the disposal site. In a specific embodiment, the disposal site can be covered when it is not in use to prevent particulate contamination from being released from the disposal site to the object. Further details of the disposal site are provided below.




The apparatus also includes a variety of other sites. For example, the sites include a site


513


, which holds new caps, each with a polishing pad. In a specific embodiment, the cap can be a hard pad material. In other embodiments, the sites also include one for new caps


509


, each with a polishing pad for a soft pad. The soft pad can be made from a suitable material. Here, the apparatus can be attached to a hard pad for a specific application. Then, the apparatus can be attached to a soft pad, or alternatively, if desirable. Further details of the magazine are provided below.




The apparatus also includes a site


511


for conditioning the pad. The conditioning site has a conditioning pad and/or conditioning solution. The conditioning pad can include a diamond like pad, or the like. The conditioning pad can also include movement to help move away residual material from the polishing pad. In other embodiments. the conditioning pad can also be immersed in solvent, which is used to carry away residual material. Further details of the conditioning site are provided below.





FIG. 3

is a simplified diagram of a drive and cap assembly on a polishing head


300


according to an embodiment of the present invention. The assembly is merely an example and has been simplified to facilitate a discussion of the salient aspects of the invention. As such, the figure should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, alternatives, and modifications. As shown, the polishing head


300


includes a variety of features such as a support structure


301


, which couples to a support. Additionally, the polishing head includes a drive device


303


, which couples to a drive shaft


305


. The drive shaft has a first end, which is attached to the drive device, and a second end, which includes a coupling


315


. The coupling mates to a removable cap


317


, which includes an outer region


318


. The removable cap rotatably attaches to the coupling in a secure manner. Although the present cap is rotatable, there can be other ways of attaching the cap to the coupling. The rotatable cap also has a polishing pad


323


, which can be fixed to the cap before it is secured to the coupling. The polishing pad may have an opening


321


, but can also be one continuous member. The top surface


319


of the pad contacts the cap to secure it in place.




Now to secure the removable cap onto the coupling, the cap is brought into contact and is aligned to the coupling. Here, each of the threads


325


is aligned with a respective thread opening


327


, inserted along a first direction toward the support structure, until each thread bottoms against a stop


329


in the opening. Next, the cap is rotated in a counter clockwise manner, where the groove


331


guides each thread such that the cap biases against the coupling to secure it in place. Once the cap is secured, the drive


305


rotates the pad in a counter clockwise circular manner during a process operation. By way of the counter clockwise manner, the cap does not loosen up and continues to be biased against the coupling. In other embodiments, the rotatable cap and coupling are mated to each other in a clockwise manner, where the drive rotates the pad in a clockwise manner.




To remove the cap from the coupling, the drive is secured in place manually or by a brake, where the rotatable coupling cannot be rotated through the drive. The cap is grasped and turned in a clockwise manner, which guides each thread away from the bias to release the cap from the coupling. Once each thread is aligned with its opening, the cap is dropped to free it from the coupling. Again, in other embodiments, the rotatable cap and coupling have been mated to each other in a clockwise manner, where the drive rotates the pad in a clockwise manner. In a preferred embodiment, the present cap is removed from the coupling by way of the technique illustrated by

FIG. 4

below. This technique provides an automatic or “hands free” approach to removing the cap from the coupling.




The present cap, which is rotatably attached, can be replaced by other types of coupling devices. Of course, the type of coupling device used depends upon the application.




The polishing head also includes a sensing device


309


, which is coupled to a processing unit, such as the one noted but can be others. The sensing device can look through an inner opening


311


of the drive shaft


305


to the polishing pad. In some embodiments, the polishing pad is annular in structure with an opening


321


in the center. The opening allows the sensor to sense a fluid level or slurry level at the workpiece surface, which is exposed through the center opening in the pad. Of course, the type of coupling device used depends upon the application.





FIG. 3A

is a simplified diagram of a combined cap and pad assembly according to an embodiment of the present invention. This diagram is merely an illustration, which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives. In a specific embodiment, the removable cap and polishing pad are in an assembly. The assembly is provided to the manufacturer of integrated circuits, for example, for use with the present polishing apparatus. The assembly can be pre-packaged in a clean room pack. The assembly can include the cap


318


and the pad


319


, which may include an inner orifice or opening


321


. Depending upon the embodiment, the pad can be one of a variety according to the present invention.




