PDE5 compositions and methods for immunotherapy

Information

  • Patent Grant
  • 11666642
  • Patent Number
    11,666,642
  • Date Filed
    Tuesday, February 1, 2022
    2 years ago
  • Date Issued
    Tuesday, June 6, 2023
    a year ago
Abstract
The present invention relates to compositions and methods for the regulated and controlled expression of proteins. Methods for inducing anti-cancer immune responses in a subject are also provided.
Description
REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 2095_1003PCT_SL.txt, created on Jun. 12, 2018, which is 18,074,972 bytes in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to tunable biocircuit systems for the development of controlled and/or regulated therapeutic systems. In particular, regulatable biocircuits containing destabilizing domains (DD) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5) are disclosed. The present invention also relates to compositions and methods for immunotherapy.


Provided in the present invention include polypeptides of biocircuit systems, effector modules, stimulus response elements (SREs) and immunotherapeutic agents, polynucleotides encoding the same, vectors and cells containing the polypeptides and/or polynucleotides for use in cancer immunotherapy. In one embodiment, the compositions comprise destabilizing domains (DDs) which tune protein stability.


BACKGROUND OF THE INVENTION

Safe and effective gene therapy requires tightly regulated expression of a therapeutic transgenic product (e.g., the protein product). Similarly, the analysis of gene function in development, cell differentiation and other physiological activities requires the controllable expression of a protein under investigation. However, current technologies do not allow titration of levels of target protein induced or kinetics of induction. Inadequate exogenous and/or endogenous gene control is a critical issue in numerous settings including ex vivo and in vivo gene therapy. This lack of tunability also makes it difficult to safely express proteins with narrow or uncertain therapeutic windows or those requiring more titrated, controlled or transient expression.


One approach to regulated protein expression or function is the use of Destabilizing Domains (DDs). Destabilizing domains are small protein domains that can be appended to a payload such as a protein of interest (POI). DDs render the attached protein of interest (POI) unstable in the absence of a DD-binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell (Stankunas, K., et al., (2003). Mol. Cell 12, 1615-1624; Banaszynski, L. A., et al., (2006) Cell; 126(5): 995-1004; reviewed in Banaszynski, L. A., and Wandless, T. J. (2006) Chem. Biol. 13, 11-21; Iwamoto, M., et al. (2010). Chem Biol. 17(9):981-8; Egeler, E. L. et al. (2011). J Biol Chem. 286(36):31328-36; and Rakhit R, Navarro R, Wandless T J (2014) Chem Biol. September 18; 21(9):1238-52; Navarro, R. et al. (2016) ACS Chem Biol. 11(8): 2101-2104). In some cases, the protein of interest is not completely processed and may not be secreted or presented on the membrane in the absence of DD-binding ligand (Sellmeyer et al., (2012), doi.org/10.1371/journal.pone.0043297; the contents of which are incorporated by reference in their entirety). However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored or, in some cases, processing is restored and the protein of interest is presented on the membrane or secreted. Such a system is herein referred to as a biocircuit, with the canonical DD-containing biocircuit described above being the prototypical model biocircuit


It is believed that improvements of biocircuits, including those containing DDs can form the basis of a new class of cell and gene therapies that employ tunable and temporal control of gene expression and function. Such novel moieties are described by the present inventors as stimulus response elements (SREs) which act in the context of an effector module to complete a biocircuit arising from a stimulus and ultimately producing a signal or outcome. When properly formatted with a polypeptide payload, and when activated by a particular stimulus, e.g., a small molecule, biocircuit systems can be used to regulate transgene and/or protein levels either up or down by perpetuating a stabilizing signal or destabilizing signal. This approach has many advantages over existing methods of regulating protein function and/or expression, which are currently focused on top level transcriptional regulation via inducible promoters.


The present invention provides novel protein domains, in particular, destabilizing domains (DDs) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5), particularly the catalytic domain of human PDE5, that display small molecule dependent stability, and the biocircuit systems and effector modules comprising such DDs. Methods for tuning transgene functions using the same are also provided.


Cancer immunotherapy aims to eradicate cancer cells by rejuvenating the tumoricidal functions of tumor-reactive immune cells, predominantly T cells. Strategies of cancer immunotherapy including the recent development of checkpoint blockade, adoptive cell transfer (ACT) and cancer vaccines which can increase the anti-tumor immune effector cells have produced remarkable results in several tumors.


The impact of host anti-tumor immunity and cancer immunotherapy is impeded by three major hurdles: 1) low number of tumor antigen-specific T cells due to clonal deletion; 2) poor activation of innate immune cells and accumulation of tolerogenic antigen-presenting cells in the tumor microenvironment; and 3) formation of an immunosuppressive tumor microenvironment. Particularly, in solid tumors the therapeutic efficacy of immunotherapeutic regimens remains unsatisfactory due to lack of an effective an anti-tumor response in the immunosuppressive tumor microenvironment. Tumor cells often induce immune tolerance or suppression and such tolerance is acquired because even truly foreign tumor antigens will become tolerated. Such tolerance is also active and dominant because cancer vaccines and adoptive transfer of pre-activated immune effector cells (e.g., T cells), are subject to suppression by inhibitory factors in the tumor microenvironment (TME).


In addition, administration of engineered T cells could result in on/off target toxicities as well as a cytokine release syndrome (reviewed by Tey Clin. Transl. Immunol., 2014, 3: e17 10.1038).


Development of a tunable switch that can turn on or off the transgenic immunotherapeutic agent expression is needed in case of adverse events. For example, adoptive cell therapies may have a very long and an indefinite half-life. Since toxicity can be progressive, a safety switch is desired to eliminate the infused cells. Systems and methods that can tune the transgenic protein level and expression window with high flexibility can enhance therapeutic benefit, and reduce potential side effects.


In an effort to develop regulatable therapeutic agents for disease therapy, in particular cancer immunotherapy, the present invention provides biocircuit systems to control the expression of immunotherapeutic agents. The biocircuit system comprises a stimulus and at least one effector module that responds to the stimulus. The effector module may include a stimulus response element (SRE) that binds and is responsive to a stimulus and an immunotherapeutic agent operably linked to the SRE. In one example, a SRE is a destabilizing domain (DD) which is destabilized in the absence of its specific ligand and can be stabilized by binding to its specific ligand.


SUMMARY OF THE INVENTION

The present invention provides compositions and methods for immunotherapy. The compositions relate to tunable systems and agents that induce anti-cancer immune responses in a cell or in a subject. The tunable system and agent may be a biocircuit system comprising at least one effector module that is responsive to at least one stimulus. The biocircuit system may be, but is not limited to, a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. These systems are further taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


The present invention provides compositions for an inducing immune response in a cell or subject. In some embodiments, the composition may include a stimulus response element (SRE) and at least one payload. In some embodiments, the payload may be attached, appended or associated with the SRE. The SRE may comprise a destabilizing domain (DD). In some embodiments, the DD may comprise, in whole or in part, the cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5; SEQ ID NO. 1). In some embodiments, the payload may be appended to the SRE.


In some embodiments, the DD may comprise the catalytic domain of hPDE5 (SEQ ID NO. 3). In some aspects, the catalytic domain may include amino acids 535-860 of hPDE5 (SEQ ID NO. 1). In some embodiments, the DD may include a mutation in the amino acid at position 732 (R732) of SEQ ID NO. 1. The mutation at position R732 may include but is not limited to R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K.


In some aspects, the DD may be selected from the group including but not limited to hPDE5 (Amino acid 535-860 of WT, R732L) (SEQ ID NO. 12); hPDE5 (Amino acid 535-860 of WT, R732A) (SEQ ID NO. 384); hPDE5 (Amino acid 535-860 of WT, R732G) (SEQ ID NO. 383); hPDE5 (Amino acid 535-860 of WT, R732V) (SEQ ID NO. 385); hPDE5 (Amino acid 535-860 of WT, R732I) (SEQ ID NO. 386); hPDE5 (Amino acid 535-860 of WT, R732P) (SEQ ID NO. 387); hPDE5 (Amino acid 535-860 of WT, R732F) (SEQ ID NO. 388); hPDE5 (Amino acid 535-860 of WT, R732W) (SEQ ID NO. 389); hPDE5 (Amino acid 535-860 of WT, R732Y) (SEQ ID NO. 390); hPDE5 (Amino acid 535-860 of WT, R732H) (SEQ ID NO. 391); hPDE5 (Amino acid 535-860 of WT, R732S) (SEQ ID NO. 392); hPDE5 (Amino acid 535-860 of WT, R732T) (SEQ ID NO. 393); hPDE5 (Amino acid 535-860 of WT, R732D) (SEQ ID NO. 394); hPDE5 (Amino acid 535-860 of WT, R732E) (SEQ ID NO. 395); hPDE5 (Amino acid 535-860 of WT, R732Q) (SEQ ID NO. 396); hPDE5 (Amino acid 535-860 of WT, R732N) (SEQ ID NO. 397); hPDE5 (Amino acid 535-860 of WT, R732M) (SEQ ID NO. 398); hPDE5 (Amino acid 535-860 of WT, R732C) (SEQ ID NO. 399); and hPDE5 (Amino acid 535-860 of WT, R732K) (SEQ ID NO. 400).


In some embodiments, the mutation in the amino acid at position R732 may be R732L. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 12. In some embodiments, the mutation in the amino acid at position R732 may be R732A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 384. In some embodiments, the mutation in the amino acid at position R732 may be R732G. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 383.


The DDs of the present invention may further comprise one or more mutations independently selected from the group consisting of H653A, F736A, D764A, D764N, Y612F, Y612W, Y612A, W853F, I821A, Y829A, F787A, D656L, Y728L, M625I, E535D, E536G, Q541R, K555R, F559L, F561L, F564L, F564S, K591E, N587S, K604E, K608E, N609H, K630R, K633E, N636S, N661S, Y676D, Y676N, C677R, H678R, D687A, T712S, D724N, D724G, L738H, N742S, A762S, D764G, D764V, S766F, K795E, L797F, I799T, T802P, S815C, M816A, I824T, C839S, K852E, S560G, V585A, I599V, I648V, S663P, L675P, T711A, F744L, L746S, F755L, L804P, M816T, and F840S.


In one embodiment the DD may include the mutation H653A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 509. In one embodiment, the DD may include the mutation F736A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 227. In one embodiment, the DD may comprise the mutation D764A. In one embodiment, the DD comprises the amino acid sequence of SEQ ID NO. 510. In one embodiment, the DD may include the mutation Y612F. In one aspect, the DD may comprise the amino acid sequence of SEQ ID NO. 506. In one embodiment, the DD may include the Y612W mutation. In one aspect, the DD may include the amino acid sequence of SEQ ID NO. 507. In one embodiment, the DD may include the mutation Y612A. In one embodiment the DD may comprise the amino acid sequence of SEQ ID NO. 508. In one embodiment, the DD may include the mutation D64N. In some aspects, the DD may comprise the amino acid sequence of SEQ ID NO. 505.


In some embodiments, the SRE of the present invention may be appended to a payload. In some aspects, the payload may be an immunotherapeutic agent. In some aspects, the immunotherapeutic agent may be selected from a chimeric antigen receptor (CAR) and a cytokine-cytokine receptor fusion polypeptide.


In some embodiments the CAR may include an extracellular target moiety, a hinge and transmembrane domain, an intracellular signaling domain; and optionally, one or more co-stimulatory domains. In some embodiments, the CAR may be a standard CAR, a split CAR, an off-switch CAR, an on-switch CAR, a first-generation CAR, a second-generation CAR, a third-generation CAR, or a fourth-generation CAR.


The extracellular target moiety of the CAR may have an affinity of bind to a target molecule on the surface of the cancer cell. In some aspects, the extracellular target moiety of the CAR may be an scFv. In one aspect, the target molecule may be CD19. In some embodiments, the extracellular target moiety of the CAR is a CD19 scFv (SEQ ID NO. 8233). In some embodiments, wherein the hinge and transmembrane domain of the CAR may be paired. The paired hinge and transmembrane domain may be derived from CD8a, CDS, CD4, CD9, CD16, CD22, CD33, CD28, CD37, CD45, CD64, CD80, CD86, CD148, DAP 10, EpoRI, GITR, LAG3, ICOS, Her2, OX40 (CD134), 4-1BB (CD137), CD152, CD154, PD-1, or CTLA-4. In some embodiments, the paired domain may be derived from a transmembrane region of an alpha, beta or zeta chain of a T-cell receptor; or an immunoglobulin selected from IgG1, IgD, IgG4, and an IgG4 Fc region; or the CD3 epsilon chain of a T-cell receptor. In one embodiment, the paired hinge and transmembrane domain of the CAR may be derived from CD8a. In one aspect, the paired hinge and transmembrane domain may comprise the amino acid sequence of SEQ ID NO. 8235. In some embodiments, the CAR of the present invention may include an intracellular domain. The intracellular domain may be derived from CD3 zeta or a cell surface molecule selected from the group consisting of FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, and CD66d. In some embodiments, the co-stimulatory domain may be present. The costimulatory domain may be derived from 4-1BB (CD137) 2B4, HVEM, ICOS, LAG3, DAP10, DAP12, CD27, CD28, OX40 (CD134), CD30, CD40, ICOS (CD278), glucocorticoid-induced tumor necrosis factor receptor (GITR), lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, and B7-H3. In one aspect the intracellular domain may be derived from CD3 Zeta SEQ ID NO. 8236. In some embodiments, the CAR may include a co-stimulatory domain derived from 4-1BB (SEQ ID NO. 8237). In some aspects, the CAR further may also include a signal sequence. The signal sequence may be derived from CD8a. In some aspects, the signal sequence may comprise the amino acid sequence of SEQ ID NO. 278.


In some embodiments, the immunotherapeutic agent may be a cytokine-cytokine receptor fusion polypeptide. The cytokine-cytokine receptor fusion polypeptide may include the whole or a portion of IL15, fused to the whole or a portion of IL15Ra to produce a IL15-IL15Ra fusion polypeptide. In one embodiment the cytokine-cytokine receptor fusion polypeptide may include amino acid sequence of SEQ ID NO. 8324 fused to the amino acid sequence of SEQ ID NO. 8324 to produce a fusion polypeptide.


In some embodiments, the effector module of the invention may be a DD-CD19 CAR fusion polypeptide. The fusion polypeptide may comprise the amino acid sequence of SEQ ID NO. 8283; 8271-8282 or 8284. In some embodiments, the effector module of the invention may be a DD-IL15-IL15Ra fusion polypeptide (SEQ ID NO. 8338; 8334-8337 or 8339-8343).


In some embodiments, the SRE may be responsive to one or more stimuli. The stimulus may be a small molecule such as but not limited to Tadalafil, Vardenafil, Sildenafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil. In one aspect, the small molecule may be Tadalafil.


The present invention also provides a pharmaceutical composition which may include the compositions described herein and a pharmaceutically acceptable excipient.


The present invention also provides polynucleotides encoding the compositions and the pharmaceutical compositions described herein.


Also provided herein are immune cells for adoptive transfer. The immune cells may express the compositions, pharmaceutical compositions, the polynucleotides, or the vectors described herein.


The present invention also provides methods of inducing an immune response in a cell. Such methods may include administering to the cell, a therapeutically effective amount of any of the pharmaceutical composition and administering to the cell, a therapeutically effective amount of a stimulus to modulate the expression of the immunotherapeutic agent. In some embodiments, the stimulus may be a ligand. In some aspects, the immunotherapeutic agent may be capable of inducing an immune response in the cell, in response to the stimulus.


Methods of reducing tumor burden using the compositions described herein are also provided. Such methods may include administering to the subject a therapeutically effective amount of the immune cells described herein and administering to the subject a therapeutically effective amount of a stimulus. In some embodiments, the stimulus may be a ligand. In some embodiments, the stimulus may be able to modulate the expression of the immunotherapeutic agent, thereby reducing the tumor burden. In some embodiments, the ligand is Tadalafil. In some aspects the Tadalafil may be administered to the subject at a dose ranging from about 0.1 mg/kg to about 100 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 10 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 30 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 100 mg/kg body weight of the subject.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings. The drawings are not necessarily to scale; emphasis instead being placed upon illustrating the principles of various embodiments of the invention.



FIG. 1 shows an overview diagram of a biocircuit system of the invention. The biocircuit comprises a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces a signal or outcome. The effector module comprises at least one stimulus response element (SRE) and one payload.



FIG. 2 shows representative effector modules carrying one payload. The signal sequence (SS), SRE and payload may be located or positioned in various arrangements without (A to F) or with (G to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.



FIG. 3 shows representative effector modules carrying two payloads without a cleavage site. The two payloads may be either directly linked to each other or separated.



FIG. 4 shows representative effector modules carrying two payloads with a cleavage site. In one embodiment, an SS is positioned at the N-terminus of the construct, while other components: SRE, two payloads and the cleavage site may be located at different positions (A to L). In another embodiment, the cleavage site is positioned at the N-terminus of the construct (M to X). An optional linker may be inserted between each component of the effector module.



FIG. 5 shows effector modules of the invention carrying two payloads, where an SRE is positioned at the N-terminus of the construct (A to L), while SS, two payloads and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.



FIG. 6 shows effector modules of the invention carrying two payloads, where either the two payloads (A to F) or one of the two payloads (G to X) is positioned at the N-terminus of the construct (A to L), while SS, SRE and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.



FIG. 7 depicts representative configurations of the stimulus and effector module within a biocircuit system. A trans-membrane effector module is activated either by a free stimulus (A) or a membrane bound stimulus (B) which binds to SRE. The response to the stimulus causes the cleavage of the intracellular signal/payload, which activates down-stream effector/payload.



FIG. 8 depicts a dual stimulus-dual presenter biocircuit system, where two bound stimuli (A and B) from two different presenters (e.g., different cells) bind to two different effector modules in a single receiver (e.g., another single cell) simultaneously and create a dual-signal to downstream payloads.



FIG. 9 depicts a dual stimulus-single presenter biocircuit system, where two bound stimuli (A and B) from the same presenter (e.g., a single cell) bind to two different effector modules in another single cell simultaneously and create a dual-signal.



FIG. 10 depicts a single-stimulus-bridged receiver biocircuit system. In this configuration, a bound stimulus (A) binds to an effector module in the bridge cell and creates a signal to activate a payload which is a stimulus (B) for another effector module in the final receiver (e.g., another cell).



FIG. 11 depicts a single stimulus-single receiver biocircuit system, wherein the single receiver contains the two effector modules which are sequentially activated by a single stimulus.



FIG. 12 depicts a biocircuit system which requires a dual activation. In this embodiment, one stimulus must bind the transmembrane effector module first to prime the receiver cell being activated by the other stimulus. The receiver only activates when it senses both stimuli (B).



FIG. 13 depicts a standard effector module of a chimeric antigen receptor (CAR) system which comprises an antigen binding domain as an SRE, and signaling domain(s) as payload.



FIG. 14 depicts the structure design of a regulatable CAR system, where the trans-membrane effector modules comprise antigen binding domains sensing an antigen and a first switch domain and the intracellular module comprises a second switch domain and signaling domains. A stimulus (e.g., a dimerization small molecule) can dimerize the first and second switch domains and assemble an activated CAR system.



FIG. 15 shows schematic representation of CAR systems having one (A) or two (B and C) SREs incorporated into the effector module.



FIG. 16 depicts a split CAR design to control T cell activation by a dual stimulus (e.g., an antigen and small molecule). (A) shows normal T cell activation which entails a dual activation of TCR and co-stimulatory receptor. The regular CAR design (B) combines the antigen recognition domain with TCR signaling motif and co-stimulatory motif in a single molecule. The split CAR system separates the components of the regular CAR into two separate effector modules which can be reassembled when a heterodimerizing small molecule (stimulus) is present.



FIG. 17 depicts the positive and negative regulation of CAR engineered T cell activation. The absence or presence of a second stimulus can negatively (A) or positively (B) control T cell activation.



FIG. 18 shows schematic representation of gated activation of CAR engineered T cells. If a normal cell that has no stimulus (e.g., an antigen) (A) or an antigen that cannot bind to the trans-membrane effector module (B), or only an antigen that activates the trans-membrane effector module and primes the receiver T cell to express the second effector (C), the receiver T cell remains inactive. When both stimuli (e.g. two antigens) that bind the trans-membrane effector module and the primed effector, are present on the presenter cell (e.g. a cancer cell), the T cell is activated (D).



FIG. 19A shows the percent of CAR positive cells obtained with cells transduced with different volumes of virus related to the CAR constructs. FIG. 19B shows the percentage of CAR positive cells with vardenafil treatment. FIG. 19C shows the expression of the CAR with CD3/CD28 bead restimulation. FIG. 19D shows the percentage of CAR positive cells with different concentrations of virus and in the presence or absence of CD3/CD28 bead restimulation. FIG. 19E shows the dose response of CD19 CAR constructs to sildenafil, vardenafil and tadalafil. FIG. 19F shows the response of CD19 CAR constructs to different ligands and with varying the duration of ligand treatment. FIG. 19G shows IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of vardenafil. FIG. 19H shows the percentage of CAR positive T cells obtained with Tadalafil treatment. FIG. 19I shows the IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of tadalafil. FIG. 19J shows the target cell killing by CAR expressing T cells in the presence of vardenafil. FIG. 19K shows the proliferation of target cells cocultured with CAR expressing T cells in the presence of vardenafil.



FIG. 20A shows the total flux of Nalm6 luc cells in mice, in the presence of tadalafil. FIG. 20B and FIG. 20C show the pharmacokinetics of vardenafil and tadalafil in plasma of mice after injections of ligand at indicated doses.





DETAILED DESCRIPTION OF THE INVENTION

The details of one or more embodiments of the invention are set forth in the accompanying description below. Although any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred materials and methods are now described. Other features, objects and advantages of the invention will be apparent from the description. In the description, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the case of conflict, the present description will control.


I. INTRODUCTION

Protein Regulation


The ability to conditionally control protein levels is a powerful tool in gene and cell therapy. Techniques to control protein expression on a genetic level have been widely studied. The Cre-Lox technology provides a useful approach to activate or inactivate genes. Tissue or cell specific promoters can be used to control spatial and temporal expression of genes of interest. However, this system is limited in application due to the irreversible nature of the perturbation. The transcription of the gene of interest can be conditionally regulated using tools such as Doxycycline (Dox)-inducible system. Alternatively, the stability of mRNA can be regulated using RNA interference techniques. However, methods targeting DNA or RNA are slow acting, irreversible and have low efficiency.


Direct manipulation of activities at the protein level provides significant advantages in flexibility, reversibility and speed. Strategies which directly trigger a cell's natural degradation system have been developed. Szostak and colleagues showed that a small peptide sequence could be fused to the N-terminus of a protein of interest to modulate protein stability (Park, E C., et al., Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1249-1252). Varshaysky and coworkers isolated a temperature-sensitive peptide sequence that greatly reduced the half-life of dihydrofolate reductase (DHFR) at the non-permissive temperatures (Dohmen et al. Science 1994, 263:1273-1276). These mutants have been widely used to study protein functions in yeast (Labib et al. Science 2000, 288:1643-1646; and Kanemaki et al. Nature 2003, 423:720-724).


Subsequently, reversible systems employing a rapamycin derivative for the regulation of GSK-3β kinase fused to an unstable triple-mutant of the FRB domain (FRB*) were developed. The rapamycin derivative induces dimerization of the FRB*-GSK-3β and endogenous FKBP12 and stabilizes the FRB* fusion thus restoring the function of the fused kinase. (Stankunas et al., Mol Cell. 2003; 12:1615-1624 and Liu et al., Nature. 2007; 446:79-82).


Building on the FRB* domain system, Banaszynski, et al., developed a cell-permeable ligand system using mutants of FKBP12 protein which were engineered to be unstable in the absence of a high-affinity ligand, Shield-1. (Banaszynski et al., Cell. 2006; 126:995-1004). They termed these unstable domains, destabilizing domains (DDs).


The FKBP/shield-1 tuning system has been successfully used in several studies to control target proteins. For example, Dettwier et al., fused FKBP to tune the express of NADPH P450 oxidoreductase (POR) (Dettwier et al., PLoS One, 2014, 9(11): e113540).


The FKBP DD-shield system has been used in cell lines, transgenic mice, protozoan Entamoeba histolytica, the flatworm Caenorhabditis elegans, the medaka, and transgenic xenografts to investigate the activity of a protein of interest (Maynard-Smith et al., J Biol Chem. 2007, 282(34): 24866-24872; Liu et al., Int J Parasitol. 2014, 44(10):729-735; Cho et al., PLoS One. 2013, 8(8): e72393); Banaszynski et al. Nat Med. 2008, 14(10):1123-1127; Rodriguez and Wolfgang, Chem Biol. 2011, 19(3):391-398; and Froschauer et al., PLoS One, 2015, 10(7): e0131252), for iPSC reprogramming (Sui et al., Stem cell Reports, 2014, 2(5): 721-733).


In addition, the destabilizing domain has been used for the conditional knock-down or knock-out of the target gene fused with the destabilizing domain. Park et al achieved this genomic engineering by CRISPR/Cas9-mediated homologous recombination and a donor template coding for a resistance cassette and the DD-tagged TCOF1 sequence (Park et al., PLoS One. 2014, 9(4): e95101).


More recently protein switches useful as biosensors as well as new chimeric antigen receptors and other small molecule stabilization frameworks have been disclosed (An W, et al. PLoS ONE, 2015, 10(12): e0145783. doi: 10.1371/journal.pone.0145783; Nicholes, et al., Protein Engineering, Design & Selection, 2016, vol. 29 no. 2, pp. 77-85; Nath, et al., Biochemical and Biophysical Research Communications, 2016, 470: 411e416); Stevers, et al., PNAS, 2016, vol. 119, no. 9, pp. E112-1161; Juillerat, A. et al., Sci. Rep. 2016, 6: 18950; Roybal, Cell, 2016, vol. 164, pp. 1-10; and Morsut, Cell, 2016, vol. 164, pp. 1-12).


One drawback of the FKBP/Shield-1 is that Shield-1 is a novel drug whose biodistribution is not fully characterized and it is not known to what extent Shield-1 crosses the blood-brain barrier.


Other DD ligand pairs include estrogen receptor domains which can be regulated by several estrogen receptor antagonists (Miyazaki et al., J Am Chem. Soc., 2012, 134(9): 3942-3945), and fluorescent destabilizing domain (FDD) derived from bilirubin-inducible fluorescent protein, UnaG. A FDD and its cognate ligand bilirubin (BR) can induce degradation of a protein fused to the FDD (Navarro et al., ACS Chem Biol., 2016, June 6, Epub). Other known DDs and their applications in protein stability include those described in U.S. Pat. Nos. 8,173,792 and 8,530,636, the contents of which are each incorporated herein by reference in their entirety.


In an orthogonal approach, the destabilizing domains of the bacterial dihydrofolate reductase (ecDHFR) were explored. (Iwamoto et al., Chem Biol. 2010, 17(9):981-988; and Tai et al., PLoS One. 2012, 7(9): e46269). Numerous inhibitors of DHFR have been developed as drugs and one such inhibitor Trimethoprim (TMP), inhibits ecDHFR much more potently than mammalian DHFR providing specificity to the interaction. Additionally, TMP is commercially available and has desirable pharmacological properties making this protein-ligand pair ideal for development for use as a biocircuit (Iwamoto, et al., Chem Biol. (2010) Sep. 24; 17(9): 981-988).


The present invention provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD is destabilizing and causes degradation of a payload fused to the DD (e.g., a protein of interest (POI), while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent. Methods for tuning the expression level and activity of a protein of interest using the DDs, effector modules, biocircuit systems and compositions of the invention are also provided. In some embodiments, the SRE may be a destabilizing domain (DD). In some examples, the DD may be a portion or region of human protein PDE5. In this context, the biocircuit system is a DD biocircuit system.


The present invention expands upon the technology of tuning protein stability using novel destabilizing domains derived from human PDE5 protein. The destabilization and stabilization of a protein of interest, e.g., a transgene for gene therapy, can be controlled by PDE5 mutant DDs having destabilizing or stabilizing properties and their ligands, e.g. Sildenafil and Vardenafil specifically binding to such protein domains. The presence and/or absence of a small molecule ligand can tune the activity of a payload (e.g., a protein of interest) that is operably linked to the destabilizing domain.


Immunotherapy


Cancer immunotherapy aims' at the induction or restoration of the reactivity of the immune system towards cancer. Significant advances in immunotherapy research have led to the development of various strategies which may broadly be classified into active immunotherapy and passive immunotherapy. In general, these strategies may be utilized to directly kill cancer cells or to counter the immunosuppressive tumor microenvironment. Active immunotherapy aims at induction of an endogenous, long-lasting tumor-antigen specific immune response. The response can further be enhanced by non-specific stimulation of immune response modifiers such as cytokines. In contrast, passive immunotherapy includes approaches where immune effector molecules such as tumor-antigen specific cytotoxic T cells or antibodies are administered to the host. This approach is short lived and requires multiple applications.


Despite significant advances, the efficacy of current immunotherapy strategies is limited by associated toxicities. These are often related to the narrow therapeutic window associated with immunotherapy, which in part, emerges from the need to push therapy dose to the edge of potentially fatal toxicity to get a clinically meaningful treatment effect. Further, dose expands in vivo since adoptively transferred immune cells continue to proliferate within the patient, often unpredictably.


A major risk involved in immunotherapy is the on-target but off tumor side effects resulting from T-cell activation in response to normal tissue expression of the tumor associated antigen (TAA). Clinical trials utilizing T cells expressing T-cell receptor against specific TAA reported skin rash, colitis and hearing loss in response to immunotherapy.


Immunotherapy may also produce on target, on-tumor toxicities that emerge when tumor cells are killed in response to the immunotherapy. The adverse effects include tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome. Importantly, these adverse effects may occur during the destruction of tumors, and thus even a successful on-tumor immunotherapy might result in toxicity. Approaches to regulatably control immunotherapy are thus highly desirable since they have the potential to reduce toxicity and maximize efficacy.


The present invention provides systems, compositions, immunotherapeutic agents and methods for cancer immunotherapy. These compositions provide tunable regulation of gene expression and function in immunotherapy. The present invention also provides biocircuit systems, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing. In one aspect, the systems, compositions, immunotherapeutic agents and other components of the invention can be controlled by a separately added stimulus, which provides a significant flexibility to regulate cancer immunotherapy. Further, the systems, compositions and the methods of the present invention may also be combined with therapeutic agents such as chemotherapeutic agents, small molecules, gene therapy, and antibodies.


The tunable nature of the systems and compositions of the invention has the potential to improve the potency and duration of the efficacy of immunotherapies. Reversibly silencing the biological activity of adoptively transferred cells using compositions of the present invention allows maximizing the potential of cell therapy without irretrievably killing and terminating the therapy.


In particular, present invention provides methods for fine tuning of immunotherapy after administration to patients. This in turn improves the safety and efficacy of immunotherapy and increases the subject population that may benefit from immunotherapy.


II. Compositions of the Invention

A variety of strategies that can directly control protein, e.g., a transgene, expression and function are available. The present invention provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD causes degradation of a payload such as a protein of interest (POI) that is operably linked to the DD, while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent.


According to the present invention, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5; also referred to as cGMP-specific 3′,5′-cyclic phosphodiesterase) protein are provided. The destabilizing domain (DD) mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO. 1 (encoded by the nucleic acid sequence of SEQ ID NO. 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 (SEQ ID NO. 3), encoded by nucleic acid sequence of SEQ ID NO. 339, e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized. In some embodiments, the hPDE5 DD may include a methionine appended to the N terminus of catalytic domain (SEQ ID NO. 237), encoded by SEQ ID NO. 4.


According to the present invention, biocircuit systems are provided which comprise, at their core, at least one effector module system. Such effector module systems comprise at least one effector module having associated, or integral therewith, one or more stimulus response elements (SREs). The overall architecture of a biocircuit system of the invention is illustrated in FIG. 1. In general, a stimulus response element (SRE) may be operably linked to a payload construct which could be any protein of interest (POI) (e.g., an immunotherapeutic agent), to form an effector module. The SRE, when activated by a particular stimulus, e.g., a small molecule, can produce a signal or outcome, to regulate transcription and/or protein levels of the linked payload either up or down by perpetuating a stabilizing signal or destabilizing signal, or any other types of regulation. A much-detailed description of a biocircuit system can be found in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In accordance with the present invention, biocircuit systems, effector modules, SREs and components that tune expression levels and activities of any agents used for immunotherapy are provided. In particular, biocircuit systems and effector modules comprising the novel hPDE5 destabilizing domains discussed herein are provided.


As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present invention and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts.


In accordance with the present invention, a biocircuit system may be a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. Any of these systems may act as a signal to any other of these biocircuit systems. In some embodiments, the present invention provides biocircuit systems, effector modules and compositions comprising the DDs of the present invention. In one aspect, the biocircuit system is a DD biocircuit system.


In one aspect of the present invention, the biocircuit system is a DD biocircuit system. The DD is a hPDE5 derived DD.


Effector Modules and SREs for Immunotherapy


In accordance with the present invention, biocircuit systems, effector modules, SREs, and components that tune expression levels and activities of any agents used for immunotherapy are provided. As non-limiting examples, an immunotherapeutic agent may be an antibody and fragments and variants thereof, a cancer specific T cell receptor (TCR) and variants thereof, an anti-tumor specific chimeric antigen receptor (CAR), a chimeric switch receptor, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a suicide gene, a homing receptor, or any agent that induces an immune response in a cell and a subject.


As stated, the biocircuits of the invention include at least one effector module as a component of an effector module system. As used herein, an “effector module” is a single or multi-component construct or complex comprising at least (a) one or more stimulus response elements (SREs) and (b) one or more payloads (i.e. proteins of interest (POIs)). In the context of the present invention, the SRE is a DD derived from human PDE5 protein.


As used herein a “stimulus response element (SRE)” is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1% and 100% or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more.


In some embodiments, the biocircuit system of the present invention comprising a stimulus and an effector module of the invention. The DD of the effector module binds to the stimulus and regulates the stability of the linked payload. The DD may destabilize the protein of interest by a destabilization ratio between 0, and 0.09, wherein the destabilization ratio comprises the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the DD to the expression, function or level of the protein of interest that is expressed constitutively, and in the absence of the stimulus specific to the DD. In some embodiments, the DD may stabilize the protein of interest by a stabilization ratio of 1 or more, wherein the stabilization ratio comprises the ratio of expression, function or level of a protein of interest in the presence of the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus.


In some embodiments, the present invention provides methods for modulating protein expression, function or level. In some aspects, the modulation of protein expression, function or level refers to modulation of expression, function or level by at least about 20%, such as by at least about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.


According to the present invention, biocircuit systems and effector modules of the invention can be used to regulate the expression and activity of a payload in response to the presence or absence of a ligand that specifically binds to the DD integrated within the biocircuit system and effector module.


In some aspects, DDs, effector modules and biocircuit systems of the invention may be used to regulate the expression, function and activity of a payload in a cell or a subject. The regulation refers to a level of change of its expression, function and activity, by at least about 10%, or at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.


In some embodiments, the mutation co-efficient of the biocircuits of the invention may also be measured as a way of evaluating the ability of the DD to modulate protein expression, function or level. As used herein, the “mutation co-efficient” refers to the expression, function or level or a protein of interest, appended to a particular DD mutant, in the absence of the stimulus specific to the SRE; to the protein expression, function or level of the protein of interest, appended to the corresponding wildtype sequence from which the particular DD mutant is derived and in the absence of the stimulus. The mutation co-efficient is indicative of the contribution of the destabilizing mutations towards the basal expression of the protein independent of the whether the corresponding wildtype protein can be destabilized without any mutations. In some aspects, the mutation co-efficient ratio is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.


In some embodiments, the present invention provides methods for modulating protein, expression, function or level by measuring the stabilization ratio, destabilization ratio, and/or destabilizing mutation co-efficient. As used herein, the “stabilization ratio” is the ratio of expression, function or level of a protein of interest in response to the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus specific to the SRE. In some aspects, the stabilization ratio is at least 1, such as by at least 1-10, 1-20, 1-30, 1-40, 1-50, 1-60, 1-70, 1-80, 1-90, 1-100, 20-30, 20-40, 20-50, 20-60, 20-70, 20-80, 20-90, 20-95, 20-100, 30-40, 30-50, 30-60, 30-70, 30-80, 30-90, 30-95, 30-100, 40-50, 40-60, 40-70, 40-80, 40-90, 40-95, 40-100, 50-60, 50-70, 50-80, 50-90, 50-95, 50-100, 60-70, 60-80, 60-90, 60-95, 60-100, 70-80, 70-90, 70-95, 70-100, 80-90, 80-95, 80-100, 90-95, 90-100 or 95-100. As used herein, the “destabilization ratio” is the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the effector module to the expression, function or level of the protein of interest, that is expressed constitutively and in the absence of the stimulus specific to the SRE. As used herein “constitutively” refers to the expression, function or level a protein of interest that is not linked to an SRE, and is therefore expressed both in the presence and absence of the stimulus to the SRE. As used herein, the “destabilizing mutation co-efficient” may be defined as the ratio of expression or level of a protein of interest that is appended to a DD, in the absence of the stimulus specific to the effector module to the expression, function or level of the protein that is appended to the wild type protein from which the DD is derived. In some aspects, the destabilization ratio and/or the destabilizing mutation co-efficient is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.


The SRE of the effector module may be selected from, but is not limited to, a peptide, peptide complex, peptide-protein complex, protein, fusion protein, protein complex, protein-protein complex. The SRE may comprise one or more regions derived from any natural or mutated protein, or antibody. In this aspect, the SRE is an element, when responding to a stimulus, can tune intracellular localization, intramolecular activation, and/or degradation of payloads.


In some embodiments, effector modules of the present invention may comprise additional features that facilitate the expression and regulation of the effector module, such as one or more signal sequences (SSs), one or more cleavage and/or processing sites, one or more targeting and/or penetrating peptides, one or more tags, and/or one or more linkers. Additionally, effector modules of the present invention may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites. Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present invention embraces biocircuits which are multifactorial in their tenability. Such biocircuits may be engineered to contain one, two, three, four or more tuned features.


As shown in FIG. 2, representative effector module embodiments comprising one payload, i.e. one immunotherapeutic agent are illustrated. Each components of the effector module may be located or positioned in various arrangements without (A to F) or with (G to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.



FIGS. 3 to 6 illustrate representative effector module embodiments comprising two payloads, i.e. two immunotherapeutic agents. In some aspects, more than two immunotherapeutic agents (payloads) may be included in the effector module under the regulation of the same SRE (e.g., the same DD). The two or more agents may be either directly linked to each other or separated (FIG. 3). The SRE may be positioned at the N-terminus of the construct, or the C-terminus of the construct, or in the internal location.


In some aspects, the two or more immunotherapeutic agents may be the same type such as two antibodies, or different types such as a CAR construct and a cytokine IL12. Biocircuits and components utilizing such effector molecules are given in FIGS. 7-12.


As used herein a “payload” or “target payload” is defined as any protein or nucleic acid whose function is to be altered. Payloads may include any coding or non-coding gene or any protein or fragment thereof, or fusion constructs, or antibodies.


Payloads are often associated with one or more SREs (e.g., DDs) and may be encoded alone or in combination with one or more DD in a polynucleotide of the invention. Payloads themselves may be altered (at the protein or nucleic acid level) thereby providing for an added layer of tenability of the effector module. For example, payloads may be engineered or designed to contain mutations, single or multiple, which affect the stability of the payload or its susceptibility to degradation, cleavage or trafficking. The combination of a DD which can have a spectrum of responses to a stimulus with a payload which is altered to exhibit a variety of responses or gradations of output signals, e.g., expression levels, produce biocircuits which are superior to those in the art. For example, mutations or substitutional designs such as those created for IL12 in WO2016048903 (specifically in Example 1 therein), the contents of which are incorporated herein by reference in their entirety, may be used in any protein payload in conjunction with a DD of the present invention to create dual tunable biocircuits. The ability to independently tune both the DD and the payload greatly increases the scope of uses of the effector modules of the present invention.


Effector modules may be designed to include one or more payloads, one or more DDs, one or more cleavage sites, one or more signal sequences, one or more tags, one or more targeting peptides, and one or more additional features including the presence or absence of one or more linkers. Representative effector module embodiments of the invention are illustrated in FIGS. 2-6. In some aspects, the DD can be positioned at the N-terminal end, or the C-terminal end, or internal of the effector module construct. Different components of an effector module such as DDs, payloads and additional features are organized linearly in one construct, or are separately constructed in separate constructs.


Additionally, effector modules of the present invention may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites that provide flexibility on controlling the activity of the payload. The payloads of the present invention may be any natural proteins and their variants, or fusion polypeptides, antibodies and variants thereof, transgenes and therapeutic agents.


The stimulus of the biocircuit system may be, but is not limited to, a ligand, a small molecule, an environmental signal (e.g., pH, temperature, light and subcellular location), a peptide or a metabolite. In one aspect of the present invention, the stimulus is a hPDE5 DD binding ligand including Sildenafil and Vardenafil.


Polypeptides of DDs, biocircuit systems and effector modules comprising such DDs and payload constructs, other components, polynucleotides encoding these polypeptides and variants thereof, vectors comprising these polynucleotides, are provided in the present invention. The vector may be a plasmid or a viral vector including but not limited to a lentiviral vector, a retroviral vector, a recombinant AAV vector and oncolytic viral vector.


The position of the payload with respect to the DD, within the SRE may be varied to achieve optimal DD regulation. In some embodiments, the payload may be fused to the N terminus of the DD. In another embodiment, the payload may be fused to the C terminus of the DDs. An optional start codon nucleotide sequence encoding for methionine may be added to the DD and/or payload.


In some embodiments, more than one biocircuit system may be used in combination to control various protein functions in the same cell or organism, each of which uses different DD and ligand pair and can be regulated separately.


In some embodiments, biocircuits of the invention may be modified to reduce their immunogenicity. Immunogenicity is the result of a complex series of responses to a substance that is perceived as foreign and may include the production of neutralizing and non-neutralizing antibodies, formation of immune complexes, complement activation, mast cell activation, inflammation, hypersensitivity responses, and anaphylaxis. Several factors can contribute to protein immunogenicity, including, but not limited to protein sequence, route and frequency of administration and patient population. In a preferred embodiment, protein engineering may be used to reduce the immunogenicity of the compositions of the invention. In some embodiments, modifications to reduce immunogenicity may include those that reduce binding of the processed peptides derived from the sequence of the compositions of the invention, to the MHC proteins. For example, amino acid may be modified such that virtually none or a minimal of number of immune epitopes predicted to bind to any prevalent MHC alleles are present in the compositions of the invention. Several methods to identify MHC binding epitopes of known protein sequences are known in the art and may be used to score epitopes in the compositions of the present invention. Such methods are disclosed in U.S. Patent Publication No. US20020119492, US20040230380, and U.S. 20060148009; the contents of each of which are incorporated by reference in their entirety.


Epitope identification and subsequent sequence modification may be applied to reduce immunogenicity. The identification of immunogenic epitopes may be achieved either physically or computationally. Physical methods of epitope identification may include, for example, mass spectrometry and tissue culture/cellular techniques. Computational approaches that utilize information related to antigen processing, loading and display, structural and/or proteomic data for identifying peptides that may result from antigen processing, and that are likely to have good binding characteristics in the groove of the MHC may also be utilized. One or more mutations may be introduced into the biocircuits of the invention to render the identified epitope less or non-immunogenic, while maintaining functionality.


In some embodiments, protein modifications engineered into the structure of the compositions of the invention to interfere with antigen processing and peptide loading such as glycosylation and PEGylation, may also be useful in the present invention. Compositions of the invention may also be engineered to include non-classical amino acid sidechains. Any of the methods discussed in International Patent Publication No. WO2005051975 for reducing immunogenicity may be useful in the present invention (the contents of which are incorporated by reference in their entirety).


In one embodiment, patients may also be stratified according to the immunogenic peptides presented by their immune cells and may be utilized as a parameter to determine patient cohorts that may therapeutically benefit from the compositions of the invention.


In some embodiments, reduced immunogenicity may be achieved by limiting immunoproteasome processing. The proteasome is an important cellular protease that is found in two forms: the constitutive proteasome, which is expressed in all cell types and which contains catalytic subunits and the immunoproteasome that is expressed in cells of the hematopoietic lineage, and which contains different active subunits termed low molecular weight proteins (LMP) namely LMP-2, LMP-7 and LMP-10. Immunoproteasomes exhibit altered peptidase activities and cleavage site preferences that result in more efficient liberation of many MEW class I epitopes. A well described function of the immunoproteasome is to generate peptides with hydrophobic C terminus that can be processed to fit in the groove of MEW class I molecules. Deol P et al. have shown that immunoproteasomes may lead to a frequent cleavage of specific peptide bonds and thereby to a faster appearance of a certain peptide on the surface of the antigen presenting cells; and enhanced peptide quantities (Deol P et al. (2007) J Immunol 178 (12) 7557-7562; the contents of which are incorporated herein reference in its entirety). This study indicates that reduced immunoproteasome processing may be accompanied by reduced immunogenicity. In some embodiments, immunogenicity of the compositions of the invention may be reduced by modifying the sequence encoding the compositions of the invention to prevent immunoproteasome processing. Biocircuits of the present invention may also be combined with immunoproteasome-selective inhibitors to achieve the same effects. Examples of inhibitors useful in the present invention include UK-101 (Bli selective compound), IPSI-001, ONX 0914 (PR-957), and PR-924 (IPSI).


In some embodiments, effector modules of the present invention may include one or more degrons to tune expression. As used herein, a “degron” refers to a minimal sequence within a protein that is sufficient for the recognition and the degradation by the proteolytic system. An important property of degrons is that they are transferrable, that is, appending a degron to a sequence confers degradation upon the sequence. In some embodiments, the degron may be appended to the destabilizing domains, the payload or both. Incorporation of the degron within the effector module of the invention, confers additional protein instability to the effector module and may be used to reduce basal expression. In some embodiments, the degron may be an N-degron, a phospho degron, a heat inducible degron, a photosensitive degron, an oxygen dependent degron. As a non-limiting example, the degron may be an Ornithine decarboxylase degron as described by Takeuchi et al. (Takeuchi J et al. (2008). Biochem J. 2008 Mar. 1; 410(2):401-7; the contents of which are incorporated by reference in their entirety). Other examples of degrons useful in the present invention include degrons described in International patent publication Nos. WO2017004022, WO2016210343, and WO2011062962; the contents of each of which are incorporated by reference in their entirety.


In some embodiments, the effector modules of the present invention may include degrons at their C termini. The degrons may comprise -GG, -RG, -KG, -QG, -WG, -PG, and -AG as the penultimate and the ultimate amino acids of the SREs. Furthermore, certain −2 amino acids (D, E, V, I and L) may be more enriched in the C terminus of the of the effector modules. Other degrons include, but are not limited, to RxxG motif, wherein x is any amino acid, C-terminal twin glutamic acid (EE) motif, and motifs that comprise an arginine at the −3 positions. Degrons may also be selected from the R-3 motif, G-end, R at −3, A-end, A at −2, V at −2 positions. Any of the degrons described in Koren et al., 2018, Cell 173, 1-14, may be useful in the present invention (the contents of which are incorporated by reference in their entirety). In some aspects, the expression of the effector module may be tuned by altering its overall amino acid composition. In some aspects, the amino acid composition of the effector module may be tuned to reduce basal expression. In some embodiments, basal expression may be tuned by increasing the number of bulky aromatic residues such as tryptophan (W), phenylalanine (F), and tyrosine (Y) in the effector module. Such bulky amino acids are known to reduce protein stability. In some embodiments, the amino acid composition of the SREs may be enriched with acidic residues such as, but not limited to, aspartic acid (D) and glutamic acid (E), and positively charged lysine (K), if an increase in the basal expression of the SRE is desired.


In some embodiments, the endoplasmic reticulum associated degradation (ERAD) pathway may be used to optimize degradation of the payloads described herein e.g. secreted and membrane cargos. In one embodiment, the effector modules of the invention may be directed to the ER E3 ligases by using adaptor proteins or protein domains. The endoplasmic reticulum is endowed with a specialized machinery to ensure proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by the ERAD pathway, a process through which folding defective proteins are selected and ultimately degraded by the ubiquitin proteasome system. ERAD proceeds through four main steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasome degradation. Any of these steps may be modulated to optimize the degradation of the payloads and the effector modules described herein. Protein adaptors within the ER membrane, link substrate recognition to the ERAD machinery (herein referred to as the “dislocon”), which causes the dislocation of the proteins from the ER. Non-limiting examples of protein adaptors that may be used to optimize ERAD pathway degradation include, but are not limited to SEL1L (an adaptor that links glycan recognition to the dislocon), Erlins (intermembrane substrate adaptors), Insigs (client specific adaptors), F-Box proteins (act as adaptors for dislocated glycoproteins in the cytoplasm) and viral-encoded adaptors.


According to the present invention, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5) protein are provided. The destabilizing mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO. 1 (encoded by the nucleic acid sequence of SEQ ID NO: 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 of SEQ ID NO. 3 (encoded by nucleic acid sequence of SEQ ID NO. 339), e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized.


Destabilizing Domains (DDs)


As used herein, the term “destabilizing domains (DDs)” refers to protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. Destabilizing domains (DDs) can be appended to a target protein of interest (POI) and can convey its destabilizing property to the protein of interest, causing protein degradation. The presence, absence or an amount of a small molecule ligand that binds to or interacts with the DD, can, upon such binding or interaction modulate the stability of the payload(s) and consequently the function of the payload. A protein domain with destabilizing property (e.g. a DD) is used in conjunction with a cell-permeable ligand to regulate any protein of interest when it is fused with the destabilizing domain. DDs render the attached protein of interest unstable in the absence of a DD-binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell. However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable substrate for degradation. Moreover, its dependency on the concentration of its ligand further provides tunable control of degradation rates. Depending on the degree of binding and/or interaction the altered function of the payload may vary, hence providing a “tuning” of the payload function.


Due to its reversibility, specificity and the fast and easy regulation on protein level, the post-transcriptional tuning system provides a useful system for gene regulation. Furthermore, the regulation may be dose-dependent, thereby altering the protein-turnover rate to transform a short-lived or no detectable protein into a protein that functions for a precisely controlled period of time (Iwamoto et al., Chem. Biol. 2010, 17: 981-988).


In some embodiments, the desired characteristics of the DDs may include, but are not limited to, low protein levels in the absence of a ligand of the DD (i.e. low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation. Candidate DDs that bind to a desired ligand but not endogenous molecules may be preferred.


Candidate destabilizing domain sequence identified from protein domains of known wildtype proteins (as a template) may be mutated to generate libraries of mutants based on the template candidate domain sequence. Mutagenesis strategies used to generate DD libraries may include site-directed mutagenesis e.g. by using structure guided information, or random mutagenesis e.g. using error-prone PCR, or a combination of both. In some embodiments, destabilizing domains identified using random mutagenesis may be used to identify structural properties of the candidate DDs that may be required for destabilization, which may then be used to further generate libraries of mutations using site directed mutagenesis.


In some embodiments, novel DDs may be identified by mutating one or more amino acids in the candidate destabilizing domain to an amino acid that is vicinal to the mutation site. As used herein a vicinal amino acid refers to an amino acid that is located 1, 2, 3, 4, 5 or more amino acids upstream or downstream of the mutation site in the linear sequence and/or the crystal structure of the candidate destabilizing domain. In some embodiments, the vicinal amino acid may be a conserved amino acid (with similar physicochemical properties as the amino acid at the mutation site), a semi-conserved amino acid (e.g. negatively to positively charge amino acid) or a non-conserved amino acid (with different physicochemical properties than the amino acid at the mutation site).


In some embodiments, DD mutant libraries may be screened for mutations with altered, preferably higher binding affinity to the ligand, as compared to the wild type protein. DD libraries may also be screened using two or more ligands and DD mutations that are stabilized by some ligands but not others may be preferentially selected. DD mutations that bind preferentially to the ligand compared to a naturally occurring protein may also be selected. Such methods may be used to optimize ligand selection and ligand binding affinity of the DD. Additionally, such approaches can be used to minimize deleterious effects caused by off-target ligand binding.


In some embodiments, suitable DDs may be identified by screening mutant libraries using barcodes. Such methods may be used to detect, identify and quantify individual mutant clones within the heterogeneous mutant library. Each DD mutant within the library may have distinct barcode sequences (with respect to each other). In other instances, the polynucleotides can also have different barcode sequences with respect to 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleic acid bases. Each DD mutant within the library may also comprise a plurality of barcode sequences. When used in plurality barcodes may be used such that each barcode is unique to any other barcode. Alternatively, each barcode used may not be unique, but the combination of barcodes used may create a unique sequence that can be individually tracked. The barcode sequence may be placed upstream of the SRE, downstream of the SRE, or in some instances may be placed within the SRE. DD mutants may be identified by barcodes using sequencing approaches such as Sanger sequencing, and next generation sequencing, but also by polymerase chain reaction and quantitative polymerase chain reaction. In some embodiments, polymerase chain reaction primers that amplify a different size product for each barcode may be used to identify each barcode on an agarose gel. In other instances, each barcode may have a unique quantitative polymerase chain reaction probe sequence that enables targeted amplification of each barcode.


Inventors of the present invention investigated several human proteins and identified novel human DDs which can confer its instability features to the fused payload and facilitate the rapid degradation of the fusion polypeptide in the absence of its ligand but stabilize the fused payload in response to the binding to its ligand. Specifically, the new DDs are derived from human PDE5 protein.


Human PDE5 Mutants


In some embodiments, DDs of the invention may be derived from human cGMP-specific phosphodiesterase type 5 (PDE5); gene name: PDE5A (herein referred to as “hPDE5”). hPDE5 (phosphodiesterase 5) is a member of the 3,5′-cyclic nucleotide phosphodiesterase family which degrades/hydrolyzes cyclic GMP (cGMP) into its inactive form, GMP, and regulates cGMP signaling. The cGMP/PDE 5 signaling contributes to the development of hypertension in the vasculature, the central nervous system, and the kidney. hPDE5 is known to bind to small molecule such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400. Sildenafil, Vardenafil, Avanafil, and Tadalafil are hPDE5 inhibitors clinically approved for the treatment of erectile dysfunction. In particular, the binding of these small molecules to hPDE5 occurs within the catalytic domain. In some embodiments, the DDs of the invention may be derived from the catalytic domain of hPDE5 (SEQ ID NO. 3) which includes of residues 535 to 860 of hPDE5 (SEQ ID NO. 1; GenBank Access NO. 076074.2) which may be stabilized by ligands such as small molecule inhibitors of hPDE5 e.g. Sildenafil and Vardenafil. As used herein the term “PDE5 WT” or “hPDE5 WT”, refers to the human wildtype PDE5 protein sequence, which is defined as SEQ ID NO. 1, with the GenBank Access NO. 076074.2. In some embodiments, DDs of the present invention may be identified by utilizing a cocktail of hPDE5 inhibitors. In other instances, the suitable DDs may be identified by screening first with one hPDE5 inhibitor and subsequently screening with a second hPDE5 inhibitor.


In one embodiment, the hPDE5 derived DD may comprise the amino acid sequence of UniProt ID: 076074 (SEQ ID NO. 1) or a portion or a fragment thereof. In another embodiment, the hPDE5 derived DD may comprise the catalytic domain of UniProt ID: 076074, spanning from amino acid position 535 to position 860 (SEQ ID NO. 3); encoded by SEQ ID NO. 339. In addition to the catalytic domain, hPDE5 derived DDs may also comprise one or more GAF domains and/or the C terminal portion that extends beyond the catalytic domain. In some embodiment, the hPDE5 derived DD may be identified by testing constructs generated by truncating the 5′ and/or the 3′ end of hPDE5. In one embodiment, the hPDE5 derived DD may be truncated and the smallest hPDE5 based DD may be identified. In another embodiment, the hPDE5 derived DD may include amino acids from position 535 to 836 of SEQ ID NO. 1 which removes the C terminal helix. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 567 to 860 of UniProt ID: 076074 (SEQ ID NO. 1), or position 590 to 860 of UniProt ID: 076074 (SEQ ID NO. 1), which removes a portion of the N terminal domain. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 590 to 836 of UniProt ID: 076074 (SEQ ID NO. 1), which removes a portion of the N terminal domain and the C terminal helix. The DD may include amino acids from position 535 to position 875 of UniProt ID: 076074 (SEQ ID NO. 1). In another embodiment, the hPDE5 derived DD may consist of amino acids from position 466 to 875 of UniProt ID: 076074 (SEQ ID NO. 1) or position 420 to 875 of UniProt ID: 076074 (SEQ ID NO. 1).


According to the present invention, several hPDE5 destabilizing mutations were discovered by site directed mutagenesis of the catalytic domain of wildtype human PDE5 using site directed mutagenesis. The destabilization of the mutants in the absence of its binding ligands is tested. Binding to hPDE5 ligands, Sildenafil, Tadalafil and Vardenafil to human PDE5 was tested and ligand dependent stabilization was characterized. Based on the structural analysis of hPDE5 bound to Sildenafil, several residues were selected for mutagenesis. In some embodiments one or more of the residues described herein may be mutagenized to obtain hPDE5 derived DDs. The tryptophan at position 853 of SEQ ID NO. 1 may be mutated to phenylalanine to induce hydrophobic packing near binding site, while maintaining pi bond with the nearby tryptophan at position 772. The isoleucine at position 821 may be mutated to valine or alanine, which results in hydrophobic packing near binding site. The tyrosine at position 829 may be mutated to isoleucine, valine or alanine, which results in hydrophobic packing near binding site. The aspartate at position 656 may be mutated to asparagine or leucine to break up the charge and the salt bridge on loop/helix. The tyrosine at position 728 may be mutated to phenylalanine or leucine to break the salt bridges at position 732 and to affect hydrophobic packing. Alternatively, the arginine at position 732 may be mutated to lysine or leucine to generate the inverse of the effects of mutating tyrosine at position 728. The methionine at position 625 may be mutated to leucine or isoleucine to alter packing in away from the binding site. In some embodiments, destabilizing mutations that do not affect ligand binding may be preferentially selected.


In some embodiments, new destabilizing domains of the present invention are derived from the catalytic domain of human PDE5 protein comprising the amino acid sequence of SEQ ID NO. 3. In some aspects, the destabilizing mutant domain may comprise one, two, three, four, five or more mutations such as, but not limited to, M625I, D656L, Y728L, R732L, F736A, F787A, I821A, Y829A and W853F. The DDs of the invention may further include additional mutations e.g. E535D, E536G, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E. In some embodiments, any of the mutation sites disclosed herein may be mutated to any of the known amino acids such as Histidine, Alanine, Isoleucine, Arginine, Leucine, Aspartic acid, Lysine, Cysteine, Methionine, Glutamic acid, Phenylalanine, Glutamine, Threonine, Glycine, Tryptophan, Proline, Valine, Serine, Tyrosine, Asparagine, Selenocysteine, Pyrrolysine. In some embodiments, DDs of the present invention may be stabilized by ligands such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil.


The amino acid sequences of the destabilizing domains encompassed in the invention have at least about 40%, 50 or 60% identity, further at least about 70% identity, preferably at least about 75% or 80% identity, more preferably at least about 85%, 86%, 87%, 88%, 89% or 90% identity, and further preferably at least about 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence set forth therein. Percent identity may be determined, for example, by comparing sequence information using the advanced BLAST computer program, including version Magic-BLAST 1.2.0, available from the National Institutes of Health. The BLAST program is based on the alignment method discussed in Karl and Altschul (1990) Proc. Natl. Acad. Sci USA, 87:2264-68 (the contents of which are incorporated by reference in their entirety).


Several hPDE5 destabilizing mutants were identified and are provided in Table 1. The position of the mutated amino acids listed in Table 1 is relative to the full length hPDE5 of SEQ ID NO. 1. The domains described in Table 1 include the catalytic domain of hPDE5 (e.g., 535-860 of SEQ ID NO. 1). In some embodiments, the hPDE5 DDs described in Table 1 may include a methionine at the N terminal of the catalytic domain of hPDE5, i.e. amino acid 535-860 of PDE5 WT. In Table 1, the mutated amino acids are in bold and underlined.









TABLE 1







hPDE5 DDs










hPDE5

AA
NA


mutant

SEQ ID
SEQ ID


description
Amino Acid Sequence
NO
NO





hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
  5
350


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




W853F)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKFQAL





AEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
  6
351


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH




WT, I821A)
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
  7
352


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




Y829A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
  8
353


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH




WT, F787A)
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFADQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
  9
354;


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN

355


535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT, F736A)
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF







A
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ






QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
 10
356


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT,
DLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




D656L)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
 11
357


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




Y728L)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
 12
358;


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN

359


535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT, R732L)
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
 13
360


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALSHD




WT, M625I)
LDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILN





SPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFE





LIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQV





GFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE





QQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
340
 14


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




W853F)
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKF





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
341
 15


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, I821A)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQK





WQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
342
 16


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




Y829A)
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
343
 17


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, F787A)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
344
 18


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, F736A)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
345
 19


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




D656L)
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
346
 20


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRG




Y728L)
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
238
 21


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




535-860 of
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, R732L)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
347
 22


hPDE5
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




(Amino acid
HNWRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALS




535-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI




WT, M625I)
LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ





QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
348
361


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSA




WT,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




H653A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
349
362


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




D764A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ









In some embodiments, DDs derived from hPDE5 may include one, two, three, four, five, or more of the mutations described in the previous Table (Table 1).


In some embodiments, DDs derived from hPDE5 may further comprise one, two, three, four, five or more mutations to the catalytic domain of hPDE5 and may be selected from E535D, E536G, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E (as listed in Table 2). The position of the mutated amino acid is with respect to the hPDE5 of SEQ ID NO. 1. In Table 2, the mutated amino acids are underlined and in bold. The position of the mutated amino acids listed in Table 2 is relative to the full length hPDE5 of SEQ ID NO. 1









TABLE 2







Additional hPDE5 DDs









hPDE5 mutant

AA SEQ


description
Amino Acid Sequence
ID NO





hPDE5 (Amino


D
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT

23


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, E535D)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EGTRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
24


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, E536G)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELRSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
25


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, Q541R)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLRITDFSFSDFELSDLETALCTIRMFT
26


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K555R)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDLSFSDFELSDLETALCTIRMFT
27


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F559L)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSLSDFELSDLETALCTIRMFT
28


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F561L)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDLELSDLETALCTIRMFT
29


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F564L)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDSELSDLETALCTIRMFT
30


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F564S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
31


acid 535-860 of
DLNLVQNFQMEHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K591E)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
32


acid 535-860 of
DLNLVQSFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA



WT, N587S)
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQ




RSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




TLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLA




MLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPT




DLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC




RKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
33


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKENYRKNVAYHNWRHAFNT



WT, K604E)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
34


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRENVAYHNWRHAFNT



WT, K608E)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
35


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKHVAYHNWRHAFNT



WT, N609H)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
36


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K630R)
AQCMFAALRAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
37


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K633E)
AQCMFAALKAGEIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
38


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, N636S)
AQCMFAALKAGKIQSKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
39


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, N661S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVSNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
40


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, Y676D)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLDCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
41


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, Y676N)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLNCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
42


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, C677R)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYRHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
43


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, H678R)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCRSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
44


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D687A)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFAQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
45


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, T712S)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TSLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
46


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D724N)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATNLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
47


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D724G)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATGLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
48


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, L738H)
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFEHIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
49


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, N742S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKSQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
50


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, A762S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTSCDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
51


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D764N)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
52


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D764G)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACGLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
53


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, D764V)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACVLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
54


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, S766F)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLFAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
55


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K795E)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDREREELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
56


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, L797F)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATFFDQGDRERKEFNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
57


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, I799T)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNTE




PTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
58


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, T802P)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP






P
DLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
59


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, S815C)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPCMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
60


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, M816A)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSAQVGFIDAICLQLYEALTHVSEDCFPLLDGC




RKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
61


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, I824T)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDATCLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
62


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, C839S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDSFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
63


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, K852E)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQEWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFGFSDFELSDLETALCTIRMF
64


acid 535-860 of
TDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, S560G)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
65


acid 535-860 of
DLNLAQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, V585A)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
66


acid 535-860 of
DLNLVQNFQMKHEVLCRWVLSVKKNYRKNVAYHNWRHAFNT



WT, I599V)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
67


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, I648V)
AQCMFAALKAGKIQNKLTDLEILALLVAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
68


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, S663P)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNPYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
69


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, L675P)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQPYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
70


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, T711A)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK






A
TLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
71


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F744L)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQLNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
72


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, L746S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNSEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
73


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F755L)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELLL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
74


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, L804P)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDPMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




CRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
75


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, M816T)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSTQVGFIDAICLQLYEALTHVSEDCFPLLDGC




RKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
76


acid 535-860 of
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT



WT, F840S)
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI




QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCSPLLDG




CRKNRQKWQALAEQQ









In some embodiments, DDs derived from hPDE5 may include the combination of at least one, two, three, four or five mutations listed in Table 1 with at least 0, 1, 2, 3, 4, 5 or more mutations listed in Table 2.


In some embodiments, the DDs may be derived from hPDE5 (SEQ ID NO. 3), by mutating one or more amino acids residues between positions 530-550, 550-570, 570-590, 590-610, 620-640, 640-660, 660-680, 680-700, 710-730, 730-750, 750-770, 770-790, 790-810-830, 830-850, 850-860 of the catalytic domain of human PDE5 (SEQ ID NO. 1). In some embodiments, the mutation may be a conserved (with similar physicochemical properties as the amino acid at the mutation site), a semi conserved (e.g., negatively to positively charge amino acid) or a non-conserved (amino acid with different physicochemical properties than the amino acid at the mutation site). In some embodiments, the amino acid lysine may be mutated to glutamic acid or arginine; the amino acid phenylalanine may be mutated to leucine; the amino acid leucine may be mutated to phenylalanine; or the amino acid asparagine may be mutated to serine. Regions or portions or domains of wild type proteins may be utilized as SREs/DDs in whole or in part. They may be combined or rearranged to create new peptides, proteins, regions or domains of which any may be used as SREs/DDs or the starting point for the design of further SREs and/or DDs.


In some embodiments, DDs may be derived from hPDE5 by mutating amino acid residues conserved within all members of the PDE family. Exemplary conserved residues include but are not limited to, E682, H613, H617, H653, D654, and H657 residues of full length human PDE5 (SEQ ID NO. 1) and are taught in Sung et al. Nature (2003) 425, 98-102 (the contents of which are incorporated herein by reference in their entirety). In other embodiments, residues that are critical for binding to metals such as zinc and magnesium may be mutated to identify novel hPDE5 DDs. In some embodiments, hPDE5 derived DDs may be identified from a library of mutants of hPDE5 catalytic domain generated using a combination of error-prone PCR and nucleotide analog mutagenesis through random mutagenesis. Any of the mutations identified by site directed mutagenesis may be combined with the mutations identified by random mutagenesis. In some embodiments, DDs described herein may be derived by mutating the Y612 amino acid of hPDE5 (SEQ ID NO. 1). In some embodiments, the mutations to the Y612 amino acid may be combined with any of the mutations described herein. Independent co-crystals of hPDE5 with vardenafil and with sildenafil, have demonstrated that one of the rings of the both ligand, interacts with Y612 of hPDE5, an amino acid located within the catalytic site of hPDE5. Interactions occur via a hydrogen bond with a water molecule and via hydrophobic bonds. Y612F mutation, which ablates the hydrogen bonding potential, increases the inhibition of hPDE5 activity by both ligands. The Y612A mutation, which leads to the ablation of both hydrogen bonding and hydrophobic bonding potential has been shown to weaken the inhibition of hPDE5 catalytic activity by vardenafil and sildenafil to a lesser extent. These studies suggest that hydrophobic bonding involving Y612 is stronger for vardenafil than for sildenafil (Corbin et al. 2006, International Journal of Impotence Research 18, 251-257; the contents of which are incorporated by reference in their entirety).


The destabilization domains described herein may also include amino acid and nucleotide substitutions that do not affect stability, including conservative, non-conservative substitutions and or polymorphisms.


In some embodiments, hPDE5 DDs described herein may also be fragments of the above destabilizing domains, including fragments containing variant amino acid sequences. Preferred fragments are unstable in the absence of the stimulus and stabilized upon addition of the stimulus. Preferred fragments retain the ability to interact with the stimulus with similar efficiency as the DDs described herein.


In one embodiment, hPDE5 mutants are fused to AcGFP through a linker sequence at either the N-terminal or the C-terminal end of the fusion constructs. The AcGFP of Uniprot ID BAE93141 (SEQ ID NO. 363), may be used as the GFP template and is referred to as the wildtype or “WT” version of AcGFP. In some embodiments, the hPDE5 mutants described herein may also be operably linked to a luciferase (luc) gene, such as the firefly luciferase (Fluc) or Renilla luciferase (Rluc). The position of the mutations in the Fluc protein sequence described herein are based on the comparison of the SEQ ID NO. 223 with the wildtype luciferase sequence of Photinus pyralis (Uniprot ID: P08659.1) or “Fluc WT”, comprising the amino acid sequence of SEQ ID NO. 364. The destabilizing and ligand dependent stabilization properties of the fusion proteins may be evaluated by methods such as western blotting, and FACS. hPDE5 mutants that are fused to the N terminus of GFP are provided in Table 3. All constructs may be cloned into any vector known in the art and/or described herein such as, but not limited to, pLVX.IRES Puro vectors. OT-hPDE5C-036 (OT-001232) was placed under the transcriptional control of the EF1a promoter, while the other constructs described in Table 3 were placed under the transcriptional control of CMV promoter. In Table 3, and asterisk indicates the translation of the stop codon. Table 3 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 3







hPDE5-AcGFP constructs












AA
NA


Construct ID/

SEQ ID
SEQ ID


Description
Amino Acid Sequence
NO.
NO.





Linker
GGSGGGSGG
 77
 92





Linker
GGSGGG
 78
 93; 300





Linker
SG

AGTGGT





AcGFP
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG
 79
372


(Amino acid
KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQ




2-239 of WT)
HDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV





NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKN





GIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH





YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
365
 94, 373


(Amino acid
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




1-239 of WT)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL





VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK





NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN





HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







Fluc (Amino
EDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTI
366
374


acid 2-549 of
AFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV




WT, N50D,
VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMG




N119G, S548I,
ISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGF




K549A, L550V)
QSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGST





GLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILSVVPFH





HGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQS





ALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGE





AVAKRFHLPGIRQGYGLIETTSAILITPEGDDKPGAVGKV





VPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNN





PEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKY





KGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAV





VVLEHGKTM1EKEIVDYVASQVTTAKKLRGGVVFVDEVP





KGLTGKLDARKIREILIKAKKGGKIAV







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 80
 95


001 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001075, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-001)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




WT); linker
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




(GGSGGGSGG);
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




AcGFP
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




(Amino acid
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




2-239 of
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




WT); stop
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG





FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 81
 96


002 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001078, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-002)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKF




WT, W853F);
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




linker
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




(GGSGGGSGG);
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




AcGFP
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




(Amino acid
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




2-239 of
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




WT); stop)
FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 82
 97


003 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001080, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-003)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQK




WT, I821A);
WQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




linker
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT




(GGSGGGSGG);
LSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDD




AcGFP
GNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKME




(Amino acid
YNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADH




2-239 of
YQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




WT); stop
GFVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 83
 98


004 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001081, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-004)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKW




WT, Y829A);
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




linker
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




(GGSGGGSGG);
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




AcGFP
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




(Amino acid
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




2-239 of
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




WT); stop
FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 84
 99


005 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001074, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-005)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




WT, F787A);
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




linker
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




(GGSGGGSGG);
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




AcGFP
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




(Amino acid
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




2-239 of
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




WT); stop
FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 85
100


006 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001076, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-006)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




WT, F736A);
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




linker
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




(GGSGGGSGG);
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




AcGFP
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




(Amino acid
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




2-239 of
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




WT); stop
FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 86
101


007 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001082, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-007)
SHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




WT, D656L);
QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




linker
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL




(GGSGGGSGG);
SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG




AcGFP
NYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




(Amino acid
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY




2-239 of
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




WT); stop
FVTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 87
102


008 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001083, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-008)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRG




hPDE5
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI




(Amino acid
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS




535-860 of
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




WT, Y728L);
ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH




linker
KFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS




(GGSGGGSGG);
YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN




AcGFP
YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN




(Amino acid
YNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




2-239 of
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF




WT); stop
VTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 88
103


009 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001084, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-009)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




hPDE5
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI




(Amino acid
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS




535-860 of
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




WT, R732L);
ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH




linker
KFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS




(GGSGGGSGG);
YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN




AcGFP
YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN




(Amino acid
YNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




2-239 of
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF




WT); stop
VTAAAITHGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 89
104


010 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001070, OT-
HNWRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALS




hPDE5-010)
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI




Methionine;
LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF




hPDE5
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ




(Amino acid
QRIAELVA1EFFDQGDRERKELNIEPTDLMNREKKNKIPS




535-860 of
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




WT, M625I);
ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH




linker
KFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS




(GGSGGGSGG);
YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN




AcGFP
YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN




(Amino acid
YNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




2-239 of
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF




WT); stop
VTAAAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
 90
105


028 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001224)
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




Methionine;
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




hPDE5
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




(Amino acid
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




535-860 of
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




WT); linker
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




(GGSGGG);
QALAEQQGGSGGGVSKGAELFTGIVPILIELNGDVNGHKF




AcGFP
SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYG




(Amino acid
VQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYK




2-239 of
SRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYN




WT); stop
AHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQN





TPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-hPDE5C-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
 91
106


036 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001232; OT-
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




hPDE5-036)
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




AcGFP
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




(Amino acid
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




1-239 of
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




WT); linker
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(SG); hPDE5
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




(Amino acid
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




535-860 of
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




WT); stop
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
367
375


031 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001227)
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




Methionine;
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




hPDE5
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




(Amino acid
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




535-860 of
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




WT); linker
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




(SG); Fluc
QALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMK




(N50D, N119G,
RYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYG




S548I, K549A,
LNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNE




L550V); stop
RELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMD





SKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIA





LIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPD





TAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLR





SLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGG





APLSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDD





KPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGP





MIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFI





VDRLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPD





DDAGELPAAVVVLEHGKTMIEKEIVDYVASQVTTAKKLR





GGVVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
368
376


032 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001228)
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




Methionine;
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




hPDE5
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




(Amino acid
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW




535-860 of
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




WT, F736A);
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




linker (SG);
QALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMK




Fluc (N50D,
RYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYG




N119G, S548I,
LNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNE




K549A, 
RELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMD




L550V); stop
SKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIA





LIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPD





TAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLR





SLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGG





APLSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDD





KPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGP





MIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFI





VDRLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPD





DDAGELPAAVVVLEHGKTMIEKEIVDYVASQVTTAKKLR





GGVVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
369
377


033 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001229)
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




Methionine;
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




hPDE5
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




(Amino acid
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI




535-860 of
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS




WT, R732L);
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




Linker (SG);
ALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKR




Fluc (N50D,
YALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGL




N119G,
NTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNER




S548I,
ELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDS




K549A,
KTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALI




L550V); stop
MNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPDTA





ILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSL





QDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAP





LSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDDKP





GAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMI





MSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVD





RLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPDDD





AGELPAAVVVLEHGKTMTEKEIVDYVASQVTTAKKLRGG





VVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
370
378


086 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001211)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, H653A);
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




stop
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
371
379


087 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001208)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, D764A);
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




stop
GEFFELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ*









In addition to human PDE5, other phosphodiesterases may also be used to generate novel destabilizing domains. The human PDE superfamily includes 11 structurally related but functionally distinct gene families (hPDE1 to hPDE11). These differ in their cellular functions, primary structures, affinities for cAMP and cGMP, catalytic properties and response to specific activators, inhibitors, effectors and mechanisms of regulation. As modular proteins, hPDEs exhibit a common structural organization with divergent amino-terminal regulatory regions and conserved carboxy-terminal catalytic core. The hPDE family proteins contain an N terminal regulatory region and a C terminal catalytic region. The N-terminal regulatory regions contain structural determinants that target individual hPDEs to different subcellular locations, and allow individual hPDEs to specifically respond to different post translational modification. The structural elements include dimerization domains, auto-inhibitory modules, binding sites for ligands and allosteric effectors. In contrast, the X ray crystal structure isolated catalytic domains of nine hPDE families (hPDE1 to hPDE5 and hPDE7 to hPDE10) have demonstrated that the catalytic domains of hPDEs share a similar topography, composed of ˜350 amino acids folded into 16 helices. Across the hPDE families, the active site forms a deep hydrophobic pocket that contains a hPDE specific, histidine-containing signature motif, HD(X2) H(X4) N (SEQ ID NO: 8377), and binding sites for two divalent metal ions that are essential for catalytic function. The affinity of hPDEs to specific cyclic nucleotides varies within the family-some hPDEs specifically hydrolyze cAMP (hPDE4, hPDE7 and hPDE8), whereas others hydrolyze cGMP (hPDE5, hPDE6 and hPDE9), and some hydrolyze both cAMP and cGMP (hPDE1, hPDE2, hPDE3, hPDE10 and hPDE11).


Similar to hPDE5, the catalytic domain or other functional domain of any hPDE family member may be mutagenized and screened for destabilizing mutations. Known inhibitors for each hPDE protein may also be tested for ligand-dependent stabilization.


In some embodiments, known mutations in phosphodiesterases that affect protein stability may be utilized to identify novel hPDE derived DDs. Mutations previously identified include, but are not limited to, hPDE5 (I778T), or hPDE6C (H602L), hPDE6C (E790K), hPDE6C (R104W), hPDE6C (Y323N), and hPDE6C (P391L) or hPDE4D (S752A), hPDE4D (S754A), hPDE4D (S752A, S754A), and hPDE4D (E757A, E758A, D759A) (Zhu et al. (2010) Mol Cell Biol. 4379-4390; Alexandre et al. (2015). Endocr. Relat. Cancer 22(4):519-30; Cheguru P. et al. (2015) Mol Cell Neurosci; 64: 1-8; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, novel DDs may be generated from hPDE1 which is also known as calcium and calmodulin dependent phosphodiesterase. It has three subtypes hPDE1A, hPDE1B and hPDE1C. The enzyme contains three functional domains; a conserved catalytic core, a regulatory N-terminus and a C-terminus. The catalytic domains of hPDE1 have three helical subdomains; an N-terminal cyclin fold region, a linker region and a C-terminal helical bundle. Vinpocetine is a known inhibitor of hPDE1.


In some embodiments, novel DDs may be generated from hPDE2, a dual substrate enzyme that hydrolyzes both cAMP and cGMP. The distinguishing feature of this hPDE is that it is allosterically stimulated by cGMP binding to one of its GAF domains. The crystal structure of hPDE2 GAF-B domain reveals that the GAF-B domain binds cGMP with high affinity and selectivity. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety.)


In some embodiments, novel DDs may be generated from hPDE3 which preferentially hydrolyses cAMP. Like other hPDE family members, it comprises three functional domains, a conserved catalytic core, a regulatory terminus and the C-terminus. The catalytic core of hPDE is characterized by a unique 44-amino acid insert. Amrinone, Cilostazol, Milrinone, Enoximone and Pimobendan are inhibitors for hPDE3 enzyme.


In some embodiments, novel DDs may be generated from hPDE4, the principal second messenger for immune response regulation and is responsible for the hydrolysis of cAMP. Four isoforms of hPDE4 exist with each isoform having a unique N terminal region that specifies cellular localization by mediating interactions with scaffolding proteins which may further comprise upstream conserved regions (UCRs). All isoforms share invariant catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine (Q369) that forms crucial hydrogen bond with substrates. Analyses of crystal structure of hPDE-inhibitor complexes suggest that two conserved residues are essential for inhibitor binding. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues (1336 and F340) form a hydrophobic clamp that anchors inhibitors in the pocket. A number of small molecules can inhibit hPDE 4 activity, some of which are FDA approved such as AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl)oxy]benzonitrile), Apremilast/CC10004 (N-{2-[(1S)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methyl sulfonyl)ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide), and Roflumilast. Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976.


In some embodiments, novel DDs may be generated from hPDE6. This holoenzyme includes hPDE6 alpha, hPDE6 beta and/or two identical inhibitory subunits of hPDE6 gamma. hPDE6 alpha and beta forms comprise three domains: two N-terminal GAF domains and one C-terminal catalytic domain. The non-catalytic GAF domains are responsible for cGMP binding.


In some embodiments, novel DDs may be generated from hPDE7, a cAMP specific hPDE which consists of two genes, hPDE7A and hPDE7B. There are no known regulatory domains on the N terminus as established for most of the other hPDE families, although consensus PKA phosphorylation sites exist in this region. Several small molecules can inhibit PDE7, including BRL-50481 (N,N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl).


In some embodiments, novel DDs may be generated from hPDE8. Two subfamilies of hPDE8 exist and both they have very high affinity for the substrate cAMP and are insensitive to the non-specific PDE inhibitor IBMX. Each protein contains a catalytic core, a PAS (Per, Arnt and Sim) and a REC (receiver) domain. The crystal structure of the catalytic core of hPDE8 identified Tyr748 residue as a unique residue that distinguishes hPDE8 inhibitor binding from other hPDE proteins bound to inhibitors. PF-04957325 (Pfizer) is a small molecule inhibitor of hPDE8.


In some embodiments, novel DDs may be generated from hPDE9, which has the highest affinity for cGMP. The primary structure of hPDE9A is simple as it does not appear to contain any GAF domains or other N-terminal regulatory sequences found in other hPDEs. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Gln 453 in hPDE9A2 that forms crucial hydrogen bond with substrates. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues form a hydrophobic clamp that anchors inhibitors in the pocket and wedges their ring structures against F456 in hPDE9A. Tested hPDE9 inhibitors may include BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d]pyrimidin-4-one) and WYQ-C28L.


In some embodiments, novel DDs may be generated from hPDE10, which can hydrolyze both cAMP and cGMP. Like some other hPDE family proteins, hPDE10 comprises 2 GAF domains in the N terminal region, a Protein Kinase A phosphorylation site and a catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Q726 in hPDE10A2 that forms crucial hydrogen bond with substrates. Several PDE10 inhibitors are under clinical trials including OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone).


In some embodiments, novel DDs may be generated from hPDE11. Like hPDE10, the recently discovered hPDE11 can hydrolyze both cAMP and cGMP. It comprises of only one gene with four isoform variants. The longest variant, hPDE11A4, has two N-terminal GAF domains, whereas the other variants are truncations of this variant of varying lengths.


In some embodiments, any of the destabilizing mutations related to hPDE5 described herein may be structurally mapped onto other phosphodiesterases to generate destabilizing domains. In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of sildenafil and/or vardenafil may be engineered onto hPDE6. In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of Tadalafil may be engineered onto hPDE11.


The full length hPDEs and their catalytic domains that may be utilized to derive novel DDs are listed in Table 4.









TABLE 4







Sequences of human PDE proteins and their catalytic domains









PDE protein




(Uniprot ID or

AA


domain

SEQ ID


description)
Amino Acid sequence
NO.












hPDE1A
MDDHVTIRKKHLQRPIFRLRCLVKQLERGDVNVVDLKKNIEYAA
107


(Uniprot ID:
SVLEAVYIDETRRLLDTEDELSDIQTDSVPSEVRDWLASTFTRKM



P54750)
GMTKKKPEEKPKFRSIVHAVQAGIFVERMYRKTYHMVGLAYPA




AVIVTLKDVDKWSFDVFALNEASGEHSLKFMIYELFTRYDLINRF




KIPVSCLITFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMLHT




GIMHWLIELEILAMVFAAAIHDYEHTGTTNNFHIQTRSDVAILYN




DRSVLENHHVSAAYRLMQEEEMNILINLSKDDWRDLRNLVIEMV




LSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAKS




WKLHYRWTMALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQS




QIGFIDFIVEPTFSLLTDSTEKIVIPLIEEASKAETSSYVASSSTTIVG




LHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSFKNNLVDIIQQ




NKERWKELAAQEARTSSQKCEFIHQ






hPDE1A
FKIPVSCLITFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMLH
108


Catalytic
TGIMHWLTELEILAMVFAAAIHDYEHTGTTNNFHIQTRSDVAILY



domain (Amino
NDRSVLENHHVSAAYRLMQEEEMNILINLSKDDWRDLRNLVIEM



acid 193-515
VLSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAK



of PDE1A)
SWKLHYRWTMALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQ




SQIGFIDFIVEPTFSLLTDSTEKIVIPLIEEASKAETSSYVASSSTTIVG




LHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSFKNNLVDIIQQ




NKERW






hPDE1B
MELSPRSPPEMLEESDCPSPLELKSAPSKKMWIKLRSLLRYMVKQ
109


(Uniprot ID:
LENGEINIEELKKNLEYTASLLEAVYIDETRQILDIEDELQELRSD



Q01064)
AVPSEVRDWLASTFTQQARAKGRRAEEKPKFRSIVHAVQAGIFV




ERMFRRTYTSVGPTYSTAVLNCLKNLDLWCFDVFSLNQAADDH




ALRTIVFELLTRHNLISRFKIPTVFLMSFLDALETGYGKYKNPYHN




QIHAADVTQTVHCFLLRTGMVHCLSEIELLAIIFAAAIHDYEHTGT




TNSFHIQTKSECAIVYNDRSVLENHHISSVFRLMQDDEMNIFINLT




KDEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPK




ALSLLLHAADISHPTKQWLVHSRWTKALMEEFFRQGDKEAELGL




PFSPLCDRTSTLVAQSQIGFIDFIVEPTFSVLTDVAEKSVQPLADED




SKSKNQPSFQWRQPSLDVEVGDPNPDVVSFRSTWVKRIQENKQK




WKERAASGITNQMSIDELSPCEEEAPPSPAEDEHNQNGNLD






hPDE1B
FKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVHCFLLR
110


Catalytic
TGMVHCLSEIELLAIIFAAAIHDYEHTGTTNSFHIQTKSECAIVYND



domain (Amino
RSVLENHHISSVFRLMQDDEMNIFINLTKDEFVELRALVIEMVLA



acid 197-496
TDMSCHFQQVKTMKTALQQLERIDKPKALSLLLHAADISHPTKQ



of PDE1B)
WLVHSRWTKALMEEFFRQGDKEAELGLPFSPLCDRTSTLVAQSQ




IGFIDFIVEPTFSVLTDVAEKSVQPLADEDSKSKNQPSFQWRQPSL




DVEVGDPNPDVVSFRSTWVKRIQENKQKW






hPDE1C
MESPTKEIEEFESNSLKYLQPEQIEKIWLRLRGLRKYKKTSQRLRS
111


(Uniprot ID:
LVKQLERGEASVVDLKKNLEYAATVLESVYIDETRRLLDTEDELS



Q14123)
DIQSDAVPSEVRDWLASTFTRQMGMMLRRSDEKPRFKSIVHAVQ




AGIFVERMYRRTSNMVGLSYPPAVIEALKDVDKWSFDVFSLNEA




SGDHALKFIFYELLTRYDLISRFKIPISALVSFVEALEVGYSKHKNP




YHNLMHAADVTQTVHYLLYKTGVANWLTELEIFAIIFSAAIHDYE




HTGTTNNFHIQTRSDPAILYNDRSVLENHHLSAAYRLLQDDEEM




NILINLSKDDWREFRTLVIEMVMATDMSCHFQQIKAMKTALQQP




EAIEKPKALSLMLHTADISHPAKAWDLHHRWTMSLLEEFFRQGD




REAELGLPFSPLCDRKSTMVAQSQVGFIDFIVEPTFTVLTDMTEKI




VSPLIDETSQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAPINN




SVISVDYKSFKATWTEVVHINRERWRAKVPKEEKAKKEAEEKAR




LAAEEQQKEMEAKSQAEEGASGKAEKKTSGETKNQVNGTRANK




SDNPRGKNSKAEKSSGEQQQNGDFKDGKNKTDKKDHSNIGNDS




KKTDGTKQRSHGSPAPSTSSTCRLTLPVIKPPLRHFKRPAYASSSY




APSVSKKTDEHPARYKMLDQRIKMKKIQNISHNWNRK






hPDE1C
FKIPISALVSFVEALEVGYSKHKNPYHNLMHAADVTQTVHYLLY
112


Catalytic
KTGVANWLTELEIFAIIFSAAIHDYEHTGTTNNFHIQTRSDPAILYN



domain (Amino
DRSVLENHHLSAAYRLLQDDEEMNILINLSKDDWREFRTLVIEM



acid 202-521
VMATDMSCHFQQIKAMKTALQQPEAIEKPKALSLMLHTADISHP



of PDE1C)
AKAWDLHHRWTMSLLEEFFRQGDREAELGLPFSPLCDRKSTMV




AQSQVGFIDFIVEPTFTVLTDMIEKIVSPLIDETSQTGGTGQRRSSL




NSISSSDAKRSGVKTSGSEGSAPINNSVISVDYKSFKATWTEVVHI




NRERW






hPDE2A
MGQACGHSILCRSQQYPAARPAEPRGQQVFLKPDEPPPPPQPCAD
113


(Uniprot ID:
SLQDALLSLGSVIDISGLQRAVKEALSAVLPRVETVYTYLLDGES



O00408)
QLVCEDPPHELPQEGKVREAIISQKRLGCNGLGFSDLPGKPLARL




VAPLAPDTQVLVMPLADKEAGAVAAVILVHCGQLSDNEEWSLQ




AVEKHTLVALRRVQVLQQRGPREAPRAVQNPPEGTAEDQKGGA




AYTDRDRKILQLCGELYDLDASSLQLKVLQYLQQETRASRCCLL




LVSEDNLQLSCKVIGDKVLGEEVSFPLTGCLGQVVEDKKSIQLKD




LTSEDVQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKLE




GDLFTDEDEHVIQHCFHYTSTVLTSTLAFQKEQKLKCECQALLQV




AKNLFTHLDDVSVLLQEIITEARNLSNAEICSVFLLDQNELVAKVF




DGGVVDDESYEIRIPADQGIAGHVATTGQILNIPDAYAHPLFYRG




VDDSTGFRTRNILCFPIKNENQEVIGVAELVNKINGPWFSKFDEDL




ATAFSIYCGISIAHSLLYKKVNEAQYRSHLANEMMMYHMKVSDD




EYTKLLHDGIQPVAAIDSNFASFTYTPRSLPEDDTSMAILSMLQD




MNFINNYKIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFC




YLLYKNLELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKS




VLAALYSSEGSVMERHHFAQAIAILNTHGCNIFDHFSRKDYQRML




DLMRDIILATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCL




LMTSCDLSDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPME




MMDREKAYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASN




REHWTKVSHKFTIRGLPSNNSLDFLDEEYEVPDLDGTRAPINGCC




SLDAE






hPDE2A
KIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFCYLLYKNL
114


Catalytic
ELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKSVLAALYSS



domain (Amino
EGSVMERHHFAQATAILNTHGCNIFDHFSRKDYQRMLDLMRDIIL



acid 633-891
ATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCLLMTSCDL



of PDE2A)
SDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPMEMMDREK




AYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASN






hPDE3A
MAVPGDAARVRDKPVHSGVSQAPTAGRDCHHRADPASPRDSGC
115


(Uniprot ID:
RGCWGDLVLQPLRSSRKLSSALCAGSLSFLLALLVRLVRGEVGC



Q14432)
DLEQCKEAAAAEEEEAAPGAEGGVFPGPRGGAPGGGARLSPWL




QPSALLFSLLCAFFWMGLYLLRAGVRLPLAVALLAACCGGEALV




QIGLGVGEDHLLSLPAAGVVLSCLAAATWLVLRLRLGVLMIALT




SAVRTVSLISLERFKVAWRPYLAYLAGVLGILLARYVEQILPQSA




EAAPREHLGSQLIAGTKEDIPVFKRRRRSSSVVSAEMSGCSSKSHR




RTSLPCIPREQLMGHSEWDHKRGPRGSQSSGTSITVDIAVMGEAH




GLITDLLADPSLPPNVCTSLRAVSNLLSTQLTFQAIHKPRVNPVTS




LSENYTCSDSEESSEKDKLAIPKRLRRSLPPGLLRRVSSTWTTTTS




ATGLPTLEPAPVRRDRSTSIKLQEAPSSSPDSWNNPVMMTLTKSR




SFTSSYAISAANHVKAKKQSRPGALAKISPLSSPCSSPLQGTPASSL




VSKISAVQFPESADTTAKQSLGSHRALTYTQSAPDLSPQILTPPVIC




SSCGRPYSQGNPADEPLERSGVATRTPSRTDDTAQVTSDYETNNN




SDSSDIVQNEDETECLREPLRKASACSTYAPETMMFLDKPILAPEP




LVMDNLDSIMEQLNTWNFPIFDLVENIGRKCGRILSQVSYRLFED




MGLFEAFKIPIREFMNYFHALEIGYRDIPYHNRIHATDVLHAVWY




LTTQPIPGLSTVINDHGSTSDSDSDSGFTHGHMGYVFSKTYNVTD




DKYGCLSGNIPALELMALYVAAAMHDYDHPGRTNAFLVATSAP




QAVLYNDRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHF




RFLVIEAILATDLKKHFDFVAKFNGKVNDDVGIDWTNENDRLLV




CQMCIKLADINGPAKCKELHLQWTDGIVNEFYEQGDEEASLGLPI




SPFMDRSAPQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDSD




ESGDTDDPEEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQ




HLLQNHKMWKKVIEEEQRLAGIENQSLDQTPQSHSSEQIQAIKEE




EEEKGKPRGEEIPTQKPDQ






hPDE3A
FKIPIREFMNYFHALEIGYRDIPYHNRIHATDVLHAVWYLTTQPIP
116


Catalytic
GLSTVINDHGSTSDSDSDSGFTHGHMGYVFSKTYNVTDDKYGCL



domain (Amino
SGNIPALELMALYVAAAMHDYDHPGRTNAFLVATSAPQAVLYN



acid 728-1086
DRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHFRFLVIEAI



of PDE3A)
LATDLKKHFDFVAKFNGKVNDDVGIDWTNENDRLLVCQMCIKL




ADINGPAKCKELHLQWTDGIVNEFYEQGDEEASLGLPISPFMDRS




APQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDSDESGDTDD




PEEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQHLLQNHK




MW






hPDE3B
MRRDERDAKAMRSLQPPDGAGSPPESLRNGYVKSCVSPLRQDPP
117


(Uniprot ID:
RGFFFHLCRFCNVELRPPPASPQQPRRCSPFCRARLSLGALAAFVL



Q13370)
ALLLGAEPESWAAGAAWLRTLLSVCSHSLSPLFSIACAFFFLTCFL




TRTKRGPGPGRSCGSWWLLALPACCYLGDFLVWQWWSWPWGD




GDAGSAAPHTPPEAAAGRLLLVLSCVGLLLTLAHPLRLRHCVLV




LLLASFVWWVSFTSLGSLPSALRPLLSGLVGGAGCLLALGLDHFF




QIREAPLHPRLSSAAEEKVPVIRPRRRSSCVSLGETAASYYGSCKIF




RRPSLPCISREQMILWDWDLKQWYKPHYQNSGGGNGVDLSVLN




EARNMVSDLLTDPSLPPQVISSLRSISSLMGAFSGSCRPKINPLTPF




PGFYPCSEIEDPAEKGDRKLNKGLNRNSLPTPQLRRSSGTSGLLPV




EQSSRWDRNNGKRPHQEFGISSQGCYLNGPFNSNLLTIPKQRSSS




VSLTHHVGLRRAGVLSSLSPVNSSNHGPVSTGSLTNRSPIEFPDTA




DFLNKPSVILQRSLGNAPNTPDFYQQLRNSDSNLCNSCGHQMLK




YVSTSESDGTDCCSGKSGEEENIFSKESFKLMETQQEEETEKKDSR




KLFQEGDKWLTEEAQSEQQTNIEQEVSLDLILVEEYDSLIEKMSN




WNFPIFELVEKMGEKSGRILSQVMYTLFQDTGLLEIFKIPTQQFMN




YFRALENGYRDIPYHNRIHATDVLHAVWYLTTRPVPGLQQIHNG




CGTGNETDSDGRINHGRIAYISSKSCSNPDESYGCLSSNIPALELM




ALYVAAAMHDYDHPGRTNAFLVATNAPQAVLYNDRSVLENHH




AASAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAILATDLKKHF




DFLAEFNAKANDVNSNGIEWSNENDRLLVCQVCIKLADINGPAK




VRDLHLKWTEGIVNEFYEQGDEEANLGLPISPFMDRSSPQLAKLQ




ESFITHIVGPLCNSYDAAGLLPGQWLEAEEDNDTESGDDEDGEEL




DTEDEEMENNLNPKPPRRKSRRRIFCQLMHHLTENHKIWKEIVEE




EEKCKADGNKLQVENSSLPQADEIQVIEEADEEE






hPDE3B
FKIPTQQFMNYFRALENGYRDIPYHNRIHATDVLHAVWYLTTRP
118


Catalytic
VPGLQQIHNGCGTGNETDSDGRINHGRIAYISSKSCSNPDESYGCL



domain (Amino
SSNIPALELMALYVAAAMHDYDHPGRTNAFLVATNAPQAVLYN



acid 713-1072
DRSVLENHHAASAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAI



of PDE3B)
LATDLKKHFDFLAEFNAKANDVNSNGIEWSNENDRLLVCQVCIK




LADINGPAKVRDLHLKWIEGIVNEFYEQGDEEANLGLPISPFMDR




SSPQLAKLQESFITHIVGPLCNSYDAAGLLPGQWLEAEEDNDILS




GDDEDGEELD1EDEEMENNLNPKPPRRKSRRRIFCQLMHHLTEN




HKIW






hPDE4A
MEPPTVPSERSLSLSLPGPREGQATLKPPPQHLWRQPRTPIRIQQR
119


(Uniprot ID:
GYSDSAERAERERQPHRPIERADAMDTSDRPGLRTTRMSWPSSFH



P27815)
GTGTGSGGAGGGSSRRFEAENGPTPSPGRSPLDSQASPGLVLHAG




AATSQRRESFLYRSDSDYDMSPKTMSRNSSVTSEAHAEDLIVTPF




AQVLASLRSVRSNFSLLTNVPVPSNKRSPLGGPTPVCKATLSEETC




QQLARETLEELDWCLEQLETMQTYRSVSEMASHKFKRMLNREL




THLSEMSRSGNQVSEYISTTFLDKQNEVEIPSPTMKEREKQQAPRP




RPSQPPPPPVPHLQPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQE




ELLAQELENLNKWGLNIFCVSDYAGGRSLTCIMYMIFQERDLLK




KFRIPVDTMVTYMLTLEDHYHADVAYHNSLHAADVLQSTHVLL




ATPALDAVFTDLEILAALFAAAIHDVDHPGVSNQFLINTNSELAL




MYNDESVLENHHLAVGFKLLQEDNCDIFQNLSKRQRQSLRKMVI




DMVLATDMSKHMTLLADLKTMVETKKVTSSGVLLLDNYSDRIQ




VLRNMVHCADLSNPTKPLELYRQWTDRIMAEFFQQGDRERERG




MEISPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVHPDAQEIL




DTLEDNRDWYYSAIRQSPSPPPEEESRGPGHPPLPDKFQFELTLEE




EEEEEISMAQIPCTAQEALTAQGLSGVEEALDATIAWEASPAQESL




EVMAQEASLEAELEAVYLTQQAQSTGSAPVAPDEFSSREEFVVA




VSHSSPSALALQSPLLPAWRTLSVSEHAPGLPGLPSTAAEVEAQR




EHQAAKRACSACAGTFGEDTSALPAPGGGGSGGDPT






hPDE4A
QPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQEELLAQELENLNK
120


Catalytic
WGLNIFCVSDYAGGRSLTCIMYMIFQERDLLKKFRIPVDTMVTY



domain (Amino
MLTLEDHYHADVAYHNSLHAADVLQSTHVLLATPALDAVFTDL



acid 330-723 of
EILAALFAAAIHDVDHPGVSNQFLINTNSELALMYNDESVLENHH



PDE4A)
LAVGFKLLQEDNCDIFQNLSKRQRQSLRKMVIDMVLATDMSKH




MTLLADLKTMVETKKVTSSGVLLLDNYSDRIQVLRNMVHCADL




SNPTKPLELYRQWTDRIMAEFFQQGDRERERGMEISPMCDKHTA




SVEKSQVGFIDYIVHPLWETWADLVHPDAQEILDTLEDNRDWYY




SAIRQSPSPPPEEESRGPGHPPLPDKFQFELTLEEEEEEEISM






hPDE4B
MKKSRSVMTVMADDNVKDYFECSLSKSYSSSSNTLGIDLWRGRR
121


(Uniprot ID:
CCSGNLQLPPLSQRQSERARTPEGDGISRPTTLPLTTLPSIAITTVSQ



Q07343)
ECFDVENGPSPGRSPLDPQASSSAGLVLHATFPGHSQRRESFLYRS




DSDYDLSPKAMSRNSSLPSEQHGDDLIVTPFAQVLASLRSVRNNF




TILTNLHGTSNKRSPAASQPPVSRVNPQEESYQKLAMETLEELDW




CLDQLETIQTYRSVSEMASNKFKRMLNRELTHLSEMSRSGNQVS




EYISNTFLDKQNDVEIPSPTQKDREKKKKQQLMTQISGVKKLMHS




SSLNNTSISRFGVNIENEDHLAKELEDLNKWGLNIFNVAGYSHNR




PLTCIMYAIFQERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNS




LHAADVAQSTHVLLSTPALDAVFTDLEILAAIFAAAIHDVDHPGV




SNQFLINTNSELALMYNDESVLENHHLAVGFKLLQEEHCDIFMNL




TKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTSS




GVLLLDNYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEE




FFQQGDKERERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWET




WADLVQPDAQDILDTLEDNRNWYQSMIPQSPSPPLDEQNRDCQG




LMEKFQFELTLDEEDSEGPEKEGEGHSYFSSTKTLCVIDPENRDSL




GETDIDIATEDKSPVDT






hPDE4B
VNIENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMYAIFQ
122


Catalytic
ERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNSLHAADVAQS



domain (Amino
THVLLSTPALDAVFTDLEILAAIFAAAIHDVDHPGVSNQFLINTNS



acid 330-682 of
ELALMYNDESVLENHHLAVGFKLLQEEHCDIFMNLTKKQRQTLR



PDE4B)
KMVIDMVLATDMSKHMSLLADLKTMVETKKVTSSGVLLLDNYT




DRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKER




ERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVQPDA




QDILDTLEDNRNWYQSMIPQSPSPPLDEQNRDCQGLMEKFQFEL






hPDE4C
MENLGVGEGAEACSRLSRSRGRHSMTRAPKHLWRQPRRPIRIQQ
123


(Uniprot ID:
RFYSDPDKSAGCRERDLSPRPELRKSRLSWPVSSCRRFDLENGLS



Q08493)
CGRRALDPQSSPGLGRIMQAPVPHSQRRESFLYRSDSDYELSPKA




MSRNSSVASDLHGEDMIVTPFAQVLASLRTVRSNVAALARQQCL




GAAKQGPVGNPSSSNQLPPAEDTGQKLALETLDELDWCLDQLET




LQTRHSVGEMASNKFKRILNRELTHLSETSRSGNQVSEYISRTFLD




QQTEVELPKVTAEEAPQPMSRISGLHGLCHSASLSSATVPRFGVQ




TDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQERDL




LKTFQIPADTLATYLLMLEGHYHANVAYHNSLHAADVAQSTHV




LLATPALEAVFTDLEILAALFASAIHDVDHPGVSNQFLINTNSELA




LMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLSLRRM




VIDMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYSDR




IQVLQNLVHCADLSNPTKPLPLYRQWTDRIMAEFFQQGDRERES




GLDISPMCDKHTASVEKSQVGFIDYIAHPLWETWADLVHPDAQD




LLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEAEEE




DEEEEEEGEETALAKEALELPDTELLSPEAGPDPGDLPLDNQRT






hPDE4C
VQTDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQE
124


Catalytic
RDLLKTFQIPADTLATYLLMLEGHYHANVAYHNSLHAADVAQST



domain (Amino
HVLLATPALEAVFTDLEILAALFASAIHDVDHPGVSNQFLINTNSE



acid 312-677 of
LALMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLSLRR



PDE4C)
MVIDMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYS




DRIQVLQNLVHCADLSNPTKPLPLYRQWTDRIMAEFFQQGDRER




ESGLDISPMCDKHTASVEKSQVGFIDYIAHPLWETWADLVHPDA




QDLLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEA




EEEDEEEEEEGE






hPDE4D
MEAEGSSAPARAGSGEGSDSAGGATLKAPKHLWRHEQHHQYPL
125


(Uniprot ID:
RQPQFRLLHPHHHLPPPPPPSPQPQPQCPLQPPPPPPLPPPPPPPGAA



Q08499)
RGRYASSGATGRVRHRGYSDTERYLYCRAMDRTSYAVETGHRP




GLKKSRMSWPSSFQGLRRFDVDNGTSAGRSPLDPMTSPGSGLILQ




ANFVHSQRRESFLYRSDSDYDLSPKSMSRNSSIASDIHGDDLIVTP




FAQVLASLRTVRNNFAALTNLQDRAPSKRSPMCNQPSINKATITE




EAYQKLASETLEELDWCLDQLETLQTRHSVSEMASNKFKRMLNR




ELTHLSEMSRSGNQVSEFISNTFLDKQHEVEIPSPTQKEKEKKKRP




MSQISGVKKLMHSSSLTNSSIPRFGVKTEQEDVLAKELEDVNKW




GLHVFRIAELSGNRPLTVIMHTIFQERDLLKTFKIPVDTLITYLMTL




EDHYHADVAYHNNIHAADVVQSTHVLLSTPALEAVFTDLEILAAI




FASAIHDVDHPGVSNQFLINTNSELALMYNDSSVLENHHLAVGFK




LLQEENCDIFQNLTKKQRQSLRKMVIDIVLATDMSKHMNLLADL




KTMVETKKVTSSGVLLLDNYSDRIQVLQNMVHCADLSNPTKPLQ




LYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVEKSQVG




FIDYIVHPLWETWADLVHPDAQDILDTLEDNREWYQSTIPQSPSP




APDDPEEGRQGQTEKFQFELTLEEDGESDTEKDSGSQVEEDTSCS




DSKTLCTQDSESTEIPLDEQVEEEAVGEEEESQPEACVIDDRSPDT






hPDE4D
VKIEQEDVLAKELEDVNKWGLHVFRIAELSGNRPLTVIMHTIFQE
126


Catalytic
RDLLKTFKIPVDTLITYLMTLEDHYHADVAYHNNIHAADVVQST



domain (Amino
HVLLSTPALEAVFTDLEILAAIFASAIHDVDHPGVSNQFLINTNSEL



acid 386-751 of
ALMYNDSSVLENHHLAVGFKLLQEENCDIFQNLTKKQRQSLRKM



PDE4D)
VIDIVLATDMSKHMNLLADLKTMVETKKVTSSGVLLLDNYSDRI




QVLQNMVHCADLSNPTKPLQLYRQWTDRIMEEFFRQGDRERER




GMEISPMCDKHNASVEKSQVGFIDYIVHPLWETWADLVHPDAQD




ILDTLEDNREWYQSTIPQSPSPAPDDPEEGRQGQTEKFQFELTLEE




DGESDTEKD






hPDE6A
MGEVTAEEVEKFLDSNIGFAKQYYNLHYRAKLISDLLGAKEAAV
127


(Uniprot ID:
DFSNYHSPSSMEESEIIFDLLRDFQENLQTEKCIFNVMKKLCFLLQ



P16499)
ADRMSLFMYRTRNGIAELATRLFNVHKDAVLEDCLVMPDQEIVF




PLDMGIVGHVAHSKKIANVPNTEEDEHFCDFVDILTEYKTKNILA




SPIMNGKDVVAIIMAVNKVDGSHFTKRDEEILLKYLNFANLIMKV




YHLSYLHNCETRRGQILLWSGSKVFEELTDIERQFHKALYTVRAF




LNCDRYSVGLLDMTKQKEFFDVWPVLMGEVPPYSGPRTPDGREI




NFYKVIDYILHGKEDIKVIPNPPPDHWALVSGLPAYVAQNGLICNI




MNAPAEDFFAFQKEPLDESGWMIKNVLSMPIVNKKEEIVGVATF




YNRKDGKPFDEMDETLMESLTQFLGWSVLNPDTYESMNKLENR




KDIFQDIVKYHVKCDNEEIQKILKTREVYGKEPWECEEEELAEILQ




AELPDADKYEINKFHFSDLPLTELELVKCGIQMYYELKVVDKFHI




PQEALVRFMYSLSKGYRKITYHNWRHGFNVGQTMFSLLVTGKL




KRYFTDLEALAMVTAAFCHDIDHRGTNNLYQMKSQNPLAKLHG




SSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIHMMDIAIIAT




DLALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLEQTRKEIVM




AMMMTACDLSAITKPWEVQSQVALLVAAEFWEQGDLERTVLQQ




NPIPMMDRNKADELPKLQVGFIDFVCTFVYKEFSRFHEEITPMLD




GITNNRKEWKALADEYDAKMKVQEEKKQKQQSAKSAAAGNQP




GGNPSPGGATTSKSCCIQ






hPDE6A
EEEELAEILQAELPDADKYEINKFHFSDLPLTELELVKCGIQMYYE
128


Catalytic
LKVVDKFHIPQEALVRFMYSLSKGYRKITYHNWRHGFNVGQTM



domain (Amino
FSLLVTGKLKRYFTDLEALAMVTAAFCHDIDHRGTNNLYQMKSQ



acid 483-819 of
NPLAKLHGSSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIH



