The present invention relates to passive heat removal from an electronic system and, more particularly, to a passive thermal switch assembly that thermally couples and decouples electronic devices to and from a heat sink, respectively.
Electronic systems, assemblies, and subassemblies are being designed with increasingly higher density circuit packages. There may be several reasons for this. Among the reasons that are most notably significant in aerospace applications are the reduced volume and/or area, the reduced weight, and/or the increased functionality that many high density circuit packages accord. These high density circuit packages may also generate more heat, both on a unit volume basis, at the system or subsystem level, and on a unit area basis, at the circuit board level. Thus, heat removal capabilities may need to be increased for certain systems, subsystems, and/or circuit boards to keep component temperatures within specified ranges.
Many electronic systems, such as those implemented in an aerospace environment, may be subjected to potentially harsh environmental conditions, such as relatively low temperatures. Thus, when these systems are shutdown, the electronic component temperatures may also be subject to relatively low temperatures, which may fall below normal operating temperature ranges. As a result, when these systems are subsequently energized (e.g., “cold started”), the components may need to be heated up rapidly to within the normal operating temperature ranges.
As may be apparent from the above, electronic systems that include high density circuit packages, and that are exposed to relatively low temperatures, may need to implement disparate thermal energy dissipation strategies. In particular, when the systems are energized and operating, the system may need to implement a high heat dissipation strategy by, for example, increasing heat conduction away from circuit components within the system. Conversely, when the system undergoes a cold start, the system may need to implement a low heat dissipation strategy by, for example, reducing heat conduction away from circuit components within the system.
Hence, there is a need for a system and method of thermal management in electronic systems that can simply, easily, and inexpensively control system component temperatures within normal operating ranges during normal system operations, while reducing heat dissipation from the system during a cold startup, to thereby enable a relatively rapid component temperature rise. The present invention addresses this need.
The present invention provides a passive thermal switch assembly that simply, easily, and inexpensively controls electronic system component temperatures within normal operating ranges during normal system operations, and that reduces heat dissipation from the system during a cold startup, to thereby enable a relatively rapid component temperature rise.
In one embodiment, and by way of example only, a passive thermal management switch assembly includes a heat pipe and a switch. The heat pipe has an evaporator end and a condenser end, and the switch is coupled to the heat pipe condenser end. The switch is comprised at least partially of a material having a shape or volume that varies with temperature.
In another exemplary embodiment, an electronic system includes a chassis, one or more circuit components, one or more heat pipes, and one or more switches. The circuit components are housed within the chassis. Each heat pipe has an evaporator end and a condenser end, and each heat pipe evaporator end is coupled to at least one of the circuit components. Each of the switches is coupled to a heat pipe condenser end, is comprised at least partially of a material having a shape or volume that varies with temperature, and is disposed adjacent the chassis, whereby each switch is selectively thermally coupled to, and thermally decoupled from, the chassis at a predetermined temperature.
Other independent features and advantages of the preferred passive thermal switch will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Before proceeding with the detailed description, it should be appreciated that the following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Turning now to the description and with reference first to
Although three circuit boards 104 are depicted, it will be appreciated that this is done merely for clarity and simplicity of representation, and the present invention is not limited to use with this number of circuit boards. Moreover, it will be appreciated that the electronic components are not limited to those configured as electronic circuit boards 104, but could be configured, for example, as individual electronic components, electronic circuit packages, or one or more groups of individual components. Furthermore, it will be appreciated that the circuit components 104 may be mounted in the chassis 102 using any one of numerous mounting configurations.
As
A perspective view and a side view of an exemplary passive thermal switch assembly 200 is shown in
A heat pipe 202 generally includes a sealed casing 1102, a wick 1104, and a working fluid 1106. The casing 1102 has two ends, one of which is referred to as the evaporator end 1108, and the other of which is referred to as the condenser end 1110. When heat is transferred into the heat pipe evaporator end 1108, the working fluid 1106 is vaporized, which absorbs the latent heat of vaporization. The vapor 1112 flows toward the condenser end 1110, where it is condensed and rejects the latent heat. The condensed working fluid 1114 then flows back to the evaporator end 1108, via the wick 1104, which may be, for example, a mesh or sintered powder.
A heat pipe 202 can be designed to selectively commence and cease the evaporation/condensation cycle described above at a predetermined temperature. Generally, the characteristics of the working fluid 1106, such as its vaporization and condensation temperatures, will determine this temperature.