The cap can be made of a suitable material to withstand both chemical and physical conditions. Here, the cap can be made of a suitable material The cap is also preferably transparent, which allows the sensing device to pick up optical signals from the workpiece surface. The cap is also sufficiently rigid to withstand torque from the drive shaft. The cap can also withstand exposure to acids, bases, water, and other types of chemicals, depending upon the embodiment. The cap also has a resilient outer surface to prevent it from damage from slurries, abrasive, and other physical materials. Further details of removing the cap are provided below.





FIG. 4

is a simplified diagram of a polishing pad device


400


according to an embodiment of the present invention. The device is merely an example and has been simplified to facilitate a discussion of the salient aspects of the invention. As such, the figure should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, alternatives, and modifications. In a preferred embodiment to remove the cap, the cap


318


is placed between two handling arms


401


,


403


. Each of the arms places a lateral force against the cap to hold it in place. The motor drives the drive shaft in a clockwise (or counter clockwise) manner to release the threads of the cap from the coupling. Once the threads have been released the drive shaft is lifted to free the cap from the coupling.




Next, the removed cap is placed into a disposal. Here, the handling arms can move the cap from a removal location to a disposal location.





FIG. 5

is a simplified top view diagram


500


of a multi-pad CMP apparatus according to an embodiment of the present invention. This diagram is merely example, which should not limit the scope of the claims herein. One of ordinary skill in the art would recognizes many other variations, modifications, and alternatives. As shown, the diagram


500


illustrates a top-view of a base panel


501


, which houses a variety of systems and sub-systems. The base panel


501


is a frame support structure, which has doors for enclosing the frame support structure.




The panel includes a polishing head


515


(or arm), which pivots about member


517


. The polishing head extends from member


517


to a region overlying the object


507


to be polished. The object can be a variety of work pieces, such as a semiconductor wafer, a glass plate, a flat panel, a blank wafer, a disk, and other objects with surfaces that need polishing or planarization. The object often rests on and is attached to a base plate or platen


505


. The base plate can often rotate the object in either direction. Additionally, the base plate can ramp up in speed, or step up in speed, or perform other functions.




The polishing head includes a polishing pad


19


, which is coupled to the polishing head. The polishing pad rotates in a circular or orbital manner and traverses across the surface of the object. The polishing pad can also move in the vertical direction to a selected height. Other functions of the polishing pad have been previously noted and also apply here, but should not unduly limit this embodiment.




The polishing pad can move from the object to one of a plurality of sites. These sites include a disposal site


502


, where the polishing pad can be removed. The disposal site can also include a device, such as the handling arms, which are used to remove the polishing pad and cap from the polishing head. Here, the polishing arm completes a polishing process, is elevated, and traverse to the disposal site


502


, where the handling arms clamp the cap, the drive motor turns the drive shaft to free the cap, and the polishing head lifts up to free itself from the cap. Next, the arms release the cap, including the pad, into the disposal site. In a specific embodiment, the disposal site can be covered, when it is not in use to prevent particulate contamination from being released from the disposal site to the object.





FIG. 6

is a simplified sectional view of a polishing head


600


according to still another embodiment of the present invention. This figure is merely an example which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives.




The polishing head


600


includes a housing


602


including a backing surface


606


for positioning a polishing pad puck or substrate


610


for supporting a polishing pad. The substrate


610


is desirably a hard substrate made of a substantially firm and rigid material such as metal, plastic, or the like. The substrate


610


may be an insulator or a semiconductor. A channel


604


in the housing


602


and an orifice


612


in the substrate


610


may be provided for injecting a polishing slurry onto the wafer surface for polishing. The backing surface


606


desirably is planar for supporting a planar backside of the substrate


610


. A pattern of release grooves


613


are desirably provided on the backing surface


606


for assisting ejection of the substrate


610


as described below.

FIG. 6

shows a pattern having radial and annular grooves


613


, but other patterns may be used.




A clamp ring


614


is disposed around the substrate


610


for clamping the substrate


610


around its perimeter. As shown in

FIG. 6

, the clamp ring


614


has a split-ring arrangement with a slit which permits it to expand to release the substrate


610


and contract to clamp the substrate


610


. The clamp ring


614


in a neutral or relaxed state tends to expand, and is constrained to a contracted state inside the space provided in the housing


602


. Of course, other split-ring arrangements may be used in alternative embodiments.