PDE6A)
MMDIAIIATDLALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLE




QTRKEIVMAMMMTACDLSAITKPWEVQSQVALLVAAEFWEQGD




LERTVLQQNPIPMMDRNKADELPKLQVGFIDFVCTFVYKEFSRFH




EEITPMLDGITNNRKEWKALADEYDAK






hPDE6B
MSLSEEQARSFLDQNPDFARQYFGKKLSPENVAAACEDGCPPDC
129


(Uniprot ID:
DSLRDLCQVEESTALLELVQDMQESINMERVVFKVLRRLCTLLQ



P35913)
ADRCSLFMYRQRNGVAELATRLFSVQPDSVLEDCLVPPDSEIVFP




LDIGVVGHVAQTKKMVNVEDVAECPHFSSFADELTDYKTKNML




ATPIMNGKDVVAVIMAVNKLNGPFFTSEDEDVFLKYLNFATLYL




KIYHLSYLHNCETRRGQVLLWSANKVFEELTDIERQFHKAFYTVR




AYLNCERYSVGLLDMTKEKEFFDVWSVLMGESQPYSGPRTPDGR




EIVFYKVIDYVLHGKEEIKVIPTPSADHWALASGLPSYVAESGFIC




NIMNASADEMFKFQEGALDDSGWLIKNVLSMPIVNKKEEIVGVA




TFYNRKDGKPFDEQDEVLMESLTQFLGWSVMNTDTYDKMNKLE




NRKDIAQDMVLYHVKCDRDEIQLILPTRARLGKEPADCDEDELG




EILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQMYYELGVVRK




FQIPQEVLVRFLFSISKGYRRITYHNWRHGFNVAQTMFTLLMTGK




LKSYYTDLEAFAMVTAGLCHDIDHRGTNNLYQMKSQNPLAKLH




GSSILERHHLEFGKFLLSEETLNIYQNLNRRQHEHVIHLMDIAIIAT




DLALYFKKRAMFQKIVDESKNYQDKKSWVEYLSLETTRKEIVMA




MMMTACDLSAITKPWEVQSKVALLVAAEFWEQGDLERTVLDQQ




PIPMMDRNKAAELPKLQVGFIDFVCTFVYKEFSRFHEEILPMFDRL




QNNRKEWKALADEYEAKVKALEEKEEEERVAAKKVGTEICNGG




PAPKSSTCCIL






hPDE6B
PADCDEDELGEILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQ
130


Catalytic
MYYELGVVRKFQIPQEVLVRFLFSISKGYRRITYHNWRHGFNVA



domain (Amino
QTMFTLLMTGKLKSYYTDLEAFAMVTAGLCHDIDHRGTNNLYQ



acid 476-817 of
MKSQNPLAKLHGSSILERHHLEFGKFLLSEETLNIYQNLNRRQHE



PDE6B)
HVIHLMDIAIIATDLALYFKKRAMFQKIVDESKNYQDKKSWVEY




LSLETTRKEIVMAMMMTACDLSAITKPWEVQSKVALLVAAEFW




EQGDLERTVLDQQPIPMMDRNKAAELPKLQVGFIDFVCTFVYKE




FSRFHEEILPMFDRLQNNRKEWKALADEYEAK






hPDE6C
MGEINQVAVEKYLEENPQFAKEYFDRKLRVEVLGEIFKNSQVPV
131


(Uniprot ID:
QSSMSFSELTQVEESALCLELLWTVQEEGGTPEQGVHRALQRLA



P51160)
HLLQADRCSMFLCRSRNGIPEVASRLLDVTPTSKFEDNLVGPDKE




VVFPLDIGIVGWAAHTKKTHNVPDVKKNSHFSDFMDKQTGYVT




KNLLATPIVVGKEVLAVIMAVNKVNASEFSKQDEEVFSKYLNFV




SIILRLHHTSYMYNIESRRSQILMWSANKVFEELTDVERQFHKAL




YTVRSYLNCERYSIGLLDMTKEKEFYDEWPIKLGEVEPYKGPKTP




DGREVNFYKIIDYILHGKEEIKVIPTPPADHWTLISGLPTYVAENGF




ICNMMNAPADEYFTFQKGPVDETGWVIKNVLSLPIVNKKEDIVG




VATFYNRKDGKPFDEHDEYITETLTQFLGWSLLNTDTYDKMNKL




ENRKDIAQEMLMNQTKATPEEIKSILKFQEKLNVDVIDDCEEKQL




VAILKEDLPDPRSAELYEFRFSDFPLTEHGLIKCGIRLFFEINVVEK




FKVPVEVLTRWMYTVRKGYRAVTYHNWRHGFNVGQTMFTLLM




TGRLKKYYTDLEAFAMLAAAFCHDIDHRGTNNLYQMKSTSPLA




RLHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFETVIHLFEVAI




IATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVTVDPTKKEII




MAMMMTACDLSAITKPWEVQSQVALMVANEFWEQGDLERTVL




QQQPIPMMDRNKRDELPKLQVGFIDFVCTFVYKEFSRFHKEITPM




LSGLQNNRVEWKSLADEYDAKMKVIEEEAKKQEGGAEKAAEDS




GGGDDKKSKTCLML






hPDE6C
DDCEEKQLVAILKEDLPDPRSAELYEFRFSDFPLTEHGLIKCGIRLF
132


Catalytic
FEINVVEKFKVPVEVLTRWMYTVRKGYRAVTYHNWRHGFNVG



domain (Amino
QTMFTLLMTGRLKKYYTDLEAFAMLAAAFCHDIDHRGTNNLYQ



acid 483-822 of
MKSTSPLARLHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFET



PDE6C)
VIHLFEVAIIATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVT




VDPTKKEIIMAMMMTACDLSAITKPWEVQSQVALMVANEFWEQ




GDLERTVLQQQPIPMMDRNKRDELPKLQVGFIDFVCTFVYKEFSR




FHKEITPMLSGLQNNRVEWKSLADEYDAK






hPDE7A
MEVCYQLPVLPLDRPVPQHVLSRRGAISFSSSSALFGCPNPRQLSQ
133


(Uniprot ID:
RRGAISYDSSDQTALYIRMLGDVRVRSRAGFESERRGSHPYIDFRI



Q13946)
FHSQSEIEVSVSARNIRRLLSFQRYLRSSRFFRGTAVSNSLNILDDD




YNGQAKCMLEKVGNWNFDIFLFDRLTNGNSLVSLTFHLFSLHGLI




EYFHLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHC




YLKEPKLANSVTPWDILLSLIAAATHDLDHPGVNQPFLIKTNHYL




ATLYKNTSVLENHHWRSAVGLLRESGLFSHLPLESRQQMETQIG




ALILATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKC




ADICNPCRTWELSKQWSEKVTEEFFHQGDIEKKYHLGVSPLCDR




HTESIANIQIGFMTYLVEPLFTEWARFSNTRLSQTMLGHVGLNKA




SWKGLQREQSSSEDTDAAFELNSQLLPQENRLS






hPDE7A
FHLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHCYL
134


Catalytic
KEPKLANSVTPWDILLSLIAAATHDLDHPGVNQPFLIKTNHYLAT



domain (Amino
LYKNTSVLENHHWRSAVGLLRESGLFSHLPLESRQQMETQIGALI



acid 187-451 of
LATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKCADI



PDE7A)
CNPCRTWELSKQWSEKVTEEFFHQGDIEKKYHLGVSPLCDRHTE




SIANIQIGFMTYLVEPLFTEWARFSNTRLSQTMLGHVGLNKASW






hPDE7B
MSCLMVERCGEILFENPDQNAKCVCMLGDIRLRGQTGVRAERRG
135


(Uniprot ID:
SYPFIDFRLLNSTTYSGEIGTKKKVKRLLSFQRYFHASRLLRGIIPQ



Q9NP56)
APLHLLDEDYLGQARHMLSKVGMWDFDIFLFDRLTNGNSLVTLL




CHLFNTHGLIHHFKLDMVTLHRFLVMVQEDYHSQNPYHNAVHA




ADVTQAMHCYLKEPKLASFLTPLDIMLGLLAAAAHDVDHPGVN




QPFLIKTNHHLANLYQNMSVLENHHWRSTIGMLRESRLLAHLPK




EMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHNKDLRLEDAQD




RHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGELEQK




FELEISPLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTGNSTLSEN




MLGHLAHNKAQWKSLLPRQHRSRGSSGSGPDHDHAGQGTESEE




QEGDSP






hPDE7B
YHNAVHAADVTQAMHCYLKEPKLASFLTPLDIMLGLLAAAAHD
136


Catalytic
VDHPGVNQPFLIKTNHHLANLYQNMSVLENHHWRSTIGMLRESR



domain (Amino
LLAHLPKEMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHNKDL



acid 172-410 of
RLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYR



PDE7B)
QGELEQKFELEISPLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTG




NSTLSENMLGHLAHNK






hPDE8A
MGCAPSIHISERLVAEDAPSPAAPPLSSGGPRLPQGQKTAALPRTR
137


(Uniprot ID:
GAGLLESELRDGSGKKVAVADVQFGPMRFHQDQLQVLLVFTKE



O60658)
DNQCNGFCRACEKAGFKCTVTKEAQAVLACFLDKHHDIIIIDHRN




PRQLDAEALCRSIRSSKLSENTVIVGVVRRVDREELSVMPFISAGF




TRRYVENPNIMACYNELLQLEFGEVRSQLKLRACNSVFTALENSE




DAIEITSEDRFIQYANPAFETTMGYQSGELIGKELGEVPINEKKAD




LLDTINSCIRIGKEWQGIYYAKKKNGDNIQQNVKIIPVIGQGGKIR




HYVSIIRVCNGNNKAEKISECVQSDTHTDNQTGKHKDRRKGSLD




VKAVASRATEVSSQRRHSSMARIHSMTIEAPITKVINIINAAQESSP




MPVTEALDRVLEILRTIELYSPQFGAKDDDPHANDLVGGLMSDG




LRRLSGNEYVLSTKNTQMVSSNIITPISLDDVPPRIARAMENEEYW




DFDIFELEAATHNRPLIYLGLKMFARFGICEFLHCSESTLRSWLQII




EANYHSSNPYHNSTHSADVLHATAYFLSKERIKETLDPIDEVAALI




AATIHDVDHPGRTNSFLCNAGSELAILYNDTAVLESHHAALAFQL




TTGDDKCNIFKNMERNDYRTLRQGIIDMVLATEMTKHFEHVNKF




VNSINKPLATLEENGETDKNQEVINTMLRTPENRTLIKRMLIKCA




DVSNPCRPLQYCIEWAARISEEYFSQTDEEKQQGLPVVMPVFDRN




TCSIPKSQISFIDYFITDMFDAWDAFVDLPDLMQHLDNNFKYWKG




LDEMKLRNLRPPPE






hPDE8A
LHCSESTLRSWLQIIEANYHSSNPYHNSTHSADVLHATAYFLSKE
138


Catalytic
RIKETLDPIDEVAALIAATIHDVDHPGRTNSFLCNAGSELAILYND



domain (Amino
TAVLESHHAALAFQLTTGDDKCNIFKNMERNDYRTLRQGIIDMV



acid 531-813 of
LATEMTKHFEHVNKFVNSINKPLATLEENGETDKNQEVINTMLR



PDE8A)
TPENRTLIKRMLIKCADVSNPCRPLQYCIEWAARISEEYFSQTDEE




KQQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFVDLP




DLMQHLDNNFKYW






hPDE8B
MGCAPSIHVSQSGVIYCRDSDESSSPRQTTSVSQGPAAPLPGLFVQ
139


(Uniprot ID:
TDAADAIPPSRASGPPSVARVRRARIELGSGSSAGSAAPAATTSR



O95263)
GRRRHCCSSAEAETQTCYTSVKQVSSAEVRIGPMRLTQDPIQVLLI




FAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKHHEIIVI




DHRQTQNFDAEAVCRSIRATNPSEHTVILAVVSRVSDDHEEASVL




PLLHAGFNRRFMENSSIIACYNELIQIEHGEVRSQFKLRACNSVFT




ALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGKELADL




PKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSIQQHVKI




TPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSGDNSQIEPHS




FRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSMARIHSMTIEAPIT




KVINIINAAQENSPVTVAEALDRVLEILRTTELYSPQLGTKDEDPH




TSDLVGGLMTDGLRRLSGNEYVFTKNVHQSHSHLAMPITINDVPP




CISQLLDNEESWDFNIFELEAITHKRPLVYLGLKVFSRFGVCEFLN




CSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGKER




VKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVLYN




DTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIIDMV




LATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFPEN




QILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQ




GLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALM




QHLADNYKHWKTLDDLKCKSLRLPSDS






hPDE8B
LNCSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGK
140


Catalytic
ERVKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVL



domain (Amino
YNDTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIID



acid 590-868 of
MVLATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFP



PDE8B)
ENQILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEK




RQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPAL




MQHLADNYKHW






hPDE9A
MGSGSSSYRPKAIYLDIDGRIQKVIFSKYCNSSDIMDLFCIATGLPR
141


(Uniprot ID:
NTTISLLTTDDAMVSIDPTMPANSERTPYKVRPVAIKQLSAGVED



O76083)
KRTTSRGQSAERPLRDRRVVGLEQPRREGAFESGQVEPRPREPQG




CYQEGQRIPPEREELIQSVLAQVAEQFSRAFKINELKAEVANHLA




VLEKRVELEGLKVVEIEKCKSDIKKMREELAARSSRTNCPCKYSF




LDNHKKLTPRRDVPTYPKYLLSPETIEALRKPTFDVWLWEPNEM




LSCLEHMYHDLGLVRDFSINPVTLRRWLFCVHDNYRNNPFHNFR




HCFCVAQMMYSMVWLCSLQEKFSQTDILILMTAAICHDLDHPGY




NNTYQINARIELAVRYNDISPLENHHCAVAFQILAEPECNIFSNIPP




DGFKQIRQGMITLILATDMARHAEIMDSFKEKMENFDYSNEEHM




TLLKMILIKCCDISNEVRPMEVAEPWVDCLLEEYFMQSDREKSEG




LPVAPFMDRDKVTKATAQIGFIKFVLIPMFETVTKLFPMVEEIML




QPLWESRDRYEELKRIDDAMKELQKKTDSLTSGATEKSRERSRD




VKNSEGDCA






hPDE9A
FSINPVTLRRWLFCVHDNYRNNPFHNFRHCFCVAQMMYSMVWL
142


Catalytic
CSLQEKFSQTDILILMTAAICHDLDHPGYNNTYQINARTELAVRY



domain (Amino
NDISPLENHHCAVAFQILAEPECNIFSNIPPDGFKQIRQGMITLILAT



acid 288-550 of
DMARHAEIMDSFKEKMENFDYSNEEHMTLLKMILIKCCDISNEV



PDE9A)
RPMEVAEPWVDCLLEEYFMQSDREKSEGLPVAPFMDRDKVTKA




TAQIGFIKFVLIPMFETVTKLFPMVEEIMLQPLWESRDRY






hPDE10A
MRIEERKSQHLTGLTDEKVKAYLSLHPQVLDEFVSESVSAETVEK
143


(Uniprot ID:
WLKRKNNKSEDESAPKEVSRYQDTNMQGVVYELNSYIEQRLDT



Q9Y233)
GGDNQLLLYELSSIIKIATKADGFALYFLGECNNSLCIFTPPGIKEG




KPRLIPAGPITQGTTVSAYVAKSRKTLLVEDILGDERFPRGTGLES




GTRIQSVLCLPIVTAIGDLIGILELYRHWGKEAFCLSHQEVATANL




AWASVAIHQVQVCRGLAKQIELNDFLLDVSKTYFDNIVAIDSLLE




HIMIYAKNLVNADRCALFQVDHKNKELYSDLFDIGEEKEGKPVF




KKTKEIRFSIEKGIAGQVARTGEVLNIPDAYADPRFNREVDLYTG




YTTRNILCMPIVSRGSVIGVVQMVNKISGSAFSKTDENNFKMFAV




FCALALHCANMYHRIRHSECIYRVTMEKLSYHSICTSEEWQGLM




QFTLPVRLCKEIELFHFDIGPFENMWPGIFVYMVHRSCGTSCFELE




KLCRFIMSVKKNYRRVPYHNWKHAVTVAHCMYAILQNNHTLFT




DLERKGLLIACLCHDLDHRGFSNSYLQKFDHPLAALYSTSTMEQ




HHFSQTVSILQLEGHNIFSTLSSSEYEQVLEIIRKAIIATDLALYFGN




RKQLEEMYQTGSLNLNNQSHRDRVIGLMMTACDLCSVTKLWPV




TKLTANDIYAEFWAEGDEMKKLGIQPIPMMDRDKKDEVPQGQL




GFYNAVAIPCYTTLTQILPPTEPLLKACRDNLSQWEKVIRGEETAT




WISSPSVAQKAAASED






hPDE10A
CKEIELFHFDIGPFENMWPGIFVYMVHRSCGTSCFELEKLCRFIMS
144


Catalytic
VKKNYRRVPYHNWKHAVTVAHCMYAILQNNHTLFTDLERKGLL



domain (Amino
IACLCHDLDHRGFSNSYLQKFDHPLAALYSTSTMEQHHFSQTVSI



acid 458-760 of
LQLEGHNIFSTLSSSEYEQVLEIIRKAIIATDLALYFGNRKQLEEMY



PDE10A)
QTGSLNLNNQSHRDRVIGLMMTACDLCSVTKLWPVTKLTANDIY




AEFWAEGDEMKKLGIQPIPMMDRDKKDEVPQGQLGFYNAVAIP




CYTTLTQILPPIEPLLKACRDNLSQWEKVIRGEE






hPDE11A
MAASRLDFGEVETFLDRHPELFEDYLMRKGKQEMVEKWLQRHS
145


(Uniprot ID:
QGQGALGPRPSLAGTSSLAHSTCRGGSSVGGGTGPNGSAHSQPLP



Q9HCR9)
GGGDCGGVPLSPSWAGGSRGDGNLQRRASQKELRKSFARSKAIH




VNRTYDEQVTSRAQEPLSSVRRRALLRKASSLPPTTAHILSALLES




RVNLPRYPPTAIDYKCHLKKHNERQFFLELVKDISNDLDLTSLSY




KILIFVCLMVDADRCSLFLVEGAAAGKKTLVSKFFDVHAGTPLLP




CSSTENSNEVQVPWGKGIIGYVGEHGETVNIPDAYQDRRFNDEID




KLTGYKTKSLLCMPIRSSDGEIIGVAQAINKIPEGAPFTEDDEKVM




QMYLPFCGIAISNAQLFAASRKEYERSRALLEVVNDLFEEQTDLE




KIVKKIMHRAQTLLKCERCSVLLLEDIESPVVKFTKSFELMSPKCS




ADAENSFKESMEKSSYSDWLINNSIAELVASTGLPVNISDAYQDP




RFDAEADQISGFHIRSVLCVPIWNSNHQIIGVAQVLNRLDGKPFDD




ADQRLFEAFVIFCGLGINNTIMYDQVKKSWAKQSVALDVLSYHA




TCSKAEVDKFKAANIPLVSELAIDDIHFDDFSLDVDAMITAALRM




FMELGMVQKFKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNV




CQLMFAMLTTAGFQDILTEVEILAVIVGCLCHDLDHRGTNNAFQ




AKSGSALAQLYGTSATLEHHHFNHAVMILQSEGHNIFANLSSKEY




SDLMQLLKQSILATDLTLYFERRIEFFELVSKGEYDWNIKNHRDI




FRSMLMTACDLGAVTKPWEISRQVAELVTSEFFEQGDRERLELK




LTPSAIFDRNRKDELPRLQLEWIDSICMPLYQALVKVNVKLKPML




DSVATNRSKWEELHQKRLLASTASSSPASVMVAKEDRN






hPDE11A
FKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNVCQLMFAMLT
146


Catalytic
TAGFQDILTEVEILAVIVGCLCHDLDHRGTNNAFQAKSGSALAQL



Domain
YGTSATLEHHHFNHAVMILQSEGHNIFANLSSKEYSDLMQLLKQS



(Amino acid
ILATDLTLYFERRTEFFELVSKGEYDWNIKNHRDIFRSMLMTACD



640-905 of
LGAVTKPWEISRQVAELVTSEFFEQGDRERLELKLTPSAIFDRNRK



PDE11A)
DELPRLQLEWIDSICMPLYQALVKVNVKLKPMLDSVATNRSKW









In some embodiments, the hPDE5 derived destabilizing domains may be derived from variants, and/or isoforms of hPDE5. The three isoforms hPDE5 Isoform 1, hPDE5 Isoform 2, and hPDE5 Isoform 3 differ at their N terminal regions, and all 3 have unique first exons followed by a common sequence of 823 amino acids. Accordingly, hPDE5 derived DDs may be derived from hPDE5 Isoform 1 (SEQ ID NO. 1; encoded by the nucleotide sequence of SEQ ID NO. 2; hPDE5 Isoform 2 (SEQ ID NO. 147; encoded by the nucleotides 113-2611 of the nucleotide sequence of SEQ ID NO. 148 or the nucleotide sequence of SEQ ID NO. 380) and/or hPDE5 Isoform 3 (SEQ ID NO. 149; encoded by the nucleotides 95-2563 of nucleotide sequence of SEQ ID NO. 150 or SEQ ID NO. 381). In some embodiments, the hPDE5 DDs may be derived from hPDE5 Isoform X1 (SEQ ID NO. 382).


In some embodiments, the DD mutations identified herein may be mapped back to the hPDE5 sequence to identify DD hotspots. DD hotspots as used herein refer to amino acids within the hPDE5 of SEQ ID NO. 1 whose mutation results in the “responsive” nature of the stimulus responsive element generated from hPDE5. The DD characteristics may be improved by saturation mutagenesis, which involves mutating the amino acids at the hotspot position to any of the known amino acids, including, but not limited to lysine, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. In some instances, a library of hotspot mutations may be generated by site directed mutagenesis and each of the mutants in the library is fused to a reporter protein e.g. AcGFP (SEQ ID NO. 79) via a linker such as SG. The properties of the DDs may be analyzed in the presence and absence of ligands such as Sildenafil, Vardenafil and Tadalafil. In some embodiments, the arginine at position 732 (also referred to as R732) of the hPDE5 of SEQ ID NO. 1, may be mutated to any of the known amino acids and are provided in Table 5A. The mutations of the amino acid R732 may include but are not limited to R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K. The hPDE5 mutants fused either at the N terminus or the C terminus to a linker and GFP are provided in Table 6. In Table 5A, the mutations are in bold. Table 5B provides the additional components that may be combined with the mutants listed in Table 5A to generate the constructs described in Table 6. In Table 6, asterisk indicates the translation of the stop codon. Table 6 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 5A







hPDE5 R732 mutants












AA
NA


Construct ID/

SEQ ID
SEQ ID


Description
Sequence
NO.
NO.





hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCAVA
151
169


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKEL




R732G)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
152
170


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKEL




R732A)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
153
171


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKEL




R732V)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
154
172


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732I)
TLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKE





LNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
155
173


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732P)
TLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
156
174


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732F)
TLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
157
175


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKEL




R732W)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
158
176


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKEL




R732Y)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
159
177


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKEL




R732H)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
160
178


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732S)
TLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
161
179


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732T)
TLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
162
180


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKEL




R732D)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
163
181


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732E)
TLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
164
182


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKEL




R732Q)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
165
183


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKEL




R732N)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
166
184


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKEL




R732M)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
167
185


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT, R732C)
TLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
168
186


(Amino acid
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE




590-836 of
HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




WT,
TLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKEL




R732K)
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
383
 401;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

402


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732G)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
384
 403;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

404


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732A)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
 12
405


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732L)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
385
 406;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

407


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732V)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
386
408


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732I)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATE





FFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQ





LYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
387
 409;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

410


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732P)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
388
411


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732F)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
389
412


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732W)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
390
 413;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

414


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732Y)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
391
 415;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

416


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732H)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
392
 417;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

418


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732S)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
393
419


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732T)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
394
420;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

421


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732D)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
395
 422;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

423


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732E)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
396
 424;


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR

425


535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732Q)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
397
426


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732N)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
398
427


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732M)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
399
428


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT, R732C)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
400
429


(Amino acid
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




535-860 of
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




WT,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732K)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
















TABLE 5B







Additional hPDE5 R732 construct components












AA SEQ
NA SEQ


Component
Amino Acid Sequence
ID NO
ID NO





AcGFP
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDA
 79
372


(Amino acid
TYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




2-239 of WT)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA





EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYN





AHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY





QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI





YFGFVTAAAITHGMDELYK







AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGD
365
373


(Amino acid
ATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR




1-239 of WT)
YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSR





AEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNY





NAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADH





YQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDH





MIYFGFVTAAAITHGMDELYK







linker (SG)
SG

AGTGGT





linker (GS)
GS

GGATCC
















TABLE 6







hPDE5 R732 constructs












AA
NA


Construct ID/

SEQ ID
SEQ ID


Description
Sequence
NO.
NO.





OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
187
205


037 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001233, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-037)
QAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732G);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
188
206


038 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001234, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-038)
QAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732A);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
189
207


039 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001235, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-039)
QAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732V);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
190
208


040 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001236, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-040)
QAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMT




hPDE5
ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM




(Amino acid
NREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGI




590-836 of
VPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP




WT, R732I);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQER




linker (SG);
TIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGN




AcGFP
KMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLAD




(Amino acid 2-
HYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF




239 of WT);
VTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
191
209


041 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001237, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-041)
QAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732P);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
192
210


042 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001238, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-042)
QAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732F);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
193
211


043 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001239, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-043)
QAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732W);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
194
212


044 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001240, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-044)
QAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732Y);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
195
213


045 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001241, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-045)
QAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732H);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
196
214


046 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001242, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-046)
QAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732S);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
197
215


047 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001243, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-047)
QAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732T);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
198
216


048 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001244, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-048)
QAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732D);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
199
217


049 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001245, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-049)
QAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732E);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
200
218


050 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001246, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-050)
QAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732Q);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
201
219


051 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001247, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-051)
QAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732N);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
202
220


052 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001248, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-052)
QAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732M);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
203
221


053 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001249, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5 -053)
QAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732C);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5N-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL
204
222


054 (OT-
KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




001250, OT-
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK




hPDE5-054)
QAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAMLM




hPDE5
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL




(Amino acid
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT




590-836 of
GIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL




WT, R732K);
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE




linker (SG);
RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG




AcGFP
NKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA




(Amino acid 2-
DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF




239 of WT);
GFVTAAAITHGMDELYK*




stop








OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
430
467


064 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001186)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732G);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
431
468


065 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001187)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732 A);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
432
469


066 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001188)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732V);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
433
470


067 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001189)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLED




(Amino acid
PHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




535-860 of
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTH




WT, R732I);
VSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVPIL




linker (SG);
IELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWP




AcGFP
TLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFE




(Amino acid 2-
DDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY




239 of WT);
NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQ




stop
NTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAA





AITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
434
471


068 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001190)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732P);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
435
472


069 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001191)
AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732F);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
436
473


070 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001192)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732W);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
437
474


071 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001193)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732Y);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
438
475


072 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001195)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732H);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
439
476


073 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001196)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732S);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
440
477


074 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001197)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732T);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
441
478


075 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001198)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732D);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
442
479


076 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001199)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732E);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
443
480


077 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001200)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732Q);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
444
481


078 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001201)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732N);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
445
482


079 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001202)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732M);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
446
483


080 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001203)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732C);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR
447
484


081 (OT-
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




001204)
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG




Methionine;
VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




hPDE5
GLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLE




(Amino acid
DPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




535-860 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT




WT, R732K);
HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP




linker (SG);
ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP




AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




(Amino acid 2-
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM




239 of WT);
EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




stop
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
448
485


096 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001279)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732G);
ATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
449
486


097 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001280)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732A);
ATDLALYIKRAGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
450
487


098 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001281)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732L);
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
451
488


099 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001282)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732M);
ATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAMLMTAC




Xba I site
DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR




(TCTAGA);
EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR




stop
QKWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
452
489


100 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001283)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732F);
ATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
453
490


101 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001284)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732W);
ATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAMLMTAC




Xba I site
DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR




(TCTAGA);
EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR




stop
QKWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
454
491


102 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001285)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732K);
ATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
455
492


103 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001286)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732Q);
ATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
456
493


104 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001287)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732E);
ATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
457
494


105 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001288)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732S);
ATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
458
495


106 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001289)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732P);
ATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
459
496


107 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001290)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732V);
ATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
460
497


108 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001291)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732I);
ATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
461
498


109 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001292)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732C);
ATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
462
499


110 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001293)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732Y);
ATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
463
500


111 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001294)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732H);
ATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
464
501


112 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001295)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732N);
ATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
465
502


113 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001296)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732D);
ATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL
466
503


114 (OT-
TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




001297)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT




AcGFP
DFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH




(Amino acid 1-
NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




239 of WT);
EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV




linker (GS);
PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH




hPDE5
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




(Amino acid
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY




535-860 of
CHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732T);
ATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAMLMTACD




Xba I site
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE




(TCTAGA);
KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




stop
KWQALAEQQSR*









In some embodiments, any of the mutations taught in Tables 1, 2, and 5A may be combined. In one embodiment, the combination mutations are provided in Table 7. Combination mutations may be linked to AcGFP (Amino acid 2-239 of WT) (SEQ ID NO. 79); encoded by the nucleotide sequence of SEQ ID NO. 372; AcGFP (Amino acid 1-239 of WT) (SEQ ID NO. 365); encoded by the nucleotide sequence of SEQ ID NO. 94; or firefly luciferase, Fluc (N50D, N119G, S548I, K549A, L550V) (SEQ ID NO. 223) encoded by the nucleotide sequence of SEQ ID NO. 224. In some embodiments, the portions of the construct may be linked through a linker e.g. SG linker, encoded by the nucleotide sequence (AGTGGT). In some embodiments, the constructs described in Table 7 may comprise an Xba I restriction site, SR, encoded by the nucleotide sequence, TCTAGA. Table 7 provides the constructs comprising the combination mutations. In Table 7, translation of the stop codon is indicated by asterisk. Also provided in Table 7 are alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 7







hPDE5 combination mutations










Construct

AA
NA


ID/

SEQ ID
SEQ ID


Description
Sequence
NO.
NO.





hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT
504
519


(Amino acid
IRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




535-860 of
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




WT, F736A,
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM




D764N)
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRG





EFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPW





PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNK





IPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQK





WQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
225
231


hPDE5
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQC




WT, F736A,
LMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR




D764N)
RGEFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKP





WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT
505
520


(Amino acid
IRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




535-860 of
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




WT, R732L,
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM




D764N)
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG





EFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWP





IQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQK





WQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
226
232


hPDE5
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQC




WT, R732L,
LMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR




D764N)
LGEFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKP





WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
227
233


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT, R732L,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




F736A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





AELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ





QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
506
521


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAFHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT, Y612F,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




R732L)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
507
522


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAWH




535-860 of
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




WT, Y612W,
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI




R732L)
LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ





QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
508
523


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAAHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH




WT, Y612A,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




R732L)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
509
524


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSA




WT, H653A,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




R732L)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
510
525


(Amino acid
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN




535-860 of
WRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH




WT, R732L,
DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




D764A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
228
234


025 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001222, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-025)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR




hPDE5
GEFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPW




(Amino acid
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI




535-860 of
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




WT, F736A,
QALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGE




D764N);
GEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFS




linker (SG);
RYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




AcGFP
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNV




(Amino acid
YIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGD




2-239 of
GPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAIT




WT); stop
HGMDELYK*







OT-hPDE5N-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
229
235


026 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001223, OT-
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




hPDE5-026)
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Methionine;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




hPDE5
EFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWPI




(Amino acid
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS




535-860 of
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




WT, R732L,
ALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEG




D764N);
EGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR




linker (SG);
YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEV




AcGFP
KFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVY




(Amino acid
IMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDG




2-239 of
PVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITH




WT); stop
GMDELYK*







OT-
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGT
230
236


hPDE5C-035
IAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV




(OT-001231,
VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMG




OT-hPDE5-035)
ISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGF




Fluc (N50D,
QSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGST




N119G, S548I,
GLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILSVVPFH




K549A, L550V);
HGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQS




linker (SG);
ALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGE




hPDE5
AVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGAVGKV




(Amino acid
VPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNN




535-860 of
PEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKY




WT, R732L;
KGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAV




F736A); stop
VVLEHGKTMTEKEIVDYVASQVTTAKKLRGGVVFVDEVP





KGLTGKLDARKIREILIKAKKGGKIAVSGEETRELQSLAA





AVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQ





NFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQ





CMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS





YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL





SIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNL





EDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEF





FDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-hPDE5-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC
511
526


029 (OT-
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY




001225)
HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




Methionine;
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




hPDE5
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




(Amino acid
EFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWP




535-860 of
IQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP




WT, R732L,
SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




F736A);
QALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGE




Linker (SG);
GEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFS




AcGFP
RYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(Amino acid
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNV




2-239 of
YIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGD




WT); stop
GPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAIT





HGMDELYK*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
512
527


030 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001226)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); PDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, R732L,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




F736A); stop
EFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWP





IQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
513
528


083 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001205)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
FHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, Y612F,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




R732L); stop
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
514
529


084 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001206)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
WHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, Y612W,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




R732L); stop
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
515
530


085 (0T-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001207)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
AHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, Y612A,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




R732L); stop
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
516
531


090 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001212)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, H653 A,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




R732L); stop
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
517
532


091 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001213)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG); hPDE5
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




(Amino acid
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




535-860 of
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, R732L,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




D764A); stop
EFFELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPI





QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-hPDE5-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY
518
533


094 (OT-
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




001253)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL




AcGFP
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




(Amino acid
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN




1-239 of
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




WT); linker
KSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA




(SG);
LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA




hPDE5 (Amino
YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA




acid 535-
LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




860 of WT;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG




R732L); Xba
EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI




I site
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS




(TCTAGA);
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




stop
ALAEQQSR*









In some embodiments, any of the mutations described herein may be tested in the context of the truncated hPDE5 domains. As used herein truncated hPDE5 domains refers to regions and/or portions of hPDE5 of SEQ ID NO. 1, and are exemplified in Table 8. Also provided in Table 8 are the constructs utilizing the regions or portions of hPDE5, fused to AcGFP via linkers. In Table 8, translation of the stop codon is indicated by asterisk. Table 8 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 8







hPDE5 truncation constructs and its components










Construct

AA
NA


ID/

SEQ ID
SEQ ID


Description
Sequence
NO
NO





Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
237
  4


hPDE5
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




(Amino acid
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




535-860 of
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




WT)
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
238
250


hPDE5
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




(Amino acid
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




535-860 of
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




WT, R732L)
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
239
251


hPDE5
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




(Amino acid
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




535-836 of
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




WT, R732L)
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







Methionine;
MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK
240
252


hPDE5
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




(Amino acid
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




567-860 of
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN




WT, R732L)
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEA





LTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK
241
253


(Amino acid
AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL




590-860 of
YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732L)
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL





SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ







hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK
242
254


(Amino acid
AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL




590-836 of
YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




WT, R732L)
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL





SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
  3
339


(Amino acid
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT




535-860 of
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




WT)
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK





TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
 12
536


(Amino acid
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT




535-860 of
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




WT, R732L)
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK





TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT
534
537


(Amino acid
DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT




535-836 of
AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI




WT, R732L)
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK





TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP





TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS







hPDE5
SDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535
538


(Amino acid
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




567-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSP




WT, R732L)
GNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA1EFFD





QGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT





HVSEDCFPLLDGCRKNRQKWQALAEQQ







Linker (SG)
SG

AGT





GGT





AcGFP
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLK
 79
372



FICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMP





EGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDG





NILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ





LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF





GFVTAAAITHGMDELYK







OT-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
243
255


hPDE5N-
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




019 (OT-
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




001216, OT-
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




hPDE5-019)
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL




Methionine;
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




hPDE5
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




(Amino acid
CRKNRQKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF




535-860 of
SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCF




WT); linker
SRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE




(SG);
GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




AcGFP
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS




(Amino acid
TQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*




2-239 of





WT); stop








OT-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
244
256


hPDE5N-
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




020 (OT-
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




001217, OT-
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




hPDE5-020)
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL




Methionine;
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




hPDE5
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG




(Amino acid
CRKNRQKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF




535-860 of
SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCF




WT,
SRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE




R732L);
GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




linker (SG);
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS




AcGFP;
TQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*




stop (Amino





acid 2-239





of WT); stop








OT-
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM
245
257


hPDE5N-
FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN




021 (OT-
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY




001218, OT-
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




hPDE5-021) 
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL




Methionine;
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




hPDE5
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAEL




(Amino acid
FTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGK




535-836 of
LPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQER




WT,
TIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK




R732L);
MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ




linker (SG);
QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAA




AcGFP
AITHGMDELYK*




(Amino acid





2-239 of





WT); stop








OT-
MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK
246
258


hPDE5N-
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL




022 (OT-
SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




001219, OT-
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN




hPDE5-022)
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF




Methionine;
DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEA




hPDE5
LTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIV




(Amino acid
PILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPW




567-860 of
PTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




WT,
DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNY




R732L);
NAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIG




linker (SG);
DGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM




AcGFP
DELYK*




(Amino acid





2-239 of





WT); stop








OT-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK
247
259


hPDE5N-
AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL




023 (OT-
YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




001220, OT-
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL




hPDE5-023)
SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




hPDE5
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




(Amino acid
ALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGD




590-860 of
ATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQ




WT,
HDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




R732L);
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR




linker (SG);
HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN




AcGFP
EKRDHMIYFGFVTAAAITHGMDELYK*




(Amino acid





2-239 of





WT); stop








OT-
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK
248
260


hPDE5N-
AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL




024 (OT-
YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




001221, OT-
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL




hPDE5-024)
SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




hPDE5
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIEL




(Amino acid
NGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVT




590-836 of
TLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNY




WT,
KSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




R732L);
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPV




linker (SG);
LLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY




AcGFP
K*




(Amino acid





2-239 of





WT); stop










Stimulus


Biocircuits of the invention are triggered by one or more stimuli. Stimuli may be selected from a ligand, an externally added or endogenous metabolite, the presence or absence of a defined ligand, pH, temperature, light, ionic strength, radioactivity, cellular location, subject site, microenvironment, the presence or the concentration of one or more metal ions.


In some embodiments, the stimulus is a ligand. Ligands may be nucleic acid-based, protein-based, lipid based, organic, inorganic or any combination of the foregoing. In some embodiments, the ligand is selected from the group consisting of a protein, peptide, nucleic acid, lipid, lipid derivative, sterol, steroid, metabolite derivative and a small molecule. In some embodiments, the stimulus is a small molecule. In some embodiments, the small molecules are cell permeable. Ligands useful in the present invention include without limitation, any of those taught in Table 2 of co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, the small molecules are FDA-approved, safe and orally administered.


In some embodiments, the ligand binds to phosphodiesterases. In some embodiments, the ligand binds to and inhibits phosphodiesterase function and is herein referred to as a phosphodiesterase inhibitor.


In some embodiments, the ligand is a small molecule that binds to phosphodiesterase 5. In one embodiment, the small molecule is a hPDE5 inhibitor. Examples of hPDE5 inhibitors include, but are not limited to, Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400.


In some embodiments, ligands include sildenafil-derived ligands containing portions of the ligand known to mediate binding to hPDE5. Ligands may also be modified to reduce off-target binding to Phosphodiesterases and increase specific binding to hPDE5.


hPDE5 inhibitors cover a broad pharmacokinetic space with respect to the approved dose and their duration of action and is described in Table 9. In Table 9, PO stands for per os (i.e. by mouth); QD represents quaque die (i.e. every day); IV represents intravenous; TID represents ter un die (i.e. three times a day); and Cmax represents the peak serum concentration that a drug achieves after its administration.









TABLE 9







Pharmacokinetics of hPDE5 inhibitors













Duration


Drug
Approved Dose
Cmax
of action





Sildenafil
PO: 100 mg QD or
PO: 1 μM
4-8 hrs



20 mg TID
IV: 1 μM




IV: 10 mg TID




Vardenafil
PO: 20 mg QD
0.1 μM
2-8 hrs


Tadalafil
PO: 40 QD
1.5 μM
24-36 hrs 









In some embodiments, the ligand selection is determined by the magnitude and duration of expression of the effector modules of the invention using the PK parameters described in Table 9. In some embodiments, high levels of expression of the payload for a short duration of time may be desired. In such instances, vardenafil may be selected as the ligand. In some embodiments, high levels of expression of the payload may be desired for a long duration. In such instances, the ligand, Tadalafil may be selected. In some embodiments, low levels of expression of the payload may be desired for a long duration of time. In such instances, Sildenafil may be selected as the ligand.


In some embodiments, additional hPDE5 inhibitors may be developed to show selectivity towards a specific phosphodiesterase protein; to reduce or increase the duration of treatment with the ligand; and to improve the rate of onset of the ligand.


Ligands may also be selected from the analysis of the dependence of a known hPDE5 ligand's activity on its molecular/chemical structure, through Structure Activity Relationships (SAR) study. Any of the methods related to SAR, known in art may be utilized to identify stabilizing ligands of the invention. SAR may be utilized to improve properties of the ligand such as specificity, potency, pharmacokinetics, bioavailability, and safety. SAR analysis of known hPDE5 inhibitors may also be combined with high resolution X ray structures of hPDE5 complexed with ligands. The X ray structure of hPDE5 co-crystallized with Sildenafil, Tadalafil, and Vardenafil have been studied and the binding mode of the inhibitors has been identified (Zhang, K. Y. J. et al. (2004) Mol. Cell, 15, 279; Card, G. L. et al. (2004) Structure. 12, 2233; the contents of each of which are incorporated herein by reference in their entirety). There are several classes of hPDE5 inhibitors described. These include aryl, beryl, heteroaryl or heterobiaryl classes with different scaffold structures. The aryl class includes substituted nitroanilines and the biaryl class includes substituted naphthalenes. The heterobiaryl and heterotriaryl are further sub classified based on its fused system into pyrazolopyrimidinones, triazolopyrimidinones, imidazotriazines, purines, pyrrolopyrimidinones, triazolotrizinones, isoxazolopyrimidinones, β-carbolines, pyrroloquinolones, isoquinolines, quinazolines, imidazoquinazolinones, pyrazolopyridines, pyrazolopyridopyrimidinones. These widely different chemical structures are suggested to have different orientation in the binding site of hPDE5 enzyme. Sildenafil has three main chemical groups, the pyrazolopyrimidinone ring, the ethoxyphenyl ring and the methylpiperazine ring. The pyrazolopyrimidinone group is responsible for the binding of the drug to its active binding site of hPDE5.


Many hPDE inhibitors act by competing with the substrate, cGMP, for the catalytic site of the enzyme. Sildenafil and Vardenafil differ in the heterocyclic ring system used to mimic the purine ring of cGMP. They also differ in the substituent (ethyl/methyl) of a piperazine side chain. Although these are the only structural differences, Vardenafil is more potent than Sildenafil. In some embodiments, the structural differences between different know inhibitors of hPDE may be utilized to design better hPDE inhibitor based ligands. For example, Corbin et al. synthesized an analog of sildenafil that contained the sildenafil ring system but with the appended ethyl group found in vardenafil; and an analog of vardenafil (dimethyl-vardenafil) that contained the vardenafil ring system but with the appended methyl group found in sildenafil was also generated. These studies identified that the ring systems play a critical role in higher potency of vardenafil over sildenafil (Corbin J D et al. (2004) Neurochem Int; 45(6):859-63; the contents of which are incorporated herein by reference in their entirety). Based on the X ray crystal structure of hPDE complexed with sildenafil, the active site region was defined as a sphere within the 6.5 Angstrom from the reference ligand, sildenafil. Surface hydrophobicity (lipophilicity) potential physicochemical property map of the hPDE5 active site may be generated based on this information. The ethoxyphenyl group of sildenafil fits into the hydrophobic pocket formed by Phe 786, Ala783, Leu804, and Val782, and the pyrazolopyrimidinone ring also forms hydrophobic interaction with the side chains of Val782, Tyr612, and Phe820 in the binding pocket.


New hPDE5 inhibitors may also be developed using a series of analogs of known hPDE5 inhibitors. 3D-Quantitative Structure activity analysis (QSAR), CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) may be implemented for this purpose. In one embodiment, the structure of hPDE5 inhibitor may preferentially incorporate an N ethyl group in the pyrrolopyrimidinone ring at N5 position; and a propoxyphenyl group, which bear a substituent; one methylene unit longer, respectively in comparison with the corresponding positions of sildenafil. Any of the modifications to Sildenafil structure taught by Koo J et al. may be useful in the present invention (Koo J et al. (2007) Bioorg. & Med. Chem Lett 17; 4271-4274; the contents of which are incorporated by reference in their entirety).


In some embodiments, the stimulus may be a ligand that binds to more than one phosphodiesterase. In one embodiment, the stimulus is a pan phosphodiesterase inhibitor that may bind to two or more hPDEs such as Aminophyline, Paraxanthine, Pentoxifylline, Theobromine, Dipyridamole, Theophyline, Zaprinast, Icariin, CDP-840, Etazolate and Glaucine.


In some embodiments, the ligand is a hPDE1 inhibitor. Exemplary hPDE1 inhibitor, Vinpocetine may in some instances be used as the ligand in the present invention. In some embodiments, the ligand is a hPDE2 inhibitor. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety). In some embodiments, the ligand is a hPDE3 inhibitor. hPDE3 inhibitors useful in the invention include, but are not limited to Amrinone, Cilostazol, Milrinone, Enoximone, and Pimobendan. In some embodiments, the ligand is a hPDE4 inhibitor. Exemplary hPDE4 inhibitors include FDA approved small molecules such as, but not limited to AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl)oxy]benzonitrile), Apremilast/CC10004 (N-{2-[(15)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide), and Roflumilast. Other exemplary hPDE4 inhibitors include Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976. Any of the hPDE4 inhibitors described in International Patent Publication No. WO2014078220A1 and U.S. Patent Publication No. US20170129887A1 may be useful in the present invention (the contents of each of which are incorporated by reference in their entirety). In some embodiments, the ligand is a hPDE6 inhibitor. In some embodiments, the ligand is a hPDE7 inhibitor. Exemplary hPDE7 inhibitors, include BRL-50481 (N,N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl). In some embodiments, the ligand is a hPDE8 inhibitor such as PF-04957325 (Pfizer). In some embodiments, the ligand is a hPDE9 inhibitor. Exemplary hPDE9 inhibitors include, but are not limited to BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d]pyrimidin-4-one) and WYQ-C28L. In some embodiments, the ligand is a hPDE10 inhibitor. Exemplary PDE10 inhibitors include, but are not limited to OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone), and GS-5759 (Gilead).


In one embodiment, the stimuli of the present invention may be FDA approved ligands capable of binding to the specific DDs or target regions within the DDs. In other embodiments, FDA approved ligands may be used to screen potential binders in the human protein. DDs may be designed based on the positive hits from the screen using the portion of the protein that binds to the ligand. In one embodiment, proteins that bind to FDA approved ligands as off target interactions may be used to design DDs of the present invention.


In some embodiments, ligands that do not affect the activity of the immune cell, and/or the chimeric antigen receptor, in the absence of the SREs may be preferably selected.


Stabilizing Domains


In some embodiments, the stimulus response element may be stabilized in the absence of the stimulus but destabilized by the stimulus. In some embodiments, SREs may be derived from protein complexes that comprise at least one protein-protein interaction. In other aspects, the SRE may form a protein-protein interaction with a natural protein within the cell. Protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. Payloads appended to such SREs may stabilized in the absence of the stimulus. In some aspects, the stimulus may be a small molecule that is capable of interrupting or disrupting the protein-protein interactions related to the SRE. In such instances, addition of the stimulus, results in the reduced expression and/or function of the payload. In some embodiments, stimuli that induce conformational change of the SRE may be utilized. In one aspect, the SRE may be stabilized by the conformational change. In another aspect, the SRE may be destabilized by the conformational change. The stimuli may also be small molecules that disrupt post translational modification of SREs which may result in the disruption of the protein-protein interaction related to the SRE. In some embodiments, SREs may be identified using protein interatomic techniques known in the art. Such methods may enable the identification of protein interactions that are therapeutically relevant. Any of the large-scale quantitative proteomics methods described in International Patent Publication NOs. WO2017210427A1, WO2016196994A9, and WO2014200987A3 may be useful in the present invention (the contents of each of which are incorporated by reference in their entirety).


Payloads


In some embodiments, payloads can be any natural protein in an organism genome, a fusion polypeptide, an antibody, or variants, mutants and derivatives thereof. In some embodiments, the effector module of the present invention is a fusion construct comprising a DD of the invention operably linked to at least one payload. In one aspect, the payload may be any natural protein of interest (POI) or variants thereof, an antibody or fragments thereof, a therapeutic agent, or any artificial peptide or polypeptide.


In some embodiments, payloads of the present invention may be immunotherapeutic agents. As used herein, an immunotherapeutic agent is any agent that induces immune responses in an organism. An immunotherapeutic agent may be a natural protein in an organism or it may be an artificial protein such as a fusion protein or an antibody. The immunotherapeutic agent may be, but is not limited to, an antibody and fragments and variants thereof, a MEW molecule, an antigen and fragments thereof, a T cell receptor (TCR) such as a tumor specific TCR and variants thereof, a chimeric antigen receptor (CAR), a chimeric switch receptor, a co-stimulatory molecule, a co-inhibitory molecule, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a homing receptor, a safety switch (e.g., a suicide gene), or any agent that induces an immune response. In one embodiment, the immunotherapeutic agent induces an anti-cancer immune response in a cell, or in a subject. In some aspects, the immunotherapeutic agent reduces the tumor burden in a subject.


The payload may be any immunotherapeutic agent used for cancer immunotherapy such as a T cell receptor (TCR), a chimeric agent receptor (CAR) such as CD19 CAR that targets any molecule of tumor cells, an antibody, an antigen binding domain or combination of antigen binding domains, a cytokine such as IL2, IL12, IL15 or IL15/IL15Ra fusion, an antagonist of an immune checkpoint, an agonist of co-stimulatory molecule, a chimeric switch receptor, a safety switch, a metabolic factor, a growth factor, a chemokine, a chemokine receptor, a homing receptor, or any agent that can induce an immune response. The SRE and payload may be operably linked through one or more linkers and the positions of components may vary within the effector module.


1. Protein of Interest


In some embodiments, payloads of the invention may be a natural protein in an organism genome, or variants, mutants, derivatives thereof. The natural protein may be from, for example, a mammalian organism, a bacterium, and a virus.


In one example, the payload may be a protein of interest, or a polypeptide from human genome.


2. Antibodies


In some embodiments, antibodies, fragments and variants thereof are payloads of the present invention. The antibody may be an intact antibody, an antibody light chain, antibody heavy chain, an antibody fragment, an antibody variant, or an antibody derivative.


In some embodiments, payloads of the invention may be an antibody or fragments thereof. Antibodies useful in this method include without limitation, any of those taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


Antibody Fragments and Variants


In some embodiments, antibody fragments and variants may comprise antigen binding regions from intact antibodies. Examples of antibody fragments and variants may include, but are not limited to Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules such as single chain variable fragment (scFv); and multispecific antibodies formed from antibody fragments. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site. Also produced is a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-binding sites and is still capable of cross-linking with the antigen. Pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may comprise one or more of these fragments.


For the purposes herein, an “antibody” may comprise a heavy and light variable domain as well as an Fc region. As used herein, the term “native antibody” usually refers to a heterotetrameric glycoprotein of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Genes encoding antibody heavy and light chains are known and segments making up each have been well characterized and described (Matsuda et al., The Journal of Experimental Medicine. 1998, 188(11): 2151-62 and Li et al., Blood, 2004, 103(12): 4602-4609; the content of each of which are herein incorporated by reference in their entirety). Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.


As used herein, the term “variable domain” refers to specific antibody domains found on both the antibody heavy and light chains that differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. Variable domains comprise hypervariable regions. As used herein, the term “hypervariable region” refers to a region within a variable domain comprising amino acid residues responsible for antigen binding. The amino acids present within the hypervariable regions determine the structure of the complementarity determining regions (CDRs) that become part of the antigen-binding site of the antibody. As used herein, the term “CDR” refers to a region of an antibody comprising a structure that is complimentary to its target antigen or epitope. Other portions of the variable domain, not interacting with the antigen, are referred to as framework (FW) regions. The antigen-binding site (also known as the antigen combining site or paratope) comprises the amino acid residues necessary to interact with a particular antigen. The exact residues making up the antigen-binding site are typically elucidated by co-crystallography with bound antigen, however computational assessments based on comparisons with other antibodies can also be used (Strohl, W. R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 47-54, the contents of which are herein incorporated by reference in their entirety). Determining residues that make up CDRs may include the use of numbering schemes including, but not limited to, those taught by Kabat (Wu et al., JEM, 1970, 132(2):211-250 and Johnson et al., Nucleic Acids Res. 2000, 28(1): 214-218, the contents of each of which are herein incorporated by reference in their entirety), Chothia (Chothia and Lesk, J. Mol. Biol. 1987, 196, 901, Chothia et al., Nature, 1989, 342, 877, and Al-Lazikani et al., J. Mol. Biol. 1997, 273(4): 927-948, the contents of each of which are herein incorporated by reference in their entirety), Lefranc (Lefranc et al., Immunome Res. 2005, 1:3) and Honegger (Honegger and Pluckthun, J. Mol. Biol. 2001, 309(3): 657-70, the contents of which are herein incorporated by reference in their entirety).


VH and VL domains have three CDRs each. VL CDRs are referred to herein as CDR-L1, CDR-L2 and CDR-L3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. VH CDRs are referred to herein as CDR-H1, CDR-H2 and CDR-H3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. Each of CDRs has favored canonical structures with the exception of the CDR-H3, which comprises amino acid sequences that may be highly variable in sequence and length between antibodies resulting in a variety of three-dimensional structures in antigen-binding domains (Nikoloudis, et al., PeerJ. 2014, 2: e456). In some cases, CDR-H3s may be analyzed among a panel of related antibodies to assess antibody diversity. Various methods of determining CDR sequences are known in the art and may be applied to known antibody sequences (Strohl, W.R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 47-54, the contents of which are herein incorporated by reference in their entirety).


As used herein, the term “Fv” refers to an antibody fragment comprising the minimum fragment on an antibody needed to form a complete antigen-binding site. These regions consist of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. Fv fragments can be generated by proteolytic cleavage, but are largely unstable. Recombinant methods are known in the art for generating stable Fv fragments, typically through insertion of a flexible linker between the light chain variable domain and the heavy chain variable domain (to form a single chain Fv (scFv)) or through the introduction of a disulfide bridge between heavy and light chain variable domains (Strohl, W.R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 46-4′7, the contents of which are herein incorporated by reference in their entirety).


As used herein, the term “light chain” refers to a component of an antibody from any vertebrate species assigned to one of two clearly distinct types, called kappa and lambda based on amino acid sequences of constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains, antibodies can be assigned to different classes. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.


As used herein, the term “single chain Fv” or “scFv” refers to a fusion protein of VH and VL antibody domains, wherein these domains are linked together into a single polypeptide chain by a flexible peptide linker. In some embodiments, the Fv polypeptide linker enables the scFv to form the desired structure for antigen binding. In some embodiments, scFvs are utilized in conjunction with phage display, yeast display or other display methods where they may be expressed in association with a surface member (e.g. phage coat protein) and used in the identification of high affinity peptides for a given antigen.


Using molecular genetics, two scFvs can be engineered in tandem into a single polypeptide, separated by a linker domain, called a “tandem scFv” (tascFv). Construction of a tascFv with genes for two different scFvs yields a “bispecific single-chain variable fragments” (bis-scFvs). Only two tascFvs have been developed clinically by commercial firms; both are bispecific agents in active early phase development by Micromet for oncologic indications, and are described as “Bispecific T-cell Engagers (BiTE).” Blinatumomab is an anti-CD19/anti-CD3 bispecific tascFv that potentiates T-cell responses to B-cell non-Hodgkin lymphoma in Phase 2. MT110 is an anti-EP-CAM/anti-CD3 bispecific tascFv that potentiates T-cell responses to solid tumors in Phase 1. Bispecific, tetravalent “TandAbs” are also being researched by Affimed (Nelson, A. L., MAbs, 2010, January-February; 2(1):77-83). maxibodies (bivalent scFv fused to the amino terminus of the Fc (CH2-CH3 domains) of IgG may also be included.


As used herein, the term “bispecific antibody” refers to an antibody capable of binding two different antigens. Such antibodies typically comprise regions from at least two different antibodies. Bispecific antibodies may include any of those described in Riethmuller, G. Cancer Immunity. 2012, 12:12-18, Marvin et al., 2005. Acta Pharmacologica Sinica. 2005, 26(6): 649-658 and Schaefer et al., PNAS. 2011, 108(27):11187-11192, the contents of each of which are herein incorporated by reference in their entirety. In some aspects, bispecific antibodies may be trifunctional antibodies (3 funct) and BiTE (bi-specific T cell engager).


As used herein, the term “diabody” refers to a small antibody fragment with two antigen-binding sites. Diabodies are functional bispecific single-chain antibodies (bscAb). Diabodies comprise a heavy chain variable domain VH connected to a light chain variable domain VL in the same polypeptide chain. By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al. (Hollinger, P. et al., “Diabodies”: Small bivalent and bispecific antibody fragments. PNAS, 1993. 90: 6444-6448); the contents of each of which are incorporated herein by reference in their entirety.


The term “intrabody” refers to a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods of the present invention may include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein may be incorporated into one or more constructs for intrabody-based therapy.


As used herein, the term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous cells (or clones), i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variants that may arise during production of the monoclonal antibodies, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.


The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. The monoclonal antibodies herein include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies.


As used herein, the term “humanized antibody” refers to a chimeric antibody comprising a minimal portion from one or more non-human (e.g., murine) antibody source(s) with the remainder derived from one or more human immunoglobulin sources. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from the hypervariable region from an antibody of the recipient are replaced by residues from the hypervariable region from an antibody of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity. In one embodiment, the antibody may be a humanized full-length antibody. As a non-limiting example, the antibody may have been humanized using the methods taught in U.S. Patent Publication NO. US20130303399, the contents of which are herein incorporated by reference in its entirety.


As used herein, the term “antibody variant” refers to a modified antibody (in relation to a native or starting antibody) or a biomolecule resembling a native or starting antibody in structure and/or function (e.g., an antibody mimetic). Antibody variants may be altered in their amino acid sequence, composition or structure as compared to a native antibody. Antibody variants may include, but are not limited to, antibodies with altered isotypes (e.g., IgA, IgD, IgE, IgG1, IgG2, IgG3, IgG4, or IgM), humanized variants, optimized variants, multispecific antibody variants (e.g., bispecific variants), and antibody fragments.


In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may be antibody mimetics. As used herein, the term “antibody mimetic” refers to any molecule which mimics the function or effect of an antibody and which binds specifically and with high affinity to their molecular targets. In some embodiments, antibody mimetics may be monobodies, designed to incorporate the fibronectin type III domain (Fn3) as a protein scaffold (U.S. Pat. Nos. 6,673,901; 6,348,584). In some embodiments, antibody mimetics may be those known in the art including, but are not limited to affibody molecules, affilins, affitins, anticalins, avimers, Centyrins, DARPINS™, Fynomers and Kunitz and domain peptides. In other embodiments, antibody mimetics may include one or more non-peptide regions.


In one embodiment, the antibody may comprise a modified Fc region. As a non-limiting example, the modified Fc region may be made by the methods or may be any of the regions described in U.S. Patent Publication NO. US20150065690, the contents of which are herein incorporated by reference in its entirety.


In some embodiments, payloads of the invention may encode multispecific antibodies that bind more than one epitope. As used herein, the terms “multibody” or “multispecific antibody” refer to an antibody wherein two or more variable regions bind to different epitopes. The epitopes may be on the same or different targets. In one embodiment, the multispecific antibody may be generated and optimized by the methods described in International Patent Publication NO. WO2011109726 and U.S. Patent Publication NO. US20150252119, the contents of which each of which are herein incorporated by reference in their entirety. These antibodies are able to bind to multiple antigens with high specificity and high affinity.


In certain embodiments, a multi-specific antibody is a “bispecific antibody” which recognizes two different epitopes on the same or different antigens. In one aspect, bispecific antibodies are capable of binding two different antigens. Such antibodies typically comprise antigen-binding regions from at least two different antibodies. For example, a bispecific monoclonal antibody (BsMAb, BsAb) is an artificial protein composed of fragments of two different monoclonal antibodies, thus allowing the BsAb to bind to two different types of antigen. Bispecific antibody frameworks may include any of those described in Riethmuller, G., 2012. Cancer Immunity, 2012, 12:12-18; Marvin et al., Acta Pharmacologica Sinica. 2005, 26(6):649-658; and Schaefer et al., PNAS. 2011, 108(27): 11187-11192, the contents of each of which are herein incorporated by reference in their entirety. New generations of BsMAb, called “trifunctional bispecific” antibodies, have been developed. These consist of two heavy and two light chains, one each from two different antibodies, where the two Fab regions (the arms) are directed against two antigens, and the Fc region (the foot) comprises the two heavy chains and forms the third binding site.


In some embodiments, payloads may encode antibodies comprising a single antigen-binding domain. These molecules are extremely small, with molecular weights approximately one-tenth of those observed for full-sized mAbs. Further antibodies may include “nanobodies” derived from the antigen-binding variable heavy chain regions (VHHs) of heavy chain antibodies found in camels and llamas, which lack light chains (Nelson, A. L., MAbs. 2010. January-February; 2(1):77-83).


In some embodiments, the antibody may be “miniaturized”. Among the best examples of mAb miniaturization are the small modular immunopharmaceuticals (SMIPs) from Trubion Pharmaceuticals. These molecules, which can be monovalent or bivalent, are recombinant single-chain molecules containing one VL, one VH antigen-binding domain, and one or two constant “effector” domains, all connected by linker domains. Presumably, such a molecule might offer the advantages of increased tissue or tumor penetration claimed by fragments while retaining the immune effector functions conferred by constant domains. At least three “miniaturized” SMIPs have entered clinical development. TRU-015, an anti-CD20 SMIP developed in collaboration with Wyeth, is the most advanced project, having progressed to Phase 2 for rheumatoid arthritis (RA). Earlier attempts in systemic lupus erythrematosus (SLE) and B cell lymphomas were ultimately discontinued. Trubion and Facet Biotechnology are collaborating in the development of TRU-016, an anti-CD37 SMIP, for the treatment of CLL and other lymphoid neoplasias, a project that has reached Phase 2. Wyeth has licensed the anti-CD20 SMIP SBI-087 for the treatment of autoimmune diseases, including RA, SLE and possibly multiple sclerosis, although these projects remain in the earliest stages of clinical testing. (Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).


On example of miniaturized antibodies is called “unibody” in which the hinge region has been removed from IgG4 molecules. While IgG4 molecules are unstable and can exchange light-heavy chain heterodimers with one another, deletion of the hinge region prevents heavy chain-heavy chain pairing entirely, leaving highly specific monovalent light/heavy heterodimers, while retaining the Fc region to ensure stability and half-life in vivo. This configuration may minimize the risk of immune activation or oncogenic growth, as IgG4 interacts poorly with FcRs and monovalent unibodies fail to promote intracellular signaling complex formation (see, e.g., Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).


In some embodiments, payloads of the invention may encode single-domain antibodies (sdAbs, or nanobodies) which are antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. In one aspect, a sdAb may be a “Camel Ig or “camelid VHH”. As used herein, the term “camel Ig” refers to the smallest known antigen-binding unit of a heavy chain antibody (Koch-No lte, et al, FASEB J., 2007, 21: 3490-3498). A “heavy chain antibody” or a “camelid antibody” refers to an antibody that contains two VH domains and no light chains (Riechmann L. et al, J. Immunol. Methods, 1999, 231: 25-38; International patent publication NOs.: WO1994/04678 and WO1994/025591; and U.S. Pat. No. 6,005,079). In another aspect, a sdAb may be a “immunoglobulin new antigen receptor” (IgNAR). As used herein, the term “immunoglobulin new antigen receptor” refers to class of antibodies from the shark immune repertoire that consist of homodimers of one variable new antigen receptor (VNAR) domain and five constant new antigen receptor (CNAR) domains. IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds and are highly stable and possess efficient binding characteristics. The inherent stability can be attributed to both (i) the underlying Ig scaffold, which presents a considerable number of charged and hydrophilic surface exposed residues compared to the conventional antibody VH and VL domains found in murine antibodies; and (ii) stabilizing structural features in the complementary determining region (CDR) loops including inter-loop disulphide bridges, and patterns of intra-loop hydrogen bonds.


In some embodiments, payloads of the invention may encode intrabodies. Intrabodies are a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies are expressed and function intracellularly, and may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods described herein include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein are incorporated into one or more constructs for intrabody-based therapy. For example, intrabodies may target one or more glycated intracellular proteins or may modulate the interaction between one or more glycated intracellular proteins and an alternative protein.


The intracellular expression of intrabodies in different compartments of mammalian cells allows blocking or modulation of the function of endogenous molecules (Biocca, et al., EMBO J. 1990, 9: 101-108; Colby et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 17616-17621). Intrabodies can alter protein folding, protein-protein, protein-DNA, protein-RNA interactions and protein modification. They can induce a phenotypic knockout and work as neutralizing agents by direct binding to the target antigen, by diverting its intracellular trafficking or by inhibiting its association with binding partners. With high specificity and affinity to target antigens, intrabodies have advantages to block certain binding interactions of a particular target molecule, while sparing others.


Sequences from donor antibodies may be used to develop intrabodies. Intrabodies are often recombinantly expressed as single domain fragments such as isolated VH and VL domains or as a single chain variable fragment (scFv) antibody within the cell. For example, intrabodies are often expressed as a single polypeptide to form a single chain antibody comprising the variable domains of the heavy and light chains joined by a flexible linker polypeptide. Intrabodies typically lack disulfide bonds and are capable of modulating the expression or activity of target genes through their specific binding activity. Single chain intrabodies are often expressed from a recombinant nucleic acid molecule and engineered to be retained intracellularly (e.g., retained in the cytoplasm, endoplasmic reticulum, or periplasm). Intrabodies may be produced using methods known in the art, such as those disclosed and reviewed in: (Marasco et al., PNAS, 1993, 90: 7889-7893; Chen et al., Hum. Gene Ther. 1994, 5:595-601; Chen et al., 1994, PNAS, 91: 5932-5936; Maciejewski et al., 1995, Nature Med., 1: 667-673; Marasco, 1995, Immunotech, 1: 1-19; Mhashilkar, et al., 1995, EMBO J. 14: 1542-51; Chen et al., 1996, Hum. Gene Therap., 7: 1515-1525; Marasco, Gene Ther. 4:11-15, 1997; Rondon and Marasco, 1997, Annu. Rev. Microbiol. 51:257-283; Cohen, et al., 1998, Oncogene 17:2445-56; Proba et al., 1998, J. Mol. Biol. 275:245-253; Cohen et al., 1998, Oncogene 17:2445-2456; Hassanzadeh, et al., 1998, FEBS Lett. 437:81-6; Richardson et al., 1998, Gene Ther. 5:635-44; Ohage and Steipe, 1999, J. Mol. Biol. 291:1119-1128; Ohage et al., 1999, J. Mol. Biol. 291:1129-1134; Wirtz and Steipe, 1999, Protein Sci. 8:2245-2250; Zhu et al., 1999, J. Immunol. Methods 231:207-222; Arafat et al., 2000, Cancer Gene Ther. 7:1250-6; der Maur et al., 2002, J. Biol. Chem. 277:45075-85; Mhashilkar et al., 2002, Gene Ther. 9:307-19; and Wheeler et al., 2003, FASEB J. 17: 1733-5; and references cited therein).


In some embodiments, payloads of the invention may encode biosynthetic antibodies as described in U.S. Pat. No. 5,091,513, the contents of which are herein incorporated by reference in their entirety. Such antibody may include one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BABS). The sites comprise 1) non-covalently associated or disulfide bonded synthetic VH and VL dimers, 2) VH-VL or VL-VH single chains wherein the VH and VL are attached by a polypeptide linker, or 3) individuals VH or VL domains. The binding domains comprise linked CDR and FR regions, which may be derived from separate immunoglobulins. The biosynthetic antibodies may also include other polypeptide sequences which function, e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization media or radioactive atom. Methods are disclosed for producing the biosynthetic antibodies, for designing BABS having any specificity that can be elicited by in vivo generation of antibody, and for producing analogs thereof.


In some embodiments, payloads may encode antibodies with antibody acceptor frameworks taught in U.S. Pat. No. 8,399,625. Such antibody acceptor frameworks may be particularly well suited accepting CDRs from an antibody of interest.


In one embodiment, the antibody may be a conditionally active biologic protein. An antibody may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and uses of such conditional active biologic proteins are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2015175375 and WO2016036916 and U.S. Patent Publication No. US20140378660, the contents of each of which are incorporated herein by reference in their entirety.


Antibody Preparations


The preparation of antibodies, whether monoclonal or polyclonal, is known in the art. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane “Antibodies, A Laboratory Manual”, Cold Spring Harbor Laboratory Press, 1988; Harlow and Lane “Using Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, 1999 and “Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry” Woodhead Publishing, 2012.


The antibodies and fragments and variants thereof as described herein can be produced using recombinant polynucleotides. In one embodiment, the polynucleotides have a modular design to encode at least one of the antibodies, fragments or variants thereof. As a non-limiting example, the polynucleotide construct may encode any of the following designs: (1) the heavy chain of an antibody, (2) the light chain of an antibody, (3) the heavy and light chain of the antibody, (4) the heavy chain and light chain separated by a linker, (5) the VH1, CH1, CH2, CH3 domains, a linker and the light chain or (6) the VH1, CH1, CH2, CH3 domains, VL region, and the light chain. Any of these designs may also comprise optional linkers between any domain and/or region. The polynucleotides of the present invention may be engineered to produce any standard class of immunoglobulins using an antibody described herein or any of its component parts as a starting molecule.


Antibodies Used for Immunotherapy


In some embodiments, payloads of the present invention may be antibodies, fragments and variants thereof which are specific to tumor specific antigens (TSAs) and tumor associated antigens (TAAs). Antibodies circulate throughout the body until they find and attach to the TSA/TAA. Once attached, they recruit other parts of the immune system, increasing ADCC (antibody dependent cell-mediated cytotoxicity) and ADCP (antibody dependent cell-mediated phagocytosis) to destroy tumor cells. As used herein, the term “tumor specific antigen (TSA)” means an antigenic substance produced in tumor cells, which can trigger an anti-tumor immune response in a host organism. In one embodiment, a TSA may be a tumor neoantigen. The tumor antigen specific antibody mediates complement-dependent cytotoxic response against tumor cells expressing the same antigen.


Of particular interest is a TSA that is a breast cancer antigen, an ovarian cancer antigen, a prostate cancer antigen, a cervical cancer antigen, a pancreatic carcinoma antigen, a lung cancer antigen, a bladder cancer antigen, a colon cancer antigen, a testicular cancer antigen, a glioblastoma cancer antigen, an antigen associated with a B cell malignancy, an antigen associated with multiple myeloma, an antigen associated with non-Hodgkins lymphoma, or an antigen associated with chronic lymphocytic leukemia.


Suitable antibodies which can immunoactively bind to a TSA may include, but are not limited to, those specific to 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CD S, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-KB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In one embodiment, the payload of the present invention may be an anti-CD47 antibody. CD47 is a ubiquitously expressed immunoregulatory protein that prevents phagocytic removal of healthy cells by the immune system. CD47 is expressed on the surface of many types of cancer cells, thereby disrupting anti-cancer immune responses. CD 47 is also involved in various other important cellular processes, such as angiogenesis, cancer cell death and regulation of T-cell immunity. Anti-CD47 antibodies in several pre-clinical studies have shown therapeutic benefit in solid cancers and most notably B-cell malignancies.


In one embodiment, the payload of the present invention may be an anti-CD22 antibody. As a non-limiting example, the anti-CD22 antibody is any of the antibodies, fragments or variants thereof described in U.S. Patent Publication No. US20150086562. The anti-CD22 antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO: 49-64 in US20150086562, and/or a light chain variable region having the amino acid sequence of SEQ ID NO: 17-32 in US20150086562; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present invention may be antibodies, fragments and variants thereof which can specifically block an immunoinhibitory signal. These blocking antibodies (also referred to as antagonists) bind to co-inhibitory receptors, therefore blocking their signal transduction. As non-limiting examples, the blocking antibodies may be specific to CTLA-4, PD-1, and PD-L1/L2. In one embodiment, the anti-CTLA-4 antibody is Ipilimumab. In another embodiment, the anti-PD-1 antibody is Nivolumab. Antibodies that bind to PD-L1 and enhance T cell immune response may include antibodies taught in U.S. patent publication NO.: 2016/0108123; the contents of which are incorporated by reference herein in their entirety. Other inhibitory immunomodulatory targets may include B7-H3, which can increase cancer cell metabolism such as glucose uptakes and lactate production (Lim et al., Cancer Res., 2016, 76(8): 1-12). Antibodies that block B7-H3 are disclosed in U.S. Pat. No. 9,150,656; the contents of which are incorporated by reference herein in their entirety.


In one aspect, payloads of the present invention may be antagonistic antibodies specific to VSIG8 (v-set and immunoglobulin domain containing 8) comprising the amino acid sequences of SEQ ID NOs: 1, 2 and 3 in U.S. patent publication NO.: US2016/0159927; the contents of which are incorporated by reference herein in their entirety. Antagonistic antibodies may also include a chimeric IL2 receptor (CD25) antibody (Basiliximab) (U.S. Patent Publication NO.: 20080171017; the contents of which are incorporated herein by reference in their entirety), and antagonizing antibodies which bind to human TIM-3 (U.S. patent publication NO.: US2015/0218274; the contents of which are incorporated herein by reference in their entirety), BTLA, VISTA and LAG-3 (See, e.g., U.S. patent publication NO.: US2015/0259420; the contents of which are incorporated herein by reference in their entirety).


In one aspect, the payload of the present invention may be an anti-CSF-IR antibody, which is characterized in binding to the dimerization domains D4 to D5 of the extracellular domain of human CSF-IR. This antibody inhibitor can inhibit cell proliferation and survival in CSF-IR ligand-dependent and CSF-1 ligand-independent CSF-IR expressing tumor cells, monocytes and infiltrating macrophages (See, e.g., International Patent Publication NO.: WO2013/132044; the contents of which are incorporated herein by reference in their entirety).


In another aspect, the payload of the present invention may be an antagonistic antibody against CXCL12. The anti-CXCL12 antibody blocks the interaction of CXCL12 with its receptor CXCR4, thereby inhibiting CXCR4 signaling. The CXCR4 signaling inhibitor increases the proximity or the frequency of T-cells among cancer cells in the tumor tissue (See, International Patent Publication NO.: WO 2015/019284; the contents of which are incorporated by reference herein in their entirety).


In some embodiments, payloads of the present invention may be agonistic antibodies, fragments and variants thereof, which trigger immune responses, including antibodies specific to co-stimulatory molecules, including but not limited to 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.


In one embodiment, the payload of the present invention may be an agonistic CD40 antibody. In another embodiment, the agonistic antibody specific to 4-1BB (CD137) may be Uremab, a fully human IgG4 monoclonal antibody which specifically binds to and activates 4-1BB (CD137) expressing immune cells, stimulating an immune response, in particular a cytotoxic T cell response, against tumor cells; or Utomilumab, a fully human IgG2 monoclonal antibody; or anti-CD137 antibody described in International Patent Publication NO.: WO2006/088447; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the payload of the present invention may be an antagonistic antibody against Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances T regulatory cell function. AREG is produced in a phenotypically and functionally distinct subtype of CD4+ regulatory T cells (Tregs) which have a distinct T cell receptor (TCR) repertoire and express the IL33R. AREG promotes immune suppression in the tumor environment. The anti-Amphiregulin antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO.: 2,4, and 12 in U.S. Pat. No. 7,223,393, and/or a light chain variable region having the amino acid sequence of SEQ ID NO.: 3, 5, and 14 in U.S. Pat. No. 7,223,393; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, antibodies specific to co-inhibitory molecules and co-stimulatory molecules may be secreted scFv antibodies.


In some embodiments, antibody payloads of the present invention may be T-cell bispecific antibodies (e.g. T cell-engaging BiTE™ antibodies CDS-CD 19, CD3-EpCam, and CD3-EGFR). Other bispecific antibodies used for immunotherapy may also be included as payloads of the present invention, for example, bispecific anti-TNF-α and anti-IL6 antibody (EP3062818), bispecific antibodies to an immune cell antigen and TAG-72 (WO2016/089610), anti-ovarian and D3 bispecific antibodies in U.S. Pat. No. 7,262,276; bispecific antibodies against CD133 and CD3 in WO2014/128185; bispecific antibodies against CTLA-4 and PD-1 discussed in US2016/0145355, bispecific antibodies against CD3 and CD19 disclosed in WO2015/006749, and U.S. Pat. Nos. 7,635,472; 7,112,324; bispecific antibodies against Her2 and CD3 in US2014/0170149; bispecific antibodies against CD19 and CD16 in US2005/0089519; the contents of each of which are incorporated by reference herein in their entirety.


In some embodiments, antibodies with decreased affinity may be selected over antibodies with high affinity for the same antigen. Such low affinity antibodies are more effective in discriminating tumors which express high levels of the antigen and normal tissues that express the same antigen at lower levels, while maintaining similar antitumor response.


In some embodiments, the targeting moieties of the present invention may include variable heavy chain and variable light chain comprising the amino acid sequences selected from those in Table 10.