Returning now to
In the embodiment depicted in
Shape memory metals and metal alloys, such as those delineated above, change shape with variations in temperature. Thus, the first 206 and second 208 contacts are disposed adjacent one another, and are configured such that when the first contact 206 is at or below a predetermined temperature the first 206 and second 208 contacts are thermally decoupled from one another. As the first contact 206 heats up, it undergoes a shape change such that at or above the predetermined temperature the first contact 206 is thermally coupled to the second contact 208. In the context of the depicted embodiment, this occurs when the first 206 and second 208 contacts engage one another.
In the context of the electronic equipment enclosure 100, when the circuit components 104 are at or below the predetermined temperature, such as during a cold startup, the first 206 and second 208 switch contacts are thermally decoupled from one another. As such, the heat pipe 202 is thermally decoupled from the heat sink, and the circuit components 104 will begin heating up. As the circuit components 104 heat up, heat is transferred to the heat pipe 202, and from the heat pipe to the first contact 206, causing the first contact 206 to undergo a shape change. When the circuit components 104 reach the normal operating range, the first contact 206 preferably reaches the predetermined temperature and its shape is changed sufficiently to cause it to engage, and thereby be thermally coupled to, the second contact 208. With the first 206 and second 208 contacts thermally coupled together, heat is efficiently transferred from the circuit components 104 to a heat sink.
It will be appreciated that the switch 204 may be, and preferably is, configured to selectively thermally couple to, and thermally decouple from, the chassis 102 at a predetermined temperature that will maintain the electronic circuit components 104 within the normal operating range while energized and operating. It will additionally be appreciated that the switch 204 may be configured such that it may be implemented as either a normally open switch 204, as described above, or as a normally closed switch.
With reference now to
With the embodiment of
As with the prior embodiment, when the circuit components 104 reach the normal operating range, the first contact 206 preferably reaches a temperature at which its thermal expansion is sufficient to cause it to engage, and thereby be thermally coupled to, the second contact 208. With the first 206 and second 208 contacts thermally coupled together, heat is efficiently transferred from the circuit components 104 to the heat sink. In addition, as with the prior embodiment, the switch 204 may be configured such that it may be implemented as either a normally open switch, or a normally closed switch.
Yet another passive thermal switch embodiment 600 is shown in
In the switch 204 of this third embodiment, the first 206 and second 208 contacts are disposed adjacent one another. However, neither switch contact 206, 208 at least partially surrounds the other switch contact 208, 206. Instead, the first 206 and second 208 contacts are each preferably configured as a plate. The first contact 206 is coupled to the heat pipe condenser end 1110, and the second contact 208 is coupled to a heat sink, such as the chassis 102. The switch 204 in the third embodiment additionally includes a tendon 602 that is coupled between the first contact 206 and another structure such as, for example, the chassis 102. The tendon 602 is preferably constructed, at least in part, of a shape memory metal or metal alloy. The first 206 and second 208 contacts may also be constructed, at least in part, of either a shape memory metal or metal alloy or a non-shape memory metal or metal alloy having good heat transfer characteristics. In a particular preferred embodiment, the first 206 and second 208 contacts are constructed of metal having good heat transfer characteristics such as, for example, aluminum or copper.
With the passive thermal switch 600 of
The passive thermal switch 600 shown in
The switch 204 in this fourth embodiment additionally includes an expansion column 802 that is coupled between the first contact 206 and another structure such as, for example, the chassis 102. The expansion column 802 is preferably constructed, at least in part, of a shape memory metal or metal alloy. As with the other embodiment, the first 206 and second 208 contacts may also be constructed, at least in part, of either a shape memory metal or metal alloy or a non-shape memory metal or metal alloy having good heat transfer characteristics. In a particular preferred embodiment, the first 206 and second 208 contacts are constructed of metal having good heat transfer characteristics such as, for example, aluminum or copper.
With the passive thermal switch 800 of
Turning now to
The single contact 1002 is formed of a shape memory metal or metal alloy, or a bimetallic pair. As such, it undergoes a shape or volume change as its temperature changes. This change in shape or volume causes the contact 1002 to be selectively thermally coupled to, and decoupled from, the heat sink. In the particular embodiment shown in
Thus, with the passive thermal switch 1000 of
It will be appreciated that the switch 204 in this fourth embodiment, as with the prior embodiments, may be implemented as either a normally open switch, or a normally closed switch. It will additionally be appreciated that the mounting configuration depicted in
The passive thermal switch assemblies described herein simply, easily, and inexpensively control electronic system component temperatures within normal operating ranges during normal system operations. The switches also reduce heat dissipation from the system during a cold startup, to thereby enable a relatively rapid component temperature rise.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.