An annular wave spring


620


is used to applying a spring force on the clamp ring


614


for clamping the substrate


610


, as shown in FIG.


7


. The direction of the spring force


622


is generally perpendicular to the directions


616


of the clamping force of the clamp ring


614


. To produce the transverse clamping force from the spring force, the housing


602


includes a slanted guide surface


626


to provide guiding support for the inclined surface


628


of the clamp ring


614


. Guided by the slanted guide surface


626


, the clamp ring


614


contracts when it is pushed downward by the spring


620


to clamp around the perimeter of the substrate


610


, and expands when it is moved against the spring


620


to release the substrate


610


. The wave spring


620


may be replaced by other resilient members including, for example, an elastomer member, a coil spring, a pneumatic cylinder, or a bladder.




To load the substrate


610


, the housing


602


is pushed downward onto the substrate


610


disposed on a loading or pickup stand or load platform


800


as shown in FIG.


8


. The substrate


610


pushes the clamp ring


614


upward against the annular wave spring


620


. This causes the clamp ring


614


to move up along the slanted guide surface


626


until the clamp ring


614


expands beyond the perimeter of the substrate


610


. After the clamp ring


614


clears the substrate


610


, the clamp ring


614


then slides or snaps down around the perimeter of the substrate


610


to clamp the substrate


610


which is supported at the backside by the backing surface


606


of the housing


602


. Of course, other ways of loading the substrate


610


may be used. For instance, the clamp ring


614


may be pushed upward by one or more movable members


810


extending upward from the pickup stand


812


, as shown in

FIG. 8A

, while the backside of the substrate


610


and the backing surface


606


are brought into contact with one another. The movable members


810


are then withdrawn to allow the clamp ring


614


to clamp the perimeter of the substrate


610


. Alternatively,

FIG. 8B

shows a pickup stand


820


having an annular top


822


for pushing the clamp ring


614


upward as the polishing head


600


is moved downward to load the substrate


610


. The clamp ring


614


expands to allow the backing surface


606


to contact the backside of the substrate


610


. A substrate support


830


moves the substrate


610


upward against the backing surface


606


of the housing


602


with respect to the annular top


822


to allow the clamp ring


614


to move downward and clamp the perimeter of the substrate


610


.





FIGS. 9A and 9B

show a discharge or disposal station


900


for releasing the substrate


610


, for instance, at the disposal site


502


(FIG.


5


). This figure is merely an example which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives. The discharge station


900


includes an annular top or release ring


902


for pushing the clamp ring


614


upward as the polishing head


600


is moved downward along the slanted guide surface


626


. This causes the clamp ring


614


to expand to release the substrate


610


into the discharge station


900


. To assist in the ejection of the substrate


610


, a low pressure air puff may be used to break any surface tension between the substrate


610


and the backing surface


606


of the housing


602


. The air puff is supplied through an air passage


910


and applied against the substrate


610


at the interface with the backing surface


606


. To provide a more effective ejection, the air is channeled into the release grooves


613


on the backing surface


606


to allow the air to contact a greater area of the substrate


610


. The ejected substrate


610


falls into the discharge station


900


along arrow


912


under gravity.




The split clamp ring mechanism enhances clamping force on the substrate and produces self-alignment of the substrate. The use of the annular wave spring provides self-energized clamping and release of the substrate. The clamp ring and spring may be made of a variety of materials. For example, the ring may include Delrin AF™ made by Dupont Corporation, PET. The spring may be-made of stainless steel or titanium.





FIG. 10

shows a diagram of a puck transfer system


1000


according to an embodiment of the present invention. This diagram is merely an example which should not limit the scope of the claims herein. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives.





FIG. 10

shows a transfer apparatus


1002


having an x-actuator


1004


and a y-actuator


1006


for moving a puck or substrate support


1010


in the x-direction and the y-direction, respectively. For instance, the transfer apparatus


1002


may include an x-y stage that may be a stepper. The transfer apparatus


1002


manipulates the puck support


1010


to retrieve a polishing pad puck or substrate


1012


from one of the magazines


1014


,


1016


,


1018


, and to transfer the puck to a pickup stand


1020


. The different magazines may contain different pucks having different types of polishing pads. In one embodiment, a controller


1030


has a computer program containing instructions for directing operation of the transfer apparatus


1002


to select and retrieve pucks from the appropriate magazines. In the embodiment shown, the transfer apparatus


1002


includes an angular actuator


1024


for moving the puck support


1010


angularly from the region in which the magazines are located to the pickup stand


1020


. The angular displacement is about 180° in one specific embodiment. Of course, a different transfer apparatus may be used in a different arrangement.