TABLE 10







Variable Heavy and Light Chain Sequences











Antibody
SEQ



Target
chain
ID NO
Source













5T4
VH
539
SEQ ID NO. 2 in WO2016022939


5T4
VH
540
SEQ ID NO. 4 in WO2016022939


AGR2
VH
541
SEQ ID NO. 10 in WO2016040321


AGR2
VH
542
SEQ ID NO. 18 in WO2016040321


ALK
VH
543
SEQ ID NO. 11 in WO2015069922


ALK
VH
544
SEQ ID NO. 13 in WO2015069922


ALK
VH
545
SEQ ID NO. 15 in WO2015069922


ALK
VH
546
SEQ ID NO. 7 in WO2015069922


ALK
VH
547
SEQ ID NO. 9 in WO2015069922


ALK
VH
548
SEQ ID NO: 1 in US20160280798A1


ALK
VH
549
SEQ ID NO: 11 in US20160280798A1


ALK
VH
550
SEQ ID NO: 13 in US20160280798A1


ALK
VH
551
SEQ ID NO: 15 in US20160280798A1


ALK
VH
552
SEQ ID NO: 3 in US20160280798A1


ALK
VH
553
SEQ ID NO: 5 in US20160280798A1


ALK
VH
554
SEQ ID NO: 7 in US20160280798A1


ALK
VH
555
SEQ ID NO: 9 in US20160280798A1


ALK
VH
556
SEQ ID NO. 1 in WO2015069922


ALK
VH
557
SEQ ID NO. 3 in WO2015069922


ALK
VH
558
SEQ ID NO. 5 in WO2015069922


AMC
VH
559
SEQ ID NO. 17 in WO2016161390


AMC
VH
560
SEQ ID NO. 18 in WO2016161390


AMC
VH
561
SEQ ID NO. 19 in WO2016161390


AMC
VH
562
SEQ ID NO. 20 in WO2016161390


AMC
VH
563
SEQ ID NO. 21 in WO2016161390


AMC
VH
564
SEQ ID NO. 22 in WO2016161390


AMC
VH
565
SEQ ID NO. 23 in WO2016161390


AMC
VH
566
SEQ ID NO. 24 in WO2016161390


AMC
VH
567
SEQ ID NO. 25 in WO2016161390


AMC
VH
568
SEQ ID NO. 26 in WO2016161390


ANG2
VH
569
SEQ ID NO. 1 in WO2015091655


ANG2
VH
570
SEQ ID NO. 3 in WO2015091655


APCDD1
VH
571
SEQ ID NO: 10 in WO2012019061


APCDD1
VH
572
SEQ ID NO: 102 in WO2012019061


APCDD1
VH
573
SEQ ID NO: 106 in WO2012019061


APCDD1
VH
574
SEQ ID NO: 110 in WO2012019061


APCDD1
VH
575
SEQ ID NO: 114 in WO2012019061


APCDD1
VH
576
SEQ ID NO: 118 in WO2012019061


APCDD1
VH
577
SEQ ID NO: 122 in WO2012019061


APCDD1
VH
578
SEQ ID NO: 126 in WO2012019061


APCDD1
VH
579
SEQ ID NO: 130 in WO2012019061


APCDD1
VH
580
SEQ ID NO: 134 in WO2012019061


APCDD1
VH
581
SEQ ID NO: 14 in WO2012019061


APCDD1
VH
582
SEQ ID NO: 6 in WO2012019061


APCDD1
VH
583
SEQ ID NO: 98 in WO2012019061


APRIL
VH
584
SEQ ID NO. 12 in US20160264674


APRIL
VH
585
SEQ ID NO. 14 in US20160264674


APRIL
VH
586
SEQ ID NO. 16 in US20160264674


APRIL
VH
587
SEQ ID NO. 18 in US20160264674


APRIL
VH
588
SEQ ID NO. 3 in US20160264674


APRIL
VH
589
SEQ ID NO. 32 in US20160264674


APRIL
VH
590
SEQ ID NO. 34 in US20160264674


APRIL
VH
591
SEQ ID NO. 36 in US20160264674


APRIL
VH
592
SEQ ID NO. 38 in US20160264674


APRIL
VH
593
SEQ ID NO. 40 in US20160264674


APRIL
VH
594
SEQ ID NO. 42 in US20160264674


APRIL
VH
595
SEQ ID NO. 44 in US20160264674


APRIL
VH
596
SEQ ID NO. 46 in US20160264674


APRIL
VH
597
SEQ ID NO. 48 in US20160264674


APRIL
VH
598
SEQ ID NO. 52 in US20160264674


AXL
VH
599
SEQ ID NO. 21 in WO2016097370


AXL
VH
600
SEQ ID NO. 3 in WO2016097370


AXL
VH
601
SEQ ID NO. 45 in WO2016097370


B2MG
VH
602
SEQ ID NO: 28 in WO2016126213A1


B7H1
VH
603
SEQ ID NO: 12 in US20130034559


B7H1
VH
604
SEQ ID NO: 32 in US20130034559


B7H1
VH
605
SEQ ID NO: 42 in US20130034559


B7H1
VH
606
SEQ ID NO: 52 in US20130034559


B7H1
VH
607
SEQ ID NO: 72 in US20130034559


B7H1
VH
608
SEQ ID NO: 2 in US20130034559


B7H1
VH
609
SEQ ID NO: 62 in US20130034559


B7H3
VH
610
SEQ ID NO. 10 in WO2016033225


B7H3
VH
611
SEQ ID NO. 11 in WO2016033225


B7H3
VH
612
SEQ ID NO. 12 in WO2016033225


B7H3
VH
613
SEQ ID NO. 13 in WO2016033225


B7H3
VH
614
SEQ ID NO. 14 in WO2016033225


B7H3
VH
615
SEQ ID NO. 15 in WO2016033225


B7H3
VH
616
SEQ ID NO. 16 in WO2016033225


B7H3
VH
617
SEQ ID NO. 9 in WO2016033225


B7H3(CD276)
VH
618
SEQ ID NO. 17 in WO2016044383


B7H3(CD276)
VH
619
SEQ ID NO. 26 in WO2016044383


B7H3(CD276)
VH
620
SEQ ID NO. 7 in WO2016044383


B7H4
VH
621
SEQ ID NO. 100 in US20160159910


B7H4
VH
622
SEQ ID NO. 101 in US20160159910


B7H4
VH
623
SEQ ID NO. 102 in US20160159910


B7H4
VH
624
SEQ ID NO. 103 in US20160159910


B7H4
VH
625
SEQ ID NO. 107 in US20160159910


B7H4
VH
626
SEQ ID NO. 108 in US20160159910


B7H4
VH
627
SEQ ID NO. 109 in US20160159910


B7H4
VH
628
SEQ ID NO. 110 in US20160159910


B7H4
VH
629
SEQ ID NO. 111 in US20160159910


B7H4
VH
630
SEQ ID NO. 112 in US20160159910


B7H4
VH
631
SEQ ID NO. 113 in US20160159910


B7H4
VH
632
SEQ ID NO. 114 in US20160159910


B7H4
VH
633
SEQ ID NO. 12 in US20160159910


B7H4
VH
634
SEQ ID NO. 127 in US20160159910


B7H4
VH
635
SEQ ID NO. 13 in WO2016160620


B7H4
VH
636
SEQ ID NO. 130 in US20160159910


B7H4
VH
637
SEQ ID NO. 131 in US20160159910


B7H4
VH
638
SEQ ID NO. 132 in US20160159910


B7H4
VH
639
SEQ ID NO. 133 in US20160159910


B7H4
VH
640
SEQ ID NO. 137 in US20160159910


B7H4
VH
641
SEQ ID NO. 2 in US20160159910


B7H4
VH
642
SEQ ID NO. 20 in US20160159910


B7H4
VH
643
SEQ ID NO. 28 in US20160159910


B7H4
VH
644
SEQ ID NO. 36 in US20160159910


B7H4
VH
645
SEQ ID NO. 37 in US20160159910


B7H4
VH
646
SEQ ID NO. 38 in US20160159910


B7H4
VH
647
SEQ ID NO. 4 in US20160159910


B7H4
VH
648
SEQ ID NO. 56 in US20160159910


B7H4
VH
649
SEQ ID NO. 99 in US20160159910


B7H4
VH
650
SEQ ID NO. 144 in US20160159910


B7H4
VH
651
SEQ ID NO. 15 in WO2016160620


B7H4
VH
652
SEQ ID NO. 17 in WO2016160620


BAT1
VH
653
SEQ ID NO. 5 in WO2013014668


BAT1
VH
654
SEQ ID NO. 6 in WO2013014668


BAT1
VH
655
SEQ ID NO. 7 in WO2013014668


BAT1
VH
656
SEQ ID NO. 8 in WO2013014668


BAT1
VH
657
SEQ ID NO. 9 in WO2013014668


BCMA
VH
658
SEQ ID NO: 26 in WO2016168773A3


BCMA
VH
659
SEQ ID NO: 142 in WO2016168595A1


BCMA
VH
660
SEQ ID NO: 148 in WO2016168595A1


BCMA
VH
661
SEQ ID NO: 154 in WO2016168595A1


BCMA
VH
662
SEQ ID NO: 160 in WO2016168595A1


BCMA
VH
663
SEQ ID NO: 166 in WO2016168595A1


BCMA
VH
664
SEQ ID NO: 172 in WO2016168595A1


BCMA
VH
665
SEQ ID NO: 178 in WO2016168595A1


BCMA
VH
666
SEQ ID NO: 184 in WO2016168595A1


BCMA
VH
667
SEQ ID NO: 190 in WO2016168595A1


BCMA
VH
668
SEQ ID NO: 196 in WO2016168595A1


BCMA
VH
669
SEQ ID NO: 202 in WO2016168595A1


BCMA
VH
670
SEQ ID NO: 208 in WO2016168595A1


BCMA
VH
671
SEQ ID NO: 214 in WO2016168595A1


BCMA
VH
672
SEQ ID NO: 220 in WO2016168595A1


BCMA
VH
673
SEQ ID NO: 226 in WO2016168595A1


BCMA
VH
674
SEQ ID NO: 232 in WO2016168595A1


BCMA
VH
675
SEQ ID NO: 238 in WO2016168595A1


BCMA
VH
676
SEQ ID NO: 244 in WO2016168595A1


BCMA
VH
677
SEQ ID NO: 250 in WO2016168595A1


BCMA
VH
678
SEQ ID NO: 256 in WO2016168595A1


BCMA
VH
679
SEQ ID NO: 262 in WO2016168595A1


BCMA
VH
680
SEQ ID NO: 268 in WO2016168595A1


BCMA
VH
681
SEQ ID NO: 274 in WO2016168595A1


BCMA
VH
682
SEQ ID NO: 280 in WO2016168595A1


BCMA
VH
683
SEQ ID NO: 286 in WO2016168595A1


BCMA
VH
684
SEQ ID NO: 292 in WO2016168595A1


BCMA
VH
685
SEQ ID NO: 298 in WO2016168595A1


BCMA
VH
686
SEQ ID NO: 304 in WO2016168595A1


BCMA
VH
687
SEQ ID NO: 310 in WO2016168595A1


BCMA
VH
688
SEQ ID NO: 316 in WO2016168595A1


BCMA
VH
689
SEQ ID NO: 322 in WO2016168595A1


BCMA
VH
690
SEQ ID NO: 328 in WO2016168595A1


BCMA
VH
691
SEQ ID NO: 334 in WO2016168595A1


BCMA
VH
692
SEQ ID NO: 340 in WO2016168595A1


BCMA
VH
693
SEQ ID NO: 346 in WO2016168595A1


BCMA
VH
694
SEQ ID NO: 352 in WO2016168595A1


BCMA
VH
695
SEQ ID NO: 8 in WO2016094304A3


BCMA
VH
696
SEQ ID NO. 171 WO2016014565


BCMA
VH
697
SEQ ID NO. 172 WO2016014565


BCMA
VH
698
SEQ ID NO. 173 WO2016014565


BCMA
VH
699
SEQ ID NO. 174 WO2016014565


BCMA
VH
700
SEQ ID NO. 175 WO2016014565


BCMA
VH
701
SEQ ID NO. 176 WO2016014565


BCMA
VH
702
SEQ ID NO. 177 WO2016014565


BCMA
VH
703
SEQ ID NO. 178 WO2016014565


BCMA
VH
704
SEQ ID NO. 179 WO2016014565


BCMA
VH
705
SEQ ID NO. 180 WO2016014565


BCMA
VH
706
SEQ ID NO. 181 WO2016014565


BCMA
VH
707
SEQ ID NO. 182 WO2016014565


BCMA
VH
708
SEQ ID NO. 183 WO2016014565


BCMA
VH
709
SEQ ID NO. 184 WO2016014565


BCMA
VH
710
SEQ ID NO. 185 WO2016014565


BCMA
VH
711
SEQ ID NO. 186 WO2016014565


BCMA
VH
712
SEQ ID NO. 187 WO2016014565


BCMA
VH
713
SEQ ID NO. 190 WO2016014565


BCMA
VH
714
SEQ ID NO. 255 WO2016014565


BCMA
VH
715
SEQ ID NO. 257 WO2016014565


BCMA
VH
716
SEQ ID NO. 258 WO2016014565


BCMA
VH
717
SEQ ID NO. 69WO2016014565


BCMA
VH
718
SEQ ID NO. 70WO2016014565


BCMA
VH
719
SEQ ID NO. 71 WO2016014565


BCMA
VH
720
SEQ ID NO. 72 WO2016014565


BCMA
VH
721
SEQ ID NO. 73 WO2016014565


BCMA
VH
722
SEQ ID NO. 74 WO2016014565


BCMA
VH
723
SEQ ID NO. 75 WO2016014565


BCMA
VH
724
SEQ ID NO. 76 WO2016014565


BCMA
VH
725
SEQ ID NO. 77 WO2016014565


BCMA
VH
726
SEQ ID NO. 78 WO2016014565


BCMA
VH
727
SEQ ID NO. 79 WO2016014565


BCMA
VH
728
SEQ ID NO. 80 WO2016014565


BCMA
VH
729
SEQ ID NO. 81 WO2016014565


BCMA
VH
730
SEQ ID NO: 38 in EP3057994A1


BCMA
VH
731
SEQ ID NO: 55 in WO2016187349A1


BCMA
VH
732
SEQ ID NO. 1 in WO2016090320


BCMA
VH
733
SEQ ID NO. 10 in WO2016014789


BCMA
VH
734
SEQ ID NO. 101 in WO2016120216


BCMA
VH
735
SEQ ID NO. 11 in WO2015158671A1


BCMA
VH
736
SEQ ID NO. 11 in WO2016014789


BCMA
VH
737
SEQ ID NO. 12 in WO2016014789


BCMA
VH
738
SEQ ID NO. 13 in WO2016014789


BCMA
VH
739
SEQ ID NO. 13 in WO2016090320


BCMA
VH
740
SEQ ID NO. 14 in WO2016014789


BCMA
VH
741
SEQ ID NO. 17 in WO2015158671A1


BCMA
VH
742
SEQ ID NO. 17 in WO2016090320


BCMA
VH
743
SEQ ID NO. 174 in WO2016120216


BCMA
VH
744
SEQ ID NO. 21 in WO2016090320


BCMA
VH
745
SEQ ID NO. 25 in WO2016090320


BCMA
VH
746
SEQ ID NO. 29 in WO2016090320


BCMA
VH
747
SEQ ID NO. 33 in WO2016090320


BCMA
VH
748
SEQ ID NO. 37 in WO2016090320


BCMA
VH
749
SEQ ID NO. 41 in WO2016090320


BCMA
VH
750
SEQ ID NO. 45 in WO2016090320


BCMA
VH
751
SEQ ID NO. 49 in WO2016090320


BCMA
VH
752
SEQ ID NO. 5 in WO2016090320


BCMA
VH
753
SEQ ID NO. 53 in WO2016090320


BCMA
VH
754
SEQ ID NO. 57 in WO2016090320


BCMA
VH
755
SEQ ID NO. 61 in WO2016090320


BCMA
VH
756
SEQ ID NO. 65 in WO2016090320


BCMA
VH
757
SEQ ID NO. 9 in WO2016090320


BCMA
VH
758
SEQ ID NO. 95 in WO2016120216


BCMA
VH
759
SEQ ID NO. 97 in WO2016120216


BCMA
VH
760
SEQ ID NO. 99 in WO2016120216


BCMA
VH
761
SEQ ID NO: 15 in WO2016168766A1


BMPR1A
VH
762
SEQ ID NO. 12 in WO2011116212


CA19.9
VH
763
SEQ ID NO: 117 in US20160333114A1


Campath1
VH
764
SEQ ID NO: 34 in US20160333114A1


CD105
VH
765
SEQ ID NO. 13 in WO2014039682


CD105
VH
766
SEQ ID NO. 14 in WO2014039682


CD105
VH
767
SEQ ID NO. 16 in WO2014039682


CD123
VH
768
SEQ ID NO. 11 in WO2015140268A1


CD123
VH
769
SEQ ID NO. 113 in WO2016120216


CD123
VH
770
SEQ ID NO. 115 in WO2016120216


CD123
VH
771
SEQ ID NO. 12 in WO2016120220


CD123
VH
772
SEQ ID NO. 13 in WO2015140268A1


CD123
VH
773
SEQ ID NO. 14 in WO2015140268A1


CD123
VH
774
SEQ ID NO. 21 in WO2015140268A1


CD123
VH
775
SEQ ID NO. 24 in WO2016120220


CD123
VH
776
SEQ ID NO. 25 in WO2016120220


CD123
VH
777
SEQ ID NO. 26 in WO2016120220


CD123
VH
778
SEQ ID NO. 27 in WO2016120220


CD123
VH
779
SEQ ID NO. 28 in WO2016120220


CD123
VH
780
SEQ ID NO. 29 in WO2016120220


CD123
VH
781
SEQ ID NO. 30 in WO2016120220


CD123
VH
782
SEQ ID NO. 57 in WO2016120216


CD123
VH
783
SEQ ID NO. 59 in WO2016120216


CD123
VH
784
SEQ ID NO. 63 in WO2016120216


CD123
VH
785
SEQ ID NO: 216 in WO2016028896


CD123
VH
786
SEQ ID NO: 217 in WO2016028896


CD123
VH
787
SEQ ID NO: 218 in WO2016028896


CD123
VH
788
SEQ ID NO: 219 in WO2016028896


CD123
VH
789
SEQ ID NO: 274 in WO2016028896


CD123
VH
790
SEQ ID NO: 9 in WO2016120220


CD123
VH
791
SEQ ID NO: 9 in WO2016120220


CD123
VH
792
SEQ ID NO: 9 in WO2016120220


CD123
VH
793
SEQ ID NO: 9 in WO2016120220


CD148
VH
794
SEQ ID NO 10 in WO2005118643


CD148
VH
795
SEQ ID NO 14 in WO2005118643


CD148
VH
796
SEQ ID NO 18 in WO2005118643


CD148
VH
797
SEQ ID NO 2 in WO2005118643


CD148
VH
798
SEQ ID NO 22 in WO2005118643


CD148
VH
799
SEQ ID NO 26 in WO2005118643


CD148
VH
800
SEQ ID NO 30 in WO2005118643


CD148
VH
801
SEQ ID NO 6 in WO2005118643


CD16
VH
802
SEQ ID NO. 25 in WO2015158868


CD19
VH
803
SEQ ID NO: 28 in WO2016168773A3


CD19
VH
804
SEQ ID NO: 29 in WO2016168773A3


CD19
VH
805
SEQ ID NO: 32 in WO2016168773A3


CD19
VH
806
SEQ ID NO: 33 in WO2016168773A3


CD19
VH
807
SEQ ID NO: 34 in WO2016168773A3


CD19
VH
808
SEQ ID NO: 35 in WO2016168773A3


CD19
VH
809
SEQ ID NO: 51 in WO2016187349A1


CD19
VH
810
SEQ ID NO: 20 in US20160039942


CD19
VH
811
SEQ ID NO. 1 in WO2014184143


CD19
VH
812
SEQ ID NO. 5 in US20160145337A1


CD19
VH
813
SEQ ID NO: 15 US20160319020


CD19
VH
814
SEQ ID NO: 166 US20160152723


CD19
VH
815
SEQ ID NO: 167 US20160152723


CD19
VH
816
SEQ ID NO: 168 US20160152723


CD19
VH
817
SEQ ID NO: 17 in EP3057991A1


CD19
VH
818
SEQ ID NO: 172 US20160152723


CD19
VH
819
SEQ ID NO: 176 US20160152723


CD19
VH
820
SEQ ID NO: 177 US20160152723


CD19
VH
821
SEQ ID NO: 181 US20160152723


CD19
VH
822
SEQ ID NO: 183 US20160152723


CD19
VH
823
SEQ ID NO: 184 US20160152723


CD19
VH
824
SEQ ID NO: 185 US20160152723


CD19
VH
825
SEQ ID NO: 62 US20160152723


CD19
VH
826
SEQ ID NO: 62 in WO2016097231


CD19
VH
827
SEQ ID NO. 12 in WO2016134284


CD19
VH
828
SEQ ID NO: 111 in US20160333114A1


CD19
VH
829
SEQ ID NO: 113 in US20160333114A1


CD19
VH
830
SEQ ID NO: 33 in EP3057994A1


CD19
VH
831
SEQ ID NO: 34 in EP3057994A1


CD19
VH
832
SEQ ID NO: 35 in EP3057994A1


CD2
VH
833
SEQ ID NO. 103 in WO2016122701


CD2
VH
834
SEQ ID NO. 117 in WO2016122701


CD2
VH
835
SEQ ID NO. 119 in WO2016122701


CD20
VH
836
SEQ ID NO: 45 in WO2016097231


CD20
VH
837
SEQ ID NO. 11 in WO2017004091


CD20
VH
838
SEQ ID NO. 13 in WO2017004091


CD20
VH
839
SEQ ID NO. 14 in WO2017004091


CD20
VH
840
SEQ ID NO. 15 in WO2017004091


CD20
VH
841
SEQ ID NO. 16 in WO2017004091


CD20
VH
842
SEQ ID NO. 17 in WO2017004091


CD20
VH
843
SEQ ID NO. 18 in WO2017004091


CD20
VH
844
SEQ ID NO. 19 in WO2017004091


CD20
VH
845
SEQ ID NO. 20 in WO2017004091


CD20
VH
846
SEQ ID NO. 21 in WO2017004091


CD20
VH
847
SEQ ID NO. 22 in WO2017004091


CD20
VH
848
SEQ ID NO. 23 in WO2017004091


CD20
VH
849
SEQ ID NO. 24 in WO2017004091


CD20
VH
850
SEQ ID NO. 25 in WO2017004091


CD20
VH
851
SEQ ID NO. 26 in WO2017004091


CD20
VH
852
SEQ ID NO. 27 in WO2017004091


CD20
VH
853
SEQ ID NO. 28 in WO2017004091


CD20
VH
854
SEQ ID NO. 29 in WO2017004091


CD20
VH
855
SEQ ID NO. 30 in WO2017004091


CD20
VH
856
SEQ ID NO. 31 in WO2017004091


CD20
VH
857
SEQ ID NO. 32 in WO2017004091


CD20
VH
858
SEQ ID NO. 33 in WO2017004091


CD20
VH
859
SEQ ID NO. 7 in WO2017004091


CD20
VH
860
SEQ ID NO. 9 in WO2017004091


CD20(Ofatumumab)
VH
861
SEQ ID NO: 54 in US20160333114A1


CD22
VH
862
SEQ ID NO: 10 in US20150239974


CD22
VH
863
SEQ ID NO: 11 in US20150239974


CD22
VH
864
SEQ ID NO: 12 in US20150239974


CD22
VH
865
SEQ ID NO: 7 in US20150239974


CD22
VH
866
SEQ ID NO: 9 in US20150239974


CD22
VH
867
SEQ ID NO. 8 in US20150299317


CD22
VH
868
SEQ ID NO: 201 in WO2016164731A2


CD22
VH
869
SEQ ID NO: 671 in WO2016164731A41


CD22
VH
870
SEQ ID NO: 672 in WO2016164731A42


CD22
VH
871
SEQ ID NO: 673 in WO2016164731A43


CD22
VH
872
SEQ ID NO: 676 in WO2016164731A46


CD22
VH
873
SEQ ID NO: 678 in WO2016164731A48


CD22
VH
874
SEQ ID NO: 679 in WO2016164731A49


CD22
VH
875
SEQ ID NO: 680 in WO2016164731A50


CD22
VH
876
SEQ ID NO: 700 in WO2016164731A2


CD22
VH
877
SEQ ID NO: 701 in WO2016164731A3


CD22
VH
878
SEQ ID NO: 702 in WO2016164731A4


CD22
VH
879
SEQ ID NO: 703 in WO2016164731A5


CD22
VH
880
SEQ ID NO: 704 in WO2016164731A6


CD22
VH
881
SEQ ID NO: 705 in WO2016164731A7


CD22
VH
882
SEQ ID NO: 706 in WO2016164731A8


CD22
VH
883
SEQ ID NO: 707 in WO2016164731A9


CD22
VH
884
SEQ ID NO: 708 in WO2016164731A10


CD22
VH
885
SEQ ID NO: 709 in WO2016164731A11


CD22
VH
886
SEQ ID NO: 711 in WO2016164731A13


CD22
VH
887
SEQ ID NO: 712 in WO2016164731A14


CD22
VH
888
SEQ ID NO: 713 in WO2016164731A15


CD22
VH
889
SEQ ID NO: 714 in WO2016164731A16


CD22
VH
890
SEQ ID NO: 715 in WO2016164731A17


CD22
VH
891
SEQ ID NO: 716 in WO2016164731A18


CD22
VH
892
SEQ ID NO: 717 in WO2016164731A19


CD22
VH
893
SEQ ID NO: 718 in WO2016164731A20


CD22
VH
894
SEQ ID NO: 719 in WO2016164731A21


CD22
VH
895
SEQ ID NO: 720 in WO2016164731A22


CD22
VH
896
SEQ ID NO: 721 in WO2016164731A23


CD22
VH
897
SEQ ID NO: 722 in WO2016164731A24


CD22
VH
898
SEQ ID NO: 723 in WO2016164731A25


CD22
VH
899
SEQ ID NO: 724 in WO2016164731A26


CD22
VH
900
SEQ ID NO: 725 in WO2016164731A27


CD22
VH
901
SEQ ID NO: 726 in WO2016164731A28


CD22
VH
902
SEQ ID NO: 727 in WO2016164731A29


CD22
VH
903
SEQ ID NO: 728 in WO2016164731A30


CD22
VH
904
SEQ ID NO: 729 in WO2016164731A31


CD22
VH
905
SEQ ID NO: 730 in WO2016164731A32


CD22
VH
906
SEQ ID NO: 731 in WO2016164731A33


CD22
VH
907
SEQ ID NO: 732 in WO2016164731A34


CD22
VH
908
SEQ ID NO: 733 in WO2016164731A35


CD22
VH
909
SEQ ID NO: 734 in WO2016164731A36


CD22
VH
910
SEQ ID NO: 735 in WO2016164731A37


CD22
VH
911
SEQ ID NO: 736 in WO2016164731A38


CD22
VH
912
SEQ ID NO: 737 in WO2016164731A39


CD22
VH
913
SEQ ID NO: 738 in WO2016164731A40


CD276
VH
914
SEQ ID NO. 17 in US20160053017


CD276
VH
915
SEQ ID NO. 26 in US20160053017


CD276
VH
916
SEQ ID NO. 7 in US20160053017


CD3
VH
917
SEQ ID NO. 108 in WO2016122701


CD3
VH
918
SEQ ID NO. 112 in WO2016122701


CD3
VH
919
SEQ ID NO. 115 in WO2016122701


CD3
VH
920
SEQ ID NO: 29 in WO2014144722A2


CD3
VH
921
SEQ ID NO: 12 in WO2016126213A1


CD30
VH
922
SEQ ID NO. 14 in WO2016134284


CD30
VH
923
SEQ ID NO. 16 in WO2016134284


CD324
VH
924
SEQ ID NO. 21 in U.S. Pat. No. 9,534,058


CD324
VH
925
SEQ ID NO. 23 in U.S. Pat. No. 9,534,058


CD324
VH
926
SEQ ID NO. 25 in U.S. Pat. No. 9,534,058


CD324
VH
927
SEQ ID NO. 27 in U.S. Pat. No. 9,534,058


CD324
VH
928
SEQ ID NO. 29 in U.S. Pat. No. 9,534,058


CD324
VH
929
SEQ ID NO. 31 in U.S. Pat. No. 9,534,058


CD324
VH
930
SEQ ID NO. 33 in U.S. Pat. No. 9,534,058


CD324
VH
931
SEQ ID NO. 35 in U.S. Pat. No. 9,534,058


CD324
VH
932
SEQ ID NO. 37 in U.S. Pat. No. 9,534,058


CD324
VH
933
SEQ ID NO. 39 in U.S. Pat. No. 9,534,058


CD324
VH
934
SEQ ID NO. 41 in U.S. Pat. No. 9,534,058


CD324
VH
935
SEQ ID NO. 43 in U.S. Pat. No. 9,534,058


CD324
VH
936
SEQ ID NO. 45 in U.S. Pat. No. 9,534,058


CD324
VH
937
SEQ ID NO. 47 in U.S. Pat. No. 9,534,058


CD324
VH
938
SEQ ID NO. 49 in U.S. Pat. No. 9,534,058


CD324
VH
939
SEQ ID NO. 51 in U.S. Pat. No. 9,534,058


CD324
VH
940
SEQ ID NO. 53 in U.S. Pat. No. 9,534,058


CD324
VH
941
SEQ ID NO. 55 in U.S. Pat. No. 9,534,058


CD324
VH
942
SEQ ID NO. 57 in U.S. Pat. No. 9,534,058


CD324
VH
943
SEQ ID NO. 59 in U.S. Pat. No. 9,534,058


CD324
VH
944
SEQ ID NO. 61 in U.S. Pat. No. 9,534,058


CD324
VH
945
SEQ ID NO. 63 in U.S. Pat. No. 9,534,058


CD324
VH
946
SEQ ID NO. 65 in U.S. Pat. No. 9,534,058


CD324
VH
947
SEQ ID NO. 67 in U.S. Pat. No. 9,534,058


CD324
VH
948
SEQ ID NO. 69 in U.S. Pat. No. 9,534,058


CD324
VH
949
SEQ ID NO. 71 in U.S. Pat. No. 9,534,058


CD32B
VH
950
SEQ ID NO. 127 in WO2016122701


CD33
VH
951
SEQ ID NO. 11 in WO2015150526A2


CD33
VH
952
SEQ ID NO. 13 in WO2015150526A2


CD33
VH
953
SEQ ID NO. 15 in WO2015150526A2


CD33
VH
954
SEQ ID NO. 17 in WO2015150526A2


CD33
VH
955
SEQ ID NO. 57 in WO2016014576


CD33
VH
956
SEQ ID NO. 58 in WO2016014576


CD33
VH
957
SEQ ID NO. 59 in WO2016014576


CD33
VH
958
SEQ ID NO. 60 in WO2016014576


CD33
VH
959
SEQ ID NO. 61 in WO2016014576


CD33
VH
960
SEQ ID NO. 62 in WO2016014576


CD33
VH
961
SEQ ID NO. 63 in WO2016014576


CD33
VH
962
SEQ ID NO. 64 in WO2016014576


CD33
VH
963
SEQ ID NO. 65 in WO2016014576


CD38
VH
964
SEQ ID NO. 2 in WO2009080830


CD38
VH
965
SEQ ID No. 10 in WO2015121454


CD3s
VH
966
SEQ ID NO: 7 in WO2014144722A2


CD40
VH
967
SEQ ID NO. 1 in WO2016069919


CD40
VH
968
SEQ ID NO. 5 in WO2015091655


CD40
VH
969
SEQ ID NO. 7 in WO2015091655


CD40
VH
970
SEQ ID NO. 8 in WO2015091655


CD45
VH
971
SEQ ID NO: 24 in WO2016126213A1


CD46
VH
972
SEQ ID NO: 39 in WO2012031273


CD46
VH
973
SEQ ID NO: 47 in WO2012031273


CD46
VH
974
SEQ ID NO: 59 in WO2012031273


CD46
VH
975
SEQ ID NO: 15 in WO2012031273


CD46
VH
976
SEQ ID NO: 19 in WO2012031273


CD46
VH
977
SEQ ID NO: 23 in WO2012031273


CD46
VH
978
SEQ ID NO: 27 in WO2012031273


CD46
VH
979
SEQ ID NO: 31 in WO2012031273


CD46
VH
980
SEQ ID NO: 35 in WO2012031273


CD46
VH
981
SEQ ID NO: 43 in WO2012031273


CD46
VH
982
SEQ ID NO: 51 in WO2012031273


CD46
VH
983
SEQ ID NO: 55 in WO2012031273


CD46
VH
984
SEQ ID NO: 63 in WO2012031273


CD46
VH
985
SEQ ID NO: 67 in WO2012031273


CD46
VH
986
SEQ ID NO: 71 in WO2012031273


CD46
VH
987
SEQ ID NO: 75 in WO2012031273


CD46
VH
988
SEQ ID NO: 79 in WO2012031273


CD46
VH
989
SEQ ID NO: 83 in WO2012031273


CD46
VH
990
SEQ ID NO. 1 in WO2016040683


CD46
VH
991
SEQ ID NO. 10 in WO2016040683


CD46
VH
992
SEQ ID NO. 11 in WO2016040683


CD46
VH
993
SEQ ID NO. 12 in WO2016040683


CD46
VH
994
SEQ ID NO. 13 in WO2016040683


CD46
VH
995
SEQ ID NO. 14 in WO2016040683


CD46
VH
996
SEQ ID NO. 15 in WO2016040683


CD46
VH
997
SEQ ID NO. 16 in WO2016040683


CD46
VH
998
SEQ ID NO. 17 in WO2016040683


CD46
VH
999
SEQ ID NO. 3 in WO2016040683


CD46
VH
1000
SEQ ID NO. 5 in WO2016040683


CD46
VH
1001
SEQ ID NO. 6 in WO2016040683


CD46
VH
1002
SEQ ID NO. 7 in WO2016040683


CD46
VH
1003
SEQ ID NO. 9 in WO2016040683


CD46
VH
1004
SEQ ID NO. 18 in WO2016040683


CD46
VH
1005
SEQ ID NO. 19 in WO2016040683


CD46
VH
1006
SEQ ID NO. 20 in WO2016040683


CD46
VH
1007
SEQ ID NO. 21 in WO2016040683


CD46
VH
1008
SEQ ID NO: 69 in WO2012031273


CD46
VH
1009
SEQ ID NO: 71 in WO2012031273


CD46
VH
1010
SEQ ID NO: 83 in WO2012031273


CD4BS
VH
1011
SEQ ID NO: 15 in US20160194375A1


CD4BS
VH
1012
SEQ ID NO: 3 in US20160194375A1


CD4i
VH
1013
SEQ ID NO: 5 in US20160194375A1


CD52
VH
1014
SEQ ID NO: 103 in WO2010132659


CD52
VH
1015
SEQ ID NO: 136 in WO2010132659


CD52
VH
1016
SEQ ID NO: 137 in WO2010132659


CD64
VH
1017
SEQ ID NO. 129 in WO2016122701


CD7
VH
1018
SEQ ID NO: 16 in WO2016126213A1


CD7
VH
1019
SEQ ID NO: 20 in WO2016126213A1


CD70
VH
1020
SEQ ID No. 81 in WO2015121454


CD70
VH
1021
SEQ ID NO. 85 in WO2015121454


CD70
VH
1022
SEQ ID NO. 89 in WO2015121454


CD71
VH
1023
SEQ ID NO. 1 in US20160355599


CD71
VH
1024
SEQ ID NO. 3 in US20160355599


CD71
VH
1025
SEQ ID NO. 325 in US20160355599


CD71
VH
1026
SEQ ID NO. 4 in US20160355599


CD71
VH
1027
SEQ ID NO. 5 in US20160355599


CD71
VH
1028
SEQ ID NO. 699 in US20160355599


CD73
VH
1029
SEQ ID NO. 135 in US20160145350


CD73
VH
1030
SEQ ID NO. 40 in US20160145350


CD73
VH
1031
SEQ ID NO. 21 in WO2016055609A1


CD73
VH
1032
SEQ ID NO. 3 in WO2016055609A1


CD73
VH
1033
SEQ ID NO. 28 in WO2016055609A1


CD73
VH
1034
SEQ ID NO. 36 in WO2016055609A1


CD74
VH
1035
FIG. 1A in WO2003074567


CD74
VH
1036
FIG. 2A in WO2003074567


CD74
VH
1037
FIG. 4A in WO2003074567


CD74
VH
1038
SEQ ID NO. 6 in US20100284906A1


CD74
VH
1039
SEQ ID NO 10 in US20040115193A1


CD74
VH
1040
SEQ ID NO 11 in US20040115193A1


CD74
VH
1041
SEQ ID NO 9 in US20040115193A1


CD76b
VH
1042
SEQ ID NO. 15 in US20160159906


CD76b
VH
1043
SEQ ID NO. 17 in US20160159906


CD76b
VH
1044
SEQ ID NO. 19 in US20160159906


CD76b
VH
1045
SEQ ID NO. 23 in US20160159906


CD76b
VH
1046
SEQ ID NO. 27 in US20160159906


CD76b
VH
1047
SEQ ID NO. 29 in US20160159906


CD76b
VH
1048
SEQ ID NO. 37 in US20160159906


CD76b
VH
1049
SEQ ID NO. 57 in US20160159906


CD76b
VH
1050
SEQ ID NO. 59 in US20160159906


CD76b
VH
1051
SEQ ID NO. 61 in US20160159906


CD80
VH
1052
SEQ ID NO. 131 in WO2016122701


CDIM
VH
1053
SEQ ID NO. 1 in WO2013120012


CDIM
VH
1054
SEQ ID NO. 10 in WO2013120012


CDIM
VH
1055
SEQ ID NO. 11 in WO2013120012


CDIM
VH
1056
SEQ ID NO. 12 in WO2013120012


CDIM
VH
1057
SEQ ID NO. 13 in WO2013120012


CDIM
VH
1058
SEQ ID NO. 14 in WO2013120012


CDIM
VH
1059
SEQ ID NO. 15 in WO2013120012


CDIM
VH
1060
SEQ ID NO. 16 in WO2013120012


CDIM
VH
1061
SEQ ID NO. 17 in WO2013120012


CDIM
VH
1062
SEQ ID NO. 18 in WO2013120012


CDIM
VH
1063
SEQ ID NO. 19 in WO2013120012


CDIM
VH
1064
SEQ ID NO. 2 in WO2013120012


CDIM
VH
1065
SEQ ID NO. 20 in WO2013120012


CDIM
VH
1066
SEQ ID NO. 21 in WO2013120012


CDIM
VH
1067
SEQ ID NO. 22 in WO2013120012


CDIM
VH
1068
SEQ ID NO. 3 in WO2013120012


CDIM
VH
1069
SEQ ID NO. 4 in WO2013120012


CDIM
VH
1070
SEQ ID NO. 5 in WO2013120012


CDIM
VH
1071
SEQ ID NO. 6 in WO2013120012


CDIM
VH
1072
SEQ ID NO. 7 in WO2013120012


CDIM
VH
1073
SEQ ID NO. 8 in WO2013120012


CDIM
VH
1074
SEQ ID NO. 9 in WO2013120012


CEA
VH
1075
SEQ ID NO: 8 in U.S. Pat. No. 8,287,865


Claudin
VH
1076
SEQ ID NO. 101 in WO2016073649A1


Claudin
VH
1077
SEQ ID NO. 103 in WO2016073649A1


Claudin
VH
1078
SEQ ID NO. 105 in WO2016073649A1


Claudin
VH
1079
SEQ ID NO. 107 in WO2016073649A1


Claudin
VH
1080
SEQ ID NO. 109 in WO2016073649A1


Claudin
VH
1081
SEQ ID NO. 111 in WO2016073649A1


Claudin
VH
1082
SEQ ID NO. 113 in WO2016073649A1


Claudin
VH
1083
SEQ ID NO. 115 in WO2016073649A1


Claudin
VH
1084
SEQ ID NO. 117 in WO2016073649A1


Claudin
VH
1085
SEQ ID NO. 119 in WO2016073649A1


Claudin
VH
1086
SEQ ID NO. 121 in WO2016073649A1


Claudin
VH
1087
SEQ ID NO. 122 in WO2016073649A1


Claudin
VH
1088
SEQ ID NO. 123 in WO2016073649A1


Claudin
VH
1089
SEQ ID NO. 124 in WO2016073649A1


Claudin
VH
1090
SEQ ID NO. 125 in WO2016073649A1


Claudin
VH
1091
SEQ ID NO. 126 in WO2016073649A1


Claudin
VH
1092
SEQ ID NO. 127 in WO2016073649A1


Claudin
VH
1093
SEQ ID NO. 128 in WO2016073649A1


Claudin
VH
1094
SEQ ID NO. 129 in WO2016073649A1


Claudin
VH
1095
SEQ ID NO. 130 in WO2016073649A1


Claudin
VH
1096
SEQ ID NO. 131 in WO2016073649A1


Claudin
VH
1097
SEQ ID NO. 132 in WO2016073649A1


Claudin
VH
1098
SEQ ID NO. 133 in WO2016073649A1


Claudin
VH
1099
SEQ ID NO. 134 in WO2016073649A1


Claudin
VH
1100
SEQ ID NO. 135 in WO2016073649A1


Claudin
VH
1101
SEQ ID NO. 136 in WO2016073649A1


Claudin
VH
1102
SEQ ID NO. 137 in WO2016073649A1


Claudin
VH
1103
SEQ ID NO. 138 in WO2016073649A1


Claudin
VH
1104
SEQ ID NO. 139 in WO2016073649A1


Claudin
VH
1105
SEQ ID NO. 140 in WO2016073649A1


Claudin
VH
1106
SEQ ID NO. 141 in WO2016073649A1


Claudin
VH
1107
SEQ ID NO. 142 in WO2016073649A1


Claudin
VH
1108
SEQ ID NO. 143 in WO2016073649A1


Claudin
VH
1109
SEQ ID NO. 144 in WO2016073649A1


Claudin
VH
1110
SEQ ID NO. 145 in WO2016073649A1


Claudin
VH
1111
SEQ ID NO. 146 in WO2016073649A1


Claudin
VH
1112
SEQ ID NO. 147 in WO2016073649A1


Claudin
VH
1113
SEQ ID NO. 148 in WO2016073649A1


Claudin
VH
1114
SEQ ID NO. 149 in WO2016073649A1


Claudin
VH
1115
SEQ ID NO. 150 in WO2016073649A1


Claudin
VH
1116
SEQ ID NO. 23 in WO2016073649A1


Claudin
VH
1117
SEQ ID NO. 27 in WO2016073649A1


Claudin
VH
1118
SEQ ID NO. 31 in WO2016073649A1


Claudin
VH
1119
SEQ ID NO. 35 in WO2016073649A1


Claudin
VH
1120
SEQ ID NO. 39 in WO2016073649A1


Claudin
VH
1121
SEQ ID NO. 43 in WO2016073649A1


Claudin
VH
1122
SEQ ID NO. 47 in WO2016073649A1


Claudin
VH
1123
SEQ ID NO. 51 in WO2016073649A1


Claudin
VH
1124
SEQ ID NO. 55 in WO2016073649A1


Claudin
VH
1125
SEQ ID NO. 59 in WO2016073649A1


Claudin
VH
1126
SEQ ID NO. 63 in WO2016073649A1


Claudin
VH
1127
SEQ ID NO. 67 in WO2016073649A1


Claudin
VH
1128
SEQ ID NO. 71 in WO2016073649A1


Claudin
VH
1129
SEQ ID NO. 75 in WO2016073649A1


Claudin
VH
1130
SEQ ID NO. 79 in WO2016073649A1


Claudin
VH
1131
SEQ ID NO. 81 in WO2016073649A1


Claudin
VH
1132
SEQ ID NO. 83 in WO2016073649A1


Claudin
VH
1133
SEQ ID NO. 85 in WO2016073649A1


Claudin
VH
1134
SEQ ID NO. 87 in WO2016073649A1


Claudin
VH
1135
SEQ ID NO. 89 in WO2016073649A1


Claudin
VH
1136
SEQ ID NO. 91 in WO2016073649A1


Claudin
VH
1137
SEQ ID NO. 93 in WO2016073649A1


Claudin
VH
1138
SEQ ID NO. 95 in WO2016073649A1


Claudin
VH
1139
SEQ ID NO. 97 in WO2016073649A1


Claudin
VH
1140
SEQ ID NO. 99 in WO2016073649A1


CLL1
VH
1141
SEQ ID NO. 13 in WO2016120219


CLL1
VH
1142
SEQ ID NO. 14 in WO2016120219


CLL1
VH
1143
SEQ ID NO. 15 in WO2016120219


CLL1
VH
1144
SEQ ID NO. 17 in WO2016120219


CLL1
VH
1145
SEQ ID NO. 19 in WO2016120219


CLL1
VH
1146
SEQ ID NO. 195 in WO2016014535


CLL1
VH
1147
SEQ ID NO. 21 in WO2016120219


CLL1
VH
1148
SEQ ID NO. 23 in WO2016120219


CLL1
VH
1149
SEQ ID NO. 25 in WO2016120219


CLL1
VH
1150
SEQ ID NO. 27 in WO2016120219


CLL1
VH
1151
SEQ ID NO. 29 in WO2016120219


CLL1
VH
1152
SEQ ID NO. 31 in WO2016120219


CLL1
VH
1153
SEQ ID NO. 33 in WO2016120219


CLL1
VH
1154
SEQ ID NO. 35 in WO2016120219


CLL1
VH
1155
SEQ ID NO. 65 in WO2016014535


CLL1
VH
1156
SEQ ID NO. 66 in WO2016014535


CLL1
VH
1157
SEQ ID NO. 67 in WO2016014535


CLL1
VH
1158
SEQ ID NO. 68 in WO2016014535


CLL1
VH
1159
SEQ ID NO. 69 in WO2016014535


CLL1
VH
1160
SEQ ID NO. 70 in WO2016014535


CLL1
VH
1161
SEQ ID NO. 71 in WO2016014535


CLL1
VH
1162
SEQ ID NO. 72 in WO2016014535


CLL1
VH
1163
SEQ ID NO. 73 in WO2016014535


CLL1
VH
1164
SEQ ID NO. 74 in WO2016014535


CLL1
VH
1165
SEQ ID NO. 75 in WO2016014535


CLL1
VH
1166
SEQ ID NO. 76 in WO2016014535


CLL1
VH
1167
SEQ ID NO. 77 in WO2016014535


CLL1
VH
1168
SEQ ID NO. 31 in US20160075787


CLL1
VH
1169
SEQ ID NO. 33 in US20160075787


CLL1
VH
1170
SEQ ID NO. 34 in US20160075787


CLL1
VH
1171
SEQ ID NO. 36 in US20160075787


CLL1
VH
1172
SEQ ID NO. 38 in US20160075787


CLL1
VH
1173
SEQ ID NO. 40 in US20160075787


CLL1
VH
1174
SEQ ID NO. 42 in US20160075787


CLL1
VH
1175
SEQ ID NO. 46 in US20160075787


CLL1
VH
1176
SEQ ID NO: 150 in WO2016179319A1


CLL1
VH
1177
SEQ ID NO: 103 in WO2016179319A1


CLL1
VH
1178
SEQ ID NO: 105 in WO2016179319A1


CLL1
VH
1179
SEQ ID NO: 107 in WO2016179319A1


CLL1
VH
1180
SEQ ID NO: 109 in WO2016179319A1


CLL1
VH
1181
SEQ ID NO: 111 in WO2016179319A1


CLL1
VH
1182
SEQ ID NO: 113 in WO2016179319A1


CLL1
VH
1183
SEQ ID NO: 115 in WO2016179319A1


CLL1
VH
1184
SEQ ID NO: 117 in WO2016179319A1


CLL3
VH
1185
SEQ ID NO. 101 in US2017000901


CLL3
VH
1186
SEQ ID NO. 103 in US20170000901


CLL3
VH
1187
SEQ ID NO. 105 in US20170000901


CLL3
VH
1188
SEQ ID NO. 107 in US20170000901


CLL3
VH
1189
SEQ ID NO. 109 in US20170000901


CLL3
VH
1190
SEQ ID NO. 111 in US20170000901


CLL3
VH
1191
SEQ ID NO. 113 in US20170000901


CLL3
VH
1192
SEQ ID NO. 115 in US20170000901


CLL3
VH
1193
SEQ ID NO. 117 in US20170000901


CLL3
VH
1194
SEQ ID NO. 119 in US20170000901


CLL3
VH
1195
SEQ ID NO. 121 in US20170000901


CLL3
VH
1196
SEQ ID NO. 123 in US20170000901


CLL3
VH
1197
SEQ ID NO. 125 in US20170000901


CLL3
VH
1198
SEQ ID NO. 127 in US20170000901


CLL3
VH
1199
SEQ ID NO. 129 in US20170000901


CLL3
VH
1200
SEQ ID NO. 131 in US20170000901


CLL3
VH
1201
SEQ ID NO. 133 in US20170000901


CLL3
VH
1202
SEQ ID NO. 135 in US20170000901


CLL3
VH
1203
SEQ ID NO. 137 in US20170000901


CLL3
VH
1204
SEQ ID NO. 139 in US20170000901


CLL3
VH
1205
SEQ ID NO. 141 in US20170000901


CLL3
VH
1206
SEQ ID NO. 145 in US20170000901


CLL3
VH
1207
SEQ ID NO. 147 in US20170000901


CLL3
VH
1208
SEQ ID NO. 149 in US20170000901


CLL3
VH
1209
SEQ ID NO. 151 in US20170000901


CLL3
VH
1210
SEQ ID NO. 153 in US20170000901


CLL3
VH
1211
SEQ ID NO. 155 in US20170000901


CLL3
VH
1212
SEQ ID NO. 157 in US20170000901


CLL3
VH
1213
SEQ ID NO. 159 in US20170000901


CLL3
VH
1214
SEQ ID NO. 161 in US20170000901


CLL3
VH
1215
SEQ ID NO. 163 in US20170000901


CLL3
VH
1216
SEQ ID NO. 165 in US20170000901


CLL3
VH
1217
SEQ ID NO. 167 in US20170000901


CLL3
VH
1218
SEQ ID NO. 169 in US20170000901


CLL3
VH
1219
SEQ ID NO. 171 in US20170000901


CLL3
VH
1220
SEQ ID NO. 173 in US20170000901


CLL3
VH
1221
SEQ ID NO. 175 in US20170000901


CLL3
VH
1222
SEQ ID NO. 177 in US20170000901


CLL3
VH
1223
SEQ ID NO. 179 in US20170000901


CLL3
VH
1224
SEQ ID NO. 181 in US20170000901


CLL3
VH
1225
SEQ ID NO. 183 in US20170000901


CLL3
VH
1226
SEQ ID NO. 185 in US20170000901


CLL3
VH
1227
SEQ ID NO. 187 in US20170000901


CLL3
VH
1228
SEQ ID NO. 191 in US20170000901


CLL3
VH
1229
SEQ ID NO. 193 in US20170000901


CLL3
VH
1230
SEQ ID NO. 195 in US20170000901


CLL3
VH
1231
SEQ ID NO. 197 in US20170000901


CLL3
VH
1232
SEQ ID NO. 199 in US20170000901


CLL3
VH
1233
SEQ ID NO. 201 in US20170000901


CLL3
VH
1234
SEQ ID NO. 203 in US20170000901


CLL3
VH
1235
SEQ ID NO. 205 in US20170000901


CLL3
VH
1236
SEQ ID NO. 207 in US20170000901


CLL3
VH
1237
SEQ ID NO. 209 in US20170000901


CLL3
VH
1238
SEQ ID NO. 21 in US20170000901


CLL3
VH
1239
SEQ ID NO. 211 in US20170000901


CLL3
VH
1240
SEQ ID NO. 213 in US20170000901


CLL3
VH
1241
SEQ ID NO. 23 in US20170000901


CLL3
VH
1242
SEQ ID NO. 25 in US20170000901


CLL3
VH
1243
SEQ ID NO. 27 in US20170000901


CLL3
VH
1244
SEQ ID NO. 29 in US20170000901


CLL3
VH
1245
SEQ ID NO. 31 in US20170000901


CLL3
VH
1246
SEQ ID NO. 33 in US20170000901


CLL3
VH
1247
SEQ ID NO. 35 in US20170000901


CLL3
VH
1248
SEQ ID NO. 37 in US20170000901


CLL3
VH
1249
SEQ ID NO. 39 in US20170000901


CLL3
VH
1250
SEQ ID NO. 41 in US20170000901


CLL3
VH
1251
SEQ ID NO. 43 in US20170000901


CLL3
VH
1252
SEQ ID NO. 45 in US20170000901


CLL3
VH
1253
SEQ ID NO. 47 in US20170000901


CLL3
VH
1254
SEQ ID NO. 49 in US20170000901


CLL3
VH
1255
SEQ ID NO. 51 in US20170000901


CLL3
VH
1256
SEQ ID NO. 53 in US20170000901


CLL3
VH
1257
SEQ ID NO. 55 in US20170000901


CLL3
VH
1258
SEQ ID NO. 57 in US20170000901


CLL3
VH
1259
SEQ ID NO. 59 in US20170000901


CLL3
VH
1260
SEQ ID NO. 61 in US20170000901


CLL3
VH
1261
SEQ ID NO. 63 in US20170000901


CLL3
VH
1262
SEQ ID NO. 65 in US20170000901


CLL3
VH
1263
SEQ ID NO. 67 in US20170000901


CLL3
VH
1264
SEQ ID NO. 69 in US20170000901


CLL3
VH
1265
SEQ ID NO. 71 in US20170000901


CLL3
VH
1266
SEQ ID NO. 73 in US20170000901


CLL3
VH
1267
SEQ ID NO. 75 in US20170000901


CLL3
VH
1268
SEQ ID NO. 77 in US20170000901


CLL3
VH
1269
SEQ ID NO. 79 in US20170000901


CLL3
VH
1270
SEQ ID NO. 81 in US20170000901


CLL3
VH
1271
SEQ ID NO. 83 in US20170000901


CLL3
VH
1272
SEQ ID NO. 85 in US20170000901


CLL3
VH
1273
SEQ ID NO. 87 in US20170000901


CLL3
VH
1274
SEQ ID NO. 89 in US20170000901


CLL3
VH
1275
SEQ ID NO. 91 in US20170000901


CLL3
VH
1276
SEQ ID NO. 93 in US2017000901


CLL3
VH
1277
SEQ ID NO. 95 in US20170000901


CLL3
VH
1278
SEQ ID NO. 97 in US20170000901


CLL3
VH
1279
SEQ ID NO. 99 in US20170000901


collagen
VH
1280
SEQ ID NO. 21 in WO2007024921


collagen
VH
1281
SEQ ID NO. 4 in WO2007024921


collagen
VH
1282
SEQ ID NO. 15 in WO2007024921


collagen
VH
1283
SEQ ID NO. 17 in WO2007024921


collagen
VH
1284
SEQ ID NO. 18 in WO2007024921


collagen
VH
1285
SEQ ID NO. 19 in WO2007024921


collagen
VH
1286
SEQ ID NO. 20 in WO2007024921


collagen
VH
1287
SEQ ID NO. 5 in WO2007024921


collagen
VH
1288
SEQ ID NO. 6 in WO2007024921


collagen
VH
1289
SEQ ID NO. 7 in WO2007024921


collagen
VH
1290
SEQ ID NO: 1 in WO2007024921


collagen
VH
1291
SEQ ID NO: 2 in WO2007024921


collagen
VH
1292
SEQ ID NO: 3 in WO2007024921


CS1
VH
1293
SEQ ID NO: 22 in WO2016168773A3


CS1
VH
1294
SEQ ID NO. 103 in WO2016120216


CS1
VH
1295
SEQ ID NO. 105 in WO2016120216


CS1
VH
1296
SEQ ID NO. 107 in WO2016120216


CS1
VH
1297
SEQ ID NO. 109 in WO2016120216


CS1
VH
1298
SEQ ID NO. 13 in WO2015166056A1


CS1
VH
1299
SEQ ID NO. 15 in WO2015166056A1


CS1
VH
1300
SEQ ID NO. 17 in WO2015166056A1


CS1
VH
1301
SEQ ID NO. 19 in WO2015166056A1


CS1
VH
1302
SEQ ID No. 38 in WO2015121454


CS1
VH
1303
SEQ ID No. 40 in WO2015121454


CS1
VH
1304
SEQ ID No. 42 in WO2015121454


CS1
VH
1305
SEQ ID No. 44 in WO2015121454


CS1
VH
1306
SEQ ID No. 46 in WO2015121454


CS1
VH
1307
SEQ ID NO. 26 in US20160075784A1


CSF
VH
1308
SEQ ID NO 10 in US20050059113A1


CSF
VH
1309
SEQ ID NO 102 in US20050059113A1


CSF
VH
1310
SEQ ID NO 14 in US20050059113A1


CSF
VH
1311
SEQ ID NO 18 in US20050059113A1


CSF
VH
1312
SEQ ID NO 2 in US20050059113A1


CSF
VH
1313
SEQ ID NO 22 in US20050059113A1


CSF
VH
1314
SEQ ID NO 26 in US20050059113A1


CSF
VH
1315
SEQ ID NO 30 in US20050059113A1


CSF
VH
1316
SEQ ID NO 34 in US20050059113A1


CSF
VH
1317
SEQ ID NO 38 in US20050059113A1


CSF
VH
1318
SEQ ID NO 46 in US20050059113A1


CSF
VH
1319
SEQ ID NO 50 in US20050059113A1


CSF
VH
1320
SEQ ID NO 54 in US20050059113A1


CSF
VH
1321
SEQ ID NO 58 in US20050059113A1


CSF
VH
1322
SEQ ID NO 6 in US20050059113A1


CSF
VH
1323
SEQ ID NO 62 in US20050059113A1


CSF
VH
1324
SEQ ID NO 66 in US20050059113A1


CSF
VH
1325
SEQ ID NO 70 in US20050059113A1


CSF
VH
1326
SEQ ID NO 74 in US20050059113A1


CSF
VH
1327
SEQ ID NO 78 in US20050059113A1


CSF
VH
1328
SEQ ID NO 82 in US20050059113A1


CSF
VH
1329
SEQ ID NO 86 in US20050059113A1


CSF
VH
1330
SEQ ID NO 90 in US20050059113A1


CSF
VH
1331
SEQ ID NO 94 in US20050059113A1


CSF
VH
1332
SEQ ID NO 98 in US20050059113A1


CSPG4
VH
1333
SEQ ID NO. 8 in WO2016164429


CTLA4
VH
1334
SEQ ID NO. 3 in US20140105914


CTLA4
VH
1335
SEQ ID NO. 31 in US20140105914


CTLA4
VH
1336
SEQ ID NO. 32 in US20140105914


CTLA4
VH
1337
SEQ ID NO. 33 in US20140105914


CTLA4
VH
1338
SEQ ID NO. 34 in US20140105914


CTLA4
VH
1339
SEQ ID NO. 35 in US20140105914


CTLA4
VH
1340
SEQ ID NO. 4 in U.S. Pat. No. 8,697,845


CTLA4
VH
1341
SEQ ID NO. 41 in US20140105914


CTLA4
VH
1342
SEQ ID NO. 42 in US20140105914


CTLA4
VH
1343
SEQ ID NO. 43 in US20140105914


CTLA4
VH
1344
SEQ ID NO. 44 in US20140105914


CTLA4
VH
1345
SEQ ID NO. 45 in US20140105914


CTLA4
VH
1346
SEQ ID NO. 7 in US20140105914


CTLA4(Ipilimumab)
VH
1347
SEQ ID NO. 19 in US20150283234


CTLA4(Ipilimumab)
VH
1348
SEQ ID NO. 17 in WO2014066532


CXCR4
VH
1349
SEQ ID NO: 72 in US20110020218


CXCR4
VH
1350
SEQ ID NO: 73 in US20110020218


CXCR4
VH
1351
SEQ ID NO: 74 in US20110020218


CXCR4
VH
1352
SEQ ID NO: 75 in US20110020218


CXCR4
VH
1353
SEQ ID NO: 84 in US20110020218


Daclizumab
VH
1354
SEQ ID NO: 44 in US20160333114A1


Daclizumab
VH
1355
SEQ ID NO: 46 in US20160333114A1


DR5
VH
1356
SEQ ID NO. 18 in WO2016122701


DR5
VH
1357
SEQ ID NO. 82 in WO2016122701


DR5
VH
1358
SEQ ID NO. 90 in WO2016122701


DR5
VH
1359
SEQ ID NO. 98 in WO2016122701


DR5
VH
1360
SEQ ID NO. 8 in WO2016122701


DR5(Conatumumab)
VH
1361
SEQ ID NO. 66 in WO2016122701


DR5(Drozitumab)
VH
1362
SEQ ID NO. 58 in WO2016122701


DR5(Tigatuzumab)
VH
1363
SEQ ID NO. 74 in WO2016122701


E7MC
VH
1364
SEQ ID NO: 15 in WO2016182957A1


E7MC
VH
1365
SEQ ID NO: 16 in WO2016182957A1


E7MC
VH
1366
SEQ ID NO: 17 in WO2016182957A1


E7MC
VH
1367
SEQ ID NO: 18 in WO2016182957A1


E7MC
VH
1368
SEQ ID NO: 19 in WO2016182957A1


E7MC
VH
1369
SEQ ID NO: 20 in WO2016182957A1


E7MC
VH
1370
SEQ ID NO: 21 in WO2016182957A1


E7MC
VH
1371
SEQ ID NO: 22 in WO2016182957A1


E7MC
VH
1372
SEQ ID NO: 23 in WO2016182957A1


E7MC
VH
1373
SEQ ID NO: 233 in WO2016182957A1


E7MC
VH
1374
SEQ ID NO: 234 in WO2016182957A1


E7MC
VH
1375
SEQ ID NO: 235 in WO2016182957A1


E7MC
VH
1376
SEQ ID NO: 236 in WO2016182957A1


E7MC
VH
1377
SEQ ID NO: 237 in WO2016182957A1


E7MC
VH
1378
SEQ ID NO: 24 in WO2016182957A1


E7MC
VH
1379
SEQ ID NO: 25 in WO2016182957A1


E7MC
VH
1380
SEQ ID NO: 26 in WO2016182957A1


E7MC
VH
1381
SEQ ID NO: 27 in WO2016182957A1


E7MC
VH
1382
SEQ ID NO: 28 in WO2016182957A1


E7MC
VH
1383
SEQ ID NO: 29 in WO2016182957A1


E7MC
VH
1384
SEQ ID NO: 30 in WO2016182957A1


E7MC
VH
1385
SEQ ID NO: 31 in WO2016182957A1


E7MC
VH
1386
SEQ ID NO: 32 in WO2016182957A1


E7MC
VH
1387
SEQ ID NO: 33 in WO2016182957A1


E7MC
VH
1388
SEQ ID NO: 34 in WO2016182957A1


E7MC
VH
1389
SEQ ID NO: 35 in WO2016182957A1


EFNA
VH
1390
SEQ ID NO: 149 in WO2012118547


EFNA
VH
1391
SEQ ID NO: 153 in WO2012118547


EFNA
VH
1392
SEQ ID NO: 157 in WO2012118547


EFNA
VH
1393
SEQ ID NO: 161 in WO2012118547


EFNA4
VH
1394
SEQ ID NO. 13 in US20150125472


EFNA4
VH
1395
SEQ ID NO. 39 in US20150125472


EGFR
VH
1396
SEQ ID NO. 14 in WO2015143382


EGFR
VH
1397
SEQ ID NO. 50 in WO2015143382


EGFR
VH
1398
SEQ ID NO. 9 in WO2015143382


EGFR
VH
1399
SEQ ID NO. 12 in US20100008978A1


EGFR
VH
1400
SEQ ID NO. 14 in US20100008978A1


EGFR
VH
1401
SEQ ID NO. 15 in US20100008978A1


EGFR
VH
1402
SEQ ID NO. 21 in US20100008978A1


EGFR
VH
1403



EGFR
VH
1404



EGFR
VH
1405



EGFR
VH
1406



EGFR
VH
1407



EGFR
VH
1408



EGFR
VH
1409



EGFR
VH
1410



EGFR
VH
1411



EGFR
VH
1412



EGFR
VH
1413



EGFR
VH
1414



EGFR
VH
1415



EGFR
VH
1416



EGFR
VH
1417



EGFR
VH
1418



EGFR
VH
1419



EGFR
VH
1420



EGFR
VH
1421



EGFR
VH
1422



EGFR
VH
1423



EGFR
VH
1424



EGFR
VH
1425



EGFR
VH
1426



EGFR
VH
1427



EGFR
VH
1428



EGFR
VH
1429



EGFR
VH
1430



EGFR
VH
1431



EGFR
VH
1432



EGFR
VH
1433



EGFR
VH
1434



EGFR
VH
1435



EGFR
VH
1436



EGFR
VH
1437



EGFR
VH
1438



EGFR
VH
1439



EGFR
VH
1440



EGFR
VH
1441



EGFR
VH
1442



EGFR
VH
1443



EGFR
VH
1444



EGFR
VH
1445



EGFR
VH
1446



EGFR
VH
1447



EGFR
VH
1448



EGFR
VH
1449



EGFR
VH
1450



EGFR
VH
1451



EGFR
VH
1452



EGFR
VH
1453



EGFR
VH
1454



EGFR
VH
1455



EGFR
VH
1456



EGFR
VH
1457



EGFR
VH
1458



EGFR
VH
1459



EGFR
VH
1460



EGFR
VH
1461



EGFR
VH
1462



EGFR
VH
1463



EGFR
VH
1464



EGFR
VH
1465



EGFR
VH
1466



EGFR
VH
1467



EGFR
VH
1468



EGFR
VH
1469



EGFR
VH
1470



EGFR
VH
1471



EGFR
VH
1472



EGFR
VH
1473



EGFR
VH
1474



EGFR
VH
1475



EGFR
VH
1476



EGFR
VH
1477



EGFR
VH
1478



EGFR
VH
1479



EGFR
VH
1480



EGFR
VH
1481



EGFR
VH
1482



EGFR
VH
1483



EGFR
VH
1484



EGFR
VH
1485



EGFR
VH
1486



EGFR
VH
1487



EGFR
VH
1488



EGFR
VH
1489



EGFR
VH
1490



EGFR
VH
1491



EGFR
VH
1492



EGFR
VH
1493



EGFR
VH
1494



EGFR
VH
1495



EGFR
VH
1496



EGFR
VH
1497



EGFR
VH
1498



EGFR
VH
1499



EGFR
VH
1500



EGFR
VH
1501



EGFR
VH
1502



EGFR
VH
1503



EGFR
VH
1504



EGFR
VH
1505



EGFR
VH
1506



EGFR
VH
1507



EGFR
VH
1508



EGFR
VH
1509



EGFR
VH
1510



EGFR
VH
1511



EGFR
VH
1512



EGFR
VH
1513



EGFR
VH
1514



EGFR
VH
1515



EGFR
VH
1516



EGFR
VH
1517



EGFR
VH
1518



EGFR
VH
1519



EGFR
VH
1520



EGFR
VH
1521



EGFR
VH
1522



EGFR
VH
1523



EGFR
VH
1524



EGFR
VH
1525



EGFR
VH
1526



EGFR
VH
1527



EGFR
VH
1528



EGFR
VH
1529



EGFR
VH
1530



EGFR
VH
1531



EGFR
VH
1532



EGFR
VH
1533



EGFR
VH
1534



EGFR
VH
1535



EGFR
VH
1536



EGFR
VH
1537



EGFR
VH
1538



EGFR
VH
1539



EGFR
VH
1540



EGFR
VH
1541



EGFR
VH
1542



EGFR
VH
1543



EGFR
VH
1544



EGFR
VH
1545



EGFR
VH
1546



EGFR
VH
1547



EGFR
VH
1548



EGFR
VH
1549



EGFR
VH
1550



EGFR
VH
1551



EGFR
VH
1552



EGFR
VH
1553



EGFR
VH
1554



EGFR
VH
1555



EGFR
VH
1556



EGFR
VH
1557



EGFR
VH
1558



EGFR
VH
1559



EGFR
VH
1560



EGFR
VH
1561



EGFR
VH
1562



EGFR
VH
1563



EGFR
VH
1564



EGFR
VH
1565



EGFR
VH
1566



EGFR
VH
1567



EGFR
VH
1568



EGFR
VH
1569



EGFR
VH
1570



EGFR
VH
1571



EGFR
VH
1572



EGFR
VH
1573



EGFR
VH
1574



EGFR
VH
1575



EGFR
VH
1576



EGFR
VH
1577



EGFR
VH
1578



EGFR
VH
1579



EGFR
VH
1580



EGFR
VH
1581



EGFR
VH
1582



EGFR
VH
1583



EGFR
VH
1584



EGFR
VH
1585



EGFR
VH
1586



EGFR
VH
1587



EGFR
VH
1588



EGFR
VH
1589



EGFR
VH
1590



EGFR
VH
1591



EGFR
VH
1592



EGFR
VH
1593



EGFR
VH
1594



EGFR
VH
1595



EGFR
VH
1596



EGFR
VH
1597



EGFR
VH
1598



EGFR
VH
1599



EGFR
VH
1600



EGFR
VH
1601



EGFR
VH
1602



EGFR
VH
1603



EGFR
VH
1604



EGFR
VH
1605



EGFR
VH
1606



EGFR
VH
1607



EGFR
VH
1608



EGFR
VH
1609



EGFR
VH
1610



EGFR
VH
1611



EGFR
VH
1612



EGFR
VH
1613



EGFR
VH
1614



EGFR
VH
1615



EGFR
VH
1616



EGFR
VH
1617



EGFR
VH
1618



EGFR
VH
1619



EGFR
VH
1620



EGFR
VH
1621



EGFR
VH
1622



EGFR
VH
1623



EGFR
VH
1624



EGFR
VH
1625



EGFR
VH
1626



EGFR
VH
1627



EGFR
VH
1628



EGFR
VH
1629



EGFR
VH
1630



EGFR
VH
1631



EGFR
VH
1632



EGFR
VH
1633



EGFR
VH
1634



EGFR
VH
1635



EGFR
VH
1636



EGFR
VH
1637



EGFR
VH
1638



EGFR
VH
1639



EGFR
VH
1640



EGFR
VH
1641



EGFR
VH
1642



EGFR
VH
1643



EGFR
VH
1644



EGFR
VH
1645



EGFR
VH
1646



EGFR
VH
1647



EGFR
VH
1648



EGFR
VH
1649



EGFR
VH
1650



EGFR
VH
1651



EGFR
VH
1652



EGFR
VH
1653



EGFR
VH
1654



EGFR
VH
1655



EGFR
VH
1656



EGFR
VH
1657



EGFR
VH
1658



EGFR
VH
1659



EGFR
VH
1660



EGFR
VH
1661



EGFR
VH
1662



EGFR
VH
1663



EGFR
VH
1664



EGFR
VH
1665



EGFR
VH
1666



EGFR
VH
1667



EGFR
VH
1668



EGFR
VH
1669



EGFR
VH
1670



EGFR
VH
1671



EGFR
VH
1672



EGFR
VH
1673



EGFR
VH
1674



EGFR
VH
1675



EGFR
VH
1676



EGFR
VH
1677



EGFR
VH
1678



EGFR
VH
1679



EGFR
VH
1680



EGFR
VH
1681



EGFR
VH
1682



EGFR
VH
1683



EGFR
VH
1684



EGFR
VH
1685



EGFR
VH
1686



EGFR
VH
1687



EGFR
VH
1688



EGFR
VH
1689



EGFR
VH
1690



EGFR
VH
1691



EGFR
VH
1692



EGFR
VH
1693



EGFR
VH
1694



EGFR
VH
1695



EGFR
VH
1696



EGFR
VH
1697



EGFR
VH
1698



EGFR
VH
1699



EGFR
VH
1700



EGFR
VH
1701



EGFR
VH
1702



EGFR
VH
1703



EGFR
VH
1704



EGFR
VH
1705



EGFR
VH
1706



EGFR
VH
1707



EGFR
VH
1708



EGFR
VH
1709



EGFR
VH
1710



EGFR
VH
1711



EGFR
VH
1712



EGFR
VH
1713



EGFR
VH
1714



EGFR
VH
1715



EGFR
VH
1716



EGFR
VH
1717



EGFR
VH
1718



EGFR
VH
1719



EGFR
VH
1720



EGFR
VH
1721



EGFR
VH
1722



EGFR
VH
1723



EGFR
VH
1724



EGFR
VH
1725



EGFR
VH
1726



EGFR
VH
1727



EGFR
VH
1728



EGFR
VH
1729



EGFR
VH
1730



EGFR
VH
1731



EGFR
VH
1732



EGFR
VH
1733



EGFR
VH
1734



EGFR
VH
1735



EGFR
VH
1736



EGFR
VH
1737



EGFR
VH
1738



EGFR
VH
1739



EGFR
VH
1740



EGFR
VH
1741



EGFR
VH
1742



EGFR
VH
1743



EGFR
VH
1744



EGFR
VH
1745



EGFR
VH
1746



EGFR
VH
1747



EGFR
VH
1748



EGFR
VH
1749



EGFR
VH
1750



EGFR
VH
1751



EGFR
VH
1752



EGFR
VH
1753



EGFR
VH
1754



EGFR
VH
1755



EGFR
VH
1756



EGFR
VH
1757



EGFR
VH
1758



EGFR
VH
1759



EGFR
VH
1760



EGFR
VH
1761



EGFR
VH
1762



EGFR
VH
1763



EGFR
VH
1764



EGFR
VH
1765



EGFR
VH
1766



EGFR
VH
1767



EGFR
VH
1768



EGFR
VH
1769



EGFR
VH
1770



EGFR
VH
1771



EGFR
VH
1772



EGFR
VH
1773



EGFR
VH
1774



EGFR
VH
1775



EGFR
VH
1776



EGFR
VH
1777



EGFR
VH
1778



EGFR
VH
1779



EGFR
VH
1780



EGFR
VH
1781



EGFR
VH
1782



EGFR
VH
1783



EGFR
VH
1784



EGFR
VH
1785



EGFR
VH
1786



EGFR
VH
1787



EGFR
VH
1788



EGFR
VH
1789



EGFR
VH
1790



EGFR
VH
1791



EGFR
VH
1792



EGFR
VH
1793



EGFR
VH
1794



EGFR
VH
1795



EGFR
VH
1796



EGFR
VH
1797



EGFR
VH
1798



EGFR
VH
1799



EGFR
VH
1800



EGFR
VH
1801



EGFR
VH
1802



EGFR
VH
1803



EGFR
VH
1804



EGFR
VH
1805



EGFR
VH
1806



EGFR
VH
1807



EGFR
VH
1808



EGFR
VH
1809



EGFR
VH
1810



EGFR
VH
1811



EGFR
VH
1812



EGFR
VH
1813



EGFR
VH
1814



EGFR
VH
1815



EGFR
VH
1816



EGFR
VH
1817



EGFR
VH
1818



EGFR
VH
1819



EGFR
VH
1820



EGFR
VH
1821



EGFR
VH
1822



EGFR
VH
1823



EGFR
VH
1824



EGFR
VH
1825



EGFR
VH
1826



EGFR
VH
1827



EGFR
VH
1828



EGFR
VH
1829



EGFR
VH
1830



EGFR
VH
1831



EGFR
VH
1832



EGFR
VH
1833



EGFR
VH
1834



EGFR
VH
1835



EGFR
VH
1836



EGFR
VH
1837



EGFR
VH
1838



EGFR
VH
1839



EGFR
VH
1840



EGFR
VH
1841



EGFR
VH
1842



EGFR
VH
1843



EGFR
VH
1844



EGFR
VH
1845



EGFR
VH
1846



EGFR
VH
1847



EGFR
VH
1848



EGFR
VH
1849



EGFR
VH
1850



EGFR
VH
1851



EGFR
VH
1852



EGFR
VH
1853



EGFR
VH
1854



EGFR
VH
1855



EGFR
VH
1856



EGFR
VH
1857



EGFR
VH
1858



EGFR
VH
1859



EGFR
VH
1860



EGFR
VH
1861



EGFR
VH
1862



EGFR
VH
1863



EGFR
VH
1864



EGFR
VH
1865



EGFR
VH
1866



EGFR
VH
1867



EGFR
VH
1868



EGFR
VH
1869



EGFR
VH
1870



EGFR
VH
1871



EGFR
VH
1872



EGFR
VH
1873



EGFR
VH
1874



EGFR
VH
1875



EGFR
VH
1876



EGFR
VH
1877



EGFR
VH
1878



EGFR
VH
1879



EGFR
VH
1880



EGFR
VH
1881



EGFR
VH
1882



EGFR
VH
1883



EGFR
VH
1884



EGFR
VH
1885



EGFR
VH
1886



EGFR
VH
1887



EGFR
VH
1888



EGFR
VH
1889



EGFR
VH
1890



EGFR
VH
1891



EGFR
VH
1892



EGFR
VH
1893



EGFR
VH
1894



EGFR
VH
1895



EGFR
VH
1896



EGFR
VH
1897



EGFR
VH
1898



EGFR
VH
1899



EGFR
VH
1900



EGFR
VH
1901



EGFR
VH
1902



EGFR
VH
1903



EGFR
VH
1904



EGFR
VH
1905



EGFR
VH
1906



EGFR
VH
1907



EGFR
VH
1908



EGFR
VH
1909



EGFR
VH
1910



EGFR
VH
1911



EGFR
VH
1912



EGFR
VH
1913



EGFR
VH
1914



EGFR
VH
1915



EGFR
VH
1916



EGFR
VH
1917



EGFR
VH
1918



EGFR
VH
1919



EGFR
VH
1920



EGFR
VH
1921



EGFR
VH
1922



EGFR
VH
1923



EGFR
VH
1924



EGFR
VH
1925



EGFR
VH
1926



EGFR
VH
1927



EGFR
VH
1928



EGFR
VH
1929



EGFR
VH
1930



EGFR
VH
1931



EGFR
VH
1932



EGFR
VH
1933



EGFR
VH
1934



EGFR
VH
1935



EGFR
VH
1936



EGFR
VH
1937



EGFR
VH
1938



EGFR
VH
1939



EGFR
VH
1940



EGFR
VH
1941



EGFR
VH
1942



EGFR
VH
1943



EGFR
VH
1944



EGFR
VH
1945



EGFR
VH
1946



EGFR
VH
1947



EGFR
VH
1948



EGFR
VH
1949



EGFR
VH
1950



EGFR
VH
1951



EGFR
VH
1952



EGFR
VH
1953



EGFR
VH
1954



EGFR
VH
1955



EGFR
VH
1956



EGFR
VH
1957



EGFR
VH
1958



EGFR
VH
1959



EGFR
VH
1960



EGFR
VH
1961



EGFR
VH
1962



EGFR
VH
1963



EGFR
VH
1964



EGFR
VH
1965



EGFR
VH
1966



EGFR
VH
1967



EGFR
VH
1968



EGFR
VH
1969



EGFR
VH
1970



EGFR
VH
1971



EGFR
VH
1972



EGFR
VH
1973



EGFR
VH
1974



EGFR
VH
1975



EGFR
VH
1976



EGFR
VH
1977



EGFR
VH
1978



EGFR
VH
1979



EGFR
VH
1980



EGFR
VH
1981



EGFR
VH
1982



EGFR
VH
1983



EGFR
VH
1984



EGFR
VH
1985



EGFR
VH
1986



EGFR
VH
1987



EGFR
VH
1988



EGFR
VH
1989



EGFR
VH
1990



EGFR
VH
1991



EGFR
VH
1992



EGFR
VH
1993



EGFR
VH
1994



EGFR
VH
1995



EGFR
VH
1996



EGFR
VH
1997



EGFR
VH
1998



EGFR
VH
1999



EGFR
VH
2000



EGFR
VH
2001



EGFR
VH
2002



EGFR
VH
2003



EGFR
VH
2004



EGFR
VH
2005



EGFR
VH
2006



EGFR
VH
2007



EGFR
VH
2008



EGFR
VH
2009



EGFR
VH
2010



EGFR
VH
2011



EGFR
VH
2012



EGFR
VH
2013



EGFR
VH
2014



EGFR
VH
2015



EGFR
VH
2016



EGFR
VH
2017



EGFR
VH
2018



EGFR
VH
2019



EGFR
VH
2020



EGFR
VH
2021



EGFR
VH
2022



EGFR
VH
2023



EGFR
VH
2024



EGFR
VH
2025



EGFR
VH
2026



EGFR
VH
2027



EGFR
VH
2028



EGFR
VH
2029



EGFR
VH
2030



EGFR
VH
2031



EGFR
VH
2032



EGFR
VH
2033



EGFR
VH
2034



EGFR
VH
2035



EGFR
VH
2036



EGFR
VH
2037



EGFR
VH
2038



EGFR
VH
2039



EGFR
VH
2040



EGFR
VH
2041



EGFR
VH
2042



EGFR
VH
2043



EGFR
VH
2044



EGFR
VH
2045



EGFR
VH
2046



EGFR
VH
2047



EGFR
VH
2048



EGFR
VH
2049



EGFR
VH
2050



EGFR
VH
2051



EGFR
VH
2052



EGFR
VH
2053



EGFR
VH
2054



EGFR
VH
2055



EGFR
VH
2056



EGFR
VH
2057



EGFR
VH
2058



EGFR
VH
2059



EGFR
VH
2060



EGFR
VH
2061



EGFR
VH
2062



EGFR
VH
2063



EGFR
VH
2064



EGFR
VH
2065



EGFR
VH
2066



EGFR
VH
2067



EGFR
VH
2068



EGFR
VH
2069



EGFR
VH
2070



EGFR
VH
2071



EGFR
VH
2072



EGFR
VH
2073



EGFR
VH
2074



EGFR
VH
2075



EGFR
VH
2076



EGFR
VH
2077



EGFR
VH
2078



EGFR
VH
2079



EGFR
VH
2080



EGFR
VH
2081



EGFR
VH
2082



EGFR
VH
2083



EGFR
VH
2084



EGFR
VH
2085



EGFR
VH
2086



EGFR
VH
2087



EGFR
VH
2088



EGFR
VH
2089



EGFR
VH
2090



EGFR
VH
2091



EGFR
VH
2092



EGFR
VH
2093



EGFR
VH
2094



EGFR
VH
2095



EGFR
VH
2096



EGFR
VH
2097



EGFR
VH
2098



EGFR
VH
2099



EGFR
VH
2100



EGFR
VH
2101



EGFR
VH
2102



EGFR
VH
2103



EGFR
VH
2104



EGFR
VH
2105



EGFR
VH
2106



EGFR
VH
2107



EGFR
VH
2108



EGFR
VH
2109



EGFR
VH
2110



EGFR
VH
2111



EGFR
VH
2112



EGFR
VH
2113



EGFR
VH
2114



EGFR
VH
2115



EGFR
VH
2116



EGFR
VH
2117



EGFR
VH
2118



EGFR
VH
2119



EGFR
VH
2120



EGFR
VH
2121



EGFR
VH
2122



EGFR(Cetuximab)
VH
2123



EGFR(Cetuximab)
VH
2124



EGFR(EGFRvIII)
VH
2125



EGFR(EGFRvIII)
VH
2126



EGFR(EGFRvIII)
VH
2127



EGFR(EGFRvIII)
VH
2128



EGFR(EGFRvIII)
VH
2129



EGFR(EGFRvIII)
VH
2130



EGFR(EGFRvIII)
VH
2131



EGFR(EGFRvIII)
VH
2132



EGFR(EGFRvIII)
VH
2133



EGFR(EGFRvIII)
VH
2134



EGFR(EGFRvIII)
VH
2135



EGFR(EGFRvIII)
VH
2136



EGFR(EGFRvIII)
VH
2137



EGFR(EGFRvIII)
VH
2138



EGFR(EGFRvIII)
VH
2139



EGFR(EGFRvIII)
VH
2140



EGFR(EGFRvIII)
VH
2141



EGFR(EGFRvIII)
VH
2142



EGFR(EGFRvIII)
VH
2143



EGFR(EGFRvIII)
VH
2144



EGFR(EGFRvIII)
VH
2145



EGFR(EGFRvIII)
VH
2146



EGFRvIII
VH
2147
SEQ ID NO. 13 in WO2016016341


EGFRvIII
VH
2148
SEQ ID NO: 24 in WO2016168773A3


EGFRvIII
VH
2149
SEQ ID NO. 34 in US20160304615


EGFRvIII
VH
2150
SEQ ID NO: 2 in US20160200819A1


Endoglin
VH
2151
SEQ ID NO. 41 in US20160009811


Endoglin
VH
2152
SEQ ID NO. 42 in US20160009811


Endoglin
VH
2153
SEQ ID NO. 43 in US20160009811


Endoglin
VH
2154
SEQ ID NO. 71 in US20160009811


Endoglin
VH
2155
SEQ ID NO. 73 in US20160009811


Endoglin
VH
2156
SEQ ID NO. 75 in US20160009811


Endoglin
VH
2157
SEQ ID NO. 88 in US20160009811


Endoglin
VH
2158
SEQ ID NO. 89 in US20160009811


Endoglin
VH
2159
SEQ ID NO. 90 in US20160009811


Endoglin
VH
2160
SEQ ID NO. 91 in US20160009811


Endoglin
VH
2161
SEQ ID NO. 92 in US20160009811


EphA2receptor
VH
2162
US20150274824 SEQ ID NO: 20


EphA2receptor
VH
2163
US20150274824 SEQ ID NO: 22


EphA2receptor
VH
2164
US20150274824 SEQ ID NO: 24


EphA2receptor
VH
2165
US20150274824 SEQ ID NO: 32


EphA2receptor
VH
2166
US20150274824 SEQ ID NO: 34


EphA2receptor
VH
2167
US20150274824 SEQ ID NO: 36


EphA2receptor
VH
2168
US20150274824 SEQ ID NO: 37


EphA2receptor
VH
2169
US20150274824 SEQ ID NO: 38


EphA2receptor
VH
2170
US20150274824 SEQ ID NO: 40


EphA2receptor
VH
2171
US20150274824 SEQ ID NO: 42


EphA2receptor
VH
2172
US20150274824 SEQ ID NO: 43


EphA2receptor
VH
2173
US20150274824 SEQ ID NO: 45


EphA2receptor
VH
2174
US20150274824 SEQ ID NO: 74


EphA2receptor
VH
2175
US20150274824 SEQ ID NO: 76


ERBB2
VH
2176
US20110129464 SEQ ID NO: 2


ERBB2
VH
2177
US20110129464 SEQ ID NO: 4


ERBB2
VH
2178
US20130089544 SEQ ID NO: 10


ERBB2
VH
2179
US20130089544 SEQ ID NO: 2


ERBB2
VH
2180
US20130089544 SEQ ID NO: 26


ERBB2
VH
2181
US20130089544 SEQ ID NO: 30


ERBB2
VH
2182
US20130089544 SEQ ID NO: 38


ERBB2
VH
2183
US20130089544 SEQ ID NO: 4


ERBB2
VH
2184
US20130089544 SEQ ID NO: 40


ERBB2
VH
2185
US20130089544 SEQ ID NO: 42


ERBB2
VH
2186
US20130089544 SEQ ID NO: 52


ERBB2
VH
2187
US20130089544 SEQ ID NO: 54


ERBB2
VH
2188
US20130089544 SEQ ID NO: 56


ERBB2
VH
2189
US20130089544 SEQ ID NO: 57


ERBB2
VH
2190
US20130089544 SEQ ID NO: 58


ERBB2
VH
2191
US20130089544 SEQ ID NO: 6


ERBB2
VH
2192
US20130266564 SEQ ID NO: 8


ERBB2
VH
2193
US20150104443 SEQ ID NO: 1


FactorD
VH
2194
SEQ ID NO. 17 in US20160017052


FactorD
VH
2195
SEQ ID NO. 20 in US20160017052


FactorD
VH
2196
SEQ ID NO. 27 in US20160017052


FactorD
VH
2197
SEQ ID NO. 29 in US20160017052


FactorD
VH
2198
SEQ ID NO. 30 in US20160017052


FactorD
VH
2199
SEQ ID NO. 31 in US20160017052


FactorD
VH
2200
SEQ ID NO. 32 in US20160017052


FactorD
VH
2201
SEQ ID NO. 33 in US20160017052


FactorD
VH
2202
SEQ ID NO. 4 in US20160017052


FactorXII
VH
2203
SEQ ID NO. 15 in WO2014089493


FAP
VH
2204
SEQ ID NO. 1 in WO2015118030


FAP
VH
2205
SEQ ID NO. 5 in WO2015118030


FAP
VH
2206
SEQ ID NO. 170 in WO2016120216


FAP
VH
2207
SEQ ID NO. 172 in WO2016120216


FcRL5(FcReceptorLike5)
VH
2208
SEQ ID NO: 12 WO2016090337


FcRL5(FcReceptorLike5)
VH
2209
SEQ ID NO: 16 WO2016090337


FcRL5(FcReceptorLike5)
VH
2210
SEQ ID NO: 20 WO2016090337


FcRL5(FcReceptorLike5)
VH
2211
SEQ ID NO: 24 WO2016090337


FcRL5(FcReceptorLike5)
VH
2212
SEQ ID NO: 28 WO2016090337


FcRL5(FcReceptorLike5)
VH
2213
SEQ ID NO: 32 WO2016090337


FcRL5(FcReceptorLike5)
VH
2214
SEQ ID NO: 36 WO2016090337


FcRL5(FcReceptorLike5)
VH
2215
SEQ ID NO: 4 WO2016090337


FcRL5(FcReceptorLike5)
VH
2216
SEQ ID NO: 40 WO2016090337


FcRL5(FcReceptorLike5)
VH
2217
SEQ ID NO: 44 WO2016090337


FcRL5(FcReceptorLike5)
VH
2218
SEQ ID NO: 48 WO2016090337


FcRL5(FcReceptorLike5)
VH
2219
SEQ ID NO: 8 WO2016090337


FcRL5(FcReceptorLike5)
VH
2220
SEQ ID NO: 915 WO2016090337


FcRL5(FcReceptorLike5)
VH
2221
SEQ ID NO: 919 WO2016090337


FGFR3
VH
2222
SEQ ID NO. 132 in U.S. Pat. No. 9,499,623


FGFR3
VH
2223
SEQ ID NO. 134 in U.S. Pat. No. 9,499,623


FGFR3
VH
2224
SEQ ID NO. 136 in U.S. Pat. No. 9,499,623


FGFR4
VH
2225
SEQ ID NO. 7 in US20160237157


Frizzled Receptor
VH
2226
SEQ ID NO. 10 in WO2010037041


GAH
VH
2227
SEQ ID NO 7 in US20060057147A1


GCC1
VH
2228
SEQ ID NO. 1 in US20160030595A1


GD2
VH
2229
SEQ ID NO. 10 in WO2015132604


GD2
VH
2230
SEQ ID NO. 3 in US20130216528


GD2
VH
2231
SEQ ID NO. 4 in US20130216528


GD2
VH
2232
SEQ ID NO. 6 in US20130216528


GD2
VH
2233
SEQ ID NO. 8 in US20130216528


GD2
VH
2234
SEQ ID NO. 9 in WO2015132604


GD3
VH
2235
SEQ ID NO: 11 in WO2016185035A1


GD3
VH
2236
SEQ ID NO: 13 in WO2016185035A1


GD3
VH
2237
SEQ ID NO: 15 in WO2016185035A1


GD3
VH
2238
SEQ ID NO: 17 in WO2016185035A1


Glyco epitope and ErbBBI
VH
2239
SEQ ID No. 7 in WO2012007167A1


Specific





Glyco epitope and ErbBBI
VH
2240
SEQ ID No. 9 in WO2012007167A1


Specific





GM2
VH
2241
US20090028877 SEQ ID NO: 20


GM2
VH
2242
US20090028877 SEQ ID NO: 22


GM2
VH
2243
US20090028877 SEQ ID NO: 23


GM2
VH
2244
US20090028877 SEQ ID NO: 26


GM2
VH
2245
US20090028877 SEQ ID NO: 27


GM2
VH
2246
US20090028877 SEQ ID NO: 28


GM2
VH
2247
US20090028877 SEQ ID NO: 29


GM2
VH
2248
US20090028877 SEQ ID NO: 30


GPC3
VH
2249
SEQ ID NO: 10 in US20160208015A1


GPC3
VH
2250
SEQ ID NO: 14 in US20160208015A1


GPC3
VH
2251
SEQ ID NO: 2 in US20160208015A1


GPC3
VH
2252
SEQ ID NO: 3 in US20160208015A1


GPC3
VH
2253
SEQ ID NO: 4 in US20160208015A1


GPC3
VH
2254
SEQ ID NO: 5 in US20160208015A1


GPC3
VH
2255
SEQ ID NO: 6 in US20160208015A1


GPC3
VH
2256
SEQ ID NO: 7 in US20160208015A1


GPC3
VH
2257
SEQ ID NO: 8 in US20160208015A1


GPC3
VH
2258
SEQ ID NO: 9 in US20160208015A1


GPRC5D
VH
2259
SEQ ID NO. 13 in WO2016090312


GPRC5D
VH
2260
SEQ ID NO. 17 in WO2016090312


GPRC5D
VH
2261
SEQ ID NO. 21 in WO2016090312


GPRC5D
VH
2262
SEQ ID NO. 25 in WO2016090312


GPRC5D
VH
2263
SEQ ID NO. 29 in WO2016090312


GPRC5D
VH
2264
SEQ ID NO. 314 in WO2016090312


GPRC5D
VH
2265
SEQ ID NO. 326 in WO2016090312


GPRC5D
VH
2266
SEQ ID NO. 33 in WO2016090312


GPRC5D
VH
2267
SEQ ID NO. 338 in WO2016090312


GPRC5D
VH
2268
SEQ ID NO. 350 in WO2016090312


GPRC5D
VH
2269
SEQ ID NO. 362 in WO2016090312


GPRC5D
VH
2270
SEQ ID NO. 37 in WO2016090312


GPRC5D
VH
2271
SEQ ID NO. 374 in WO2016090312


GPRC5D
VH
2272
SEQ ID NO. 386 in WO2016090312


GPRC5D
VH
2273
SEQ ID NO. 41 in WO2016090312


GPRC5D
VH
2274
SEQ ID NO. 45 in WO2016090312


GPRC5D
VH
2275
SEQ ID NO. 49 in WO2016090312


GPRC5D
VH
2276
SEQ ID NO. 5 in WO2016090312


GPRC5D
VH
2277
SEQ ID NO. 53 in WO2016090312


GPRC5D
VH
2278
SEQ ID NO. 57 in WO2016090312


GPRC5D
VH
2279
SEQ ID NO. 61 in WO2016090312


GPRC5D
VH
2280
SEQ ID NO. 65 in WO2016090312


GPRC5D
VH
2281
SEQ ID NO. 69 in WO2016090312


GPRC5D
VH
2282
SEQ ID NO. 73 in WO2016090312


GPRC5D
VH
2283
SEQ ID NO. 77 in WO2016090312


GPRC5D
VH
2284
SEQ ID NO. 81 in WO2016090312


GPRC5D
VH
2285
SEQ ID NO. 85 in WO2016090312


GPRC5D
VH
2286
SEQ ID NO. 89 in WO2016090312


GPRC5D
VH
2287
SEQ ID NO. 93 in WO2016090312


GPRC5D
VH
2288
SEQ ID NO. 1 in WO2016090312


GPRC5D
VH
2289
SEQ ID NO. 9 in WO2016090312


Her1/her3
VH
2290
SEQ ID NO: 8 of WO2016073629


Her2
VH
2291
SEQ ID NO: 141 in WO2016054555A2


Her2
VH
2292
SEQ ID NO: 262 in WO2016168773A3


Her2
VH
2293
SEQ ID NO: 264 in WO2016168773A3


Her2
VH
2294
SEQ ID NO: 266 in WO2016168773A3


Her2
VH
2295
SEQ ID NO: 268 in WO2016168773A3


Her2
VH
2296
SEQ ID NO: 270 in WO2016168773A3


HER2
VH
2297
SEQ ID NO. 11 in U.S. Pat. No. 9,518,118


HER2
VH
2298
SEQ ID NO: 62 in US20160333114A1


HLAG
VH
2299
SEQ ID NO. 10 in WO2016160622A2


HLAG
VH
2300
SEQ ID NO. 8 in WO2016160622A2


HSP70
VH
2301
SEQ ID NO. 11 in WO2016120217


HSP70
VH
2302
SEQ ID NO. 12 in WO2016120217


humanCD79b
VH
2303
SEQ ID NO. 27 in WO2016112870


humanCD79b
VH
2304
SEQ ID NO. 29 in WO2016112870


Human chorionic
VH
2305
SEQ ID NO. 2 in WO2007019541


gonadotropin





Human chorionic
VH
2306
SEQ ID NO. 4 in WO2007019541


gonadotropin





Human chorionic
VH
2307
SEQ ID NO. 6 in WO2007019541


gonadotropin





Human collagen VII
VH
2308
SEQ ID NO. 31 in WO2016112870


humanERBB3
VH
2309
SEQ ID NO: 19 in WO2013052745


humanERBB3
VH
2310
SEQ ID NO: 29 in WO2013052745


humanERBB3
VH
2311
SEQ ID NO: 38 in WO2013052745


humanERBB3
VH
2312
SEQ ID NO: 45 in WO2013052745


humanERBB3
VH
2313
SEQ ID NO: 55 in WO2013052745


humanERBB3
VH
2314
SEQ ID NO: 61 in WO2013052745


humanERBB3
VH
2315
SEQ ID NO: 9 in WO2013052745


ICOS
VH
2316
SEQ ID NO. 15 in US20160215059


ICOS
VH
2317
SEQ ID NO. 16 in US20160215059


ICOS
VH
2318
SEQ ID NO. 19 in US20160215059


ICOS
VH
2319
SEQ ID NO. 23 in US20160215059


ICOS
VH
2320
SEQ ID NO. 7 in US20160215059


IGFI
VH
2321
SEQ ID NO. 1 in WO2007118214


IGFI
VH
2322
SEQ ID NO. 3 in WO2007118214


IGFI
VH
2323
SEQ ID NO. 7 in WO2007118214


IGFR1
VH
2324
SEQ ID NO: 7 in WO2015073575A2


IL13
VH
2325
SEQ ID NO 302. in US20160168242


IL13Ra2
VH
2326
SEQ ID NO. 7 in WO2016123143


IL13Ra2
VH
2327
SEQ ID NO. 8 in WO2016123143


IL1RAP
VH
2328
SEQ ID NO. 1 in WO2016020502


IL1RAP
VH
2329
SEQ ID NO. 10 in WO2016020502


IL1RAP
VH
2330
SEQ ID NO. 19 in WO2016020502


IL1RAP
VH
2331
SEQ ID NO. 8 in WO2016020502


IL1RAP
VH
2332
SEQ ID NO. 9 in WO2016020502


IL1RAP
VH
2333
SEQ ID NO: 120 in WO2016179319A1


IL1RAP
VH
2334
SEQ ID NO: 122 in WO2016179319A1


IL1RAP
VH
2335
SEQ ID NO: 124 in WO2016179319A1


IL21
VH
2336
SEQ ID NO. 2 in US20160145332


IL21
VH
2337
SEQ ID NO. 3 in US20160145332


IL33
VH
2338
SEQ ID NO 134. in US20160168242


IL33
VH
2339
SEQ ID NO 136. in US20160168242


IL33
VH
2340
SEQ ID NO 138. in US20160168242


IL33
VH
2341
SEQ ID NO 183. in US20160168242


IL33
VH
2342
SEQ ID NO 185. in US20160168242


IL33
VH
2343
SEQ ID NO 187. in US20160168242


IL33
VH
2344
SEQ ID NO 189. in US20160168242


IL33
VH
2345
SEQ ID NO 216. in US20160168242


IL33
VH
2346
SEQ ID NO 218. in US20160168242


IL33
VH
2347
SEQ ID NO 220. in US20160168242


IL33
VH
2348
SEQ ID NO 221. in US20160168242


IL33
VH
2349
SEQ ID NO 236. in US20160168242


IL33
VH
2350
SEQ ID NO 246. in US20160168242


IL33
VH
2351
SEQ ID NO 282. in US20160168242


IL33
VH
2352
SEQ ID NO 284. in US20160168242


IL33
VH
2353
SEQ ID NO 286. in US20160168242


IL33
VH
2354
SEQ ID NO 36. in US20160168242


IL33
VH
2355
SEQ ID NO 38. in US20160168242


IL33
VH
2356
SEQ ID NO 40. in US20160168242


IL33
VH
2357
SEQ ID NO 84. in US20160168242


IL33
VH
2358
SEQ ID NO 86. in US20160168242


IL33
VH
2359
SEQ ID NO 88. in US20160168242


IL3alpha
VH
2360
SEQ ID NO. 22 in WO2008127735


Integrin
VH
2361
SEQ ID NO. 3 in US 20140161794


Integrin
VH
2362
SEQ ID NO. 4 in US 20140161794


Integrin
VH
2363
SEQ ID NO. 5 in US 20140161794


KDR
VH
2364
SEQ ID NO. 20 IN WO2003075840


KDR
VH
2365
SEQ ID NO. 24 IN WO2003075840


KDR
VH
2366
SEQ ID NO. 26 IN WO2003075840


KDR
VH
2367
SEQ ID NO. 29 IN WO2003075840


KDR
VH
2368
SEQ ID NO. 31 IN WO2003075840


KDR
VH
2369
SEQ ID NO. 33 IN WO2003075840


KIR(Lirilumab)
VH
2370
SEQ ID NO. 3 in US20150290316


KIR(Lirilumab)
VH
2371
SEQ ID NO. 1 in WO2014055648


KIR2DL1andKIR2DL2/3
VH
2372
SEQ ID NO: 36 in WO2016126213A1


Klon43
VH
2373
SEQ ID NO: 47 in WO2016097231


KMA
VH
2374
SEQ ID NO: 22 in WO2016172703A2


LAG3
VH
2375
SEQ ID NO. 100 in US20150259420


LAG3
VH
2376
SEQ ID NO. 104 in US20150259420


LAG3
VH
2377
SEQ ID NO. 108 in US20150259420


LAG3
VH
2378
SEQ ID NO. 28 in US20150259420


LAG3
VH
2379
SEQ ID NO. 64 in US20150259420


LAG3
VH
2380
SEQ ID NO. 68 in US20150259420


LAG3
VH
2381
SEQ ID NO. 72 in US20150259420


LAG3
VH
2382
SEQ ID NO. 76 in US20150259420


LAG3
VH
2383
SEQ ID NO. 8 in US20150259420


LAG3
VH
2384
SEQ ID NO. 80 in US20150259420


LAG3
VH
2385
SEQ ID NO. 1 in WO2015042246


leukocytegenA0
VH
2386
SEQ ID NO. 9 in WO2010065962A2


leukocytegenA2
VH
2387
SEQ ID NO. 25 in WO2010065962A2


LGR4
VH
2388
SEQ ID NO. 12 in US20160046723


LGR4
VH
2389
SEQ ID NO. 13 in US20160046723


LGR4
VH
2390
SEQ ID NO. 5 in US20160046723


LGR4
VH
2391
SEQ ID NO. 9 in US20160046723


LGR5
VH
2392
SEQ ID NO. 10 in US20160102146


LGR5
VH
2393
SEQ ID NO. 12 in US20160102146


LGR5
VH
2394
SEQ ID NO. 16 in US20160102146


LGR5
VH
2395
SEQ ID NO. 18 in US20160102146


LGR5
VH
2396
SEQ ID NO. 20 in US20160102146


LGR5
VH
2397
SEQ ID NO. 22 in US20160102146


LGR5
VH
2398
SEQ ID NO. 24 in US20160102146


LGR5
VH
2399
SEQ ID NO. 26 in US20160102146


LGR5
VH
2400
SEQ ID NO. 4 in US20160102146


LHR
VH
2401
SEQ ID NO: 1 in WO2016160618A3


LHR
VH
2402
SEQ ID NO: 2 in WO2016160618A3


LHR
VH
2403
SEQ ID NO: 3 in WO2016160618A3


LHR
VH
2404
SEQ ID NO: 4 in WO2016160618A3


LHR
VH
2405
SEQ ID NO: 5 in WO2016160618A3


LHR
VH
2406
SEQ ID NO: 6 in WO2016160618A3


LHR
VH
2407
SEQ ID NO: 7 in WO2016160618A3


LHR
VH
2408
SEQ ID NO: 8 in WO2016160618A3


1L4R
VH
2409
SEQ ID NO. 10 in WO2009121847


1L4R
VH
2410
SEQ ID NO. 11 in WO2009121847


1L4R
VH
2411
SEQ ID NO. 14 in WO2009121847


1L4R
VH
2412
SEQ ID NO. 15 in WO2009121847


1L4R
VH
2413
SEQ ID NO. 9 in WO2009121847


Lymphotoxin beta receptor
VH
2414
SEQ ID NO. 10 in WO2004002431


Lymphotoxin beta receptor
VH
2415
SEQ ID NO. 12 in WO2004002431


Lymphotoxin beta receptor
VH
2416
SEQ ID NO. 14 in WO2004002431


Lymphotoxin beta receptor
VH
2417
SEQ ID NO. 16 in WO2004002431


Lymphotoxin beta receptor
VH
2418
SEQ ID NO. 2 in WO2004002431


Lysyloxidaselike2
VH
2419
SEQ ID NO. 42 in WO2011097513


Lysyloxidaselike2
VH
2420
SEQ ID NO. 44 in WO2011097513


Malignant Variable Receptor
VH
2421
SEQ ID NO. 1 in WO2015133817A1


MCAM
VH
2422
SEQ ID NO. 115 in US20150259419


MCAM
VH
2423
SEQ ID NO. 116 in US20150259419


MCAM
VH
2424
SEQ ID NO. 117 in US20150259419


MCAM
VH
2425
SEQ ID NO. 118 in US20150259419


MCAM
VH
2426
SEQ ID NO. 119 in US20150259419


MCAM
VH
2427
SEQ ID NO. 157 in US20150259419


MCAM
VH
2428
SEQ ID NO. 158 in US20150259419


MCAM
VH
2429
SEQ ID NO. 159 in US20150259419


MCAM
VH
2430
SEQ ID NO. 160 in US20150259419


MCAM
VH
2431
SEQ ID NO. 161 in US20150259419


MCAM
VH
2432
SEQ ID NO. 178 in US20150259419


MCAM
VH
2433
SEQ ID NO. 179 in US20150259419


MCAM
VH
2434
SEQ ID NO. 35 in US20150239980


MCAM
VH
2435
SEQ ID NO. 45 in US20150239980


MCAM
VH
2436
SEQ ID NO. 55 in US20150239980


MCAM
VH
2437
SEQ ID NO. 65 in US20150239980


MCAM
VH
2438
SEQ ID NO. 77 in US20150239980


MCAM
VH
2439
SEQ ID NO. 89 in US20150239980


MCSF
VH
2440
SEQ ID NO 102 in WO2005030124


MCSF
VH
2441
SEQ ID NO 10 in WO2005030124


MCSF
VH
2442
SEQ ID NO 14 in WO2005030124


MCSF
VH
2443
SEQ ID NO 18 in WO2005030124


MCSF
VH
2444
SEQ ID NO 2 in WO2005030124


MCSF
VH
2445
SEQ ID NO 22 in WO2005030124


MCSF
VH
2446
SEQ ID NO 26 in WO2005030124


MCSF
VH
2447
SEQ ID NO 30 in WO2005030124


MCSF
VH
2448
SEQ ID NO 34 in WO2005030124


MCSF
VH
2449
SEQ ID NO 38 in WO2005030124


MCSF
VH
2450
SEQ ID NO 46 in WO2005030124


MCSF
VH
2451
SEQ ID NO 50 in WO2005030124


MCSF
VH
2452
SEQ ID NO 54 in WO2005030124


MCSF
VH
2453
SEQ ID NO 58 in WO2005030124


MCSF
VH
2454
SEQ ID NO 6 in WO2005030124


MCSF
VH
2455
SEQ ID NO 66 in WO2005030124


MCSF
VH
2456
SEQ ID NO 70 in WO2005030124


MCSF
VH
2457
SEQ ID NO 74 in WO2005030124


MCSF
VH
2458
SEQ ID NO 78 in WO2005030124


MCSF
VH
2459
SEQ ID NO 82 in WO2005030124


MCSF
VH
2460
SEQ ID NO 86 in WO2005030124


MCSF
VH
2461
SEQ ID NO 90 in WO2005030124


MCSF
VH
2462
SEQ ID NO 94 in WO2005030124


MCSF
VH
2463
SEQ ID NO 98 in WO2005030124


Mesothelin
VH
2464
SEQ ID NO. 1 WO2015188141


Mesothelin
VH
2465
SEQ ID NO. 6 WO2015188141


Mesothelin
VH
2466
SEQ ID NO: 119 in US20160333114A1


Mesothelin
VH
2467
SEQ ID NO: 5 in WO2013142034


Mesothelin
VH
2468
SEQ ID NO: 50 in US20160333114A1


Mesothelin
VH
2469
SEQ ID NO: 6 in WO2013142034


Mesothelin
VH
2470
SEQ ID NO: 15 in U.S. Pat. No. 9,416,190B2


Mesothelin
VH
2471
SEQ ID NO: 2 in U.S. Pat. No. 9,416,190B2


MN
VH
2472
SEQ ID NO. 133 in WO2007070538


MN
VH
2473
SEQ ID NO. 135 in WO2007070538


MN
VH
2474
SEQ ID NO. 137 in WO2007070538


MN
VH
2475
SEQ ID NO. 139 in WO2007070538


MN
VH
2476
SEQ ID NO. 141 in WO2007070538


MN
VH
2477
SEQ ID NO. 143 in WO2007070538


MN
VH
2478
SEQ ID NO. 145 in WO2007070538


MN
VH
2479
SEQ ID NO. 147 in WO2007070538


MN
VH
2480
SEQ ID NO. 149 in WO2007070538


MN
VH
2481
SEQ ID NO. 151 in WO2007070538


MPER
VH
2482
SEQ ID NO: 13 in US20160194375A1


MUC1
VH
2483
SEQ ID NO. 5 in US20160130357


MUC1
VH
2484
SEQ ID NO: 2 in WO2013023162


MUC1
VH
2485
SEQ ID NO: 14 in WO2013023162


MUC1
VH
2486
SEQ ID NO. 15 in WO2015116753


MUC1
VH
2487
SEQ ID NO. 19 in WO2015116753


MUC1
VH
2488
SEQ ID NO. 23 in WO2015116753


MUC1
VH
2489
SEQ ID NO. 60 in WO2015116753


MUC1
VH
2490
SEQ ID NO. 64 in WO2015116753


MUC1
VH
2491
SEQ ID NO. 68 in WO2015116753


MUC16
VH
2492
SEQ ID NO. 1 in WO2016149368


MUC16
VH
2493
SEQ ID NO. 11 in US20130171152


MUC16
VH
2494
SEQ ID NO. 21 in WO2016149368


MUC16
VH
2495
SEQ ID NO. 41 in WO2016149368


MUC16
VH
2496
SEQ ID NO. 81 in WO2016149368


MUC16
VH
2497
SEQ ID NO. 4 in US20130171152


MUC16
VH
2498
SEQ ID NO. 6 in US20130171152


MUC16
VH
2499
SEQ ID NO. 61 in WO2016149368


MUC16
VH
2500
SEQ ID NO. 8 in US20130171152


MUCIN1
VH
2501
SEQ ID NO: 101 in EP3049812A2


MUCIN1
VH
2502
SEQ ID NO: 106 in EP3049812A2


MUCIN1
VH
2503
SEQ ID NO: 109 in EP3049812A2


MUCIN1
VH
2504
SEQ ID NO: 115 in EP3049812A2


MUCIN1
VH
2505
SEQ ID NO: 119 in EP3049812A2


MUCIN1
VH
2506
SEQ ID NO: 123 in EP3049812A2


MUCIN1
VH
2507
SEQ ID NO: 127 in EP3049812A2


MUCIN1
VH
2508
SEQ ID NO: 141 in EP3049812A2


MUCIN1
VH
2509
SEQ ID NO: 15 in EP3049812A2


MUCIN1
VH
2510
SEQ ID NO: 23 in EP3049812A2


MUCIN1
VH
2511
SEQ ID NO: 28 in EP3049812A2


MUCIN1
VH
2512
SEQ ID NO: 33 in EP3049812A2


MUCIN1
VH
2513
SEQ ID NO: 39 in EP3049812A2


MUCIN1
VH
2514
SEQ ID NO: 42 in EP3049812A2


MUCIN1
VH
2515
SEQ ID NO: 47 in EP3049812A2


MUCIN1
VH
2516
SEQ ID NO: 5 in EP3049812A2


MUCIN1
VH
2517
SEQ ID NO: 57 in EP3049812A2


MUCIN1
VH
2518
SEQ ID NO: 66 in EP3049812A2


MUCIN1
VH
2519
SEQ ID NO: 70 in EP3049812A2


MUCIN1
VH
2520
SEQ ID NO: 75 in EP3049812A2


MUCIN1
VH
2521
SEQ ID NO: 80 in EP3049812A2


MUCIN1
VH
2522
SEQ ID NO: 83 in EP3049812A2


MUCIN1
VH
2523
SEQ ID NO: 87 in EP3049812A2


MUCIN1
VH
2524
SEQ ID NO: 92 in EP3049812A2


MVR
VH
2525
SEQ ID NO: 1 in US20160257762A1


N Glycan
VH
2526
SEQ ID NO: 7 in US20160194375A1


N Glycan
VH
2527
SEQ ID NO: 9 in US20160194375A1


NKG2A
VH
2528
SEQ ID NO: 32 in WO2016126213A1


NKG2A
VH
2529
SEQ ID NO. 2 in WO2016041947


NKG2A
VH
2530
SEQ ID NO. 3 in WO2016041947


NKG2A
VH
2531
SEQ ID NO. 4 in WO2016041947


NKG2A
VH
2532
SEQ ID NO. 5 in WO2016041947


NKG2A
VH
2533
SEQ ID NO. 6 in WO2016041947


NKG2D
VH
2534
SEQ ID NO. 135 in WO2016122701


NKG2D
VH
2535
SEQ ID NO. 137 in WO2016122701


NOTCH1
VH
2536
SEQ ID NO: 12 in WO2013074596


NOTCH2/3
VH
2537
SEQ ID NO: 29 in WO2013074596


Notch 1
VH
2538
SEQ ID NO: 58 in US20160333114A1


Notum
VH
2539
SEQ ID NO: 56 in WO2012027723


Notum
VH
2540
SEQ ID NO: 331 in WO2012027723


Olfml3
VH
2541
SEQ ID NO. 1 in WO2015054441A1


Olfml3
VH
2542
SEQ ID NO. 19 in WO2015054441A1


Olfml3
VH
2543
SEQ ID NO. 3 in WO2015054441A1


Osteonectin
VH
2544
SEQ ID NO. 58 in WO2016112870


OX40
VH
2545
SEQ ID NO. 101 in WO2016196228


OX40
VH
2546
SEQ ID NO. 103 in WO2016196228


OX40
VH
2547
SEQ ID NO. 105 in WO2016196228


OX40
VH
2548
SEQ ID NO. 107 in WO2016196228


OX40
VH
2549
SEQ ID NO. 109 in WO2016196228


OX40
VH
2550
SEQ ID NO. 111 in WO2016196228


OX40
VH
2551
SEQ ID NO. 113 in WO2016196228


OX40
VH
2552
SEQ ID NO. 115 in WO2016196228


OX40
VH
2553
SEQ ID NO. 117 in WO2016196228


OX40
VH
2554
SEQ ID NO. 119 in WO2016196228


OX40
VH
2555
SEQ ID NO. 121 in WO2016196228


OX40
VH
2556
SEQ ID NO. 123 in WO2016196228


OX40
VH
2557
SEQ ID NO. 124 in WO2016196228


OX40
VH
2558
SEQ ID NO. 125 in WO2016196228


OX40
VH
2559
SEQ ID NO. 15 in U.S. Pat. No. 9,428,570


OX40
VH
2560
SEQ ID NO. 17 in WO2016196228


OX40
VH
2561
SEQ ID NO. 28 in WO2016196228


OX40
VH
2562
SEQ ID NO. 29 in WO2016196228


OX40
VH
2563
SEQ ID NO. 31 in US20150190506


OX40
VH
2564
SEQ ID NO. 318 in WO2016196228


OX40
VH
2565
SEQ ID NO. 33 in US20160137740


OX40
VH
2566
SEQ ID NO. 34 in US20150190506


OX40
VH
2567
SEQ ID NO. 35 in US20160137740


OX40
VH
2568
SEQ ID NO. 36 in US20150190506


OX40
VH
2569
SEQ ID NO. 37 in US20160137740


OX40
VH
2570
SEQ ID NO. 37 in WO2016196228


OX40
VH
2571
SEQ ID NO. 38 in US20150190506


OX40
VH
2572
SEQ ID NO. 39 in US20160137740


OX40
VH
2573
SEQ ID NO. 40 in US20150190506


OX40
VH
2574
SEQ ID NO. 41 in US20160137740


OX40
VH
2575
SEQ ID NO. 42 in US20150190506


OX40
VH
2576
SEQ ID NO. 43 in US20160137740


OX40
VH
2577
SEQ ID NO. 44 in US20150190506


OX40
VH
2578
SEQ ID NO. 44 in U.S. Pat. No. 8,283,450


OX40
VH
2579
SEQ ID NO. 45 in US20160137740


OX40
VH
2580
SEQ ID NO. 46 in US20150190506


OX40
VH
2581
SEQ ID NO. 46 in U.S. Pat. No. 8,283,450


OX40
VH
2582
SEQ ID NO. 47 in US20160137740


OX40
VH
2583
SEQ ID NO. 48 in US20150190506


OX40
VH
2584
SEQ ID NO. 48 in U.S. Pat. No. 8,283,450


OX40
VH
2585
SEQ ID NO. 48 in WO2016196228


OX40
VH
2586
SEQ ID NO. 49 in US20160137740


OX40
VH
2587
SEQ ID NO. 50 in US20150190506


OX40
VH
2588
SEQ ID NO. 50 in WO2016196228


OX40
VH
2589
SEQ ID NO. 51 in US20160137740


OX40
VH
2590
SEQ ID NO. 53 in US20150190506


OX40
VH
2591
SEQ ID NO. 53 in US20160137740


OX40
VH
2592
SEQ ID NO. 54 in US20150190506


OX40
VH
2593
SEQ ID NO. 55 in US20150190506


OX40
VH
2594
SEQ ID NO. 55 in US20160137740


OX40
VH
2595
SEQ ID NO. 57 in US20160137740


OX40
VH
2596
SEQ ID NO. 58 in US20150190506


OX40
VH
2597
SEQ ID NO. 58 in WO2016196228


OX40
VH
2598
SEQ ID NO. 59 in US20150190506


OX40
VH
2599
SEQ ID NO. 59 in US20160137740


OX40
VH
2600
SEQ ID NO. 61 in US20150190506


OX40
VH
2601
SEQ ID NO. 61 in US20160137740


OX40
VH
2602
SEQ ID NO. 63 in US20160137740


OX40
VH
2603
SEQ ID NO. 65 in US20160137740


OX40
VH
2604
SEQ ID NO. 66 in WO2016196228


OX40
VH
2605
SEQ ID NO. 67 in US20160137740


OX40
VH
2606
SEQ ID NO. 7 in U.S. Pat. No. 8,283,450


OX40
VH
2607
SEQ ID NO. 71 in US20160137740


OX40
VH
2608
SEQ ID NO. 74 in WO2016196228


OX40
VH
2609
SEQ ID NO. 85 in WO2016196228


OX40
VH
2610
SEQ ID NO. 9 in U.S. Pat. No. 9,428,570


OX40
VH
2611
SEQ ID NO. 9 in U.S. Pat. No. 8,283,450


OX40
VH
2612
SEQ ID NO. 93 in WO2016196228


OX40
VH
2613
SEQ ID NO. 95 in WO2016196228


OX40
VH
2614
SEQ ID NO. 97 in WO2016196228


OX40
VH
2615
SEQ ID NO. 99 in WO2016196228


PD1
VH
2616
SEQ ID NO. 19 in US20150290316


PD1
VH
2617
SEQ ID NO. 25 in US20130291136


PD1
VH
2618
SEQ ID NO. 26 in US20130291136


PD1
VH
2619
SEQ ID NO. 27 in US20130291136


PD1
VH
2620
SEQ ID NO. 28 in US20130291136


PD1
VH
2621
SEQ ID NO. 29 in US 20160159905


PD1
VH
2622
SEQ ID NO. 29 in US20130291136


PD1
VH
2623
SEQ ID NO. 3 in US 20160159905


PD1
VH
2624
SEQ ID NO. 38 in US 20160159905


PD1
VH
2625
SEQ ID NO. 38 in WO2015112900


PD1
VH
2626
SEQ ID NO. 4 in US 20160159905


PD1
VH
2627
SEQ ID NO. 5 in US 20160159905


PD1
VH
2628
SEQ ID NO. 50 in WO2015112900


PD1
VH
2629
SEQ ID NO. 6 in US 20160159905


PD1
VH
2630
SEQ ID NO. 82 in WO2015112900


PD1
VH
2631
SEQ ID NO. 86 in WO2015112900


PD1
VH
2632
SEQ ID NO. 17 in WO2014055648


PD1(Nivolumab)
VH
2633
SEQ ID NO. 2 in WO2016040892


PD1(Nivolumab)
VH
2634
SEQ ID NO. 10 in US20150190506


PD1(Pembrolizumab)
VH
2635
SEQ ID NO. 4 in WO2016040892


PD1(Pembrolizumab)
VH
2636
SEQ ID NO. 12 in US20150190506


PDK1
VH
2637
SEQ ID NO. 2 in WO2016090365


PDL1
VH
2638
SEQ ID NO. 10 in US20160319022


PDL1
VH
2639
SEQ ID NO. 18 in WO2016061142


PDL1
VH
2640
SEQ ID NO. 29 in US20150190506


PDL1
VH
2641
SEQ ID NO. 30 in WO2016061142


PDL1
VH
2642
SEQ ID NO. 32 in US20160319022


PDL1
VH
2643
SEQ ID NO. 38 in WO2016061142


PDL1
VH
2644
SEQ ID NO. 46 in WO2016061142


PDL1
VH
2645
SEQ ID NO. 50 in WO2016061142


PDL1
VH
2646
SEQ ID NO. 54 in WO2016061142


PDL1
VH
2647
SEQ ID NO. 62 in WO2016061142


PDL1
VH
2648
SEQ ID NO. 7 in US20150190506


PDL1
VH
2649
SEQ ID NO. 70 in WO2016061142


PDL1
VH
2650
SEQ ID NO. 78 in WO2016061142


PDL1
VH
2651
SEQ ID NO. 8 in US20160319022


PDL1
VH
2652
US20160108123 SEQ ID NO: 16


PDL1
VH
2653
US20160108123 SEQ ID NO: 18


PDL1
VH
2654
US20160108123 SEQ ID NO: 197


PDL1
VH
2655
US20160108123 SEQ ID NO: 247


PDL1
VH
2656
US20160108123 SEQ ID NO: 248


PDL1
VH
2657
US20160108123 SEQ ID NO: 250


PDL1
VH
2658
US20160108123 SEQ ID NO: 251


PDL1
VH
2659
US20160108123 SEQ ID NO: 252


PDL1
VH
2660
US20160108123 SEQ ID NO: 253


PDL1
VH
2661
US20160108123 SEQ ID NO: 254


PDL1
VH
2662
US20160108123 SEQ ID NO: 255


PDL1
VH
2663
US20160108123 SEQ ID NO: 256


PDL1
VH
2664
US20160108123 SEQ ID NO: 257


PDL1
VH
2665
US20160108123 SEQ ID NO: 258


PDL1
VH
2666
US20160108123 SEQ ID NO: 259


PDL1
VH
2667
US20160108123 SEQ ID NO: 260


PDL1
VH
2668
US20160108123 SEQ ID NO: 30


PDL1
VH
2669
US20160108123 SEQ ID NO: 308


PDL1
VH
2670
US20160108123 SEQ ID NO: 310


PDL1
VH
2671
US20160108123 SEQ ID NO: 312


PDL1
VH
2672
US20160108123 SEQ ID NO: 319


PDL1
VH
2673
US20160108123 SEQ ID NO: 32


PDL1
VH
2674
US20160108123 SEQ ID NO: 324


PDL1
VH
2675
US20160108123 SEQ ID NO: 339


PDL1
VH
2676
US20160108123 SEQ ID NO: 356


PDL1
VH
2677
US20160108123 SEQ ID NO: 38


PDL1
VH
2678
US20160108123 SEQ ID NO: 40


PDL1
VH
2679
US20160108123 SEQ ID NO: 46


PDL1
VH
2680
US20160108123 SEQ ID NO: 48


PDL1
VH
2681
US20160108123 SEQ ID NO: 50


PDL1
VH
2682
US20160108123 SEQ ID NO: 52


PDL1
VH
2683
US20160108123 SEQ ID NO: 54


PDL1
VH
2684
US20160108123 SEQ ID NO: 6


PDL1
VH
2685
US20160108123 SEQ ID NO: 62


PDL1
VH
2686
US20160108123 SEQ ID NO: 70


PDL1
VH
2687
US20160108123 SEQ ID NO: 72


PDL1
VH
2688
US20160108123 SEQ ID NO: 78


PDL1
VH
2689
US20160108123 SEQ ID NO: 80


PDL1
VH
2690
US20160108123 SEQ ID NO: 91


PDL1
VH
2691
US20160108123 SEQ ID NO: 96


PDL2
VH
2692
SEQ ID NO. 43 in US20130291136


PDL2
VH
2693
SEQ ID NO. 44 in US20130291136


PDL2
VH
2694
SEQ ID NO. 45 in US20130291136


PDL2
VH
2695
SEQ ID NO. 46 in US20130291136


PG16
VH
2696
SEQ ID NO: 13 in EP3074419A2


PG9
VH
2697
SEQ ID NO: 11 in EP3074419A2


PGT1
VH
2698
SEQ ID NO: 15 in EP3074419A2


PGT2
VH
2699
SEQ ID NO: 17 in EP3074419A2


PGT3
VH
2700
SEQ ID NO: 19 in EP3074419A2


PGT4
VH
2701
SEQ ID NO: 21 in EP3074419A2


PGT5
VH
2702
SEQ ID NO: 23 in EP3074419A2


PRAME
VH
2703
SEQ ID NO: 50 in WO2016191246A2


PRAME
VH
2704
SEQ ID NO: 52 in WO2016191246A2


PRAME
VH
2705
SEQ ID NO: 54 in WO2016191246A2


PRAME
VH
2706
SEQ ID NO: 56 in WO2016191246A2


PRAME
VH
2707
SEQ ID NO: 58 in WO2016191246A2


PRAME
VH
2708
SEQ ID NO: 60 in WO2016191246A2


PRAME
VH
2709
SEQ ID NO: 62 in WO2016191246A2


PRP
VH
2710
SEQ ID NO: 42 in US20160333114A1


PSMA
VH
2711
SEQ ID NO: 43 in WO2016097231


PTK7
VH
2712
SEQ ID NO. 21 in WO2012112943A1


PTK7
VH
2713
SEQ ID NO. 23 in WO2012112943A1


PTK7
VH
2714
SEQ ID NO. 25 in WO2012112943A1


PTK7
VH
2715
SEQ ID NO. 27 in WO2012112943A1


PTK7
VH
2716
SEQ ID NO. 29 in WO2012112943A1


PTK7
VH
2717
SEQ ID NO. 31 in WO2012112943A1


PTK7
VH
2718
SEQ ID NO. 33 in WO2012112943A1


PTK7
VH
2719
SEQ ID NO. 35 in WO2012112943A1


PTK7
VH
2720
SEQ ID NO. 37 in WO2012112943A1


PTK7
VH
2721
SEQ ID NO. 39 in WO2012112943A1


PTK7
VH
2722
SEQ ID NO. 41 in WO2012112943A1


PTK7
VH
2723
SEQ ID NO. 43 in WO2012112943A1


PTK7
VH
2724
SEQ ID NO. 45 in WO2012112943A1


PTK7
VH
2725
SEQ ID NO. 47 in WO2012112943A1


PTK7
VH
2726
SEQ ID NO. 49 in WO2012112943A1


PTK7
VH
2727
SEQ ID NO. 51 in WO2012112943A1


PTK7
VH
2728
SEQ ID NO. 53 in WO2012112943A1


PTK7
VH
2729
SEQ ID NO. 55 in WO2012112943A1


PTK7
VH
2730
SEQ ID NO. 57 in WO2012112943A1


PTK7
VH
2731
SEQ ID NO. 59 in WO2012112943A1


PTK7
VH
2732
SEQ ID NO. 61 in WO2012112943A1


PTK7
VH
2733
SEQ ID NO. 63 in WO2012112943A1


PTK7
VH
2734
SEQ ID NO. 65 in WO2012112943A1


PTK7
VH
2735
SEQ ID NO. 67 in WO2012112943A1


PTK7
VH
2736
SEQ ID NO. 69 in WO2012112943A1


RAS
VH
2737
SEQ ID NO. 17 in WO2016154047


RAS
VH
2738
SEQ ID NO. 47 in WO2016154047


RAS
VH
2739
SEQ ID NO. 57 in WO2016154047


RAS
VH
2740
SEQ ID NO. 67 in WO2016154047


RAS
VH
2741
SEQ ID NO. 7 in WO2016154047


RAS
VH
2742
SEQ ID NO. 77 in WO2016154047


RHAMM
VH
2743
SEQ ID NO. 4 in US20020127227A1


RHAMM antagonist body
VH
2744
SEQ ID NO 2 in WO2000029447


heavy chain





Rituximab
VH
2745
SEQ ID NO: 66 in US20160333114A1


ROR1
VH
2746
SEQ ID NO. 12 WO2016016343A1


ROR1
VH
2747
SEQ ID NO. 20 WO2016016343A1


ROR1
VH
2748
SEQ ID NO. 28 WO2016016343A1


ROR1
VH
2749
SEQ ID NO. 36 WO2016016343A1


ROR1
VH
2750
SEQ ID NO. 44 WO2016016343A1


ROR1
VH
2751
SEQ ID NO. 60 WO2016016343A1


ROR1
VH
2752
SEQ ID NO. 68 WO2016016343A1


ROR1
VH
2753
SEQ ID NO. 57 in WO2016016344A1


ROR1
VH
2754
SEQ ID NO. 19 in WO2016016344A1


ROR1
VH
2755
SEQ ID NO. 31 in WO2016016344A1


ROR1
VH
2756
SEQ ID NO. 45 in WO2016016344A1


ROR1
VH
2757
SEQ ID NO. 53 in WO2016016344A1


ROR1
VH
2758
SEQ ID NO. 71 in WO2016016344A1


ROR1
VH
2759
SEQ ID NO. 85 in WO2016120216


ROR1
VH
2760
SEQ ID NO. 87 in WO2016120216


ROR1
VH
2761
SEQ ID NO. 89 in WO2016120216


ROR1
VH
2762
SEQ ID NO: 122 in US20160208018A1


ROR1
VH
2763
SEQ ID NO: 125 in US20160208018A1


ROR1
VH
2764
SEQ ID NO: 175 in US20160208018A1


ROR1
VH
2765
SEQ ID NO: 176 in US20160208018A1


ROR1
VH
2766
SEQ ID NO: 179 in US20160208018A1


ROR1
VH
2767
SEQ ID NO: 180 in US20160208018A1


ROR1
VH
2768
SEQ ID NO: 181 in US20160208018A1


ROR1
VH
2769
SEQ ID NO: 182 in US20160208018A1


ROR1
VH
2770
SEQ ID NO: 183 in US20160208018A1


ROR1
VH
2771
SEQ ID NO: 184 in US20160208018A1


ROR1
VH
2772
SEQ ID NO: 185 in US20160208018A1


ROR1
VH
2773
SEQ ID NO: 186 in US20160208018A1


ROR1
VH
2774
SEQ ID NO: 187 in US20160208018A1


ROR1
VH
2775
SEQ ID NO: 188 in US20160208018A1


ROR1
VH
2776
SEQ ID NO: 189 in US20160208018A1


ROR1
VH
2777
SEQ ID NO: 190 in US20160208018A1


ROR1
VH
2778
SEQ ID NO: 191 in US20160208018A1


ROR1
VH
2779
SEQ ID NO: 192 in US20160208018A1


ROR1
VH
2780
SEQ ID NO: 193 in US20160208018A1


ROR1
VH
2781
SEQ ID NO: 194 in US20160208018A1


ROR1
VH
2782
SEQ ID NO: 195 in US20160208018A1


ROR1
VH
2783
SEQ ID NO: 196 in US20160208018A1


ROR1
VH
2784
SEQ ID NO: 197 in US20160208018A1


ROR1
VH
2785
SEQ ID NO: 198 in US20160208018A1


ROR1
VH
2786
SEQ ID NO: 199 in US20160208018A1


ROR1
VH
2787
SEQ ID NO: 200 in US20160208018A1


ROR1
VH
2788
SEQ ID NO: 201 in US20160208018A1


ROR1
VH
2789
SEQ ID NO: 202 in US20160208018A1


ROR1
VH
2790
SEQ ID NO: 203 in US20160208018A1


ROR1
VH
2791
SEQ ID NO: 204 in US20160208018A1


ROR1
VH
2792
SEQ ID NO: 205 in US20160208018A1


ROR1
VH
2793
SEQ ID NO: 206 in US20160208018A1


ROR1
VH
2794
SEQ ID NO: 207 in US20160208018A1


ROR1
VH
2795
SEQ ID NO: 208 in US20160208018A1


ROR1
VH
2796
SEQ ID NO: 209 in US20160208018A1


ROR1
VH
2797
SEQ ID NO: 55 in EP3083671A1


ROR1
VH
2798
SEQ ID NO: 104 in WO2016187216A1


ROR1
VH
2799
SEQ ID NO: 112 in WO2016187216A1


ROR1
VH
2800
SEQ ID NO: 120 in WO2016187216A1


ROR1
VH
2801
SEQ ID NO: 128 in WO2016187216A1


ROR1
VH
2802
SEQ ID NO: 152 in WO2016187216A1


ROR1
VH
2803
SEQ ID NO: 16 in WO2016187216A1


ROR1
VH
2804
SEQ ID NO: 160 in WO2016187216A1


ROR1
VH
2805
SEQ ID NO: 168 in WO2016187216A1


ROR1
VH
2806
SEQ ID NO: 176 in WO2016187216A1


ROR1
VH
2807
SEQ ID NO: 184 in WO2016187216A1


ROR1
VH
2808
SEQ ID NO: 192 in WO2016187216A1


ROR1
VH
2809
SEQ ID NO: 200 in WO2016187216A1


ROR1
VH
2810
SEQ ID NO: 208 in WO2016187216A1


ROR1
VH
2811
SEQ ID NO: 216 in WO2016187216A1


ROR1
VH
2812
SEQ ID NO: 224 in WO2016187216A1


ROR1
VH
2813
SEQ ID NO: 232 in WO2016187216A1


ROR1
VH
2814
SEQ ID NO: 24 in WO2016187216A1


ROR1
VH
2815
SEQ ID NO: 240 in WO2016187216A1


ROR1
VH
2816
SEQ ID NO: 248 in WO2016187216A1


ROR1
VH
2817
SEQ ID NO: 256 in WO2016187216A1


ROR1
VH
2818
SEQ ID NO: 264 in WO2016187216A1


ROR1
VH
2819
SEQ ID NO: 272 in WO2016187216A1


ROR1
VH
2820
SEQ ID NO: 280 in WO2016187216A1


ROR1
VH
2821
SEQ ID NO: 288 in WO2016187216A1


ROR1
VH
2822
SEQ ID NO: 296 in WO2016187216A1


ROR1
VH
2823
SEQ ID NO: 304 in WO2016187216A1


ROR1
VH
2824
SEQ ID NO: 312 in WO2016187216A1


ROR1
VH
2825
SEQ ID NO: 32 in WO2016187216A1


ROR1
VH
2826
SEQ ID NO: 320 in WO2016187216A1


ROR1
VH
2827
SEQ ID NO: 336 in WO2016187216A1


ROR1
VH
2828
SEQ ID NO: 344 in WO2016187216A1


ROR1
VH
2829
SEQ ID NO: 352 in WO2016187216A1


ROR1
VH
2830
SEQ ID NO: 360 in WO2016187216A1


ROR1
VH
2831
SEQ ID NO: 40 in WO2016187216A1


ROR1
VH
2832
SEQ ID NO: 48 in WO2016187216A1


ROR1
VH
2833
SEQ ID NO: 56 in WO2016187216A1


ROR1
VH
2834
SEQ ID NO: 64 in WO2016187216A1


ROR1
VH
2835
SEQ ID NO: 72 in WO2016187216A1


ROR1
VH
2836
SEQ ID NO: 8 in WO2016187216A1


ROR1
VH
2837
SEQ ID NO: 80 in WO2016187216A1


ROR1
VH
2838
SEQ ID NO: 88 in WO2016187216A1


SEMAPHORIN4D
VH
2839
SEQ ID NO. 10 in US20160115240A1


SEMAPHORIN4D
VH
2840
SEQ ID NO. 25 in US20160115240A1


SEMAPHORIN4D
VH
2841
SEQ ID NO. 9 in US20160115240A1


TAG72
VH
2842
SEQ ID NO: 115 in US20160333114A1


TCR
VH
2843
SEQ ID NO. 133 in WO2016122701


TEM8
VH
2844
SEQ ID NO: 1 in US20160264662A1


TEM8
VH
2845
SEQ ID NO: 3 in US20160264662A1


TEM8
VH
2846
SEQ ID NO: 5 in US20160264662A1


TEM8
VH
2847
SEQ ID NO: 7 in US20160264662A1


Tie
VH
2848
SEQ ID NO 723 in US20060057138A1


TIGIT
VH
2849
SEQ ID NO. 10 in US20160355589


TIGIT
VH
2850
SEQ ID NO. 11 in US20160355589


TIGIT
VH
2851
SEQ ID NO. 12 in US20160355589


TIGIT
VH
2852
SEQ ID NO. 124 in US20160355589


TIGIT
VH
2853
SEQ ID NO. 125 in US20160355589


TIGIT
VH
2854
SEQ ID NO. 126 in US20160355589


TIGIT
VH
2855
SEQ ID NO. 127 in US20160355589


TIGIT
VH
2856
SEQ ID NO. 128 in US20160355589


TIGIT
VH
2857
SEQ ID NO. 129 in US20160355589


TIGIT
VH
2858
SEQ ID NO. 13 in US20160355589


TIGIT
VH
2859
SEQ ID NO. 136 in US20160355589


TIGIT
VH
2860
SEQ ID NO. 138 in US20160355589


TIGIT
VH
2861
SEQ ID NO. 14 in US20160355589


TIGIT
VH
2862
SEQ ID NO. 143 in US20160355589


TIGIT
VH
2863
SEQ ID NO. 144 in US20160355589


TIGIT
VH
2864
SEQ ID NO. 149 in US20160355589


TIGIT
VH
2865
SEQ ID NO. 15 in US20160355589


TIGIT
VH
2866
SEQ ID NO. 150 in US20160355589


TIGIT
VH
2867
SEQ ID NO. 16 in US20160355589


TIGIT
VH
2868
SEQ ID NO. 17 in US20160355589


TIGIT
VH
2869
SEQ ID NO. 18 in US20160355589


TIGIT
VH
2870
SEQ ID NO. 19 in US20160355589


TIGIT
VH
2871
SEQ ID NO. 20 in US20160355589


TIGIT
VH
2872
SEQ ID NO. 21 in US20160355589


TIGIT
VH
2873
SEQ ID NO. 22 in US20160355589


TIGIT
VH
2874
SEQ ID NO. 23 in US20160355589


TIGIT
VH
2875
SEQ ID NO. 24 in US20160355589


TIGIT
VH
2876
SEQ ID NO. 37 in US20160355589


TIGIT
VH
2877
SEQ ID NO. 38 in US20160355589


TIGIT
VH
2878
SEQ ID NO. 39 in US20160355589


TIGIT
VH
2879
SEQ ID NO. 40 in US20160355589


TIGIT
VH
2880
SEQ ID NO. 41 in US20160355589


TIGIT
VH
2881
SEQ ID NO. 42 in US20160355589


TIGIT
VH
2882
SEQ ID NO. 43 in US20160355589


TIGIT
VH
2883
SEQ ID NO. 44 in US20160355589


TIGIT
VH
2884
SEQ ID NO. 45 in US20160355589


TIGIT
VH
2885
SEQ ID NO. 46 in US20160355589


TIGIT
VH
2886
SEQ ID NO. 47 in US20160355589


TIGIT
VH
2887
SEQ ID NO. 63 in US20160355589


TIGIT
VH
2888
SEQ ID NO. 94 in US20160355589


TIGIT
VH
2889
SEQ ID NO. 7 in US20160355589


TIGIT
VH
2890
SEQ ID NO. 9 in US20160355589


TIM3
VH
2891
SEQ ID NO: 82 in WO2013006490


TIM3
VH
2892
SEQ ID NO: 13 in WO2016179319A1


TIM3
VH
2893
SEQ ID NO: 21 in WO2016179319A1


TIM3
VH
2894
SEQ ID NO: 29 in WO2016179319A1


TIM3
VH
2895
SEQ ID NO: 37 in WO2016179319A1


TIM3
VH
2896
SEQ ID NO: 45 in WO2016179319A1


TIM3
VH
2897
SEQ ID NO: 5 in WO2016179319A1


TIM3
VH
2898
SEQ ID NO: 53 in WO2016179319A1


TIM3
VH
2899
SEQ ID NO: 61 in WO2016179319A1


TIM3
VH
2900
SEQ ID NO: 69 in WO2016179319A1


TIM3
VH
2901
SEQ ID NO: 77 in WO2016179319A1


TIM3
VH
2902
SEQ ID NO: 85 in WO2016179319A1


TIM3
VH
2903
SEQ ID NO: 93 in WO2016179319A1


Tissue factor
VH
2904
SEQ ID NO 10 in WO2004094475


Tissue factor
VH
2905
SEQ ID NO 19 in WO2004094475


Tissue factor
VH
2906
SEQ ID NO 23 in WO2004094475


Tissue factor
VH
2907
SEQ ID NO 27 in WO2004094475


Tissue factor
VH
2908
SEQ ID NO 29 in WO2004094475


Tissue factor
VH
2909
SEQ ID NO 6 in WO2004094475


Tissue factor
VH
2910
SEQ ID NO: 38 in US20160333114A1


Tn Glycopeptide
VH
2911
SEQ ID NO. 20 in WO2015120180


Tn Glycopeptide
VH
2912
SEQ ID NO. 19 in WO2015120180


TRBC1
VH
2913
SEQ ID NO. 1 in WO2015132598


Trophoblast Glycoprotein5T4
VH
2914
SEQ ID NO. 17 in WO2016034666A1


Trophoblast
VH
2915
SEQ ID NO. 13 in WO2016034666A1


Glycoprotein5T4VH





Trophoblast
VH
2916
SEQ ID NO. 15 in WO2016034666A1


Glycoprotein5T4VH





Trophoblast
VH
2917
SEQ ID NO. 11 in WO2016034666A1


Glycoprotein5T4VH





uPAR
VH
2918
SEQ ID NO: 72 in US20160333114A1


V2
VH
2919
SEQ ID NO: 11 in US20160194375A1


VEGF
VH
2920
SEQ ID NO 4 in WO2000034337


VEGF
VH
2921
SEQ ID NO 8 in WO2000034337


VEGF
VH
2922
SEQ ID NO 12 in WO2006012688A1


VEGF
VH
2923
SEQ ID NO 20 in WO2006012688A1


VEGF
VH
2924
SEQ ID NO 4 in WO2006012688A1


VEGF
VH
2925
SEQ ID NO 44 in WO2006012688A1


VEGF
VH
2926
SEQ ID NO. 7 in US20030175276A1


VEGF
VH
2927
US20160090427 SEQ ID NO: 152


VEGF
VH
2928
US20160090427 SEQ ID NO: 153


VEGF
VH
2929
US20160090427 SEQ ID NO: 154


VEGF
VH
2930
US20160090427 SEQ ID NO: 155


VEGF
VH
2931
US20160090427 SEQ ID NO: 156


VEGF
VH
2932
US20160090427 SEQ ID NO: 157


VEGF
VH
2933
US20160090427 SEQ ID NO: 158


VEGF
VH
2934
US20160090427 SEQ ID NO: 159


VEGFR2
VH
2935
SEQ ID NO. 100 In WO2017004254


VEGFR2
VH
2936
SEQ ID NO. 101 In WO2017004254


VEGFR2
VH
2937
SEQ ID NO. 102 In WO2017004254


VEGFR2
VH
2938
SEQ ID NO. 103 In WO2017004254


VEGFR2
VH
2939
SEQ ID NO. 114 in WO2017004254


VEGFR2
VH
2940
SEQ ID NO. 115 in WO2017004254


VEGFR2
VH
2941
SEQ ID NO. 116 in WO2017004254


VEGFR2
VH
2942
SEQ ID NO. 117 in WO2017004254


VEGFR2
VH
2943
SEQ ID NO. 118 in WO2017004254


VEGFR2
VH
2944
SEQ ID NO. 119 in WO2017004254


VEGFR2
VH
2945
SEQ ID NO. 120 in WO2017004254


VEGFR2
VH
2946
SEQ ID NO. 121 in WO2017004254


VEGFR2
VH
2947
SEQ ID NO. 122 in WO2017004254


VEGFR2
VH
2948
SEQ ID NO. 123 in WO2017004254


VEGFR2
VH
2949
SEQ ID NO. 124 in WO2017004254


VEGFR2
VH
2950
SEQ ID NO. 95 In WO2017004254


VEGFR2
VH
2951
SEQ ID NO. 96 In WO2017004254


VEGFR2
VH
2952
SEQ ID NO. 97 In WO2017004254


VEGFR2
VH
2953
SEQ ID NO. 98 In WO2017004254


VEGFR2
VH
2954
SEQ ID NO. 99 In WO2017004254


VISTA
VH
2955
SEQ ID NO: 37 in WO2015097536


VISTA
VH
2956
SEQ ID NO: 38 in WO2015097536


VISTA
VH
2957
SEQ ID NO: 39 in WO2015097536


VISTA
VH
2958
SEQ ID NO: 40 in WO2015097536


VMS2
VH
2959
FIG. 1 in WO2000058363


WT1/HLA Bi Specific
VH
2960
SEQ ID NO. 104 in WO2015070061


WT1/HLA Bi Specific
VH
2961
SEQ ID NO. 111 in WO2015070061


WT1/HLA Bi Specific
VH
2962
SEQ ID NO. 128 in WO2015070061


WT1/HLA Bi Specific
VH
2963
SEQ ID NO. 14 in WO2015070061


WT1/HLA Bi Specific
VH
2964
SEQ ID NO. 32 in WO2015070061


WT1/HLA Bi Specific
VH
2965
SEQ ID NO. 50 in WO2015070061


WT1/HLA Bi Specific
VH
2966
SEQ ID NO. 68 in WO2015070061


WT1/HLA Bi Specific
VH
2967
SEQ ID NO. 86 in WO2015070061


CD19
VH
2968
SEQ ID NO. 53 in WO2016120216


CD19
VH
2969
SEQ ID NO. 55 in WO2016120216


CD20(Ofatumumab)
VH
2970
SEQ ID NO. 25 in US20170000900


CD20(Rituximab)
VH
2971
SEQ ID NO. 24 in US20170000900


CD20(Veltuzumab)
VH
2972
SEQ ID NO. 23 in US20170000900


CD22
VH
2973
SEQ ID NO. 3 in WO2013059593


CD22
VH
2974
SEQ ID NO. 4 in WO2013059593


CD28
VH
2975
SEQ ID NO. 19 in WO2015158868


CD33
VH
2976
SEQ ID NO. 65 in WO2016120216


CD33
VH
2977
SEQ ID NO. 67 in WO2016120216


CD33
VH
2978
SEQ ID NO. 69 in WO2016120216


CD33
VH
2979
SEQ ID NO. 71 in WO2016120216


CD33
VH
2980
SEQ ID NO. 77 in WO2016120216


CD33
VH
2981
SEQ ID NO. 79 in WO2016120216


CD33
VH
2982
SEQ ID NO. 81 in WO2016120216


CD33
VH
2983
SEQ ID NO. 83 in WO2016120216


CD33
VH
2984
SEQ ID NO. 84 in WO2016120216


CD37
VH
2985
SEQ ID NO. 11 in US20170000900


CD37
VH
2986
SEQ ID NO. 12 in US20170000900


CD37
VH
2987
SEQ ID NO. 18 in US20170000900


CD73
VH
2988
SEQ ID NO. 100 in US20160145350


CD73
VH
2989
SEQ ID NO. 103 in US20160145350


CD73
VH
2990
SEQ ID NO. 107 in US20160145350


CD73
VH
2991
SEQ ID NO. 109 in US20160145350


CD73
VH
2992
SEQ ID NO. 112 in US20160145350


CD73
VH
2993
SEQ ID NO. 114 in US20160145350


CD73
VH
2994
SEQ ID NO. 116 in US20160145350


CD73
VH
2995
SEQ ID NO. 119 in US20160145350


CD73
VH
2996
SEQ ID NO. 121 in US20160145350


CD73
VH
2997
SEQ ID NO. 16 in US20160145350


CD73
VH
2998
SEQ ID NO. 32 in US20160145350


CD73
VH
2999
SEQ ID NO. 4 in US20160145350


CD73
VH
3000
SEQ ID NO. 52 in US20160145350


CD73
VH
3001
SEQ ID NO. 60 in US20160145350


CD73
VH
3002
SEQ ID NO. 68 in US20160145350


CD73
VH
3003
SEQ ID NO. 80 in US20160145350


CD73
VH
3004
SEQ ID NO. 88 in US20160145350


CD74
VH
3005
SEQ ID NO. 23 in US20130171064


CD74
VH
3006
SEQ ID NO. 27 in US20130171064


CD74
VH
3007
SEQ ID NO. 30 in US20130171064


CD74
VH
3008
SEQ ID NO. 33 in US20130171064


CLDN18.2
VH
3009
SEQ ID No. 12 in US20160347815A1


CLDN18.2
VH
3010
SEQ ID No. 2 in US20160347815A1


CSPG4
VH
3011
SEQ ID NO. 10 in WO2016077638


CSPG4
VH
3012
SEQ ID NO. 16 in WO2016077638


CSPG4
VH
3013
SEQ ID NO. 18 in WO2016077638


CSPG4
VH
3014
SEQ ID NO. 4 in WO2016077638


CSPG4
VH
3015
SEQ ID NO. 6 in WO2016077638


CSPG4
VH
3016
SEQ ID NO. 8 in WO2016077638


EGFRvIII
VH
3017
SEQ ID NO. 91 in WO2016120216


EGFRvIII
VH
3018
SEQ ID NO. 93 in WO2016120216


FAP
VH
3019
SEQ ID NO: 8 in US20160326265A1


GD2
VH
3020
SEQ ID NO. 17 in WO2016134284


GPC3
VH
3021
SEQ ID NO. 22 in WO2016049459


GPC3
VH
3022
SEQ ID NO: 12 in U.S. Pat. No. 9,409,994B2


GPC3
VH
3023
SEQ ID NO: 16 in U.S. Pat. No. 9,409,994B2


GPC3
VH
3024
SEQ ID NO: 20 in U.S. Pat. No. 9,409,994B2


GPC3
VH
3025
SEQ ID NO: 37 in U.S. Pat. No. 9,409,994B2


GPC3
VH
3026
SEQ ID NO: 8 in U.S. Pat. No. 9,409,994B2


HER2
VH
3027
SEQ ID NO. 19 in U.S. Pat. No. 9,518,118


HER2
VH
3028
SEQ ID NO. 24 in U.S. Pat. No. 9,518,118


LAG3
VH
3029
SEQ ID NO. 102 in US20150259420


LAG3
VH
3030
SEQ ID NO. 106 in US20150259420


LAG3
VH
3031
SEQ ID NO. 110 in US20150259420


LAG3
VH
3032
SEQ ID NO. 113 in US20150259420


LAG3
VH
3033
SEQ ID NO. 122 in US20150259420


LAG3
VH
3034
SEQ ID NO. 18 in US20150259420


LAG3
VH
3035
SEQ ID NO. 30 in US20150259420


LAG3
VH
3036
SEQ ID NO. 66 in US20150259420


LAG3
VH
3037
SEQ ID NO. 70 in US20150259420


LAG3
VH
3038
SEQ ID NO. 74 in US20150259420


LAG3
VH
3039
SEQ ID NO. 78 in US20150259420


MCAM
VH
3040
SEQ ID NO. 101 in US20150259419


MCAM
VH
3041
SEQ ID NO. 102 in US20150259419


MCAM
VH
3042
SEQ ID NO. 103 in US20150259419


MCAM
VH
3043
SEQ ID NO. 104 in US20150259419


MCAM
VH
3044
SEQ ID NO. 105 in US20150259419


MCAM
VH
3045
SEQ ID NO. 106 in US20150259419


MCAM
VH
3046
SEQ ID NO. 107 in US20150259419


Mesothelin
VH
3047
SEQ ID NO: 13 in US20160229919A1


Mesothelin
VH
3048
SEQ ID NO: 17 in US20160229919A1


Mesothelin
VH
3049
SEQ ID NO: 21 in US20160229919A1


Mesothelin
VH
3050
SEQ ID NO: 25 in US20160229919A1


Mesothelin
VH
3051
SEQ ID NO: 29 in US20160229919A1


Mesothelin
VH
3052
SEQ ID NO: 9 in US20160229919A1


MUC1C/ECD
VH
3053
SEQ ID NO: 15 in US20160340442A1


MUC1C/ECD
VH
3054
SEQ ID NO: 19 in US20160340442A1


MUC1C/ECD
VH
3055
SEQ ID NO: 23 in US20160340442A1


MUC1C/ECD
VH
3056
SEQ ID NO: 60 in US20160340442A1


MUC1C/ECD
VH
3057
SEQ ID NO: 64 in US20160340442A1


MUC1C/ECD
VH
3058
SEQ ID NO: 68 in US20160340442A1


MUC1C/ECD
VH
3059
SEQ ID NO: 72 in US20160340442A1


NYBR1
VH
3060
SEQ ID NO: 19 in US20160333422A1


OTK3
VH
3061
SEQ ID NO. 17 in WO2015158868


OX40
VH
3062
SEQ ID NO. 19 in U.S. Pat. No. 8,748,585


OX40
VH
3063
SEQ ID NO. 21 in U.S. Pat. No. 8,748,585


OX40
VH
3064
SEQ ID NO. 22 in U.S. Pat. No. 8,748,585


OX40
VH
3065
SEQ ID NO. 23 in U.S. Pat. No. 8,748,585


OX40
VH
3066
SEQ ID NO. 29 in U.S. Pat. No. 8,748,585


OX40
VH
3067
SEQ ID NO. 58 in U.S. Pat. No. 8,748,585


OX40
VH
3068
SEQ ID NO. 59 in U.S. Pat. No. 8,748,585


OX40
VH
3069
SEQ ID NO. 7 in U.S. Pat. No. 8,748,585


OX40
VH
3070
SEQ ID NO. 77 in U.S. Pat. No. 8,748,585


OX40
VH
3071
SEQ ID NO. 78 in U.S. Pat. No. 8,748,585


OX40
VH
3072
SEQ ID NO. 79 in U.S. Pat. No. 8,748,585


OX40
VH
3073
SEQ ID NO. 80 in U.S. Pat. No. 8,748,585


PDL1
VH
3074
US20160108123 SEQ ID NO: 358


PDL1
VH
3075
US20160108123 SEQ ID NO: 56


PDL1
VH
3076
US20160108123 SEQ ID NO: 64


PTK7
VH
3077
SEQ ID NO. 1 in US20150315293


PTK7
VH
3078
SEQ ID NO. 25 in US20150315293


PTK7
VH
3079
SEQ ID NO. 49 in US20150315293


TIM3
VH
3080
SEQ ID NO. 102 in US20150086574


TIM3
VH
3081
SEQ ID NO. 112 in US20150086574


TIM3
VH
3082
SEQ ID NO. 12 in US20150086574


TIM3
VH
3083
SEQ ID NO. 2 in US20150086574


TIM3
VH
3084
SEQ ID NO. 22 in US20150086574


TIM3
VH
3085
SEQ ID NO. 32 in US20150086574


TIM3
VH
3086
SEQ ID NO. 42 in US20150086574


TIM3
VH
3087
SEQ ID NO. 52 in US20150086574


TIM3
VH
3088
SEQ ID NO. 62 in US20150086574


TIM3
VH
3089
SEQ ID NO. 72 in US20150086574


TIM3
VH
3090
SEQ ID NO. 82 in US20150086574


TIM3
VH
3091
SEQ ID NO. 92 in US20150086574


CD20(Obinutuzumab)
VH
3092
SEQ ID NO. 26 in US20170000900


GD2

3093
SEQ ID NO. 1 in US20130216528


GPDL1
VH
3094
US20160108123 SEQ ID NO: 20


CD19
VK
3095
SEQ ID NO: 13 US20160319020


CD19
VK
3096
SEQ ID NO: 6 US20160319020


hBAT1
VL
3097
SEQ ID NO. 1 in WO2013014668


hBAT1
VL
3098
SEQ ID NO. 2 in WO2013014668


hBAT1
VL
3099
SEQ ID NO. 3 in WO2013014668


hBAT1
VL
3100
SEQ ID NO. 4 in WO2013014668


AGR2
VL
3101
SEQ ID NO. 11 in WO2016040321


AGR2
VL
3102
SEQ ID NO. 19 in WO2016040321


ALK
VL
3103
SEQ ID NO: 10 in US20160280798A1


ALK
VL
3104
SEQ ID NO: 12 in US20160280798A1


ALK
VL
3105
SEQ ID NO: 14 in US20160280798A1


ALK
VL
3106
SEQ ID NO: 16 in US20160280798A1


ALK
VL
3107
SEQ ID NO: 2 in US20160280798A1


ALK
VL
3108
SEQ ID NO: 4 in US20160280798A1


ALK
VL
3109
SEQ ID NO: 6 in US20160280798A1


ALK
VL
3110
SEQ ID NO: 8 in US20160280798A1


AMC
VL
3111
SEQ ID NO. 27 in WO2016161390


AMC
VL
3112
SEQ ID NO. 28 in WO2016161390


AMC
VL
3113
SEQ ID NO. 29 in WO2016161390


AMC
VL
3114
SEQ ID NO. 31 in WO2016161390


AMC
VL
3115
SEQ ID NO. 32 in WO2016161390


AMC
VL
3116
SEQ ID NO. 33 in WO2016161390


AMC
VL
3117
SEQ ID NO. 34 in WO2016161390


AMC
VL
3118
SEQ ID NO. 35 in WO2016161390


AMC
VL
3119
SEQ ID NO. 36 in WO2016161390


ANG2
VL
3120
SEQ ID NO. 2 in WO2015091655


ANG2
VL
3121
SEQ ID NO. 4 in WO2015091655


APCDD1
VL
3122
SEQ ID NO: 136 in WO2012019061


APCDD1
VL
3123
SEQ ID NO: 100 in WO2012019061


APCDD1
VL
3124
SEQ ID NO: 104 in WO2012019061


APCDD1
VL
3125
SEQ ID NO: 108 in WO2012019061


APCDD1
VL
3126
SEQ ID NO: 112 in WO2012019061


APCDD1
VL
3127
SEQ ID NO: 116 in WO2012019061


APCDD1
VL
3128
SEQ ID NO: 12 in WO2012019061


APCDD1
VL
3129
SEQ ID NO: 120 in WO2012019061


APCDD1
VL
3130
SEQ ID NO: 124 in WO2012019061


APCDD1
VL
3131
SEQ ID NO: 128 in WO2012019061


APCDD1
VL
3132
SEQ ID NO: 132 in WO2012019061


APCDD1
VL
3133
SEQ ID NO: 16 in WO2012019061


APCDD1
VL
3134
SEQ ID NO: 8 in WO2012019061


APRIL
VL
3135
SEQ ID NO. 20 in US20160264674


APRIL
VL
3136
SEQ ID NO. 22 in US20160264674


APRIL
VL
3137
SEQ ID NO. 24 in US20160264674


APRIL
VL
3138
SEQ ID NO. 26 in US20160264674


APRIL
VL
3139
SEQ ID NO. 28 in US20160264674


APRIL
VL
3140
SEQ ID NO. 30 in US20160264674


APRIL
VL
3141
SEQ ID NO. 4 in US20160264674


APRIL
VL
3142
SEQ ID NO. 50 in US20160264674


AXL
VL
3143
SEQ ID NO. 22 in WO2016097370


AXL
VL
3144
SEQ ID NO. 4 in WO2016097370


B2MG
VL
3145
SEQ ID NO: 29 in WO2016126213A1


B7H1
VL
3146
SEQ ID NO: 17 in US20130034559


B7H1
VL
3147
SEQ ID NO: 37 in US20130034559


B7H1
VL
3148
SEQ ID NO: 47 in US20130034559


B7H1
VL
3149
SEQ ID NO: 57 in US20130034559


B7H1
VL
3150
SEQ ID NO: 7 in US20130034559


B7H1
VL
3151
SEQ ID NO: 77 in US20130034559


B7H1
VL
3152
SEQ ID NO: 27 in US20130034559


B7H1
VL
3153
SEQ ID NO: 67 in US20130034559


B7H3
VL
3154
SEQ ID NO. 1 in WO2016033225


B7H3
VL
3155
SEQ ID NO. 2 in WO2016033225


B7H3
VL
3156
SEQ ID NO. 3 in WO2016033225


B7H3
VL
3157
SEQ ID NO. 4 in WO2016033225


B7H3
VL
3158
SEQ ID NO. 5 in WO2016033225


B7H3
VL
3159
SEQ ID NO. 6 in WO2016033225


B7H3
VL
3160
SEQ ID NO. 7 in WO2016033225


B7H3
VL
3161
SEQ ID NO. 8 in WO2016033225


B7H3(CD276)
VL
3162
SEQ ID NO. 18 in WO2016044383


B7H3(CD276)
VL
3163
SEQ ID NO. 27 in WO2016044383


B7H3(CD276)
VL
3164
SEQ ID NO. 8 in WO2016044383


B7H4
VL
3165
SEQ ID NO. 104 in US20160159910


B7H4
VL
3166
SEQ ID NO. 11 in US20160159910


B7H4
VL
3167
SEQ ID NO. 126 in US20160159910


B7H4
VL
3168
SEQ ID NO. 134 in US20160159910


B7H4
VL
3169
SEQ ID NO. 138 in US20160159910


B7H4
VL
3170
SEQ ID NO. 19 in US20160159910


B7H4
VL
3171
SEQ ID NO. 27 in US20160159910


B7H4
VL
3172
SEQ ID NO. 3 in US20160159910


B7H4
VL
3173
SEQ ID NO. 35 in US20160159910


B7H4
VL
3174
SEQ ID NO. 55 in US20160159910


B7H4
VL
3175
SEQ ID NO. 93 in US20160159910


B7H4
VL
3176
SEQ ID NO. 95 in US20160159910


B7H4
VL
3177
SEQ ID NO. 97 in US20160159910


B7H4
VL
3178
SEQ ID NO. 98 in US20160159910


B7H4
VL
3179
SEQ ID NO. 145 in US20160159910


B7H4
VL
3180
SEQ ID NO. 146 in US20160159910


B7H4
VL
3181
SEQ ID NO. 147 in US20160159910


B7H4
VL
3182
SEQ ID NO. 148 in US20160159910


B7H4
VL
3183
SEQ ID NO. 29 in WO2016160620


B7H4
VL
3184
SEQ ID NO. 31 in WO2016160620


B7H4
VL
3185
SEQ ID NO. 33 in WO2016160620


BCMA
VL
3186
SEQ ID NO: 25 in WO2016168773A3


BCMA
VL
3187
SEQ ID NO: 42 in WO2016097231


BCMA
VL
3188
SEQ ID NO: 143 in WO2016168595A1


BCMA
VL
3189
SEQ ID NO: 149 in WO2016168595A1


BCMA
VL
3190
SEQ ID NO: 155 in WO2016168595A1


BCMA
VL
3191
SEQ ID NO: 161 in WO2016168595A1


BCMA
VL
3192
SEQ ID NO: 167 in WO2016168595A1


BCMA
VL
3193
SEQ ID NO: 173 in WO2016168595A1


BCMA
VL
3194
SEQ ID NO: 179 in WO2016168595A1


BCMA
VL
3195
SEQ ID NO: 185 in WO2016168595A1


BCMA
VL
3196
SEQ ID NO: 191 in WO2016168595A1


BCMA
VL
3197
SEQ ID NO: 197 in WO2016168595A1


BCMA
VL
3198
SEQ ID NO: 203 in WO2016168595A1


BCMA
VL
3199
SEQ ID NO: 209 in WO2016168595A1


BCMA
VL
3200
SEQ ID NO: 215 in WO2016168595A1


BCMA
VL
3201
SEQ ID NO: 221 in WO2016168595A1


BCMA
VL
3202
SEQ ID NO: 227 in WO2016168595A1


BCMA
VL
3203
SEQ ID NO: 233 in WO2016168595A1


BCMA
VL
3204
SEQ ID NO: 239 in WO2016168595A1


BCMA
VL
3205
SEQ ID NO: 245 in WO2016168595A1


BCMA
VL
3206
SEQ ID NO: 251 in WO2016168595A1


BCMA
VL
3207
SEQ ID NO: 257 in WO2016168595A1


BCMA
VL
3208
SEQ ID NO: 263 in WO2016168595A1


BCMA
VL
3209
SEQ ID NO: 269 in WO2016168595A1


BCMA
VL
3210
SEQ ID NO: 275 in WO2016168595A1


BCMA
VL
3211
SEQ ID NO: 281 in WO2016168595A1


BCMA
VL
3212
SEQ ID NO: 287 in WO2016168595A1


BCMA
VL
3213
SEQ ID NO: 293 in WO2016168595A1


BCMA
VL
3214
SEQ ID NO: 299 in WO2016168595A1


BCMA
VL
3215
SEQ ID NO: 305 in WO2016168595A1


BCMA
VL
3216
SEQ ID NO: 311 in WO2016168595A1


BCMA
VL
3217
SEQ ID NO: 317 in WO2016168595A1


BCMA
VL
3218
SEQ ID NO: 323 in WO2016168595A1


BCMA
VL
3219
SEQ ID NO: 329 in WO2016168595A1


BCMA
VL
3220
SEQ ID NO: 335 in WO2016168595A1


BCMA
VL
3221
SEQ ID NO: 341 in WO2016168595A1


BCMA
VL
3222
SEQ ID NO: 347 in WO2016168595A1


BCMA
VL
3223
SEQ ID NO: 353 in WO2016168595A1


BCMA
VL
3224
SEQ ID NO. 192 WO2016014565


BCMA
VL
3225
SEQ ID NO. 193 WO2016014565


BCMA
VL
3226
SEQ ID NO. 194 WO2016014565


BCMA
VL
3227
SEQ ID NO. 195 WO2016014565


BCMA
VL
3228
SEQ ID NO. 196 WO2016014565


BCMA
VL
3229
SEQ ID NO. 197 WO2016014565


BCMA
VL
3230
SEQ ID NO. 198 WO2016014565


BCMA
VL
3231
SEQ ID NO. 199 WO2016014565


BCMA
VL
3232
SEQ ID NO. 200 WO2016014565


BCMA
VL
3233
SEQ ID NO. 201 WO2016014565


BCMA
VL
3234
SEQ ID NO. 204 WO2016014565


BCMA
VL
3235
SEQ ID NO. 205 WO2016014565


BCMA
VL
3236
SEQ ID NO. 207 WO2016014565


BCMA
VL
3237
SEQ ID NO. 208 WO2016014565


BCMA
VL
3238
SEQ ID NO. 211 WO2016014565


BCMA
VL
3239
SEQ ID NO. 259 WO2016014565


BCMA
VL
3240
SEQ ID NO. 260 WO2016014565


BCMA
VL
3241
SEQ ID NO. 84 WO2016014565


BCMA
VL
3242
SEQ ID NO. 85 WO2016014565


BCMA
VL
3243
SEQ ID NO. 86 WO2016014565


BCMA
VL
3244
SEQ ID NO. 87 WO2016014565


BCMA
VL
3245
SEQ ID NO. 88 WO2016014565


BCMA
VL
3246
SEQ ID NO. 89 WO2016014565


BCMA
VL
3247
SEQ ID NO. 90 WO2016014565


BCMA
VL
3248
SEQ ID NO. 91 WO2016014565


BCMA
VL
3249
SEQ ID NO. 92 WO2016014565


BCMA
VL
3250
SEQ ID NO. 93 WO2016014565


BCMA
VL
3251
SEQ ID NO. 94 WO2016014565


BCMA
VL
3252
SEQ ID NO. 95 WO2016014565


BCMA
VL
3253
SEQ ID NO. 96 WO2016014565


BCMA
VL
3254
SEQ ID NO. 97 WO2016014565


BCMA
VL
3255
SEQ ID NO. 98 WO2016014565


BCMA
VL
3256
SEQ ID NO: 53 in WO2016187349A1


BCMA
VL
3257
SEQ ID NO: 7 in WO2016094304A3


BCMA
VL
3258
SEQ ID NO. 10 in WO2016090320


BCMA
VL
3259
SEQ ID NO. 100 in WO2016120216


BCMA
VL
3260
SEQ ID NO. 102 in WO2016120216


BCMA
VL
3261
SEQ ID NO. 12 in WO2015158671A1


BCMA
VL
3262
SEQ ID NO. 14 in WO2015158671A1


BCMA
VL
3263
SEQ ID NO. 14 in WO2016090320


BCMA
VL
3264
SEQ ID NO. 16 in WO2015158671A1


BCMA
VL
3265
SEQ ID NO. 175 in WO2016120216


BCMA
VL
3266
SEQ ID NO. 18 in WO2015158671A1


BCMA
VL
3267
SEQ ID NO. 18 in WO2016090320


BCMA
VL
3268
SEQ ID NO. 2 in WO2016090320


BCMA
VL
3269
SEQ ID NO. 22 in WO2016090320


BCMA
VL
3270
SEQ ID NO. 26 in WO2016090320


BCMA
VL
3271
SEQ ID NO. 30 in WO2016090320


BCMA
VL
3272
SEQ ID NO. 34 in WO2016090320


BCMA
VL
3273
SEQ ID NO. 38 in WO2016090320


BCMA
VL
3274
SEQ ID NO. 42 in WO2016090320


BCMA
VL
3275
SEQ ID NO. 46 in WO2016090320


BCMA
VL
3276
SEQ ID NO. 50 in WO2016090320


BCMA
VL
3277
SEQ ID NO. 54 in WO2016090320


BCMA
VL
3278
SEQ ID NO. 58 in WO2016090320


BCMA
VL
3279
SEQ ID NO. 6 in WO2016090320


BCMA
VL
3280
SEQ ID NO. 62 in WO2016090320


BCMA
VL
3281
SEQ ID NO. 66 in WO2016090320


BCMA
VL
3282
SEQ ID NO. 7 in WO2016014789


BCMA
VL
3283
SEQ ID NO. 8 in WO2016014789


BCMA
VL
3284
SEQ ID NO. 9 in WO2016014789


BCMA
VL
3285
SEQ ID NO. 96 in WO2016120216


BCMA
VL
3286
SEQ ID NO. 98 in WO2016120216


BCMA
VL
3287
SEQ ID NO: 14 in WO2016168766A1


CA19.9
VL
3288
SEQ ID NO: 118 in US20160333114A1


Campath1
VL
3289
SEQ ID NO: 31 in US20160333114A1


Campath1
VL
3290
SEQ ID NO: 33 in US20160333114A1


CD105
VL
3291
SEQ ID NO. 1 in WO2014039682


CD105
VL
3292
SEQ ID NO. 17 in WO2014039682


CD105
VL
3293
SEQ ID NO. 20 in WO2014039682


CD105
VL
3294
SEQ ID NO. 22 in WO2014039682


CD105
VL
3295
SEQ ID NO. 23 in WO2014039682


CD123
VL
3296
SEQ ID NO. 11 in WO2016120220


CD123
VL
3297
SEQ ID NO. 12 in WO2015140268A1


CD123
VL
3298
SEQ ID NO. 16 in WO2015140268A1


CD123
VL
3299
SEQ ID NO. 18 in WO2015140268A1


CD123
VL
3300
SEQ ID NO. 18 in WO2016120220


CD123
VL
3301
SEQ ID NO. 19 in WO2015140268A1


CD123
VL
3302
SEQ ID NO. 19 in WO2016120220


CD123
VL
3303
SEQ ID NO. 20 in WO2016120220


CD123
VL
3304
SEQ ID NO. 21 in WO2016120220


CD123
VL
3305
SEQ ID NO. 22 in WO2015140268A1


CD123
VL
3306
SEQ ID NO. 22 in WO2016120220


CD123
VL
3307
SEQ ID NO. 23 in WO2016120220


CD123
VL
3308
SEQ ID NO: 275 in WO2016028896


CD123
VL
3309
SEQ ID NO: 276 in WO2016028896


CD123
VL
3310
SEQ ID NO: 277 in WO2016028896


CD123
VL
3311
SEQ ID NO: 278 in WO2016028896


CD123
VL
3312
SEQ ID NO: 307 in WO2016028896


CD123
VL
3313
SEQ ID NO: 308 in WO2016028896


CD123
VL
3314
SEQ ID NO: 309 in WO2016028896


CD123
VL
3315
SEQ ID NO: 310 in WO2016028896


CD123
VL
3316
SEQ ID NO: 5 in US20160333108A1


CD123
VL
3317
WO2016120220 9No SEQ ID NO.


CD123
VL
3318
WO2016120220 9No SEQ ID NO.


CD123
VL
3319
WO2016120220 9No SEQ ID NO.


CD123
VL
3320
WO2016120220 9No SEQ ID NO.


CD123
VL
3321
WO2016120220 9No SEQ ID NO.


CD123
VL
3322
WO2016120220 9No SEQ ID NO.


CD123
VL
3323
WO2016120220 9No SEQ ID NO.


CD123
VL
3324
WO2016120220 9No SEQ ID NO.