As shown in

FIG. 11

, the pucks are dispensed from the bottom of the magazine


1014


. The magazine includes a bottom support


1104


at the bottom supporting the exposed puck


1012


from movement in a downward direction, and includes an opening permitting only the exposed puck


1012


to be moved out of the magazine


1014


by the puck support


1010


. The pucks may be gravity fed, spring loaded by a spring


1102


, or otherwise configured to render the pucks accessible by the puck support


1010


at the bottom one at a time. For instance, a portion of the backside of the puck facing downward is exposed. The backside of the puck is desirably flat and smooth. This configuration of the magazine


1014


allows for stacking of more pucks, which may be made of clear plastic, for example, by injection molding.




The transfer apparatus


1002


positions the puck support


1010


below the exposed puck


1012


, for example, by sliding the puck support


1010


in the y-direction below the magazine


1014


. The puck support


1010


includes a hook-like projection or raised edge


1110


which hooks on the rear edge of the exposed puck and slides it out of the magazine


1014


in the x-direction. To secure the puck in place, the puck support


1010


may include a vacuum port on the puck support surface coupled to a vacuum source to draw a suction on the puck against the support surface of the puck support


1010


. Of course, other ways of securing the puck


1012


may be used.




After the x-actuator


1004


moves the substrate support


1010


in the x-direction away from the magazine


1014


, the angular actuator


1024


rotates the substrate support


1010


to flip the puck


1012


onto the pickup stand


1020


from polish side up to polish side down, as seen in FIG.


10


. The vacuum to the vacuum port is interrupted or removed to release the puck


1012


onto the pickup stand


1020


. The pickup stand


1020


desirably includes a z-actuator


1040


for adjusting its height relative to the puck support


1010


and aligning the pickup stand


1020


in the z-direction to receive the puck


1012


. Alternatively or additionally, the transfer apparatus


1002


may include a z-actuator


1042


instead to adjust the position of the puck support


1010


relative to the pickup stand


1020


in the z-direction.




The transfer system


1000


of

FIGS. 10 and 11

are merely illustrative, and other mechanisms may be used instead. For example, the flipping of the puck support


1010


may be replaced by a puck support that is configured to remain generally horizontal during transfer of the puck from the puck supply to the pickup stand. The x-y stage may be replaced by an R-


0


rotational traverse mechanism. The magazines providing bottom feeding of the pucks may be replaced by magazines with top feeding of the pucks.




While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents known to those of ordinary skill in the relevant arts may be used. For example, while the description above is in terms of a semiconductor wafer, it would be possible to implement the present invention with almost any type of article having a surface or the like. Moreover, the use of the term cap and puck to refer to the substrate disposed between the polishing pad and the polishing head is not intended to limit the substrate to specific shapes or structures. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.