CD148
VL
3325
SEQ ID NO 12 in WO2005118643


CD148
VL
3326
SEQ ID NO 16 in WO2005118643


CD148
VL
3327
SEQ ID NO 20 in WO2005118643


CD148
VL
3328
SEQ ID NO 24 in WO2005118643


CD148
VL
3329
SEQ ID NO 28 in WO2005118643


CD148
VL
3330
SEQ ID NO 32 in WO2005118643


CD148
VL
3331
SEQ ID NO 4 in WO2005118643


CD148
VL
3332
SEQ ID NO 8 in WO2005118643


CD19
VL
3333
SEQ ID NO: 27 in WO2016168773A3


CD19
VL
3334
SEQ ID NO: 31 in WO2016168773A3


CD19
VL
3335
SEQ ID NO: 49 in WO2016187349A1


CD19
VL
3336
SEQ ID NO. 11 in WO2016134284


CD19
VL
3337
SEQ ID NO. 194 in US20140134142A1


CD19
VL
3338
SEQ ID NO. 54 in WO2016120216


CD19
VL
3339
SEQ ID NO. 56 in WO2016120216


CD19
VL
3340
SEQ ID NO: 13 US20160152723


CD19
VL
3341
SEQ ID NO: 14 US20160152723


CD19
VL
3342
SEQ ID NO: 15 US20160152723


CD19
VL
3343
SEQ ID NO: 16 US20160152723


CD19
VL
3344
SEQ ID NO: 17 US20160152723


CD19
VL
3345
SEQ ID NO: 186 US20160152723


CD19
VL
3346
SEQ ID NO: 187 US20160152723


CD19
VL
3347
SEQ ID NO: 188 US20160152723


CD19
VL
3348
SEQ ID NO: 189 US20160152723


CD19
VL
3349
SEQ ID NO: 192 US20160152723


CD19
VL
3350
SEQ ID NO: 196 US20160152723


CD19
VL
3351
SEQ ID NO: 197 US20160152723


CD19
VL
3352
SEQ ID NO: 198 US20160152723


CD19
VL
3353
SEQ ID NO: 199 US20160152723


CD19
VL
3354
SEQ ID NO: 200 US20160152723


CD19
VL
3355
SEQ ID NO: 201 US20160152723


CD19
VL
3356
SEQ ID NO: 202 US20160152723


CD19
VL
3357
SEQ ID NO: 203 US20160152723


CD19
VL
3358
SEQ ID NO: 204 US20160152723


CD19
VL
3359
SEQ ID NO: 205 US20160152723


CD19
VL
3360
SEQ ID NO: 22 in US20160039942


CD19
VL
3361
SEQ ID NO: 63 in WO2016097231


CD19
VL
3362
SEQ ID NO: 64 US20160152723


CD19
VL
3363
SEQ ID NO: 66 US20160152723


CD19
VL
3364
SEQ ID NO: 67 US20160152723


CD19
VL
3365
SEQ ID NO: 68 US20160152723


CD19
VL
3366
SEQ ID NO: 69 US20160152723


CD19
VL
3367
SEQ ID NO: 70 US20160152723


CD19
VL
3368
SEQ ID NO: 71 US20160152723


CD19
VL
3369
SEQ ID NO: 91 US20160152723


CD19
VL
3370
SEQ ID NO. 3 in US20160145337A1


CD19
VL
3371
SEQ ID NO: 112 in US20160333114A1


CD19
VL
3372
SEQ ID NO: 114 in US20160333114A1


CD2
VL
3373
SEQ ID NO. 102 in WO2016122701


CD2
VL
3374
SEQ ID NO. 116 in WO2016122701


CD20
VL
3375
SEQ ID NO: 46 in WO2016097231


CD20
VL
3376
SEQ ID NO. 10 in WO2017004091


CD20
VL
3377
SEQ ID NO. 12 in WO2017004091


CD20
VL
3378
SEQ ID NO. 8 in WO2017004091


CD20(Ofatumumab)
VL
3379
SEQ ID NO: 51 in US20160333114A1


CD22
VL
3380
SEQ ID NO: 17 in US20150239974


CD22
VL
3381
SEQ ID NO: 8 in US20150239974


CD22
VL
3382
SEQ ID NO. 7 in US20150299317


CD22
VL
3383
SEQ ID NO: 14 in US20150239974


CD22
VL
3384
SEQ ID NO: 15 in US20150239974


CD22
VL
3385
SEQ ID NO: 681 in WO2016164731A90


CD22
VL
3386
SEQ ID NO: 682 in WO2016164731A91


CD22
VL
3387
SEQ ID NO: 683 in WO2016164731A92


CD22
VL
3388
SEQ ID NO: 684 in WO2016164731A93


CD22
VL
3389
SEQ ID NO: 685 in WO2016164731A94


CD22
VL
3390
SEQ ID NO: 686 in WO2016164731A95


CD22
VL
3391
SEQ ID NO: 687 in WO2016164731A96


CD22
VL
3392
SEQ ID NO: 688 in WO2016164731A97


CD22
VL
3393
SEQ ID NO: 690 in WO2016164731A99


CD22
VL
3394
SEQ ID NO: 740 in WO2016164731A52


CD22
VL
3395
SEQ ID NO: 741 in WO2016164731A53


CD22
VL
3396
SEQ ID NO: 742 in WO2016164731A54


CD22
VL
3397
SEQ ID NO: 743 in WO2016164731A55


CD22
VL
3398
SEQ ID NO: 744 in WO2016164731A56


CD22
VL
3399
SEQ ID NO: 745 in WO2016164731A57


CD22
VL
3400
SEQ ID NO: 746 in WO2016164731A58


CD22
VL
3401
SEQ ID NO: 747 in WO2016164731A59


CD22
VL
3402
SEQ ID NO: 748 in WO2016164731A60


CD22
VL
3403
SEQ ID NO: 749 in WO2016164731A61


CD22
VL
3404
SEQ ID NO: 750 in WO2016164731A62


CD22
VL
3405
SEQ ID NO: 752 in WO2016164731A64


CD22
VL
3406
SEQ ID NO: 753 in WO2016164731A65


CD22
VL
3407
SEQ ID NO: 754 in WO2016164731A66


CD22
VL
3408
SEQ ID NO: 755 in WO2016164731A67


CD22
VL
3409
SEQ ID NO: 756 in WO2016164731A68


CD22
VL
3410
SEQ ID NO: 757 in WO2016164731A69


CD22
VL
3411
SEQ ID NO: 758 in WO2016164731A70


CD22
VL
3412
SEQ ID NO: 759 in WO2016164731A71


CD22
VL
3413
SEQ ID NO: 760 in WO2016164731A72


CD22
VL
3414
SEQ ID NO: 761 in WO2016164731A73


CD22
VL
3415
SEQ ID NO: 762 in WO2016164731A74


CD22
VL
3416
SEQ ID NO: 763 in WO2016164731A75


CD22
VL
3417
SEQ ID NO: 764 in WO2016164731A76


CD22
VL
3418
SEQ ID NO: 765 in WO2016164731A77


CD22
VL
3419
SEQ ID NO: 766 in WO2016164731A78


CD22
VL
3420
SEQ ID NO: 767 in WO2016164731A79


CD22
VL
3421
SEQ ID NO: 768 in WO2016164731A80


CD22
VL
3422
SEQ ID NO: 769 in WO2016164731A81


CD22
VL
3423
SEQ ID NO: 770 in WO2016164731A82


CD22
VL
3424
SEQ ID NO: 771 in WO2016164731A83


CD22
VL
3425
SEQ ID NO: 772 in WO2016164731A84


CD22
VL
3426
SEQ ID NO: 773 in WO2016164731A85


CD22
VL
3427
SEQ ID NO: 774 in WO2016164731A86


CD22
VL
3428
SEQ ID NO: 775 in WO2016164731A87


CD22
VL
3429
SEQ ID NO: 776 in WO2016164731A88


CD22
VL
3430
SEQ ID NO: 777 in WO2016164731A89


CD22
VL
3431
SEQ ID NO: 202 in WO2016164731A2


CD22(Epratuzumab)
VL
3432
SEQ ID NO. 124 in WO2016122701


CD3
VL
3433
SEQ ID NO. 104 in WO2016122701


CD3
VL
3434
SEQ ID NO: 13 in WO2016126213A1


CD30
VL
3435
SEQ ID NO. 13 in WO2016134284


CD30
VL
3436
SEQ ID NO. 15 in WO2016134284


CD324
VL
3437
SEQ ID NO. 20 in U.S. Pat. No. 9,534,058


CD324
VL
3438
SEQ ID NO. 22 in U.S. Pat. No. 9,534,058


CD324
VL
3439
SEQ ID NO. 24 in U.S. Pat. No. 9,534,058


CD324
VL
3440
SEQ ID NO. 26 in U.S. Pat. No. 9,534,058


CD324
VL
3441
SEQ ID NO. 28 in U.S. Pat. No. 9,534,058


CD324
VL
3442
SEQ ID NO. 30 in U.S. Pat. No. 9,534,058


CD324
VL
3443
SEQ ID NO. 32 in U.S. Pat. No. 9,534,058


CD324
VL
3444
SEQ ID NO. 34 in U.S. Pat. No. 9,534,058


CD324
VL
3445
SEQ ID NO. 36 in U.S. Pat. No. 9,534,058


CD324
VL
3446
SEQ ID NO. 38 in U.S. Pat. No. 9,534,058


CD324
VL
3447
SEQ ID NO. 40 in U.S. Pat. No. 9,534,058


CD324
VL
3448
SEQ ID NO. 42 in U.S. Pat. No. 9,534,058


CD324
VL
3449
SEQ ID NO. 44 in U.S. Pat. No. 9,534,058


CD324
VL
3450
SEQ ID NO. 46 in U.S. Pat. No. 9,534,058


CD324
VL
3451
SEQ ID NO. 48 in U.S. Pat. No. 9,534,058


CD324
VL
3452
SEQ ID NO. 50 in U.S. Pat. No. 9,534,058


CD324
VL
3453
SEQ ID NO. 52 in U.S. Pat. No. 9,534,058


CD324
VL
3454
SEQ ID NO. 54 in U.S. Pat. No. 9,534,058


CD324
VL
3455
SEQ ID NO. 56 in U.S. Pat. No. 9,534,058


CD324
VL
3456
SEQ ID NO. 58 in U.S. Pat. No. 9,534,058


CD324
VL
3457
SEQ ID NO. 60 in U.S. Pat. No. 9,534,058


CD324
VL
3458
SEQ ID NO. 62 in U.S. Pat. No. 9,534,058


CD324
VL
3459
SEQ ID NO. 64 in U.S. Pat. No. 9,534,058


CD324
VL
3460
SEQ ID NO. 66 in U.S. Pat. No. 9,534,058


CD324
VL
3461
SEQ ID NO. 68 in U.S. Pat. No. 9,534,058


CD324
VL
3462
SEQ ID NO. 70 in U.S. Pat. No. 9,534,058


CD32B
VL
3463
SEQ ID NO. 126 in WO2016122701


CD33
VL
3464
SEQ ID NO. 12 in WO2015150526A2


CD33
VL
3465
SEQ ID NO. 14 in WO2015150526A2


CD33
VL
3466
SEQ ID NO. 16 in WO2015150526A2


CD33
VL
3467
SEQ ID NO. 18 in WO2015150526A2


CD33
VL
3468
SEQ ID NO. 66 in WO2016014576


CD33
VL
3469
SEQ ID NO. 66 in WO2016120216


CD33
VL
3470
SEQ ID NO. 67 in WO2016014576


CD33
VL
3471
SEQ ID NO. 68 in WO2016014576


CD33
VL
3472
SEQ ID NO. 68 in WO2016120216


CD33
VL
3473
SEQ ID NO. 69 in WO2016014576


CD33
VL
3474
SEQ ID NO. 70 in WO2016014576


CD33
VL
3475
SEQ ID NO. 70 in WO2016120216


CD33
VL
3476
SEQ ID NO. 71 in WO2016014576


CD33
VL
3477
SEQ ID NO. 72 in WO2016014576


CD33
VL
3478
SEQ ID NO. 72 in WO2016120216


CD33
VL
3479
SEQ ID NO. 73 in WO2016014576


CD33
VL
3480
SEQ ID NO. 74 in WO2016014576


CD33
VL
3481
SEQ ID NO. 78 in WO2016120216


CD33
VL
3482
SEQ ID NO. 80 in WO2016120216


CD33
VL
3483
SEQ ID NO. 82 in WO2016120216


CD37
VL
3484
SEQ ID NO. 14 in US20170000900


CD37
VL
3485
SEQ ID NO. 15 in US20170000900


CD38
VL
3486
SEQ ID NO. 1 in WO2009080830


CD38
VL
3487
SEQ ID No. 11 in WO2015121454


CD3s
VL
3488
SEQ ID NO: 8 in WO2014144722A2


CD40
VL
3489
SEQ ID NO. 2 in WO2016069919


CD40
VL
3490
SEQ ID NO. 6 in WO2015091655


CD45
VL
3491
SEQ ID NO: 25 in WO2016126213A1


CD46
VL
3492
SEQ ID NO: 41 in WO2012031273


CD46
VL
3493
SEQ ID NO: 61 in WO2012031273


CD46
VL
3494
SEQ ID NO: 21 in WO2012031273


CD46
VL
3495
SEQ ID NO: 25 in WO2012031273


CD46
VL
3496
SEQ ID NO: 29 in WO2012031273


CD46
VL
3497
SEQ ID NO: 33 in WO2012031273


CD46
VL
3498
SEQ ID NO: 37 in WO2012031273


CD46
VL
3499
SEQ ID NO: 45 in WO2012031273


CD46
VL
3500
SEQ ID NO: 49 in WO2012031273


CD46
VL
3501
SEQ ID NO: 53 in WO2012031273


CD46
VL
3502
SEQ ID NO: 57 in WO2012031273


CD46
VL
3503
SEQ ID NO: 65 in WO2012031273


CD46
VL
3504
SEQ ID NO: 69 in WO2012031273


CD46
VL
3505
SEQ ID NO: 73 in WO2012031273


CD46
VL
3506
SEQ ID NO: 77 in WO2012031273


CD46
VL
3507
SEQ ID NO: 81 in WO2012031273


CD46
VL
3508
SEQ ID NO: 85 in WO2012031273


CD46
VL
3509
SEQ ID NO: 17 in WO2012031273


CD46
VL
3510
SEQ ID NO. 23 in WO2016040683


CD46
VL
3511
SEQ ID NO. 24 in WO2016040683


CD46
VL
3512
SEQ ID NO. 25 in WO2016040683


CD46
VL
3513
SEQ ID NO. 26 in WO2016040683


CD46
VL
3514
SEQ ID NO. 27 in WO2016040683


CD46
VL
3515
SEQ ID NO. 28 in WO2016040683


CD46
VL
3516
SEQ ID NO. 29 in WO2016040683


CD46
VL
3517
SEQ ID NO. 30 in WO2016040683


CD46
VL
3518
SEQ ID NO. 31 in WO2016040683


CD46
VL
3519
SEQ ID NO. 32 in WO2016040683


CD46
VL
3520
SEQ ID NO. 33 in WO2016040683


CD46
VL
3521
SEQ ID NO. 34 in WO2016040683


CD46
VL
3522
SEQ ID NO. 35 in WO2016040683


CD46
VL
3523
SEQ ID NO. 36 in WO2016040683


CD46
VL
3524
SEQ ID NO. 37 in WO2016040683


CD46
VL
3525
SEQ ID NO. 38 in WO2016040683


CD46
VL
3526
SEQ ID NO. 39 in WO2016040683


CD46
VL
3527
SEQ ID NO. 40 in WO2016040683


CD46
VL
3528
SEQ ID NO. 41 in WO2016040683


CD46
VL
3529
SEQ ID NO. 42 in WO2016040683


CD46
VL
3530
SEQ ID NO: 73 in WO2012031273


CD46
VL
3531
SEQ ID NO: 77 in WO2012031273


CD4BS
VL
3532
SEQ ID NO: 14 in US20160194375A1


CD4BS
VL
3533
SEQ ID NO: 2 in US20160194375A1


CD4i
VL
3534
SEQ ID NO: 4 in US20160194375A1


CD52
VL
3535
SEQ ID NO: 102 in WO2010132659


CD52
VL
3536
SEQ ID NO: 138 in WO2010132659


CD64
VL
3537
SEQ ID NO. 128 in WO2016122701


CD7
VL
3538
SEQ ID NO: 17 in WO2016126213A1


CD7
VL
3539
SEQ ID NO: 21 in WO2016126213A1


CD70
VL
3540
SEQ ID NO. 83 in WO2015121454


CD70
VL
3541
SEQ ID NO. 87 in WO2015121454


CD70
VL
3542
SEQ ID NO. 91 in WO2015121454


CD71
VL
3543
SEQ ID NO. 2 in US20160355599


CD71
VL
3544
SEQ ID NO. 327 in US20160355599


CD71
VL
3545
SEQ ID NO. 329 in US20160355599


CD71
VL
3546
SEQ ID NO. 331 in US20160355599


CD71
VL
3547
SEQ ID NO. 333 in US20160355599


CD71
VL
3548
SEQ ID NO. 335 in US20160355599


CD71
VL
3549
SEQ ID NO. 337 in US20160355599


CD71
VL
3550
SEQ ID NO. 6 in US20160355599


CD71
VL
3551
SEQ ID NO. 650 in US20160355599


CD71
VL
3552
SEQ ID NO. 652 in US20160355599


CD71
VL
3553
SEQ ID NO. 654 in US20160355599


CD71
VL
3554
SEQ ID NO. 656 in US20160355599


CD71
VL
3555
SEQ ID NO. 658 in US20160355599


CD71
VL
3556
SEQ ID NO. 660 in US20160355599


CD71
VL
3557
SEQ ID NO. 670 in US20160355599


CD71
VL
3558
SEQ ID NO. 671 in US20160355599


CD71
VL
3559
SEQ ID NO. 672 in US20160355599


CD71
VL
3560
SEQ ID NO. 673 in US20160355599


CD71
VL
3561
SEQ ID NO. 7 in US20160355599


CD71
VL
3562
SEQ ID NO. 701 in US20160355599


CD71
VL
3563
SEQ ID NO. 702 in US20160355599


CD71
VL
3564
SEQ ID NO. 703 in US20160355599


CD71
VL
3565
SEQ ID NO. 704 in US20160355599


CD71
VL
3566
SEQ ID NO. 705 in US20160355599


CD71
VL
3567
SEQ ID NO. 706 in US20160355599


CD71
VL
3568
SEQ ID NO. 707 in US20160355599


CD71
VL
3569
SEQ ID NO. 708 in US20160355599


CD71
VL
3570
SEQ ID NO. 709 in US20160355599


CD71
VL
3571
SEQ ID NO. 710 in US20160355599


CD71
VL
3572
SEQ ID NO. 711 in US20160355599


CD71
VL
3573
SEQ ID NO. 712 in US20160355599


CD71
VL
3574
SEQ ID NO. 721 in US20160355599


CD71
VL
3575
SEQ ID NO. 722 in US20160355599


CD71
VL
3576
SEQ ID NO. 723 in US20160355599


CD71
VL
3577
SEQ ID NO. 724 in US20160355599


CD71
VL
3578
SEQ ID NO. 725 in US20160355599


CD71
VL
3579
SEQ ID NO. 726 in US20160355599


CD71
VL
3580
SEQ ID NO. 727 in US20160355599


CD71
VL
3581
SEQ ID NO. 728 in US20160355599


CD71
VL
3582
SEQ ID NO. 729 in US20160355599


CD71
VL
3583
SEQ ID NO. 730 in US20160355599


CD71
VL
3584
SEQ ID NO. 731 in US20160355599


CD71
VL
3585
SEQ ID NO. 732 in US20160355599


CD71
VL
3586
SEQ ID NO. 733 in US20160355599


CD71
VL
3587
SEQ ID NO. 734 in US20160355599


CD71
VL
3588
SEQ ID NO. 735 in US20160355599


CD71
VL
3589
SEQ ID NO. 736 in US20160355599


CD71
VL
3590
SEQ ID NO. 737 in US20160355599


CD71
VL
3591
SEQ ID NO. 738 in US20160355599


CD71
VL
3592
SEQ ID NO. 739 in US20160355599


CD71
VL
3593
SEQ ID NO. 740 in US20160355599


CD71
VL
3594
SEQ ID NO. 741 in US20160355599


CD71
VL
3595
SEQ ID NO. 742 in US20160355599


CD71
VL
3596
SEQ ID NO. 743 in US20160355599


CD71
VL
3597
SEQ ID NO. 744 in US20160355599


CD71
VL
3598
SEQ ID NO. 745 in US20160355599


CD71
VL
3599
SEQ ID NO. 746 in US20160355599


CD71
VL
3600
SEQ ID NO. 747 in US20160355599


CD71
VL
3601
SEQ ID NO. 748 in US20160355599


CD71
VL
3602
SEQ ID NO. 749 in US20160355599


CD71
VL
3603
SEQ ID NO. 750 in US20160355599


CD71
VL
3604
SEQ ID NO. 751 in US20160355599


CD71
VL
3605
SEQ ID NO. 752 in US20160355599


CD71
VL
3606
SEQ ID NO. 753 in US20160355599


CD71
VL
3607
SEQ ID NO. 754 in US20160355599


CD71
VL
3608
SEQ ID NO. 755 in US20160355599


CD71
VL
3609
SEQ ID NO. 756 in US20160355599


CD71
VL
3610
SEQ ID NO. 757 in US20160355599


CD71
VL
3611
SEQ ID NO. 758 in US20160355599


CD71
VL
3612
SEQ ID NO. 759 in US20160355599


CD71
VL
3613
SEQ ID NO. 760 in US20160355599


CD71
VL
3614
SEQ ID NO. 761 in US20160355599


CD71
VL
3615
SEQ ID NO. 762 in US20160355599


CD71
VL
3616
SEQ ID NO. 763 in US20160355599


CD71
VL
3617
SEQ ID NO. 764 in US20160355599


CD71
VL
3618
SEQ ID NO. 765 in US20160355599


CD71
VL
3619
SEQ ID NO. 766 in US20160355599


CD71
VL
3620
SEQ ID NO. 767 in US20160355599


CD71
VL
3621
SEQ ID NO. 768 in US20160355599


CD71
VL
3622
SEQ ID NO. 769 in US20160355599


CD71
VL
3623
SEQ ID NO. 770 in US20160355599


CD71
VL
3624
SEQ ID NO. 771 in US20160355599


CD71
VL
3625
SEQ ID NO. 772 in US20160355599


CD71
VL
3626
SEQ ID NO. 773 in US20160355599


CD71
VL
3627
SEQ ID NO. 774 in US20160355599


CD71
VL
3628
SEQ ID NO. 775 in US20160355599


CD71
VL
3629
SEQ ID NO. 776 in US20160355599


CD71
VL
3630
SEQ ID NO. 777 in US20160355599


CD71
VL
3631
SEQ ID NO. 778 in US20160355599


CD71
VL
3632
SEQ ID NO. 779 in US20160355599


CD71
VL
3633
SEQ ID NO. 780 in US20160355599


CD71
VL
3634
SEQ ID NO. 781 in US20160355599


CD71
VL
3635
SEQ ID NO. 782 in US20160355599


CD71
VL
3636
SEQ ID NO. 783 in US20160355599


CD71
VL
3637
SEQ ID NO. 784 in US20160355599


CD71
VL
3638
SEQ ID NO. 785 in US20160355599


CD71
VL
3639
SEQ ID NO. 786 in US20160355599


CD71
VL
3640
SEQ ID NO. 787 in US20160355599


CD71
VL
3641
SEQ ID NO. 788 in US20160355599


CD71
VL
3642
SEQ ID NO. 8 in US20160355599


CD71
VL
3643
SEQ ID NO. 810 in US20160355599


CD71
VL
3644
SEQ ID NO. 811 in US20160355599


CD71
VL
3645
SEQ ID NO. 812 in US20160355599


CD71
VL
3646
SEQ ID NO. 813 in US20160355599


CD71
VL
3647
SEQ ID NO. 814 in US20160355599


CD71
VL
3648
SEQ ID NO. 815 in US20160355599


CD71
VL
3649
SEQ ID NO. 816 in US20160355599


CD71
VL
3650
SEQ ID NO. 817 in US20160355599


CD71
VL
3651
SEQ ID NO. 818 in US20160355599


CD71
VL
3652
SEQ ID NO. 819 in US20160355599


CD71
VL
3653
SEQ ID NO. 820 in US20160355599


CD71
VL
3654
SEQ ID NO. 821 in US20160355599


CD71
VL
3655
SEQ ID NO. 822 in US20160355599


CD71
VL
3656
SEQ ID NO. 823 in US20160355599


CD71
VL
3657
SEQ ID NO. 824 in US20160355599


CD71
VL
3658
SEQ ID NO. 825 in US20160355599


CD71
VL
3659
SEQ ID NO. 826 in US20160355599


CD71
VL
3660
SEQ ID NO. 827 in US20160355599


CD71
VL
3661
SEQ ID NO. 828 in US20160355599


CD71
VL
3662
SEQ ID NO. 829 in US20160355599


CD71
VL
3663
SEQ ID NO. 830 in US20160355599


CD71
VL
3664
SEQ ID NO. 831 in US20160355599


CD71
VL
3665
SEQ ID NO. 832 in US20160355599


CD71
VL
3666
SEQ ID NO. 833 in US20160355599


CD71
VL
3667
SEQ ID NO. 834 in US20160355599


CD71
VL
3668
SEQ ID NO. 835 in US20160355599


CD71
VL
3669
SEQ ID NO. 836 in US20160355599


CD71
VL
3670
SEQ ID NO. 841 in US20160355599


CD71
VL
3671
SEQ ID NO. 842 in US20160355599


CD71
VL
3672
SEQ ID NO. 843 in US20160355599


CD71
VL
3673
SEQ ID NO. 844 in US20160355599


CD71
VL
3674
SEQ ID NO. 845 in US20160355599


CD71
VL
3675
SEQ ID NO. 846 in US20160355599


CD71
VL
3676
SEQ ID NO. 847 in US20160355599


CD71
VL
3677
SEQ ID NO. 848 in US20160355599


CD71
VL
3678
SEQ ID NO. 849 in US20160355599


CD71
VL
3679
SEQ ID NO. 850 in US20160355599


CD71
VL
3680
SEQ ID NO. 851 in US20160355599


CD71
VL
3681
SEQ ID NO. 852 in US20160355599


CD71
VL
3682
SEQ ID NO. 853 in US20160355599


CD71
VL
3683
SEQ ID NO. 854 in US20160355599


CD71
VL
3684
SEQ ID NO. 855 in US20160355599


CD71
VL
3685
SEQ ID NO. 856 in US20160355599


CD71
VL
3686
SEQ ID NO. 857 in US20160355599


CD71
VL
3687
SEQ ID NO. 858 in US20160355599


CD71
VL
3688
SEQ ID NO. 859 in US20160355599


CD71
VL
3689
SEQ ID NO. 860 in US20160355599


CD71
VL
3690
SEQ ID NO. 861 in US20160355599


CD71
VL
3691
SEQ ID NO. 862 in US20160355599


CD71
VL
3692
SEQ ID NO. 863 in US20160355599


CD71
VL
3693
SEQ ID NO. 864 in US20160355599


CD71
VL
3694
SEQ ID NO. 865 in US20160355599


CD71
VL
3695
SEQ ID NO. 866 in US20160355599


CD71
VL
3696
SEQ ID NO. 867 in US20160355599


CD71
VL
3697
SEQ ID NO. 868 in US20160355599


CD71
VL
3698
SEQ ID NO. 869 in US20160355599


CD71
VL
3699
SEQ ID NO. 870 in US20160355599


CD71
VL
3700
SEQ ID NO. 871 in US20160355599


CD71
VL
3701
SEQ ID NO. 872 in US20160355599


CD71
VL
3702
SEQ ID NO. 873 in US20160355599


CD71
VL
3703
SEQ ID NO. 874 in US20160355599


CD71
VL
3704
SEQ ID NO. 875 in US20160355599


CD71
VL
3705
SEQ ID NO. 876 in US20160355599


CD71
VL
3706
SEQ ID NO. 877 in US20160355599


CD71
VL
3707
SEQ ID NO. 878 in US20160355599


CD71
VL
3708
SEQ ID NO. 879 in US20160355599


CD71
VL
3709
SEQ ID NO. 880 in US20160355599


CD71
VL
3710
SEQ ID NO. 881 in US20160355599


CD71
VL
3711
SEQ ID NO. 882 in US20160355599


CD71
VL
3712
SEQ ID NO. 883 in US20160355599


CD71
VL
3713
SEQ ID NO. 884 in US20160355599


CD71
VL
3714
SEQ ID NO. 885 in US20160355599


CD71
VL
3715
SEQ ID NO. 886 in US20160355599


CD71
VL
3716
SEQ ID NO. 887 in US20160355599


CD71
VL
3717
SEQ ID NO. 888 in US20160355599


CD71
VL
3718
SEQ ID NO. 889 in US20160355599


CD71
VL
3719
SEQ ID NO. 890 in US20160355599


CD71
VL
3720
SEQ ID NO. 891 in US20160355599


CD71
VL
3721
SEQ ID NO. 892 in US20160355599


CD71
VL
3722
SEQ ID NO. 893 in US20160355599


CD71
VL
3723
SEQ ID NO. 894 in US20160355599


CD71
VL
3724
SEQ ID NO. 895 in US20160355599


CD71
VL
3725
SEQ ID NO. 896 in US20160355599


CD71
VL
3726
SEQ ID NO. 897 in US20160355599


CD71
VL
3727
SEQ ID NO. 898 in US20160355599


CD71
VL
3728
SEQ ID NO. 899 in US20160355599


CD71
VL
3729
SEQ ID NO. 900 in US20160355599


CD71
VL
3730
SEQ ID NO. 901 in US20160355599


CD71
VL
3731
SEQ ID NO. 902 in US20160355599


CD71
VL
3732
SEQ ID NO. 903 in US20160355599


CD71
VL
3733
SEQ ID NO. 904 in US20160355599


CD71
VL
3734
SEQ ID NO. 905 in US20160355599


CD71
VL
3735
SEQ ID NO. 906 in US20160355599


CD71
VL
3736
SEQ ID NO. 907 in US20160355599


CD71
VL
3737
SEQ ID NO. 908 in US20160355599


CD73
VL
3738
SEQ ID NO. 12 in US20160145350


CD73
VL
3739
SEQ ID NO. 20 in US20160145350


CD73
VL
3740
SEQ ID NO. 44 in US20160145350


CD73
VL
3741
SEQ ID NO. 72 in US20160145350


CD73
VL
3742
SEQ ID NO. 76 in US20160145350


CD73
VL
3743
SEQ ID NO. 8 in US20160145350


CD73
VL
3744
SEQ ID NO. 84 in US20160145350


CD73
VL
3745
SEQ ID NO. 92 in US20160145350


CD73
VL
3746
SEQ ID NO. 22 in WO2016055609A1


CD73
VL
3747
SEQ ID NO. 29 in WO2016055609A1


CD73
VL
3748
SEQ ID NO. 37 in WO2016055609A1


CD73
VL
3749
SEQ ID NO. 4 in WO2016055609A1


CD74
VL
3750
FIG. 1B in WO2003074567


CD74
VL
3751
FIG. 2B in WO2003074567


CD74
VL
3752
FIG. 4B in WO2003074567


CD74
VL
3753
SEQ ID NO 12 in US20040115193A1


CD74
VL
3754
SEQ ID NO 13 in US20040115193A1


CD74
VL
3755
SEQ ID NO 14 in US20040115193A1


CD74
VL
3756
SEQ ID NO. 11 in US20100284906A1


CD74
VL
3757
SEQ ID NO. 4 in US20100284906A1


CD76b
VL
3758
SEQ ID NO. 16 in US20160159906


CD76b
VL
3759
SEQ ID NO. 18 in US20160159906


CD76b
VL
3760
SEQ ID NO. 22 in US20160159906


CD76b
VL
3761
SEQ ID NO. 38 in US20160159906


CD76b
VL
3762
SEQ ID NO. 58 in US20160159906


CD76b
VL
3763
SEQ ID NO. 60 in US20160159906


CD76b
VL
3764
SEQ ID NO. 62 in US20160159906


CD79
VL
3765
SEQ ID NO. 130 in WO2016122701


CDIM
VL
3766
SEQ ID NO. 28 in WO2013120012


CDIM
VL
3767
SEQ ID NO. 29 in WO2013120012


CDIM
VL
3768
SEQ ID NO. 30 in WO2013120012


CDIM
VL
3769
SEQ ID NO. 31 in WO2013120012


CDIM
VL
3770
SEQ ID NO. 32 in WO2013120012


CDIM
VL
3771
SEQ ID NO. 33 in WO2013120012


CDIM
VL
3772
SEQ ID NO. 34 in WO2013120012


CDIM
VL
3773
SEQ ID NO. 35 in WO2013120012


CDIM
VL
3774
SEQ ID NO. 36 in WO2013120012


CDIM
VL
3775
SEQ ID NO. 37 in WO2013120012


CDIM
VL
3776
SEQ ID NO. 38 in WO2013120012


CDIM
VL
3777
SEQ ID NO. 39 in WO2013120012


CDIM
VL
3778
SEQ ID NO. 40 in WO2013120012


CDIM
VL
3779
SEQ ID NO. 41 in WO2013120012


CDIM
VL
3780
SEQ ID NO. 42 in WO2013120012


CDIM
VL
3781
SEQ ID NO. 43 in WO2013120012


CDIM
VL
3782
SEQ ID NO. 44 in WO2013120012


CDIM
VL
3783
SEQ ID NO. 45 in WO2013120012


CDIM
VL
3784
SEQ ID NO. 46 in WO2013120012


CDIM
VL
3785
SEQ ID NO. 47 in WO2013120012


CDIM
VL
3786
SEQ ID NO. 48 in WO2013120012


CDIM
VL
3787
SEQ ID NO. 49 in WO2013120012


CEA
VL
3788
SEQ ID NO: 10 in U.S. Pat. No. 8,287,865


CEA
VL
3789
SEQ ID NO: 38 in U.S. Pat. No. 8,287,865


CEA
VL
3790
SEQ ID NO: 39 in U.S. Pat. No. 8,287,865


CEA
VL
3791
SEQ ID NO: 7 in U.S. Pat. No. 8,287,865


CEA
VL
3792
SEQ ID NO: 9 in U.S. Pat. No. 8,287,865


Claudin
VL
3793
SEQ ID NO. 114 in WO2016073649A1


Claudin
VL
3794
SEQ ID NO. 116 in WO2016073649A1


Claudin
VL
3795
SEQ ID NO. 118 in WO2016073649A1


Claudin
VL
3796
SEQ ID NO. 120 in WO2016073649A1


Claudin
VL
3797
SEQ ID NO. 22 in WO2016073649A1


Claudin
VL
3798
SEQ ID NO. 25 in WO2016073649A1


Claudin
VL
3799
SEQ ID NO. 29 in WO2016073649A1


Claudin
VL
3800
SEQ ID NO. 33 in WO2016073649A1


Claudin
VL
3801
SEQ ID NO. 37 in WO2016073649A1


Claudin
VL
3802
SEQ ID NO. 41 in WO2016073649A1


Claudin
VL
3803
SEQ ID NO. 45 in WO2016073649A1


Claudin
VL
3804
SEQ ID NO. 49 in WO2016073649A1


Claudin
VL
3805
SEQ ID NO. 53 in WO2016073649A1


Claudin
VL
3806
SEQ ID NO. 57 in WO2016073649A1


Claudin
VL
3807
SEQ ID NO. 61 in WO2016073649A1


Claudin
VL
3808
SEQ ID NO. 65 in WO2016073649A1


Claudin
VL
3809
SEQ ID NO. 69 in WO2016073649A1


Claudin
VL
3810
SEQ ID NO. 73 in WO2016073649A1


Claudin
VL
3811
SEQ ID NO. 77 in WO2016073649A1


CLDN18.2
VL
3812
SEQ ID No. 13 in US20160347815A1


CLDN18.2
VL
3813
SEQ ID No. 3 in US20160347815A1


CLL1
VL
3814
SEQ ID NO. 16 in WO2016120219


CLL1
VL
3815
SEQ ID NO. 18 in WO2016120219


CLL1
VL
3816
SEQ ID NO. 196 in WO2016014535


CLL1
VL
3817
SEQ ID NO. 20 in WO2016120219


CLL1
VL
3818
SEQ ID NO. 22 in WO2016120219


CLL1
VL
3819
SEQ ID NO. 24 in WO2016120219


CLL1
VL
3820
SEQ ID NO. 26 in WO2016120219


CLL1
VL
3821
SEQ ID NO. 28 in WO2016120219


CLL1
VL
3822
SEQ ID NO. 30 in WO2016120219


CLL1
VL
3823
SEQ ID NO. 32 in WO2016120219


CLL1
VL
3824
SEQ ID NO. 34 in WO2016120219


CLL1
VL
3825
SEQ ID NO. 36 in WO2016120219


CLL1
VL
3826
SEQ ID NO. 78 in WO2016014535


CLL1
VL
3827
SEQ ID NO. 79 in WO2016014535


CLL1
VL
3828
SEQ ID NO. 80 in WO2016014535


CLL1
VL
3829
SEQ ID NO. 81 in WO2016014535


CLL1
VL
3830
SEQ ID NO. 82 in WO2016014535


CLL1
VL
3831
SEQ ID NO. 83 in WO2016014535


CLL1
VL
3832
SEQ ID NO. 84 in WO2016014535


CLL1
VL
3833
SEQ ID NO. 85 in WO2016014535


CLL1
VL
3834
SEQ ID NO. 86 in WO2016014535


CLL1
VL
3835
SEQ ID NO. 87 in WO2016014535


CLL1
VL
3836
SEQ ID NO. 88 in WO2016014535


CLL1
VL
3837
SEQ ID NO. 89 in WO2016014535


CLL1
VL
3838
SEQ ID NO. 90 in WO2016014535


CLL1
VL
3839
SEQ ID NO. 30 in US20160075787


CLL1
VL
3840
SEQ ID NO. 32 in US20160075787


CLL1
VL
3841
SEQ ID NO. 35 in US20160075787


CLL1
VL
3842
SEQ ID NO. 37 in US20160075787


CLL1
VL
3843
SEQ ID NO. 39 in US20160075787


CLL1
VL
3844
SEQ ID NO. 41 in US20160075787


CLL1
VL
3845
SEQ ID NO: 152 in WO2016179319A1


CLL1
VL
3846
SEQ ID NO: 104 in WO2016179319A1


CLL1
VL
3847
SEQ ID NO: 106 in WO2016179319A1


CLL1
VL
3848
SEQ ID NO: 108 in WO2016179319A1


CLL1
VL
3849
SEQ ID NO: 110 in WO2016179319A1


CLL1
VL
3850
SEQ ID NO: 112 in WO2016179319A1


CLL1
VL
3851
SEQ ID NO: 114 in WO2016179319A1


CLL1
VL
3852
SEQ ID NO: 116 in WO2016179319A1


CLL1
VL
3853
SEQ ID NO: 118 in WO2016179319A1


CLL3
VL
3854
SEQ ID NO. 100 in US20170000901


CLL3
VL
3855
SEQ ID NO. 102 in US20170000901


CLL3
VL
3856
SEQ ID NO. 104 in US20170000901


CLL3
VL
3857
SEQ ID NO. 106 in US20170000901


CLL3
VL
3858
SEQ ID NO. 108 in US20170000901


CLL3
VL
3859
SEQ ID NO. 110 in US20170000901


CLL3
VL
3860
SEQ ID NO. 112 in US20170000901


CLL3
VL
3861
SEQ ID NO. 114 in US20170000901


CLL3
VL
3862
SEQ ID NO. 116 in US20170000901


CLL3
VL
3863
SEQ ID NO. 118 in US20170000901


CLL3
VL
3864
SEQ ID NO. 120 in US20170000901


CLL3
VL
3865
SEQ ID NO. 122 in US20170000901


CLL3
VL
3866
SEQ ID NO. 124 in US20170000901


CLL3
VL
3867
SEQ ID NO. 126 in US20170000901


CLL3
VL
3868
SEQ ID NO. 128 in US20170000901


CLL3
VL
3869
SEQ ID NO. 130 in US20170000901


CLL3
VL
3870
SEQ ID NO. 132 in US20170000901


CLL3
VL
3871
SEQ ID NO. 134 in US20170000901


CLL3
VL
3872
SEQ ID NO. 136 in US20170000901


CLL3
VL
3873
SEQ ID NO. 138 in US20170000901


CLL3
VL
3874
SEQ ID NO. 140 in US20170000901


CLL3
VL
3875
SEQ ID NO. 144 in US20170000901


CLL3
VL
3876
SEQ ID NO. 146 in US20170000901


CLL3
VL
3877
SEQ ID NO. 148 in US20170000901


CLL3
VL
3878
SEQ ID NO. 150 in US20170000901


CLL3
VL
3879
SEQ ID NO. 152 in US20170000901


CLL3
VL
3880
SEQ ID NO. 154 in US20170000901


CLL3
VL
3881
SEQ ID NO. 156 in US20170000901


CLL3
VL
3882
SEQ ID NO. 158 in US20170000901


CLL3
VL
3883
SEQ ID NO. 160 in US20170000901


CLL3
VL
3884
SEQ ID NO. 162 in US20170000901


CLL3
VL
3885
SEQ ID NO. 164 in US20170000901


CLL3
VL
3886
SEQ ID NO. 166 in US20170000901


CLL3
VL
3887
SEQ ID NO. 170 in US20170000901


CLL3
VL
3888
SEQ ID NO. 172 in US20170000901


CLL3
VL
3889
SEQ ID NO. 174 in US20170000901


CLL3
VL
3890
SEQ ID NO. 176 in US20170000901


CLL3
VL
3891
SEQ ID NO. 178 in US20170000901


CLL3
VL
3892
SEQ ID NO. 180 in US20170000901


CLL3
VL
3893
SEQ ID NO. 182 in US20170000901


CLL3
VL
3894
SEQ ID NO. 184 in US20170000901


CLL3
VL
3895
SEQ ID NO. 186 in US20170000901


CLL3
VL
3896
SEQ ID NO. 190 in US20170000901


CLL3
VL
3897
SEQ ID NO. 192 in US20170000901


CLL3
VL
3898
SEQ ID NO. 194 in US20170000901


CLL3
VL
3899
SEQ ID NO. 196 in US20170000901


CLL3
VL
3900
SEQ ID NO. 198 in US20170000901


CLL3
VL
3901
SEQ ID NO. 20 in US20170000901


CLL3
VL
3902
SEQ ID NO. 200 in US20170000901


CLL3
VL
3903
SEQ ID NO. 202 in US20170000901


CLL3
VL
3904
SEQ ID NO. 204 in US20170000901


CLL3
VL
3905
SEQ ID NO. 206 in US20170000901


CLL3
VL
3906
SEQ ID NO. 208 in US20170000901


CLL3
VL
3907
SEQ ID NO. 210 in US20170000901


CLL3
VL
3908
SEQ ID NO. 212 in US20170000901


CLL3
VL
3909
SEQ ID NO. 22 in US20170000901


CLL3
VL
3910
SEQ ID NO. 24 in US20170000901


CLL3
VL
3911
SEQ ID NO. 26 in US20170000901


CLL3
VL
3912
SEQ ID NO. 28 in US20170000901


CLL3
VL
3913
SEQ ID NO. 30 in US20170000901


CLL3
VL
3914
SEQ ID NO. 32 in US20170000901


CLL3
VL
3915
SEQ ID NO. 34 in US20170000901


CLL3
VL
3916
SEQ ID NO. 36 in US20170000901


CLL3
VL
3917
SEQ ID NO. 38 in US20170000901


CLL3
VL
3918
SEQ ID NO. 40 in US20170000901


CLL3
VL
3919
SEQ ID NO. 42 in US20170000901


CLL3
VL
3920
SEQ ID NO. 44 in US20170000901


CLL3
VL
3921
SEQ ID NO. 46 in US20170000901


CLL3
VL
3922
SEQ ID NO. 48 in US20170000901


CLL3
VL
3923
SEQ ID NO. 50 in US20170000901


CLL3
VL
3924
SEQ ID NO. 54 in US20170000901


CLL3
VL
3925
SEQ ID NO. 56 in US20170000901


CLL3
VL
3926
SEQ ID NO. 58 in US20170000901


CLL3
VL
3927
SEQ ID NO. 60 in US20170000901


CLL3
VL
3928
SEQ ID NO. 62 in US20170000901


CLL3
VL
3929
SEQ ID NO. 64 in US20170000901


CLL3
VL
3930
SEQ ID NO. 66 in US20170000901


CLL3
VL
3931
SEQ ID NO. 68 in US20170000901


CLL3
VL
3932
SEQ ID NO. 70 in US20170000901


CLL3
VL
3933
SEQ ID NO. 72 in US20170000901


CLL3
VL
3934
SEQ ID NO. 74 in US20170000901


CLL3
VL
3935
SEQ ID NO. 76 in US20170000901


CLL3
VL
3936
SEQ ID NO. 78 in US20170000901


CLL3
VL
3937
SEQ ID NO. 80 in US20170000901


CLL3
VL
3938
SEQ ID NO. 82 in US20170000901


CLL3
VL
3939
SEQ ID NO. 84 in US20170000901


CLL3
VL
3940
SEQ ID NO. 86 in US20170000901


CLL3
VL
3941
SEQ ID NO. 88 in US20170000901


CLL3
VL
3942
SEQ ID NO. 90 in US20170000901


CLL3
VL
3943
SEQ ID NO. 92 in US20170000901


CLL3
VL
3944
SEQ ID NO. 94 in US20170000901


CLL3
VL
3945
SEQ ID NO. 96 in US20170000901


CLL3
VL
3946
SEQ ID NO. 98 in US20170000901


collagen
VL
3947
SEQ ID NO. 11 in WO2007024921


collagen
VL
3948
SEQ ID NO. 12 in WO2007024921


collagen
VL
3949
SEQ ID NO. 14 in WO2007024921


collagen
VL
3950
SEQ ID NO. 23 in WO2007024921


collagen
VL
3951
SEQ ID NO. 25 in WO2007024921


collagen
VL
3952
SEQ ID NO. 26 in WO2007024921


collagen
VL
3953
SEQ ID NO. 27 in WO2007024921


collagen
VL
3954
SEQ ID NO. 8 in WO2007024921


collagen
VL
3955
SEQ ID NO. 9 in WO2007024921


CS1
VL
3956
SEQ ID NO. 104 in WO2016120216


CS1
VL
3957
SEQ ID NO. 106 in WO2016120216


CS1
VL
3958
SEQ ID NO. 108 in WO2016120216


CS1
VL
3959
SEQ ID NO. 14 in WO2015166056A1


CS1
VL
3960
SEQ ID NO. 16 in WO2015166056A1


CS1
VL
3961
SEQ ID NO. 18 in WO2015166056A1


CS1
VL
3962
SEQ ID NO. 20 in WO2015166056A1


CS1
VL
3963
SEQ ID NO. 22 in WO2015166056A1


CS1
VL
3964
SEQ ID No. 39 in WO2015121454


CS1
VL
3965
SEQ ID No. 41 in WO2015121454


CS1
VL
3966
SEQ ID No. 43 in WO2015121454


CS1
VL
3967
SEQ ID No. 45 in WO2015121454


CS1
VL
3968
SEQ ID No. 47 in WO2015121454


CSF
VL
3969
SEQ ID NO 12 in US20050059113A1


CSF
VL
3970
SEQ ID NO 32 in US20050059113A1


CSF
VL
3971
SEQ ID NO 44 in US20050059113A1


CSF
VL
3972
SEQ ID NO 48 in US20050059113A1


CSF
VL
3973
SEQ ID NO 60 in US20050059113A1


CSPG4
VL
3974
SEQ ID NO. 7 in WO2016164429


CTLA4
VL
3975
SEQ ID NO. 36 in US20140105914


CTLA4
VL
3976
SEQ ID NO. 37 in US20140105914


CTLA4
VL
3977
SEQ ID NO. 38 in US20140105914


CTLA4
VL
3978
SEQ ID NO. 39 in US20140105914


CTLA4
VL
3979
SEQ ID NO. 40 in US20140105914


CTLA4
VL
3980
SEQ ID NO. 46 in US20140105914


CTLA4
VL
3981
SEQ ID NO. 47 in US20140105914


CTLA4
VL
3982
SEQ ID NO. 48 in US20140105914


CTLA4
VL
3983
SEQ ID NO. 49 in US20140105914


CTLA4
VL
3984
SEQ ID NO. 50 in US20140105914


CTLA4
VL
3985
SEQ ID NO. 8 in US20140105914


CTLA4
VL
3986
SEQ ID NO. 2 in U.S. Pat. No. 8,697,845


CTLA4
VL
3987
SEQ ID NO. 4 in US20140105914


CTLA4(Ipilimumab)
VL
3988
SEQ ID NO. 20 in US20150283234


CTLA4(Ipilimumab)
VL
3989
SEQ ID NO. 18 in WO2014066532


CXCR4
VL
3990
US20110020218 SEQ ID NO: 76


CXCR4
VL
3991
US20110020218 SEQ ID NO: 77


CXCR4
VL
3992
US20110020218 SEQ ID NO: 78


CXCR4
VL
3993
US20110020218 SEQ ID NO: 79


CXCR4
VL
3994
US20110020218 SEQ ID NO: 80


CXCR4
VL
3995
US20110020218 SEQ ID NO: 81


CXCR4
VL
3996
US20110020218 SEQ ID NO: 82


CXCR4
VL
3997
US20110020218 SEQ ID NO: 87


CXCR4
VL
3998
US20110020218 SEQ ID NO: 88


CXCR4
VL
3999
US20110020218 SEQ ID NO: 90


CXCR4
VL
4000
US20110020218 SEQ ID NO: 91


CXCR4
VL
4001
US20110020218 SEQ ID NO: 92


CXCR4
VL
4002
US20110020218 SEQ ID NO: 93


Daclizumab
VL
4003
SEQ ID NO: 43 in US20160333114A1


Daclizumab
VL
4004
SEQ ID NO: 45 in US20160333114A1


DR5
VL
4005
SEQ ID NO. 13 in WO2016122701


DR5
VL
4006
SEQ ID NO. 23 in WO2016122701


DR5
VL
4007
SEQ ID NO. 25 in WO2016122701


DR5
VL
4008
SEQ ID NO. 27 in WO2016122701


DR5
VL
4009
SEQ ID NO. 3 in WO2016122701


DR5
VL
4010
SEQ ID NO. 78 in WO2016122701


DR5
VL
4011
SEQ ID NO. 86 in WO2016122701


DR5
VL
4012
SEQ ID NO. 94 in WO2016122701


DR5
VL
4013
SEQ ID NO. 29 in WO2016122701


DR5(Conatumumab)
VL
4014
SEQ ID NO. 62 in WO2016122701


DR5(Drozitumab)
VL
4015
SEQ ID NO. 54 in WO2016122701


DR5(Tigatumumab)
VL
4016
SEQ ID NO. 70 in WO2016122701


E7MC
VL
4017
SEQ ID NO: 238 in WO2016182957A1


E7MC
VL
4018
SEQ ID NO: 239 in WO2016182957A1


E7MC
VL
4019
SEQ ID NO: 240 in WO2016182957A1


E7MC
VL
4020
SEQ ID NO: 241 in WO2016182957A1


E7MC
VL
4021
SEQ ID NO: 242 in WO2016182957A1


E7MC
VL
4022
SEQ ID NO: 243 in WO2016182957A1


E7MC
VL
4023
SEQ ID NO: 36 in WO2016182957A1


E7MC
VL
4024
SEQ ID NO: 37 in WO2016182957A1


E7MC
VL
4025
SEQ ID NO: 38 in WO2016182957A1


E7MC
VL
4026
SEQ ID NO: 39 in WO2016182957A1


E7MC
VL
4027
SEQ ID NO: 41 in WO2016182957A1


E7MC
VL
4028
SEQ ID NO: 42 in WO2016182957A1


E7MC
VL
4029
SEQ ID NO: 43 in WO2016182957A1


E7MC
VL
4030
SEQ ID NO: 44 in WO2016182957A1


E7MC
VL
4031
SEQ ID NO: 45 in WO2016182957A1


E7MC
VL
4032
SEQ ID NO: 46 in WO2016182957A1


E7MC
VL
4033
SEQ ID NO: 47 in WO2016182957A1


E7MC
VL
4034
SEQ ID NO: 48 in WO2016182957A1


E7MC
VL
4035
SEQ ID NO: 49 in WO2016182957A1


E7MC
VL
4036
SEQ ID NO: 50 in WO2016182957A1


E7MC
VL
4037
SEQ ID NO: 51 in WO2016182957A1


E7MC
VL
4038
SEQ ID NO: 52 in WO2016182957A1


E7MC
VL
4039
SEQ ID NO: 53 in WO2016182957A1


E7MC
VL
4040
SEQ ID NO: 54 in WO2016182957A1


E7MC
VL
4041
SEQ ID NO: 55 in WO2016182957A1


E7MC
VL
4042
SEQ ID NO: 56 in WO2016182957A1


EFNA
VL
4043
SEQ ID NO: 151 in WO2012118547


EFNA
VL
4044
SEQ ID NO: 155 in WO2012118547


EFNA
VL
4045
SEQ ID NO: 159 in WO2012118547


EFNA
VL
4046
SEQ ID NO: 163 in WO2012118547


EFNA4
VL
4047
SEQ ID NO. 27 in US20150125472


EFNA4
VL
4048
SEQ ID NO. 53 in US20150125472


EGFR
VL
4049
SEQ ID NO. 15 in WO2015143382


EGFR
VL
4050
SEQ ID NO. 14 in WO2014143765


EGFR
VL
4051



EGFR
VL
4052



EGFR
VL
4053



EGFR
VL
4054



EGFR
VL
4055



EGFR
VL
4056



EGFR
VL
4057



EGFR
VL
4058



EGFR
VL
4059



EGFR
VL
4060



EGFR
VL
4061



EGFR
VL
4062



EGFR
VL
4063



EGFR
VL
4064



EGFR
VL
4065



EGFR
VL
4066



EGFR
VL
4067



EGFR
VL
4068



EGFR
VL
4069



EGFR
VL
4070



EGFR
VL
4071



EGFR
VL
4072



EGFR
VL
4073



EGFR
VL
4074



EGFR
VL
4075



EGFR
VL
4076



EGFR
VL
4077



EGFR
VL
4078



EGFR
VL
4079



EGFR
VL
4080



EGFR
VL
4081



EGFR
VL
4082



EGFR
VL
4083



EGFR
VL
4084



EGFR
VL
4085



EGFR
VL
4086



EGFR
VL
4087



EGFR
VL
4088



EGFR
VL
4089



EGFR
VL
4090



EGFR
VL
4091



EGFR
VL
4092



EGFR
VL
4093



EGFR
VL
4094



EGFR
VL
4095



EGFR
VL
4096



EGFR
VL
4097



EGFR
VL
4098



EGFR
VL
4099



EGFR
VL
4100



EGFR
VL
4101



EGFR
VL
4102



EGFR
VL
4103



EGFR
VL
4104



EGFR
VL
4105



EGFR
VL
4106



EGFR
VL
4107



EGFR
VL
4108



EGFR
VL
4109



EGFR
VL
4110



EGFR
VL
4111



EGFR
VL
4112



EGFR
VL
4113



EGFR
VL
4114



EGFR
VL
4115



EGFR
VL
4116



EGFR
VL
4117



EGFR
VL
4118



EGFR
VL
4119



EGFR
VL
4120



EGFR
VL
4121



EGFR
VL
4122



EGFR
VL
4123



EGFR
VL
4124



EGFR
VL
4125



EGFR
VL
4126



EGFR
VL
4127



EGFR
VL
4128



EGFR
VL
4129



EGFR
VL
4130



EGFR
VL
4131



EGFR
VL
4132



EGFR
VL
4133



EGFR
VL
4134



EGFR
VL
4135



EGFR
VL
4136



EGFR
VL
4137



EGFR
VL
4138



EGFR
VL
4139



EGFR
VL
4140



EGFR
VL
4141



EGFR
VL
4142



EGFR
VL
4143



EGFR
VL
4144



EGFR
VL
4145



EGFR
VL
4146



EGFR
VL
4147



EGFR
VL
4148



EGFR
VL
4149



EGFR
VL
4150



EGFR
VL
4151



EGFR
VL
4152



EGFR
VL
4153



EGFR
VL
4154



EGFR
VL
4155



EGFR
VL
4156



EGFR
VL
4157



EGFR
VL
4158



EGFR
VL
4159



EGFR
VL
4160



EGFR
VL
4161



EGFR
VL
4162



EGFR
VL
4163



EGFR
VL
4164



EGFR
VL
4165



EGFR
VL
4166



EGFR
VL
4167



EGFR
VL
4168



EGFR
VL
4169



EGFR
VL
4170



EGFR
VL
4171



EGFR
VL
4172



EGFR
VL
4173



EGFR
VL
4174



EGFR
VL
4175



EGFR
VL
4176



EGFR
VL
4177



EGFR
VL
4178



EGFR
VL
4179



EGFR
VL
4180



EGFR
VL
4181



EGFR
VL
4182



EGFR
VL
4183



EGFR
VL
4184



EGFR
VL
4185



EGFR
VL
4186



EGFR
VL
4187



EGFR
VL
4188



EGFR
VL
4189



EGFR
VL
4190



EGFR
VL
4191



EGFR
VL
4192



EGFR
VL
4193



EGFR
VL
4194



EGFR
VL
4195



EGFR
VL
4196



EGFR
VL
4197



EGFR
VL
4198



EGFR
VL
4199



EGFR
VL
4200



EGFR
VL
4201



EGFR
VL
4202



EGFR
VL
4203



EGFR
VL
4204



EGFR
VL
4205



EGFR
VL
4206



EGFR
VL
4207



EGFR
VL
4208



EGFR
VL
4209



EGFR
VL
4210



EGFR
VL
4211



EGFR
VL
4212



EGFR
VL
4213



EGFR
VL
4214



EGFR
VL
4215



EGFR
VL
4216



EGFR
VL
4217



EGFR
VL
4218



EGFR
VL
4219



EGFR
VL
4220



EGFR
VL
4221



EGFR
VL
4222



EGFR
VL
4223



EGFR
VL
4224



EGFR
VL
4225



EGFR
VL
4226



EGFR
VL
4227



EGFR
VL
4228



EGFR
VL
4229



EGFR
VL
4230



EGFR
VL
4231



EGFR
VL
4232



EGFR
VL
4233



EGFR
VL
4234



EGFR
VL
4235



EGFR
VL
4236



EGFR
VL
4237



EGFR
VL
4238



EGFR
VL
4239



EGFR
VL
4240



EGFR
VL
4241



EGFR
VL
4242



EGFR
VL
4243



EGFR
VL
4244



EGFR
VL
4245



EGFR
VL
4246



EGFR
VL
4247



EGFR
VL
4248



EGFR
VL
4249



EGFR
VL
4250



EGFR
VL
4251



EGFR
VL
4252



EGFR
VL
4253



EGFR
VL
4254



EGFR
VL
4255



EGFR
VL
4256



EGFR
VL
4257



EGFR
VL
4258



EGFR
VL
4259



EGFR
VL
4260



EGFR
VL
4261



EGFR
VL
4262



EGFR
VL
4263



EGFR
VL
4264



EGFR
VL
4265



EGFR
VL
4266



EGFR
VL
4267



EGFR
VL
4268



EGFR
VL
4269



EGFR
VL
4270



EGFR
VL
4271



EGFR
VL
4272



EGFR
VL
4273



EGFR
VL
4274



EGFR
VL
4275



EGFR
VL
4276



EGFR
VL
4277



EGFR
VL
4278



EGFR
VL
4279



EGFR
VL
4280



EGFR
VL
4281



EGFR
VL
4282



EGFR
VL
4283



EGFR
VL
4284



EGFR
VL
4285



EGFR
VL
4286



EGFR
VL
4287



EGFR
VL
4288



EGFR
VL
4289



EGFR
VL
4290



EGFR
VL
4291



EGFR
VL
4292



EGFR
VL
4293



EGFR
VL
4294



EGFR
VL
4295



EGFR
VL
4296



EGFR
VL
4297



EGFR
VL
4298



EGFR
VL
4299



EGFR
VL
4300



EGFR
VL
4301



EGFR
VL
4302



EGFR
VL
4303



EGFR
VL
4304



EGFR
VL
4305



EGFR
VL
4306



EGFR
VL
4307



EGFR
VL
4308



EGFR
VL
4309



EGFR
VL
4310



EGFR
VL
4311



EGFR
VL
4312



EGFR
VL
4313



EGFR
VL
4314



EGFR
VL
4315



EGFR
VL
4316



EGFR
VL
4317



EGFR
VL
4318



EGFR
VL
4319



EGFR
VL
4320



EGFR
VL
4321



EGFR
VL
4322



EGFR
VL
4323



EGFR
VL
4324



EGFR
VL
4325



EGFR
VL
4326



EGFR
VL
4327



EGFR
VL
4328



EGFR
VL
4329



EGFR
VL
4330



EGFR
VL
4331



EGFR
VL
4332



EGFR
VL
4333



EGFR
VL
4334



EGFR
VL
4335



EGFR
VL
4336



EGFR
VL
4337



EGFR
VL
4338



EGFR
VL
4339



EGFR
VL
4340



EGFR
VL
4341



EGFR
VL
4342



EGFR
VL
4343



EGFR
VL
4344



EGFR
VL
4345



EGFR
VL
4346



EGFR
VL
4347



EGFR
VL
4348



EGFR
VL
4349



EGFR
VL
4350



EGFR
VL
4351



EGFR
VL
4352



EGFR
VL
4353



EGFR
VL
4354



EGFR
VL
4355



EGFR
VL
4356



EGFR
VL
4357



EGFR
VL
4358



EGFR
VL
4359



EGFR
VL
4360



EGFR
VL
4361



EGFR
VL
4362



EGFR
VL
4363



EGFR
VL
4364



EGFR
VL
4365



EGFR
VL
4366



EGFR
VL
4367



EGFR
VL
4368



EGFR
VL
4369



EGFR
VL
4370



EGFR
VL
4371



EGFR
VL
4372



EGFR
VL
4373



EGFR
VL
4374



EGFR
VL
4375



EGFR
VL
4376



EGFR
VL
4377



EGFR
VL
4378



EGFR
VL
4379



EGFR
VL
4380



EGFR
VL
4381



EGFR
VL
4382



EGFR
VL
4383



EGFR
VL
4384



EGFR
VL
4385



EGFR
VL
4386



EGFR
VL
4387



EGFR
VL
4388



EGFR
VL
4389



EGFR
VL
4390



EGFR
VL
4391



EGFR
VL
4392



EGFR
VL
4393



EGFR
VL
4394



EGFR
VL
4395



EGFR
VL
4396



EGFR
VL
4397



EGFR
VL
4398



EGFR
VL
4399



EGFR
VL
4400



EGFR
VL
4401



EGFR
VL
4402



EGFR
VL
4403



EGFR
VL
4404



EGFR
VL
4405



EGFR
VL
4406



EGFR
VL
4407



EGFR
VL
4408



EGFR
VL
4409



EGFR
VL
4410



EGFR
VL
4411



EGFR
VL
4412



EGFR
VL
4413



EGFR
VL
4414



EGFR
VL
4415



EGFR
VL
4416



EGFR
VL
4417



EGFR
VL
4418



EGFR
VL
4419



EGFR
VL
4420



EGFR
VL
4421



EGFR
VL
4422



EGFR
VL
4423



EGFR
VL
4424



EGFR
VL
4425



EGFR
VL
4426



EGFR
VL
4427



EGFR
VL
4428



EGFR
VL
4429



EGFR
VL
4430



EGFR
VL
4431



EGFR
VL
4432



EGFR
VL
4433



EGFR
VL
4434



EGFR
VL
4435



EGFR
VL
4436



EGFR
VL
4437



EGFR
VL
4438



EGFR
VL
4439



EGFR
VL
4440



EGFR
VL
4441



EGFR
VL
4442



EGFR
VL
4443



EGFR
VL
4444



EGFR
VL
4445



EGFR
VL
4446



EGFR
VL
4447



EGFR
VL
4448



EGFR
VL
4449



EGFR
VL
4450



EGFR
VL
4451



EGFR
VL
4452



EGFR
VL
4453



EGFR
VL
4454



EGFR
VL
4455



EGFR
VL
4456



EGFR
VL
4457



EGFR
VL
4458



EGFR
VL
4459



EGFR
VL
4460



EGFR
VL
4461



EGFR
VL
4462



EGFR
VL
4463



EGFR
VL
4464



EGFR
VL
4465



EGFR
VL
4466



EGFR
VL
4467



EGFR
VL
4468



EGFR
VL
4469



EGFR
VL
4470



EGFR
VL
4471



EGFR
VL
4472



EGFR
VL
4473



EGFR
VL
4474



EGFR
VL
4475



EGFR
VL
4476



EGFR
VL
4477



EGFR
VL
4478



EGFR
VL
4479



EGFR
VL
4480



EGFR
VL
4481



EGFR
VL
4482



EGFR
VL
4483



EGFR
VL
4484



EGFR
VL
4485



EGFR
VL
4486



EGFR
VL
4487



EGFR
VL
4488



EGFR
VL
4489



EGFR
VL
4490



EGFR
VL
4491



EGFR
VL
4492



EGFR
VL
4493



EGFR
VL
4494



EGFR
VL
4495



EGFR
VL
4496



EGFR
VL
4497



EGFR
VL
4498



EGFR
VL
4499



EGFR
VL
4500



EGFR
VL
4501



EGFR
VL
4502



EGFR
VL
4503



EGFR
VL
4504



EGFR
VL
4505



EGFR
VL
4506



EGFR
VL
4507



EGFR
VL
4508



EGFR
VL
4509



EGFR
VL
4510



EGFR
VL
4511



EGFR
VL
4512



EGFR
VL
4513



EGFR
VL
4514



EGFR
VL
4515



EGFR
VL
4516



EGFR
VL
4517



EGFR
VL
4518



EGFR
VL
4519



EGFR
VL
4520



EGFR
VL
4521



EGFR
VL
4522



EGFR
VL
4523



EGFR
VL
4524



EGFR
VL
4525



EGFR
VL
4526



EGFR
VL
4527



EGFR
VL
4528



EGFR
VL
4529



EGFR
VL
4530



EGFR
VL
4531



EGFR
VL
4532



EGFR
VL
4533



EGFR
VL
4534



EGFR
VL
4535



EGFR
VL
4536



EGFR
VL
4537



EGFR
VL
4538



EGFR
VL
4539



EGFR
VL
4540



EGFR
VL
4541



EGFR
VL
4542



EGFR
VL
4543



EGFR
VL
4544



EGFR
VL
4545



EGFR
VL
4546



EGFR
VL
4547



EGFR
VL
4548



EGFR
VL
4549



EGFR
VL
4550



EGFR
VL
4551



EGFR
VL
4552



EGFR
VL
4553



EGFR
VL
4554



EGFR
VL
4555



EGFR
VL
4556



EGFR
VL
4557



EGFR
VL
4558



EGFR
VL
4559



EGFR
VL
4560



EGFR
VL
4561



EGFR
VL
4562



EGFR
VL
4563



EGFR
VL
4564



EGFR
VL
4565



EGFR
VL
4566



EGFR
VL
4567



EGFR
VL
4568



EGFR
VL
4569



EGFR
VL
4570



EGFR
VL
4571



EGFR
VL
4572



EGFR
VL
4573



EGFR
VL
4574



EGFR
VL
4575



EGFR
VL
4576



EGFR
VL
4577



EGFR
VL
4578



EGFR
VL
4579



EGFR
VL
4580



EGFR
VL
4581



EGFR
VL
4582



EGFR
VL
4583



EGFR
VL
4584



EGFR
VL
4585



EGFR
VL
4586



EGFR
VL
4587



EGFR
VL
4588



EGFR
VL
4589



EGFR
VL
4590



EGFR
VL
4591



EGFR
VL
4592



EGFR
VL
4593



EGFR
VL
4594



EGFR
VL
4595



EGFR
VL
4596



EGFR
VL
4597



EGFR
VL
4598



EGFR
VL
4599



EGFR
VL
4600



EGFR
VL
4601



EGFR
VL
4602



EGFR
VL
4603



EGFR
VL
4604



EGFR
VL
4605



EGFR
VL
4606



EGFR
VL
4607



EGFR
VL
4608



EGFR
VL
4609



EGFR
VL
4610



EGFR
VL
4611



EGFR
VL
4612



EGFR
VL
4613



EGFR
VL
4614



EGFR
VL
4615



EGFR
VL
4616



EGFR
VL
4617



EGFR
VL
4618



EGFR
VL
4619



EGFR
VL
4620



EGFR
VL
4621



EGFR
VL
4622



EGFR
VL
4623



EGFR
VL
4624



EGFR
VL
4625



EGFR
VL
4626



EGFR
VL
4627



EGFR
VL
4628



EGFR
VL
4629



EGFR
VL
4630



EGFR
VL
4631



EGFR
VL
4632



EGFR
VL
4633



EGFR
VL
4634



EGFR
VL
4635



EGFR
VL
4636



EGFR
VL
4637



EGFR
VL
4638



EGFR
VL
4639



EGFR(EGFRvIII)
VL
4640



EGFR(EGFRvIII)
VL
4641



EGFR(EGFRvIII)
VL
4642



EGFR(EGFRvIII)
VL
4643



EGFR(EGFRvIII)
VL
4644



EGFR(EGFRvIII)
VL
4645



EGFR(EGFRvIII)
VL
4646



EGFR(EGFRvIII)
VL
4647



EGFR(EGFRvIII)
VL
4648



EGFR(EGFRvIII)
VL
4649



EGFR(EGFRvIII)
VL
4650



EGFR(EGFRvIII)
VL
4651



EGFR(EGFRvIII)
VL
4652



EGFR(EGFRvIII)
VL
4653



EGFR(EGFRvIII)
VL
4654



EGFR(EGFRvIII)
VL
4655



EGFR(EGFRvIII)
VL
4656



EGFR(EGFRvIII)
VL
4657



EGFR(EGFRvIII)
VL
4658



EGFRvIII
VL
4659
SEQ ID NO. 14 in WO2016016341


EGFRvIII
VL
4660
SEQ ID NO: 23 in WO2016168773A3


EGFRvIII
VL
4661
SEQ ID NO. 42 in US20160304615


EGFRvIII
VL
4662
SEQ ID NO: 1 in US20160200819A1


Endoglin
VL
4663
SEQ ID NO 103 in WO2011041441


Endoglin
VL
4664
SEQ ID NO 88 in WO2011041441


Endoglin
VL
4665
SEQ ID NO 89 in WO2011041441


Endoglin
VL
4666
SEQ ID NO 90 in WO2011041441


Endoglin
VL
4667
SEQ ID NO 91 in WO2011041441


Endoglin
VL
4668
SEQ ID NO 92 in WO2011041441


Endoglin
VL
4669
SEQ ID NO 93 in WO2011041441


Endoglin
VL
4670
SEQ ID NO 94 in WO2011041441


Endoglin
VL
4671
SEQ ID NO 95 in WO2011041441


Endoglin
VL
4672
SEQ ID NO 96 in WO2011041441


Endoglin
VL
4673
SEQ ID NO 97 in WO2011041441


Endoglin
VL
4674
SEQ ID NO. 102 in WO2011041441


Endoglin
VL
4675
SEQ ID NO. 100 in WO2011041441


Endoglin
VL
4676
SEQ ID NO. 100 in US20160009811


Endoglin
VL
4677
SEQ ID NO. 102 in US20160009811


Endoglin
VL
4678
SEQ ID NO. 103 in US20160009811


Endoglin
VL
4679
SEQ ID NO. 3 in US20160009811


Endoglin
VL
4680
SEQ ID NO. 4 in US20160009811


Endoglin
VL
4681
SEQ ID NO. 5 in US20160009811


Endoglin
VL
4682
SEQ ID NO. 70 in US20160009811


Endoglin
VL
4683
SEQ ID NO. 72 in US20160009811


Endoglin
VL
4684
SEQ ID NO. 74 in US20160009811


Endoglin
VL
4685
SEQ ID NO. 93 in US20160009811


Endoglin
VL
4686
SEQ ID NO. 94 in US20160009811


Endoglin
VL
4687
SEQ ID NO. 95 in US20160009811


Endoglin
VL
4688
SEQ ID NO. 96 in US20160009811


Endoglin
VL
4689
SEQ ID NO. 97 in US20160009811


EphA2receptor
VL
4690
US20150274824 SEQ ID NO: 26


EphA2receptor
VL
4691
US20150274824 SEQ ID NO: 28


EphA2receptor
VL
4692
US20150274824 SEQ ID NO: 30


EphA2receptor
VL
4693
US20150274824 SEQ ID NO: 47


EphA2receptor
VL
4694
US20150274824 SEQ ID NO: 48


EphA2receptor
VL
4695
US20150274824 SEQ ID NO: 49


EphA2receptor
VL
4696
US20150274824 SEQ ID NO: 50


EphA2receptor
VL
4697
US20150274824 SEQ ID NO: 52


EphA2receptor
VL
4698
US20150274824 SEQ ID NO: 78


EphA2receptor
VL
4699
US20150274824 SEQ ID NO: 80


ERBB2
VL
4700
US20110129464 SEQ ID NO: 1


ERBB2
VL
4701
US20130089544 SEQ ID NO: 12


ERBB2
VL
4702
US20130089544 SEQ ID NO: 16


ERBB2
VL
4703
US20130089544 SEQ ID NO: 20


ERBB2
VL
4704
US20130089544 SEQ ID NO: 24


ERBB2
VL
4705
US20130089544 SEQ ID NO: 32


ERBB2
VL
4706
US20130089544 SEQ ID NO: 36


ERBB2
VL
4707
US20130089544 SEQ ID NO: 44


ERBB2
VL
4708
US20130089544 SEQ ID NO: 50


ERBB2
VL
4709
US20130089544 SEQ ID NO: 51


ERBB2
VL
4710
US20130089544 SEQ ID NO: 53


ERBB2
VL
4711
US20130089544 SEQ ID NO: 8


ERBB2
VL
4712
US20130266564 SEQ ID NO: 7


FactorD
VL
4713
SEQ ID NO. 16 in US20160017052


FactorD
VL
4714
SEQ ID NO. 18 in US20160017052


FactorD
VL
4715
SEQ ID NO. 19 in US20160017052


FactorD
VL
4716
SEQ ID NO. 26 in US20160017052


FactorD
VL
4717
SEQ ID NO. 3 in US20160017052


FactorXII
VL
4718
SEQ ID NO. 17 in WO2014089493


FAP
VL
4719
SEQ ID NO. 2 in WO2015118030


FAP
VL
4720
SEQ ID NO. 6 in WO2015118030


FAP
VL
4721
SEQ ID NO. 171 in WO2016120216


FAP
VL
4722
SEQ ID NO. 173 in WO2016120216


FAP
VL
4723
SEQ ID NO: 9 in US20160326265A1


FcRL5(FcReceptorLike5)
VL
4724
SEQ ID NO: 11 WO2016090337


FcRL5(FcReceptorLike5)
VL
4725
SEQ ID NO: 15 WO2016090337


FcRL5(FcReceptorLike5)
VL
4726
SEQ ID NO: 19 WO2016090337


FcRL5(FcReceptorLike5)
VL
4727
SEQ ID NO: 23 WO2016090337


FcRL5(FcReceptorLike5)
VL
4728
SEQ ID NO: 27 WO2016090337


FcRL5(FcReceptorLike5)
VL
4729
SEQ ID NO: 3 WO2016090337


FcRL5(FcReceptorLike5)
VL
4730
SEQ ID NO: 31 WO2016090337


FcRL5(FcReceptorLike5)
VL
4731
SEQ ID NO: 35 WO2016090337


FcRL5(FcReceptorLike5)
VL
4732
SEQ ID NO: 39 WO2016090337


FcRL5(FcReceptorLike5)
VL
4733
SEQ ID NO: 43 WO2016090337


FcRL5(FcReceptorLike5)
VL
4734
SEQ ID NO: 47 WO2016090337


FcRL5(FcReceptorLike5)
VL
4735
SEQ ID NO: 7 WO2016090337


FcRL5(FcReceptorLike5)
VL
4736
SEQ ID NO: 917 WO2016090337


FcRL5(FcReceptorLike5)
VL
4737
SEQ ID NO: 921 WO2016090337


FGFR3
VL
4738
SEQ ID NO. 133 in U.S. Pat. No. 9,499,623


FGFR3
VL
4739
SEQ ID NO. 135 in U.S. Pat. No. 9,499,623


FGFR3
VL
4740
SEQ ID NO. 137 in U.S. Pat. No. 9,499,623


FGFR3
VL
4741
SEQ ID NO. 139 in U.S. Pat. No. 9,499,623


Frizzled Receptor
VL
4742
SEQ ID NO. 12 in WO2010037041


Frizzled Receptor
VL
4743
SEQ ID NO. 14 in WO2010037041


GAH
VL
4744
SEQ ID NO 8 in US20060057147A1


GCC1
VL
4745
SEQ ID NO. 4 in US20160030595A1


GCC1
VL
4746
SEQ ID NO. 2 in US20160030595A1


GD2
VL
4747
SEQ ID NO. 10 in US20130216528


GD2
VL
4748
SEQ ID NO. 11 in WO2015132604


GD2
VL
4749
SEQ ID NO. 12 in WO2015132604


GD2
VL
4750
SEQ ID NO. 18 in WO2016134284


GD2
VL
4751
SEQ ID NO. 2 in US20130216528


GD2
VL
4752
SEQ ID NO. 5 in US20130216528


GD2
VL
4753
SEQ ID NO. 7 in US20130216528


GD2
VL
4754
SEQ ID NO. 9 in US20130216528


GD3
VL
4755
SEQ ID NO: 12 in WO2016185035A1


GD3
VL
4756
SEQ ID NO: 14 in WO2016185035A1


GD3
VL
4757
SEQ ID NO: 16 in WO2016185035A1


GD3
VL
4758
SEQ ID NO: 18 in WO2016185035A1


Glycol epitope and ErbB Bi
VL
4759
SEQ ID No. 10 in WO2012007167A1


Specific





GM2
VL
4760
US20090028877 SEQ ID NO: 21


GM2
VL
4761
US20090028877 SEQ ID NO: 24


GM2
VL
4762
US20090028877 SEQ ID NO: 25


GM2
VL
4763
US20090028877 SEQ ID NO: 31


GM2
VL
4764
US20090028877 SEQ ID NO: 32


GM2
VL
4765
US20090028877 SEQ ID NO: 33


GM2
VL
4766
US20090028877 SEQ ID NO: 34


GM2
VL
4767
US20090028877 SEQ ID NO: 35


GPC3
VL
4768
SEQ ID NO: 10 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4769
SEQ ID NO: 14 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4770
SEQ ID NO: 16 in US20160208015A1


GPC3
VL
4771
SEQ ID NO: 18 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4772
SEQ ID NO: 22 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4773
SEQ ID NO: 24 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4774
SEQ ID NO: 26 in U.S. Pat. No. 9,409,994B2


GPC3
VL
4775
SEQ ID NO: 31 in US20160208015A1


GPRC5D
VL
4776
SEQ ID NO. 10 in WO2016090312


GPRC5D
VL
4777
SEQ ID NO. 14 in WO2016090312


GPRC5D
VL
4778
SEQ ID NO. 18 in WO2016090312


GPRC5D
VL
4779
SEQ ID NO. 2 in WO2016090312


GPRC5D
VL
4780
SEQ ID NO. 22 in WO2016090312


GPRC5D
VL
4781
SEQ ID NO. 26 in WO2016090312


GPRC5D
VL
4782
SEQ ID NO. 30 in WO2016090312


GPRC5D
VL
4783
SEQ ID NO. 303 in WO2016090312


GPRC5D
VL
4784
SEQ ID NO. 315 in WO2016090312


GPRC5D
VL
4785
SEQ ID NO. 327 in WO2016090312


GPRC5D
VL
4786
SEQ ID NO. 339 in WO2016090312


GPRC5D
VL
4787
SEQ ID NO. 34 in WO2016090312


GPRC5D
VL
4788
SEQ ID NO. 351 in WO2016090312


GPRC5D
VL
4789
SEQ ID NO. 363 in WO2016090312


GPRC5D
VL
4790
SEQ ID NO. 375 in WO2016090312


GPRC5D
VL
4791
SEQ ID NO. 38 in WO2016090312


GPRC5D
VL
4792
SEQ ID NO. 387 in WO2016090312


GPRC5D
VL
4793
SEQ ID NO. 42 in WO2016090312


GPRC5D
VL
4794
SEQ ID NO. 46 in WO2016090312


GPRC5D
VL
4795
SEQ ID NO. 50 in WO2016090312


GPRC5D
VL
4796
SEQ ID NO. 54 in WO2016090312


GPRC5D
VL
4797
SEQ ID NO. 58 in WO2016090312


GPRC5D
VL
4798
SEQ ID NO. 6 in WO2016090312


GPRC5D
VL
4799
SEQ ID NO. 62 in WO2016090312


GPRC5D
VL
4800
SEQ ID NO. 66 in WO2016090312


GPRC5D
VL
4801
SEQ ID NO. 70 in WO2016090312


GPRC5D
VL
4802
SEQ ID NO. 74 in WO2016090312


GPRC5D
VL
4803
SEQ ID NO. 78 in WO2016090312


GPRC5D
VL
4804
SEQ ID NO. 82 in WO2016090312


GPRC5D
VL
4805
SEQ ID NO. 86 in WO2016090312


GPRC5D
VL
4806
SEQ ID NO. 94 in WO2016090312


Her1/her3
VL
4807
SEQ ID NO: 4 of WO2016073629


Her2
VL
4808
SEQ ID NO: 140 in WO2016054555A2


Her2
VL
4809
SEQ ID NO: 261 in WO2016168773A3


Her2
VL
4810
SEQ ID NO: 263 in WO2016168773A3


Her2
VL
4811
SEQ ID NO: 265 in WO2016168773A3


Her2
VL
4812
SEQ ID NO: 267 in WO2016168773A3


Her2
VL
4813
SEQ ID NO: 269 in WO2016168773A3


HER2
VL
4814
SEQ ID NO. 10 in U.S. Pat. No. 9,518,118


HER2
VL
4815
SEQ ID NO. 18 in U.S. Pat. No. 9,518,118


HER2
VL
4816
SEQ ID NO. 23 in U.S. Pat. No. 9,518,118


HER2
VL
4817
SEQ ID NO: 3 in WO2016168769A1


HER2
VL
4818
SEQ ID NO: 59 in US20160333114A1


HER2
VL
4819
SEQ ID NO: 61 in US20160333114A1


HLAG
VL
4820
SEQ ID NO. 18 in WO2016160622A2


HLAG
VL
4821
SEQ ID NO. 20 in WO2016160622A2


HSP70
VL
4822
SEQ ID NO. 16 in WO2016120217


HSP70
VL
4823
SEQ ID NO. 17 in WO2016120217


humanCD79b
VL
4824
SEQ ID NO. 28 in WO2016112870


humanCD79b
VL
4825
SEQ ID NO. 30 in WO2016112870


Human collagen VII
VL
4826
SEQ ID NO. 32 in WO2016112870


humanERBB3
VL
4827
SEQ ID NO: 10 in WO2013052745


humanERBB3
VL
4828
SEQ ID NO: 20 in WO2013052745


humanERBB3
VL
4829
SEQ ID NO: 30 in WO2013052745


humanERBB3
VL
4830
SEQ ID NO: 39 in WO2013052745


humanERBB3
VL
4831
SEQ ID NO: 46 in WO2013052745


humanERBB3
VL
4832
SEQ ID NO: 56 in WO2013052745


humanERBB3
VL
4833
SEQ ID NO: 62 in WO2013052745


ICOS
VL
4834
SEQ ID NO. 17 in US20160215059


ICOS
VL
4835
SEQ ID NO. 18 in US20160215059


ICOS
VL
4836
SEQ ID NO. 20 in US20160215059


ICOS
VL
4837
SEQ ID NO. 24 in US20160215059


ICOS
VL
4838
SEQ ID NO. 8 in US20160215059


IGFI
VL
4839
SEQ ID NO. 2 in WO2007118214


IGFI
VL
4840
SEQ ID NO. 4 in WO2007118214


IGFI
VL
4841
SEQ ID NO. 6 in WO2007118214


IGFI
VL
4842
SEQ ID NO. 8 in WO2007118214


IGFR1
VL
4843
SEQ ID NO: 8 in WO2015073575A2


IL13
VL
4844
SEQ ID NO 303. in US20160168242


IL1RAP
VL
4845
SEQ ID NO. 14 in WO2016020502


IL1RAP
VL
4846
SEQ ID NO. 15 in WO2016020502


IL1RAP
VL
4847
SEQ ID NO. 17 in WO2016020502


IL1RAP
VL
4848
SEQ ID NO. 18 in WO2016020502


IL1RAP
VL
4849
SEQ ID NO. 2 in WO2016020502


IL1RAP
VL
4850
SEQ ID NO. 20 in WO2016020502


IL1RAP
VL
4851
SEQ ID NO: 121 in WO2016179319A1


IL1RAP
VL
4852
SEQ ID NO: 123 in WO2016179319A1


IL1RAP
VL
4853
SEQ ID NO: 125 in WO2016179319A1


IL33
VL
4854
SEQ ID NO 135. in US20160168242


IL33
VL
4855
SEQ ID NO 137. in US20160168242


IL33
VL
4856
SEQ ID NO 139. in US20160168242


IL33
VL
4857
SEQ ID NO 184. in US20160168242


IL33
VL
4858
SEQ ID NO 188. in US20160168242


IL33
VL
4859
SEQ ID NO 217. in US20160168242


IL33
VL
4860
SEQ ID NO 219. in US20160168242


IL33
VL
4861
SEQ ID NO 237. in US20160168242


IL33
VL
4862
SEQ ID NO 247. in US20160168242


IL33
VL
4863
SEQ ID NO 283. in US20160168242


IL33
VL
4864
SEQ ID NO 285. in US20160168242


IL33
VL
4865
SEQ ID NO 287. in US20160168242


IL33
VL
4866
SEQ ID NO 37. in US20160168242


IL33
VL
4867
SEQ ID NO 39. in US20160168242


IL33
VL
4868
SEQ ID NO 41. in US20160168242


IL33
VL
4869
SEQ ID NO 87. in US20160168242


IL3alpha
VL
4870
SEQ ID NO. 27 in WO2008127735


IL3alpha
VL
4871
SEQ ID NO. 37 in WO2008127735


Integrin
VL
4872
SEQ ID NO. 10 in US 20140161794


Integrin
VL
4873
SEQ ID NO. 11 in US 20140161794


Integrin
VL
4874
SEQ ID NO. 8 in US 20140161794


Integrin
VL
4875
SEQ ID NO. 9 in US 20140161794


KDR
VL
4876
SEQ ID NO. 22 IN WO2003075840


KIR(Lirilumab)
VL
4877
SEQ ID NO. 5 in US20150290316


KIR(Lirilumab)
VL
4878
SEQ ID NO. 2 in WO2014055648


KIR2DL1andKIR2DL2/3
VL
4879
SEQ ID NO: 37 in WO2016126213A1


Klon43
VL
4880
SEQ ID NO: 48 in WO2016097231


KMA
VL
4881
SEQ ID NO: 2 in WO2016172703A2


KMA
VL
4882
SEQ ID NO: 21 in WO2016172703A2


LAG3
VL
4883
SEQ ID NO. 32 in US20150259420


LAG3
VL
4884
SEQ ID NO. 36 in US20150259420


LAG3
VL
4885
SEQ ID NO. 40 in US20150259420


LAG3
VL
4886
SEQ ID NO. 44 in US20150259420


LAG3
VL
4887
SEQ ID NO. 48 in US20150259420


LAG3
VL
4888
SEQ ID NO. 52 in US20150259420


LAG3
VL
4889
SEQ ID NO. 56 in US20150259420


LAG3
VL
4890
SEQ ID NO. 60 in US20150259420


LAG3
VL
4891
SEQ ID NO. 84 in US20150259420


LAG3
VL
4892
SEQ ID NO. 88 in US20150259420


LAG3
VL
4893
SEQ ID NO. 92 in US20150259420


LAG3
VL
4894
SEQ ID NO. 96 in US20150259420


LAG3
VL
4895
SEQ ID NO. 134 in US20150259420


LAG3
VL
4896
SEQ ID NO. 34 in US20150259420


LAG3
VL
4897
SEQ ID NO. 38 in US20150259420


LAG3
VL
4898
SEQ ID NO. 42 in US20150259420


LAG3
VL
4899
SEQ ID NO. 46 in US20150259420


LAG3
VL
4900
SEQ ID NO. 50 in US20150259420


LAG3
VL
4901
SEQ ID NO. 54 in US20150259420


LAG3
VL
4902
SEQ ID NO. 58 in US20150259420


LAG3
VL
4903
SEQ ID NO. 62 in US20150259420


LAG3
VL
4904
SEQ ID NO. 86 in US20150259420


LAG3
VL
4905
SEQ ID NO. 90 in US20150259420


LAG3
VL
4906
SEQ ID NO. 94 in US20150259420


LAG3
VL
4907
SEQ ID NO. 98 in US20150259420


LAG3
VL
4908
SEQ ID NO. 2 in WO2015042246


leukocytegenA1
VL
4909
SEQ ID NO. 24 in WO2010065962A2


LGR4
VL
4910
SEQ ID NO. 10 in US20160046723


LGR4
VL
4911
SEQ ID NO. 11 in US20160046723


LGR4
VL
4912
SEQ ID NO. 6 in US20160046723


LGR5
VL
4913
SEQ ID NO. 15 in US20160102146


LGR5
VL
4914
SEQ ID NO. 19 in US20160102146


LGR5
VL
4915
SEQ ID NO. 21 in US20160102146


LGR5
VL
4916
SEQ ID NO. 23 in US20160102146


LGR5
VL
4917
SEQ ID NO. 25 in US20160102146


LGR5
VL
4918
SEQ ID NO. 3 in US20160102146


1L4R
VL
4919
SEQ ID NO. 13 in WO2009121847


1L4R
VL
4920
SEQ ID NO. 7 in WO2009121847


1L4R
VL
4921
SEQ ID NO. 8 in WO2009121847


Lymphotoxin beta receptor
VL
4922
SEQ ID NO. 1 in WO2004002431


Lymphotoxin beta receptor
VL
4923
SEQ ID NO. 15 in WO2004002431


Lymphotoxin beta receptor
VL
4924
SEQ ID NO. 4 in WO2004002431


Lymphotoxin beta receptor
VL
4925
SEQ ID NO. 6 in WO2004002431


Lymphotoxin beta receptor
VL
4926
SEQ ID NO. 8 in WO2004002431


Lysyloxidaselike2
VL
4927
SEQ ID NO. 43 in WO2011097513


Lysyloxidaselike2
VL
4928
SEQ ID NO. 45 in WO2011097513


MCAM
VL
4929
SEQ ID NO. 109 in US20150259419


MCAM
VL
4930
SEQ ID NO. 110 in US20150259419


MCAM
VL
4931
SEQ ID NO. 111 in US20150259419


MCAM
VL
4932
SEQ ID NO. 112 in US20150259419


MCAM
VL
4933
SEQ ID NO. 121 in US20150259419


MCAM
VL
4934
SEQ ID NO. 122 in US20150259419


MCAM
VL
4935
SEQ ID NO. 123 in US20150259419


MCAM
VL
4936
SEQ ID NO. 30 in US20150239980


MCAM
VL
4937
SEQ ID NO. 40 in US20150239980


MCAM
VL
4938
SEQ ID NO. 50 in US20150239980


MCAM
VL
4939
SEQ ID NO. 60 in US20150239980


MCAM
VL
4940
SEQ ID NO. 70 in US20150239980


MCAM
VL
4941
SEQ ID NO. 71 in US20150239980


MCAM
VL
4942
SEQ ID NO. 72 in US20150239980


MCSF
VL
4943
SEQ ID NO: 8 in WO2005030124


MCSF
VL
4944
SEQ ID NO 32 in WO2005030124


MCSF
VL
4945
SEQ ID NO 52 in WO2005030124


MCSF
VL
4946
SEQ ID NO 60 in WO2005030124


MCSF
VL
4947
SEQ ID NO 28 in WO2005030124


MCSF
VL
4948
SEQ ID NO 36 in WO2005030124


MCSF
VL
4949
SEQ ID NO 4 in WO2005030124


MCSF
VL
4950
SEQ ID NO 44 in WO2005030124


MCSF
VL
4951
SEQ ID NO 48 in WO2005030124


MCSF
VL
4952
SEQ ID NO 56 in WO2005030124


MCSF
VL
4953
SEQ ID NO 62 in WO2005030124


MCSF
VL
4954
SEQ ID NO: 12 in WO2005030124


MCSF
VL
4955
SEQ ID NO: 16 in WO2005030124


MCSF
VL
4956
SEQ ID NO: 20 in WO2005030124


MCSF
VL
4957
SEQ ID NO: 24 in WO2005030124


Mesothelin
VL
4958
SEQ ID NO. 3 WO2015188141


Mesothelin
VL
4959
SEQ ID NO. 5 WO2015188141


Mesothelin
VL
4960
SEQ ID NO: 1 in WO2013142034


Mesothelin
VL
4961
SEQ ID NO: 11 in US20160229919A1


Mesothelin
VL
4962
SEQ ID NO: 120 in US20160333114A1


Mesothelin
VL
4963
SEQ ID NO: 15 in US20160229919A1


Mesothelin
VL
4964
SEQ ID NO: 19 in US20160229919A1


Mesothelin
VL
4965
SEQ ID NO: 2 in WO2013142034


Mesothelin
VL
4966
SEQ ID NO: 23 in US20160229919A1


Mesothelin
VL
4967
SEQ ID NO: 27 in US20160229919A1


Mesothelin
VL
4968
SEQ ID NO: 3 in WO2013142034


Mesothelin
VL
4969
SEQ ID NO: 47 in US20160333114A1


Mesothelin
VL
4970
SEQ ID NO: 49 in US20160333114A1


MN
VL
4971
SEQ ID NO. 134 in WO2007070538


MN
VL
4972
SEQ ID NO. 136 in WO2007070538


MN
VL
4973
SEQ ID NO. 138 in WO2007070538


MN
VL
4974
SEQ ID NO. 140 in WO2007070538


MN
VL
4975
SEQ ID NO. 142 in WO2007070538


MN
VL
4976
SEQ ID NO. 144 in WO2007070538


MN
VL
4977
SEQ ID NO. 146 in WO2007070538


MN
VL
4978
SEQ ID NO. 148 in WO2007070538


MN
VL
4979
SEQ ID NO. 150 in WO2007070538


MN
VL
4980
SEQ ID NO. 152 in WO2007070538


MPER
VL
4981
SEQ ID NO: 12 in US20160194375A1


MUC1
VL
4982
SEQ ID NO. 7 in US20160130357


MUC1
VL
4983
SEQ ID NO: 16 in WO2013023162


MUC1
VL
4984
SEQ ID NO: 7 in WO2013023162


MUC1
VL
4985
SEQ ID NO. 17 in WO2015116753


MUC1
VL
4986
SEQ ID NO. 21 in WO2015116753


MUC1
VL
4987
SEQ ID NO. 25 in WO2015116753


MUC1
VL
4988
SEQ ID NO. 62 in WO2015116753


MUC1
VL
4989
SEQ ID NO. 66 in WO2015116753


MUC1
VL
4990
SEQ ID NO. 70 in WO2015116753


MUC16
VL
4991
SEQ ID NO. 2 in WO2016149368


MUC16
VL
4992
SEQ ID NO. 22 in WO2016149368


MUC16
VL
4993
SEQ ID NO. 42 in WO2016149368


MUC16
VL
4994
SEQ ID NO. 62 in WO2016149368


MUC16
VL
4995
SEQ ID NO. 82 in WO2016149368


MUC1C/ECD
VL
4996
SEQ ID NO: 17 in US20160340442A1


MUC1C/ECD
VL
4997
SEQ ID NO: 21 in US20160340442A1


MUC1C/ECD
VL
4998
SEQ ID NO: 25 in US20160340442A1


MUC1C/ECD
VL
4999
SEQ ID NO: 62 in US20160340442A1


MUC1C/ECD
VL
5000
SEQ ID NO: 66 in US20160340442A1


MUC1C/ECD
VL
5001
SEQ ID NO: 70 in US20160340442A1


MUC1C/ECD
VL
5002
SEQ ID NO: 75 in US20160340442A1


MUCIN1
VL
5003
SEQ ID NO: 148 in EP3049812A2


MUCIN1
VL
5004
SEQ ID NO: 158 in EP3049812A2


MUCIN1
VL
5005
SEQ ID NO: 162 in EP3049812A2


MUCIN1
VL
5006
SEQ ID NO: 167 in EP3049812A2


MUCIN1
VL
5007
SEQ ID NO: 170 in EP3049812A2


MUCIN1
VL
5008
SEQ ID NO: 174 in EP3049812A2


MUCIN1
VL
5009
SEQ ID NO: 184 in EP3049812A2


MUCIN1
VL
5010
SEQ ID NO: 190 in EP3049812A2


MUCIN1
VL
5011
SEQ ID NO: 193 in EP3049812A2


MUCIN1
VL
5012
SEQ ID NO: 203 in EP3049812A2


MUCIN1
VL
5013
SEQ ID NO: 208 in EP3049812A2


MUCIN1
VL
5014
SEQ ID NO: 211 in EP3049812A2


MUCIN1
VL
5015
SEQ ID NO: 220 in EP3049812A2


MUCIN1
VL
5016
SEQ ID NO: 225 in EP3049812A2


MUCIN1
VL
5017
SEQ ID NO: 229 in EP3049812A2


MUCIN1
VL
5018
SEQ ID NO: 234 in EP3049812A2


MUCIN1
VL
5019
SEQ ID NO: 242 in EP3049812A2


MUCIN1
VL
5020
SEQ ID NO: 246 in EP3049812A2


MUCIN1
VL
5021
SEQ ID NO: 250 in EP3049812A2


MUCIN1
VL
5022
SEQ ID NO: 255 in EP3049812A2


MUCIN1
VL
5023
SEQ ID NO: 261 in EP3049812A2


MUCIN1
VL
5024
SEQ ID NO: 270 in EP3049812A2


MUCIN1
VL
5025
SEQ ID NO: 275 in EP3049812A2


MUCIN1
VL
5026
SEQ ID NO: 279 in EP3049812A2


MUCIN1
VL
5027
SEQ ID NO: 283 in EP3049812A2


MUCIN1
VL
5028
SEQ ID NO: 291 in EP3049812A2


MUCIN1
VL
5029
SEQ ID NO: 297 in EP3049812A2


MUCIN1
VL
5030
SEQ ID NO: 303 in EP3049812A2


MUCIN1
VL
5031
SEQ ID NO: 308 in EP3049812A2


MUCIN1
VL
5032
SEQ ID NO: 315 in EP3049812A2


MUCIN1
VL
5033
SEQ ID NO: 319 in EP3049812A2


MUCIN1
VL
5034
SEQ ID NO: 323 in EP3049812A2


MUCIN1
VL
5035
SEQ ID NO: 333 in EP3049812A2


MUCIN1
VL
5036
SEQ ID NO: 340 in EP3049812A2


MVR
VL
5037
SEQ ID NO: 5 in US20160257762A1


N Glycan
VL
5038
SEQ ID NO: 6 in US20160194375A1


N Glycan
VL
5039
SEQ ID NO: 8 in US20160194375A1


NKG2A
VL
5040
SEQ ID NO: 33 in WO2016126213A1


NKG2A
VL
5041
SEQ ID NO. 7 in WO2016041947


NKG2D
VL
5042
SEQ ID NO. 134 in WO2016122701


NKG2D
VL
5043
SEQ ID NO. 136 in WO2016122701


NOTCH1
VL
5044
SEQ ID NO: 16 in WO2013074596


NOTCH1
VL
5045
SEQ ID NO: 20 in WO2013074596


NOTCH2/3
VL
5046
SEQ ID NO: 31 in WO2013074596


Notch 1
VL
5047
SEQ ID NO: 55 in US20160333114A1


Notch 1
VL
5048
SEQ ID NO: 57 in US20160333114A1


Notum
VL
5049
SEQ ID NO: 332 in WO2012027723


Notum
VL
5050
SEQ ID NO: 58 in WO2012027723


NYBR1
VL
5051
SEQ ID NO: 18 in US20160333422A1


Olfml3
VL
5052
SEQ ID NO. 2 in WO2015054441A1


Olfml3
VL
5053
SEQ ID NO. 20 in WO2015054441A1


Olfml3
VL
5054
SEQ ID NO. 4 in WO2015054441A1


Oncofetal fibronectin
VL
5055
SEQ ID NO 1 in US20070202103A1


Oncofetal fibronectin
VL
5056
SEQ ID NO 2 in US20070202103A1


Oncofetal fibronectin
VL
5057
SEQ ID NO 7 in US20070202103A1


Osteonectin
VL
5058
SEQ ID NO. 59 in WO2016112870


OTK3
VL
5059
SEQ ID NO. 18 in WO2015158868


OX40
VL
5060
SEQ ID NO. 10 in U.S. Pat. No. 8,283,450


OX40
VL
5061
SEQ ID NO. 11 in U.S. Pat. No. 9,428,570


OX40
VL
5062
SEQ ID NO. 116 in WO2016196228


OX40
VL
5063
SEQ ID NO. 120 in WO2016196228


OX40
VL
5064
SEQ ID NO. 122 in WO2016196228


OX40
VL
5065
SEQ ID NO. 24 in U.S. Pat. No. 8,748,585


OX40
VL
5066
SEQ ID NO. 26 in U.S. Pat. No. 8,748,585


OX40
VL
5067
SEQ ID NO. 27 in U.S. Pat. No. 8,748,585


OX40
VL
5068
SEQ ID NO. 28 in U.S. Pat. No. 8,748,585


OX40
VL
5069
SEQ ID NO. 30 in US20160137740


OX40
VL
5070
SEQ ID NO. 30 in U.S. Pat. No. 8,748,585


OX40
VL
5071
SEQ ID NO. 30 in WO2016196228


OX40
VL
5072
SEQ ID NO. 32 in US20150190506


OX40
VL
5073
SEQ ID NO. 32 in US20160137740


OX40
VL
5074
SEQ ID NO. 35 in US20150190506


OX40
VL
5075
SEQ ID NO. 38 in WO2016196228


OX40
VL
5076
SEQ ID NO. 39 in US20150190506


OX40
VL
5077
SEQ ID NO. 41 in US20150190506


OX40
VL
5078
SEQ ID NO. 43 in US20150190506


OX40
VL
5079
SEQ ID NO. 45 in US20150190506


OX40
VL
5080
SEQ ID NO. 45 in U.S. Pat. No. 8,283,450


OX40
VL
5081
SEQ ID NO. 47 in US20150190506


OX40
VL
5082
SEQ ID NO. 47 in U.S. Pat. No. 8,283,450


OX40
VL
5083
SEQ ID NO. 49 in US20150190506


OX40
VL
5084
SEQ ID NO. 49 in U.S. Pat. No. 8,283,450


OX40
VL
5085
SEQ ID NO. 49 in WO2016196228


OX40
VL
5086
SEQ ID NO. 51 in US20150190506


OX40
VL
5087
SEQ ID NO. 52 in US20150190506


OX40
VL
5088
SEQ ID NO. 56 in US20150190506


OX40
VL
5089
SEQ ID NO. 57 in US20150190506


OX40
VL
5090
SEQ ID NO. 57 in WO2016196228


OX40
VL
5091
SEQ ID NO. 60 in U.S. Pat. No. 8,748,585


OX40
VL
5092
SEQ ID NO. 62 in US20150190506


OX40
VL
5093
SEQ ID NO. 65 in WO2016196228


OX40
VL
5094
SEQ ID NO. 7 in U.S. Pat. No. 9,428,570


OX40
VL
5095
SEQ ID NO. 73 in WO2016196228


OX40
VL
5096
SEQ ID NO. 8 in U.S. Pat. No. 8,283,450


OX40
VL
5097
SEQ ID NO. 8 in U.S. Pat. No. 8,748,585


OX40
VL
5098
SEQ ID NO. 81 in U.S. Pat. No. 8,748,585


OX40
VL
5099
SEQ ID NO. 82 in U.S. Pat. No. 8,748,585


OX40
VL
5100
SEQ ID NO. 83 in U.S. Pat. No. 8,748,585


OX40
VL
5101
SEQ ID NO. 84 in U.S. Pat. No. 8,748,585


OX40
VL
5102
SEQ ID NO. 84 in WO2016196228


OX40
VL
5103
SEQ ID NO. 85 in U.S. Pat. No. 8,748,585


OX40
VL
5104
SEQ ID NO. 86 in U.S. Pat. No. 8,748,585


OX40
VL
5105
SEQ ID NO. 86 in WO2016196228


OX40
VL
5106
SEQ ID NO. 87 in U.S. Pat. No. 8,748,585


OX40
VL
5107
SEQ ID NO. 88 in U.S. Pat. No. 8,748,585


OX40
VL
5108
SEQ ID NO. 89 in U.S. Pat. No. 8,748,585


OX40
VL
5109
SEQ ID NO. 94 in WO2016196228


OX40
VL
5110
SEQ ID NO. 98 in WO2016196228


PD1
VL
5111
SEQ ID NO. 2 in US 20160159905


PD1
VL
5112
SEQ ID NO. 21 in US20150290316


PD1
VL
5113
SEQ ID NO. 30 in US20130291136


PD1
VL
5114
SEQ ID NO. 31 in US20130291136


PD1
VL
5115
SEQ ID NO. 32 in US20130291136


PD1
VL
5116
SEQ ID NO. 33 in US20130291136


PD1
VL
5117
SEQ ID NO. 39 in US 20160159905


PD1
VL
5118
SEQ ID NO. 42 in WO2015112900


PD1
VL
5119
SEQ ID NO. 46 in WO2015112900


PD1
VL
5120
SEQ ID NO. 54 in WO2015112900


PD1
VL
5121
SEQ ID NO. 58 in WO2015112900


PD1
VL
5122
SEQ ID NO. 62 in WO2015112900


PD1
VL
5123
SEQ ID NO. 66 in WO2015112900


PD1
VL
5124
SEQ ID NO. 7 in US 20160159905


PD1
VL
5125
SEQ ID NO. 70 in WO2015112900


PD1
VL
5126
SEQ ID NO. 74 in WO2015112900


PD1
VL
5127
SEQ ID NO. 78 in WO2015112900


PD1
VL
5128
SEQ ID NO. 8 in US 20160159905


PD1
VL
5129
SEQ ID NO. 9 in US 20160159905


PD1
VL
5130
SEQ ID NO. 18 in WO2014055648


PD1(Nivolumab)
VL
5131
SEQ ID NO. 11 in US20150190506


PD1(Pembrolizumab)
VL
5132
SEQ ID NO. 5 in WO2016040892


PD1(Pembrolizumab)
VL
5133
SEQ ID NO. 13 in US20150190506


PDK1
VL
5134
SEQ ID NO. 9 in WO2016090365


PDL1
VL
5135
SEQ ID NO. 22 in WO2016061142


PDL1
VL
5136
SEQ ID NO. 26 in WO2016061142


PDL1
VL
5137
SEQ ID NO. 30 in US20150190506


PDL1
VL
5138
SEQ ID NO. 34 in WO2016061142


PDL1
VL
5139
SEQ ID NO. 42 in WO2016061142


PDL1
VL
5140
SEQ ID NO. 58 in WO2016061142


PDL1
VL
5141
SEQ ID NO. 66 in WO2016061142


PDL1
VL
5142
SEQ ID NO. 7 in US20160319022


PDL1
VL
5143
SEQ ID NO. 74 in WO2016061142


PDL1
VL
5144
SEQ ID NO. 8 in US20150190506


PDL1
VL
5145
SEQ ID NO. 82 in WO2016061142


PDL1
VL
5146
SEQ ID NO. 86 in WO2016061142


PDL1
VL
5147
SEQ ID NO. 9 in US20150190506


PDL1
VL
5148
SEQ ID NO. 9 in US20160319022


PDL1
VL
5149
US20160108123 SEQ ID NO: 17


PDL1
VL
5150
US20160108123 SEQ ID NO: 22


PDL1
VL
5151
US20160108123 SEQ ID NO: 24


PDL1
VL
5152
US20160108123 SEQ ID NO: 249


PDL1
VL
5153
US20160108123 SEQ ID NO: 26


PDL1
VL
5154
US20160108123 SEQ ID NO: 28


PDL1
VL
5155
US20160108123 SEQ ID NO: 309


PDL1
VL
5156
US20160108123 SEQ ID NO: 311


PDL1
VL
5157
US20160108123 SEQ ID NO: 313


PDL1
VL
5158
US20160108123 SEQ ID NO: 320


PDL1
VL
5159
US20160108123 SEQ ID NO: 325


PDL1
VL
5160
US20160108123 SEQ ID NO: 34


PDL1
VL
5161
US20160108123 SEQ ID NO: 340


PDL1
VL
5162
US20160108123 SEQ ID NO: 357


PDL1
VL
5163
US20160108123 SEQ ID NO: 359


PDL1
VL
5164
US20160108123 SEQ ID NO: 36


PDL1
VL
5165
US20160108123 SEQ ID NO: 42


PDL1
VL
5166
US20160108123 SEQ ID NO: 44


PDL1
VL
5167
US20160108123 SEQ ID NO: 58


PDL1
VL
5168
US20160108123 SEQ ID NO: 60


PDL1
VL
5169
US20160108123 SEQ ID NO: 66


PDL1
VL
5170
US20160108123 SEQ ID NO: 68


PDL1
VL
5171
US20160108123 SEQ ID NO: 74


PDL1
VL
5172
US20160108123 SEQ ID NO: 76


PDL1
VL
5173
US20160108123 SEQ ID NO: 8


PDL1
VL
5174
US20160108123 SEQ ID NO: 82


PDL1
VL
5175
US20160108123 SEQ ID NO: 84


PDL1
VL
5176
US20160108123 SEQ ID NO: 86


PDL1
VL
5177
US20160108123 SEQ ID NO: 88


PDL2
VL
5178
SEQ ID NO. 47 in US20130291136


PDL2
VL
5179
SEQ ID NO. 48 in US20130291136


PDL2
VL
5180
SEQ ID NO. 49 in US20130291136


PDL2
VL
5181
SEQ ID NO. 50 in US20130291136


PDL2
VL
5182
SEQ ID NO. 51 in US20130291136


PG16
VL
5183
SEQ ID NO: 12 in EP3074419A2


PG9
VL
5184
SEQ ID NO: 10 in EP3074419A2


PGT2
VL
5185
SEQ ID NO: 16 in EP3074419A2


PGT3
VL
5186
SEQ ID NO: 18 in EP3074419A2


PGT4
VL
5187
SEQ ID NO: 20 in EP3074419A2


PGT5
VL
5188
SEQ ID NO: 22 in EP3074419A2


PRAME
VL
5189
SEQ ID NO: 49 in WO2016191246A2


PRAME
VL
5190
SEQ ID NO: 51 in WO2016191246A2


PRAME
VL
5191
SEQ ID NO: 53 in WO2016191246A2


PRAME
VL
5192
SEQ ID NO: 55 in WO2016191246A2


PRAME
VL
5193
SEQ ID NO: 57 in WO2016191246A2


PRAME
VL
5194
SEQ ID NO: 59 in WO2016191246A2


PRAME
VL
5195
SEQ ID NO: 61 in WO2016191246A2


PRP
VL
5196
SEQ ID NO: 39 in US20160333114A1


PRP
VL
5197
SEQ ID NO: 41 in US20160333114A1


PSMA
VL
5198
SEQ ID NO: 44 in WO2016097231


PTK7
VL
5199
SEQ ID NO. 20 in WO2012112943A1


PTK7
VL
5200
SEQ ID NO. 22 in WO2012112943A1


PTK7
VL
5201
SEQ ID NO. 24 in WO2012112943A1


PTK7
VL
5202
SEQ ID NO. 26 in WO2012112943A1


PTK7
VL
5203
SEQ ID NO. 28 in WO2012112943A1


PTK7
VL
5204
SEQ ID NO. 30 in WO2012112943A1


PTK7
VL
5205
SEQ ID NO. 32 in WO2012112943A1


PTK7
VL
5206
SEQ ID NO. 34 in WO2012112943A1


PTK7
VL
5207
SEQ ID NO. 36 in WO2012112943A1


PTK7
VL
5208
SEQ ID NO. 38 in WO2012112943A1


PTK7
VL
5209
SEQ ID NO. 40 in WO2012112943A1


PTK7
VL
5210
SEQ ID NO. 42 in WO2012112943A1


PTK7
VL
5211
SEQ ID NO. 44 in WO2012112943A1


PTK7
VL
5212
SEQ ID NO. 46 in WO2012112943A1


PTK7
VL
5213
SEQ ID NO. 48 in WO2012112943A1


PTK7
VL
5214
SEQ ID NO. 50 in WO2012112943A1


PTK7
VL
5215
SEQ ID NO. 52 in WO2012112943A1


PTK7
VL
5216
SEQ ID NO. 54 in WO2012112943A1


PTK7
VL
5217
SEQ ID NO. 56 in WO2012112943A1


PTK7
VL
5218
SEQ ID NO. 58 in WO2012112943A1


PTK7
VL
5219
SEQ ID NO. 60 in WO2012112943A1


PTK7
VL
5220
SEQ ID NO. 62 in WO2012112943A1


PTK7
VL
5221
SEQ ID NO. 64 in WO2012112943A1


PTK7
VL
5222
SEQ ID NO. 66 in WO2012112943A1


PTK7
VL
5223
SEQ ID NO. 68 in WO2012112943A1


PTK7
VL
5224
SEQ ID NO. 15 in US20150315293


PTK7
VL
5225
SEQ ID NO. 39 in US20150315293


PTK7
VL
5226
SEQ ID NO. 63 in US20150315293


RAS
VL
5227
SEQ ID NO. 19 in WO2016154047


RAS
VL
5228
SEQ ID NO. 49 in WO2016154047


RAS
VL
5229
SEQ ID NO. 59 in WO2016154047


RAS
VL
5230
SEQ ID NO. 69 in WO2016154047


RAS
VL
5231
SEQ ID NO. 79 in WO2016154047


RAS
VL
5232
SEQ ID NO. 9 in WO2016154047


RHAMM antagonist body
VL
5233
SEQ ID NO 4 in WO2000029447


light chain





Rituximab
VL
5234
SEQ ID NO: 63 in US20160333114A1


Rituximab
VL
5235
SEQ ID NO: 65 in US20160333114A1


ROR1
VL
5236
SEQ ID NO. 16 WO2016016343A1


ROR1
VL
5237
SEQ ID NO. 24 WO2016016343A1


ROR1
VL
5238
SEQ ID NO. 32 WO2016016343A1


ROR1
VL
5239
SEQ ID NO. 40 WO2016016343A1


ROR1
VL
5240
SEQ ID NO. 56 WO2016016343A1


ROR1
VL
5241
SEQ ID NO. 64 WO2016016343A1


ROR1
VL
5242
SEQ ID NO. 72 WO2016016343A1


ROR1
VL
5243
SEQ ID NO. 36 in WO2016016344A1


ROR1
VL
5244
SEQ ID NO. 62 in WO2016016344A1


ROR1
VL
5245
SEQ ID NO. 23 in WO2016016344A1


ROR1
VL
5246
SEQ ID NO. 49 in WO2016016344A1


ROR1
VL
5247
SEQ ID NO. 58 in WO2016016344A1


ROR1
VL
5248
SEQ ID NO. 86 in WO2016120216


ROR1
VL
5249
SEQ ID NO. 88 in WO2016120216


ROR1
VL
5250
SEQ ID NO. 90 in WO2016120216


ROR1
VL
5251
SEQ ID NO: 126 in US20160208018A1


ROR1
VL
5252
SEQ ID NO: 127 in US20160208018A1


ROR1
VL
5253
SEQ ID NO: 234 in US20160208018A1


ROR1
VL
5254
SEQ ID NO: 235 in US20160208018A1


ROR1
VL
5255
SEQ ID NO: 236 in US20160208018A1


ROR1
VL
5256
SEQ ID NO: 237 in US20160208018A1


ROR1
VL
5257
SEQ ID NO: 238 in US20160208018A1


ROR1
VL
5258
SEQ ID NO: 240 in US20160208018A1


ROR1
VL
5259
SEQ ID NO: 241 in US20160208018A1


ROR1
VL
5260
SEQ ID NO: 242 in US20160208018A1


ROR1
VL
5261
SEQ ID NO: 243 in US20160208018A1


ROR1
VL
5262
SEQ ID NO: 244 in US20160208018A1


ROR1
VL
5263
SEQ ID NO: 245 in US20160208018A1


ROR1
VL
5264
SEQ ID NO: 246 in US20160208018A1


ROR1
VL
5265
SEQ ID NO: 247 in US20160208018A1


ROR1
VL
5266
SEQ ID NO: 248 in US20160208018A1


ROR1
VL
5267
SEQ ID NO: 56 in EP3083671A1


ROR1
VL
5268
SEQ ID NO: 103 in WO2016187216A1


ROR1
VL
5269
SEQ ID NO: 111 in WO2016187216A1


ROR1
VL
5270
SEQ ID NO: 127 in WO2016187216A1


ROR1
VL
5271
SEQ ID NO: 135 in WO2016187216A1


ROR1
VL
5272
SEQ ID NO: 143 in WO2016187216A1


ROR1
VL
5273
SEQ ID NO: 15 in WO2016187216A1


ROR1
VL
5274
SEQ ID NO: 151 in WO2016187216A1


ROR1
VL
5275
SEQ ID NO: 159 in WO2016187216A1


ROR1
VL
5276
SEQ ID NO: 167 in WO2016187216A1


ROR1
VL
5277
SEQ ID NO: 175 in WO2016187216A1


ROR1
VL
5278
SEQ ID NO: 183 in WO2016187216A1


ROR1
VL
5279
SEQ ID NO: 191 in WO2016187216A1


ROR1
VL
5280
SEQ ID NO: 199 in WO2016187216A1


ROR1
VL
5281
SEQ ID NO: 207 in WO2016187216A1


ROR1
VL
5282
SEQ ID NO: 215 in WO2016187216A1


ROR1
VL
5283
SEQ ID NO: 223 in WO2016187216A1


ROR1
VL
5284
SEQ ID NO: 23 in WO2016187216A1


ROR1
VL
5285
SEQ ID NO: 231 in WO2016187216A1


ROR1
VL
5286
SEQ ID NO: 239 in WO2016187216A1


ROR1
VL
5287
SEQ ID NO: 247 in WO2016187216A1


ROR1
VL
5288
SEQ ID NO: 255 in WO2016187216A1


ROR1
VL
5289
SEQ ID NO: 263 in WO2016187216A1


ROR1
VL
5290
SEQ ID NO: 271 in WO2016187216A1


ROR1
VL
5291
SEQ ID NO: 279 in WO2016187216A1


ROR1
VL
5292
SEQ ID NO: 287 in WO2016187216A1


ROR1
VL
5293
SEQ ID NO: 295 in WO2016187216A1


ROR1
VL
5294
SEQ ID NO: 303 in WO2016187216A1


ROR1
VL
5295
SEQ ID NO: 31 in WO2016187216A1


ROR1
VL
5296
SEQ ID NO: 311 in WO2016187216A1


ROR1
VL
5297
SEQ ID NO: 319 in WO2016187216A1


ROR1
VL
5298
SEQ ID NO: 327 in WO2016187216A1


ROR1
VL
5299
SEQ ID NO: 335 in WO2016187216A1


ROR1
VL
5300
SEQ ID NO: 343 in WO2016187216A1


ROR1
VL
5301
SEQ ID NO: 351 in WO2016187216A1


ROR1
VL
5302
SEQ ID NO: 359 in WO2016187216A1


ROR1
VL
5303
SEQ ID NO: 39 in WO2016187216A1


ROR1
VL
5304
SEQ ID NO: 47 in WO2016187216A1


ROR1
VL
5305
SEQ ID NO: 55 in WO2016187216A1


ROR1
VL
5306
SEQ ID NO: 63 in WO2016187216A1


ROR1
VL
5307
SEQ ID NO: 7 in WO2016187216A1


ROR1
VL
5308
SEQ ID NO: 71 in WO2016187216A1


ROR1
VL
5309
SEQ ID NO: 79 in WO2016187216A1


ROR1
VL
5310
SEQ ID NO: 87 in WO2016187216A1


ROR1
VL
5311
SEQ ID NO: 95 in WO2016187216A1


SEMAPHORIN4D
VL
5312
SEQ ID NO. 17 in US20160115240A1


SEMAPHORIN4D
VL
5313
SEQ ID NO. 18 in US20160115240A1


SEMAPHORIN4D
VL
5314
SEQ ID NO. 29 in US20160115240A1


TAG73
VL
5315
SEQ ID NO: 116 in US20160333114A1


TCR
VL
5316
SEQ ID NO. 132 in WO2016122701


TEM8
VL
5317
SEQ ID NO: 4 in US20160264662A1


TEM8
VL
5318
SEQ ID NO: 6 in US20160264662A1


TEM8
VL
5319
SEQ ID NO: 8 in US20160264662A1


Tie
VL
5320
SEQ ID NO 724 in US20060057138A1


TIGIT
VL
5321
SEQ ID NO. 130 in US20160355589


TIGIT
VL
5322
SEQ ID NO. 131 in US20160355589


TIGIT
VL
5323
SEQ ID NO. 132 in US20160355589


TIGIT
VL
5324
SEQ ID NO. 133 in US20160355589


TIGIT
VL
5325
SEQ ID NO. 137 in US20160355589


TIGIT
VL
5326
SEQ ID NO. 139 in US20160355589


TIGIT
VL
5327
SEQ ID NO. 145 in US20160355589


TIGIT
VL
5328
SEQ ID NO. 146 in US20160355589


TIGIT
VL
5329
SEQ ID NO. 151 in US20160355589


TIGIT
VL
5330
SEQ ID NO. 152 in US20160355589


TIGIT
VL
5331
SEQ ID NO. 25 in US20160355589


TIGIT
VL
5332
SEQ ID NO. 26 in US20160355589


TIGIT
VL
5333
SEQ ID NO. 27 in US20160355589


TIGIT
VL
5334
SEQ ID NO. 28 in US20160355589


TIGIT
VL
5335
SEQ ID NO. 29 in US20160355589


TIGIT
VL
5336
SEQ ID NO. 30 in US20160355589


TIGIT
VL
5337
SEQ ID NO. 50 in US20160355589


TIGIT
VL
5338
SEQ ID NO. 51 in US20160355589


TIGIT
VL
5339
SEQ ID NO. 52 in US20160355589


TIGIT
VL
5340
SEQ ID NO. 64 in US20160355589


TIGIT
VL
5341
SEQ ID NO. 95 in US20160355589


TIGIT
VL
5342
SEQ ID NO. 8 in US20160355589


TIM3
VL
5343
SEQ ID NO: 7 in WO2013006490


TIM3
VL
5344
SEQ ID NO. 107 in US20150086574


TIM3
VL
5345
SEQ ID NO. 117 in US20150086574


TIM3
VL
5346
SEQ ID NO. 17 in US20150086574


TIM3
VL
5347
SEQ ID NO. 27 in US20150086574


TIM3
VL
5348
SEQ ID NO. 37 in US20150086574


TIM3
VL
5349
SEQ ID NO. 47 in US20150086574


TIM3
VL
5350
SEQ ID NO. 57 in US20150086574


TIM3
VL
5351
SEQ ID NO. 67 in US20150086574


TIM3
VL
5352
SEQ ID NO. 7 in US20150086574


TIM3
VL
5353
SEQ ID NO. 77 in US20150086574


TIM3
VL
5354
SEQ ID NO. 87 in US20150086574


TIM3
VL
5355
SEQ ID NO. 97 in US20150086574


TIM3
VL
5356
SEQ ID NO: 17 in WO2016179319A1


TIM3
VL
5357
SEQ ID NO: 25 in WO2016179319A1


TIM3
VL
5358
SEQ ID NO: 33 in WO2016179319A1


TIM3
VL
5359
SEQ ID NO: 41 in WO2016179319A1


TIM3
VL
5360
SEQ ID NO: 49 in WO2016179319A1


TIM3
VL
5361
SEQ ID NO: 57 in WO2016179319A1


TIM3
VL
5362
SEQ ID NO: 65 in WO2016179319A1


TIM3
VL
5363
SEQ ID NO: 73 in WO2016179319A1


TIM3
VL
5364
SEQ ID NO: 81 in WO2016179319A1


TIM3
VL
5365
SEQ ID NO: 89 in WO2016179319A1


TIM3
VL
5366
SEQ ID NO: 9 in WO2016179319A1


TIM3
VL
5367
SEQ ID NO: 97 in WO2016179319A1


Tissue factor
VL
5368
SEQ ID NO 25 in US20040229301A1


Tissue factor
VL
5369
SEQ ID NO 31 in US20040229301A1


Tissue factor
VL
5370
SEQ ID NO 12 in WO2004094475


Tissue factor
VL
5371
SEQ ID NO 21 in WO2004094475


Tissue factor
VL
5372
SEQ ID NO 25 in WO2004094475


Tissue factor
VL
5373
SEQ ID NO 31 in WO2004094475


Tissue factor
VL
5374
SEQ ID NO 8 in WO2004094475


Tissue factor
VL
5375
SEQ ID NO: 35 in US20160333114A1


Tissue factor
VL
5376
SEQ ID NO: 37 in US20160333114A1


TRBC1
VL
5377
SEQ ID NO. 2 in WO2015132598


TrophoblastGlycoprotein5T4
VL
5378
SEQ ID NO. 18 in WO2016034666A1


TrophoblastGlycoprotein5T4
VL
5379
SEQ ID NO. 12 in WO2016034666A1


VL





TrophoblastGlycoprotein5T4
VL
5380
SEQ ID NO. 14 in WO2016034666A1


VL





TrophoblastGlycoprotein5T4
VL
5381
SEQ ID NO. 16 in WO2016034666A1


VL





uPAR
VL
5382
SEQ ID NO: 71 in US20160333114A1


uPAR
VL
5383
SEQ ID NO: 73 in US20160333114A1


VEGF
VL
5384
SEQ ID NO 2 in WO2000034337


VEGF
VL
5385
SEQ ID NO 6 in WO2000034337


VEGF
VL
5386
SEQ ID NO. 9 in US20030175276A1


VEGF
VL
5387
SEQ ID NO 11 in WO2006012688A1


VEGF
VL
5388
SEQ ID NO 19 in WO2006012688A1


VEGF
VL
5389
SEQ ID NO 27 in WO2006012688A1


VEGF
VL
5390
SEQ ID NO 28 in WO2006012688A1


VEGF
VL
5391
SEQ ID NO 3 in WO2006012688A1


VEGF
VL
5392
SEQ ID NO 43 in WO2006012688A1


VEGF
VL
5393
US20160090427 SEQ ID NO: 160


VEGF
VL
5394
US20160090427 SEQ ID NO: 161


VEGF
VL
5395
US20160090427 SEQ ID NO: 162


VEGF
VL
5396
US20160090427 SEQ ID NO: 163


VEGF
VL
5397
US20160090427 SEQ ID NO: 164


VEGF
VL
5398
US20160090427 SEQ ID NO: 165


VEGF
VL
5399
US20160090427 SEQ ID NO: 166


VEGF
VL
5400
US20160090427 SEQ ID NO: 167


VEGFR2
VL
5401
SEQ ID NO. 107 in WO2017004254


VEGFR2
VL
5402
SEQ ID NO. 108 in WO2017004254


VEGFR2
VL
5403
SEQ ID NO. 109 in WO2017004254


VEGFR2
VL
5404
SEQ ID NO. 110 in WO2017004254


VEGFR2
VL
5405
SEQ ID NO. 111 in WO2017004254


VEGFR2
VL
5406
SEQ ID NO. 112 in WO2017004254


VEGFR2
VL
5407
SEQ ID NO. 113 in WO2017004254


VEGFR2
VL
5408
SEQ ID NO. 86 In WO2017004254


VEGFR2
VL
5409
SEQ ID NO. 87 In WO2017004254


VEGFR2
VL
5410
SEQ ID NO. 88 In WO2017004254


VEGFR2
VL
5411
SEQ ID NO. 89 In WO2017004254


VEGFR2
VL
5412
SEQ ID NO. 90 In WO2017004254


VEGFR2
VL
5413
SEQ ID NO. 91 In WO2017004254


VEGFR2
VL
5414
SEQ ID NO. 92 In WO2017004254


VEGFR2
VL
5415
SEQ ID NO. 93 In WO2017004254


VEGFR2
VL
5416
SEQ ID NO. 94 In WO2017004254


VISTA
VL
5417
SEQ ID NO: 41 in WO2015097536


VISTA
VL
5418
SEQ ID NO: 42 in WO2015097536


VISTA
VL
5419
SEQ ID NO: 43 in WO2015097536


VISTA
VL
5420
SEQ ID NO: 44 in WO2015097536


VISTA
VL
5421
SEQ ID NO: 45 in WO2015097536


VMS2
VL
5422
FIG. 2 in WO2000058363


WT1/HLA Bi Specific
VL
5423
SEQ ID NO. 106 in WO2015070061


WT1/HLA Bi Specific
VL
5424
SEQ ID NO. 112 in WO2015070061


WT1/HLA Bi Specific
VL
5425
SEQ ID NO. 130 in WO2015070061


WT1/HLA Bi Specific
VL
5426
SEQ ID NO. 34 in WO2015070061


WT1/HLA Bi Specific
VL
5427
SEQ ID NO. 52 in WO2015070061


WT1/HLA Bi Specific
VL
5428
SEQ ID NO. 70 in WO2015070061


WT1/HLA Bi Specific
VL
5429
SEQ ID NO. 88 in WO2015070061


5T4
VL
5430
SEQ ID NO. 1 in WO2016022939


5T4
VL
5431
SEQ ID NO. 3 in WO2016022939


ALK
VL
5432
SEQ ID NO. 10 in WO2015069922


ALK
VL
5433
SEQ ID NO. 12 in WO2015069922


ALK
VL
5434
SEQ ID NO. 14 in WO2015069922


ALK
VL
5435
SEQ ID NO. 16 in WO2015069922


ALK
VL
5436
SEQ ID NO. 8 in WO2015069922


ALKVL
VL
5437
SEQ ID NO. 2 in WO2015069922


ALKVL
VL
5438
SEQ ID NO. 4 in WO2015069922


ALKVL
VL
5439
SEQ ID NO. 6 in WO2015069922


CD123
VL
5440
SEQ ID NO. 114 in WO2016120216


CD123
VL
5441
SEQ ID NO. 116 in WO2016120216


CD123
VL
5442
SEQ ID NO. 58 in WO2016120216


CD123
VL
5443
SEQ ID NO. 60 in WO2016120216


CD123
VL
5444
SEQ ID NO. 64 in WO2016120216


CD16
VL
5445
SEQ ID NO. 26 in WO2015158868


CD22
VL
5446
SEQ ID NO. 1 in WO2013059593


CD276
VL
5447
SEQ ID NO. 18 in US20160053017


CD276
VL
5448
SEQ ID NO. 27 in US20160053017


CD28
VL
5449
SEQ ID NO. 20 in WO2015158868


CD73
VL
5450
SEQ ID NO. 101 in US20160145350


CD73
VL
5451
SEQ ID NO. 102 in US20160145350


CD73
VL
5452
SEQ ID NO. 104 in US20160145350


CD73
VL
5453
SEQ ID NO. 106 in US20160145350


CD73
VL
5454
SEQ ID NO. 110 in US20160145350


CD73
VL
5455
SEQ ID NO. 117 in US20160145350


CD73
VL
5456
SEQ ID NO. 118 in US20160145350


CD73
VL
5457
SEQ ID NO. 120 in US20160145350


CD73
VL
5458
SEQ ID NO. 122 in US20160145350


CD74
VL
5459
SEQ ID NO. 25 in US20130171064


CD74
VL
5460
SEQ ID NO. 29 in US20130171064


CD74
VL
5461
SEQ ID NO. 31 in US20130171064


CD74
VL
5462
SEQ ID NO. 35 in US20130171064


CS1
VL
5463
SEQ ID NO. 110 in WO2016120216


CS1
VL
5464
SEQ ID NO. 112 in WO2016120216


CSPG4
VL
5465
SEQ ID NO. 12 in WO2016077638


CSPG4
VL
5466
SEQ ID NO. 14 in WO2016077638


EGFRvIII
VL
5467
SEQ ID NO. 92 in WO2016120216


EGFRvIII
VL
5468
SEQ ID NO. 94 in WO2016120216


ERBB2
VL
5469
US20110129464 SEQ ID NO: 3


GPC3
VL
5470
SEQ ID NO. 23 in WO2016049459


Malignant Variable Receptor
VL
5471
SEQ ID NO. 5 in WO2015133817A1


OX40
VL
5472
SEQ ID NO. 29 in US20160137740


OX40
VL
5473
SEQ ID NO. 37 in US20150190506










Intrabodies


In some embodiments, payloads of the present invention may be intrabodies against players in regulating immune cells. An intrabody is an antibody that is designed to be expressed intracellularly and can be directed to a specific target antigen present in various subcellular locations including the cytosol, nucleus, endoplasmic reticulum (ER), mitochondria, peroxisomes, plasma membrane and trans-Golgi network (TGN) through in frame fusion with intracellular trafficking/localization peptide sequences. The most commonly used format is a single chain antibody (scFv) created by joining the antigen-binding variable domains of heavy and light chain with a linker, most often the 15-amino acid linker (e.g., (GGGGS)3 (SEQ ID NO: 307)) between the variable heavy (VH) and variable light (VL) chains. The intracellular intrabodies are being developed to bind to, neutralize, or modify the function or localization of cancer-related targets and thereby affect the malignant phenotype.


Players that modulate immune cells (e.g., T cells) may be any intracellular signaling checkpoint. Exemplary players may include a co-inhibitory ligand, Casitas B-linage lymphoma proto-oncogene-b (Cbl-b) (a E3 ligase), a protein tyrosine phosphatase (PTP) such as Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), and Ras. For example, an intrabody may be an intrabody against oncogenic form of RAS disclosed in PCT patent publication NO.: WO2004/046186; the contents of which are incorporated by reference in their entirety.


Therapeutic Antibodies


In some embodiments, antibody payloads of the present invention may be therapeutic antibodies. As non-limiting examples, antibodies and fragments and variants thereof may be specific to tumor associated antigens, or tumor specific antigens, or pathogen antigens. In some aspects, antibodies may be blocking antibodies (also referred to as antagonistic antibodies), for example, blocking antibodies against PD-1, PD-L1, PD-L2, CTLA-4 and other inhibitory molecules. In other aspects, antibodies may be agonist antibodies such as agonistic antibodies specific to stimulatory molecules, e g., 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.


Other exemplary therapeutic antibodies may include, but are not limited to, Abagovomab, Abcxmab, Abituzumab, Abrilumab, Actoxumab, Adalimumab, Adecatumumab, Afasevikumab, Afelimomab, Afutuzumab, Alacizumab, Alemtuzumab, Alirocumab, Altumomab, Amatuximab, Anetumab, Anifrolumab, Apolizumab, Arcitumomab, Ascrinvacumab, Aselizumab, Atezolizumab, Atinumab, Atlizumab, Atorolimumab, Avelumab, Bapineuzumab, Basiliximab, Bavituximab, Bectumomab, Begelomab, Belimumab, Benralizumab, Bertilimumab, Besilesomab, Bevacizumab, Bezlotoxumab, Biciromab, Bimagrumab, Bimekizumab, Bivatuzumab, Bleselumab, Blinatumomab, Blinatumomab, Blosozumab, Bococizumab, Brentuximab, Briaknumab, Brodalumab, Brolucizumab, Brontictuzumab, Cabiralizumab, Canakinumab, Cantuzumab, Caplacizumab, Capromab, Carlumab, Carotuximab, Catumaxomab, cBR96-doxorubicin immunoconjugate, Cedelizumab, Cergutuzumab, Certolizumab pegol, Cetuximab, Citatuzumab, Cixutumumab, Clazakizumab, Clenoliximab, Clivatuzumab, Codrituzumab, Coltuximab, Contatumumab, Concizumab, Crenezumab, Crotedumab, CR6261, Dacetumab, Daclizumab, Dalotuzumab, Dapirolizumab pegol, Daratumumab, Dectrekumab, Demcizumab, Denintuzumab, Denosumab, Derlotuximab biotin, Detumomab, Dinutuximab, Diridavumab, Domagrozumab, Dorlimomab aritox, Drozitumab, Duligotumab, Dupilumab, Durvalumab, Dusigitumab, Ecromeximab, Eculizumab, Edobacomab, Edrecolomab, Efalizumab, Efungumab, Eldelumab, Elgemtumab, Elotuzumab, Elsilimomab, Emactuzumab, Emibetuzumab, Emicizumab, Enavatuzumab, Enfortumab vedotin, Enlimomab pegol, Enoblituzumab, Enokizumab, Enoticumab, Ensituximab, Epitumomab cituxetan, Epratuzumab, Erlizumab, Ertumaxomab, Etaracizumab, Etrolizumab, Evinacumab, Evolocumab, Exbivirumab, Fanolesomab, Faralimomab, Farletuzumab, Fasinumab, FBTA05, Felvizumab, Fezakinumab, Fibatuzumab, Ficlatuzumab, Figitumumab, Firivumab, Flanvotumab, Fletikumab, Fontolizumab, Foralumab, Foravirumab, Fresolimumab, Fulranumab, Futuximab, Galcanezumab, Galiximab, Ganitumab, Gantenerumab, Gavilimomab, Gemtuzumab ozogamicin, Gevokizumab, Girentuximab, Glembatumumab vedotin, Golimumab, Gomiliximab, Guselkumab, Ibalizumab, Ibritumomab tituxetan, icrucumab, Idarucizumab, Igovomab, IMAB362, Imalumab, Imciromab, Imgatuzumab, Inclacumab, Indatuximab, Indusatumab, Inebilizumab, Infliximab, Intetumumab, Inolimomab, Inotuzumab, Ipilimumab, Iratumumab, Isatuximab, Itolizumab, Ixekizumab, Keliximab, Labetuzumab, Lambrolizumab, Lampalizumab, Lanadelumab, Landogrozumab, Laprituximab, Lebrikizumab, Lemalesomab, Lendalizumab, Lenzilumab, Lerdelimumab, Lexatumumab, Libivirumab, Lifastuzumab, Ligelizumab, Lilotomab, Lintuzumab, Lirilumab, Lodelcizumab, Lokivetmab, Lorvotuzumab, Lucatumumab, Lulizumab pegol, Lumiliximab, Lumretuzumab, Mapatumumab, Margetuximab, Maslimomab, Mavrilimumab, Matuzumab, Mepolizumab, Metelimumab, Milatuzumab, Minretumomab, Mirvetuximab, Mitumomab, Mogamulizumab, Monalizumab, Morolimumab, Motavizumab, Moxetumomab pasudotox, Muromonab-CD3, nacolomab tafenatox, Namilumab, naptumomab, naratuximab, Narnatumab, Natalizumab, Navicixizumab, Navivumab, Nebacumab, Necitumumab, Nemolizumab, Nerelimomab, Nesvacumab, Nimotuzumab, Nivolumab, Nofetumomab, Obiltoxaximab, Obinutuzumab, Ocaratuzumab, Ocrelizumab, Odulimomab, Ofatumumab, Olaratumab, Olaratumab, Olokizumab, Omalizumab, Onartuzumab, Ontuxizumab, Opicinumab, Oportuzumab monatox, Oregovomab, Orticumab, Otelixizumab, Otlertuzumab, Oxelumab, Ozanezumab, Ozoralizumab, Pagibaximab, Palivizumab, Pamrevlumab, Panitumumab, Pankomab, Panobacumab, Parsatuzumab, Pascolizumab, Pasotuxizumab, Pateclizumab, Patritumab, Pembrolizumab, Pemtumomab, Perakizumab, Pertuzumab, Pexelizumab, Pidilizumab, Pinatuzumab, Pintumomab, Placulumab, Plozalizumab, Pogalizumab, Polatuzumab, Ponezumab, Prezalizumab, Priliximab, Pritoxaximab, Pritumumab, PRO 140, Quilizumab, Racotumomab, Radretumab, Rafivirumab, Ralpancizumab, Ramucirumab, Ranibizumab, Raxibacumab, Refanezumab, Regavirumab, Reslizumab, Rilotumumab, Rinucumab, Risankizumab, Rituximab, Rivabazumab pegol, Robatumumab, Roledumab, Romosozumab, Rontalizumab, Rovalpituzumab, Rovelizumab, Ruplizumab, Sacituzumab, Samalizumab, Sapelizumab, Sarilumab, Satumomab pendetide, Secukinumab, Seribantumab, Setoxaximab, Sevirumab, Sibrotuzumab, SGN-CD19A, SGN-CD33A, Sifalimumab, Siltuximab, Simtuzumab, Siplizumab, Sirukumab, Sofituzumab vedotin, Solanezumab, Solitomab, Sonepcizumab, Sontuzumab, Stamulumab, Sulesomab, Suvizumab, tabalumab, Tacatuzumab, Tadocizumab, Talizumab, Tamtuvetmab, Tanezumab, Taplitumomab, Tarextumab, Tefibazumab, Telimomab aritox, Tenatumomab, Teneliximab, Teplizumab, Teprotumumab, Tesidolumab, Tetulomab, Tezepelumab, TGN1412, Ticilimumab, Tildrakizumab, Tigatuzumab, Timolumab, Tisotumab vedotin, TNX-650, Tocilizumab, Toralizumab, Tosatoxumab, Tositumomab, Tovetumab, Tralokinumab, Trastuzumab, TRBS07, Tregalizumab, Tremelimumab, Trevogrumab, Tucotuzumab, Tuvirumab, Ublituximab, Ulcocuplumab, Urelumab, Urtoxazumab, Ustekinumab, Vadastuximab talirine, Vandortuzumab vedotin, Vantictumab, Vanucizumab, Vapaliximab, Varlilumab, Vatelizumab, Vedolizumab, Veltuzumab, Vepalimomab, Vesencumab, Visilizumab, Vobarilizumab, Volociximab, Vorsetuzumab, Votumumab, Xentuzumab, Zalutumumab, Zanolimumab, Zatuximab, Ziralimumab and Zolimomab aritox.


Bicistronic and/or Pseudo-Bicistronic Antibody Payloads


According to the present invention, a bicistronic payload is a polynucleotide encoding a two-protein chain antibody on a single polynucleotide strand. A pseudo-bicistronic payload is a polynucleotide encoding a single chain antibody discontinuously on a single polynucleotide strand. For bicistronic payloads, the encoded two strands or two portions/regions and/or domains (as is the case with pseudo-bicistronic) are separated by at least one nucleotide not encoding the strands or domains. More often the separation comprises a cleavage signal or site or a non-coding region of nucleotides. Such cleavage sites include, for example, furin cleavage sites encoded as an “RKR” site, or a modified furin cleavage site in the resultant polypeptide or any of those taught herein.


According to the present invention, a single domain payload comprises one or two polynucleotides encoding a single monomeric variable antibody domain. Typically, single domain antibodies comprise one variable domain (VH) of a heavy-chain antibody.


According to the present invention, a single chain Fv payloads is a polynucleotide encoding at least two coding regions and a linker region. The scFv payload may encode a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. Other linkers include those known in the art and disclosed herein.


According to the present invention, a bispecific payload is a polynucleotide encoding portions or regions of two different antibodies. Bispecific payloads encode polypeptides which may bind two different antigens. Polynucleotides of the present invention may also encode trispecific antibodies having an affinity for three antigens.


3. Tumor and Pathogen Specific Antigens


In some embodiments, payloads of the present invention may be tumor specific antigens (TSAs), tumor associated antigens (TAAs), pathogen associated antigens, or fragments thereof. The antigen can be expressed as a peptide or as an intact protein or portion thereof. The intact protein or a portion thereof can be native or mutagenized. Antigens associated with cancers or virus-induced cancers as described herein are well-known in the art. Such a TSA or TAA may be previously associated with a cancer or may be identified by any method known in the art.


A tumor specific antigen (TSA) may be a tumor neoantigen. A neoantigen is a mutated antigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells).


As non-limiting examples, neoantigens may include mutated new peptides derived from alpha-actinin-4, ARTC1, BCR-ABL fusion protein (b3a2), B-RAF, CASP-5, CASP-8, beta-catenin, Cdc27, CDK4, CDKN2A, CLPP, CML-66, COA-1, connexin 37, dek-can fusion protein, EFTUD2, Elongation factor 2, ETV6-AML1 fusion protein, fibronectin, FLT3-ITD, FN1, GPNM8, LDLR-fucosyltransferase AS fusion protein, HLA-A2, HLA-A11, Hsp-70-1B, MART-2, MEL MUM-1, MUM-2, MUM-3, Myosin class I, NFYC, neo-PAP, OGT, OS-9, p53, pml-RARalpha fusion protein, PRDX5, PTPRK, K-Ras, N-Ras, RBAF600, sirtuin-2, SNRPD1, SYT-SSX1/SSX2 fusion protein, TGF-beta receptor II, etc. Additional neoantigen peptides may include SF3B1 peptides, MYD peptides, TP53 peptides, Abl peptides, FBXW7 peptides, MAPK peptides, and GNB1 peptides disclosed in U.S. patent publication NO.: 20110293637; the contents of which are incorporated herein by reference in their entirety.


New neoantigens identified through large-scale sequencing and algorithm calculation may also be included. See, e.g., International Patent Publication NO.: WO2014/168874; Nishimura et al., Cancer Sci. 2015, 106(5): 505-511; and Linnemann et al., Nat. Med., 2015, 21(1): 81-85; the contents of each of which are incorporated herein by reference in their entirety.


A tumor associated antigen (TAA) may be an overexpressed or accumulated antigen that is expressed by both normal and neoplastic tissue, with the level of expression highly elevated in cancer tissues. Numerous proteins (e.g. oncogenes) are up-regulated in tumor tissues, including but not limited to adipophilin, AIM-2, ALDH1A1, BCLX(L), BING-4, CALCA, CD45, CD274, CPSF, cyclin D1, DKK1, ENAH, epCAM, ephA3, EZH2, FGF5, G250, HER-2/neu, HLA-DOB, Hepsin, IDO1, IGFB3, IL13 Ralpha2, Intestinal carboxyl esterase, kallikrein 4, KIF20A, lengsin, M-CSF, MCSP, mdm-2, Meloe, Midkine, MMP-2, MMP-7, MUC-1, MUC5AC, p53, Pax5, PBF, PRAME, PSMA, RAGE-1, RGS5, RhoC, RNF43, RU2A5, SECERNIN 1, SOX10, STEAP1, survivin, Telomerase, TPBG, VEGF, and WT1.


A TAA may be an oncofetal antigen that is typically only expressed at different stages during the development of the fetus and in cancerous somatic cells. Many proteins are normally expressed during fetal development but are transcriptionally repressed after birth or at early stage of infancy, therefore are not present, or are expressed in significantly lower levels in the corresponding normal adult tissue. Some of these developmental proteins are re-expressed in certain tumor cells and become oncofetal antigens. Examples of oncofetal antigens may include, but are not limited to CEA (carcinoembryonic antigen) in colorectal carcinoma, iLRP/OFA (immature laminin receptor protein/oncofetal antigen) in renal cell carcinoma (RCC), TAG-72 (tumor associated glycoprotein-72) in prostate carcinoma, AFP (alpha-fetoprotein) in hepatocellular carcinoma (HCC), ROR1 (a receptor tyrosine kinase) in many malignant cells such as brain tumors, sperm protein 17, HMGA2 (high mobility group A2) in ovarian carcinoma, oncofetal H19, CR-1 (Cripto-1, a member of epidermal growth factor (EGF)-CFC family), trophoblast glycoprotein precursor and GPC-3 (Glypican-3, a member of heparan sulphate proteoglycans) in HCC.


A TAA may be a cancer-testis antigen that is expressed only by cancer cells and adult reproductive tissues such as testis and placenta, including, but limited to antigens from BAGE family, CAGE family, HAGE family, GAGE family, MAGE family (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A6 and MAGE-A13), SAGE family, XAGE family, MCAK, NA88-A (cancer/testis antigen 88), PSAD1, SSX-2, and SLLP-1.


A TAA may be a lineage restricted antigen that is expressed largely by a single cancer histotype, such as Melan-A/MART-1, Gp100/pmel17, Tyrosinase, TRP-1/-2, P. polypeptide, MC1R in melanoma; and prostate specific antigen (PSA) in prostate cancer.


A TAA may be an oncoviral antigen that is encoded by tumorigenic transforming viruses (also called oncogenic viruses). Oncogenic viruses, when they infect host cells, can insert their own DNA (or RNA) into that of the host cells. When the viral DNA or RNA affects the host cell's genes, it can push the cell toward becoming cancer. Oncogenic viruses include, but are not limited to, RNA viruses, and DNA viruses. Some examples of commonly known oncoviruses include human papilloma viruses (HPVs) which are main causes of cervical cancer, Epstein-Barr virus (EBV) which may cause nasopharyngeal cancer, certain types of fast-growing lymphomas (e.g., Burkitt lymphoma) and stomach cancer, hepatitis B, C and D viruses (HBV, HCV and HDV) in hepatocellular carcinoma (HCC), human immunodeficiency virus (HIV) which increases the risk of getting many types of cancer (e.g., liver cancer, anal cancer and Hodgkin cancer), Kaposi sarcoma herpes virus (KSHV; also known as human herpes virus 8 (HHV8)) which is linked to lymphoma, human T-lymphotrophic virus (HTLV-1) and merkel cell polyomavirus (MCV). A viral antigen can be any defined antigen of a virus that is associated with a cancer in a human. For example, antigens from EBV may include but are not limited to, Epstein-Barr nuclear antigen-1 (EBNA1), latent membrane protein 1 (LMP1), or latent membrane protein 2 (LMP2).


A TAA may be an idiotypic antigen that is generated from highly polymorphic genes where a tumor cell expresses a specific “clonotype”, i.e., as in B cell, T cell lymphoma/leukemia resulting from clonal aberrancies, such as Immunoglobulin and T cell receptors (TCRs). Idiotypic antigens are a class of non-pathogen-associated neoantigens. For example, the malignant B cells express rearranged and multiply mutated surface immunoglobulins (Ig). Tumor specific idiotypes (e.g., immunoglobulin idiotypes) are regarded as particularly attractive tumor-specific antigens that can be successfully targeted by immunotherapy (e.g., Alejandro et al., Front Oncol., 2012, 2: 159).


4. T Cell Receptors (TCRs)


In some embodiments, payloads of the present invention may be T cell receptors (TCRs). The TCR may be specific to a cancer antigen, having a specific α chain and β chain which together form a TCRαβ heterodimer, or having a specific γ chain and δ chain which together form a TCRγδ heterodimer. The TCR may be a recombinant antigen specific T cell receptor.


The variable regions of α chain and β chain determine T cell specificity to an antigenic peptide presented by the major histocompatibility complex (MEW) class I and II molecules. The TCR recognition of the tumor antigen on the surface of a tumor cell presented by MEW molecules by TCR triggers T cell activation. The use of TCR gene therapy can equip a subject's own T cells with desired specificities and generate sufficient numbers of T cells to eradicate tumor cells. In some embodiments, a biocircuit or an effector module comprising a tumor specific TCR may be transduced into T cells and TCR-engineered T cells will be infused into cancer patients who have lymphocytopenia or lymphopenia by chemotherapy or irradiation, allowing efficient engraftment but inhibiting immune suppression.


Sequences encoding tumor antigen recognizing TCR chains can be obtained from tumor-reactive T cells (e.g., tumor-infiltrating lymphocytes isolated from the tumor of a patient).


According to the present invention, a TCR specific to tumor cells can be produced by methods described in International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety. A host organism expressing a transgene of a human leucocyte antigen (HLA) type which is known or suspected to be able to present a mutated tumor specific antigen (TSA) is transduced to express the un-rearranged human TCR loci. Preferably these loci encode TCR α and β chains, and preferably comprise a plurality, ideally all, of human TCR V, D, J, and/or C genes. The host organism is immunized with a cancer specific TSA or a peptide epitope derived from the TSA and T cells expressing rearranged TCRs specifically against the TSA are isolated and cloned. The TCR from the cloned T cells are sequenced (International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety).


In some embodiments, payloads of the present invention may be TCRs that specifically recognize TSAs, TAAs, or epitopes thereof, complexed with MEW molecules.


Exemplary tumor antigens that can be recognized by a TCR may include at least the following: 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-κB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In one aspect, the payload of the present invention may be a TCR specifically recognizing Her2/neu epitope which has nucleic acid sequences of α chain and β chain disclosed in U.S. Patent Publication NO.: US20110280894 and International Patent Publication NO. WO2016133779A1; the contents of each of which are incorporated herein by reference in their entirety. In another aspect, the payload of the present invention may be a TCR specific to TSA tyrosinase (See U.S. Pat. No. 8,697,854; the contents of which are incorporated herein by reference in their entirety).


In other aspects, payloads of the present invention may be TCRs having polypeptide sequences specific to synovial sarcoma X Breakpoint (SSX)-2 antigen (U.S. Pat. No. 9,345,748); human papillomavirus (HPV) 16 E6 antigen (International Patent Publication NO.: WO2015/009606); cytomegalovirus (CMV) phosphoprotein pp 65 (U.S. Pat. No. 8,722,048); and WT-1 specific TCR comprising a TCR α-chain having an amino acid sequence as set forth in any one of SEQ ID NOs.: 5-8, and comprising a TCR β-chain having an amino acid sequence as set forth in SEQ ID NO.: 12 or 13, as disclosed in U.S. patent publication NO.: US2016/0083449; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the TCR specific to a TSA may be modified to possess a sequence encoding an affinity weakening motif which imparts a reduction in non-specific binding to a TSA. In some embodiments, an affinity weakening motif having a modification to a TCR CDR1 or CDR2 region may be used to weaken the interaction between TCR and HLA proteins (see, International Patent Publication NO.: WO2016/014725; the contents of which are incorporated herein by reference in their entirety).


In some embodiments, the TCR specific to a TSA may be modified to possess an affinity enhancing motif which imparts an enhancement of binding specificity and affinity for a target antigen. In some embodiments, such high affinity TCRs may be generated by using TCR α-chain to select de novo generated TCR β-chains that pair with an antigen specific TCR α-chain during T cell development in vitro to form enhanced TCRs (see, International Patent Publication NO.: WO2013/166321; the contents of which are incorporated herein by reference in their entirety). In other embodiments, the modified TCR may also possess a sequence encoding an affinity enhancing modification CDR3 region which strengthens the interaction between the TCR and the TSA.


In one embodiment, the TCR specific to a TSA may be modified using zinc finger nucleases (ZFNs), TALENs or a CRISPR/Cas system. The TCR α chain and β chain may contain target sites of a nuclease. The nuclease can cleave the TCR sequence causing a certain degree of disruption of the TCR (see U.S. Patent Publication NO.: US2014/0301990; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the TCR specific to a TSA may be a soluble single-chain TCR having the structure: Vα2-L-Vβ or Vβ-L-Vα2, wherein L is a linker peptide that links a TCR variable β region (Vβ) with a TCR variable α region of the family 2 (Vα2), as discussed in International Patent Publication NO.: WO2011/044186; the contents of which are incorporated herein by reference in their entirety.


In one embodiment, the TCR specific to a TSA may be maturated to increase its affinity to the TSA according to methods described in U.S. Patent Publication NO.: US2014/0065111; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the TCRs may be specific to the Fc domain of an antibody (e.g. FcgRla) and utilized to enhance efficacy of antibody mediated therapy, as discussed in International Patent Publication NO.: WO2015/179833; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present invention may be recombinant constructs which act as trifunctional T-cell signaling couplers (TriTACs) mimicking the naturally signaling through T cell receptors. The TriTACs enhance chimeric receptor activity while retaining WIC unrestricted targeting. In some aspects, the recombinant construct may comprise a target specific binding ligand such as a scFV specific to a TSA or a designed ankyrin repeat (DARPin), a ligand that binds a protein associated with the TCR complex and a TCR signaling domain polypeptide, e.g. as described in the International Patent Application NO.: WO2015/117229; the contents of which are incorporated herein by reference in their entirety. The TCR associated proteins may be selected from CD3, ZAP70 9 zeta-chain associated protein kinase 70), TYN and CD247. In some aspects, the ligand of a TriTAC that binds the TCR associated protein may be an antibody or an antibody fragment (e.g., scFv). In other aspects, the TCR signaling domain polypeptide of a TriTAC may comprise the transmembrane and cytoplasmic domain of CD4.


According to the present invention, the α chain and β chain of the TCR of the present invention may be included in separate constructs, for example as payloads of two effector modules. In other embodiments, the α chain and β chain of the TCR of the present invention may be included in a single effector module as two payloads of the same effector module, for example as illustrated in FIGS. 3-6.


5. Chimeric Antigen Receptors (CARS)


In some embodiments, payloads of the present invention may be a chimeric antigen receptors (CARs) which when transduced into immune cells (e.g., T cells and NK cells), can redirect the immune cells against the target (e.g., a tumor cell) which expresses a molecule recognized by the extracellular target moiety of the CAR.


As used herein, the term “chimeric antigen receptor (CAR)” refers to a synthetic receptor that mimics TCR on the surface of T cells. In general, a CAR is composed of an extracellular targeting domain, a transmembrane domain/region and an intracellular signaling/activation domain. In a standard CAR receptor, the components: the extracellular targeting domain, transmembrane domain and intracellular signaling/activation domain, are linearly constructed as a single fusion protein. The extracellular region comprises a targeting domain/moiety (e.g., a scFv) that recognizes a specific tumor antigen or other tumor cell-surface molecules. The intracellular region may contain a signaling domain of TCR complex (e.g., the signal region of CD3ζ), and/or one or more costimulatory signaling domains, such as those from CD28, 4-1BB (CD137) and OX-40 (CD134). For example, a “first-generation CAR” only has the CD3 signaling domain, whereas in an effort to augment T-cell persistence and proliferation, costimulatory intracellular domains are added, giving rise to second generation CARs having a CD3ζ signal domain plus one costimulatory signaling domain, and third generation CARs having CD3ζ signal domain plus two or more costimulatory signaling domains. A CAR, when expressed by a T cell, endows the T cell with antigen specificity determined by the extracellular targeting moiety of the CAR. Recently, it is also desirable to add one or more elements such as homing and suicide genes to develop a more competent and safer architecture of CAR, so called the fourth-generation CAR.


Cells such as T cells engineered to express a CAR can be redirected to attack target cells that express a molecule which can be recognized by the targeting moiety of the CAR.


In some embodiments, the extracellular targeting domain is joined through the hinge (also called space domain or spacer) and transmembrane regions to an intracellular signaling domain. The hinge connects the extracellular targeting domain to the transmembrane domain which transverses the cell membrane and connects to the intracellular signaling domain. The hinge may need to be varied to optimize the potency of CAR transformed cells toward cancer cells due to the size of the target protein where the targeting moiety binds, and the size and affinity of the targeting domain itself. Upon recognition and binding of the targeting moiety to the target cell, the intracellular signaling domain leads to an activation signal to the CAR T cell, which is further amplified by the “second signal” from one or more intracellular costimulatory domains. The CAR T cell, once activated, can destroy the target cell.


In some embodiments, the CAR of the present invention may be split into two parts, each part is linked a dimerizing domain, such that an input that triggers the dimerization promotes assembly of the intact functional receptor. Wu and Lim recently reported a split CAR in which the extracellular CD19 binding domain and the intracellular signaling element are separated and linked to the FKBP domain and the FRB* (T2089L mutant of FKBP-rapamycin binding) domain that heterodimerize in the presence of the rapamycin analog AP21967. The split receptor is assembled in the presence of AP21967 and together with the specific antigen binding, activates T cells (Wu et al., Science, 2015, 625(6258): aab4077).


In some embodiments, the CAR of the present invention may be designed as an inducible CAR. Sakemura et al recently reported the incorporation of a Tet-On inducible system to the CD19 CAR construct. The CD19 CAR is activated only in the presence of doxycycline (Dox). Sakemura reported that Tet-CD19 CAR T cells in the presence of Dox were equivalently cytotoxic against CD19+ cell lines and had equivalent cytokine production and proliferation upon CD19 stimulation, compared with conventional CD19 CAR T cells (Sakemura et al., Cancer Immuno. Res., 2016, Jun. 21, Epub ahead of print). In one example, this Tet-CAR may be the payload of the effector module under the control of SREs (e.g., DDs) of the invention. The dual systems provide more flexibility to turn-on and off the CAR expression in transduced T cells.


According to the present invention, the payload of the present invention may be a first-generation CAR, or a second-generation CAR, or a third-generation CAR, or a fourth-generation CAR. Representative effector module embodiments comprising CAR constructs are illustrated in FIGS. 13-18. In some embodiments, the payload of the present invention may be a full CAR construct composed of the extracellular domain, the hinge and transmembrane domain and the intracellular signaling region. In other embodiments, the payload of the present invention may be a component of the full CAR construct including an extracellular targeting moiety, a hinge region, a transmembrane domain, an intracellular signaling domain, one or more co-stimulatory domain, and other additional elements that improve CAR architecture and functionality including but not limited to a leader sequence, a homing element and a safety switch, or the combination of such components.


CARs regulated by biocircuits and compositions of the present invention are tunable and thereby offer several advantages. The reversible on-off switch mechanism allows management of acute toxicity caused by excessive CAR-T cell expansion. Pulsatile CAR expression using SREs of the present invention may be achieved by cycling ligand level. The ligand conferred regulation of the CAR may be effective in offsetting tumor escape induced by antigen loss, avoiding functional exhaustion caused by tonic signaling due to chronic antigen exposure and improving the persistence of CAR expressing cells in vivo.


In some embodiments, biocircuits and compositions of the invention may be utilized to down regulate CAR expression to limit on target on tissue toxicity caused by tumor lysis syndrome. Down regulating the expression of the CARs of the present invention following anti-tumor efficacy may prevent (1) On target off tumor toxicity caused by antigen expression in normal tissue. (2) antigen independent activation in vivo.


Extracellular Targeting Domain/Moiety


In accordance with the invention, the extracellular target moiety of a CAR may be any agent that recognizes and binds to a given target molecule, for example, a neoantigen on tumor cells, with high specificity and affinity. The target moiety may be an antibody and variants thereof that specifically binds to a target molecule on tumor cells, or a peptide aptamer selected from a random sequence pool based on its ability to bind to the target molecule on tumor cells, or a variant or fragment thereof that can bind to the target molecule on tumor cells, or an antigen recognition domain from native T-cell receptor (TCR) (e.g. CD4 extracellular domain to recognize HIV infected cells), or exotic recognition components such as a linked cytokine that leads to recognition of target cells bearing the cytokine receptor, or a natural ligand of a receptor.


In some embodiments, the targeting domain of a CAR may be a Ig NAR, a Fab fragment, a Fab′ fragment, a F(ab)′2 fragment, a F(ab)′3 fragment, Fv, a single chain variable fragment (scFv), a bis-scFv, a (scFv)2, a minibody, a diabody, a triabody, a tetrabody, a disulfide stabilized Fv protein (dsFv), a unitbody, a nanobody, or an antigen binding region derived from an antibody that specifically recognizes a target molecule, for example a tumor specific antigen (TSA). In one embodiment, the targeting moiety is a scFv antibody. The scFv domain, when it is expressed on the surface of a CAR T cell and subsequently binds to a target protein on a cancer cell, is able to maintain the CAR T cell in proximity to the cancer cell and to trigger the activation of the T cell. A scFv can be generated using routine recombinant DNA technology techniques and is discussed in the present invention.


In one embodiment, the targeting moiety of a CAR construct may be an aptamer such as a peptide aptamer that specifically binds to a target molecule of interest. The peptide aptamer may be selected from a random sequence pool based on its ability to bind to the target molecule of interest.


In some embodiments, the targeting moiety of a CAR construct may be a natural ligand of the target molecule, or a variant and/or fragment thereof capable of binding the target molecule. In some aspects, the targeting moiety of a CAR may be a receptor of the target molecule, for example, a full-length human CD27, as a CD70 receptor, may be fused in frame to the signaling domain of CD3ζ forming a CD27 chimeric receptor as an immunotherapeutic agent for CD70-positive malignancies (See, e.g., U.S. patent publication NO.: US20130323214; the contents of which are incorporated by reference herein in their entirety).


In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen which is restrictedly expressed on tumor cells.


As non-limiting examples, the CAR of the present invention may comprise the extracellular targeting domain capable of binding to a tumor specific antigen selected from 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-κB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In some embodiments, the CAR of the present invention may comprise a universal immune receptor which has a targeting moiety capable of binding to a labelled antigen. Methods of generating universal immune receptor CAR are discussed in International Patent Publication NO.: WO2013044225A1; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a pathogen antigen.


In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to non-protein molecules such as tumor-associated glycolipids and carbohydrates. TSAs may also be lipid molecules, polysaccharides, saccharides, nucleic acids, haptens, carbohydrate, or the combinations thereof.


In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a component within the tumor microenvironment including proteins expressed in various tumor stroma cells including tumor associated macrophages (TAMs), immature monocytes, immature dendritic cells, immunosuppressive CD4+CD25+ regulatory T cells (Treg) and MDSCs. A recent study using an animal model, demonstrated that after systemic transplantation, T cells expressing VEGFR-2 CAR and IL12 infiltrated the tumors, expanded and persisted within tumor mass leading to tumor regression. The anti-tumor effect was dependent on targeting of IL12-responsive host cells via activation of VEGFR-2 CAR-T cells and release of IL12 (Chinnasamy et al., Clinical Cancer Research, 2012, 18: 1672-1683).


In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a cell surface adhesion molecule, a surface molecule of an inflammatory cell that appears in an autoimmune disease, or a TCR causing autoimmunity.


As non-limiting examples, the targeting moiety of the present invention may be a scFv antibody that recognizes a tumor specific antigen (TSA), for example scFvs of antibodies SS, SS1 and HN1 that specifically recognize and bind to human mesothelin (U.S. Pat. No. 9,359,447), scFv of antibody of GD2 (U.S. Pat. No. 9,315,585), a CD19 antigen binding domain (U.S. Pat. NO.: 9, 328, 156); a NKG2D ligand binding domain (U.S. Pat. No. 9,273,283; US patent publication NO.: US20160311906A1); human anti-mesothelin scFvs comprising the amino acid sequences of SEQ ID Nos.: 11 and 12 of U.S. Pat. No. 9,272,002; an anti-CS1 binding agent (U.S. patent publication NO.: US20160075784); an anti-BCMA binding domain (International Patent Publication NO.: WO2016/014565); anti-CD19 scFv antibody of SEQ ID NO.: 20 in U.S. Pat. No. 9,102,761; GFR alpha 4 antigen binding fragments having the amino acid sequences of SEQ ID NOs: 59 and 79 of International patent publication NO.: 2016/025880; anti-CLL-1 (C-type lectin-like molecule 1) binding domains having the amino acid sequences of SEQ ID NO: 47, 44, 48, 49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90 and 196 of International Patent Publication NO.: WO2016014535); CD33 binding domains having the amino acid sequences of SEQ ID NOs: 39-46 of International patent publication NO.: WO2016014576; a GPC3 (glypican-3) binding domain (SEQ ID NO.: 2 and SEQ ID NO.: 4 of International patent publication NO.: WO2016036973); a GFR alpha4 (Glycosyl-phosphatidylinositol (GPI)-linked GDNF family α-receptor 4 cell-surface receptor) binding domain (International Patent Publication NO.: WO2016025880); CD123 binding domains having the amino acid sequences of SEQ ID NOs: 480, 483, 485, 478, 158, 159, 160, 157, 217, 218, 219, 216, 276, 277, 278, and 275 of International patent publication NO.: WO20160258896; an anti-ROR1 antibody or fragments thereof (International patent publication NO.: WO2016016344); scFvs specific to GPC-3 (SEQ ID NOs: 1 and 24 of International patent publication NO.: WO2016049459); scFv for CSPG4 (SEQ ID NO.: 2 of International patent publication NO.: WO2015080981; scFv for folate receptor alpha (U.S. Patent Publication NO.: US20170002072A1); the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, natural ligands may be used as the targeting moieties of the CARs of the present invention. Such natural ligands may be capable of binding to the antigens with affinity in the range of the scFvs and can redirect T cells specificity and effector functions to target cells expressing the complementary receptor. In some embodiments, the targeting moiety of the CAR may be neuregulin-1 (NRG1) which is a natural ligand for HER3 and HER4; VEGF which is a natural ligand of VEGFR; IL13 wildtype protein or IL13 mutein e.g E13Y which binds to IL13Rα2; NKG2D ligand, which is a natural ligand of NKG2D receptor; CD70 which is ligand of CD27; and a proliferation-inducing ligand (APRIL) which is a natural high affinity ligand for BCMA8 and transmembrane activator and CAML interactor (TACI). Any of the ligand based BCMA CARs taught in the U.S. Patent Publication No. US20160362467A1, the contents of which are incorporated by reference in their entirety.


In some embodiments, the targeting moieties of the present invention may be scFv comprising the amino acid sequences in Table 11.









TABLE 11







scFv sequences










Target
Description
SEQ ID NO
Source













Activated alpha.v. Beta.3
scFv
5474
SEQ ID NO. 8 in US20090117096A1


integrin receptor





Activated alpha.v. Beta.3
scFv
5475
SEQ ID NO. 2 in US20090117096A1


integrin receptor





Activated alpha.v. Beta.3
scFv
5476
SEQ ID NO. 4 in US20090117096A1


integrin receptor





Adalimumab
scFv
5477
SEQ ID NO. 41 in US20160208021


Adalinumab
scFv
5478
SEQ ID NO. 41 in WO2016112870


ALK
scFv
5479
SEQ ID NO. 17 in WO2015069922


ALK
scFv
5480
SEQ ID NO. 18 in WO2015069922


ALK
scFv
5481
SEQ ID NO. 19 in WO2015069922


ALK
scFv
5482
SEQ ID NO. 20 in WO2015069922


ALK
scFv
5483
SEQ ID NO. 21 in WO2015069922


ALK
scFv
5484
SEQ ID NO. 22 in WO2015069922


ALK
scFv
5485
SEQ ID NO. 23 in WO2015069922


ALK
scFv
5486
SEQ ID NO. 17 in US20160280798A1


ALK
scFv
5487
SEQ ID NO. 18 in US20160280798A1


ALK
scFv
5488
SEQ ID NO. 19 in US20160280798A1


ALK
scFv
5489
SEQ ID NO. 20 in US20160280798A1


ALK
scFv
5490
SEQ ID NO. 21 in US20160280798A1


ALK
scFv
5491
SEQ ID NO. 22 in US20160280798A1


ALK
scFv
5492
SEQ ID NO. 23 in US20160280798A1


ALK
scFv
5493
SEQ ID NO. 24 in US20160280798A1


ALK
scFv
5494
SEQ ID NO. 24 in WO2015069922


B7H3
scFv
5495
SEQ ID NO. 100 in WO2016033225


B7H3
scFv
5496
SEQ ID NO. 101 in WO2016033225


B7H3
scFv
5497
SEQ ID NO. 102 in WO2016033225


B7H3
scFv
5498
SEQ ID NO. 103 in WO2016033225


B7H3
scFv
5499
SEQ ID NO. 104 in WO2016033225


B7H3
scFv
5500
SEQ ID NO. 105 in WO2016033225


B7H3
scFv
5501
SEQ ID NO. 17 in WO2016033225


B7H3
scFv
5502
SEQ ID NO. 18 in WO2016033225


B7H3
scFv
5503
SEQ ID NO. 19 in WO2016033225


B7H3
scFv
5504
SEQ ID NO. 20 in WO2016033225


B7H3
scFv
5505
SEQ ID NO. 21 in WO2016033225


B7H3
scFv
5506
SEQ ID NO. 22 in WO2016033225


B7H3
scFv
5507
SEQ ID NO. 23 in WO2016033225


B7H3
scFv
5508
SEQ ID NO. 24 in WO2016033225


B7H3
scFv
5509
SEQ ID NO. 25 in WO2016033225


B7H3
scFv
5510
SEQ ID NO. 26 in WO2016033225


B7H3
scFv
5511
SEQ ID NO. 27 in WO2016033225


B7H3
scFv
5512
SEQ ID NO. 87 in WO2016033225


B7H3
scFv
5513
SEQ ID NO. 88 in WO2016033225


B7H3
scFv
5514
SEQ ID NO. 89 in WO2016033225


B7H3
scFv
5515
SEQ ID NO. 90 in WO2016033225


B7H3
scFv
5516
SEQ ID NO. 91 in WO2016033225


B7H3
scFv
5517
SEQ ID NO. 92 in WO2016033225


B7H3
scFv
5518
SEQ ID NO. 94 in WO2016033225


B7H3
scFv
5519
SEQ ID NO. 95 in WO2016033225


B7H3
scFv
5520
SEQ ID NO. 96 in WO2016033225


B7H3
scFv
5521
SEQ ID NO. 97 in WO2016033225


B7H3
scFv
5522
SEQ ID NO. 98 in WO2016033225


B7H3
scFv
5523
SEQ ID NO. 99 in WO2016033225


B7H4
scFv
5524
SEQ ID NO. 1 in WO2013067492


B7H4
scFv
5525
SEQ ID NO. 2 in WO2013067492


B7H4
scFv
5526
SEQ ID NO. 3 in WO2013067492


B7H4
scFv
5527
SEQ ID NO. 4 in WO2013067492


B7H4
scFv
5528
SEQ ID NO. 1 in U.S. Pat. No. 9,422,351B2


BCMA
scFv
5529
SEQ ID NO. 152 in WO2016168595A1


BCMA
scFv
5530
SEQ ID NO. 158 in WO2016168595A1


BCMA
scFv
5531
SEQ ID NO. 176 in WO2016168595A1


BCMA
scFv
5532
SEQ ID NO. 182 in WO2016168595A1


BCMA
scFv
5533
SEQ ID NO. 188 in WO2016168595A1


BCMA
scFv
5534
SEQ ID NO. 200 in WO2016168595A1


BCMA
scFv
5535
SEQ ID NO. 212 in WO2016168595A1


BCMA
scFv
5536
SEQ ID NO. 218 in WO2016168595A1


BCMA
scFv
5537
SEQ ID NO. 224 in WO2016168595A1


BCMA
scFv
5538
SEQ ID NO. 284 in WO2016168595A1


BCMA
scFv
5539
SEQ ID NO. 290 in WO2016168595A1


BCMA
scFv
5540
SEQ ID NO. 296 in WO2016168595A1


BCMA
scFv
5541
SEQ ID NO. 302 in WO2016168595A1


BCMA
scFv
5542
SEQ ID NO. 314 in WO2016168595A1


BCMA
scFv
5543
SEQ ID NO. 326 in WO2016168595A1


BCMA
scFv
5544
SEQ ID NO. 344 in WO2016168595A1


BCMA
scFv
5545
SEQ ID NO. 129 in WO2016014565


BCMA
scFv
5546
SEQ ID NO. 130 in WO2016014565


BCMA
scFv
5547
SEQ ID NO. 131 in WO2016014565


BCMA
scFv
5548
SEQ ID NO. 132 in WO2016014565


BCMA
scFv
5549
SEQ ID NO. 133 in WO2016014565


BCMA
scFv
5550
SEQ ID NO. 134 in WO2016014565


BCMA
scFv
5551
SEQ ID NO. 135 in WO2016014565


BCMA
scFv
5552
SEQ ID NO. 136 in WO2016014565


BCMA
scFv
5553
SEQ ID NO. 138 in WO2016014565


BCMA
scFv
5554
SEQ ID NO. 139 in WO2016014565


BCMA
scFv
5555
SEQ ID NO. 140 in WO2016014565


BCMA
scFv
5556
SEQ ID NO. 141 in WO2016014565


BCMA
scFv
5557
SEQ ID NO. 142 in WO2016014565


BCMA
scFv
5558
SEQ ID NO. 143 in WO2016014565


BCMA
scFv
5559
SEQ ID NO. 144 in WO2016014565


BCMA
scFv
5560
SEQ ID NO. 145 in WO2016014565


BCMA
scFv
5561
SEQ ID NO. 146 in WO2016014565


BCMA
scFv
5562
SEQ ID NO. 147 in WO2016014565


BCMA
scFv
5563
SEQ ID NO. 148 in WO2016014565


BCMA
scFv
5564
SEQ ID NO. 149 in WO2016014565


BCMA
scFv
5565
SEQ ID NO. 263 in WO2016014565


BCMA
scFv
5566
SEQ ID NO. 264 in WO2016014565


BCMA
scFv
5567
SEQ ID NO. 265 in WO2016014565


BCMA
scFv
5568
SEQ ID NO. 266 in WO2016014565


BCMA
scFv
5569
SEQ ID NO. 271 in WO2016014565


BCMA
scFv
5570
SEQ ID NO. 273 in WO2016014565


BCMA
scFv
5571
SEQ ID NO. 273 in WO2016014565


BCMA
scFv
5572
SEQ ID NO. 39 in WO2016014565


BCMA
scFv
5573
SEQ ID NO. 40 in WO2016014565


BCMA
scFv
5574
SEQ ID NO. 41 in WO2016014565


BCMA
scFv
5575
SEQ ID NO. 42 in WO2016014565


BCMA
scFv
5576
SEQ ID NO. 43 in WO2016014565


BCMA
scFv
5577
SEQ ID NO. 44 in WO2016014565


BCMA
scFv
5578
SEQ ID NO. 45 in WO2016014565


BCMA
scFv
5579
SEQ ID NO. 46 in WO2016014565


BCMA
scFv
5580
SEQ ID NO. 47 in WO2016014565


BCMA
scFv
5581
SEQ ID NO. 48 in WO2016014565


BCMA
scFv
5582
SEQ ID NO. 49 in WO2016014565


BCMA
scFv
5583
SEQ ID NO. 50 in WO2016014565


BCMA
scFv
5584
SEQ ID NO. 51 in WO2016014565


BCMA
scFv
5585
SEQ ID NO. 52 in WO2016014565


BCMA
scFv
5586
SEQ ID NO. 53 in WO2016014565


BCMA
scFv
5587
SEQ ID NO. 64 in WO2016014565


BCMA
scFv
5588
SEQ ID NO. 129 in WO2016014565


BCMA
scFv
5589
SEQ ID NO. 130 in WO2016014565


BCMA
scFv
5590
SEQ ID NO. 131 in WO2016014565


BCMA
scFv
5591
SEQ ID NO. 132 in WO2016014565


BCMA
scFv
5592
SEQ ID NO. 133 in WO2016014565


BCMA
scFv
5593
SEQ ID NO. 134 in WO2016014565


BCMA
scFv
5594
SEQ ID NO. 135 in WO2016014565


BCMA
scFv
5595
SEQ ID NO. 136 in WO2016014565


BCMA
scFv
5596
SEQ ID NO. 137 in WO2016014565


BCMA
scFv
5597
SEQ ID NO. 138 in WO2016014565


BCMA
scFv
5598
SEQ ID NO. 139 in WO2016014565


BCMA
scFv
5599
SEQ ID NO. 140 in WO2016014565


BCMA
scFv
5600
SEQ ID NO. 141 in WO2016014565


BCMA
scFv
5601
SEQ ID NO. 142 in WO2016014565


BCMA
scFv
5602
SEQ ID NO. 143 in WO2016014565


BCMA
scFv
5603
SEQ ID NO. 144 in WO2016014565


BCMA
scFv
5604
SEQ ID NO. 145 in WO2016014565


BCMA
scFv
5605
SEQ ID NO. 146 in WO2016014565


BCMA
scFv
5606
SEQ ID NO. 147 in WO2016014565


BCMA
scFv
5607
SEQ ID NO. 148 in WO2016014565


BCMA
scFv
5608
SEQ ID NO. 149 in WO2016014565


BCMA
scFv
5609
SEQ ID NO. 263 in WO2016014565


BCMA
scFv
5610
SEQ ID NO. 264 in WO2016014565


BCMA
scFv
5611
SEQ ID NO. 265 in WO2016014565


BCMA
scFv
5612
SEQ ID NO. 266 in WO2016014565


BCMA
scFv
5613
SEQ ID NO. 39 in WO2016014565


BCMA
scFv
5614
SEQ ID NO. 40 in WO2016014565


BCMA
scFv
5615
SEQ ID NO. 41 in WO2016014565


BCMA
scFv
5616
SEQ ID NO. 42 in WO2016014565


BCMA
scFv
5617
SEQ ID NO. 43 in WO2016014565


BCMA
scFv
5618
SEQ ID NO. 44 in WO2016014565


BCMA
scFv
5619
SEQ ID NO. 45 in WO2016014565


BCMA
scFv
5620
SEQ ID NO. 46 in WO2016014565


BCMA
scFv
5621
SEQ ID NO. 47 in WO2016014565


BCMA
scFv
5622
SEQ ID NO. 48 in WO2016014565


BCMA
scFv
5623
SEQ ID NO. 49 in WO2016014565


BCMA
scFv
5624
SEQ ID NO. 50 in WO2016014565


BCMA
scFv
5625
SEQ ID NO. 51 in WO2016014565


BCMA
scFv
5626
SEQ ID NO. 52 in WO2016014565


BCMA
scFv
5627
SEQ ID NO. 53 in WO2016014565


BCMA
scFv
5628
SEQ ID NO. 214 in US20160311907A1


BCMA
scFv
5629
SEQ ID NO. 215 in US20160311907A1


BCMA
scFv
5630
SEQ ID NO. 216 in US20160311907A1


BCMA
scFv
5631
SEQ ID NO. 217 in US20160311907A1


BCMA
scFv
5632
SEQ ID NO. 218 in US20160311907A1


BCMA
scFv
5633
SEQ ID NO. 219 in US20160311907A1


BCMA
scFv
5634
SEQ ID NO. 220 in US20160311907A1


BCMA
scFv
5635
SEQ ID NO. 221 in US20160311907A1


BCMA
scFv
5636
SEQ ID NO. 222 in US20160311907A1


BCMA
scFv
5637
SEQ ID NO. 223 in US20160311907A1


BCMA
scFv
5638
SEQ ID NO. 224 in US20160311907A1


BCMA
scFv
5639
SEQ ID NO. 225 in US20160311907A1


BCMA
scFv
5640
SEQ ID NO. 226 in US20160311907A1


BCMA
scFv
5641
SEQ ID NO. 227 in US20160311907A1


BCMA
scFv
5642
SEQ ID NO. 228 in US20160311907A1


BCMA
scFv
5643
SEQ ID NO. 229 in US20160311907A1


BCMA
scFv
5644
SEQ ID NO. 230 in US20160311907A1


BCMA
scFv
5645
SEQ ID NO. 231 in US20160311907A1


BCMA
scFv
5646
SEQ ID NO. 232 in US20160311907A1


BCMA
scFv
5647
SEQ ID NO. 233 in US20160311907A1


BCMA
scFv
5648
SEQ ID NO. 234 in US20160311907A1


BCMA
scFv
5649
SEQ ID NO. 235 in US20160311907A1


BCMA
scFv
5650
SEQ ID NO. 236 in US20160311907A1


BCMA
scFv
5651
SEQ ID NO. 237 in US20160311907A1


BCMA
scFv
5652
SEQ ID NO. 238 in US20160311907A1


BCMA
scFv
5653
SEQ ID NO. 239 in US20160311907A1


BCMA
scFv
5654
SEQ ID NO. 240 in US20160311907A1


BCMA
scFv
5655
SEQ ID NO. 241 in US20160311907A1


BCMA
scFv
5656
SEQ ID NO. 242 in US20160311907A1


BCMA
scFv
5657
SEQ ID NO. 243 in US20160311907A1


BCMA
scFv
5658
SEQ ID NO. 244 in US20160311907A1


BCMA
scFv
5659
SEQ ID NO. 245 in US20160311907A1


BCMA
scFv
5660
SEQ ID NO. 246 in US20160311907A1


BCMA
scFv
5661
SEQ ID NO. 247 in US20160311907A1


BCMA
scFv
5662
SEQ ID NO. 248 in US20160311907A1


BCMA
scFv
5663
SEQ ID NO. 249 in US20160311907A1


BCMA
scFv
5664
SEQ ID NO. 251 in US20160311907A1


CCR4
scFv
5665
SEQ ID N0. 7 in WO2015191997


CCR4
scFv
5666
SEQ ID N0. 9 in WO2015191997


CD123
scFv
5667
SEQ ID NO. 157 in WO2016028896


CD123
scFv
5668
SEQ ID NO. 158 in WO2016028896


CD123
scFv
5669
SEQ ID NO. 159 in WO2016028896


CD123
scFv
5670
SEQ ID NO. 160 in WO2016028896


CD123
scFv
5671
SEQ ID NO. 184 in WO2016028896


CD123
scFv
5672
SEQ ID NO. 185 in WO2016028896


CD123
scFv
5673
SEQ ID NO. 186 in WO2016028896


CD123
scFv
5674
SEQ ID NO. 187 in WO2016028896


CD123
scFv
5675
SEQ ID NO. 188 in WO2016028896


CD123
scFv
5676
SEQ ID NO. 189 in WO2016028896


CD123
scFv
5677
SEQ ID NO. 190 in WO2016028896


CD123
scFv
5678
SEQ ID NO. 191 in WO2016028896


CD123
scFv
5679
SEQ ID NO. 192 in WO2016028896


CD123
scFv
5680
SEQ ID NO. 193 in WO2016028896


CD123
scFv
5681
SEQ ID NO. 194 in WO2016028896


CD123
scFv
5682
SEQ ID NO. 195 in WO2016028896


CD123
scFv
5683
SEQ ID NO. 196 in WO2016028896


CD123
scFv
5684
SEQ ID NO. 197 in WO2016028896


CD123
scFv
5685
SEQ ID NO. 198 in WO2016028896


CD123
scFv
5686
SEQ ID NO. 199 in WO2016028896


CD123
scFv
5687
SEQ ID NO. 200 in WO2016028896


CD123
scFv
5688
SEQ ID NO. 201 in WO2016028896


CD123
scFv
5689
SEQ ID NO. 202 in WO2016028896


CD123
scFv
5690
SEQ ID NO. 203 in WO2016028896


CD123
scFv
5691
SEQ ID NO. 204 in WO2016028896


CD123
scFv
5692
SEQ ID NO. 205 in WO2016028896


CD123
scFv
5693
SEQ ID NO. 206 in WO2016028896


CD123
scFv
5694
SEQ ID NO. 207 in WO2016028896


CD123
scFv
5695
SEQ ID NO. 208 in WO2016028896


CD123
scFv
5696
SEQ ID NO. 209 in WO2016028896


CD123
scFv
5697
SEQ ID NO. 210 in WO2016028896


CD123
scFv
5698
SEQ ID NO. 211 in WO2016028896


CD123
scFv
5699
SEQ ID NO. 212 in WO2016028896


CD123
scFv
5700
SEQ ID NO. 213 in WO2016028896


CD123
scFv
5701
SEQ ID NO. 214 in WO2016028896


CD123
scFv
5702
SEQ ID NO. 215 in WO2016028896


CD123
scFv
5703
SEQ ID NO. 36 in WO2015092024A2


CD123
scFv
5704
SEQ ID NO. 478 in WO2016028896


CD123
scFv
5705
SEQ ID NO. 480 in WO2016028896


CD123
scFv
5706
SEQ ID NO. 483 in WO2016028896


CD123
scFv
5707
SEQ ID NO. 485 in WO2016028896


CD123
scFv
5708
SEQ ID NO. 57 in WO2016115482A1


CD123
scFv
5709
SEQ ID NO. 36 in EP3083691A2


CD123
scFv
5710
SEQ ID NO. 157 in US20160311907A1


CD124
scFv
5711
SEQ ID NO. 158 in US20160311907A1


CD125
scFv
5712
SEQ ID NO. 159 in US20160311907A1


CD126
scFv
5713
SEQ ID NO. 160 in US20160311907A1


CD127
scFv
5714
SEQ ID NO. 161 in US20160311907A1


CD128
scFv
5715
SEQ ID NO. 162 in US20160311907A1


CD129
scFv
5716
SEQ ID NO. 163 in US20160311907A1


CD130
scFv
5717
SEQ ID NO. 164 in US20160311907A1


CD131
scFv
5718
SEQ ID NO. 165 in US20160311907A1


CD138
scFv
5719
SEQ ID NO. 36 in WO2016130598A1


CD19
scFv
5720
SEQ ID NO. 53 in EP3083671A1


CD19
scFv
5721
SEQ ID NO. 54 in EP3083671A1


CD19
scFv
5722
SEQ ID NO. 1 in WO2015157252


CD19
scFv
5723
SEQ ID NO. 10 in WO2015157252


CD19
scFv
5724
SEQ ID NO. 10 in WO2016033570


CD19
scFv
5725
SEQ ID NO. 11 in WO2015157252


CD19
scFv
5726
SEQ ID NO. 12 in WO2015157252


CD19
scFv
5727
SEQ ID NO. 2 in WO2015157252


CD19
scFv
5728
SEQ ID NO. 2 in WO2016033570


CD19
scFv
5729
SEQ ID NO. 206 in WO2016033570


CD19
scFv
5730
SEQ ID NO. 207 in WO2016033570


CD19
scFv
5731
SEQ ID NO. 208 in WO2016033570


CD19
scFv
5732
SEQ ID NO. 209 in WO2016033570


CD19
scFv
5733
SEQ ID NO. 210 in WO2016033570


CD19
scFv
5734
SEQ ID NO. 211 in WO2016033570


CD19
scFv
5735
SEQ ID NO. 213 in WO2016033570


CD19
scFv
5736
SEQ ID NO. 214 in WO2016033570


CD19
scFv
5737
SEQ ID NO. 215 in WO2016033570


CD19
scFv
5738
SEQ ID NO. 216 in WO2016033570


CD19
scFv
5739
SEQ ID NO. 217 in WO2016033570


CD19
scFv
5740
SEQ ID NO. 218 in WO2016033570


CD19
scFv
5741
SEQ ID NO. 219 in WO2016033570


CD19
scFv
5742
SEQ ID NO. 220 in WO2016033570


CD19
scFv
5743
SEQ ID NO. 221 in WO2016033570


CD19
scFv
5744
SEQ ID NO. 222 in WO2016033570


CD19
scFv
5745
SEQ ID NO. 223 in WO2016033570


CD19
scFv
5746
SEQ ID NO. 224 in WO2016033570


CD19
scFv
5747
SEQ ID NO. 225 in WO2016033570


CD19
scFv
5748
SEQ ID NO. 3 in WO2015157252


CD19
scFv
5749
SEQ ID NO. 4 in WO2015157252


CD19
scFv
5750
SEQ ID NO. 4 in WO2016033570


CD19
scFv
5751
SEQ ID NO. 45 in WO2016033570


CD19
scFv
5752
SEQ ID NO. 47 in WO2016033570


CD19
scFv
5753
SEQ ID NO. 49 in WO2016033570


CD19
scFv
5754
SEQ ID NO. 5 in WO2015155341A1


CD19
scFv
5755
SEQ ID NO. 5 in WO2015157252


CD19
scFv
5756
SEQ ID NO. 51 in WO2016033570


CD19
scFv
5757
SEQ ID NO. 53 in WO2016033570


CD19
scFv
5758
SEQ ID NO. 55 in WO2016033570


CD19
scFv
5759
SEQ ID NO. 57 in WO2016033570


CD19
scFv
5760
SEQ ID NO. 59 in WO2015157252


CD19
scFv
5761
SEQ ID NO. 59 in WO2016033570


CD19
scFv
5762
SEQ ID NO. 6 in WO2015157252


CD19
scFv
5763
SEQ ID NO. 6 in WO2016033570


CD19
scFv
5764
SEQ ID NO. 7 in WO2014184143


CD19
scFv
5765
SEQ ID NO. 7 in WO2015157252


CD19
scFv
5766
SEQ ID NO. 8 in WO2015157252


CD19
scFv
5767
SEQ ID NO. 8 in WO2016033570


CD19
scFv
5768
SEQ ID NO. 87 in WO2016033570


CD19
scFv
5769
SEQ ID NO. 9 in WO2015157252


CD19
scFv
5770
SEQ ID NO. 9 in WO2016139487


CD19
scFv
5771
SEQ ID NO. 10 in US20160152723


CD19
scFv
5772
SEQ ID NO. 2 in US20160152723


CD19
scFv
5773
SEQ ID NO. 206 in US20160152723


CD19
scFv
5774
SEQ ID NO. 207 in US20160152723


CD19
scFv
5775
SEQ ID NO. 208 in US20160152723


CD19
scFv
5776
SEQ ID NO. 209 in US20160152723


CD19
scFv
5777
SEQ ID NO. 210 in US20160152723


CD19
scFv
5778
SEQ ID NO. 211 in US20160152723


CD19
scFv
5779
SEQ ID NO. 212 in US20160152723


CD19
scFv
5780
SEQ ID NO. 213 in US20160152723


CD19
scFv
5781
SEQ ID NO. 214 in US20160152723


CD19
scFv
5782
SEQ ID NO. 215 in US20160152723


CD19
scFv
5783
SEQ ID NO. 216 in US20160152723


CD19
scFv
5784
SEQ ID NO. 217 in US20160152723


CD19
scFv
5785
SEQ ID NO. 218 in US20160152723


CD19
scFv
5786
SEQ ID NO. 219 in US20160152723


CD19
scFv
5787
SEQ ID NO. 220 in US20160152723


CD19
scFv
5788
SEQ ID NO. 221 in US20160152723


CD19
scFv
5789
SEQ ID NO. 222 in US20160152723


CD19
scFv
5790
SEQ ID NO. 223 in US20160152723


CD19
scFv
5791
SEQ ID NO. 224 in US20160152723


CD19
scFv
5792
SEQ ID NO. 225 in US20160152723


CD19
scFv
5793
SEQ ID NO. 32 in EP3083691A2


CD19
scFv
5794
SEQ ID NO. 35 in EP3083691A2


CD19
scFv
5795
SEQ ID NO. 38 in EP3083691A2


CD19
scFv
5796
SEQ ID NO. 4 in US20160152723


CD19
scFv
5797
SEQ ID NO. 45 in US20160152723


CD19
scFv
5798
SEQ ID NO. 47 in US20160152723


CD19
scFv
5799
SEQ ID NO. 49 in US20160152723


CD19
scFv
5800
SEQ ID NO. 51 in US20160152723


CD19
scFv
5801
SEQ ID NO. 53 in US20160152723


CD19
scFv
5802
SEQ ID NO. 55 in US20160152723


CD19
scFv
5803
SEQ ID NO. 57 in US20160152723


CD19
scFv
5804
SEQ ID NO. 59 in US20160152723


CD19
scFv
5805
SEQ ID NO. 6 in US20160152723


CD19
scFv
5806
SEQ ID NO. 8 in US20160152723


CD19
scFv
5807
SEQ ID NO. 87 in US20160152723


CD19
scFv
5808
SEQ ID NO. 89 in US20160152723


CD19
scFv
5809
SEQ ID NO. 39 in WO2016109410


CD19
scFv
5810
SEQ ID NO. 37 in EP3083671A1


CD19
scFv
5811
SEQ ID NO. 174 in WO2016115482A1


CD19
scFv
5812
SEQ ID NO. 20 in WO2012079000


CD19
scFv
5813
SEQ ID NO. 32 in WO2015092024A2


CD19
scFv
5814
SEQ ID NO. 33 in WO2015092024A2


CD19
scFv
5815
SEQ ID NO. 35 in WO2015092024A2


CD19
scFv
5816
SEQ ID NO. 38 in WO2015092024A2


CD19
scFv
5817
SEQ ID NO. 40 in WO2016109410


CD19
scFv
5818
SEQ ID NO. 41 in WO2016109410


CD19
scFv
5819
SEQ ID NO. 42 in WO2016109410


CD19
scFv
5820
SEQ ID NO. 43 in WO2016109410


CD19
scFv
5821
SEQ ID NO. 44 in WO2016109410


CD19
scFv
5822
SEQ ID NO. 45 in WO2016109410


CD19
scFv
5823
SEQ ID NO. 46 in WO2016109410


CD19
scFv
5824
SEQ ID NO. 47 in WO2016109410


CD19
scFv
5825
SEQ ID NO. 48 in WO2016109410


CD19
scFv
5826
SEQ ID NO. 49 in WO2016109410


CD19
scFv
5827
SEQ ID NO. 5 in WO2015155341A1


CD19
scFv
5828
SEQ ID NO. 50 in WO2016109410


CD19
scFv
5829
SEQ ID NO. 51 in WO2016109410


CD19
scFv
5830
SEQ ID NO. 7 in US20160145337A1


CD19
scFv
5831
SEQ ID NO. 9 in US20160145337A1


CD19
scFv
5832
SEQ ID NO. 20 in U.S. Pat. No. 9,499,629B2


CD19
scFv
5833
SEQ ID NO. 6 in WO2015155341A1


CD19
scFv
5834
SEQ ID NO. 73 in WO2016164580


CD19
scFv
5835
SEQ ID NO. 10 in US20160152723


CD19
scFv
5836
SEQ ID NO. 2 in US20160152723


CD19
scFv
5837
SEQ ID NO. 206 in US20160152723


CD19
scFv
5838
SEQ ID NO. 207 in US20160152723


CD19
scFv
5839
SEQ ID NO. 209 in US20160152723


CD19
scFv
5840
SEQ ID NO. 210 in US20160152723


CD19
scFv
5841
SEQ ID NO. 212 in US20160152723


CD19
scFv
5842
SEQ ID NO. 216 in US20160152723


CD19
scFv
5843
SEQ ID NO. 218 in US20160152723


CD19
scFv
5844
SEQ ID NO. 219 in US20160152723


CD19
scFv
5845
SEQ ID NO. 220 in US20160152723


CD19
scFv
5846
SEQ ID NO. 221 in US20160152723


CD19
scFv
5847
SEQ ID NO. 222 in US20160152723


CD19
scFv
5848
SEQ ID NO. 223 in US20160152723


CD19
scFv
5849
SEQ ID NO. 224 in US20160152723


CD19
scFv
5850
SEQ ID NO. 225 in US20160152723


CD19
scFv
5851
SEQ ID NO. 4 in US20160152723


CD19
scFv
5852
SEQ ID NO. 45 in US20160152723


CD19
scFv
5853
SEQ ID NO. 47 in US20160152723


CD19
scFv
5854
SEQ ID NO. 49 in US20160152723


CD19
scFv
5855
SEQ ID NO. 51 in US20160152723


CD19
scFv
5856
SEQ ID NO. 53 in US20160152723


CD19
scFv
5857
SEQ ID NO. 55 in US20160152723


CD19
scFv
5858
SEQ ID NO. 57 in US20160152723


CD19
scFv
5859
SEQ ID NO. 59 in US20160152723


CD19
scFv
5860
SEQ ID NO. 6 in US20160152723


CD19
scFv
5861
SEQ ID NO. 8 in US20160152723


CD19
scFv
5862
SEQ ID NO. 87 in US20160152723


CD19
scFv
5863
SEQ ID NO. 89 in US20160152723


CD19
scFv
5864
SEQ ID NO. 5 in WO2016055551


CD19/CD22BiSpecific
scFv
5865
SEQ ID NO. 1303 in WO2016164731A2


CD19/CD22BiSpecific
scFv
5866
SEQ ID NO. 1307 in WO2016164731A2


CD20
scFv
5867
SEQ ID NO. 691 in WO2016164731A100


CD20
scFv
5868
SEQ ID NO. 692 in WO2016164731A101


CD20
scFv
5869
SEQ ID NO. 693 in WO2016164731A102


CD20
scFv
5870
SEQ ID NO. 694 in WO2016164731A103


CD20
scFv
5871
SEQ ID NO. 695 in WO2016164731A104


CD20
scFv
5872
SEQ ID NO. 696 in WO2016164731A105


CD20
scFv
5873
SEQ ID NO. 175 in WO2016115482A1


CD22
scFv
5874
SEQ ID NO. 5 in WO2013059593


CD22
scFv
5875
SEQ ID NO. 6 in WO2013059593


CD22
scFv
5876
SEQ ID NO. 9 in US20150299317


CD22
scFv
5877
SEQ ID NO. 131 in WO2016164731A2


CD22
scFv
5878
SEQ ID NO. 132 in WO2016164731A2


CD22
scFv
5879
SEQ ID NO. 133 in WO2016164731A2


CD22
scFv
5880
SEQ ID NO. 134 in WO2016164731A2


CD22
scFv
5881
SEQ ID NO. 135 in WO2016164731A2


CD22
scFv
5882
SEQ ID NO. 136 in WO2016164731A2


CD22
scFv
5883
SEQ ID NO. 137 in WO2016164731A2


CD22
scFv
5884
SEQ ID NO. 138 in WO2016164731A2


CD22
scFv
5885
SEQ ID NO. 139 in WO2016164731A2


CD22
scFv
5886
SEQ ID NO. 140 in WO2016164731A2


CD22
scFv
5887
SEQ ID NO. 203 in WO2016164731A2


CD22
scFv
5888
SEQ ID NO. 209 in WO2016164731A2


CD22
scFv
5889
SEQ ID NO. 215 in WO2016164731A2


CD22
scFv
5890
SEQ ID NO. 221 in WO2016164731A2


CD22
scFv
5891
SEQ ID NO. 227 in WO2016164731A2


CD22
scFv
5892
SEQ ID NO. 232 in WO2016164731A2


CD22
scFv
5893
SEQ ID NO. 238 in WO2016164731A2


CD22
scFv
5894
SEQ ID NO. 244 in WO2016164731A2


CD22
scFv
5895
SEQ ID NO. 250 in WO2016164731A2


CD22
scFv
5896
SEQ ID NO. 256 in WO2016164731A2


CD22
scFv
5897
SEQ ID NO. 262 in WO2016164731A2


CD22
scFv
5898
SEQ ID NO. 268 in WO2016164731A2


CD22
scFv
5899
SEQ ID NO. 274 in WO2016164731A2


CD22
scFv
5900
SEQ ID NO. 280 in WO2016164731A2


CD22
scFv
5901
SEQ ID NO. 286 in WO2016164731A2


CD22
scFv
5902
SEQ ID NO. 292 in WO2016164731A2


CD22
scFv
5903
SEQ ID NO. 298 in WO2016164731A2


CD22
scFv
5904
SEQ ID NO. 304 in WO2016164731A2


CD22
scFv
5905
SEQ ID NO. 310 in WO2016164731A2


CD22
scFv
5906
SEQ ID NO. 316 in WO2016164731A2


CD22
scFv
5907
SEQ ID NO. 322 in WO2016164731A2


CD22
scFv
5908
SEQ ID NO. 328 in WO2016164731A2


CD22
scFv
5909
SEQ ID NO. 334 in WO2016164731A2


CD22
scFv
5910
SEQ ID NO. 340 in WO2016164731A2


CD22
scFv
5911
SEQ ID NO. 346 in WO2016164731A2


CD22
scFv
5912
SEQ ID NO. 352 in WO2016164731A2


CD22
scFv
5913
SEQ ID NO. 358 in WO2016164731A2


CD22
scFv
5914
SEQ ID NO. 364 in WO2016164731A2


CD22
scFv
5915
SEQ ID NO. 370 in WO2016164731A2


CD22
scFv
5916
SEQ ID NO. 376 in WO2016164731A2


CD22
scFv
5917
SEQ ID NO. 382 in WO2016164731A2


CD22
scFv
5918
SEQ ID NO. 388 in WO2016164731A2


CD22
scFv
5919
SEQ ID NO. 394 in WO2016164731A2


CD22
scFv
5920
SEQ ID NO. 400 in WO2016164731A2


CD22
scFv
5921
SEQ ID NO. 406 in WO2016164731A2


CD22
scFv
5922
SEQ ID NO. 412 in WO2016164731A2


CD22
scFv
5923
SEQ ID NO. 418 in WO2016164731A2


CD22
scFv
5924
SEQ ID NO. 423 in WO2016164731A2


CD276
scFv
5925
SEQ ID NO. 10 in US20160053017


CD276
scFv
5926
SEQ ID NO. 19 in US20160053017


CD276
scFv
5927
SEQ ID NO. 28 in US20160053017


CD3
scFv
5928
SEQ ID NO. 46 in WO2015153912A1


CD3
scFv
5929
SEQ ID NO. 47 in WO2015153912A1


CD30
scFv
5930
SEQ ID NO 20 in WO2016116035A1


CD30
scFv
5931
SEQ ID NO. 2 in US20160200824A1


CD33
scFv
5932
SEQ ID NO. 262 in WO2016014576


CD33
scFv
5933
SEQ ID NO. 263 in WO2016014576


CD33
scFv
5934
SEQ ID NO. 264 in WO2016014576


CD33
scFv
5935
SEQ ID NO. 265 in WO2016014576


CD33
scFv
5936
SEQ ID NO. 266 in WO2016014576


CD33
scFv
5937
SEQ ID NO. 267 in WO2016014576


CD33
scFv
5938
SEQ ID NO. 268 in WO2016014576


CD33
scFv
5939
SEQ ID NO. 37 in WO2015092024A2


CD33
scFv
5940
SEQ ID NO. 39 in WO2016014576


CD33
scFv
5941
SEQ ID NO. 40 in WO2016014576


CD33
scFv
5942
SEQ ID NO. 41 in WO2016014576


CD33
scFv
5943
SEQ ID NO. 42 in WO2016014576


CD33
scFv
5944
SEQ ID NO. 43 in WO2016014576


CD33
scFv
5945
SEQ ID NO. 44 in WO2016014576


CD33
scFv
5946
SEQ ID NO. 45 in WO2016014576


CD33
scFv
5947
SEQ ID NO. 46 in WO2016014576


CD33
scFv
5948
SEQ ID NO. 47 in WO2016014576


CD33
scFv
5949
SEQ ID NO. 37 in EP3083691A2


CD33
scFv
5950
SEQ ID NO. 153 in WO2016115482A1


CD33
scFv
5951
SEQ ID NO. 154 in WO2016115482A1


CD33
scFv
5952
SEQ ID NO. 155 in WO2016115482A1


CD33
scFv
5953
SEQ ID NO. 156 in WO2016115482A1


CD33
scFv
5954
SEQ ID NO. 157 in WO2016115482A1


CD33
scFv
5955
SEQ ID NO. 158 in WO2016115482A1


CD33
scFv
5956
SEQ ID NO. 159 in WO2016115482A1


CD33
scFv
5957
SEQ ID NO. 160 in WO2016115482A1


CD33
scFv
5958
SEQ ID NO. 161 in WO2016115482A1


CD33
scFv
5959
SEQ ID NO. 162 in WO2016115482A1


CD33
scFv
5960
SEQ ID NO. 163 in WO2016115482A1


CD33/CD3sBiSpecifc
scFv
5961
SEQ ID NO. 33 in WO2014144722A2


CD33/CD3sBiSpecifc
scFv
5962
SEQ ID NO. 34 in WO2014144722A2


CD33/CD3sBiSpecifc
scFv
5963
SEQ ID NO. 84 in WO2014144722A2


CD37

5964
SEQ ID NO. 21 in US20170000900


CD37

5965
SEQ ID NO. 22 in US20170000900


CD44
scFv
5966
SEQ ID NO. 17 in WO2016042461A1


CD46
scFv
5967
SEQ ID NO. in WO2016040683


CD46
scFv
5968
SEQ ID NO. in WO2016040683


CD46
scFv
5969
SEQ ID NO. in WO2016040683


CD46
scFv
5970
SEQ ID NO. in WO2016040683


CD46
scFv
5971
SEQ ID NO. in WO2016040683


CD46
scFv
5972
SEQ ID NO. in WO2016040683


CD46
scFv
5973
SEQ ID NO. in WO2016040683


CD46
scFv
5974
SEQ ID NO. in WO2016040683


CD46
scFv
5975
SEQ ID NO. in WO2016040683


CD46
scFv
5976
SEQ ID NO. in WO2016040683


CD46
scFv
5977
SEQ ID NO. in WO2016040683


CD46
scFv
5978
SEQ ID NO. in WO2016040683


CD46
scFv
5979
SEQ ID NO. in WO2016040683


CD46
scFv
5980
SEQ ID NO. in WO2016040683


CD46
scFv
5981
SEQ ID NO. in WO2016040683


CD46
scFv
5982
SEQ ID NO. in WO2016040683


CD46
scFv
5983
SEQ ID NO. in WO2016040683


CD46
scFv
5984
SEQ ID NO. in WO2016040683


CD46
scFv
5985
SEQ ID NO. in WO2016040683


CD46
scFv
5986
SEQ ID NO. in WO2016040683


CD46
scFv
5987
SEQ ID NO. in WO2016040683


CD46
scFv
5988
SEQ ID NO. in WO2016040683


CD46
scFv
5989
SEQ ID NO. in WO2016040683


CD5
scFv
5990
SEQ ID NO. 16 in WO2016138491


CD79b
scFv
5991
SEQ ID NO. 33 in US20160208021


CEA
scFv
5992
SEQ ID NO. 1 in US20160303166A1


CEA
scFv
5993
SEQ ID NO. 22 in US20140242701A1


CEA
scFv
5994
SEQ ID NO. 22 in US20140242701A1


Centuxiamb
scFv
5995
SEQ ID NO. 37 in WO2016112870


Centuximab
scFv
5996
SEQ ID NO. 37 in US20160208021


Claudin
scFv
5997
SEQ ID NO. 11 in WO2016073649A1


Claudin
scFv
5998
SEQ ID NO. 17 in WO2014179759A1


Claudin
scFv
5999
SEQ ID NO. 5 in WO2016073649A1


Claudin
scFv
6000
SEQ ID NO. 7 in WO2016073649A1


Claudin
scFv
6001
SEQ ID NO. 9 in WO2016073649A1


Claudin6
scFv
6002
SEQ ID NO. 164 in WO2016115482A1


Claudin7
scFv
6003
SEQ ID NO. 165 in WO2016115482A1


Claudin8
scFv
6004
SEQ ID NO. 166 in WO2016115482A1


CLDN6
scFv
6005
SEQ ID NO. 2 in WO2016150400


CLDN7
scFv
6006
SEQ ID NO. 4 in WO2016150400


CLDN8
scFv
6007
SEQ ID NO. 6 in WO2016150400


CLL1
scFv
6008
SEQ ID NO. 39 in WO2016014535


CLL1
scFv
6009
SEQ ID NO. 40 in WO2016014535


CLL1
scFv
6010
SEQ ID NO. 41 in WO2016014535


CLL1
scFv
6011
SEQ ID NO. 42 in WO2016014535


CLL1
scFv
6012
SEQ ID NO. 43 in WO2016014535


CLL1
scFv
6013
SEQ ID NO. 44 in WO2016014535


CLL1
scFv
6014
SEQ ID NO. 45 in WO2016014535


CLL1
scFv
6015
SEQ ID NO. 46 in WO2016014535


CLL1
scFv
6016
SEQ ID NO. 47 in WO2016014535


CLL1
scFv
6017
SEQ ID NO. 48 in WO2016014535


CLL1
scFv
6018
SEQ ID NO. 49 in WO2016014535


CLL1
scFv
6019
SEQ ID NO. 50 in WO2016014535


CLL1
scFv
6020
SEQ ID NO. 51 in WO2016014535


CLL1
scFv
6021
SEQ ID NO. 200 in US20160311907A1


CLL1
scFv
6022
SEQ ID NO. 201 in US20160311907A1


CLL1
scFv
6023
SEQ ID NO. 202 in US20160311907A1


CLL1
scFv
6024
SEQ ID NO. 203 in US20160311907A1


CLL1
scFv
6025
SEQ ID NO. 204 in US20160311907A1


CLL1
scFv
6026
SEQ ID NO. 205 in US20160311907A1


CLL1
scFv
6027
SEQ ID NO. 206 in US20160311907A1


CLL1
scFv
6028
SEQ ID NO. 207 in US20160311907A1


CLL1
scFv
6029
SEQ ID NO. 208 in US20160311907A1


CLL1
scFv
6030
SEQ ID NO. 209 in US20160311907A1


CLL1
scFv
6031
SEQ ID NO. 210 in US20160311907A1


CLL1
scFv
6032
SEQ ID NO. 211 in US20160311907A1


CLL1
scFv
6033
SEQ ID NO. 212 in US20160311907A1


CLL1
scFv
6034
SEQ ID NO. 213 in US20160311907A1


CMet
scFv
6035
SEQ ID NO. 11 in US20040166544


CMet
scFv
6036
SEQ ID NO. 12 in US20040166544


CMet
scFv
6037
SEQ ID NO. 13 in US20040166544


CMet
scFv
6038
SEQ ID NO. 14 in US20040166544


CMet
scFv
6039
SEQ ID NO. 15 in US20040166544


CMet
scFv
6040
SEQ ID NO. 16 in US20040166544


CMet
scFv
6041
SEQ ID NO. 17 in US20040166544


CMet
scFv
6042
SEQ ID NO. 18 in US20040166544


CMet
scFv
6043
SEQ ID NO. 19 in US20040166544


CMet
scFv
6044
SEQ ID NO. 2 in US20040166544


CMet
scFv
6045
SEQ ID NO. 21 in US20040166544


CMet
scFv
6046
SEQ ID NO. 22 in US20040166544


CMet
scFv
6047
SEQ ID NO. 23 in US20040166544


CMet
scFv
6048
SEQ ID NO. 25 in US20040166544


CMet
scFv
6049
SEQ ID NO. 26 in US20040166544


CMet
scFv
6050
SEQ ID NO. 26 in US20150299326


CMet
scFv
6051
SEQ ID NO. 27 in US20040166544


CMet
scFv
6052
SEQ ID NO. 27 in US20150299326


CMet
scFv
6053
SEQ ID NO. 28 in US20040166544


CMet
scFv
6054
SEQ ID NO. 28 in US20150299326


CMet
scFv
6055
SEQ ID NO. 29 in US20150299326


CMet
scFv
6056
SEQ ID NO. 3 in US20040166544


CMet
scFv
6057
SEQ ID NO. 30 in US20150299326


CMet
scFv
6058
SEQ ID NO. 30 in US20040166544


CMet
scFv
6059
SEQ ID NO. 31 in US20040166544


CMet
scFv
6060
SEQ ID NO. 32 in US20130034559


CMet
scFv
6061
SEQ ID NO. 32 in US20150299326


CMet
scFv
6062
SEQ ID NO. 33 in US20040166544


CMet
scFv
6063
SEQ ID NO. 34 in US20040166544


CMet
scFv
6064
SEQ ID NO. 35 in US20040166544


CMet
scFv
6065
SEQ ID NO. 36 in US20040166544


CMet
scFv
6066
SEQ ID NO. 37 in US20040166544


CMet
scFv
6067
SEQ ID NO. 38 in US20040166544


CMet
scFv
6068
SEQ ID NO. 39 in US20040166544


CMet
scFv
6069
SEQ ID NO. 4 in US20040166544


CMet
scFv
6070
SEQ ID NO. 40 in US20040166544


CMet
scFv
6071
SEQ ID NO. 41 in US20040166544


CMet
scFv
6072
SEQ ID NO. 42 in US20040166544


CMet
scFv
6073
SEQ ID NO. 43 in US20040166544


CMet
scFv
6074
SEQ ID NO. 44 in US20040166544


CMet
scFv
6075
SEQ ID NO. 48 in US20040166544


CMet
scFv
6076
SEQ ID NO. 49 in US20040166544


CMet
scFv
6077
SEQ ID NO. 5 in US20040166544


CMet
scFv
6078
SEQ ID NO. 50 in US20040166544


CMet
scFv
6079
SEQ ID NO. 51 in US20040166544


CMet
scFv
6080
SEQ ID NO. 52 in US20040166544


CMet
scFv
6081
SEQ ID NO. 53 in US20040166544


CMet
scFv
6082
SEQ ID NO. 54 in US20040166544


CMet
scFv
6083
SEQ ID NO. 55 in US20040166544


CMet
scFv
6084
SEQ ID NO. 56 in US20040166544


CMet
scFv
6085
SEQ ID NO. 57 in US20040166544


CMet
scFv
6086
SEQ ID NO. 58 in US20040166544


CMet
scFv
6087
SEQ ID NO. 6 in US20040166544


CMet
scFv
6088
SEQ ID NO. 60 in US20040166544


CMet
scFv
6089
SEQ ID NO. 7 in US20040166544


CMet
scFv
6090
SEQ ID NO. 9 in US20040166544


CMet
scFv
6091
SEQ ID NO. 29 in US20040166544


CS1
scFv
6092
SEQ ID NO. 1 of WO2016090369


CS1
scFv
6093
SEQ ID NO. 17 in WO2014179759A1


CSPG4
scFv
6094
SEQ ID NO. 2 in WO2015080981


CSPG4
scFv
6095
SEQ ID NO. 2 in EP3074025A1


CXCR4
scFv
6096
SEQ ID NO. 83 in US20110020218


CXCR4
scFv
6097
SEQ ID NO. 85 in US20110020218


CXCR4
scFv
6098
SEQ ID NO. 86 in US20110020218


CXCR4
scFv
6099
SEQ ID NO. 89 in US20110020218


E7MC
scFv
6100
SEQ ID NO. 223 in WO2016182957A1


E7MC
scFv
6101
SEQ ID NO. 224 in WO2016182957A1


E7MC
scFv
6102
SEQ ID NO. 225 in WO2016182957A1


E7MC
scFv
6103
SEQ ID NO. 226 in WO2016182957A1


E7MC
scFv
6104
SEQ ID NO. 227 in WO2016182957A1


E7MC
scFv
6105
SEQ ID NO. 228 in WO2016182957A1


E7MC
scFv
6106
SEQ ID NO. 229 in WO2016182957A1


E7MC
scFv
6107
SEQ ID NO. 230 in WO2016182957A1


E7MC
scFv
6108
SEQ ID NO. 231 in WO2016182957A1


E7MC
scFv
6109
SEQ ID NO. 232 in WO2016182957A1


EGFR
scFv
6110
SEQ ID NO. 11 in WO2014130657


EGFR
scFv
6111
SEQ ID NO. 38 in WO2014130657


EGFR
scFv
6112
SEQ ID NO. 41 in WO2014130657


EGFR
scFv
6113
SEQ ID NO. 44 in WO2014130657


EGFR
scFv
6114
SEQ ID NO. 47 in WO2014130657


EGFR
scFv
6115
SEQ ID NO. 50 in WO2014130657


EGFR
scFv
6116
SEQ ID NO. 53 in WO2014130657


EGFR
scFv
6117
SEQ ID NO. 56 in WO2014130657


EGFR
scFv
6118
SEQ ID NO. 59 in WO2014130657


EGFR
scFv
6119
SEQ ID NO. 62 in WO2014130657


EGFR
scFv
6120
SEQ ID NO. 65 in WO2014130657


EGFR
scFv
6121
SEQ ID NO. 68 in WO2014130657


EGFR
scFv
6122
SEQ ID NO. 71 in WO2014130657


EGFR
scFv
6123
SEQ ID NO. 74 in WO2014130657


EGFR
scFv
6124
SEQ ID NO. 77 in WO2014130657


EGFR
scFv
6125
SEQ ID NO. 80 in WO2014130657


EGFR
scFv
6126
SEQ ID NO. 83 in WO2014130657


EGFR
scFv
6127
SEQ ID NO. 88 in WO2014130657


EGFR
scFv
6128
SEQ ID NO. 91 in WO2014130657


EGFR
scFv
6129
SEQ ID NO. 94 in WO2014130657


EGFR
scFV
6130



EGFR
scFv
6131



EGFR
scFv
6132



EGFR
scFv
6133



EGFR
scFv
6134



EGFR
scFv
6135



EGFR
scFv
6136



EGFR
scFv
6137



EGFR
scFv
6138



EGFR
scFv
6139



EGFR
scFv
6140



EGFR
scFv
6141



EGFR
scFv
6142



EGFR
scFv
6143



EGFR
scFv
6144



EGFR
scFv
6145



EGFR
scFv
6146



EGFR
scFv
6147



EGFR
scFv
6148



EGFR
scFv
6149



EGFR
scFv
6150



EGFR
scFv
6151



EGFR
scFv
6152



EGFR
scFv
6153



EGFR
scFv
6154



EGFR
scFv
6155



EGFR
scFv
6156



EGFRvIII
scFv
6157
SEQ ID NO. 5 in US20140037628


EGFRvIII
scFv
6158
SEQ ID NO. 174 in US20160311907A1


EGFRvIII
scFv
6159
SEQ ID NO. 38 in U.S. Pat. No. 9,394,368B2


EGFRvIII
scFv
6160
SEQ ID NO. 5 in US20160200819A1


END0180
scFv
6161
SEQ ID NO. 6 in WO2013098813


ERBB2
scFv
6162
SEQ ID NO. 26 in US20110059076A1


ERBB2
scFv
6163
SEQ ID NO. 27 in US20110059076A1


ERBB2
scFv
6164
SEQ ID NO. 1 in U.S. Pat. No. 7,244,826


ERBB2
scFv
6165
SEQ ID NO. 2 in U.S. Pat. No. 7,244,826


ESK/WT
scFv
6166
SEQ ID NO. 173 in WO2016115482A1


FcRL5(FcReceptorLike5)
scFv
6167
SEQ ID NO. 11 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6168
SEQ ID NO. 15 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6169
SEQ ID NO. 19 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6170
SEQ ID NO. 23 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6171
SEQ ID NO. 27 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6172
SEQ ID NO. 31 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6173
SEQ ID NO. 35 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6174
SEQ ID NO. 39 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6175
SEQ ID NO. 3 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6176
SEQ ID NO. 43 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6177
SEQ ID NO. 7 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6178
SEQ ID NO. 594 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6179
SEQ ID NO. 596 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6180
SEQ ID NO. 598 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6181
SEQ ID NO. 600 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6182
SEQ ID NO. 602 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6183
SEQ ID NO. 604 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6184
SEQ ID NO. 606 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6185
SEQ ID NO. 608 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6186
SEQ ID NO. 610 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6187
SEQ ID NO. 612 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6188
SEQ ID NO. 614 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6189
SEQ ID NO. 616 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6190
SEQ ID NO. 618 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6191
SEQ ID NO. 620 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6192
SEQ ID NO. 622 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6193
SEQ ID NO. 624 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6194
SEQ ID NO. 626 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6195
SEQ ID NO. 628 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6196
SEQ ID NO. 630 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6197
SEQ ID NO. 632 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6198
SEQ ID NO. 634 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6199
SEQ ID NO. 636 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6200
SEQ ID NO. 638 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6201
SEQ ID NO. 640 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6202
SEQ ID NO. 642 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6203
SEQ ID NO. 644 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6204
SEQ ID NO. 646 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6205
SEQ ID NO. 648 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6206
SEQ ID NO. 652 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6207
SEQ ID NO. 654 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6208
SEQ ID NO. 656 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6209
SEQ ID NO. 658 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6210
SEQ ID NO. 660 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6211
SEQ ID NO. 662 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6212
SEQ ID NO. 664 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6213
SEQ ID NO. 666 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6214
SEQ ID NO. 668 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6215
SEQ ID NO. 670 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6216
SEQ ID NO. 672 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6217
SEQ ID NO. 674 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6218
SEQ ID NO. 676 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6219
SEQ ID NO. 678 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6220
SEQ ID NO. 680 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6221
SEQ ID NO. 682 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6222
SEQ ID NO. 684 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6223
SEQ ID NO. 686 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6224
SEQ ID NO. 688 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6225
SEQ ID NO. 690 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6226
SEQ ID NO. 692 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6227
SEQ ID NO. 694 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6228
SEQ ID NO. 696 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6229
SEQ ID NO. 700 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6230
SEQ ID NO. 702 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6231
SEQ ID NO. 704 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6232
SEQ ID NO. 706 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6233
SEQ ID NO. 708 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6234
SEQ ID NO. 710 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6235
SEQ ID NO. 712 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6236
SEQ ID NO. 714 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6237
SEQ ID NO. 716 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6238
SEQ ID NO. 718 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6239
SEQ ID NO. 720 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6240
SEQ ID NO. 722 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6241
SEQ ID NO. 724 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6242
SEQ ID NO. 726 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6243
SEQ ID NO. 728 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6244
SEQ ID NO. 730 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6245
SEQ ID NO. 732 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6246
SEQ ID NO. 734 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6247
SEQ ID NO. 736 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6248
SEQ ID NO. 738 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6249
SEQ ID NO. 740 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6250
SEQ ID NO. 742 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6251
SEQ ID NO. 744 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6252
SEQ ID NO. 746 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6253
SEQ ID NO. 748 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6254
SEQ ID NO. 750 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6255
SEQ ID NO. 752 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6256
SEQ ID NO. 754 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6257
SEQ ID NO. 756 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6258
SEQ ID NO. 758 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6259
SEQ ID NO. 760 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6260
SEQ ID NO. 762 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6261
SEQ ID NO. 764 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6262
SEQ ID NO. 766 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6263
SEQ ID NO. 768 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6264
SEQ ID NO. 770 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6265
SEQ ID NO. 772 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6266
SEQ ID NO. 774 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6267
SEQ ID NO. 776 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6268
SEQ ID NO. 778 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6269
SEQ ID NO. 780 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6270
SEQ ID NO. 782 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6271
SEQ ID NO. 784 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6272
SEQ ID NO. 786 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6273
SEQ ID NO. 788 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6274
SEQ ID NO. 790 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6275
SEQ ID NO. 792 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6276
SEQ ID NO. 794 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6277
SEQ ID NO. 796 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6278
SEQ ID NO. 798 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6279
SEQ ID NO. 800 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6280
SEQ ID NO. 802 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6281
SEQ ID NO. 804 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6282
SEQ ID NO. 806 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6283
SEQ ID NO. 808 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6284
SEQ ID NO. 810 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6285
SEQ ID NO. 812 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6286
SEQ ID NO. 814 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6287
SEQ ID NO. 816 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6288
SEQ ID NO. 818 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6289
SEQ ID NO. 820 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6290
SEQ ID NO. 822 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6291
SEQ ID NO. 824 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6292
SEQ ID NO. 826 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6293
SEQ ID NO. 828 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6294
SEQ ID NO. 830 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6295
SEQ ID NO. 832 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6296
SEQ ID NO. 834 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6297
SEQ ID NO. 836 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6298
SEQ ID NO. 838 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6299
SEQ ID NO. 840 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6300
SEQ ID NO. 842 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6301
SEQ ID NO. 844 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6302
SEQ ID NO. 846 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6303
SEQ ID NO. 848 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6304
SEQ ID NO. 850 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6305
SEQ ID NO. 852 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6306
SEQ ID NO. 854 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6307
SEQ ID NO. 856 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6308
SEQ ID NO. 858 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6309
SEQ ID NO. 860 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6310
SEQ ID NO. 862 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6311
SEQ ID NO. 864 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6312
SEQ ID NO. 866 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6313
SEQ ID NO. 868 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6314
SEQ ID NO. 870 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6315
SEQ ID NO. 872 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6316
SEQ ID NO. 874 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6317
SEQ ID NO. 876 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6318
SEQ ID NO. 878 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6319
SEQ ID NO. 880 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6320
SEQ ID NO. 882 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6321
SEQ ID NO. 884 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6322
SEQ ID NO. 886 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6323
SEQ ID NO. 888 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6324
SEQ ID NO. 890 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6325
SEQ ID NO. 892 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6326
SEQ ID NO. 894 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6327
SEQ ID NO. 896 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6328
SEQ ID NO. 650 in WO2016090337


FcRL5(FcReceptorLike5)
scFv
6329
SEQ ID NO. 678 in WO2016090337


Folate Receptor
scFv
6330
SEQ ID NO. 15 in US20170002072A1


FOLRl/CD3sBiSpecific
scFv
6331
SEQ ID NO. 90 in WO2014144722A2


GCN4
scFv
6332
SEQ ID NO. 165 in WO2016168773A3


GCN4
scFv
6333
SEQ ID NO. 166 in WO2016168773A3


GCN4
scFv
6334
SEQ ID NO. 167 in WO2016168773A3


GCN4
scFv
6335
SEQ ID NO. 168 in WO2016168773A3


GCN4
scFv
6336
SEQ ID NO. 169 in WO2016168773A3


GCN4
scFv
6337
SEQ ID NO. 170 in WO2016168773A3


GD2
scFv
6338
SEQ ID NO. 19 in WO2016134284


GD2
scFv
6339
SEQ ID NO. 20 in WO2016134284


GD2
scFv
6340
SEQ ID NO. 21 in WO2016134284


GD2
scFv
6341
SEQ ID NO. 7 in WO2015132604


GD2
scFv
6342
SEQ ID NO. 8 in WO2015132604


GPC3
scFv
6343
SEQ ID NO. 1 in WO2016049459


GPC3
scFv
6344
SEQ ID NO. 12 in US20160208015A1


GPC4
scFv
6345
SEQ ID NO. 24 in WO2016049459


GPRC5D
scFv
6346
SEQ ID NO. 100 in WO2016090312


GPRC5D
scFv
6347
SEQ ID NO. 101 in WO2016090312


GPRC5D
scFv
6348
SEQ ID NO. 102 in WO2016090312


GPRC5D
scFv
6349
SEQ ID NO. 103 in WO2016090312


GPRC5D
scFv
6350
SEQ ID NO. 104 in WO2016090312


GPRC5D
scFv
6351
SEQ ID NO. 105 in WO2016090312


GPRC5D
scFv
6352
SEQ ID NO. 106 in WO2016090312


GPRC5D
scFv
6353
SEQ ID NO. 107 in WO2016090312


GPRC5D
scFv
6354
SEQ ID NO. 108 in WO2016090312


GPRC5D
scFv
6355
SEQ ID NO. 109 in WO2016090312


GPRC5D
scFv
6356
SEQ ID NO. 110 in WO2016090312


GPRC5D
scFv
6357
SEQ ID NO. 111 in WO2016090312


GPRC5D
scFv
6358
SEQ ID NO. 112 in WO2016090312


GPRC5D
scFv
6359
SEQ ID NO. 113 in WO2016090312


GPRC5D
scFv
6360
SEQ ID NO. 114 in WO2016090312


GPRC5D
scFv
6361
SEQ ID NO. 115 in WO2016090312


GPRC5D
scFv
6362
SEQ ID NO. 116 in WO2016090312


GPRC5D
scFv
6363
SEQ ID NO. 117 in WO2016090312


GPRC5D
scFv
6364
SEQ ID NO. 118 in WO2016090312


GPRC5D
scFv
6365
SEQ ID NO. 119 in WO2016090312


GPRC5D
scFv
6366
SEQ ID NO. 120 in WO2016090312


GPRC5D
scFv
6367
SEQ ID NO. 121 in WO2016090312


GPRC5D
scFv
6368
SEQ ID NO. 122 in WO2016090312


GPRC5D
scFv
6369
SEQ ID NO. 123 in WO2016090312


GPRC5D
scFv
6370
SEQ ID NO. 301 in WO2016090312


GPRC5D
scFv
6371
SEQ ID NO. 313 in WO2016090312


GPRC5D
scFv
6372
SEQ ID NO. 325 in WO2016090312


GPRC5D
scFv
6373
SEQ ID NO. 337 in WO2016090312


GPRC5D
scFv
6374
SEQ ID NO. 349 in WO2016090312


GPRC5D
scFv
6375
SEQ ID NO. 361 in WO2016090312


GPRC5D
scFv
6376
SEQ ID NO. 373 in WO2016090312


GPRC5D
scFv
6377
SEQ ID NO. 385 in WO2016090312


HER2/CD3
scFv
6378
SEQ ID N0. 9 in WO2014144722A2


humanCD79b1F10
scFv
6379
SEQ ID NO. 33 in WO2016112870


Human collagen VII
scFv
6380
SEQ ID NO. 34 in WO2016112870


Integrin Bivalent
scFv
6381
SEQ ID N0. 2 in WO2009070753


Integrin Bivalent
scFv
6382
SEQ ID NO. 1 in WO2009070753


Ipilimumab
scFv
6383
SEQ ID NO. 39 in US20160208021


Ipilimumab
scFv
6384
SEQ ID NO. 39 in WO2016112870


IL4
scFv
6385
SEQ ID NO. 17 in WO2009121847


IL4R
scFv
6386
SEQ ID NO. 16 in WO2009121847


Mec/CD3sBispecific
scFv
6387
SEQ ID NO. 78 in WO2014144722A2


Mesothelin
scFv
6388
SEQ ID NO. 7 WO2015188141


Mesothelin
scFv
6389
SEQ ID NO 47 in WO2016090034


Mesothelin
scFv
6390
SEQ ID NO in 46 in WO2016090034


Mesothelin
scFv
6391
SEQ ID NO in 57 in WO2016090034


Mesothelin
scFv
6392
SEQ ID NO. 48 in WO2016090034


Mesothelin
scFv
6393
SEQ ID NO. 49 in WO2016090034


Mesothelin
scFv
6394
SEQ ID NO. 50 in WO2016090034


Mesothelin
scFv
6395
SEQ ID NO. 51 in WO2016090034


Mesothelin
scFv
6396
SEQ ID NO. 53 in WO2016090034


Mesothelin
scFv
6397
SEQ ID NO. 54 in WO2016090034


Mesothelin
scFv
6398
SEQ ID NO. 55 in WO2016090034


Mesothelin
scFv
6399
SEQ ID NO. 56 in WO2016090034


Mesothelin
scFv
6400
SEQ ID NO. 58 in WO2016090034


Mesothelin
scFv
6401
SEQ ID NO. 59 WO2016090034


Mesothelin
scFv
6402
SEQ ID NO. 62 in WO2016090034


Mesothelin
scFv
6403
SEQ ID NO. 64 in WO2016090034


Mesothelin
scFv
6404
SEQ ID NO. 65 in WO2016090034


Mesothelin
scFv
6405
SEQ ID NO. 66 in WO2016090034


Mesothelin
scFv
6406
SEQ ID NO. 67 in WO2016090034


Mesothelin
scFv
6407
SEQ ID NO. 68 in WO2016090034


Mesothelin
scFv
6408
SEQ ID NO. 69 in WO2016090034


Mesothelin
scFv
6409
SEQ ID NO. 7 WO2015188141


Mesothelin
scFv
6410
SEQ ID NO. 70 in WO2016090034


Mesothelin
scFv
6411
SEQ ID NO. 52 in WO2016090034


Mesothelin
scFv
6412
SEQ ID NO. 60 in WO2016090034


Mesothelin
scFv
6413
SEQ ID NO. 61 in WO2016090034


Mesothelin
scFv
6414
SEQ ID NO. 63 in WO2016090034


Mesothelin
scFv
6415
SEQ ID NO. 10 in WO2013142034


Mesothelin
scFv
6416
SEQ ID NO. 11 in WO2013142034


Mesothelin
scFv
6417
SEQ ID NO. 12 in WO2013142034


Mesothelin
scFv
6418
SEQ ID NO. 11 in WO2013063419


MUC1
scFv
6419
SEQ ID NO. 15 in US20160130357


MUC2
scFv
6420
SEQ ID NO. 17 in US20160130357


MUC3
scFv
6421
SEQ ID NO. 15 in US20160130357


MUC4
scFv
6422
SEQ ID NO. 17 in US20160130357


Nivolumab
scFv
6423
SEQ ID NO. 38 in US20160208021


Nivolumab
scFv
6424
SEQ ID NO. 38 in WO2016112870


NYBR1
scFv
6425
SEQ ID NO. 21 in US20160333422A1


NYBR1
scFv
6426
SEQ ID NO. 21 in WO2015112830


NYBR1

6427
SEQ ID NO. 18 in WO2015112830


NYBR1

6428
SEQ ID NO. 19 in WO2015112830


O acetylated GD2 ganglioside
scFv
6429
SEQ ID NO. 29 in US20150140023


O acetylated GD2 ganglioside
scFv
6430
SEQ ID NO. 31 in US20150140023


OX40
scFv
6431
SEQ ID NO. 33 in US20150190506


PD1
scFv
6432
SEQ ID NO. 39 in US20160311917A1


PD1
scFv
6433
SEQ ID NO. 40 in US20160311917A1


PD1
scFv
6434
SEQ ID NO. 41 in US20160311917A1


PD1
scFv
6435
SEQ ID NO. 42 in US20160311917A1


PD1
scFv
6436
SEQ ID NO. 43 in US20160311917A1


PD1
scFv
6437
SEQ ID NO. 44 in US20160311917A1


PD1
scFv
6438
SEQ ID NO. 45 in US20160311917A1


PD1
scFv
6439
SEQ ID NO. 46 in US20160311917A1


PD1
scFv
6440
SEQ ID NO. 47 in US20160311917A1


PD1
scFv
6441
SEQ ID NO. 48 in US20160311917A1


PD1
scFv
6442
SEQ ID NO. 49 in US20160311917A1


PD1
scFv
6443
SEQ ID NO. 50 in US20160311917A1


PD1
scFv
6444
SEQ ID NO. 51 in US20160311917A1


PD1
scFv
6445
SEQ ID NO. 52 in US20160311917A1


PD1
scFv
6446
SEQ ID NO. 53 in US20160311917A1


PD1
scFv
6447
SEQ ID NO. 54 in US20160311917A1


PD1
scFv
6448
SEQ ID NO. 55 in US20160311917A1


PD1
scFv
6449
SEQ ID NO. 56 in US20160311917A1


PD1
scFv
6450
SEQ ID NO. 57 in US20160311917A1


PD1
scFv
6451
SEQ ID NO. 58 in US20160311917A1


PD1
scFv
6452
SEQ ID NO. 59 in US20160311917A1


PD1
scFv
6453
SEQ ID NO. 60 in US20160311917A1


PD1
scFv
6454
SEQ ID NO. 61 in US20160311917A1


PDK1
scFv
6455
SEQ ID NO. 15 in WO2016090365


PDL1
Nanobody
6456
SEQ ID NO. 22 in US20110129458


PDL1
Nanobody
6457
SEQ ID NO. 23 in US20110129458


PDL1
Nanobody
6458
SEQ ID NO. 24 in US20110129458


PDL1
Nanobody
6459
SEQ ID NO. 25 in US20110129458


PDL1
Nanobody
6460
SEQ ID NO. 26 in US20110129458


PDL1
Nanobody
6461
SEQ ID NO. 27 in US20110129458


PDL2
Nanobody
6462
SEQ ID NO. 28 in US20110129458


PDL2
Nanobody
6463
SEQ ID NO. 29 in US20110129458


PDL2
Nanobody
6464
SEQ ID NO. 30 in US20110129458


PDL2
Nanobody
6465
SEQ ID NO. 31 in US20110129458


PDL2
Nanobody
6466
SEQ ID NO. 32 in US20110129458


PDL2
Nanobody
6467
SEQ ID NO. 33 in US20110129458


PRAME
scFv
6468
SEQ ID NO. 63 in WO2016191246A2


PRAME
scFv
6469
SEQ ID NO. 64 in WO2016191246A2


PRAME
scFv
6470
SEQ ID NO. 65 in WO2016191246A2


PRAME
scFv
6471
SEQ ID NO. 66 in WO2016191246A2


PRAME
scFv
6472
SEQ ID NO. 67 in WO2016191246A2


PRAME
scFv
6473
SEQ ID NO. 68 in WO2016191246A2


PRAME
scFv
6474
SEQ ID NO. 69 in WO2016191246A2


PSMA
scFv
6475
SEQ ID NO. 19 in WO2012145714


PSMA
scFv
6476
SEQ ID NO. 21 in WO2012145714


PSMA
scFv
6477
SEQ ID NO. 30 in WO2012145714


PSMA
scFv
6478
SEQ ID NO. 31 in WO2012145714


PSMA
scFv
6479
SEQ ID NO. 34 in WO2012145714


PSMA
scFv
6480
SEQ ID NO. 35 in WO2012145714


PSMA
Diabody
6481
SEQ ID NO. 12 in WO2011069019


PSMA
Diabody
6482
SEQ ID NO. 13 in WO2011069019


PSMA
Diabody
6483
SEQ ID NO. 14 in WO2011069019


PSMA
Diabody
6484
SEQ ID NO. 15 in WO2011069019


radiation inducible neoantigen
scFv
6485
SEQ ID NO 22 in WO2005042780A1


radiation inducible neoantigen
scFv
6486
SEQ ID NO 24 in WO2005042780A1


Ranibizuman
scFv
6487
SEQ ID NO. 40 in US20160208021


Ranibizuman
scFv
6488
SEQ ID NO. 40 in WO2016112870


RAS
scFv
6489
SEQ ID NO. 81 in WO2016154047


Rituximab
scFv
6490
SEQ ID NO. 36 in US20160208021


Rituximab
scFv
6491
SEQ ID NO. 36 in WO2016112870


RORI
scFv
6492
SEQ ID NO. 34 in EP3083691A2


RORI
scFv
6493
SEQ ID NO. 249 in US20160208018A1


RORI
scFv
6494
SEQ ID NO. 250 in US20160208018A1


RORI
scFv
6495
SEQ ID NO. 251 in US20160208018A1


RORI
scFv
6496
SEQ ID NO. 252 in US20160208018A1


RORI
scFv
6497
SEQ ID NO. 253 in US20160208018A1


RORI
scFv
6498
SEQ ID NO. 254 in US20160208018A1


RORI
scFv
6499
SEQ ID NO. 255 in US20160208018A1


RORI
scFv
6500
SEQ ID NO. 256 in US20160208018A1


RORI
scFv
6501
SEQ ID NO. 257 in US20160208018A1


RORI
scFv
6502
SEQ ID NO. 258 in US20160208018A1


RORI
scFv
6503
SEQ ID NO. 259 in US20160208018A1


RORI
scFv
6504
SEQ ID NO. 260 in US20160208018A1


RORI
scFv
6505
SEQ ID NO. 261 in US20160208018A1


RORI
scFv
6506
SEQ ID NO. 262 in US20160208018A1


RORI
scFv
6507
SEQ ID NO. 263 in US20160208018A1


RORI
scFv
6508
SEQ ID NO. 264 in US20160208018A1


RORI
scFv
6509
SEQ ID NO. 265 in US20160208018A1


RORI
scFv
6510
SEQ ID NO. 266 in US20160208018A1


RORI
scFv
6511
SEQ ID NO. 267 in US20160208018A1


RORI
scFv
6512
SEQ ID NO. 268 in US20160208018A1


RORI
scFv
6513
SEQ ID NO. 57 in EP3083671A1


RORI
scFv
6514
SEQ ID NO. 1 in US20160304619A1


RORI
scFv
6515
SEQ ID NO. 2 in US20160304619A1


RORI
scFv
6516
SEQ ID NO. 34 in WO2015092024A2


Teplizumab
scFv
6517
SEQ ID NO. 42 in WO2016112870


Teplizumab(mutated)
scFv
6518
SEQ ID NO. 42 in US20160208021


TOSO
scFv
6519
SEQ ID NO. 2 in EP3098237A1


Trastuzumab
scFv
6520
SEQ ID NO. 35 in US20160208021


Trastuzumab
scFv
6521
SEQ ID NO. 35 in WO2016112870


TRBC1
scFv
6522
SEQ ID NO. 13 in WO2015132598


TRBC1
scFv
6523
SEQ ID NO. 14 in WO2015132598


TRBC1
scFv
6524
SEQ ID NO. 15 in WO2015132598


TRBC1
scFv
6525
SEQ ID NO. 16 in WO2015132598


TRBC1
scFv
6526
SEQ ID NO. 17 in WO2015132598


TRBC1
scFv
6527
SEQ ID NO. 18 in WO2015132598


TRBC1
scFv
6528
SEQ ID NO. 19 in WO2015132598


TRBC1
scFv
6529
SEQ ID NO. 20 in WO2015132598


TRBC1
scFv
6530
SEQ ID NO. 21 in WO2015132598


TRBC1
scFv
6531
SEQ ID NO. 22 in WO2015132598


TRBC1
scFv
6532
SEQ ID NO. 3 in WO2015132598


TRBC2
scFv
6533
SEQ ID NO. 23 in WO2015132598


TRBC2
scFv
6534
SEQ ID NO. 24 in WO2015132598


TRBC2
scFv
6535
SEQ ID NO. 25 in WO2015132598


TRBC2
scFv
6536
SEQ ID NO. 26 in WO2015132598


TRBC2
scFv
6537
SEQ ID NO. 27 in WO2015132598


TRBC2
scFv
6538
SEQ ID NO. 28 in WO2015132598


TRBC2
scFv
6539
SEQ ID NO. 29 in WO2015132598


TRBC2
scFv
6540
SEQ ID NO. 30 in WO2015132598


TRBC2
scFv
6541
SEQ ID NO. 31 in WO2015132598


TRBC2
scFv
6542
SEQ ID NO. 32 in WO2015132598


TSLPR
scFv
6543
SEQ ID NO. 1 in US20160311910A1


TSLPR
scFv
6544
SEQ ID NO. 2 in US20160311910A1


TSLPR
scFv
6545
SEQ ID NO. 1 in WO2015084513


TSLPR
scFv
6546
SEQ ID NO. 2 in WO2015084513


VEGF
scFv
6547
SEQ ID NO. 168 in US20160090427


VEGF
scFv
6548
SEQ ID NO. 169 in US20160090427


VEGF
scFv
6549
SEQ ID NO. 170 in US20160090427


VEGF
scFv
6550
SEQ ID NO. 171 in US20160090427


VEGF
scFv
6551
SEQ ID NO. 172 in US20160090427


VEGF
scFv
6552
SEQ ID NO. 173 US20160090427


VEGF
scFv
6553
SEQ ID NO. 174 in US20160090427


VEGF
scFv
6554
SEQ ID NO. 175 in US20160090427


VEGFR
scFv
6555
SEQ ID NO. 498 in US20110177074A1


VEGFR
scFv
6556
SEQ ID NO. 500 in US20110177074A1


VEGFR
scFv
6557
SEQ ID NO. 502 in US20110177074A1


VEGFR
scFv
6558
SEQ ID NO. 504 in US20110177074A1


VEGFR
scFv
6559
SEQ ID NO. 506 in US20110177074A1


VEGFR
scFv
6560
SEQ ID NO. 508 in US20110177074A1


VEGFR2
scFv
6561
SEQ ID NO. 1 in US20120213783


VEGFR2
scFv
6562
SEQ ID NO. 2 in US20120213783


WT1/HLA Bispecific
scFv
6563
SEQ ID NO. 108 in WO2015070061


WT1/HLA Bispecific
scFv
6564
SEQ ID NO. 113 in WO2015070061


WT1/HLA Bispecific
scFv
6565
SEQ ID NO. 18 in WO2015070061


WT1/HLA Bispecific
scFv
6566
SEQ ID NO. 36 in WO2015070061


WT1/HLA Bispecific
scFv
6567
SEQ ID NO. 54 in WO2015070061


WT1/HLA Bispecific
scFv
6568
SEQ ID NO. 72 in WO2015070061


WT1/HLA Bispecific
scFv
6569
SEQ ID NO. 90 in WO2015070061


αfolate receptor(FRα)
scFv
6570
SEQ ID NO. 15 in WO2012099973


αfolate receptor(FRα)
scFv
6571
SEQ ID NO. 23 in WO2012099973









In one embodiment, the targeting moiety of the CAR may recognize CD19. CD19 is a well-known B cell surface molecule, which upon B cell receptor activation enhances B-cell antigen receptor induced signaling and expansion of B cell populations. CD19 is broadly expressed in both normal and neoplastic B cells. Malignancies derived from B cells such as chronic lymphocytic leukemia, acute lymphocytic leukemia and many non-Hodgkin lymphomas frequently retain CD19 expression. This near universal expression and specificity for a single cell lineage has made CD19 an attractive target for immunotherapies. Human CD19 has 14 exons wherein exon 1-4 encode the extracellular portion of the CD19, exon 5 encodes the transmembrane portion of CD19 and exons 6-14 encode the cytoplasmic tail. In one embodiment, the targeting moiety may comprise scFvs derived from the variable regions of the FMC63 antibody. FMC63 is an IgG2a mouse monoclonal antibody clone specific to the CD19 antigen that reacts with CD19 antigen on cells of the B lineage. The epitope of CD19 recognized by the FMC63 antibody is in exon 2 (Sotillo et al (2015) Cancer Discov; 5(12):1282-95; the contents of which are incorporated by reference in their entirety). In some embodiments, the targeting moiety of the CAR may be derived from the variable regions of other CD19 monoclonal antibody clones including but not limited to 4G7, SJ25C1, CVID3/429, CVID3/155, HIB19, and J3-119.


In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells). In the context of CD19, TSAs may include a transcript variant of human CD19 lacking exon 2 or lacking exon 5-6 or both (see International patent publication No. WO2016061368; the contents of which are incorporated herein by reference in their entirety). Since FMC63 binding epitope is in exon 2, CD19 lacking exon 2 is not recognized by FMC63 antibody. Thus, in some embodiments, the targeting moiety of the CAR may be an FMC63-distinct scFV. As used herein “FMC63-distinct” refers, to an antibody, scFv or a fragment thereof that is immunologically specific and binds to an epitope of the CD19 antigen that is different or unlike the epitope of CD19 antigen that is bound by FMC63. In some instances, targeting moiety may recognize a CD19 antigen lacking exon2. In one embodiment, the targeting moiety recognizes a fragment of CD19 encoded by exon 1, 3 and/or 4. In one example, the targeting moiety recognizes the epitope that bridges the portion of CD19 encoded by exon 1 and the portion of CD19 encoded by exon 3.


Intracellular Signaling Domains


The intracellular domain of a CAR fusion polypeptide, after binding to its target molecule, transmits a signal to the immune effector cell, activating at least one of the normal effector functions of immune effector cells, including cytolytic activity (e.g., cytokine secretion) or helper activity. Therefore, the intracellular domain comprises an “intracellular signaling domain” of a T cell receptor (TCR).


In some aspects, the entire intracellular signaling domain can be employed. In other aspects, a truncated portion of the intracellular signaling domain may be used in place of the intact chain as long as it transduces the effector function signal.


In some embodiments, the intracellular signaling domain of the present invention may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs (ITAMs). Examples of ITAM containing cytoplasmic signaling sequences include those derived from TCR CD3 zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, and CD66d. In one example, the intracellular signaling domain is a CD3 zeta (CD3ζ) signaling domain.


In some embodiments, the intracellular region of the present invention further comprises one or more costimulatory signaling domains which provide additional signals to the immune effector cells. These costimulatory signaling domains, in combination with the signaling domain can further improve expansion, activation, memory, persistence, and tumor-eradicating efficiency of CAR engineered immune cells (e.g., CART cells). In some cases, the costimulatory signaling region contains 1, 2, 3, or 4 cytoplasmic domains of one or more intracellular signaling and/or costimulatory molecules. The costimulatory signaling domain may be the intracellular/cytoplasmic domain of a costimulatory molecule, including but not limited to CD2, CD7, CD27, CD28, 4-1BB (CD137), OX40 (CD134), CD30, CD40, ICOS (CD278), GITR (glucocorticoid-induced tumor necrosis factor receptor), LFA-1 (lymphocyte function-associated antigen-1), LIGHT, NKG2C, B7-H3. In one example, the costimulatory signaling domain is derived from the cytoplasmic domain of CD28. In another example, the costimulatory signaling domain is derived from the cytoplasmic domain of 4-1BB (CD137). In another example, the co-stimulatory signaling domain may be an intracellular domain of GITR as taught in U.S. Pat. NO.: 9, 175, 308; the contents of which are incorporated herein by reference in its entirety.


In some embodiments, the intracellular region of the present invention may comprise a functional signaling domain from a protein selected from the group consisting of an MHC class I molecule, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation protein (SLAM) such as CD48, CD229, 2B4, CD84, NTB-A, CRACC, BLAME, CD2F-10, SLAMF6, SLAMF7, an activating NK cell receptor, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, IL15Rα, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, NKD2C SLP76, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, CD270 (HVEM), GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, DAP 10, TRIM, ZAP70, Killer immunoglobulin receptors (KIRs) such as KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1/S1, KIR3DL2, KIR3DL3, and KIR2DP1; lectin related NK cell receptors such as Ly49, Ly49A, and Ly49C.


In some embodiments, the intracellular signaling domain of the present invention may contain signaling domains derived from JAK-STAT. In other embodiments, the intracellular signaling domain of the present invention may contain signaling domains derived from DAP-12 (Death associated protein 12) (Topfer et al., Immunol., 2015, 194: 3201-3212; and Wang et al., Cancer Immunol., 2015, 3: 815-826). DAP-12 is a key signal transduction receptor in NK cells. The activating signals mediated by DAP-12 play important roles in triggering NK cell cytotoxicity responses toward certain tumor cells and virally infected cells. The cytoplasmic domain of DAP12 contains an Immunoreceptor Tyrosine-based Activation Motif (ITAM). Accordingly, a CAR containing a DAP12-derived signaling domain may be used for adoptive transfer of NK cells.


In some embodiments, T cells engineered with two or more CARs incorporating distinct co-stimulatory domains and regulated by distinct DD may be used to provide kinetic control of downstream signaling.


In some embodiments, the payload of the invention may be any of the co-stimulatory molecules and/or intracellular domains described herein. In some embodiments, one or more co-stimulatory molecules, each under the control of different SRE may be used in the present invention. SRE regulated co-stimulatory molecules may also be expressed in conjunction with a first-generation CAR, a second-generation CAR, a third-generation CAR, a fourth-generation, or any other CAR design described herein.


In some embodiments, the intracellular domain of the present invention may comprise amino acid sequences of Table 12.









TABLE 12







Intracellular signaling and co-stimulatory domains











SEQ ID


Domain
Amino Acid Sequence
NO.