Claims
  • 1. A system for providing a polishing pad for chemical mechanical planarization of an object larger in diameter than the polishing pad, the system comprising:a magazine including a bottom for exposing at least a portion of a puck which holds a polishing pad; and a transfer apparatus for transferring the puck from the magazine in the first region to a pickup stand in a second region, the transfer apparatus including a puck support being movable to retrieve the puck from the bottom of the magazine by coupling a capture portion of the puck support with an exposed portion of the puck and moving the puck with the puck support away from the magazine.
  • 2. The system of claim 1 wherein the magazine is configured to house a stack of pucks.
  • 3. The system of claim 1 wherein the magazine is configured to house a plurality of pucks biased by a bias member toward the bottom of the magazine.
  • 4. The system of claim 1 wherein the magazine includes a bottom support at the bottom supporting the exposed puck from movement in a downward direction and includes an opening permitting only the exposed puck to be moved in a direction nonparallel to the downward direction and to be retrieved by the puck support.
  • 5. The system of claim 4 wherein the opening in the magazine permits the exposed puck to be moved in a direction perpendicular to the downward direction.
  • 6. The system of claim 1 wherein the puck support comprises a support surface for supporting a bottom surface of the exposed puck, and wherein the capture portion of the puck support comprises a rear projection for contacting a rear edge of the exposed puck to slide the exposed puck out of the bottom of the magazine as the puck support moves in a forward direction across the bottom of the magazine.
  • 7. The system of claim 1 wherein the magazine is configured to house a vertical stack of pucks, and wherein the transfer apparatus moves the puck support in a horizontal direction to retrieve the exposed puck from the bottom of the magazine.
  • 8. The system of claim 1 wherein the magazine is configured to house a vertical stack of pucks, and wherein the transfer apparatus is configured to move the puck support in a vertical direction to align the puck support with the exposed puck for retrieving the exposed puck from the bottom of the magazine.
  • 9. A system for retrieving a puck from a magazine including a bottom for exposing at least a portion of the puck which holds a polishing pad to be used for chemical mechanical planarization of an object larger in diameter than the polishing pad, the system comprising a transfer apparatus for transferring the puck from the magazine in the first region to a pickup stand in a second region, the transfer apparatus including a puck support being movable to retrieve the puck from the bottom of the magazine by coupling a capture portion of the puck support with an exposed portion of the puck and moving the puck with the puck support away from the magazine, wherein the puck support comprises a support surface for supporting a bottom surface of the exposed puck, and wherein the capture portion of the puck support comprises a rear projection for contacting a rear edge of the exposed puck to slide the exposed puck out of the bottom of the magazine as the puck support moves in a forward direction across the bottom of the magazine.
  • 10. The system of claim 9 wherein the support surface of the puck support is horizontal and the forward direction is a horizontal direction.
  • 11. A method for providing a polishing pad for chemical mechanical planarization of an object larger in diameter than the polishing pad, the method comprising:providing at least one puck in a magazine having a bottom which exposes at least a portion of a puck; placing a puck support below the exposed puck; coupling a capture portion of the puck support with the exposed portion of the exposed puck; and moving the exposed puck out of the magazine onto the puck support with the capture portion.
  • 12. The method of claim 11 wherein the magazine includes a bottom support at the bottom supporting the exposed puck from movement in a downward direction and includes an opening permitting only the exposed puck to be moved by the capture portion in a direction nonparallel to the downward direction onto the puck support.
  • 13. The method of claim 12 wherein the puck is moved out of the magazine in a direction perpendicular to the downward direction.
  • 14. The method of claim 11 wherein a plurality of pucks are stacked in the magazine.
  • 15. The method of claim 11 wherein the at least one puck is biased toward the bottom of the magazine.
  • 16. The method of claim 11 wherein the puck support comprises a support surface for supporting a bottom surface of the exposed puck, and wherein the capture portion of the puck support comprises a rear projection for contacting a rear edge of the exposed puck to slide the exposed puck out of the bottom of the magazine as the puck support moves in a forward direction across the bottom of the magazine.
  • 17. The method of claim 16 wherein the puck support is moved in a side direction to bring the rear projection of the puck support behind the rear edge of the exposed puck and is moved forward to bring the rear projection in contact with the rear edge of the exposed puck.
  • 18. The method of claim 16 wherein the puck support is moved below the exposed puck to bring the rear projection of the puck support behind and below the rear edge of the exposed, is moved upward to bring the rear projection behind the rear edge, and is moved forward to bring the rear projection in contact with the rear edge of the exposed puck.
  • 19. The method of claim 18 wherein the puck support is moved upward to bring a support surface of the puck support in contact with a bottom surface of the exposed puck.
  • 20. The method of claim 11 wherein a plurality of pucks are stacked vertically in the magazine, and wherein the puck is moved in a horizontal direction by the capture portion out of the magazine onto the puck support.
Parent Case Info

This application is based on and claims the benefit of U.S. Provisional Patent Application No. 60/162,171, filed Oct. 28, 1999, which is incorporated herein by reference.

US Referenced Citations (13)
Number Name Date Kind
4319432 Day Mar 1982 A
4584759 Bleich Apr 1986 A
4589232 Uhlig May 1986 A
5664987 Renteln Sep 1997 A
5791709 Robinson et al. Aug 1998 A
5938504 Talieh Aug 1999 A
5980367 Metcalf Nov 1999 A
6022807 Lindsey, Jr. et al. Feb 2000 A
6042457 Wilson et al. Mar 2000 A
6224462 Yokoyama et al. May 2001 B1
6227956 Halley May 2001 B1
6340326 Kistler et al. Jan 2002 B1
6346036 Halley Feb 2002 B1
Provisional Applications (1)
Number Date Country
60/162171 Oct 1999 US