2B4 co-stimulatory domain
WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTF
6572



PGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSRKSGSRK




RNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS






CD27 co-stimulatory domain
HQRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDY
6573



RKPEPACSP






CD272 (BTLA1) co-
RRHQGKQNELSDTAGREINLVDAKLKSEQTEASTRQNSQ
6574


stimulatory domain
VLLSETGIYDNDPDLCFRMQEGSEVYSNPCLEENKPGIVY




ASLNHSVIGPNSRLARNVKEAPIEYASICVRS






CD272 (BTLA1) co-
CCLRRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQ
6575


stimulatory domain
NSQVLLSETGIYDNDPDLCFRMQEGSEVYSNPCLEENKP




GIVYASLNHSVIGPNSRLARNVKEAPIEYASICVRS






CD28 co-stimulatory
FWVLVVVGGVLACYSLLVTVAFIIFWV
6576





CD28 co-stimulatory domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG
6577



CEL






CD28 co-stimulatory domain
FWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD
6578



FAAYRS






CD28 co-stimulatory domain
RSKRSRGGHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA
6579



YRS






CD28 co-stimulatory domain
RSKRSRGGHSDYIVINMTPRRPGPTRKHYQPYAPPRDFA
6580



AYRS






CD28 co-stimulatory
MLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNAVNLS
6581


signaling region
CKYSYNLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQ




VYSKTGFNCDGKLGNESVTFYLQNLYVNQTDIYFCKIEV




MYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVL




VVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNM




TPRRPGPTRKHYQPYAPPRDFAAYRS






CD30 co-stimulatory domain
RRACRKRIRQKLHLCYPVQTSQPKLELVDSRPRRSSTQLR
6582



SGASVTEPVAEERGLMSQPLMETCHSVGAAYLESLPLQD




ASPAGGPSSPRDLPEPRVSTEHTNNKIEKIYIMKADTVIVG




TVKAELPEGRGLAGPAEPELEEELEADHTPHYPEQEIEPP




LGSCSDVMLSVEEEGKEDPLPTAASGK






CD30 co-stimulatory domain
RRACRKRIRQKLHLCYPVQTSQPKLELVDSRPRRSSTQLR
6583



SGASVTEPVAEERGLMSQPLMETCHSVGAAYLESLPLQD




ASPAGGPSSPRDLPEPRVSTEHTNNKIEKIYIMKADTVIVG




TVKAELPEGRGLAGPAEPELEEELEADHTPHYPEQETEPP




LGSCSDVMLSVEEEGKEDPLPTAASGK






GITR co-stimulatory domain
HIWQLRSQCMWPRETQLLLEVPPSTEDARSCQFPEEERG
6584



ERSAEEKGRLGDLWV






HVEM co-stimulatory
CVKRRKPRGDVVKVIVSVQRKRQEAEGEATVIEALQAPP
6585


domain
DVTTVAVEETIPSFTGRSPNH






ICOS co-stimulatory domain
TKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVTL
6586





ICOS co-stimulatory
CWLTKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVT
6587


signaling domain
L






LAG-3 co-stimulatory region
HLWRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPEPE
6588



PEPEPEPEPEPEQL






OX40 co-stimulatory domain
ALYLLRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTL
6589



AKI






OX40 co-stimulatory domain
RRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI
6590





4-1BB intracellular domain
KRGRKKLLYIFKQPFMRPVQTIQEEDGCSCRFPEEEEGGC
6591



EL






4-1BB signaling domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG
6592



YEL






4-1BB-CD3Zeta intracellular
TGTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR
6593


domain
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR






4-1BB-Z endodomain fusion
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG
6594



CELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL




DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS




EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP




PR






CD127 intracellular domain
KRIKPIVWPSLPDHKKTLEHLCKKPRKNLNVSFNPESFLD
6595



CQIHRVDDIQARDEVEGFLQDTFPQQLEESEKQRLGGDV




QSPNCPSEDVVITPESFGRDSSLTCLAGNVSACDAPILSSS




RSLDCRESGKNGPHVYQDLLLSLGTTNSTLPPPFSLQSGIL




TLNPVAQGQPILTSLGSNQEEAYVTMSSFYQNQ






CD137 intracellular domain
RFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEE
6596



EEGGCEL






CD148 intracellular domain
RKKRKDAKNNEVSFSQIKPKKSKLIRVENFEAYFKKQQA
6597



DSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNN




VLPYDISRVKLSVQTHSTDDYINANYMPGYHSKKDFIAT




QGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCE




EYWPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTS




ESHPLRQFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQS




PPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGI




VYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQKDSKVD




LIYQNTTAMTIYENLAPVTTFGKTNGYIA






CD27 intracellular domain
QRRKYRSNKGESPVEPAEPCHYSCPREEEGSTIPIQEDYR
6598



KPEPACSP






CD28 intracellular domain
FAAYRS
6599





CD28 signaling chain
FWVLVVVGGVLACYSLLVTVAFBFWVRSKRSRLLHSDY
6600



MNMTPRRPGPTRKHYQPYAPPRDFAAYRS






CD28 signaling domain
RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA
6601



YRS






CD28 signaling domain
SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAY
6602



RS






CD28 signaling domain
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPF
6603



WVLVVVGGVLACYSLLVTVAFIIFWRSKRSRLLHSDYM




NMTPRRPGPTRKHYQPYAPPRDFAAYRS






CD28, 4-1BB, and/or CD3ζ
RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA
6604


signaling domain
YRSRFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCR




FPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGR




REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK




MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR






CD28/CD3C
AAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPS
6605



KPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHS




DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD28-0XZ intracellular
RSKRSRLLHSDYNMTPRRPGPTRKHYQPYAPPRDFAAYR
6606


domain
SRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR




DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE




RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD28-4-1BB intracellular
MFWVLVVVGGVLACYSLLVTVAFIIFWVKRGRKKLLYIF
6607


domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL






CD28-4-1BB intracellular
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPF
6608


domain
WVLVVVGGVLACYSLLVTVAFIIFWVKRGRKKLLYIFKQ




PFMRPVQTTQEEDGCSCRFPEEEEGGCEL






CD28-CD3 Zeta intracellular
RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA
6609


domain
YRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL




DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS




EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP




PR






CD28-CD3 Zeta intracellular
KRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYR
6610


domain
SRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK




RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG




MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 delta chain intracellular
MEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI
6611


signaling domain
TWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD




KESTVQVHYRMCQSCVELDPATVAGIIVTDVIATLLLAL




GVFCFAGHETGRLSGAADTQALLRNDQVYQPLRDRDDA




QYSHLGGNWARNK






CD3 delta chain intracellular
MEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI
6612


signaling domain
TWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD




KESTVQVHYRTADTQALLRNDQVYQPLRDRDDAQYSHL




GGNWARNK






CD3 delta chain intracellular
DQVYQPLRDRDDAQYSHLGGN
6613


signaling domain







CD3 delta intracellular
MEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI
6614


domain
TWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD




KESTVQVHYRMCQSCVELDPATVAGIIVTDVIATLLLAL




GVFCFAGHETGRLSGAADTQALLRNDQVYQPLRDRDDA




QYSHLGGNWARNK






CD3 delta intracellular
MEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI
6615


domain
TWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD




KESTVQVHYRTADTQALLRNDQVYQPLRDRDDAQYSHL




GGNWARNK






CD3 delta intracellular
DQVYQPLRDRDDAQYSHLGGN
6616


domain







CD3 epsilon intracellular
MQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYK
6617


domain
VSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKNIGS




DEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRA




RVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNR




KAKAKPVTRGAGAGGRQRGQNKERPPPVPNPDYEPIRK




GQRDLYSGLNQRRI






CD3 epsilon intracellular
NPDYEPIRKGQRDLYSGLNQR
6618


domain







CD3 gamma intracellular
MEQGKGLAVLILAIILLQGTLAQSIKGNHLVKVYDYQED
6619


domain
GSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWNLGSN




AKDPRGMYQCKGSQNKSKPLQVYYRMCQNCIELNAATI




SGFLFAEIVSIFVLAVGVYFIAGQDGVRQSRASDKQTLLP




NDQLYQPLKDREDDQYSHLQGNQLRRN






CD3 gamma intracellular
DQLYQPLKDREDDQYSHLQGN
6620


domain







CD3 gamma intracellular
DQLYQPLKDREDDQYSHLQGN
6621


domain







CD3 gamma intracellular
MEQGKGLAVLILAIILLQGTLAQSIKGNHLVKVYDYQED
6622


domain
GSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWNLGSN




AKDPRGMYQCKGSQNKSKPLQVYYRMCQNCIELNAATI




SGFLFAEIVSIFVLAVGVYFIAGQDGVRQSRASDKQTLLP




NDQLYQPLKDREDDQYSHLQGNQLRRN






CD3 zeta intracellular
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF
6623


domain
IYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR




REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK




MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR






CD3 zeta intracellular
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF
6624


domain
IYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR




REEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKD




KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR






CD3 zeta intracellular
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF
6625


domain
IYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR




REEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKD




KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR






CD3 zeta inttacellular
NQLYNELNLGRREEYDVLDKR
6626


domain







CD3 zeta domain 2
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
6627


(NM_000734.3)
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
DGLYQGLSTATKDTYDALHMQ
6628


domain







CD3 zeta intracellular
RVKFSRSAEPPAYQQGQNQLYNELNLGRREEYDVLDKR
6629


domain
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
6630


domain
RGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEIG




MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLD
6631


domain
KRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEI




GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPP




R






CD3 zeta intracellular
RVKFSRSADAPAYQQGEYDVLDKRRGRDPEMGGKPRRK
6632


domain
NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL




YQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RVKFSRSADAPAYQQGQNQLYNELNLGRREEVDVLDKR
6633


domain
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
MIPAVVLLLLLLVEQAAALGEPQLCYILDAILFLVGIVLTL
6634


domain
LVCRLKIQVRKAAITSYEKSRVKFSRSADAPAYQQGQNQ




LYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG




LYNELQKDKMAEAVSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR






CD3 zeta intracellular
LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK
6635


domain
RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG




MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
6636


domain
RGRDPEMGGKPQRRKNPQEGLY






CD3 zeta intracellular
LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK
6637


domain
RRGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEI




GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPP




R






CD3 zeta intracellular
RRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK
6638


domain
RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG




MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
NQLYNELNLGRREEYDVLDKR
6639


domain







CD3 zeta intracellular
EGLYNELQKDKMAEAYSEIGMK
6640


domain







CD3 zeta intracellular
DGLYQGLSTATKDTYDALHMQ
6641


domain







CD3 zeta intracellular
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
6642


domain
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKR
6643


domain
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR
6644


domain
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALP






CD3 zeta intracellular
DPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQG
6645


domain
QNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL




YQGLSTATKDTYDALHMQALPPR






CD3 zeta intracellular
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF
6646


domain
IYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR




REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK




MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR






CD40 intracellular domain
RSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI
6647





CD79A intracellular domain
MPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV
6648



PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT




WPPEFLGPGEDPNGTLIIQNVNKSHGGIYVCRVQEGNESY




QQSCGTYLRVRQPPPRPFLDMGEGTKNRIITAEGIILLFCA




VVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLNLD




DCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP






CD79A intracellular domain
MPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV
6649



PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT




WPPEFLGPGEDPNEPPPRPFLDMGEGTKNRIITAEGIILLF




CAVVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLN




LDDCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP






CD79A intracellular domain
MPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV
6650



PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT




WPPEFLGPGEDPNGTLIIQNVNKSHGGIYVCRVQEGNESY




QQSCGTYLRVRQPPPRPFLDMGEGTKNRIITAEGIILLFCA




VVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLNLD




DCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP






CD79A intracellular domain
ENLYEGLNLDDCSMYEDISRG
6651





CD8 intracellular domain
FVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA
6652



GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCN




HRNR






CD8 intracellular domain
FVPVFLPAKPITTPAPRPPTPAPTIASQPLSLRPEACRPAAG
6653



GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNH




RNR






CD8a intracellular domain
PTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL
6654



DFACDI






CTLA4 intracellular domain
AVSLSKMLKKRSPLTTGVFVKMAPTEAECEKQFQPYFIPI
6655



N






CTLA4 intracellular domain
AVSLSKMLKKRSPLTTGVYMNMTPRRPECEKQFQPYAPP
6656



RDFAAYRS






DAP10 intracellular domain
RPRRSPAQDGKVYINMPGRG
6657





DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP
6658



GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEAA




TRKQRITETESPYQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP
6659



GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEATR




KQRITETESPYQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD
6660



LVLTVLIALAVYFLGRLVPRGRGAAEAATRKQRITETESP




YQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD
6661



LVLTVLIALAVYFLGRLVPRGRGAAEATRKQRITETESPY




QELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP
6662



GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEAA




TRKQRITETESPYQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP
6663



GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEATR




KQRITETESPYQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD
6664



LVLTVLIALAVYFLGRLVPRGRGAAEAATRKQRITETESP




YQELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
MGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD
6665



LVLTVLIALAVYFLGRLVPRGRGAAEATRKQRITETESPY




QELQGQRSDVYSDLNTQRPYYK






DAP12 intracellular domain
ESPYQELQGQRSDVYSDLNTQ
6666





DAP12 intracellular domain
ESPYQELQGQRSDVYSDLNTQ
6667





GITR intracellular domain
RSQCMVVPRETQLLLEVPPSTEDARSCQFPEEERGERSAEE
6668



KGRLGDLWV






ICOS intracellular domain
TKKKYSSSVHDPNGEFMFMRAVNTAKKSRLTDVTL
6669





IL15Ra intracellular domain
KSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHL
6670





OX40-CD3 Zeta intracellular
RRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVK
6671


domain
FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR




DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE




RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR






ZAP70 intracellular domain
MPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQC
6672



LRSLGGYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHC




GPAELCEFYSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCL




RDAMVRDYVRQTWKLEGEALEQAIISQAPQVEKLIATTA




HERMPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQ




GTYALSLIYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQ




LVEYLKLKADGLIYCLKEACPNSSASNASGAAAPTLPAH




PSTLTHPQRRIDTLNSDGYTPEPARITSPDKPRPMPMDTS




VYESPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVR




QGVYRMRKKQIDVAIKVLKQGTEKADTEEMMREAQIM




HQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVG




KREEIPVSNVAELLHQVSMGMKYLEEKNFVHRDLAARN




VLLVNRHYAKISDFGLSKALGADDSYYTARSAGKWPLK




WYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKK




MKGPEVMAFIEQGKRMECPPECPPELYALMSDCWIYKW




EDRPDFLTVEQRMRACYYSLASKVEGPPGSTQKAEAAC




A






CD28 intracellular domain
MLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNAVNLS
6673



CKYSYNLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQ




VYSKTGFNCDGKLGNESVTFYLQNLYVNQTDIYFCKIEV




MYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVL




VVVGGVLACYSLLVTVAFIIFWVR






4-1BB intracellular domain
MGNSCYNIVATLLLVLNFERTRSLQDPCSNCPAGTFCDN
6674



NRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECS




STSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC




KDCCFGTFNDQKRGICRPWTNCSLDGKSVLVNGTKERD




VVCGPSPADLSPGASSVTPPAPAREPGHSPQIISFFLALTST




ALLFLLFFLTLRFSVVKRGRKKLLYIFKQPFMRPVQTTQE




EDG






Fc epsilon Receptor I gamma
MIPAVVLLLLLLVEQAAALGEPQLCYILDAILFLYGIVLTL
6675


chain intracellular domain
LYCRLKIQVRKAAITSYEKSDGVYTGLSTRNQETYETLK




HEKPPQ






Fc epsilon Receptor I gamma
DGVYTGLSTRNQETYETLKHE
6676


chain intracellular domain







Fc epsilon Receptor I gamma
DPKLCYILDAILFLYGIVLTLLYCRLKIQVRKAAITSYEKS
6677


chain intracellular domain
DGVYTGLSTRNQETYETLKHEKPPQ






Fc epsilon Receptor I gamma
DGVYTGLSTRNQETYETLKHE
6678


chain intracellular domain










Transmembrane Domains


In some embodiments, the CAR of the present invention may comprise a transmembrane domain. As used herein, the term “Transmembrane domain (TM)” refers broadly to an amino acid sequence of about 15 residues in length which spans the plasma membrane. More preferably, a transmembrane domain includes at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 amino acid residues and spans the plasma membrane. In some embodiments, the transmembrane domain of the present invention may be derived either from a natural or from a synthetic source. The transmembrane domain of a CAR may be derived from any naturally membrane-bound or transmembrane protein. For example, the transmembrane region may be derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD3 epsilon, CD4, CD5, CD8, CD8a, CD9, CD16, CD22, CD33, CD28, CD37, CD45, CD64, CD80, CD86, CD134, CD137, CD152, or CD154.


Alternatively, the transmembrane domain of the present invention may be synthetic. In some aspects, the synthetic sequence may comprise predominantly hydrophobic residues such as leucine and valine.


In some embodiments, the transmembrane domain of the present invention may be selected from the group consisting of a CD8α transmembrane domain, a CD4 transmembrane domain, a CD 28 transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, and a human IgG4 Fc region. As non-limiting examples, the transmembrane domain may be a CTLA-4 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 1-5 of International Patent Publication NO.: WO2014/100385; and a PD-1 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 6-8 of International Patent Publication NO.: WO2014100385; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR of the present invention may comprise an optional hinge region (also called spacer). A hinge sequence is a short sequence of amino acids that facilitates flexibility of the extracellular targeting domain that moves the target binding domain away from the effector cell surface to enable proper cell/cell contact, target binding and effector cell activation (Patel et al., Gene Therapy, 1999; 6: 412-419). The hinge sequence may be positioned between the targeting moiety and the transmembrane domain. The hinge sequence can be any suitable sequence derived or obtained from any suitable molecule. The hinge sequence may be derived from all or part of an immunoglobulin (e.g., IgGl, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CHI and CH2 domains of an immunoglobulin, e.g., an IgG4 Fc hinge, the extracellular regions of type 1 membrane proteins such as CD8a CD4, CD28 and CD7, which may be a wild type sequence or a derivative. Some hinge regions include an immunoglobulin CH3 domain or both a CH3 domain and a CH2 domain. In certain embodiments, the hinge region may be modified from an IgG1, IgG2, IgG3, or IgG4 that includes one or more amino acid residues, for example, 1, 2, 3, 4 or 5 residues, substituted with an amino acid residue different from that present in an unmodified hinge. Table 13 provides various transmembrane regions that can be used in the CARs described herein.









TABLE 13







Transmembrane domains











SEQ ID


Transmembrane domain
Amino Acid Sequence
NO.





CD8 Transmembrane
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6679


domain
FACDI






4-1BB Transmembrane
IISFFLALTSTALLFLLFFLTLRFSVVKRGR
6680


domain







4-1BB Transmembrane
IISFFLALTSTALLFLLFFLTLRFSVV
6681


domain







CD134 (OX40)
VAAILGLGLVLGLLGPLAILLALYLL
6682


Transmembrane domain







CD148 Transmembrane
AVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKP
6683


and intracellular domain
KKSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQ




PKYAAELAENRGKNRYNNVLPYDISRVKLSVQTHSTDDYI




NANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVY




AIIMLTKCVEQGRTKCEEYWPSKQAQDYGDITVAMTSEIV




LPEVVTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTD




LLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDR




LIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQYVFLNQ




CVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTN




GYIA






CD148 Transmembrane
AVFGCIFGALVIVTVGGFIFW
6684


domain







CD2 Transmembrane
KEITNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTSD
6685


domain
KKKIAQFRKEKETFKEKDTYKLFKNGTLKIKHLKTDDQDI




YKVSIYDTKGKNVLEKIFDLKIQERVSKPKISWTCINTTLT




CEVMNGTDPELNLYQDGKHLKLSQRVITHKWTTSLSAKF




KCTAGNKVSKESSVEPVSCPEKGLD






CD28 Transmembrane and
IEVMYPPPYLDNEKSNGTITHVKGKHLCPSPLFPGPSKPFW
6686


intracellular domain
VLVVVGGVLACYSLLVTVAHIFWVRSKRSRLLHSDYMN




MTPRRPGPTRKHYQPYAPPRDFAAYRS






CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFIIFWV
6687


domain







CD28 Transmembrane
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFW
6688


domain
VLVVVGGVLACYSLLVTVAFIIFWV






CD28 Transmembrane
IFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRR
6689


domain







CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY
6690


domain
MNMTPRRPGPTRKHYQPYAPPRDFAAYRS






CD28 Transmembrane
MFWVLVVVGGVLACYSLLVTVAFIIFWV
6691


domain







CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFHFWV
6692


domain







CD28 Transmembrane
MFWVLVVVGGVLACYSGGVTVAFIIFWV
6693


domain







CD28 Transmembrane
WVLVVVGGVLACYSLLVTVAFIIFWV
6694


domain







CD28 Transmembrane
PFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY
6695


domain
MNMTPRRPGPTRKHYQPYAPPRDFAAYRS






CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY
6696


domain and CD28 and
MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADA



CD3 Zeta intracellular
PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK



domain
PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR






CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY
6697


domain and CD28, OX40,
MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRDQRLPPDAH



and CD3 Zeta intracellular
KPPGGGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQ



domain
QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR






CD28 Transmembrane
FWVLVVVGGVLACYSLLVTVAFIIFWVRRVKFSRSADAP
6698


domain and CD3 Zeta
AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP



intmcellular domain
RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR






CD28 transmembrane-CD3
AAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSK
6699


zeta signaling domain
PFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY



(“28z”)
MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK




PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR






CD3 zeta Transmembrane
LCYLLDGILFIYGVILTALFLRV
6700


domain







CD3 zeta Transmembrane
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFI
6701


domain
YGVILTALFL






CD3 zeta Transmembrane
LCYLLDGILFIYGVILTALFL
6702


domain







CD4 Transmembrane
ALIVLGGVAGLLLFIGLGIFFCVRC
6703


domain







CD4 Transmembrane
MALIVLGGVAGLLLFIGLGIFF
6704


domain







CD45 Transmembrane and
ALIAFLAFLIIVTSIALLVVLYKIYDLHKKRSCNLDEQQELV
6705


intracellular domain
ERDDEKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSI




PRVFSKFPIKEARKPFNQNKNRYVDILPYDYNRVELSEING




DAGSNYINASYIDGFKEPRKYIAAQGPRDETVDDFWRMI




WEQKATVIVMVTRCEEGNRNKCAEYWPSMEEGTRAFGD




VVVKINQHKRCPDYIIQKLNIVNKKEKATGREVTHIQFTS




WPDHGVPEDPHLLLKLRRRVNAFSNFFSGPIWHCSAGVG




RTGTYIGIDAMLEGLEAENKVDVYGYVVKLRRQRCLMV




QVEAQYILIHQALVEYNQFGETEVNLSELHPYLHNMKKR




DPPSEPSPLEAEFQRLPSYRSWRTQHIGNQEENKSKNRNSN




VIPYDYNRVPLKHELEMSKESEHDSDESSDDDSDSEEPSK




YINASFIMSYWKPEVMIAAQGPLKETIGDFWQMIFQRKVK




VIVMLTELKHGDQEICAQYWGEGKQTYGDIEVDLKDTDK




SSTYTLRVFELRHSKRKDSRTVYQYQYTNWSVEQLPAEP




KELISMIQWKQKLPQKNSSEGNKHHKSTPLLIHCRDGSQQ




TGIFCALLNLLESAETEEWDIFQWKALRKARPGMVSTFEQ




YQFLYDVIASTYPAQNGQVKKNNHQEDKIEFDNEVDKVK




QDANCVNPLGAPEKLPEAKEQAEGSEPTSGIEGPEHSVNG




PASPALNQGS






CD62L Transmembrane
PLFIPVAVMVTAFSGLAFIIWLA
6706


domain







CD7 Transmembrane
ALPAALAVISFLLGLGLGVACVLA
6707


domain







CD8 Transmembrane
MALPVTALLLPLALLLHAARP
6708


domain







CD8 Transmembrane
AAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP
6709


domain and CD28
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC



signaling domain
NHRNRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD




FAAYRSRFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCS




CRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNL




GRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQK




DKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR






CD8 transmembrane
AAATTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR
6710


domain-CD137 (4-1BB)
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYI



signaling domain and CD3
FKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA



zeta signaling domain
DAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG



(“BBz”)
GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR






CD8a Transmembrane
FVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
6711


domain
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRN






CD8a Transmembrane
IWAPLAGTCGVLLLSLVITLYC
6712


domain







CD8a Transmembrane
IYIWAPLAGTCGVLLLSLVITLYC
6713


domain







CD8a Transmembrane
IYIWAPLAGTCGVLLLSLVITLYCR
6714


domain







CD8a Transmembrane
IYIWAPLAGTCGVLLLSLVITLVCR
6715


domain







CD8a Transmembrane
IYIWAPLAGTCGVLLLSLVIT
6716


domain







CD8a Transmembrane
IYIWAPLAGTCGVLLLSLVITLY
6717


domain







CD8b Transmembrane
LGLLVAGVLVLLVSLGVAIHLCC
6718


domain







EpoR Transmembrane
APVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVS
6719


domain
AGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARM




AEPSFGGFWSAWSEPVSLLTPSD






FcERIa-Transmembrane
MAPAMESPTLLCVALLFFAPDGVLAVPQKPKVSLNPPWN
6720


domain
RIFKGENVTLTCNGNNFFEVSSTKWFHNGSLSEETNSSLNI




VNAKFEDSGEYKCQHQQVNESEPVYLEVFSDWLLLQASA




EVVMEGQPLFLRCHGWRNWDVYKVIYYKDGEALKYWY




ENHNISITNATVEDSGTYYCTGKVWQLDYESEPLNITVIKA




PREKYWLQFFIPLLVVILFAVDTGLFISTQQQVTFLLKIKRT




RKGFRLLNPHPKPNPKNN






FceRIa Transmembrane
DIFIPLLVVILFAVDTGLFISTQQQVTFLLKIKRTRKGFRLL
6721


domain
NPHPKPNPKNNR






GITR Transmembrane
PLGWLTVVLLAVAACVLLLTSAQLGLHIWQL
6722


domain







Her2 Transmembrane
SIISAVVGILLVVVLGVVFGILII
6723


domain







Her2 Transmembrane
CHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCP
6724


domain
SGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKG




CPAEQRASPLTSIISAVVGILLVVVLGVVFGILI






ICOS Transmembrane
FWLPIGCAAFVVVCILGCILI
6725


domain







IgG1 Transmembrane
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6726


domain
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD






OX40 Transmembrane
VAAILGLGLVLGLLGPLAILL
6727


domain







Transmembrane domain
IYIWAPLAGTCGVLLLSLVITLYC
6728





Transmembrane domain
IYIWAPLAGTCGVLLLSLVITLYC
6729









Hinge region sequences useful in the present invention are provided in Table 14.









TABLE 14







Hinge regions











SEQ ID


Hinge Domain
Amino Acid Sequence
NO.





Hinge
DKTHT
6730





Hinge
CPPC
6731





Hinge
CPEPKSCDTPPPCPR
6732





Hinge
ELKTPLGDTTHT
6733





Hinge
KSCDKTHTCP
6734





Hinge
KCCVDCP
6735





C233P Hinge
KYGPPCP
6736





C233S Hinge
VEPKSPDKTHTCPPCP
6737





CD28 Hinge
LDPKSSDKTHTCPPCP
6738





CD8a Hinge
IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP
6739





CD8a Hinge
GGAVHTRGLDFA
6740





CD8a Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6741



FACD






CD8a Hinge
AKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR
6742



GLDFACD






CD8a Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6743



FACD






CD8a Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6744



FACD






CD8a Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6745



FACDEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDT






CD8a Hinge
PAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT
6746



RGLDFACDIY






CD8a Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6747



FACDIYIWAPLAGTCGVLLLSLVITLYC






CD8a Hinge
TTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDF
6748



ACD






Delta5 Hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6749



FACDIY






EpoR Hinge
LDKTHTCPPCP
6750





FCRIIα Hinge
APVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVS
6751



AGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARM




AEPSFGGFWSAWSEPVSLLTPSD






FcγRIIIα Hinge
GLAVSTISSFFPPGYQ
6752





Hinge
GLAVSTISSFFPPGYQ
6753





Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6754



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






Hinge
YVTVSSQDPAEPKSPDKTHTCPPCPAPELLGGPSVFLFPPK
6755



PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH




NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV




SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS




LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL




SPGKKDPK






Hinge
KPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG
6756



LDFA






Hinge
LEPKSCDKTHTCPPCP
6757





Hinge
KPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG
6758



LD






Hinge
EPKSCDKTHTCPPCP
6759





Hinge
ELKTPLGDTHTCPRCP
6760





Hinge
EPKSCDTPPPCPRCP
6761





Hinge
ESKYGPPCPSCP
6762





Hinge (CH2-
ERKCCVECPPCP
6763


CH3)







Hinge (CH3)
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6764



CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgD Hinge
ESKYGPPCPPCPGQPREPQVYTLPPSQEEMTKNQVSLTCL
6765



VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6766



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6767



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLHPSL




PPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCEV




SGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFWA




WSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSY




VTDH






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6768



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMVVLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






IgD Hinge
ESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEE
6769



KKKEKEKEEQEERETKTP






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6770



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6771



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






IgD Hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6772



GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPQPGSTTFWA




WSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSY




VTDH






IgG1 (CH2CH3)
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR
6773


Hinge domain
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV




QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV




EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS




LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE




VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW




AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS




YVTDH






IgG1 (CH2CH3)
AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIART
6774


Hinge domain
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD




KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD






IgG1 Hinge
AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIART
6775



PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE




QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE




KTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD




KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD






IgG1 Hinge
AEPKSPDKTHTCPPCPKDPK
6776





IgG1 Hinge
EPKSCDKTHTCPPCP
6777





IgG1 Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6778



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEVKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD






IgG1 Hinge
SVFLFPPKPKDTL
6779





IgG1 Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6780



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






IgG1 Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6781



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKDPK






IgG1 Hinge
VECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD
6782


(CH2CH3
VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV



domain)
SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP




REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV




FSCSVMHEALHNHYTQKSLSLSPGK






IgG2 Hinge
DPAEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIA
6783



RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR




EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA




PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG




FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT




VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKK






IgG3 Hinge
ERKCCVECPPCP
6784





IgG3 Hinge
ELKTPLGDTTHTCPRCP
6785





IgG4 (CH2 and
ELKTPLGDTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPC
6786


CH3)
PRCPEPKSCDTPPPCPRCP






IgG4 (CH2 and
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6787


CH3)
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM






IgG4 Hinge
ESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT
6788



CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFQS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM






IgG4 Hinge
SPNMVPHAHHAQ
6789





IgG4 Hinge
GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE
6790



WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE




GNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
ESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEM
6791



TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL




DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYT




QKSLSLSLGK






IgG4 Hinge
ESKYGPPCPSCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT
6792



CVVVDVSQEDPEVQFNWYVDGVEVHQAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFVPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
ESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT
6793



CVVVDVSQEDPEVQFNWYVDGVEVHQAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFVPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6794



CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM






IgG4 Hinge
ESKYGPPCPPCP
6795





IgG4 Hinge
ESKYGPPCPPCPGQPREPQVYTLPPSQEEMTKNQVSLTCL
6796



VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6797



CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6798



CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






IgG4 Hinge
YGPPCPPCP
6799





IgG4 Hinge
KYGPPCPPCP
6800





IgG4 Hinge
EVVKYGPPCPPCP
6801





IgG4 Hinge and
ESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT
6802


Linker
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS




TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDLSRW




QEGNVFSCSVMHEALHNHYTQKSLSLSLGK






lgGl Hinge
ESKYGPPCPPCPGGGSSGGGSG
6803





lgGl Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6804



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTIPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






lgGl Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6805



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTIPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






lgGl Hinge
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP
6806



EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ




YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK




TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS




RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK









In some embodiments, hinge domains and the transmembrane domains may be paired. The hinge domain may be present at the N terminus of the transmembrane domain, at C terminus of the transmembrane domain or within the transmembrane domain. Hinge and transmembrane region sequences which may be useful in the present invention are provided in Table 15.









TABLE 15







Paired Hinge and Transmembrane regions











SEQ ID


Hinge Domain
Amino Acid Sequence
NO.





CD8a
TTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDF
6807


Transmembrane
ACDIYIWAPLAGTCGVLLLSLVITLYC



and Hinge







CD8a
DIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK
6808


Transmembrane
PGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTE



and Hinge
DVATYYCQQYWSTPFTFGSGTKLEIKGGGGSGGGGSGGG




GSQVQLKESGPGLVAPSQSLSITSTVSGFSLSRYSVHWVR




QPPGKGLEWLGMIWGGGSTDYNSALKSRLSISKDNSKSQ




VFLKMNSLQTDDTAMYYCARNEGDTTAGTWFAYWGQG




TLVTVSS






CD8a
ALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLS
6809


Transmembrane
LRPEACRPAAGGAVHTRGLD



and Hinge







CD8a
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD
6810


Transmembrane
FACDIYIWAPLAGTCGVLLLSLVITLY



and Hinge







CD8a
KPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG
6811


Transmembrane
LDFACDIYIWAPLAGTCGVLLLSLVITLY



and Hinge









In some embodiments, the CAR of the present invention may comprise one or more linkers between any of the domains of the CAR. The linker may be between 1-30 amino acids long. In this regard, the linker may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids in length. In other embodiments, the linker may be flexible.


In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present invention may be constructed in a single fusion polypeptide. The fusion polypeptide may be the payload of an effector module of the invention. In some embodiments, more than one CAR fusion polypeptides may be included in an effector module, for example, two, three or more CARs may be included in the effector module under the control of a single SRE (e.g., a DD). Representative effector modules comprising the CAR payload are illustrated in FIGS. 2-6.


In some embodiments, payloads of the present invention may comprise the CAR constructs including the extracellular targeting domain, transmembrane domain and intracellular signaling domains that are taught in the art, for example, a CAR targeting mesothelin (U.S. Pat. Nos. 9,272,002 and 9,359,447); EGFRvIII specific CARs in U.S. Pat. No. 9,266,960; anti-TAG CARs in U.S. Pat. No. 9,233,125; CD19 CARs in U.S. Patent publication NO.: 2016014533; CD19 CAR having the amino acid sequence of SEQ ID NO.: 24 of U.S. Pat. NO.: 9, 328, 156; CD19 CARs in U.S. Pat. Nos. 8,911,993; 8,975,071; 9,101,584; 9,102,760; and 9,102,761; BCMA (CD269) specific CARs disclosed in International patent publication NOs: WO2016/014565 (SEQ ID Nos.: 109-113 and 213 to 233) and WO2016/014789; CLL-1 (C-type lectin-like molecule 1) CARs comprising the amino acid sequences of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94, 95, 97, 98, 103, and 197 disclosed in International patent publication NO.: WO2016014535; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 48-56 in International patent publication NO.: WO2016014576; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 19-22, 27-30 and 35-38 in International patent publication NO.: WO2015150526; CD37 specific CARs encoded by the nucleic acids of SEQ ID NOs: 1-5 in U.S. patent publication NO.: US20150329640; GPC3 CAR (International patent publication NO.: WO2016036973), GFR alpha 4 CARs having the amino acid sequences of SEQ ID NOs: 85, 86, 90, 92, 94, 96, 98, 100, 102, and 104 in International patent publication NO.: WO2016025880; CD123 CARs comprising the amino acid sequences of SEQ ID NO: 98, 99, 100 and 101 in International patent publication NOs: WO2016028896; CD123 specific multi-chain CARs in International patent publication NO: WO2015193406; CD123 CARS comprising the amino acid sequences of SEQ ID NO.: 160, 171, 188-197 in International patent publication NO: WO2016/120220; ROR-1 specific CARs comprising the amino acid sequences of SEQ ID NOs: 93, 95 and 117 in International patent publication NO.: WO2016/016344; ROR-1 specific multi-chain CARs in International patent publication NO.: WO2016/016343; trophoblast glycoprotein (5T4, TPBG) specific CARs comprising the amino acid sequences of SEQ ID NOs: 21, 27, 33, 39, 23, 29, 34, 41, 19, 25, 31, 37, 20, 26, 32, 38, 22, 28, 34, 40, 24, 30, 36 and 42 in International patent publication NO.: WO2016034666; EGFRvIII specific CARs comprising the amino acid sequences of SEQ ID NOs: 15, 17, 24, 25, 26 and 27 in International patent publication NO.: WO2016016341; a TEM 8 CAR comprising the amino acid sequence of SEQ ID NO: 1 in International patent publication NO.: WO2014164544, a TEM1 CAR comprising the amino acid sequence of SEQ ID NO:2 in International patent publication NO.: WO2014164544; GPC-3 CAR having the amino acid sequences of SEQ ID NOs: 3 and 26 in International patent publication NO.: WO2016/049459; a chondroitin sulfate proteoglycan-4 (CSPG4) CAR in International patent publication NO.: WO2015/080981; Kappa/lambda CARs in International patent publication NO.: WO2015/164739; GD2 CAR in International patent publication NO.: WO2016/134284; CLL1 CARs in International patent publication NO.: WO2016120218; CLL1 multi-subunit CARs in International patent publication NO.: WO2016120219; Hsp 70 CARs in International patent publication NO.: WO2016120217; mAb-driven CARs in International patent publication NO.: WO2016120216; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR constructs of the present invention may include CAIX (carboxy-anhydrase-IX (CAIX) specific CAR (Lamers et al., Biochem Soc Trans, 2016, 44(3): 951-959), HIV-1 specific CAR (Ali et al., J Virol., 2016, May 25, pii: JVI.00805-16), CD20 specific CAR (Rufener et al., Cancer Immunol. Res., 2016, 4(6): 509-519), a CD20/CD19 bispecific CAR (Zah et al., Cancer Immunol Res., 2016, 4(6): 498-508), a CD22/CD19 CAR (International Publication No: WO2016/149578), a CD138/BCMA bi-specific CAR (International Publication No: WO2016/130598) an EGFR specific CARs and anti EGFR viii specific CAR; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR sequences may be selected from Table 16.









TABLE 16







CAR sequences









Description
SEQ ID NO
Source












CD70 CAR
6812
SEQ ID NO. 99 in WO2015121454


Acid/Base Leucine zipper zip CAR
6813
SEQ ID NO. 34 in WO2016124930


Acid/Base Leucine zipper zip CAR
6814
SEQ ID NO. 35 in WO2016124930


ALK CAR
6815
SEQ ID NO. 43 in WO2015069922


ALK CAR
6816
SEQ ID NO. 44 in WO2015069922


ALK CAR
6817
SEQ ID NO. 45 in WO2015069922


ALK CAR
6818
SEQ ID NO. 46 in WO2015069922


ALK CAR
6819
SEQ ID NO. 47 in WO2015069922


ALK CAR
6820
SEQ ID NO. 48 in WO2015069922


ALK CAR
6821
SEQ ID NO. 49 in WO2015069922


ALK CAR
6822
SEQ ID NO. 50 in WO2015069922


ALK CAR
6823
SEQ ID NO. 51 in WO2015069922


ALK CAR
6824
SEQ ID NO. 52 in WO2015069922


ALK CAR
6825
SEQ ID NO. 53 in WO2015069922


ALK CAR
6826
SEQ ID NO. 54 in WO2015069922


ALK CAR
6827
SEQ ID NO. 55 in WO2015069922


ALK CAR
6828
SEQ ID NO. 56 in WO2015069922


ALK CAR
6829
SEQ ID NO. 57 in WO2015069922


ALK CAR
6830
SEQ ID NO. 58 in WO2015069922


ALK CAR
6831
SEQ ID NO. 59 in WO2015069922


ALK CAR
6832
SEQ ID NO. 60 in WO2015069922


ALK CAR
6833
SEQ ID NO. 61 in WO2015069922


ALK CAR
6834
SEQ ID NO. 62 in WO2015069922


ALK CAR
6835
SEQ ID NO. 63 in WO2015069922


ALK CAR
6836
SEQ ID NO. 64 in WO2015069922


ALK CAR
6837
SEQ ID NO. 65 in WO2015069922


ALK CAR
6838
SEQ ID NO. 66 in WO2015069922


ALK CAR
6839
SEQ ID NO. 67 in WO2015069922


ALK CAR
6840
SEQ ID NO. 68 in WO2015069922


ALK CAR
6841
SEQ ID NO. 69 in WO2015069922


ALK CAR
6842
SEQ ID NO. 70 in WO2015069922


ALK CAR
6843
SEQ ID NO. 71 in WO2015069922


ALK CAR
6844
SEQ ID NO. 72 in WO2015069922


ALK CAR
6845
SEQ ID NO. 73 in WO2015069922


ALK CAR
6846
SEQ ID NO. 74 in WO2015069922


ALK CAR
6847
SEQ ID NO. 75 in WO2015069922


ALK CAR
6848
SEQ ID NO. 76 in WO2015069922


ALK CAR
6849
SEQ ID NO. 77 in WO2015069922


ALK CAR
6850
SEQ ID NO. 78 in WO2015069922


ALK CAR
6851
SEQ ID NO. 79 in WO2015069922


ALK CAR
6852
SEQ ID NO. 80 in WO2015069922


ALK CAR
6853
SEQ ID NO. 81 in WO2015069922


ALK CAR
6854
SEQ ID NO. 82 in WO2015069922


ALK CAR
6855
SEQ ID NO. 83 in WO2015069922


ALK CAR
6856
SEQ ID NO. 84 in WO2015069922


ALK CAR
6857
SEQ ID NO. 85 in WO2015069922


ALK CAR
6858
SEQ ID NO. 86 in WO2015069922


ALK CAR
6859
SEQ ID NO. 87 in WO2015069922


ALK CAR
6860
SEQ ID NO. 88 in WO2015069922


ALK CAR
6861
SEQ ID NO. 89 in WO2015069922


ALK CAR
6862
SEQ ID NO. 90 in WO2015069922


APRIL IgG1 hinge based CAR
6863
SEQ ID NO: 53 in US20160296562A1


APRIL Fcpvaa based CAR
6864
SEQ ID NO: 52 in US20160296562A1


BCMA CAR
6865
SEQ ID NO: 180 in WO2016168595A1


BCMA CAR
6866
SEQ ID NO: 180 in WO2016168595A1


BCMA CAR
6867
SEQ ID NO: 162 in WO2016168595A1


BCMA CAR
6868
SEQ ID NO: 168 in WO2016168595A1


BCMA CAR
6869
SEQ ID NO: 174 in WO2016168595A1


BCMA CAR
6870
SEQ ID NO: 144 in WO2016168595A1


BCMA CAR
6871
SEQ ID NO. 150 in WO2016168595A1


BCMA CAR
6872
SEQ ID NO: 186 in WO2016168595A1


BCMA CAR
6873
SEQ ID NO: 192 in WO2016168595A1


BCMA CAR
6874
SEQ ID NO: 198 in WO2016168595A1


BCMA CAR
6875
SEQ ID NO. 204 in WO2016168595A1


BCMA CAR
6876
SEQ ID NO: 210 in WO2016168595A1


BCMA CAR
6877
SEQ ID NO: 156 in WO2016168595A1


BCMA CAR
6878
SEQ ID NO: 216 in WO2016168595A1


BCMA CAR
6879
SEQ ID NO: 222 in WO2016168595A1


BCMA CAR
6880
SEQ ID NO: 228 in WO2016168595A1


BCMA CAR
6881
SEQ ID NO: 234 in WO2016168595A1


BCMA CAR
6882
SEQ ID NO: 240 in WO2016168595A1


BCMA CAR
6883
SEQ ID NO: 246 in WO2016168595A1


BCMA CAR
6884
SEQ ID NO: 252 in WO2016168595A1


BCMA CAR
6885
SEQ ID NO: 258 in WO2016168595A1


BCMA CAR
6886
SEQ ID NO: 264 in WO2016168595A1


BCMA CAR
6887
SEQ ID NO: 270 in WO2016168595A1


BCMA CAR
6888
SEQ ID NO: 276 in WO2016168595A1


BCMA CAR
6889
SEQ ID NO. 48 in WO2015158671A1


BCMA CAR
6890
SEQ ID NO. 49 in WO2015158671A1


BCMA CAR
6891
SEQ ID NO. 50 in WO2015158671A1


BCMA CAR
6892
SEQ ID NO. 51 in WO2015158671A1


BCMA CAR
6893
SEQ ID NO. 52 in WO2015158671A1


BCMA CAR
6894
SEQ ID NO. 53 in WO2015158671A1


BCMA CAR
6895
SEQ ID NO. 54 in WO2015158671A1


BCMA CAR
6896
SEQ ID NO. 55 in WO2015158671A1


BCMA CAR
6897
SEQ ID NO. 56 in WO2015158671A1


BCMA CAR
6898
SEQ ID NO. 57 in WO2015158671A1


BCMA CAR
6899
SEQ ID NO. 58 in WO2015158671A1


BCMA CAR
6900
SEQ ID NO. 59 in WO2015158671A1


BCMA CAR
6901
SEQ ID NO. 19 in WO2015158671A1


BCMA CAR
6902
SEQ ID NO. 20 in WO2015158671A1


BCMA CAR
6903
SEQ ID NO. 21 in WO2015158671A1


BCMA CAR
6904
SEQ ID NO. 22 in WO2015158671A1


BCMA CAR
6905
SEQ ID NO. 23 in WO2015158671A1


BCMA CAR
6906
SEQ ID NO. 24 in WO2015158671A1


BCMA CAR
6907
SEQ ID NO. 25 in WO2015158671A1


BCMA CAR
6908
SEQ ID NO. 26 in WO2015158671A1


BCMA CAR
6909
SEQ ID NO. 27 in WO2015158671A1


BCMA CAR
6910
SEQ ID NO. 28 in WO2015158671A1


BCMA CAR
6911
SEQ ID NO. 29 in WO2015158671A1


BCMA CAR
6912
SEQ ID NO. 30 in WO2015158671A1


BCMA CAR
6913
SEQ ID NO. 31 in WO2015158671A1


BCMA CAR
6914
SEQ ID NO. 32 in WO2015158671A1


BCMA CAR
6915
SEQ ID NO. 33 in WO2015158671A1


BCMA CAR
6916
SEQ ID NO. 34 in WO2015158671A1


BCMA CAR
6917
SEQ ID NO. 35 in WO2015158671A1


BCMA CAR
6918
SEQ ID NO. 36 in WO2015158671A1


BCMA CAR
6919
SEQ ID NO. 37 in WO2015158671A1


BCMA CAR
6920
SEQ ID NO. 38 in WO2015158671A1


BCMA CAR
6921
SEQ ID NO. 39 in WO2015158671A1


BCMA CAR
6922
SEQ ID NO. 40 in WO2015158671A1


BCMA CAR
6923
SEQ ID NO. 41 in WO2015158671A1


BCMA CAR
6924
SEQ ID NO. 42 in WO2015158671A1


BCMA CAR
6925
SEQ ID NO: 330 in WO2016168595A1


BCMA CAR
6926
SEQ ID NO: 282 in WO2016168595A1


BCMA CAR
6927
SEQ ID NO: 300 in WO2016168595A1


BCMA CAR
6928
SEQ ID NO: 306 in WO2016168595A1


BCMA CAR
6929
SEQ ID NO. 336 in WO2016168595A1


BCMA CAR
6930
SEQ ID NO: 354 in WO2016168595A1


BCMA CAR
6931
SEQ ID NO: 288 in WO2016168595A1


BCMA CAR
6932
SEQ ID NO: 312 in WO2016168595A1


BCMA CAR
6933
SEQ ID NO: 294 in WO2016168595A1


BCMA CAR
6934
SEQ ID NO. 342 in WO2016168595A1


BCMA CAR
6935
SEQ ID NO. 324 in WO2016168595A1


BCMA CAR
6936
SEQ ID NO: 318 in WO2016168595A1


BCMA CAR
6937
SEQ ID NO: 348 in WO2016168595A1


BCMA CAR
6938
SEQ ID NO. 124 (WO2016014565)


BCMA CAR
6939
SEQ ID NO. 114 (WO2016014565)


BCMA CAR
6940
SEQ ID NO. 115 (WO2016014565)


BCMA CAR
6941
SEQ ID NO. 116 (WO2016014565)


BCMA CAR
6942
SEQ ID NO. 117 (WO2016014565)


BCMA CAR
6943
SEQ ID NO. 118 (WO2016014565)


BCMA CAR
6944
SEQ ID NO. 119 (WO2016014565)


BCMA CAR
6945
SEQ ID NO. 120 (WO2016014565)


BCMA CAR
6946
SEQ ID NO. 121 (WO2016014565)


BCMA CAR
6947
SEQ ID NO. 122 (WO2016014565)


BCMA CAR
6948
SEQ ID NO. 123 (WO2016014565)


BCMA CAR
6949
SEQ ID NO. 125 (WO2016014565)


BCMA CAR
6950
SEQ ID NO. 126 (WO2016014565)


BCMA CAR
6951
SEQ ID NO. 127 (WO2016014565)


BCMA CAR
6952
SEQ ID NO. 128 (WO2016014565)


BCMA CAR
6953
SEQ ID NO. 234 (WO2016014565)


BCMA CAR
6954
SEQ ID NO. 235 (WO2016014565)


BCMA CAR
6955
SEQ ID NO. 236 (WO2016014565)


BCMA CAR
6956
SEQ ID NO. 237 (WO2016014565)


BCMA CAR
6957
SEQ ID NO. 238 (WO2016014565)


BCMA CAR
6958
SEQ ID NO. 239 (WO2016014565)


BCMA CAR
6959
SEQ ID NO. 240 (WO2016014565)


BCMA CAR
6960
SEQ ID NO. 241 (WO2016014565)


BCMA CAR
6961
SEQ ID NO. 242 (WO2016014565)


BCMA CAR
6962
SEQ ID NO. 243 (WO2016014565)


BCMA CAR
6963
SEQ ID NO. 244 (WO2016014565)


BCMA CAR
6964
SEQ ID NO. 245 (WO2016014565)


BCMA CAR
6965
SEQ ID NO. 246 (WO2016014565)


BCMA CAR
6966
SEQ ID NO. 247 (WO2016014565)


BCMA CAR
6967
SEQ ID NO. 248 (WO2016014565)


BCMA CAR
6968
SEQ ID NO. 249 (WO2016014565)


BCMA CAR
6969
SEQ ID NO. 250 (WO2016014565)


BCMA CAR
6970
SEQ ID NO. 251 (WO2016014565)


BCMA CAR
6971
SEQ ID NO. 252 (WO2016014565)


BCMA CAR
6972
SEQ ID NO. 253 (WO2016014565)


BCMA CAR
6973
SEQ ID NO. 254 (WO2016014565)


BCMA CAR
6974
SEQ ID NO. 267 (WO2016014565)


BCMA CAR
6975
SEQ ID NO. 268 (WO2016014565)


BCMA CAR
6976
SEQ ID NO. 269 (WO2016014565)


BCMA CAR
6977
SEQ ID NO. 270 (WO2016014565)


BCMA CAR
6978
SEQ ID NO. 1 in WO2015052538


BCMA CAR
6979
SEQ ID NO. 2 in WO2015052538


BCMA CAR
6980
SEQ ID NO. 3 in WO2015052538


BCMA CAR
6981
SEQ ID NO. 4 in WO2015052538


BCMA CAR
6982
SEQ ID NO. 5 in WO2015052538


BCMA CAR
6983
SEQ ID NO. 20 in WO2015052538


BCMA CAR
6984
SEQ ID No. 1 in US20160237139A1


BCMA CAR
6985
SEQ ID No. 2 in US20160237139A1


BCMA CAR
6986
SEQ ID No. 3 in US20160237139A1


BCMA CAR
6987
SEQ ID No. 4 in US20160237139A1


BCMA CAR
6988
SEQ ID No. 5 in US20160237139A1


BCMA CAR
6989
SEQ ID No. 6 in US20160237139A1


BCMA CAR
6990
SEQ ID NO: 9 in WO2016094304A3


BCMA CAR
6991
SEQ ID NO. 4 in WO2013154760


BCMA CAR
6992
SEQ ID NO. 5 in WO2013154760


BCMA CAR
6993
SEQ ID NO. 6 in WO2013154760


BCMA CAR
6994
SEQ ID NO. 8 in WO2013154760


BCMA CAR
6995
SEQ ID NO. 9 in WO2013154760


BCMA CAR
6996
SEQ ID NO. 10 in WO2013154760


BCMA CAR
6997
SEQ ID NO. 11 in WO2013154760


BCMA CAR
6998
SEQ ID NO. 12 in WO2013154760


BCMA CAR
6999
SEQ ID NO. 15 in WO2016014789


BCMA CAR
7000
SEQ ID NO. 16 in WO2016014789


BCMA CAR
7001
SEQ ID NO. 17 in WO2016014789


BCMA CAR
7002
SEQ ID NO. 18 in WO2016014789


BCMA CAR
7003
SEQ ID NO. 19 in WO2016014789


BCMA CAR
7004
SEQ ID NO. 20 in WO2016014789


BCMA CAR
7005
SEQ ID NO. 21 in WO2016014789


BCMA CAR
7006
SEQ ID NO. 22 in WO2016014789


BCMA CAR
7007
SEQ ID NO. 23 in WO2016014789


BCMA CAR
7008
SEQ ID NO. 24 in WO2016014789


BCMA CAR
7009
SEQ ID NO. 25 in WO2016014789


BCMA CAR
7010
SEQ ID NO. 26 in WO2016014789


BCMA CAR
7011
SEQ ID NO. 27 in WO2016014789


BCMA CAR
7012
SEQ ID NO. 28 in WO2016014789


BCMA CAR
7013
SEQ ID NO. 29 in WO2016014789


BCMA CAR
7014
SEQ ID NO. 71 in WO2016014789


BCMA CAR
7015
SEQ ID NO. 73 in WO2016014789


BCMA CAR
7016
SEQ ID NO. 125 in WO2016120216


BCMA CAR
7017
SEQ ID NO. 126 in WO2016120216


BCMA CAR
7018
SEQ ID NO. 127 in WO2016120216


BCMA CAR
7019
SEQ ID NO. 128 in WO2016120216


BCMA CAR
7020
SEQ ID NO. 129 in WO2016120216


BCMA CAR
7021
SEQ ID NO. 130 in WO2016120216


BCMA CAR
7022
SEQ ID NO. 131 in WO2016120216


BCMA CAR
7023
SEQ ID NO. 132 in WO2016120216


BCMA CAR
7024
SEQ ID NO. 133 in WO2016120216


BCMA CAR
7025
SEQ ID NO. 134 in WO2016120216


BCMA CAR
7026
SEQ ID NO. 135 in WO2016120216


BCMA CAR
7027
SEQ ID NO. 136 in WO2016120216


BCMA CAR
7028
SEQ ID NO. 137 in WO2016120216


BCMA CAR
7029
SEQ ID NO. 138 in WO2016120216


BCMA CAR
7030
SEQ ID NO. 139 in WO2016120216


BCMA CAR
7031
SEQ ID NO. 140 in WO2016120216


BCMA CAR
7032
SEQ ID NO. 141 in WO2016120216


BCMA CAR
7033
SEQ ID NO. 145 in WO2016120216


BCMA CAR
7034
SEQ ID NO. 146 in WO2016120216


BCMA CAR
7035
SEQ ID NO. 147 in WO2016120216


BCMA CAR
7036
SEQ ID NO. 148 in WO2016120216


BCMA CAR
7037
SEQ ID NO. 149 in WO2016120216


BCMA CAR
7038
SEQ ID NO. 150 in WO2016120216


BCMA NCAR
7039
SEQ ID NO: 102 in WO2016097231


BCMA NCAR
7040
SEQ ID NO: 106 in WO2016097231


BCMA NCAR
7041
SEQ ID NO: 107 in WO2016097231


BCMA NCAR
7042
SEQ ID NO: 108 in WO2016097231


BCMA NCAR
7043
SEQ ID NO: 109 in WO2016097231


BCMA NCAR
7044
SEQ ID NO: 110 in WO2016097231


BCMA NCAR
7045
SEQ ID NO: 111 in WO2016097231


BCMA NCAR
7046
SEQ ID NO: 112 in WO2016097231


BCMA NCAR
7047
SEQ ID NO: 129 in WO2016097231


BCMA NCAR
7048
SEQ ID NO: 130 in WO2016097231


BCMA NCAR
7049
SEQ ID NO: 131 in WO2016097231


BCMA NCAR
7050
SEQ ID NO: 132 in WO2016097231


BCMA NCAR
7051
SEQ ID NO: 133 in WO2016097231


BCMA NCAR
7052
SEQ ID NO: 134 in WO2016097231


BCMA NCAR
7053
SEQ ID NO: 135 in WO2016097231


BCMA NCAR
7054
SEQ ID NO: 136 in WO2016097231


BCMA NCAR
7055
SEQ ID NO: 113 in WO2016097231


BCMA NCAR
7056
SEQ ID NO: 114 in WO2016097231


BCMA NCAR
7057
SEQ ID NO: 115 in WO2016097231


BCMA NCAR
7058
SEQ ID NO: 116 in WO2016097231


BCMA NCAR
7059
SEQ ID NO: 117 in WO2016097231


BCMA NCAR
7060
SEQ ID NO: 118 in WO2016097231


BCMA NCAR
7061
SEQ ID NO: 101 in WO2016097231


BCMA NCAR
7062
SEQ ID NO: 100 in WO2016097231


BCMA NCAR
7063
SEQ ID NO: 137 in WO2016097231


BCMA NCAR
7064
SEQ ID NO: 119 in WO2016097231


BCMA NCAR
7065
SEQ ID NO: 120 in WO2016097231


BCMA NCAR
7066
SEQ ID NO: 121 in WO2016097231


BCMA NCAR
7067
SEQ ID NO: 122 in WO2016097231


BCMA NCAR
7068
SEQ ID NO: 123 in WO2016097231


BCMA NCAR
7069
SEQ ID NO: 124 in WO2016097231


BCMA NCAR
7070
SEQ ID NO: 125 in WO2016097231


BCMA NCAR
7071
SEQ ID NO: 126 in WO2016097231


BCMA NCAR
7072
SEQ ID NO: 127 in WO2016097231


BCMA NCAR
7073
SEQ ID NO: 128 in WO2016097231


BCMA NCAR
7074
SEQ ID NO: 103 in WO2016097231


BCMA NCAR
7075
SEQ ID NO: 104 in WO2016097231


BCMA NCAR
7076
SEQ ID NO: 105 in WO2016097231


BCMA NCAR
7077
SEQ ID NO: 213 in WO2016097231


CAR
7078
SEQ ID NO: 6 in US20160296562A1


CAR AND gate (CD19 AND CD33)
7079
SEQ ID NO: 2 in US20160296562A1


CD148 phosphatase




CAR AND gate (CD19 AND CD5)
7080
SEQ ID NO: 43 in US20160296562A1


CAR AND gate (CD19 AND EGFRvIII)
7081
SEQ ID NO: 45 in US20160296562A1


CAR AND gate (CD19 AND GD2)
7082
SEQ ID NO: 41 in US20160296562A1


CAR AND gate (CD19 OR CD33)
7083
SEQ ID NO: 3 in US20160296562A1


CD45 phosphatase




CAR AND NOT gate (CD19 AND NOT
7084
SEQ ID NO: 4 in US20160296562A1


CD33)




CAR AND NOT gate (CD19 AND NOT
7085
SEQ ID NO: 5 in US20160296562A1


CD33)




CAR AND NOT gate 1
7086
SEQ ID NO: 48 in US20160296562A1


CAR AND NOT gate 2
7087
SEQ ID NO: 49 in US20160296562A1


CAR AND NOT gate 3
7088
SEQ ID NO: 50 in US20160296562A1


CAR OR gate (CD19 OR CD33)
7089
SEQ ID NO: 1 in US20160296562A1


CAT19 CAR with a CD28Zeta
7090
SEQ ID NO. 12 in WO2016139487


endodomain




CAT19 CAR with an OX40Zeta
7091
SEQ ID NO. 11 in WO2016139487


endodomain




CAT19 chimeric gen receptor (CAR)
7092
SEQ ID NO. 10 in WO2016139487


using Campana architecture




CD123 CAR
7093
SEQ ID NO. 69 in WO2016142532


CD123 CAR
7094
SEQ ID NO. 23 in WO2015140268A1


CD123 CAR
7095
SEQ ID NO. 24 in WO2015140268A1


CD123 CAR
7096
SEQ ID NO. 25 in WO2015140268A1


CD123 CAR
7097
SEQ ID NO. 26 in WO2015140268A1


CD123 CAR
7098
SEQ ID NO. 27 in WO2015140268A1


CD123 CAR
7099
SEQ ID NO. 28 in WO2015140268A1


CD123 CAR
7100
SEQ ID NO. 29 in WO2015140268A1


CD123 CAR
7101
SEQ ID NO. 30 in WO2015140268A1


CD123 CAR
7102
SEQ ID NO. 31 in WO2015140268A1


CD123 CAR
7103
SEQ ID NO. 32 in WO2015140268A1


CD123 CAR
7104
SEQ ID NO. 33 in WO2015140268A1


CD123 CAR
7105
SEQ ID NO. 34 in WO2015140268A1


CD123 CAR
7106
SEQ ID NO. 35 in WO2015140268A1


CD123 CAR
7107
SEQ ID NO. 36 in WO2015140268A1


CD123 CAR
7108
SEQ ID NO. 37 in WO2015140268A1


CD123 CAR
7109
SEQ ID NO. 38 in WO2015140268A1


CD123 CAR
7110
SEQ ID NO. 39 in WO2015140268A1


CD123 CAR
7111
SEQ ID NO. 40 in WO2015140268A1


CD123 CAR
7112
SEQ ID NO. 41 in WO2015140268A1


CD123 CAR
7113
SEQ ID NO. 42 in WO2015140268A1


CD123 CAR
7114
SEQ ID NO. 43 in WO2015140268A1


CD123 CAR
7115
SEQ ID NO. 44 in WO2015140268A1


CD123 CAR
7116
SEQ ID NO. 45 in WO2015140268A1


CD123 CAR
7117
SEQ ID NO. 46 in WO2015140268A1


CD123 CAR
7118
SEQ ID NO. 47 in WO2015140268A1


CD123 CAR
7119
SEQ ID NO. 48 in WO2015140268A1


CD123 CAR
7120
SEQ ID NO: 9 (US20140271582)


CD123 CAR
7121
SEQ ID NO: 10 (US20140271582)


CD123 CAR
7122
SEQ ID NO. 11 (US20140271582)


CD123 CAR
7123
SEQ ID NO: 12 (US20140271582)


CD123 CAR
7124
SEQ ID NO: 56 in WO2016097231


CD123 CAR
7125
SEQ ID NO. 57 in WO2016097231


CD123 CAR
7126
SEQ ID NO: 58 in WO2016097231


CD123 CAR
7127
SEQ ID NO: 59 in WO2016097231


CD123 CAR
7128
SEQ ID NO: 60 in WO2016097231


CD123 CAR
7129
SEQ ID NO: 61 in WO2016097231


CD123 CAR
7130
SEQ ID NO. 98 in WO2016028896


CD123 CAR
7131
SEQ ID NO. 99 in WO2016028896


CD123 CAR
7132
SEQ ID NO. 100 in WO2016028896


CD123 CAR
7133
SEQ ID NO. 101 in WO2016028896


CD123 CAR
7134
SEQ ID NO. 125 in WO2016028896


CD123 CAR
7135
SEQ ID NO. 126 in WO2016028896


CD123 CAR
7136
SEQ ID NO. 127 in WO2016028896


CD123 CAR
7137
SEQ ID NO. 128 in WO2016028896


CD123 CAR
7138
SEQ ID NO. 129 in WO2016028896


CD123 CAR
7139
SEQ ID NO. 130 in WO2016028896


CD123 CAR
7140
SEQ ID NO. 131 in WO2016028896


CD123 CAR
7141
SEQ ID NO. 132 in WO2016028896


CD123 CAR
7142
SEQ ID NO. 133 in WO2016028896


CD123 CAR
7143
SEQ ID NO. 134 in WO2016028896


CD123 CAR
7144
SEQ ID NO. 135 in WO2016028896


CD123 CAR
7145
SEQ ID NO. 136 in WO2016028896


CD123 CAR
7146
SEQ ID NO. 137 in WO2016028896


CD123 CAR
7147
SEQ ID NO. 138 in WO2016028896


CD123 CAR
7148
SEQ ID NO. 139 in WO2016028896


CD123 CAR
7149
SEQ ID NO. 140 in WO2016028896


CD123 CAR
7150
SEQ ID NO. 141 in WO2016028896


CD123 CAR
7151
SEQ ID NO. 142 in WO2016028896


CD123 CAR
7152
SEQ ID NO. 143 in WO2016028896


CD123 CAR
7153
SEQ ID NO. 144 in WO2016028896


CD123 CAR
7154
SEQ ID NO. 145 in WO2016028896


CD123 CAR
7155
SEQ ID NO. 146 in WO2016028896


CD123 CAR
7156
SEQ ID NO. 147 in WO2016028896


CD123 CAR
7157
SEQ ID NO. 148 in WO2016028896


CD123 CAR
7158
SEQ ID NO. 149 in WO2016028896


CD123 CAR
7159
SEQ ID NO. 150 in WO2016028896


CD123 CAR
7160
SEQ ID NO. 151 in WO2016028896


CD123 CAR
7161
SEQ ID NO. 152 in WO2016028896


CD123 CAR
7162
SEQ ID NO. 153 in WO2016028896


CD123 CAR
7163
SEQ ID NO. 154 in WO2016028896


CD123 CAR
7164
SEQ ID NO. 155 in WO2016028896


CD123 CAR
7165
SEQ ID NO. 156 in WO2016028896


CD123 CAR
7166
SEQ ID NO. 31 in WO2016120220


CD123 CAR
7167
SEQ ID NO. 32 in WO2016120220


CD123 CAR
7168
SEQ ID NO. 33 in WO2016120220


CD123 CAR
7169
SEQ ID NO. 34 in WO2016120220


CD123 CAR
7170
SEQ ID NO. 35 in WO2016120220


CD123 CAR
7171
SEQ ID NO. 36 in WO2016120220


CD123 CAR
7172
SEQ ID NO. 37 in WO2016120220


CD123 CAR
7173
SEQ ID NO. 38 in WO2016120220


CD123 CAR
7174
SEQ ID NO. 39 in WO2016120220


CD123 CAR
7175
SEQ ID NO. 40 in WO2016120220


CD123 CAR
7176
SEQ ID NO. 41 in WO2016120220


CD123 CAR
7177
SEQ ID NO. 42 in WO2016120220


CD123 CAR
7178
SEQ ID NO. 43 in WO2016120220


CD123 CAR
7179
SEQ ID NO. 44 in WO2016120220


CD123 CAR
7180
SEQ ID NO. 45 in WO2016120220


CD123 CAR
7181
SEQ ID NO. 46 in WO2016120220


CD123 CAR
7182
SEQ ID NO. 47 in WO2016120220


CD123 CAR
7183
SEQ ID NO. 48 in WO2016120220


CD123 CAR
7184
SEQ ID NO. 49 in WO2016120220


CD123 CAR
7185
SEQ ID NO. 50 in WO2016120220


CD123 CAR
7186
SEQ ID NO. 51 in WO2016120220


CD123 CAR
7187
SEQ ID NO. 52 in WO2016120220


CD123 CAR
7188
SEQ ID NO. 53 in WO2016120220


CD123 CAR
7189
SEQ ID NO. 54 in WO2016120220


CD123 CAR
7190
SEQ ID NO. 55 in WO2016120220


CD123 CAR
7191
SEQ ID NO. 56 in WO2016120220


CD123 CAR
7192
SEQ ID NO. 57 in WO2016120220


CD123 CAR
7193
SEQ ID NO. 58 in WO2016120220


CD123 CAR
7194
SEQ ID NO. 59 in WO2016120220


CD123 CAR
7195
SEQ ID NO. 60 in WO2016120220


CD123 CAR
7196
SEQ ID NO. 61 in WO2016120220


CD123 CAR
7197
SEQ ID NO. 62 in WO2016120220


CD123 CAR
7198
SEQ ID NO. 63 in WO2016120220


CD123 CAR
7199
SEQ ID NO. 64 in WO2016120220


CD123 CAR
7200
SEQ ID NO. 65 in WO2016120220


CD123 CAR
7201
SEQ ID NO. 66 in WO2016120220


CD123 CAR
7202
SEQ ID NO. 67 in WO2016120220


CD123 CAR
7203
SEQ ID NO. 68 in WO2016120220


CD123 CAR
7204
SEQ ID NO. 69 in WO2016120220


CD123 CAR
7205
SEQ ID NO. 70 in WO2016120220


CD123 CAR
7206
SEQ ID NO. 71 in WO2016120220


CD123 CAR
7207
SEQ ID NO. 72 in WO2016120220


CD123 CAR
7208
SEQ ID NO. 73 in WO2016120220


CD123 CAR
7209
SEQ ID NO. 74 in WO2016120220


CD123 CAR
7210
SEQ ID NO. 75 in WO2016120220


CD123 CAR
7211
SEQ ID NO. 76 in WO2016120220


CD123 CAR
7212
SEQ ID NO. 77 in WO2016120220


CD123 CAR
7213
SEQ ID NO. 78 in WO2016120220


CD123 CAR
7214
SEQ ID NO. 79 in WO2016120220


CD123 CAR
7215
SEQ ID NO. 80 in WO2016120220


CD123 CAR
7216
SEQ ID NO. 81 in WO2016120220


CD123 CAR
7217
SEQ ID NO. 82 in WO2016120220


CD123 CAR
7218
SEQ ID NO. 83 in WO2016120220


CD123 CAR
7219
SEQ ID NO. 84 in WO2016120220


CD123 CAR
7220
SEQ ID NO. 85 in WO2016120220


CD123 CAR
7221
SEQ ID NO. 86 in WO2016120220


CD123 CAR
7222
SEQ ID NO. 87 in WO2016120220


CD123 CAR
7223
SEQ ID NO. 88 in WO2016120220


CD123 CAR
7224
SEQ ID NO. 89 in WO2016120220


CD123 CAR
7225
SEQ ID NO. 90 in WO2016120220


CD123 CAR
7226
SEQ ID NO. 91 in WO2016120220


CD123 CAR
7227
SEQ ID NO. 92 in WO2016120220


CD123 CAR
7228
SEQ ID NO. 93 in WO2016120220


CD123 CAR
7229
SEQ ID NO. 94 in WO2016120220


CD123 CAR
7230
SEQ ID NO. 95 in WO2016120220


CD123 CAR
7231
SEQ ID NO. 96 in WO2016120220


CD123 CAR
7232
SEQ ID NO. 97 in WO2016120220


CD123 CAR
7233
SEQ ID NO. 98 in WO2016120220


CD123 CAR
7234
SEQ ID NO. 99 in WO2016120220


CD123 CAR
7235
SEQ ID NO. 100 in WO2016120220


CD123 CAR
7236
SEQ ID NO. 101 in WO2016120220


CD123 CAR
7237
SEQ ID NO. 102 in WO2016120220


CD123 CAR
7238
SEQ ID NO. 103 in WO2016120220


CD123 CAR
7239
SEQ ID NO. 104 in WO2016120220


CD123 CAR
7240
SEQ ID NO. 105 in WO2016120220


CD123 CAR
7241
SEQ ID NO. 106 in WO2016120220


CD123 CAR
7242
SEQ ID NO. 107 in WO2016120220


CD123 CAR
7243
SEQ ID NO. 108 in WO2016120220


CD123 CAR
7244
SEQ ID NO. 109 in WO2016120220


CD123 CAR
7245
SEQ ID NO. 110 in WO2016120220


CD123 CAR
7246
SEQ ID NO. 111 in WO2016120220


CD123 CAR
7247
SEQ ID NO. 112 in WO2016120220


CD123 CAR
7248
SEQ ID NO. 113 in WO2016120220


CD123 CAR
7249
SEQ ID NO. 114 in WO2016120220


CD123 CAR
7250
SEQ ID NO. 115 in WO2016120220


CD123 CAR
7251
SEQ ID NO. 116 in WO2016120220


CD123 CAR
7252
SEQ ID NO. 117 in WO2016120220


CD123 CAR
7253
SEQ ID NO. 118 in WO2016120220


CD123 CAR
7254
SEQ ID NO. 119 in WO2016120220


CD123 CAR
7255
SEQ ID NO. 120 in WO2016120220


CD123 CAR
7256
SEQ ID NO. 121 in WO2016120220


CD123 CAR
7257
SEQ ID NO. 122 in WO2016120220


CD123 CAR
7258
SEQ ID NO. 123 in WO2016120220


CD123 CAR
7259
SEQ ID NO. 124 in WO2016120220


CD123 CAR
7260
SEQ ID NO. 125 in WO2016120220


CD123 CAR
7261
SEQ ID NO. 126 in WO2016120220


CD123 CAR
7262
SEQ ID NO. 127 in WO2016120220


CD123 CAR
7263
SEQ ID NO. 128 in WO2016120220


CD123 CAR
7264
SEQ ID NO. 129 in WO2016120220


CD123 CAR
7265
SEQ ID NO. 130 in WO2016120220


CD123 CAR
7266
SEQ ID NO. 131 in WO2016120220


CD123 CAR
7267
SEQ ID NO. 132 in WO2016120220


CD123 CAR
7268
SEQ ID NO. 133 in WO2016120220


CD123 CAR
7269
SEQ ID NO. 134 in WO2016120220


CD123 CAR
7270
SEQ ID NO. 135 in WO2016120220


CD123 CAR
7271
SEQ ID NO. 136 in WO2016120220


CD123 CAR
7272
SEQ ID NO. 137 in WO2016120220


CD123 CAR
7273
SEQ ID NO. 138 in WO2016120220


CD123 CAR
7274
SEQ ID NO. 139 in WO2016120220


CD123 CAR
7275
SEQ ID NO. 140 in WO2016120220


CD123 CAR
7276
SEQ ID NO. 141 in WO2016120220


CD123 CAR
7277
SEQ ID NO. 142 in WO2016120220


CD123 CAR
7278
SEQ ID NO. 143 in WO2016120220


CD123 CAR
7279
SEQ ID NO. 144 in WO2016120220


CD123 CAR
7280
SEQ ID NO. 145 in WO2016120220


CD123 CAR
7281
SEQ ID NO. 146 in WO2016120220


CD123 CAR
7282
SEQ ID NO. 147 in WO2016120220


CD123 CAR
7283
SEQ ID NO. 148 in WO2016120220


CD123 CAR
7284
SEQ ID NO. 149 in WO2016120220


CD123 CAR
7285
SEQ ID NO. 150 in WO2016120220


CD123 CAR
7286
SEQ ID NO. 151 in WO2016120220


CD123 CAR
7287
SEQ ID NO. 152 in WO2016120220


CD123 CAR
7288
SEQ ID NO. 153 in WO2016120220


CD123 CAR
7289
SEQ ID NO. 154 in WO2016120220


CD123 CAR
7290
SEQ ID NO. 155 in WO2016120220


CD123 CAR
7291
SEQ ID NO. 156 in WO2016120220


CD123 CAR
7292
SEQ ID NO. 157 in WO2016120220


CD123 CAR
7293
SEQ ID NO. 158 in WO2016120220


CD123 CAR
7294
SEQ ID NO. 159 in WO2016120220


CD123 CAR
7295
SEQ ID NO. 160 in WO2016120220


CD123 CAR
7296
SEQ ID NO. 172 in WO2016120220


CD123 CAR
7297
SEQ ID NO. 173 in WO2016120220


CD123 CAR
7298
SEQ ID NO. 174 in WO2016120220


CD123 CAR
7299
SEQ ID NO. 175 in WO2016120220


CD123 CAR
7300
SEQ ID NO. 176 in WO2016120220


CD123 CAR
7301
SEQ ID NO. 177 in WO2016120220


CD123 CAR
7302
SEQ ID NO. 178 in WO2016120220


CD123 CAR
7303
SEQ ID NO. 179 in WO2016120220


CD123 CAR
7304
SEQ ID NO. 180 in WO2016120220


CD123 CAR
7305
SEQ ID NO. 181 in WO2016120220


CD123 CAR
7306
SEQ ID NO. 182 in WO2016120220


CD123 CAR
7307
SEQ ID NO. 183 in WO2016120220


CD123 CAR
7308
SEQ ID NO. 184 in WO2016120220


CD123 CAR
7309
SEQ ID NO. 185 in WO2016120220


CD123 CAR
7310
SEQ ID NO. 186 in WO20I6120220


CD123 CAR
7311
SEQ ID NO. 187 in WO2016120220


CD123 CAR
7312
SEQ ID NO. 188 in WO2016120220


CD123 CAR
7313
SEQ ID NO. 189 in WO2016120220


CD123 CAR
7314
SEQ ID NO. 190 in WO2016120220


CD123 CAR
7315
SEQ ID NO. 191 in WO2016120220


CD123 CAR
7316
SEQ ID NO. 192 in WO2016120220


CD123 CAR
7317
SEQ ID NO. 193 in WO2016120220


CD123 CAR
7318
SEQ ID NO. 194 in WO2016120220


CD123 CAR
7319
SEQ ID NO. 195 in WO2016120220


CD123 CAR
7320
SEQ ID NO. 196 in WO2016120220


CD123 CAR
7321
SEQ ID NO. 197 in WO2016120220


CD123 CAR
7322
SEQ ID NO. 1 in WO2016120216


CD123 CAR
7323
SEQ ID NO. 2 in WO2016120216


CD123 CAR
7324
SEQ ID NO. 3 in WO2016120216


CD123 CAR
7325
SEQ ID NO. 4 in WO2016120216


CD123 CAR
7326
SEQ ID NO. 5 in WO2016120216


CD123 CAR
7327
SEQ ID NO. 6 in WO2016120216


CD123 CAR
7328
SEQ ID NO. 7 in WO2016120216


CD123 CAR
7329
SEQ ID NO. 8 in WO2016120216


CD123 CAR
7330
SEQ ID NO. 9 in WO2016120216


CD123 CAR
7331
SEQ ID NO. 10 in WO2016120216


CD123 CAR
7332
SEQ ID NO. 142 in WO2016120216


CD19/IL13 Bispecific CAR
7333
SEQ ID NO: 10 in US20160340649A1


CD19 CAR
7334
SEQ ID NO: 12 in U.S. Pat. No. 9,499,629B2


CD19 CAR
7335
SEQ ID NO: 24 in US20160333108A1


CD19 CAR
7336
SEQ ID NO. 25 in US20160333108A1


CD19 CAR
7337
SEQ ID NO: 26 in US20160333108A1


CD19 CAR
7338
SEQ ID NO: 27 in US20160333108A1


CD19 CAR
7339
SEQ ID NO: 1 in EP2997134A4


CD19 CAR
7340
SEQ ID NO: 19 in EP3071687A1


CD19 CAR
7341
SEQ ID NO: 20 in EP3071687A1


CD19 CAR
7342
SEQ ID NO: 181 in WO2016168773A3


CD19 CAR
7343
SEQ ID NO: 2 in WO2015157399A9


CD19 CAR
7344
SEQ ID NO: 56 in WO2016174409A1


CD19 CAR
7345
SEQ ID NO: 62 in WO2016174409A1


CD19 CAR
7346
SEQ ID NO: 145 in WO2016179319A1


CD19 CAR
7347
SEQ ID NO: 293 in US20160311907A1


CD19 CAR
7348
SEQ ID NO: 294 in US20160311907A1


CD19 CAR
7349
SEQ ID NO: 295 in US20160311907A1


CD19 CAR
7350
SEQ ID NO: 296 in US20160311907A1


CD19 CAR
7351
SEQ ID NO: 297 in US20160311907A1


CD19 CAR
7352
SEQ ID NO: 298 in US20160311907A1


CD19 CAR
7353
SEQ ID NO. 73 in WO2013176915A1


CD19 CAR
7354
SEQ ID NO. 73 in WO2013176916A1


CD19 CAR
7355
SEQ ID NO. 73 in US20130315884A1


CD19 CAR
7356
SEQ ID NO. 73 in US20140134142A1


CD19 CAR
7357
SEQ ID NO. 73 in US20150017136A1


CD19 CAR
7358
SEQ ID NO. 73 in US20150203817A1


CD19 CAR
7359
SEQ ID NO. 73 in US20160120905A1


CD19 CAR
7360
SEQ ID NO. 73 in US20160120906A1


CD19 CAR
7361
SEQ ID NO. 8 in WO2015124715


CD19 CAR
7362
SEQ ID NO. 5 in WO2015124715


CD19 CAR
7363
SEQ ID NO. 73 in WO2014184744


CD19 CAR
7364
SEQ ID NO. 73 in WO2014184741


CD19 CAR
7365
SEQ ID NO. 14 in US20160145337A1


CD19 CAR
7366
SEQ ID NO. 15 in US20160145337A1


CD19 CAR
7367
SEQ ID NO. 14 in WO2014184143


CD19 CAR
7368
SEQ ID NO. 15 in WO2014184143


CD19 CAR
7369
SEQ ID NO. 15 in WO2015075175


CD19 CAR
7370
SEQ ID NO. 16 in WO2015075175


CD19 CAR
7371
SEQ ID NO. 16 in US20160145337A1


CD19 CAR
7372
SEQ ID NO. 16 in WO2014184143


CD19 CAR
7373
SEQ ID NO 12 in WO2012079000


CD19 CAR
7374
SEQ ID NO. 31 in WO2016164580


CD19 CAR
7375
SEQ ID NO. 32 in WO2016164580


CD19 CAR
7376
SEQ ID NO. 33 in WO2016164580


CD19 CAR
7377
SEQ ID NO. 34 in WO2016164580


CD19 CAR
7378
SEQ ID NO. 35 in WO2016164580


CD19 CAR
7379
SEQ ID NO. 36 in WO2016164580


CD19 CAR
7380
SEQ ID NO. 37 in WO2016164580


CD19 CAR
7381
SEQ ID NO. 38 in WO2016164580


CD19 CAR
7382
SEQ ID NO. 39 in WO2016164580


CD19 CAR
7383
SEQ ID NO. 40 in WO2016164580


CD19 CAR
7384
SEQ ID NO. 41 in WO2016164580


CD19 CAR
7385
SEQ ID NO. 42 in WO2016164580


CD19 CAR
7386
SEQ ID NO. 58 in WO2016164580


CD19 CAR
7387
SEQ ID NO: 14 in US20160296563A1


CD19 CAR
7388
SEQ ID NO: 15 in US20160296563A1


CD19 CAR
7389
SEQ ID NO. 31 in WO2015157252


CD19 CAR
7390
SEQ ID NO. 32 in WO2015157252


CD19 CAR
7391
SEQ ID NO. 33 in WO2015157252


CD19 CAR
7392
SEQ ID NO. 34 in WO2015157252


CD19 CAR
7393
SEQ ID NO. 35 in WO2015157252


CD19 CAR
7394
SEQ ID NO. 36 in WO2015157252


CD19 CAR
7395
SEQ ID NO. 37 in WO2015157252


CD19 CAR
7396
SEQ ID NO. 38 in WO2015157252


CD19 CAR
7397
SEQ ID NO. 39 in WO2015157252


CD19 CAR
7398
SEQ ID NO. 40 in WO2015157252


CD19 CAR
7399
SEQ ID NO. 41 in WO2015157252


CD19 CAR
7400
SEQ ID NO. 42 in WO2015157252


CD19 CAR
7401
SEQ ID NO. 14 in WO2016139487


CD19 CAR
7402
SEQ ID NO. 15 in WO2016139487


CD19 CAR
7403
SEQ ID NO: 53 in US20160250258A1


CD19 CAR
7404
SEQ ID NO: 54 in US20160250258A1


CD19 CAR
7405
SEQ ID NO: 55 in US20160250258A1


CD19 CAR
7406
SEQ ID NO: 56 in US20160250258A1


CD19 CAR
7407
SEQ ID NO: 57 in US20160250258A1


CD19 CAR
7408
SEQ ID NO: 58 in US20160250258A1


CD19 CAR
7409
SEQ ID NO. 1 in WO2015187528


CD19 CAR
7410
SEQ ID NO. 2 in WO2015187528


CD19 CAR
7411
SEQ ID NO. 3 in WO2015187528


CD19 CAR
7412
SEQ ID NO. 4 in WO2015187528


CD19 CAR
7413
SEQ ID NO. 5 in WO2015187528


CD19 CAR
7414
SEQ ID NO. 6 in WO2015187528


CD19 CAR
7415
SEQ ID NO. 7 in WO2015187528


CD19 CAR
7416
SEQ ID NO. 8 in WO2015187528


CD19 CAR
7417
SEQ ID NO. 9 in WO2015187528


CD19 CAR
7418
SEQ ID NO. 10 in WO2015187528


CD19 CAR
7419
SEQ ID NO. 11 in WO2015187528


CD19 CAR
7420
SEQ ID NO. 12 in WO2015187528


CD19 CAR
7421
SEQ ID NO. 13 in WO2015187528


CD19 CAR
7422
SEQ ID. NO. 31 in WO2015157252


CD19 CAR
7423
SEQ ID. NO. 32 in WO2015157252


CD19 CAR
7424
SEQ ID. NO. 33 in WO2015157252


CD19 CAR
7425
SEQ ID. NO. 34 in WO2015157252


CD19 CAR
7426
SEQ ID. NO. 35 in WO2015157252


CD19 CAR
7427
SEQ ID. NO. 36 in WO2015157252


CD19 CAR
7428
SEQ ID. NO. 37 in WO2015157252


CD19 CAR
7429
SEQ ID. NO. 38 in WO2015157252


CD19 CAR
7430
SEQ ID. NO. 39 in WO2015157252


CD19 CAR
7431
SEQ ID. NO. 40 in WO2015157252


CD19 CAR
7432
SEQ ID. NO. 41 in WO2015157252


CD19 CAR
7433
SEQ ID. NO. 42 in WO2015157252


CD19 CAR
7434
SEQ ID. NO. 58 in WO2015157252


CD19 CAR
7435
SEQ ID NO. 31 in WO2014153270


CD19 CAR
7436
SEQ ID NO. 32 in WO2014153270


CD19 CAR
7437
SEQ ID NO. 33 in WO2014153270


CD19 CAR
7438
SEQ ID NO. 34 in WO2014153270


CD19 CAR
7439
SEQ ID NO. 35 in WO2014153270


CD19 CAR
7440
SEQ ID NO. 36 in WO2014153270


CD19 CAR
7441
SEQ ID NO. 37 in WO2014153270


CD19 CAR
7442
SEQ ID NO. 38 in WO2014153270


CD19 CAR
7443
SEQ ID NO. 39 in WO2014153270


CD19 CAR
7444
SEQ ID NO. 40 in WO2014153270


CD19 CAR
7445
SEQ ID NO. 41 in WO2014153270


CD19 CAR
7446
SEQ ID NO. 42 in WO2014153270


CD19 CAR
7447
in WO2016134284 (no SEQ ID NO)


CD19 CAR (Third generation)
7448
SEQ ID NO. 13 in WO2016139487


CD19 or CD33 CAR (a CAR OR gate
7449
SEQ ID NO. 1 in WO2015075468


which recognizes CD19 OR CD33)




CD19CD20 CAR Bispecific CAR
7450
SEQ ID NO: 1308 in WO2016164731A2


CD19CD20 CAR Bispecific CAR
7451
SEQ ID NO: 2 in U.S. Pat. No. 9,447,194B2


CD19CD20 CAR Bispecific CAR
7452
SEQ ID NO: 8 in U.S. Pat. No. 9,447,194B2


CD19CD20 CAR Bispecific CAR
7453
SEQ ID NO: 11 in U.S. Pat. No. 9,447,194B2


CD2 CAR
7454
SEQ ID NO. 10 in WO2016138491


CD2 CAR
7455
SEQ ID NO. 11 in WO2016138491


CD20 CAR
7456
SEQ ID NO: 25 in WO2015157399A9


CD20 NCAR
7457
SEQ ID NO: 177 in WO2016097231


CD20 NCAR
7458
SEQ ID NO: 181 in WO2016097231


CD20 NCAR
7459
SEQ ID NO: 182 in WO2016097231


CD20 NCAR
7460
SEQ ID NO: 183 in WO2016097231


CD20 NCAR
7461
SEQ ID NO: 184 in WO2016097231


CD20 NCAR
7462
SEQ ID NO: 185 in WO2016097231


CD20 NCAR
7463
SEQ ID NO: 186 in WO2016097231


CD20 NCAR
7464
SEQ ID NO: 187 in WO2016097231


CD20 NCAR
7465
SEQ ID NO: 205 in WO2016097231


CD20 NCAR
7466
SEQ ID NO: 206 in WO2016097231


CD20 NCAR
7467
SEQ ID NO: 207 in WO2016097231


CD20 NCAR
7468
SEQ ID NO: 208 in WO2016097231


CD20 NCAR
7469
SEQ ID NO: 209 in WO2016097231


CD20 NCAR
7470
SEQ ID NO: 210 in WO2016097231


CD20 NCAR
7471
SEQ ID NO: 211 in WO2016097231


CD20 NCAR
7472
SEQ ID NO: 188 in WO2016097231


CD20 NCAR
7473
SEQ ID NO: 189 in WO2016097231


CD20 NCAR
7474
SEQ ID NO: 190 in WO2016097231


CD20 NCAR
7475
SEQ ID NO: 191 in WO2016097231


CD20 NCAR
7476
SEQ ID NO: 192 in WO2016097231


CD20 NCAR
7477
SEQ ID NO: 193 in WO2016097231


CD20 NCAR
7478
SEQ ID NO: 176 in WO2016097231


CD20 NCAR
7479
SEQ ID NO: 212 in WO2016097231


CD20 NCAR
7480
SEQ ID NO: 194 in WO2016097231


CD20 NCAR
7481
SEQ ID NO: 195 in WO2016097231


CD20 NCAR
7482
SEQ ID NO: 196 in WO2016097231


CD20 NCAR
7483
SEQ ID NO: 197 in WO2016097231


CD20 NCAR
7484
SEQ ID NO: 198 in WO2016097231


CD20 NCAR
7485
SEQ ID NO: 199 in WO2016097231


CD20 NCAR
7486
SEQ ID NO: 200 in WO2016097231


CD20 NCAR
7487
SEQ ID NO. 201 in WO2016097231


CD20 NCAR
7488
SEQ ID NO: 202 in WO2016097231


CD20 NCAR
7489
SEQ ID NO: 203 in WO2016097231


CD20 NCAR
7490
SEQ ID NO: 178 in WO2016097231


CD20 NCAR
7491
SEQ ID NO: 179 in WO2016097231


CD20 NCAR
7492
SEQ ID NO: 180 in WO2016097231


CD22 CAR
7493
SEQ ID NO: 380 in WO2016164731A2


CD22 CAR
7494
SEQ ID NO: 204 in WO2016164731A2


CD22 CAR
7495
SEQ ID NO: 260 in WO2016164731A2


CD22 CAR
7496
SEQ ID NO: 266 in WO2016164731A2


CD22 CAR
7497
SEQ ID NO: 272 in WO2016164731A2


CD22 CAR
7498
SEQ ID NO. 278 in WO2016164731A2


CD22 CAR
7499
SEQ ID NO: 284 in WO2016164731A2


CD22 CAR
7500
SEQ ID NO: 290 in WO2016164731A2


CD22 CAR
7501
SEQ ID NO: 296 in WO2016164731A2


CD22 CAR
7502
SEQ ID NO: 302 in WO2016164731A2


CD22 CAR
7503
SEQ ID NO: 308 in WO2016164731A2


CD22 CAR
7504
SEQ ID NO: 314 in WO2016164731A2


CD22 CAR
7505
SEQ ID NO: 213 in WO2016164731A2


CD22 CAR
7506
SEQ ID NO: 320 in WO2016164731A2


CD22 CAR
7507
SEQ ID NO: 326 in WO2016164731A2


CD22 CAR
7508
SEQ ID NO: 332 in WO2016164731A2


CD22 CAR
7509
SEQ ID NO: 338 in WO2016164731A2


CD22 CAR
7510
SEQ ID NO: 347 in WO2016164731A2


CD22 CAR
7511
SEQ ID NO: 350 in WO2016164731A2


CD22 CAR
7512
SEQ ID NO: 356 in WO2016164731A2


CD22 CAR
7513
SEQ ID NO: 362 in WO2016164731A2


CD22 CAR
7514
SEQ ID NO: 368 in WO2016164731A2


CD22 CAR
7515
SEQ ID NO: 374 in WO2016164731A2


CD22 CAR
7516
SEQ ID NO: 219 in WO2016164731A2


CD22 CAR
7517
SEQ ID NO: 386 in WO2016164731A2


CD22 CAR
7518
SEQ ID NO: 392 in WO2016164731A2


CD22 CAR
7519
SEQ ID NO: 398 in WO2016164731A2


CD22 CAR
7520
SEQ ID NO: 404 in WO2016164731A2


CD22 CAR
7521
SEQ ID NO: 410 in WO2016164731A2


CD22 CAR
7522
SEQ ID NO: 416 in WO2016164731A2


CD22 CAR
7523
SEQ ID NO: 421 in WO2016164731A2


CD22 CAR
7524
SEQ ID NO: 427 in WO2016164731A2


CD22 CAR
7525
SEQ ID NO: 225 in WO2016164731A2


CD22 CAR
7526
SEQ ID NO: 230 in WO2016164731A2


CD22 CAR
7527
SEQ ID NO: 1109 in WO2016164731A2


CD22 CAR
7528
SEQ ID NO: 236 in WO2016164731A2


CD22 CAR
7529
SEQ ID NO: 242 in WO2016164731A2


CD22 CAR
7530
SEQ ID NO: 248 in WO2016164731A2


CD22 CAR
7531
SEQ ID NO: 254 in WO2016164731A2


CD22 CAR
7532
SEQ ID NO. 15 in WO2013059593


CD22 CAR
7533
SEQ ID NO. 16 in WO2013059593


CD22 CAR
7534
SEQ ID NO. 17 in WO2013059593


CD22 CAR
7535
SEQ ID NO. 18 in WO2013059593


CD22 CAR
7536
SEQ ID NO. 19 in WO2013059593


CD22 CAR
7537
SEQ ID NO. 20 in WO2013059593


CD22 CAR
7538
SEQ ID NO. 32 in WO2013059593


CD22 CAR
7539
SEQ ID NO. 22 in US20150299317


CD22 CAR
7540
SEQ ID NO. 23 in US20150299317


CD22 CAR
7541
SEQ ID NO. 24 in US20150299317


CD22CD19 Bispecific CAR
7542
SEQ ID NO. 29 in WO2016149578


CD22CD19 Bispecific CAR
7543
SEQ ID NO. 30 in WO2016149578


CD22CD19 Bispecific CAR
7544
SEQ ID NO: 1304 in WO2016164731A2


CD276 CAR
7545
SEQ ID NO. 39 in US20160053017


CD276 CAR
7546
SEQ ID NO. 40 in US20160053017


CD276 CAR
7547
SEQ ID NO. 41 in US20160053017


CD276 CAR
7548
SEQ ID NO. 42 in US20160053017


CD276 CAR
7549
SEQ ID NO. 43 in US20160053017


CD276 CAR
7550
SEQ ID NO. 44 in US20160053017


CD276 CAR
7551
SEQ ID NO. 45 in US20160053017


CD276 CAR
7552
SEQ ID NO. 46 in US20160053017


CD276 CAR
7553
SEQ ID NO. 47 in US20160053017


CD276 CAR
7554
SEQ ID NO. 122 in US20160053017


CD276 CAR
7555
SEQ ID NO. 123 in US20160053017


CD276 CAR
7556
SEQ ID NO. 124 in US20160053017


CD276 CAR
7557
SEQ ID NO. 125 in US20160053017


CD276 CAR
7558
SEQ ID NO. 126 in US20160053017


CD276 CAR
7559
SEQ ID NO. 127 in US20160053017


CD276 CAR
7560
SEQ ID NO. 128 in US20160053017


CD276 CAR
7561
SEQ ID NO. 129 in US20160053017


CD276 CAR
7562
SEQ ID NO. 130 in US20160053017


CD3 CAR
7563
SEQ ID NO. 12 in WO2016138491


CD30 CAR
7564
SEQ ID NO. 20 in WO2016008973A1


CD30 CAR
7565
SEQ ID NO 1 in WO2016116035A1


CD30 CAR
7566
in WO2016134284 (no SEQ ID NO)


CD30 CAR
7567
SEQ ID NO. 2 in WO2016008973A1


CD33 CAR
7568
SEQ ID NO. 48 in WO2016014576


CD33 CAR
7569
SEQ ID NO. 49 in WO2016014576


CD33 CAR
7570
SEQ ID NO. 50 in WO2016014576


CD33 CAR
7571
SEQ ID NO. 51 in WO2016014576


CD33 CAR
7572
SEQ ID NO. 52 in WO2016014576


CD33 CAR
7573
SEQ ID NO. 53 in WO2016014576


CD33 CAR
7574
SEQ ID NO. 54 in WO2016014576


CD33 CAR
7575
SEQ ID NO. 55 in WO2016014576


CD33 CAR
7576
SEQ ID NO. 83 in WO2016014576


CD33 CAR
7577
SEQ ID NO. 19 in WO2015150526A2


CD33 CAR
7578
SEQ ID NO. 20 in WO2015150526A2


CD33 CAR
7579
SEQ ID NO. 21 in WO2015150526A2


CD33 CAR
7580
SEQ ID NO. 22 in WO2015150526A2


CD33 CAR
7581
SEQ ID NO. 23 in WO2015150526A2


CD33 CAR
7582
SEQ ID NO. 24 in WO2015150526A2


CD33 CAR
7583
SEQ ID NO. 25 in WO2015150526A2


CD33 CAR
7584
SEQ ID NO. 26 in WO2015150526A2


CD33 CAR
7585
SEQ ID NO. 27 in WO2015150526A2


CD33 CAR
7586
SEQ ID NO. 28 in WO2015150526A2


CD33 CAR
7587
SEQ ID NO. 29 in WO2015150526A2


CD33 CAR
7588
SEQ ID NO. 30 in WO2015150526A2


CD33 CAR
7589
SEQ ID NO. 31 in WO2015150526A2


CD33 CAR
7590
SEQ ID NO. 32 in WO2015150526A2


CD33 CAR
7591
SEQ ID NO. 33 in WO2015150526A2


CD33 CAR
7592
SEQ ID NO. 34 in WO2015150526A2


CD33 CAR
7593
SEQ ID NO. 35 in WO2015150526A2


CD33 CAR
7594
SEQ ID NO. 36 in WO2015150526A2


CD33 CAR
7595
SEQ ID NO. 37 in WO2015150526A2


CD33 CAR
7596
SEQ ID NO. 38 in WO2015150526A2


CD33 CAR
7597
SEQ ID NO. 39 in WO2015150526A2


CD33 CAR
7598
SEQ ID NO. 40 in WO2015150526A2


CD33 CAR
7599
SEQ ID NO. 41 in WO2015150526A2


CD33 CAR
7600
SEQ ID NO. 42 in WO2015150526A2


CD33 CAR
7601
SEQ ID NO. 48 in WO2015150526A2


CD33 CAR
7602
SEQ ID NO. 49 in WO2015150526A2


CD33 CAR
7603
SEQ ID NO. 50 in WO2015150526A2


CD33 CAR
7604
SEQ ID NO. 51 in WO2015150526A2


CD33 CAR
7605
SEQ ID NO. 52 in WO2015150526A2


CD33 CAR
7606
SEQ ID NO. 53 in WO2015150526A2


CD33 CAR
7607
SEQ ID NO. 54 in WO2015150526A2


CD33 CAR
7608
SEQ ID NO. 55 in WO2015150526A2


CD33 CAR
7609
SEQ ID NO. 56 in WO2015150526A2


CD33 CAR
7610
SEQ ID NO. 57 in WO2015150526A2


CD33 CAR
7611
SEQ ID NO. 58 in WO2015150526A2


CD33 CAR
7612
SEQ ID NO. 59 in WO2015150526A2


CD33 CAR
7613
SEQ ID NO. 60 in WO2015150526A2


CD33 CAR
7614
SEQ ID NO. 61 in WO2015150526A2


CD33 CAR
7615
SEQ ID NO. 62 in WO2015150526A2


CD33 CAR
7616
SEQ ID NO. 63 in WO2015150526A2


CD33 CAR
7617
SEQ ID NO. 64 in WO2015150526A2


CD33 CAR
7618
SEQ ID NO. 65 in WO2015150526A2


CD33 CAR
7619
SEQ ID NO. 66 in WO2015150526A2


CD33 CAR
7620
SEQ ID NO. 67 in WO2015150526A2


CD33 CAR
7621
SEQ ID NO. 68 in WO2015150526A2


CD33 CAR
7622
SEQ ID NO. 69 in WO2015150526A2


CD33 CAR
7623
SEQ ID NO. 70 in WO2015150526A2


CD33 CAR
7624
SEQ ID NO. 71 in WO2015150526A2


CD38 CAR
7625
SEQ ID NO: 70 in WO2016097231


CD38 CAR
7626
SEQ ID NO: 71 in WO2016097231


CD38 CAR
7627
SEQ ID NO: 72 in WO2016097231


CD38 CAR
7628
SEQ ID NO: 64 in WO2016097231


CD38 CAR
7629
SEQ ID NO: 65 in WO2016097231


CD38 CAR
7630
SEQ ID NO: 66 in WO2016097231


CD38 CAR
7631
SEQ ID NO: 67 in WO2016097231


CD38 CAR
7632
SEQ ID NO: 68 in WO2016097231


CD38 CAR
7633
SEQ ID NO: 69 in WO2016097231


CD38 CAR
7634
SEQ ID No. 35 in WO2015121454


CD38 CAR
7635
SEQ ID No. 36 in WO2015121454


CD38 CAR
7636
SEQ ID No. 37 in WO2015121454


CD4 CAR
7637
SEQ ID NO. 13 in WO2016138491


CD4 CAR
7638
SEQ ID NO. 14 in WO2016138491


CD410 CAR
7639
SEQ ID NO: 7 in EP3074419A2


CD435 CAR
7640
SEQ ID NO: 5 in EP3074419A2


CD44 CAR
7641
SEQ ID NO. 21 in WO2016042461A1


CD44 CAR
7642
SEQ ID NO. 22 in WO2016042461A1


CD44 CAR
7643
SEQ ID NO. 23 in WO2016042461A1


CD44 CAR
7644
SEQ ID NO. 24 in WO2016042461A1


CD44 CAR
7645
SEQ ID NO. 25 in WO2016042461A1


CD44 CAR
7646
SEQ ID NO. 26 in WO2016042461A1


CD44 CAR
7647
SEQ ID NO. 27 in WO2016042461A1


CD44 CAR
7648
SEQ ID NO. 28 in WO2016042461A1


CD44 CAR
7649
SEQ ID NO. 31 in WO2016042461A1


CD44 CAR
7650
SEQ ID NO. 32 in WO2016042461A1


CD44 CAR
7651
SEQ ID NO. 33 in WO2016042461A1


CD44 CAR
7652
SEQ ID NO. 34 in WO2016042461A1


CD44 CAR
7653
SEQ ID NO. 35 in WO2016042461A1


CD4-DDY3 CAR
7654
SEQ ID NO: 9 in EP3074419A2


CD5 CAR
7655
SEQ ID NO. 15 in WO2016138491


CD5 CAR
7656
SEQ ID NO: 13 in WO2016172606A1


CD52 CAR
7657
SEQ ID NO. 18 in WO2016138491


CD7 CAR
7658
SEQ ID NO. 17 in WO2016138491


CD70 CAR
7659
SEQ ID NO. 100 in WO2015121454


CD70 CAR
7660
SEQ ID NO. 93 in WO2015121454


CD70 CAR
7661
SEQ ID NO. 94 in WO2015121454


CD70 CAR
7662
SEQ ID NO. 96 in WO2015121454


CD70 CAR
7663
SEQ ID NO. 101 in WO2015121454


CD70 CAR
7664
SEQ ID NO. 95 in WO2015121454


CD70 CAR
7665
SEQ ID NO. 97 in WO2015121454


CD70 CAR
7666
SEQ ID NO. 98 in WO2015121454


CD8 stalk APRIL CAR
7667
SEQ ID NO: 51 in US20160296562A1


CEA CAR
7668
SEQ ID NO. 4 in WO2016008973A1


CEA CAR
7669
SEQ ID NO. 29 in US20140242701A


CEA CAR
7670
SEQ ID NO. 30 in US20140242701A


Chimeric VNARCAR 1
7671
SEQ ID NO: 105 in US20160333094A1


Chimeric VNARCAR 2
7672
SEQ ID NO: 106 in US20160333094A1


Chimeric VNARCAR 3
7673
SEQ ID NO: 107 in US20160333094A1


Chimeric VNARCAR 4
7674
SEQ ID NO: 108 in US20160333094A1


Chimeric VNARCAR 5
7675
SEQ ID NO: 109 in US20160333094A1


Chimeric VNARCAR 6
7676
SEQ ID NO: 110 in US20160333094A1


CLDN6 CAR
7677
SEQ ID NO. 22 in WO2016150400


CLDN6 CAR
7678
SEQ ID NO. 23 in WO2016150400


CLDN6 CAR
7679
SEQ ID NO. 24 in WO2016150400


CLL1 CAR
7680
SEQ ID NO: 148 in WO2016179319A1


CLL1 CAR
7681
SEQ ID NO. 35 in WO2016120218


CLL1 CAR
7682
SEQ ID NO. 36 in WO2016120218


CLL1 CAR
7683
SEQ ID NO. 37 in WO2016120218


CLL1 CAR
7684
SEQ ID NO. 38 in WO2016120218


CLL1 CAR
7685
SEQ ID NO. 39 in WO2016120218


CLL1 CAR
7686
SEQ ID NO. 40 in WO2016120218


CLL1 CAR
7687
SEQ ID NO. 41 in WO2016120218


CLL1 CAR
7688
SEQ ID NO. 42 in WO2016120218


CLL1 CAR
7689
SEQ ID NO. 43 in WO2016120218


CLL1 CAR
7690
SEQ ID NO. 44 in WO2016120218


CLL1 CAR
7691
SEQ ID NO. 45 in WO2016120218


CLL1 CAR
7692
SEQ ID NO. 46 in WO2016120218


CLL1 CAR
7693
SEQ ID NO. 47 in WO2016120218


CLL1 CAR
7694
SEQ ID NO. 48 in WO2016120218


CLL1 CAR
7695
SEQ ID NO. 49 in WO2016120218


CLL1 CAR
7696
SEQ ID NO. 50 in WO2016120218


CLL1 CAR
7697
SEQ ID NO. 51 in WO2016120218


CLL1 CAR
7698
SEQ ID NO. 52 in WO2016120218


CLL1 CAR
7699
SEQ ID NO. 53 in WO2016120218


CLL1 CAR
7700
SEQ ID NO. 54 in WO2016120218


CLL1 CAR
7701
SEQ ID NO. 55 in WO2016120218


CLL1 CAR
7702
SEQ ID NO. 56 in WO2016120218


CLL1 CAR
7703
SEQ ID NO. 57 in WO2016120218


CLL1 CAR
7704
SEQ ID NO. 58 in WO2016120218


CLL1 CAR
7705
SEQ ID NO. 59 in WO2016120218


CLL1 CAR
7706
SEQ ID NO. 60 in WO2016120218


CLL1 CAR
7707
SEQ ID NO. 61 in WO2016120218


CLL1 CAR
7708
SEQ ID NO. 62 in WO2016120218


CLL1 CAR
7709
SEQ ID NO. 63 in WO2016120218


CLL1 CAR
7710
SEQ ID NO. 64 in WO2016120218


CLL1 CAR
7711
SEQ ID NO. 65 in WO2016120218


CLL1 CAR
7712
SEQ ID NO. 66 in WO2016120218


CLL1 CAR
7713
SEQ ID NO. 67 in WO2016120218


CLL1 CAR
7714
SEQ ID NO. 68 in WO2016120218


CLL1 CAR
7715
SEQ ID NO. 69 in WO2016120218


CLL1 CAR
7716
SEQ ID NO. 70 in WO2016120218


CLL1 CAR
7717
SEQ ID NO. 71 in WO2016120218


CLL1 CAR
7718
SEQ ID NO. 72 in WO2016120218


CLL1 CAR
7719
SEQ ID NO. 73 in WO2016120218


CLL1 CAR
7720
SEQ ID NO. 74 in WO2016120218


CLL1 CAR
7721
SEQ ID NO. 75 in WO2016120218


CLL1 CAR
7722
SEQ ID NO. 76 in WO2016120218


CLL1 CAR
7723
SEQ ID NO. 77 in WO2016120218


CLL1 CAR
7724
SEQ ID NO. 78 in WO2016120218


CLL1 CAR
7725
SEQ ID NO. 79 in WO2016120218


CLL1 CAR
7726
SEQ ID NO. 80 in WO2016120218


CLL1 CAR
7727
SEQ ID NO. 81 in WO2016120218


CLL1 CAR
7728
SEQ ID NO. 82 in WO2016120218


CLL1 CAR
7729
SEQ ID NO. 83 in WO2016120218


CLL1 CAR
7730
SEQ ID NO. 84 in WO2016120218


CLL1 CAR
7731
SEQ ID NO. 85 in WO2016120218


CLL1 CAR
7732
SEQ ID NO. 86 in WO2016120218


CLL1 CAR
7733
SEQ ID NO. 87 in WO2016120218


CLL1 CAR
7734
SEQ ID NO. 88 in WO2016120218


CLL1 CAR
7735
SEQ ID NO. 89 in WO2016120218


CLL1 CAR
7736
SEQ ID NO. 90 in WO2016120218


CLL1 CAR
7737
SEQ ID NO. 91 in WO2016120218


CLL1 CAR
7738
SEQ ID NO. 92 in WO2016120218


CLL1 CAR
7739
SEQ ID NO. 93 in WO2016120218


CLL1 CAR
7740
SEQ ID NO. 94 in WO2016120218


CLL1 CAR
7741
SEQ ID NO. 95 in WO2016120218


CLL1 CAR
7742
SEQ ID NO. 96 in WO2016120218


CLL1 CAR
7743
SEQ ID NO. 97 in WO2016120218


CLL1 CAR
7744
SEQ ID NO. 98 in WO2016120218


CLL1 CAR
7745
SEQ ID NO. 99 in WO2016120218


CLL1 CAR
7746
SEQ ID NO. 100 in WO2016120218


CLL1 CAR
7747
SEQ ID NO. 101 in WO2016120218


CLL1 CAR
7748
SEQ ID NO. 102 in WO2016120218


CLL1 CAR
7749
SEQ ID NO. 103 in WO2016120218


CLL1 CAR
7750
SEQ ID NO. 104 in WO2016120218


CLL1 CAR
7751
SEQ ID NO. 105 in WO2016120218


CLL1 CAR
7752
SEQ ID NO. 106 in WO2016120218


CLL1 CAR
7753
SEQ ID NO. 107 in WO2016120218


CLL1 CAR
7754
SEQ ID NO. 108 in WO2016120218


CLL1 CAR
7755
SEQ ID NO. 109 in WO2016120218


CLL1 CAR
7756
SEQ ID NO. 110 in WO2016120218


CLL1 CAR
7757
SEQ ID NO. 111 in WO2016120218


CLL1 CAR
7758
SEQ ID NO. 112 in WO2016120218


CLL1 CAR
7759
SEQ ID NO. 91 in WO2016014535


CLL1 CAR
7760
SEQ ID NO. 92 in WO2016014535


CLL1 CAR
7761
SEQ ID NO. 93 in WO2016014535


CLL1 CAR
7762
SEQ ID NO. 94 in WO2016014535


CLL1 CAR
7763
SEQ ID NO. 95 in WO2016014535


CLL1 CAR
7764
SEQ ID NO. 96 in WO2016014535


CLL1 CAR
7765
SEQ ID NO. 97 in WO2016014535


CLL1 CAR
7766
SEQ ID NO. 98 in WO2016014535


CLL1 CAR
7767
SEQ ID NO. 99 in WO2016014535


CLL1 CAR
7768
SEQ ID NO. 100 in WO2016014535


CLL1 CAR
7769
SEQ ID NO. 101 in WO2016014535


CLL1 CAR
7770
SEQ ID NO. 102 in WO2016014535


CLL1 CAR
7771
SEQ ID NO. 103 in WO2016014535


CLL1 CAR
7772
SEQ ID NO. 197 in WO2016014535


COM22 CAR
7773
SEQ ID NO: 358 in US20160297884A1


COM22 CAR
7774
SEQ ID NO: 359 in US20160297884A1


COM22 CAR
7775
SEQ ID NO: 360 in US20160297884A1


CS1 CAR
7776
SEQ ID No. 55 in WO2015121454


CS1 CAR
7777
SEQ ID No. 57 in WO2015121454


CS1 CAR
7778
SEQ ID No. 60 in WO2015121454


CS1 CAR
7779
SEQ ID No. 54 in WO2015121454


CS1 CAR
7780
SEQ ID No. 56 in WO2015121454


CS1 CAR
7781
SEQ ID No. 48 in WO2015121454


CS1 CAR
7782
SEQ ID No. 49 in WO2015121454


CS1 CAR
7783
SEQ ID No. 50 in WO2015121454


CS1 CAR
7784
SEQ ID No. 51 in WO2015121454


CS1 CAR
7785
SEQ ID No. 52 in WO2015121454


CS1 CAR
7786
SEQ ID No. 53 in WO2015121454


CS1 CAR
7787
SEQ ID No. 58 in WO2015121454


CS1 CAR
7788
SEQ ID No. 59 in WO2015121454


CS1 CAR
7789
SEQ ID No. 61 in WO2015121454


CS1 CAR
7790
SEQ ID No. 62 in WO2015121454


CS1 CAR
7791
SEQ ID NO. 28 in WO2014179759A1


DDD1/AD1 based zip CAR
7792
SEQ ID NO. 36 in WO2016124930


DDD1/AD1 Zip CAR
7793
SEQ ID NO. 37 in WO2016124930


EGFR CAR
7794
SEQ ID NO. 3 in WO2014130657


EGFR CAR
7795
SEQ ID NO. 2 in WO2014130657


EGFR CAR
7796
SEQ ID NO. 36 in US20140242701A


EGFR CAR
7797
SEQ ID NO. 37 in US20140242701A


EGFR CAR
7798
SEQ ID NO. 38 in US20140242701A


EGFR CAR
7799
SEQ ID NO. 39 in US20140242701A


EGFR CAR
7800
SEQ ID NO. 35 in US20140242701A


EGFR CAR
7801
SEQ ID NO. 43 in WO2014130657


EGFR CAR
7802
SEQ ID NO. 96 in WO2014130657


EGFR CAR
7803
SEQ ID NO. 49 in WO2014130657


EGFR CAR
7804
SEQ ID NO. 55 in WO2014130657


EGFR CAR
7805
SEQ ID NO. 61 in WO2014130657


EGFR CAR
7806
SEQ ID NO. 67 in WO2014130657


EGFR CAR
7807
SEQ ID NO. 73 in WO2014130657


EGFR CAR
7808
SEQ ID NO. 79 in WO2014130657


EGFR CAR
7809
SEQ ID NO. 85 in WO2014130657


EGFR CAR
7810
SEQ ID NO. 90 in WO2014130657


EGFR CAR
7811
SEQ ID NO. 1 in WO2014130657


EGFR vIII CAR
7812
SEQ ID NO. 15 in WO2016016341


EGFR vIII CAR
7813
SEQ ID NO. 16 in WO2016016341


EGFR vIII CAR
7814
SEQ ID NO. 17 in WO2016016341


EGFR vIII CAR
7815
SEQ ID NO. 18 in WO2016016341


EGFR vIII CAR
7816
SEQ ID NO. 24 in WO2016016341


EGFR vIII CAR
7817
SEQ ID NO. 25 in WO2016016341


EGFR vIII CAR
7818
SEQ ID NO. 26 in WO2016016341


EGFR vIII CAR
7819
SEQ ID NO. 27 in WO2016016341


EGFR vIII CAR
7820
SEQ ID NO: 5 in US20160311907A1


EGFR vIII CAR
7821
SEQ ID NO: 10 in US20160311907A1


EGFR vIII CAR
7822
SEQ ID NO: 12 in US20160311907A1


EGFR vIII CAR
7823
SEQ ID NO: 8 in US20160311907A1


EGFR vIII CAR
7824
SEQ ID NO: 31 in US20160311907A1


EGFR vIII CAR
7825
SEQ ID NO: 30 in US20160311907A1


EGFR vIII CAR
7826
SEQ ID NO: 3 in US20160311907A1


EGFR vIII CAR
7827
SEQ ID NO: 10 in US20160200819A1


EGFRvIII CAR
7828
SEQ ID NO: 43 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7829
SEQ ID NO: 49 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7830
SEQ ID NO: 55 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7831
SEQ ID NO: 61 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7832
SEQ ID NO: 67 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7833
SEQ ID NO: 73 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7834
SEQ ID NO: 79 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7835
SEQ ID NO: 85 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7836
SEQ ID NO: 90 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7837
SEQ ID NO: 96 in U.S. Pat. No. 9,394,368B2


EGFRvIII CAR
7838
SEQ ID NO. 49 in US20170008963A1


EGFRvIII CAR
7839
SEQ ID NO. 55 in US20170008963A1


EGFRvIII CAR
7840
SEQ ID NO. 61 in US20170008963A1


EGFRvIII CAR
7841
SEQ ID NO. 67 in US20170008963A1


EGFRvIII CAR
7842
SEQ ID NO. 73 in US20170008963A1


EGFRvIII CAR
7843
SEQ ID NO. 79 in US20170008963A1


EGFRvIII CAR
7844
SEQ ID NO. 85 in US20170008963A1


EGFRvIII CAR
7845
SEQ ID NO. 90 in US20170008963A1


EGFRvIII CAR
7846
SEQ ID NO. 10 in US20140037628


EGFRvIII CAR
7847
SEQ ID NO. 11 in US20140037628


EGFRvIII CAR
7848
SEQ ID NO. 2 in US20170008963A1


EGFRvIII CAR
7849



″EGFRvIII scFv
7850
SEQ ID NO. 1 in US20170008963A1


EGFRvIII scFv
7851



FcRL5 CAR
7852
SEQ ID NO. 11 in US20170008963A1


Folate Receptor CAR
7853



Folate Receptor CAR
7854
SEQ ID NO. 12 in US20170008963A1


Fra CAR
7855
SEQ ID NO: 959 (WO2016090337)


Fra CAR
7856
SEQ ID NO. 13 in US20170002072A1


FRβ CAR
7857
SEQ ID NO. 22 in US20170002072A1


FRβ CAR
7858
SEQ ID NO: 13 in U.S. Pat. No. 9,402,865B2


FRβ CAR
7859
SEQ ID NO: 22 in U.S. Pat. No. 9,402,865B2


FRβ CAR
7860
SEQ ID NO: 2 in U.S. Pat. No. 9,446,105B2


FRβ CAR
7861
SEQ ID NO: 4 in U.S. Pat. No. 9,446,105B2


FRβ CAR
7862
SEQ ID NO: 6 in U.S. Pat. No. 9,446,105B2


GCN4 CAR
7863
SEQ ID NO: 8 in U.S. Pat. No. 9,446,105B2


GCN4 CAR
7864
SEQ ID NO: 10 in U.S. Pat. No. 9,446,105B2


GD2 CAR
7865
SEQ ID NO: 12 in U.S. Pat. No. 9,446,105B2


GD2 CAR
7866
SEQ ID NO: 273 in WO2016168773A3


GD2 CAR
7867
SEQ ID NO: 274 in WO2016168773A3


GD2 CAR
7868
SEQ ID No. 26 in WO2015132604


GD2 CAR
7869
SEQ ID No. 27 in WO2015132604


GD2 CAR
7870
SEQ ID No. 28 in WO2015132604


GD2 CAR
7871
SEQ ID No. 29 in WO2015132604


GD2 CAR
7872
SEQ ID No. 30 in WO2015132604


GD2 CAR
7873
SEQ ID No. 31 in WO2015132604


GD2 CAR
7874
SEQ ID No. 32 in WO2015132604


GD2 CAR
7875
SEQ ID No. 33 in WO2015132604


GD2 CAR
7876
SEQ ID No. 34 in WO2015132604


GD2 CAR
7877
SEQ ID No. 35 in WO2015132604


GD2 CAR
7878
SEQ ID No. 36 in WO2015132604


GD2 CAR
7879
SEQ ID No. 37 in WO2015132604


GD2 CAR
7880
in WO2016134284 (no SEQ ID NO)


GD3 CAR
7881
in WO2016134284 (no SEQ ID NO)


GD3 CAR
7882
in WO2016134284 (no SEQ ID NO)


GD3 CAR
7883
in WO2016134284 (no SEQ ID NO)


GD3 CAR
7884
SEQ ID NO: 19 in WO2016185035A1


GD3 CAR
7885
SEQ ID NO: 20 in WO2016185035A1


GD3 CAR
7886
SEQ ID NO: 21 in WO2016185035A1


GD3 CAR
7887
SEQ ID NO: 22 in WO2016185035A1


GD3 CAR
7888
SEQ ID NO: 23 in WO2016185035A1


GD3 CAR
7889
SEQ ID NO: 24 in WO2016185035A1


GD3 CAR
7890
SEQ ID NO: 25 in WO2016185035A1


GD3 CAR
7891
SEQ ID NO: 26 in WO2016185035A1


GFRalpha CAR
7892
SEQ ID NO: 27 in WO2016185035A1


GPC3 CAR
7893
SEQ ID NO: 28 in WO2016185035A1


GPC3 CAR
7894
SEQ ID NO: 29 in WO2016185035A1


GPC3 CAR
7895



GPC3 CAR
7896
SEQ ID NO. 3 in WO2016049459


GPC3 CAR
7897
SEQ ID NO. 27 in WO2016049459


GPC3 CAR
7898
SEQ ID NO. 10 in WO2016049459


GPC3 CAR
7899
SEQ ID NO. 29 in WO2016049459


GPC3 CAR
7900
SEQ ID NO. 14 in WO2016049459


GPC3 CAR
7901
SEQ ID NO. 30 in WO2016049459


GPC3CAR
7902
SEQ ID NO. 31 in WO2016049459


GPC3CAR
7903
SEQ ID NO. 18 in WO2016049459


GPC3CAR
7904
SEQ ID NO. 33 in WO2016049459


GPC3CAR
7905
SEQ ID NO: 22 in US20160215261A1


Her1/Her3 CAR Bispecific
7906
SEQ ID NO: 23 in US20160215261A1


Her1/Her3 CAR Bispecific
7907
SEQ ID NO: 24 in US20160215261A1


HER2 CAR
7908
SEQ ID NO: 25 in US20160215261A1


HER2 CAR
7909
SEQ ID NO: 9 of WO2016073629


HER2 CAR
7910
SEQ ID NO: 10 of WO2016073629


HER2 CAR
7911
SEQ ID NO: 17 in US20160333114A1


HER2 CAR
7912
SEQ ID NO: 28 in US20160333114A1


HER2 CAR
7913
SEQ ID NO: 98 in US20160333114A1


HER2 CAR
7914
SEQ ID NO: 110 in US20160333114A1


HER2 CAR
7915
SEQ ID NO: 271 in WO2016168773A3


HER2 CAR
7916
SEQ ID NO: 272 in WO2016168773A3


HER2 CAR
7917
SEQ ID NO: 5 in WO2016168769A1


HERVK CAR
7918
SEQ ID NO: 6 in WO2016168769A1


HIV Env CAR
7919
SEQ ID NO: 48 in WO2016168766A1


HIV Env CAR
7920
SEQ ID NO: 49 in WO2016168766A1


HIV Env CAR
7921
SEQ ID NO: 4 in EP2997134A4


HIV Env CAR
7922
SEQ ID NO. 7 in WO2015077789


HIV Env CAR
7923
SEQ ID NO. 9 in WO2015077789


HIV Env CAR
7924
SEQ ID NO. 47 in WO2015077789


HIV Env CAR
7925
SEQ ID NO. 49 in WO2015077789


HSP70 CAR
7926
SEQ ID NO. 51 in WO2015077789


HSP70 CAR
7927
SEQ ID NO. 53 in WO2015077789


HSP70 CAR
7928
SEQ ID NO. 5 in WO2015077789


HSP70 CAR
7929
SEQ ID NO. 21 in WO2016120217


HSP70 CAR
7930
SEQ ID NO. 22 in WO2016120217


HSP70 CAR
7931
SEQ ID NO. 23 in WO2016120217


HSP70 CAR
7932
SEQ ID NO. 24 in WO2016120217


HSP70 CAR
7933
SEQ ID NO. 25 in WO2016120217


HSP70 CAR
7934
SEQ ID NO. 26 in WO2016120217


HSP70 CAR
7935
SEQ ID NO. 27 in WO2016120217


HSP70 CAR
7936
SEQ ID NO. 28 in WO2016120217


HSP70 CAR
7937
SEQ ID NO. 29 in WO2016120217


IL 13 CAR
7938
SEQ ID NO. 30 in WO2016120217


IL 13 CAR
7939
SEQ ID NO. 31 in WO2016120217


IL 13 CAR
7940
SEQ ID NO. 32 in WO2016120217


IL13Ra2specific CAR
7941
SEQ ID NO. 4 in WO2016089916A1


IL13Ra2specific CAR
7942
SEQ ID NO. 5 in WO2016089916A1


IL13Ra2specific CAR
7943
SEQ ID NO. 6 in WO2016089916A1


IL13Ra2specific CAR
7944
SEQ ID NO. 47 in WO2016123143


IL13Ra2specific CAR
7945
SEQ ID NO. 49 in WO2016123143


IL13Rα2 CAR
7946
SEQ ID NO. 51 in WO2016123143


IL13Rα2 CAR
7947
SEQ ID NO. 53 in WO2016123143


IL13Rα2 CAR
7948
SEQ ID NO. 55 in WO2016123143


IL13Rα2 CAR
7949
SEQ ID NO: 1 in US20160340649A1


IL13Rα2 CAR
7950
SEQ ID NO: 31 in US20160340649A1


IL13Rα2 CAR
7951
SEQ ID NO: 32 in US20160340649A1


IL13Rα2 CAR
7952
SEQ ID NO: 33 in US20160340649A1


IL13Rα2 CAR
7953
SEQ ID NO: 34 in US20160340649A1


IL13Rα2 CAR
7954
SEQ ID NO: 35 in US20160340649A1


IL13Rα2 CAR
7955
SEQ ID NO: 36 in US20160340649A1


IL13Rα2 CAR
7956
SEQ ID NO: 37 in US20160340649A1


IL13Rα2 CAR
7957
SEQ ID NO: 38 in US20160340649A1


IL13Rα2 CAR
7958
SEQ ID NO: 39 in US20160340649A1


IL13Rα2 CAR
7959
SEQ ID NO: 40 in US20160340649A1


IL13Rα2 CAR
7960
SEQ ID NO: 41 in US20160340649A1


IL13Rα2 CAR
7961
SEQ ID NO: 42 in US20160340649A1


IL13Rα2 CAR
7962
SEQ ID NO: 43 in US20160340649A1


IL13Rα2 CAR
7963
SEQ ID NO: 44 in US20160340649A1


IL13Rα2 CAR
7964
SEQ ID NO: 45 in US20160340649A1


KMA CAR
7965
SEQ ID NO: 46 in US20160340649A1


MESOTHELIN CAR
7966
SEQ ID NO: 47 in US20160340649A1


MESOTHELIN CAR
7967
SEQ ID NO: 48 in US20160340649A1


MESOTHELIN CAR
7968
SEQ ID NO: 27 in WO2016172703A2


MESOTHELIN CAR
7969
SEQ ID NO: 18 in WO2013142034


MESOTHELIN CAR
7970
SEQ ID NO: 19 in WO2013142034


MESOTHELIN CAR
7971
SEQ ID NO: 20 in WO2013142034


MESOTHELIN CAR
7972
SEQ ID NO: 21 in WO2013142034


MESOTHELIN CAR
7973
SEQ ID NO: 22 in WO2013142034


MESOTHELIN CAR
7974
SEQ ID NO: 23 in WO2013142034


Mesothelin CAR
7975
SEQ ID NO. 3 in WO2013067492


MUC1 CAR
7976
SEQ ID NO. 5 in WO2013063419


MUC1 CAR
7977
SEQ ID NO. 7 in WO2013063419


MUC1 CAR
7978
SEQ ID NO. 51 in US20160340406A1


MUC1 CAR
7979
SEQ ID NO. 30 in US20160130357


MUC1 CAR
7980
SEQ ID NO. 32 in US20160130357


MUC1 CAR
7981
SEQ ID NO. 34 in US20160130357


MUC1 CAR
7982
SEQ ID NO. 295 in WO2016130726


MUC1 CAR
7983
SEQ ID NO. 298 in WO2016130726


MUC1 CAR
7984
SEQ ID NO. 301 in WO2016130726


MUC1 CAR
7985
SEQ ID NO. 304 in WO2016130726


MUC1 CAR
7986
SEQ ID NO. 307 in WO2016130726


MUC1 CAR
7987
SEQ ID NO. 607 in WO2016130726


MUC1 CAR
7988
SEQ ID NO. 609 in WO2016130726


MUC1 CAR
7989
SEQ ID NO. 611 in WO2016130726


MUC1 CAR
7990
SEQ ID NO. 613 in WO2016130726


NCAR with RQR82ACD19CAR
7991
SEQ ID NO. 615 in WO2016130726


NYBR1 CAR
7992
SEQ ID NO. 617 in WO2016130726


NYBR1 CAR
7993
SEQ ID NO. 619 in WO2016130726


NYBR1 CAR
7994
SEQ ID NO: 218 in WO2016097231


NYBR1 CAR
7995
SEQ ID NO. 26 in WO2015112830


NYBR1 CAR
7996
SEQ ID NO. 29 in WO2015112830


NYBR1 CAR
7997
SEQ ID NO. 60 in WO2015112830


NYBR1 CAR
7998
SEQ ID NO: 1 in US20160333422A1


P5A CAR
7999
SEQ ID NO: 26 in US20160333422A1


P5A CAR
8000
SEQ ID NO: 29 in US20160333422A1


P5A CAR
8001
SEQ ID NO: 60 in US20160333422A1


P5AC1 CAR
8002
SEQ ID NO: 343 in US20160297884A1


P5AC1 CAR
8003
SEQ ID NO: 344 in US20160297884A1


P5AC1 CAR
8004
SEQ ID NO: 345 in US20160297884A1


P5AC1 CAR
8005
SEQ ID NO: 346 in US20160297884A1


P5AC16 CAR
8006
SEQ ID NO: 347 in US20160297884A1


P5AC16 CAR
8007
SEQ ID NO: 396 in US20160297884A1


P5AC16 CAR
8008
SEQ ID NO: 348 in US20160297884A1


P6AP CAR
8009
SEQ ID NO: 349 in US20160297884A1


P6AP CAR
8010
SEQ ID NO: 350 in US20160297884A1


P6AP CAR
8011
SEQ ID NO: 351 in US20160297884A1


P6DY CAR
8012
SEQ ID NO: 364 in US20160297884A1


P6DY CAR
8013
SEQ ID NO: 365 in US20160297884A1


P6DY CAR
8014
SEQ ID NO: 366 in US20160297884A1


PC1 CAR
8015
SEQ ID NO: 361 in US20160297884A1


PC1 CAR
8016
SEQ ID NO: 362 in US20160297884A1


PC1 CAR
8017
SEQ ID NO: 363 in US20160297884A1


PC1C12 CAR
8018
SEQ ID NO: 352 in US20160297884A1


PC1C12 CAR
8019
SEQ ID NO: 353 in US20160297884A1


PC1C12 CAR
8020
SEQ ID NO: 354 in US20160297884A1


PD1 CAR
8021
SEQ ID NO: 355 in US20160297884A1


PD1 CAR
8022
SEQ ID NO: 356 in US20160297884A1


PD1 CAR
8023
SEQ ID NO: 357 in US20160297884A1


PD1 CAR
8024
SEQ ID NO. 119 in WO2014153270


PD1 CAR
8025
SEQ ID NO. 121 in WO2014153270


PD1 CAR
8026
SEQ ID NO: 22 in US20160311917A1


PD1 CAR
8027
SEQ ID NO: 24 in US20160311917A1


PD1 CAR
8028
SEQ ID NO: 63 in US20160311917A1


PD1 CAR
8029
SEQ ID NO: 64 in US20160311917A1


PD1 CAR
8030
SEQ ID NO: 65 in US20160311917A1


PD1 CAR
8031
SEQ ID NO: 66 in US20160311917A1


PD1 CAR
8032
SEQ ID NO: 67 in US20160311917A1


PD1 CAR
8033
SEQ ID NO: 68 in US20160311917A1


PD1 CAR
8034
SEQ ID NO: 69 in US20160311917A1


PD1 CAR
8035
SEQ ID NO: 70 in US20160311917A1


PD1 CAR
8036
SEQ ID NO: 71 in US20160311917A1


PD1 CAR
8037
SEQ ID NO: 72 in US20160311917A1


PD1 CAR
8038
SEQ ID NO: 73 in US20160311917A1


PD1 CAR
8039
SEQ ID NO: 74 in US20160311917A1


PD1 CAR
8040
SEQ ID NO: 75 in US20160311917A1


PD1 CAR
8041
SEQ ID NO: 76 in US20160311917A1


PD1 CAR
8042
SEQ ID NO: 77 in US20160311917A1


PD1 CAR
8043
SEQ ID NO: 78 in US20160311917A1


PD1 CAR
8044
SEQ ID NO: 79 in US20160311917A1


PD1 CAR
8045
SEQ ID NO: 80 in US20160311917A1


PD1 CAR
8046
SEQ ID NO: 81 in US20160311917A1


PD1 CAR
8047
SEQ ID NO: 82 in US20160311917A1


PD1 CAR
8048
SEQ ID NO: 83 in US20160311917A1


PD1 CAR
8049
SEQ ID NO: 84 in US20160311917A1


PD1 CAR
8050
SEQ ID NO: 85 in US20160311917A1


PD1 CAR
8051
SEQ ID NO: 86 in US20160311917A1


PD1 CAR
8052
SEQ ID NO: 26 in WO2016172537A1


PD1 CAR
8053
SEQ ID NO: 39 in WO2016172537A1


PD1 CAR
8054
SEQ ID NO: 40 in US20160311907A1


PD1 CAR
8055
SEQ ID. NO. 121 in WO2015157252


PD1 CAR
8056
SEQ ID. NO. 119 in WO2015157252


PD1 CAR
8057
SEQ ID NO. 24 (WO2016014565)


PD1 CAR
8058
SEQ ID NO. 22 (WO2016014565)


PD1 FKBP RCAR
8059
SEQ ID NO. 23 (WO2016014565)


PD1 FKBP RCAR
8060
SEQ ID NO. 26 in WO2015142675


PSMA NCAR
8061
SEQ ID NO. 39 in WO2015142675


PSMA NCAR
8062
SEQ ID NO: 28 in US20160311907A1


PSMA NCAR
8063
SEQ ID NO: 29 in US20160311907A1


PSMA NCAR
8064
SEQ ID NO: 140 in WO2016097231


PSMA NCAR
8065
SEQ ID NO: 144 in WO2016097231


PSMA NCAR
8066
SEQ ID NO: 145 in WO2016097231


PSMA NCAR
8067
SEQ ID NO: 146 in WO2016097231


PSMA NCAR
8068
SEQ ID NO: 147 in WO2016097231


PSMA NCAR
8069
SEQ ID NO: 148 in WO2016097231


PSMA NCAR
8070
SEQ ID NO: 149 in WO2016097231


PSMA NCAR
8071
SEQ ID NO: 150 in WO2016097231


PSMA NCAR
8072
SEQ ID NO: 167 in WO2016097231


PSMA NCAR
8073
SEQ ID NO: 168 in WO2016097231


PSMA NCAR
8074
SEQ ID NO. 169 in WO2016097231


PSMA NCAR
8075
SEQ ID NO: 170 in WO2016097231


PSMA NCAR
8076
SEQ ID NO: 171 in WO2016097231


PSMA NCAR
8077
SEQ ID NO: 172 in WO2016097231


PSMA NCAR
8078
SEQ ID NO: 173 in WO2016097231


PSMA NCAR
8079
SEQ ID NO: 174 in WO2016097231


PSMA NCAR
8080
SEQ ID NO: 151 in WO201609723I


PSMA NCAR
8081
SEQ ID NO: 152 in WO2016097231


PSMA NCAR
8082
SEQ ID NO: 153 in WO2016097231


PSMA NCAR
8083
SEQ ID NO: 154 in WO2016097231


PSMA NCAR
8084
SEQ ID NO: 155 in WO2016097231


PSMA NCAR
8085
SEQ ID NO: 156 in WO2016097231


PSMA NCAR
8086
SEQ ID NO: 139 in WO2016097231


PSMA NCAR
8087
SEQ ID NO: 138 in WO2016097231


PSMA NCAR
8088
SEQ ID NO: 175 in WO2016097231


PSMA NCAR
8089
SEQ ID NO: 157 in WO2016097231


PSMA NCAR
8090
SEQ ID NO: 158 in WO2016097231


PSMA NCAR
8091
SEQ ID NO: 159 in WO2016097231


PSMA NCAR
8092
SEQ ID NO: 160 in WO2016097231


PSMA NCAR
8093
SEQ ID NO: 161 in WO2016097231


PSMA NCAR
8094
SEQ ID NO: 162 in WO2016097231


PSMA NCAR
8095
SEQ ID NO: 163 in WO2016097231


PSMA NCAR
8096
SEQ ID NO: 164 in WO2016097231


PSMA NCAR
8097
SEQ ID NO: 165 in WO2016097231


PSMA NCAR
8098
SEQ ID NO: 166 in WO2016097231


PSMA NCAR
8099
SEQ ID NO: 141 in WO2016097231


PSMA NCAR
8100
SEQ ID NO: 142 in WO2016097231


PSMA NCAR
8101
SEQ ID NO: 143 in WO2016097231


PSMA NCAR
8102
SEQ ID NO: 214 in WO2016097231


ROR1 CAR
8103
SEQ ID NO: 216 in WO2016097231


ROR1 CAR
8104
SEQ ID NO: 217 in WO2016097231


ROR1 CAR
8105
SEQ ID NO: 215 in WO2016097231


ROR1 CAR
8106
SEQ ID N0. 79 in WO2016016344A1


ROR1 CAR
8107
SEQ ID N0. 80 in WO2016016344A1


ROR1 CAR
8108
SEQ ID N0. 81 in WO2016016344A1


ROR1 CAR
8109
SEQ ID N0. 82 in WO2016016344A1


ROR1 CAR
8110
SEQ ID N0. 83 in WO2016016344A1


ROR1 CAR
8111
SEQ ID N0. 84 in WO2016016344A1


ROR1 CAR
8112
SEQ ID N0. 85 in WO2016016344A1


ROR1 CAR
8113
SEQ ID N0. 86 in WO2016016344A1


ROR1 CAR
8114
SEQ ID N0. 87 in WO2016016344A1


ROR1 CAR
8115
SEQ ID N0. 88 in WO2016016344A1


ROR1 CAR
8116
SEQ ID N0. 89 in WO2016016344A1


ROR1 CAR
8117
SEQ ID N0. 90 in WO2016016344A1


ROR1 CAR
8118
SEQ ID N0. 91 in WO2016016344A1


ROR1 CAR
8119
SEQ ID N0. 92 in WO2016016344A1


ROR1 CAR
8120
SEQ ID N0. 93 in WO2016016344A1


ROR1 CAR
8121
SEQ ID N0. 94 in WO2016016344A1


ROR1 CAR
8122
SEQ ID N0. 95 in WO2016016344A1


ROR1 CAR
8123
SEQ ID N0. 96 in WO2016016344A1


ROR1 CAR
8124
SEQ ID N0. 103 in WO2016016344A1


ROR1 CAR
8125
SEQ ID N0. 104 in WO2016016344A1


ROR1 CAR
8126
SEQ ID N0. 105 in WO2016016344A1


ROR1 CAR
8127
SEQ ID N0. 106 in WO2016016344A1


ROR1 CAR
8128
SEQ ID N0. 107 in WO2016016344A1


ROR1 CAR
8129
SEQ ID N0. 108 in WO2016016344A1


ROR1 CAR
8130
SEQ ID N0. 109 in WO2016016344A1


ROR1 CAR
8131
SEQ ID N0. 110 in WO2016016344A1


ROR1 CAR
8132
SEQ ID N0. 111 in WO2016016344A1


ROR1 CAR
8133
SEQ ID N0. 112 in WO2016016344A1


ROR1 CAR
8134
SEQ ID N0. 113 in WO2016016344A1


ROR1 CAR
8135
SEQ ID N0. 114 in WO2016016344A1


ROR1 CAR
8136
SEQ ID N0. 115 in WO2016016344A1


ROR1 CAR
8137
SEQ ID N0. 116 in WO2016016344A1


ROR1 CAR
8138
SEQ ID N0. 117 in WO2016016344A1


ROR1 CAR
8139
SEQ ID N0. 118 in WO2016016344A1


ROR1 CAR
8140
SEQ ID N0. 119 in WO2016016344A1


ROR1 CAR
8141
SEQ ID N0. 120 in WO2016016344A1


ROR1 CAR
8142
SEQ ID N0. 127 in WO2016016344A1


ROR1 CAR
8143
SEQ ID N0. 128 in WO2016016344A1


ROR1 CAR
8144
SEQ ID N0. 129 in WO2016016344A1


ROR1 CAR
8145
SEQ ID N0. 130 in WO2016016344A1


ROR1 CAR
8146
SEQ ID N0. 131 in WO2016016344A1


ROR1 CAR
8147
SEQ ID N0. 132 in WO2016016344A1


ROR1 CAR
8148
SEQ ID N0. 133 in WO2016016344A1


ROR1 CAR
8149
SEQ ID N0. 134 in WO2016016344A1


ROR1 CAR
8150
SEQ ID N0. 135 in WO2016016344A1


ROR1 CAR
8151
SEQ ID N0. 136 in WO2016016344A1


ROR1 CAR
8152
SEQ ID N0. 137 in WO2016016344A1


ROR1 CAR
8153
SEQ ID N0. 138 in WO2016016344A1


ROR1 CAR
8154
SEQ ID N0. 97 in WO2016016344A1


ROR1 CAR
8155
SEQ ID N0. 98 in WO2016016344A1


ROR1 CAR
8156
SEQ ID N0. 99 in WO2016016344A1


ROR1 CAR
8157
SEQ ID N0. 100 in WO2016016344A1


ROR1 CAR
8158
SEQ ID N0. 101 in WO2016016344A1


ROR1 CAR
8159
SEQ ID N0. 102 in WO2016016344A1


ROR1 CAR
8160
SEQ ID N0. 121 in WO2016016344A1


ROR1 CAR
8161
SEQ ID N0. 122 in WO2016016344A1


ROR1 CAR
8162
SEQ ID N0. 123 in WO2016016344A1


ROR1 CAR
8163
SEQ ID N0. 124 in WO2016016344A1


ROR1 CAR
8164
SEQ ID N0. 125 in WO2016016344A1


ROR1 CAR
8165
SEQ ID N0. 126 in WO2016016344A1


ROR1 CAR
8166
SEQ ID NO: 386 in WO2016187216A1


ROR1 CAR
8167
SEQ ID NO: 387 in WO2016187216A1


ROR1 CAR
8168
SEQ ID NO: 388 in WO2016187216A1


ROR1 CAR
8169
SEQ ID NO: 389 in WO2016187216A1


ROR1 CAR
8170
SEQ ID NO: 390 in WO2016187216A1


ROR1 CAR
8171
SEQ ID NO: 391 in WO2016187216A1


ROR1 CAR
8172
SEQ ID NO: 392 in WO2016187216A1


ROR1 CAR
8173
SEQ ID NO: 393 in WO2016187216A1


ROR1 CAR
8174
SEQ ID NO: 394 in WO2016187216A1


SNAP CAR
8175
SEQ ID NO: 395 in WO2016187216A1


SSEA4CAR
8176
SEQ ID NO: 396 in WO2016187216A1


SSEA4CAR
8177
SEQ ID NO: 397 in WO2016187216A1


Tan CAR (a CAR AND GATE which
8178
SEQ ID NO: 19 in US20160311907A1


recognizes CD19 AND CD33 using a




CD45 phosphatase)




Tan CAR (a CAR AND gate which
8179
SEQ ID NO. 5 in WO2016026742A1


recognizes CD19 AND CD33 using a




CD148 phosphatase)




Tan CAR (a CAR AND NOT gate
8180
SEQ ID NO. 6 in WO2016026742A1


which recognizes CD19 AND NOT




CD33 and is based on an ITIM




containing endodomain from LAIR1)




Tan CAR (a CAR AND NOT GATE
8181
SEQ ID NO. 3 in WO2015075468


which recognizes CD19 AND NOT




CD33 based on PTPN6 phosphatase)




Tan CAR (a CAR AND NOT gate
8182
SEQ ID NO. 2 in WO2015075468


which recognizes CD19 AND NOT




CD33 and recruits a PTPN6CD148




fusion protein to an ITIM containing




endodomain)




TOSO CAR
8183
SEQ ID NO. 5 in WO2015075468


TOSO CAR
8184
SEQ ID NO. 4 in WO2015075468


Trophoblast Glycoprotein 5T4 CAR
8185
SEQ ID NO. 6 in WO2015075468


Trophoblast Glycoprotein 5T4 CAR
8186
SEQ ID No. 4 in US20160347854A1


Trophoblast Glycoprotein 5T4 CAR
8187
SEQ ID No. 4 in EP3098237A1


Trophoblast Glycoprotein 5T4 CAR
8188
SEQ ID N0. 19 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8189
SEQ ID N0. 20 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8190
SEQ ID N0. 21 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8191
SEQ ID N0. 22 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8192
SEQ ID N0. 23 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8193
SEQ ID N0. 24 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8194
SEQ ID N0. 25 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8195
SEQ ID N0. 26 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8196
SEQ ID N0. 27 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8197
SEQ ID N0. 28 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8198
SEQ ID N0. 29 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8199
SEQ ID N0. 30 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8200
SEQ ID N0. 31 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8201
SEQ ID N0. 32 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8202
SEQ ID N0. 33 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8203
SEQ ID N0. 34 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8204
SEQ ID N0. 35 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8205
SEQ ID N0. 36 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8206
SEQ ID N0. 37 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8207
SEQ ID N0. 38 in WO2016034666A1


Trophoblast Glycoprotein 5T4 CAR
8208
SEQ ID N0. 39 in WO2016034666A1


TSLPR CAR
8209
SEQ ID N0. 40 in WO2016034666A1


TSLPR CAR
8210
SEQ ID N0. 41 in WO2016034666A1


TSLPR CAR
8211
SEQ ID N0. 42 in WO2016034666A1


TSLPR CAR
8212
SEQ ID NO. 39 in WO2015084513


TSLPR CAR
8213
SEQ ID NO. 40 in WO2015084513


TSLPR CAR
8214
SEQ ID NO. 41 in WO2015084513


TSLPR CAR
8215
SEQ ID NO. 42 in WO2015084513


TSLPR CAR
8216
SEQ ID NO. 43 in WO2015084513


TSLPR CAR
8217
SEQ ID NO. 44 in WO2015084513


TSLPR CAR
8218
SEQ ID NO. 45 in WO2015084513


TSLPR CAR
8219
SEQ ID NO. 46 in WO2015084513


TSLPR CAR
8220
SEQ ID NO: 39 in US20160311910A1


TSLPR CAR
8221
SEQ ID NO: 40 in US20160311910A1


TSLPR CAR
8222
SEQ ID NO: 41 in US20160311910A1


TSLPR CAR
8223
SEQ ID NO: 42 in US20160311910A1


TSLPR CAR
8224
SEQ ID NO: 43 in US20160311910A1


VEGFR2 CAR
8225
SEQ ID NO: 44 in US20160311910A1


VEGFR2 CAR
8226
SEQ ID NO: 45 in US20160311910A1


VEGFR2 CAR
8227
SEQ ID NO: 46 in US20160311910A1


VEGFR2 CAR
8228
SEQ ID NO. 10 in US20120213783


VEGFR2 CAR
8229
SEQ ID NO. 11 in US20120213783


VEGFR2 CAR
8230
SEQ ID NO. 12 in US20120213783


αfolate receptor (FRα) CAR
8231
SEQ ID NO. 13 in US20120213783


αfolate receptor (FRα) CAR
8232
SEQ ID NO. 14 in US20120213783









In one embodiment of the present invention, the payload of the invention is a CD19 specific CAR targeting different B cell malignancies and HER2-specific CAR targeting sarcoma, glioblastoma, and advanced Her2-positive lung malignancy.


In some embodiments, the CAR is a CD19 CAR. The amino acid sequences of CD19 CAR components and CD19 CAR constructs are presented in Table 17A and Table 17B. Table 17B also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 17A







CD19 CAR construct components












AA
NA




SEQ
SEQ


Description
Amino Acid Sequence
ID NO
ID NO





CD19 scFv
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQ
8233
8241-



KPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISN

8246



LEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGG





GGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSL





PDYGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSR





LTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGG





SYAMDYWGQGTSVTVSS







CD8α hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR
8234
8247-



GLDFACD

8251





CD8α hinge-
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR
8235
8252-


TM (hinge and
GLDFACDIYIWAPLAGTCGVLLLSLVITLYC

8254


transmembrane)








CD3 zeta
RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLD
8236
8255-


signaling
KRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY

8261


domain
SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ





ALPPR







4-1BB
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
8237
8262-


intracellular
GGCEL

8267


signaling





domain; CD28





co-stimulatory





domain;








CD8α leader
MALPVTALLLPLALLLHAARP
 278
279-





283





hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
   3
 339


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
  12
 359


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, R732L)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
 505
 520


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, R732L,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




D764N)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML





MTACNLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
 227
 233


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, R732L,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736A)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
 348
 361


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, H653A)
LLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
 509
 524


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, R732L,
LLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




H653A)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL
 510
 525


(Amino acid
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN




535-860 of
VAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




WT, R732L,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




D764A)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML





MTACALSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV





SEDCFPLLDGCRKNRQKWQALAEQQ







HA Tag
YPYDVPDYA
8238
8268





P2A Cleavable
GATNFSLLKQAGDVEENPGP
8239
8270


peptide








mCherry
LSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEG
8240
8269


(M1L)
EGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSK





AYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVT





VTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMG





WEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVK





TTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYE





RAEGRHSTGGMDELYK







SG LINKER
SG

AGTG





GT





Linker (GSG)
GSG

GGAT


(BamH1-Gly)


CCGG





A





Flexible G/S
GS

GGAT


rich linker;


CC


BamH1 Site








Lys-Asp Acid
LD

CTAG


Linker


AT
















TABLE 17B







CD19 CARs constructs












AA
NA




SEQ ID
SEQ ID


Description
Amino Acid Sequence
NO
NO





OT-CD19-063
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8271
8285


(OT-001407)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFv; CD8a
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




Hinge and
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Transmembrane
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




Domain; 4-1BB
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




intracellular
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




domain; CD3 zeta
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




signaling domain;
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




stop
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE





EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD





KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPR*







OT-CD19-037
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8272
8286


(OT-001258)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GSG),
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




D764N), stop
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK





ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH





EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF





AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS





YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIR





KNQFNLEDPHQKELFLAMLMTACNLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ*







OT-CD19-045
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8273
8287


(OT-001298)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GSG);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




F736A); stop
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK





ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH





EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF





AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS





YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELI





RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ





QRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ*







OT-CD19-051
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8274
8288


(OT-001299)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GSG);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT); stop
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD





KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK





ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH





EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF





AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS





YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI





RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ





QRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ*







OT-CD19-052
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ
8275
8289


(OT-001300)
TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT




CD8a leader; HA
VKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE




Tag; CD19 scFV;
DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS




CD8a-Tm; (4-
GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




1BB intracellular
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI




domain); CD3zeta
IKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY




signaling domain;
AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL




Linker (SG);
RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV




hPDE5 (Amino
LLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




acid 535-860 of
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL




WT); stop
YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ





EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY





QGLSTATKDTYDALHMQALPPRSGEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA





FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL





DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM





ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





RGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL





LDGCRKNRQKWQALAEQQ*







OT-CD19-053
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ
8276
8290


(OT-001301)
TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT




CD8a leader; HA
VKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE




Tag; CD19 scFV;
DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS




CD8a-Tm; (4-
GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




1BB intracellular
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI




domain); CD3zeta
IKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY




signaling domain;
AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL




linker (SG);
RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV




hPDE5 (Amino
LLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




acid 535-860 of
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL




WT, R732L); stop
YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ





EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY





QGLSTATKDTYDALHMQALPPRSGEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA





FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL





DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM





ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





LGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL





LDGCRKNRQKWQALAEQQ*







OT-CD19-067
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8277
8291


(OT-001302)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




F736A); linker
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




(GS); mCherry
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI




(M1L); stop
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRK





NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQGSLSKGEEDNMAIIKEFMRFKVHMEG





SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFA





WDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKW





ERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNF





PSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQR





LKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKL





DITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-CD19-078
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8278
8292


(OT-001303)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




F736A); linker
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




(GSG); P2A
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI




linker; mCherry
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




(M1L); stop
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRK





NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQGSGGATNFSLLKQAGDVEENPGPLSK





GEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEG





RPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKA





YVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTV





TQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMG





WEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEV





KTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQ





YERAEGRHSTGGMDELYK*







OT-CD19-100
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ
8279
8293


(OT-001304)
TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT




CD8a leader; HA
VKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE




Tag; CD19 scFV;
DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS




CD8a-Tm, (4-
GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




1BB intracellular
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI




domain); CD3zeta
IKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY




signaling domain;
AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL




linker (GS);
RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV




hPDE5 (Amino
LLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




acid 535-860 of
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL




WT); linker (GS),
YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




Spacer (LD); P2A
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




linker; mCherry
QGLSTATKDTYDALHMQALPPRGSEETRELQSLAAA




(M1L); stop
VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA





FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL





DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM





ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





RGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL





LDGCRKNRQKWQALAEQQGSLDGATNFSLLKQAGD





VEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGH





EFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS





PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVM





NFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG





PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLK





DGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSH





NEDYTIVEQYERAEGRHSTGGMDELYK*







OT-CD19-101
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ
8280
8294


(OT-001305)
TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT




CD8a leader; HA
VKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE




Tag; CD19 scFV;
DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS




CD8a-Tm; (4-
GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




1BB intracellular
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI




domain); CD3zeta
IKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY




signaling domain;
AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL




Linker (GS);
RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV




hPDE5 (Amino
LLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




acid 535-860 of
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL




WT, R732L);
YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




Linker (GS),
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




Spacer (LD); P2A
QGLSTATKDTYDALHMQALPPRGSEETRELQSLAAA




linker; mCherry
VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL




(M1L); stop
VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA





FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL





DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM





ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





LGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL





LDGCRKNRQKWQALAEQQGSLDGATNFSLLKQAGD





VEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGH





EFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS





PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVM





NFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG





PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLK





DGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSH





NEDYTIVEQYERAEGRHSTGGMDELYK*







OT-CD19-111
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8281
8295


(OT-001454)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L); stop
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD





KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI





TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK





NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ*







OT-CD19-130
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8282
8296


(OT-001455)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, H653A);
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




stop
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI





TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRK





NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ*







OT-CD19-131
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8283
8297


(OT-001456)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, H653A,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




R732L); stop
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI





TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK





NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ*







OT-CD19-132
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG
8284
8298


(OT-001457)
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR




CD8a leader;
LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG




CD19 scFV;
NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ




CD8a-Tm; (4-
ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




1BB intracellular
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF




domain); CD3zeta
LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG




signaling domain;
TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




Linker (GS);
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




hPDE5 (Amino
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




acid 535-860 of
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE




WT, R732L,
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD




D764A); stop
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT





YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI





TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY





IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK





NQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQRI





AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ*










Tandem CAR (TanCAR)


In some embodiments, the CAR of the present invention may be a tandem chimeric antigen receptor (TanCAR) which is able to target two, three, four, or more tumor specific antigens. In some aspects, the CAR is a bispecific TanCAR including two targeting domains which recognize two different TSAs on tumor cells. The bispecific CAR may be further defined as comprising an extracellular region comprising a targeting domain (e.g., an antigen recognition domain) specific for a first tumor antigen and a targeting domain (e.g., an antigen recognition domain) specific for a second tumor antigen. In other aspects, the CAR is a multi specific TanCAR that includes three or more targeting domains configured in a tandem arrangement. The space between the targeting domains in the TanCAR may be between about 5 and about 30 amino acids in length, for example, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 amino acids.


Split CAR


In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present invention may be split into two or more parts such that it is dependent on multiple inputs that promote assembly of the intact functional receptor. In one embodiment, the split synthetic CAR system can be constructed in which the assembly of an activated CAR receptor is dependent on the binding of a ligand to the SRE (e.g. a small molecule) and a specific antigen to the targeting moiety. As a non-limiting example, the split CAR consists of two parts that assemble in a small molecule-dependent manner; one part of the receptor features an extracellular antigen binding domain (e.g. scFv) and the other part has the intracellular signaling domains, such as the CD3 intracellular domain.


In other aspects, the split parts of the CAR system can be further modified to increase signal. In one example, the second part of cytoplasmic fragment may be anchored to the plasma membrane by incorporating a transmembrane domain (e.g., CD8α transmembrane domain) to the construct. An additional extracellular domain may also be added to the second part of the CAR system, for instance an extracellular domain that mediates homo-dimerization. These modifications may increase receptor output activity, i.e., T cell activation.


In some aspects, the two parts of the split CAR system contain heterodimerization domains that conditionally interact upon binding of a heterodimerizing small molecule. As such, the receptor components are assembled in the presence of the small molecule, to form an intact system which can then be activated by antigen engagement. Any known heterodimerizing components can be incorporated into a split CAR system. Other small molecule dependent heterodimerization domains may also be used, including, but not limited to, gibberellin-induced dimerization system (GID1-GAI), trimethoprim-SLF induced ecDHFR and FKBP dimerization (Czlapinski et al., J Am Chem Soc., 2008, 130(40): 13186-13187) and ABA (abscisic acid) induced dimerization of PP2C and PYL domains (Cutler et al., Annu Rev Plant Biol. 2010, 61: 651-679). The dual regulation using inducible assembly (e.g., ligand dependent dimerization) and degradation (e.g., destabilizing domain induced CAR degradation) of the split CAR system may provide more flexibility to control the activity of the CAR modified T cells.


Switchable CAR


In some embodiments, the CAR of the invention may be a switchable CAR. Juilerat et al (Juilerat et al., Sci. Rep., 2016, 6: 18950; the contents of which are incorporated herein by reference in their entirety) recently reported controllable CARs that can be transiently switched on in response to a stimulus (e.g. a small molecule). In this CAR design, a system is directly integrated in the hinge domain that separate the scFv domain from the cell membrane domain in the CAR. Such system is possible to split or combine different key functions of a CAR such as activation and co-stimulation within different chains of a receptor complex, mimicking the complexity of the TCR native architecture. This integrated system can switch the scFv and antigen interaction between on/off states controlled by the absence/presence of the stimulus.


Reversible CAR


In other embodiments, the CAR of the invention may be a reversible CAR system. In this CAR architecture, a LID domain (ligand-induced degradation) is incorporated into the CAR system. The CAR can be temporarily down-regulated by adding a ligand of the LID domain. The combination of LID and DD mediated regulation provides tunable control of continuingly activated CAR T cells, thereby reducing CAR mediated tissue toxicity.


Inhibitory CAR (iCAR)


In some embodiments, payloads of the present invention may be inhibitory CARs. Inhibitory CAR (iCAR) refers to a bispecific CAR design wherein a negative signal is used to enhance the tumor specificity and limit normal tissue toxicity. This design incorporates a second CAR having a surface antigen recognition domain combined with an inhibitory signal domain to limit T cell responsiveness even with concurrent engagement of an activating receptor. This antigen recognition domain is directed towards a normal tissue specific antigen such that the T cell can be activated in the presence of first target protein, but if the second protein that binds to the iCAR is present, the T cell activation is inhibited.


As a non-limiting example, iCARs against Prostate specific membrane antigen (PMSA) based on CTLA4 and PD1 inhibitory domains demonstrated the ability to selectively limit cytokine secretion, cytotoxicity and proliferation induced by T cell activation (Fedorov V. D, et al., 2013, Sci Transl Med, 11; 5(215):215ra172; the contents of which are incorporated herein in their entirety).


Chimeric Switch Receptor


In some embodiments, payloads of the invention may be chimeric switch receptors which can switch a negative signal to a positive signal. As used herein, the term “chimeric switch receptor” refers to a fusion protein comprising a first extracellular domain and a second transmembrane and intracellular domain, wherein the first domain includes a negative signal region and the second domain includes a positive intracellular signaling region. In some aspects, the fusion protein is a chimeric switch receptor that contains the extracellular domain of an inhibitory receptor on T cell fused to the transmembrane and cytoplasmic domain of a co-stimulatory receptor. This chimeric switch receptor may convert a T cell inhibitory signal into a T cell stimulatory signal.


As a non-limiting example, the chimeric switch receptor may comprise the extracellular domain of PD-1 fused to the transmembrane and cytoplasmic domain of CD28 as taught by Liu et al. (Liu et al., Cancer Res., 2016, 76(6): 1578-1590; the contents of which are incorporated by reference in their entirety). In some aspects, extracellular domains of other inhibitory receptors such as CTLA-4, LAG-3, TIM-3, KIRs and BTLA may also be fused to the transmembrane and cytoplasmic domain derived from costimulatory receptors such as CD28, 4-1BB, CD27, OX40, CD40, GTIR and ICOS. In the context of the present invention, the SRE domain (e.g., DD) may be inserted at the N- or C-terminus of the chimeric switch receptor.


In some embodiments, chimeric switch receptors of the present invention may include recombinant receptors comprising the extracellular cytokine-binding domain of an inhibitory cytokine receptor (e.g., IL13 receptor α (IL13Rα1), IL10R, and IL4Rα) fused to an intracellular signaling domain of a stimulatory cytokine receptor such as IL2R (IL2Rα, IL2Rβ and IL2 Rgamma) and IL7Rα. One example of such chimeric cytokine receptor is a recombinant receptor containing the cytokine-binding extracellular domain of IL4Ra linked to the intracellular signaling domain of IL7Rα (see, U.S. patent publication NO: 2014/0050709; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the chimeric switch receptor of the present invention may be a chimeric TGFβ receptor. The chimeric TGFβ receptor may comprise an extracellular domain derived from a TGFβ receptor such as TGFβ receptor 1, TGFβ receptor 2, TGFβ receptor 3, or any other TGFβ receptor or variant thereof; and a non-TGFβ receptor intracellular domain. The non-TGFβ receptor intracellular domain may be the intracellular domain or fragment thereof derived from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, CD28, 4-1BB (CD137), OX40 (CD134), CD3 zeta, CD40, CD27, or a combination thereof. One example of such chimeric TGFβ receptor is discussed in U.S. patent publication NO.: US2016/0075755; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present invention may be bipartite fusion receptors. In one aspect, the bipartite fusion receptor may comprise an antigen-binding domain that binds to a tumor antigen and an activation domain that binds to one or more cell surface molecules. In some aspects, the antigen binding domain of a bipartite receptor is a scFv antibody. In other aspects, the activation domain that binds to a T cell surface stimulatory molecule may be selected from CD3, CD27, CD 28, CD40, OX40 (CD134) and 4-1BB (CD137), or a NK cell surface stimulatory molecule selected from CD16, NKG2D and NKp30. The activation domain may also be a scFv specific to a stimulatory molecule on the surface of immune cells (e.g., T cells and NK cells). Immune cells can be genetically modified to express a bipartite molecule comprising at least one antigen binding domain and an activation domain. The antigen binding domain binds to one or more molecules present on target cells such as cancer cells. Immune cells that express the molecule recognized by the activation domain will be activated and attack the recognized cancer cells. As a non-limiting example, a bipartite molecule may be an engager molecule comprising an antigen recognition scFv specific to CD19 or EphA2, as described in US patent publication NO: US2016/0015749; the contents of which are incorporated by reference herein in their entirety.


Activation-Conditional CAR


In some embodiments, payloads of the invention may be an activation-conditional chimeric antigen receptor, which is only expressed in an activated immune cell. The expression of the CAR may be coupled to activation conditional control region which refers to one or more nucleic acid sequences that induce the transcription and/or expression of a sequence e.g. a CAR under its control. Such activation conditional control regions may be promoters of genes that are upregulated during the activation of the immune effector cell e.g. IL2 promoter or NFAT binding sites. In some embodiments, activation of the immune cell may be achieved by a constitutively expressed CAR (International Publication No: WO 2016126608; the contents of which are incorporated herein by reference in their entirety).


CAR Targeting to Tumor Cells with Specific Proteoglycan Markers


In some embodiments, payloads of the present invention may be a CAR that targets specific types of cancer cells. Human cancer cells and metastasis may express unique and otherwise abnormal proteoglycans, such as polysaccharide chains (e.g., chondroitin sulfate (CS), dermatan sulfate (DS or CSB), heparan sulfate (HS) and heparin). Accordingly, the CAR may be fused with a binding moiety that recognizes cancer associated proteoglycans. In one example, a CAR may be fused with VAR2 CSA polypeptide (VAR2-CAR) that binds with high affinity to a specific type of chondroitin sulfate A (CSA) attached to proteoglycans. The extracellular ScFv portion of the CAR may be substituted with VAR2 CSA variants comprising at least the minimal CSA binding domain, generating CARs specific to chondroitin sulfate A (CSA) modifications. Alternatively, the CAR may be fused with a split-protein binding system to generate a spy-CAR, in which the scFv portion of the CAR is substituted with one portion of a split-protein binding system such as SpyTag and Spy-catcher and the cancer-recognition molecules (e.g. scFv and or VAR2-CSA) are attached to the CAR through the split-protein binding system (See, e.g., PCT publication No.: WO2016/135291; the contents of which are incorporated by reference in their entirety.)


SUPRA CAR


In some embodiments, the payload of the present invention may be a Split Universal Programmable (SUPRA) CAR. A SUPRA CAR may be a two-component receptor system comprising of a universal receptor (zip CAR) expressed on T cells and a tumor-targeting scFv adaptor. The zip CAR universal receptor may be generated by the fusion of intracellular signaling domains and a leucine zipper as the extracellular domain. The tumor-targeting scFv adaptor molecule or zipFv, may be generated by the fusion of a cognate leucine zipper and an scFv. The scFv of the zipFv may bind to a tumor antigen, and the leucine zipper may bind and activate the zip CAR on the T cells. Unlike the conventional fixed CAR design, the SUPRA CAR modular design allows targeting of multiple antigens without further genetic manipulations of the immune cells. Any of the CAR designs disclosed by Cho et al., 2018, Cell 173, 1-13, may be useful in the present invention (the contents of which are incorporated by reference in their entirety).


6. Cytokines, Chemokines and Other Soluble Factors


In accordance with the present invention, payloads of the present invention may be cytokines, chemokines, growth factors, and soluble proteins produced by immune cells, cancer cells and other cell types, which act as chemical communicators between cells and tissues within the body. These proteins mediate a wide range of physiological functions, from effects on cell growth, differentiation, migration and survival, to a number of effector activities. For example, activated T cells produce a variety of cytokines for cytotoxic function to eliminate tumor cells.


In some embodiments, payloads of the present invention may be cytokines, and fragments, variants, analogs and derivatives thereof, including but not limited to interleukins, tumor necrosis factors (TNFs), interferons (IFNs), TGF beta and chemokines. In some embodiments, payloads of the present invention may be cytokines that stimulate immune responses. In other embodiments, payloads of the invention may be antagonists of cytokines that negatively impact anti-cancer immune responses.


In some embodiments, payloads of the present invention may be cytokine receptors, recombinant receptors, variants, analogs and derivatives thereof; or signal components of cytokines.


In some embodiments, cytokines of the present invention may be utilized to improve expansion, survival, persistence, and potency of immune cells such as CD8+ TEM, natural killer cells and tumor infiltrating lymphocytes (TIL) cells used for immunotherapy. In other embodiments, T cells engineered with two or more DD regulated cytokines are utilized to provide kinetic control of T cell activation and tumor microenvironment remodeling. In one aspect, the present invention provides biocircuits and compositions to minimize toxicity related to cytokine therapy. Despite its success in mitigating tumor burden, systemic cytokine therapy often results in the development of severe dose limiting side effects. Two factors contribute to the observed toxicity (a) Pleiotropism, wherein cytokines affect different cells types and sometimes produce opposing effects on the same cells depending on the context (b) Cytokines have short serum half-life and thus need to be administered at high doses to achieve therapeutic effects, which exacerbates the pleiotropic effects. In one aspect, cytokines of the present invention may be utilized to modulate cytokine expression in the event of adverse effects. In some embodiments, cytokines of the present invention may be designed to have prolonged life span or enhanced specificity to minimize toxicity.


In some embodiments, the payload of the present invention may be an interleukin (IL) cytokine. Interleukins (ILs) are a class of glycoproteins produced by leukocytes for regulating immune responses. As used herein, the term “interleukin (IL)” refers to an interleukin polypeptide from any species or source and includes the full-length protein as well as fragments or portions of the protein. In some aspects, the interleukin payload is selected from IL1, IL1 alpha (also called hematopoietin-1), IL1 beta (catabolin), IL1 delta, IL1 epsilon, IL1 eta, IL1 zeta, interleukin-1 family member 1 to 11 (IL1F1 to IL1F11), interleukin-1 homolog 1 to 4 (IL1H1 to IL1H4), IL1 related protein 1 to 3 (IL1RP1 to IL1RP3), IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL10C, IL10D, IL11, IL11a, IL11b, IL12, IL13, IL14, IL15, IL16, IL17, IL17A, Il17B, IL17C, IL17E, IL17F, IL18, IL19, IL20, IL20 like (IL20L), Il21, IL22, IL23, IL23A, IL23-p19, IL23-p40, IL24, IL25, IL26, IL27, IL28A, IL28B, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36 alpha, IL36 beta, IL36 gamma, IL36RN, IL37, IL37a, IL37b, IL37c, IL37d, IL37e and IL38. In other aspects, the payload of the present invention may be an interleukin receptor selected from CD121a, CDw121b, IL2Rα/CD25, IL2Rβ/CD122, IL2Rγ/CD132, CDw131, CD124, CD131, CDw125, CD126, CD130, CD127, CDw210, IL8RA, IL11Rα, CD212, CD213α1, CD213α2, IL14R, IL15Rα, CDw217, IL18Rα, IL18Rβ, IL20Rα, and IL20Rβ.


In certain embodiments, a cytokine may be a type I interferons (IFN) including IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. In certain embodiments, a cytokine may be a member of tumor necrosis factor (TNF) superfamily, including TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L (CD154), CD27L (CD70), CD30L (CD153), FASL (CD178), 4-1 BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20).


In one embodiment, the payload of the invention may comprise IL2 (SEQ ID NO. 8299, encoded by SEQ ID NO. 8300 and 8301). In one aspect, the effector module of the invention may be a DD-IL2 fusion polypeptide.


In some aspects of the invention, an IL2 mutein may be used as a payload. As used herein, the term “mutein” is a construct, molecule or sequence of a mutation, change or alteration in a protein and hence is also known as a mutant, e.g., a protein mutant, mutein. Consequently, an “IL2 mutein” is an IL2 mutant. In some embodiments an IL2 mutein is a variant of wild type IL2 protein, where the wildtype IL2 consists of the amino acid sequence of SEQ ID NO. 8299. In some aspects, it refers to an IL2 variant which binds to and activates only cells expressing IL2Rαβγ, but does not significantly bind to or activate cell expressing only IL2Rβγ. In some examples, an IL2 mutein may be an IL2 protein in which residues of IL2 responsible for binding to either IL2Rβ or IL2Rγ are substituted and abolish their interaction. In other examples, an IL2 mutein may be an IL2 protein comprising mutations conferring high affinity for IL2Rα. An IL2 mutein may be an IL2 selective agonist (IL2SA) which can preferentially activate the high affinity IL2 receptor (i.e., IL2αβγ) which is necessary to selectively activate T cells with respect to NK cells. In some embodiments, the IL2 mutein may be IL2 protein which preferentially binds to the lower affinity IL2Rβγ but with reduced affinity to CD25.


In some embodiments, IL2 muteins may be used to preferentially expand or stimulate Treg cells. As used herein “preferentially expand or stimulate Treg cells” means the IL2 muteins promote the proliferation, survival, activation and/or function of T regulatory cells.


Exemplary IL2 muteins may include, but are not limited to, N88R substitution (Shanafelt et al., Nature Biotech., 2000, 18:1197-1202), an IL2 with a V91K substitution (e.g., U.S. Patent publication NO. US20140286898); V91K substitution, C125A substitution, an IL2 with three mutations: V69A, N71R, Q74P; an IL2 mutein with high affinity for IL2Rα (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P); an IL2 mutein with high affinity for IL2Rα and reduced signaling activity (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P, N88D), and D20H, D201, N88G, N88I, N88R, and Q126L substitutions as described in PCT application NO. 1999060128; the contents of each of which are incorporated herein by reference in their entirety. In other aspects, IL2 muteins may include those described in U.S. Pat. Nos. 4,518,584; 5,116,943; 5,206,344; 6,955,807; 7,105,653; 7,371,371; 7,803,361; 8,124,066; 8,349,311; 8,759,486; and 9,206,243; PCT patent publication NOs: WO2005086751 and WO2012088446; EP Pat. NOs: EP0234599 and EP0200280 and Sim, G. C. et al. (2016) Cancer Immunol Res; 4(11):983-994; the contents of each of which are incorporated herein by reference in their entirety.


In some aspects, the IL2 mutein may be fused to a polypeptide that extends the serum half-life of the IL2 mutein, such as an IgG Fc fragment. Preferred Fc regions are derived from human IgG, which includes IgG1, IgG2, IgG3, and IgG4. In other aspects, the payload of the invention may be an IL2 fusion protein comparing a second functional polypeptide. In a non-limiting example, an IL2 fusion protein may comprise an IL2 or IL2 mutein polypeptide fused with a pro-apoptotic Bcl-2 family polypeptide (such as Bad, Bik/Nbk, Bid, Bim/Bod, Hrk, Bak or Bax); such fusion protein may be capable of inhibiting cell survival, inhibiting cell proliferation, or enhancing cell death or apoptosis of a target cell expressing an IL2 receptor. Alternatively, an IL2 or IL2 mutein polypeptide may be fused with an anti-apoptotic Bcl-2 family polypeptide (such as Bcl-XL, Bcl-w or Bcl-2). The fusion protein may be capable of enhancing cell survival, enhancing cell proliferation, or inhibiting cell death or apoptosis of a target cell expressing an IL2 receptor. See, e.g., U.S. patent publication NO.: US2016/0229901.


In addition, the IL2 fusion protein may be a IL2-GMCSF fusion protein which can promote cell-cell interaction; therefore, enhances anti-cancer immune responses (Wen et al., J. Translational Med., 2016, 14: 41).


In one embodiment, the payload of the invention may comprise IL12. IL12 is a heterodimeric protein of two subunits (p35, p40) that is secreted by antigen presenting cells, such as macrophages and dendritic cells. IL12 is type 1 cytokine that acts on natural killer (NK) cells, macrophages, CD8+ Cytotoxic T cells, and CD4+ T helper cells through STAT4 pathway to induce IFNγ production in these effector immune cells (reviewed by Trinchieri G, Nat Rev Immunol. 2003; 3(2): 133-146). IL12 can promote the cytotoxic activity of NK cells and CD8+ T cells, therefore has anti-tumor function. Intravenous injection of recombinant IL12 exhibited modest clinical efficacy in a handful of patients with advanced melanoma and renal cell carcinoma (Gollob et al., Clin. Cancer Res. 2000; 6(5):1678-1692). IL12 has been used as an adjuvant to enhance cytotoxic immunity using a melanoma antigen vaccine, or using peptide pulsed peripheral blood mononuclear cells; and to promote NK cell activity in breast cancer with trastuzumab treatment. Local delivery of IL12 to the tumor microenvironment promotes tumor regression in several tumor models. These studies all indicate that locally increased IL12 level can promote anti-tumor immunity. One major obstacle of systemic or local administration of recombinant IL12 protein, or through oncolytic viral vectors is the severe side effects when IL12 is presented at high level. Developing a system that tightly controls IL12 level may provide a safe use of IL12 in cancer treatment.


In one aspect, the effector module of the invention may be a DD-IL12 fusion polypeptide. This regulatable DD-IL12 fusion polypeptide may be directly used as an immunotherapeutic agent or be transduced into an immune effector cell (T cells and TIL cells) to generate modified T cells with greater in vivo expansion and survival capabilities for adoptive cell transfer. The need for harsh preconditioning regimens in current adoptive cell therapies may be minimized using regulated IL12; DD-IL12 may be utilized to modify tumor microenvironment and increase persistence in solid tumors that are currently refractory to tumor antigen targeted therapy. In some embodiments, CAR expressing T cells may be armored with DD regulated IL12 to relieve immunosuppression without systemic toxicity.


In some embodiments, the IL12 may be a Flexi IL12, wherein both p35 and p40 subunits, are encoded by a single cDNA that produces a single chain polypeptide. In one embodiment, the IL12 may comprise p40 subunit, which includes amino acids 23-328 of wildtype IL12B and comprise the amino acid sequence of SEQ ID NO. 8302 (encoded by SEQ ID NO. 8303-8312) and a p35 subunit, which includes amino acids 57-253 of wildtype IL12A and comprise the amino acid sequence of SEQ ID NO. 8313 (encoded by SEQ ID NO. 8314-8323). Any portion of IL12 that retains one or more functions of full length or mature IL12 may be useful in the present invention.


In some embodiments, DD regulated IL12 compositions of the invention may be utilized to minimize the cytotoxicity associated with systemic IL12 administration. Treatment with IL12 has been associated with systemic flu-like symptoms (fever, chills, fatigue, arthromyalgia, headache), toxic effects on the bone marrow, and liver. Hematologic toxicity observed most commonly included neutropenia and thrombocytopenia; hepatic dysfunction manifested in transient (dose dependent) increase in transaminases, hyperbilirubinemia and hypoalbuminemia. In some instances, toxicity is also associated with inflammation of the mucus membranes (oral mucositis, stomatitis or colitis). These toxic effects of IL12 were related to the secondary production of IFNγ, TNF alpha, and chemokines such as IP10, and MIG. In certain aspects of the invention, DD regulated IL12 may be utilized to prevent the toxic effects associated with elevated production of secondary messengers. In some embodiments, DD regulated Flexi-IL12 constructs may be used to improve the efficacy of the CARs, especially in solid tumor settings, by providing a controlled local signal for tumor microenvironment remodeling and epitope spreading. DD regulation also provides rapid, dose dependent, and local production of Flexi IL12.


The format of the IL12 constructs utilized as payload of the present invention may be optimized. In one embodiment, the payload of the invention may be a bicistronic IL12 containing p40 and p35 subunits separated by an internal ribosome entry site or a cleavage site such as P2A or Furin to allow independent expression of both subunits from a single vector. This results in a configuration of secreted IL12 that is more akin to the naturally occurring IL12 than the flexi IL12 construct, the payload of the invention may be the p40 subunit of the IL12. DD regulated p40 may be co-expressed with constitutive p35 construct to generate “regulatable IL12” expression. Alternatively, the DD regulated p40 may heterodimerize with the endogenous p35. p40 has been shown to stabilize p35 expression and stimulate the export of p35 (Jalah R, et al. (2013). Journal of Biol. Chem. 288, 6763-6776 (the contents of which are incorporated by reference in its entirety).


In some embodiments, modified forms of IL12 may be utilized as the payload. These modified forms of IL12 may be engineered to have shortened half-life in vivo compared to the non-modified form of especially when used in combination with tunable systems described herein.


Human flexi IL12 has a reported half-life of 5-19 hours which, when administered as a therapeutic compound, can result in systemic cytotoxicity (Car et al. (1999) The Toxicology of Interleukin-12: A Review” Toxicologic Path. 27 A, 58-63; Robertson et al. (1999) “Immunological Effects of Interleukin 12 Administered by Bolus Intravenous Injection to Patients with Cancer” Clin. Cancer Res. 5:9-16; Atkins et al. (1997)“Phase I Evaluation of Intravenous Recombinant Human Interleukin 12 in Patients with Advance Malignancies” Clin. Cancer Res. 3:409-417). The ligand inducible control of IL12 can regulate production in a dose dependent fashion, the time from cessation of ligand dosing to cessation of protein synthesis and IL12 clearance may be insufficient to prevent toxic accumulation of IL12 in plasma.


In one embodiment, the modified form of IL12 utilized as the payload may be a Topo-sc IL12 which have the configuration as follows from N to C terminus (i) a first IL12 p40 domain (p40N), (ii) an optional first peptide linker, (iii) an IL12 p35 domain, (iv) an optional second peptide linker, and (v) a second IL12 p40 domain (p40C). In one embodiment, modified topo sc IL12 polypeptides exhibit increased susceptibility to proteolysis. Topo-sc IL12 is described in International Patent Publication No. WO2016048903; the contents of which are incorporated herein by reference in its entirety.


IL12 polypeptide may also be modified (e.g. genetically, synthetically, or recombinantly engineered) to increase susceptibility to proteinases to reduce the biologically active half-life of the IL12 complex, compared to a corresponding IL12 lacking proteinases susceptibility. Proteinase susceptible forms of IL12 are described in International Patent Publication No. WO2017062953; the contents of which are incorporated by reference in its entirety.


IL12 systemic toxicity may also be limited or tightly controlled via mechanisms involving tethering IL12 to the cell surface to limit its therapeutic efficacy to the tumor site. Membrane tethered IL12 forms have been described previously using Glycosyl phosphatidylinositol (GPI) signal peptide or using CD80 transmembrane domain (Nagarajan S, et al. (2011) J Biomed Mater Res A. 99(3):410-7; Bozeman E N, et al. (2013) Vaccine. 7; 31(20):2449-56; Wen-Yu Pan et al. (2012), Mol. Ther. 20:5, 927-937; the contents of each of which are incorporated by reference in their entirety). In some embodiments, transmembrane domains may be selected from any of those described in Table 13, Table 14, and Table 15.


In some embodiments, the IL12 levels secreted by the immune cells of the invention may approximately be comparable to the IL12 levels secreted by human myeloid dendritic cells (mDC1), when activated with TLR agonists. In one embodiment, the TLR agonist may be the combination of lipopolysaccharide administered with R848.


In some embodiments, the IFN gamma secreted by IL12 induced activation of the immune cells is at least 5-fold greater in the presence of ligand, compared to the levels in the absence of ligand.


In some embodiments, regulation of IL12 provides the necessary safety switch. In some embodiments, IL-12 secretion recruit and/or activates effector cells in the tumor microenvironment. In some embodiments, the IL12 regulation provides a benefit to CAR T function without causing toxicity.


In one embodiment, the payload of the invention may comprise IL15. Interleukin 15 is a potent immune stimulatory cytokine and an essential survival factor for T cells, and Natural Killer cells. Preclinical studies comparing IL2 and IL15, have shown than IL15 is associated with less toxicity than IL2. In some embodiments, the effector module of the invention may be a DD-IL15 fusion polypeptide. IL15 polypeptide may also be modified to increase its binding affinity for the IL15 receptor. For example, the asparagine may be replaced by aspartic acid at position 72 of IL15 (SEQ ID NO. 2 of U.S. patent publication US20140134128A1; the contents of which are incorporated by reference in their entirety). In some aspects, the IL15 comprises amino acid sequence of SEQ ID NO. 8234 (encoded by SEQ ID NO. 8236), which include amino acids 49-162 of wildtype IL15. In some embodiments the IL15 sequence may include a stop codon and may be encoded by the nucleotide sequence of SEQ ID NO. 8235, and 8237-8238.


A unique feature of IL15 mediated activation is the mechanism of trans-presentation in which IL15 is presented as a complex with the alpha subunit of IL15 receptor (IL15Ra) that binds to and activates membrane bound IL15 beta/gamma receptor, either on the same cell or a different cell. The IL15/IL15Ra complex is more effective in activating IL15 signaling, than IL15 by itself. Thus, in some embodiments, the effector module of the invention may include a DD-IL15/IL15Ra fusion polypeptide. In one embodiment, the payload may be IL15/IL15Ra fusion polypeptide described in U.S. Patent Publication NO.: US20160158285A1 (the contents of which are incorporated herein by reference in their entirety). The IL15 receptor alpha comprises an extracellular domain called the sushi domain which contains most of the structural elements necessary for binding to IL15. Thus, in some embodiments, payload may be the IL15/IL15Ra sushi domain fusion polypeptide described in U.S. Patent Publication NO.: US20090238791A1 (the contents of which are incorporated herein by reference in their entirety).


Regulated IL15/IL15Ra may be used to promote expansion, survival and potency of CD8TEM cell populations without impacting regulatory T cells, NK cells and TIL cells. In one embodiment, DD-IL15/IL15Ra may be utilized to enhance CD19 directed T cell therapies in B cell leukemia and lymphomas. In one aspect, IL15/IL15Ra may be used as payload of the invention to reduce the need for pre-conditioning regimens in current CAR-T treatment paradigms.


The effector modules containing DD-IL15, DD-IL15/IL15Ra and/or DD-IL15/IL15Ra sushi domain may be designed to be secreted (using e.g. IL2 signal sequence) or membrane bound (using e.g. IgE or CD8α signal sequence).


In some embodiments, the IFN gamma secreted by IL15 induced activation of the immune cells is at least 10-fold greater in the presence of ligand, compared to the levels in the absence of ligand.


In some embodiments, regulation of IL15-IL15Ra fusion proteins provides a safety switch as compared to constitutively expressed IL15-IL15Ra. In some embodiments, IL15-IL15Ra leads to better expansion, and/or persistence of CAR T cells.


In some aspects, the DD-IL115/IL15Ra comprises the amino acid sequences provided in Table 18. In some embodiments, the linker utilized in Table 18 may be SG linker. In Table 18, asterisk indicates the translation of the stop codon. In some embodiments, the DDs described in Table 18 may contain an additional stop codon. As used herein the wildtype (WT) of IL15 refers to Uniprot ID: P40933 and wildtype (WT) of IL15Ra refers to UniProt ID: Q13261. Table 18 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.









TABLE 18







DD-IL15-IL15Ra construct sequences












AA
NA


Description/

SEQ
SEQ


Construct ID
Amino Acid Sequence
ID NO
ID NO





IL15 (49-162 of
NWVNVISDLKKIEDLIQSMHIDATLYIESDVHPSCKVTA
8324
8326;


WT)
MKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNV

8344



TESGCKECEELEEKNIKEFLQSFVHIVQMFINTS







IL15Ra (31-267
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTS
8329
8345;


of WT)
SLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPST

8346



VTTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGS





QLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASAS





HQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKS





RQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHL







IgE leader
MDWTWILFLVAAATRVHS
 276
 277





SG3-(SG4)3-
SGGGSGGGGSGGGGSGGGGSGGGSLQ
 323
 324


SG3-SLQ





linker








SG Linker
SG

AGTG





GT





GSGSGS linker
GSGSGS
8330
8347





GSGSGSGS
GSGSGSGS
8331
8348


linker








GSGSGGGSGS
GSGSGGGSGS
8332
8349


linker








hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT
   3
 339


acid 535-860 of
IRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




WT)
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS





HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT
  12
 359


acid 535-860 of
IRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




WT, R732L)
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS





HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT
 227
 233


acid 535-860 of
IRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




WT, R732L,
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




F736A)
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ







AcGFP (Amino
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG
  79
 372


acid 2-239 of
KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




WT)
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDT





LVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDK





AKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDE





LYK







FLAG-tag
DYKDDDDK
8333
8350





HA Tag
YPYDVPDYA
8238
8351





Modified Furin
ESRRVRRNKRSK
 288
 291





OT-IL15-031
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8334
8352


(OT-001254,
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




OT-IL15-045)
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




IgE signal
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




sequence; IL15
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




(Amino acid
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




49-162 of WT);
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




linker (SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




(SG4)3-SG3-
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




SLQ); IL15Ra
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




(Amino acid
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI




31-267 of WT);
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




linker (SG);
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




hPDE5 (Amino
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




acid 535-860 of
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL




WT, R732L,
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP




F736A); stop
WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK




TGA
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ*







OT-IL15-032
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8335
8353


(OT-001469)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSG




31-267 of WT);
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG




linker (SG);
KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK




AcGFP (Amino
QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDT




acid 2-239 of
LVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDK




WT); linker
AKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP




(SG); hPDE5
DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDE




(Amino acid
LYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




535-860 of WT,
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




R732L,
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




F736A); stop
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDL





ALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD





GCRKNRQKWQALAEQQ*







OT-IL15-033
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8336
8354


(OT-001470)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




31-267 of WT);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI




linker (SG);
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




hPDE5 (Amino
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




acid 535-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, R732L,
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL




F736A); linker
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP




(SG); AcGFP
WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK




(Amino acid 2-
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR




239 of WT);
QKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF




stop
SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSY





GVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN





YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN





YNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY





QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF





GFVTAAAITHGMDELYK*







OT-IL15-043
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8337
8355


(OT-001315)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




Linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




31-267 of WT);
SRRVRRNKRSKEETRELQSLAAAVVPSAQTLKITDFSFSD




Linker (SG);
FELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSV




Furin cleavage
KKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




site
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHS




(ESRRVRRNKRSK);
IMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL




hPDE5
ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLM




(Amino acid
TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP




535-860 of WT,
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




R732L); stop
LLDGCRKNRQKWQALAEQQ*







OT-IL15-044
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8338
8356


(OT-001316)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




Linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




31-267 of WT);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI




Linker (SG);
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




hPDE5 (Amino
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




acid 535-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT, R732L);
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL




stop
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ*







OT-IL15-048
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8339
8357


(OT-001317)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




Linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra 
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




31-267 of WT);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI




linker (SG);
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




hPDE5 (Amino
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




acid 535-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT); stop
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ*







OT-IL15-194
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI
8340
8358


(OT-001499)
DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD




IgE signal
TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS




sequence; IL15
FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI




(Amino acid
TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




49-162 of WT);
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV




Linker (SG3-
TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ




(SG4)3-SG3-
LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH




SLQ); IL15Ra
QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




(Amino acid
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE




31-267 of WT);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI




linker (SG);
RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH




hPDE5 (Amino
NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS




acid 535-860 of
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




WT); stop
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP





WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQ*







OT-IL15-111
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK
8341
8359


(OT-001344)
IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS




IgE signal
LESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE




sequence; Flag
EKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG




tag; IL15
GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL




(Amino acid
YSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS




49-162 of WT);
LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA




Linker (SG3-
ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS




(SG4)3-SG3-
HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST




SLQ); HA tag;
STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV




IL15Ra (Amino
TWGTSSRDEDLENCSHHLGSGSGSEETRELQSLAAAVVP




acid 31-267 of
SAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ




WT); linker
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




(GSGSGS);
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQ




hPDE5 (Amino
RSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIE




acid 535-860 of
EYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLED




WT, R732L);
PHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFD




stop TGA
QGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQL





YEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-IL15-112
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK
8342
8360


(OT-001345)
IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS




IgE signal
LESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE




sequence; Flag
EKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG




tag; IL15
GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL




(Amino acid
YSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS




49-162 of WT);
LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA




Linker (SG3-
ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS




(SG4)3-SG3-
HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST




SLQ); HA tag;
STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV




IL15Ra (Amino
TWGTSSRDEDLENCSHHLGSGSGSGSEETRELQSLAAAV




acid 31-267 of
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




WT); linker
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQC




(GSGSGSGS);
MFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS




hPDE5 (Amino
YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSG




acid 535-860 of
LSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFN




WT, R732L);
LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATE




stop
FFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC





LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-IL15-113
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK
8343
8361


(OT-001346)
IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS




IgE signal
LESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE




sequence; Flag
EKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG




tag; IL15
GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL




(Amino acid
YSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS




49-162 of WT);
LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA




Linker (SG3-
ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS




(SG4)3-SG3-
HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST




SLQ); HA tag;
STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV




IL15Ra (Amino
TWGTSSRDEDLENCSHHLGSGSGGGSGSEETRELQSLAA




acid 31-267 of
AVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV




WT); linker
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




(GSGSGGGSGS);
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVN




hPDE5
NSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQIL




(Amino acid
SGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQ




535-860 of WT,
FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




R732L); stop
ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFID





AICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*









In some embodiments, the sequences described in Table 18, may contain an additional stop codon. For example, the construct “hPDE5 (Amino acid 535-860 of WT, R732L); stop” may be encoded by the nucleotide sequence of SEQ ID NO. 8362, and the construct “hPDE5 (Amino acid 535-860 of WT, R732L, F736A); stop” may be encoded by the nucleotide sequence of SEQ ID NO. 8363.


In one embodiment, the payload of the present invention may comprise IL18. IL18 is a proinflammatory and immune regulatory cytokine that promotes IFNγ production by T and NK cells. IL18 belongs to the IL1 family. Secreted IL18 binds to a heterodimer receptor complex, consisting of IL18Rα and β-chains and initiates signal transduction. IL18 acts in concert with other cytokines to modulate immune system functions, including induction of IFNγ production, Th1 responses, and NK cell activation in response to pathogen products. IL18 showed anti-cancer effects in several tumors. Administration of recombinant IL18 protein or IL18 transgene induces melanoma or sarcoma regression through the activation of CD4+ T and/or NK cell-mediated responses (reviewed by Srivastava et al., Curr. Med. Chem., 2010,17: 3353-3357). The combination of IL18 with other cytokines, such as IL12 or co-stimulatory molecules (e.g., CD80) increases IL18 anti-tumor effects. For example, IL18 and IL12A/B or CD80 genes have been integrated successfully in the genome of oncolytic viruses, with the aim to trigger synergistically T cell-mediated anti-tumor immune responses (Choi et al., Gene Ther., 2011, 18: 898-909). IL2/IL18 fusion proteins also display enhanced anti-tumor properties relative to either cytokine alone and low toxicity in preclinical models (Acres et al., Cancer Res., 2005, 65:9536-9546).


IL18 alone, or in combination of IL12 and IL15, activates NK cells. Preclinical studies have demonstrated that adoptively transferred IL12, IL15 and IL18 pre-activated NK cells display enhanced effector function against established tumors in vivo (Ni et al., J Exp Med. 2012, 209: 2351-2365; and Romee et al., Blood. 2012,120:4751-4760). Human IL12/IL15/IL18 activated NK cells also display memory-like features and secrete more IFNγ in response to cytokines (e.g., low concentration of IL2). In one embodiment, the effector module of the present invention may be a DD-IL18 fusion polypeptide.


In one embodiment, the payload of the present invention may comprise IL21. IL21 is another pleiotropic type I cytokine that is produced mainly by T cells and natural killer T (NKT) cells. IL21 has diverse effects on a variety of cell types including but not limited to CD4+ and CD8+ T cells, B cells, macrophages, monocytes, and dendritic cells (DCs). The functional receptor for IL21 is composed of IL21 receptor (IL21R) and the common cytokine receptor gamma chain, which is also a subunit of the receptors for IL2, IL4, IL7, IL9 and IL15. Studies provide compelling evidence that IL21 is a promising immunotherapeutic agent for cancer immunotherapy. IL21 promotes maturation, enhances cytotoxicity, and induces production of IFNγ and perforin by NK cells. These effector functions inhibit the growth of B16 melanoma (Kasaian et al., Immunity. 2002, 16(4):559-569; and Brady et al., J Immunol. 2004, 172(4):2048-2058). IL21 together with IL15 expands antigen-specific CD8+ T-cell numbers and their effector function, resulting in tumor regression (Zeng et al., J Exp Med. 2005, 201(1):139-148). IL21 may also be used to rejuvenate multiple immune effector cells in the tumor microenvironment. IL21 may also directly induce apoptosis in certain types of lymphoma such as diffuse large B-cell lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia cells, via activation of STAT3 or STAT1 signal pathway. IL21, alone or in combination with anti-CD20 mAb (rituximab) can activate NK cell-dependent cytotoxic effects. Interestingly, discovery of the immunosuppressive actions of IL21 suggests that this cytokine is a “double-edged sword”—IL21 stimulation may lead to either the induction or suppression of immune responses. Both stimulatory and suppressive effects of IL21 must be considered when using IL21-related immunotherapeutic agents. The level of IL21 needs to be tightly controlled by regulatory elements. In one aspect, the effector module of the present invention may be a DD-IL21 fusion polypeptide.


In some embodiments, payloads of the present invention may comprise type I interferons. Type I interferons (IFNs-I) are soluble proteins important for fighting viral infection in humans. IFNs-I include IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. IFNα and IFNβ are the main IFN I subtypes in immune responses. All subtypes of IFN I signal through a unique heterodimeric receptor, interferon alpha receptor (IFNAR), composed of 2 subunits, IFNAR1 and IFNAR2. IFNR activation regulates the host response to viral infections and in adaptive immunity. Several signaling cascades can be activated by IFNR, including the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway, the mitogen activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase (PI3K) pathway, the v-crk sarcoma virus CT10 oncogene homolog (avian)-like (CRKL) pathway, and NF-κB cascade. It has long been established that type I IFNs directly inhibit the proliferation of tumor cells and virus-infected cells, and increase MHC class I expression, enhancing antigen recognition. IFNs-I have also proven to be involved in immune system regulation. IFNs can either directly, through interferon receptor (IFNR), or indirectly by the induction of chemokines and cytokines, regulate the immune system. Type I IFNs enhance NK cell functions and promote survival of NK cells. Type I IFNs also affect monocytes, supporting the differentiation of monocytes into DC with high capacity for antigen presentation, and stimulate macrophage function and differentiation. Several studies also demonstrate that IFNs-I promote CD8+ T cell survival and functions. In some instances, it may be desirable to tune the expression of Type I IFNs using biocircuits of the present invention to avoid immunosuppression caused by long-term treatment with IFNs.


New anticancer immunotherapies are being developed that use recombinant type I IFN proteins, type I IFN transgene, type I IFN encoding vectors and type I IFN expressing cells. For example, IFNα has received approval for treatment of several neoplastic diseases, such as melanoma, RCC and multiple myeloma. Though type I IFNs are powerful tools to directly and indirectly modulate the functions of the immune system, side effects of systemic long-term treatments and lack of sufficiently high efficacy have dampened the interest of IFNα for clinical use in oncology. It is believed that if IFN levels are tightly regulated at the malignant tissues, type I IFNs are likely more efficacious. Approaches for intermittent delivery are proposed according to the observation that intermittency at an optimized pace may help to avoid signaling desensitizing mechanisms (negative feedback mechanisms) induced by IFNs-I (i.e., because of SOCS1 induction) in the responding immune cells. In accordance with the present invention, the effector module may comprise a DD-IFN fusion polypeptide. The DD and its ligand control the expression of IFN to induce an antiviral and antitumor immune responses and in the meantime, to minimize the side effects caused by long-term exposure of IFN.


In some embodiments, payloads of the present invention may comprise members of tumor necrosis factor (TNF) superfamily. The term “TNF superfamily” as used herein refers to a group of cytokines that can induce apoptosis. Members of TNF family include TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L (CD154), CD27L (CD70), CD30L (CD153), FASL (CD178), 4-1 BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20). In one embodiment, the payload of the invention may be TNF-alpha. TNF-alpha can cause cytolysis of tumor cells, and induce cell proliferation differentiation as well. In one aspect, the effector module of the present invention may comprise a DD-TNF alpha fusion polypeptide.


In one embodiment, the payloads of the present invention may be cytokines fused to TNF alpha ectodomain. Such payloads are produced as membrane associated cytokines fused to the TNF ectodomain. In one embodiment, the cytokine may be shed from the cell surface by the action of membrane associated proteases, and/or proteases in the extracellular space e.g. MMP9. Any of the cytokines described herein may be useful in the present invention. Such cytokine-TNF scaffold constructs may be used to preserve the native sequence of the processed cytokine while preserving regulation.


In some embodiments, payloads of the present invention may comprise inhibitory molecules that block inhibitory cytokines. The inhibitors may be blocking antibodies specific to an inhibitory cytokine, and antagonists against an inhibitory cytokine, or the like.


In some aspects, payloads of the present invention may comprise an inhibitor of a secondary cytokine IL35. IL35 belongs to the interleukin-12 (IL12) cytokine family, and is a heterodimer composed of the IL27β chain Ebi3 and the IL12α chain p35. Secretion of bioactive IL35 has been described only in forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs) (resting and activated Tregs). Unlike other membranes in the family, IL35 appears to function solely in an anti-inflammatory fashion by inhibiting effector T cell proliferation and perhaps other parameters (Collison et al., Nature, 2007, 450(7169): 566-569).


In some embodiments, payloads of the present invention may comprise inhibitors that block the transforming growth factor beta (TGF-β) subtypes (TGF-β1, TGF-β2 and TGF-β3). TGF-β is secreted by many cell types, including macrophages and is often complexed with two proteins LTBP and LAP. Serum proteinases such as plasmin catalyze the release of active TGF-β from the complex from the activated macrophages. It has been shown that an increase in expression of TGF-β correlates with the malignancy of many cancers. The immunosuppressive activity of TGF-β in the tumor microenvironment contributes to oncogenesis.


In some embodiments, payloads of the present invention may comprise inhibitors of IDO enzyme. In some embodiments, payloads fused to the DDs of the invention may be an inhibitor of an immunosuppressive molecule such as TGF-beta and IDO.


In some embodiments, payloads of the present invention may comprise chemokines and chemokine receptors. Chemokines are a family of secreted small cytokines, or signaling proteins that can induce directed chemotaxis in nearby responsive cells. The chemokine may be a SCY (small cytokine) selected from the group consisting of SCYA1-28 (CCL1-28), SCYB1-16 (CXCL1-16), SCYC1-2 (XCL1-2), SCYD-1 and SCYE-1; or a C chemokine selected from XCL1 and XCL2; or a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; or a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16 and CXCL17; or a CX3C chemokine CX3CL1. In some aspects, the chemokine receptor may be a receptor for the C chemokines including XCR1; or a receptor for the CC chemokines including CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9 and CCR10; or a receptor for the CXC chemokines including CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5; or a CX3C chemokine receptor CX3CR1.


In some embodiments, payloads of the present invention may comprise other immunomodulators that play a critical role in immunotherapy, such as GM-CSF (Granulocyte-macrophage colony stimulating factor), erythropoietin (EPO), MIP3a, monocyte chemotactic protein (MCP)-1, intracellular adhesion molecule (ICAM), macrophage colony stimulating factor (M-CSF), Interleukin-1 receptor activating kinase (iRAK-1), lactotransferrin, and granulocyte colony stimulating factor (G-CSF).


In some embodiments, the payload of the present invention may comprise Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances CD4+ regulatory T cells (Tregs) function. AREG promotes immune suppression in the tumor environment. Thus, in some embodiment, the payloads of the present invention may comprise Amphiregulin to dampen immune response during immunotherapy.


In some embodiments, payloads of the present invention may comprise fusion proteins wherein a cytokine, chemokine and/or other soluble factor may be fused to other biological molecules such as antibodies and or ligands for a receptor. Such fusion molecules may increase the half-life of the cytokines, reduce systemic toxicity, and increase local concentration of the cytokines at the tumor site. Fusion proteins containing two or more cytokines, chemokines and or other soluble factors may be utilized to obtain synergistic therapeutic benefits. In one embodiment, payload may be a GM-CSF/IL2 fusion protein.


In some embodiments, any of the hinge and transmembrane domains described herein may be used as a scaffold for soluble cytokine presentation. The cytokine may be operably linked to the CD8 hinge and transmembrane domain by a protease cleavage site. Cleavage at the cleavage site releases the cytokine from the cell surface membrane. In some aspects, the cytokine may be in a precursor form. Generation of the active form of the cytokine from the precursor form occurs via cleavage at the cleavage site. Any of the cytokines described herein may be engineered using the any of the hinge and transmembrane domains described herein as a scaffold.


7. Immune Regulators


In some embodiments, payloads of the present invention may comprise inhibitors (antagonists) of co-inhibitory molecules (e.g., immune checkpoint), including without limitation, PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, VISTA, BTLA, TIGIT, LAIRA, CD160, 2B4 and TGFR. In some aspects, the inhibitor may be a blocking/antagonistic antibody or fragment thereof, as discussed previously, or a ligand of the co-inhibitory receptor.


In some embodiments, payloads of the present invention may comprise agonists of co-stimulatory molecules, including without limitation, CD27, CD28, CD30, CD40, OX40 (CD134), 4-1BB (CD137), CDS, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), GITR, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3 and CD83. As a non-limiting example, agonists of co-stimulatory molecule ICOS (CD278) may be an ICOS binding protein comprising an amino acid sequence of SEQ ID NOs: 1, 2, 3, 4, 5 and 6 disclosed in International Patent Publication NO: WO2016120789; the contents of which are incorporated by reference herein in their entirety.


In some aspects, the agonist of a co-stimulatory molecule may be an agonistic antibody or fragment thereof, as discussed previously; or a ligand of the co-stimulatory receptor; or any binding molecules that can enhance the biological activity of its target. For example, an agonistic ligand of OX40 may be OX40L (CD252). The OX40 ligand as used herein, includes the intact OX40 ligand, soluble OX40 ligand, fusion proteins including a functionally active portion of OX40 ligand covalently linked to a second moiety, e.g., a protein domain, and variants may be which vary in amino acid sequence from naturally occurring OX4L but which retain the ability to specifically bind to the OX40 receptor or even enhance the biological activity of OX40L.


In general, an agonist of a co-stimulatory molecule substantially enhances the biological activity of its target molecule, such as T cell activation. Desirably, the biological activity is enhanced by 10, 20, 30, 50, 70, 80, 90, 95, or even 100.


In some embodiments, payloads of the present invention may comprise immunomodulators including stress proteins and heat shock proteins (HSPs) that can integrate both innate and adaptive immune responses. They may also be other chaperones and adaptors that stimulate immune responses. As a non-limiting example, the payload of the present invention may be a fusion protein comprising an NF-KB-activating domain of Flagellin fused with an ATP-binding domain truncated glucose regulated protein 170 (Grp 170) (See. U.S. patent publication NO.: US2015/0315255; the contents of which are incorporated herein by reference in their entirety). The fusion construct forms a secretable Grp 170-Flagellin hybrid chaperone (Flagrp 170) which can be used to stimulate anti-cancer immune responses.


In other embodiments, the payload of the present invention may comprise a STING (stimulator of interferon gene) protein, an adaptor molecule in the cytoplasm which, as a component of the host cytosolic surveillance pathway, activates the TANK binding kinase (TBK1)-IRF3 signaling axis, resulting in the induction of IFNβ and other IRF-3 dependent gene products that strongly activate innate immunity, leading to the development of an adaptive immune response consisting of both antigen-specific CD4+ and CD8+ T cells as well as pathogen-specific antibodies.


Demaria et al. reported that enforced activation of a STING protein by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), an agonist of STING, can enhance antitumor CD8+ T cell responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The STING-dependent antitumor immunity was dependent on type I IFNs produced by endothelial cells in the tumor microenvironment (Demaria et al., Proc. Natl. Acad. Sci. USA, 2015, 112(5): 15408-15413). These studies demonstrate that STING contributes to anti-tumor immune responses via enhancement of type I IFN signaling in the tumor microenvironment. Biocircuits, effector modules comprising STING may be applied to the tumor microenvironment to enhance anti-tumor responses either alone or in combination with other immunotherapeutic agents of the invention.


In addition to STING proteins, payloads of the present invention may comprise PRRs (pattern recognition receptors) that are involved in sensing the infection of cells by viruses and microorganisms to activate innate immune inflammatory responses. Such PRRs include Toll like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs). The RLR family is a RNA sensing system that is comprised of retinoic acid inducible gene-like-I (RIG-1), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). RIG-1 recognizes relatively short dsRNA (up to 1 kb) whereas MDA5 detects long dsRNA (more than 2 kb) to activate synthesis of type I IFNs, including IFNα and IFNβ (Wilkins et al., Curr Opin Immunol., 2010, 22: 41-47). RLRs activate downstream signaling proteins evoking type I IFN production. TLRs recognize distinct structures in microbes; often referred to as “PAMPs” (pathogen associated molecular patterns). Ligand binding to TLRs invokes a cascade of intra-cellular signaling pathways that induce the production of factors involved in inflammation and immunity such as pro-inflammatory cytokines, and chemokines, as well as CD4+ and CD8+ T cell activation. Among ten TLRs identified in human, TLRs-1, 2, 4, 5 and 6 are expressed in the cell surface, while TLR-3, -7/8, and -9 are expressed with the ER compartment. In some embodiments, payloads of the invention may be one of the PRRs, or agonists of PRRs.


8. Metabolic Factors/Metabolic Checkpoint


In some embodiments, immune cells such as T cells used for immunotherapy may be metabolically reprogrammed to enhance anti-tumor T cell responses. Metabolic activities are necessary to support immune cells, specifically T cells growth, expansion, differentiation and effector functions, upon activation through T cell receptor or CAR and co-stimulatory signals. Metabolic competition between cancer cells and infiltrating immune effector cells leads to T cell energy and dysfunction.


In some embodiments, payloads of the present invention may be modulators of glycolysis. The Warburg effect in cancer cells leads to the massive generation of lactic acid that can suppress T cell cytotoxic and effector functions. As a non-limiting example, immune cells for adoptive transfer may be modified to overexpress phosphoenolpyruvate carboxykinase 1 (PCK1), which increases PEP production in T cells. Increased production of the glycolytic metabolite phosphoenolpyruvate (PEP) can repress sarco/ER Ca (2+)-ATPase (SERCA) activity, therefore sustaining T cell receptor-mediated Ca (2+)-NFAT signaling and effector functions (Ho et al, Cell, 2015, 162(6): 1217-1228).


In some embodiments, the payloads of the present invention may comprise of proteins involved in the OXPHOS pathway. For example, LEM (lymphocyte expansion molecule), a protein that can promote cytotoxic CD8+ T cell proliferation and effector function, and memory T cell generation in response to infection with lymphocyte choriomeningitis (CMV). LEM is part of a complex of CRIF1 (CR6 interacting factor 1) that mediates the translation and insertion of OXPHOS (Oxidative phosphorylation) proteins into mitochondrial inner membrane, thereby regulates OXPHOS activity. Thus, LEM is a positive modulator of T cell metabolism (mitochondria respiratory levels) and expansion (Okoye et al., Science, 2015, 348(6238): 995-1001).


In some embodiments, the payloads of the present invention may be inhibitors of metabolic enzymes involved in amino acid regulation. Metabolic competition for between immune cells and tumor cells can lead to establishing and maintaining an immunosuppressive tumor microenvironment due to T cell energy. Non-limiting examples include inhibitors of nitric oxide synthase and arginase I that can degrade extracellular arginine, or Indoleamine 2,3-dioxygenase (IDO) that degrades tryptophan. Abrogation of these enzymes secreted by tumor cells and immune suppressive cells can promote antitumor immunity.


In other embodiments, payloads of the present invention may comprise proteins critical for de novo fatty acid and cholesterol biosynthesis. This may include proteins such as SREBP1 (also known as SREBF1), SREBP2 (SREBF2), HMGCR, HMGCS, FASN, ACACA and SQLE, and transport pathways, such as LDLR. Modulating cholesterol metabolism of cytotoxic CD8+ T cells may potentiate their anti-tumor effector function and proliferation. Cholesterol is a key component of membrane lipids, and has been shown that the increase in the plasma membrane cholesterol level of CD8+ T cells, enhances T-cell receptor clustering and signaling as well as more efficient formation of the immunological synapse (Molnar et al., J Biol Chem. 2012, 287:42664-42674). T cells used for adoptive transfer (e.g., anti-tumor CAR T cells) may be further engineered to express a protein that enhances cholesterol biosynthesis and/or transportation.


9. Safety Switch


In some embodiments, payloads of the present invention may comprise SRE regulated safety switches that can eliminate adoptively transferred cells in the case of severe toxicity, thereby mitigating the adverse effects of T cell therapy. Adoptively transferred T cells in immunotherapy may attack normal cells in response to normal tissue expression of TAA. Even on-tumor target activity of adoptively transferred T cells can result in toxicities such as tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome.


In one embodiment, the payloads of the present invention may eliminate the inappropriately activated cells by induction of apoptosis or by immunosurveillance have been developed in the art.


In some embodiments, payloads of the present invention may comprise inducible killer/suicide genes that acts as a safety switch. The killer/suicide gene when introduced into adoptively transferred immune cells, could control their alloreactivity. The killer/suicide gene may be an apoptotic gene (e.g., a caspase) which allows conditional apoptosis of the transduced cells by administration of a non-therapeutic ligand of the SRE (e.g., DD).


In some embodiments, the payload of the present invention may include Caspase 9. In some instances, Caspase 9 may be modified to have low basal expression and lacking the caspase recruitment domain (CARD) (SEQ ID NO.: 26 and SEQ ID NO.: 28 of U.S. Patent No. U.S. Pat. No. 9,434,935B2; the contents of which are incorporated by reference in their entirety).


In one embodiment, the payload of the present invention is a suicide gene system, iCasp9/Chemical induced dimerization (CID) system which consists of a polypeptide derived from the Caspase9 gene fused to a drug binding domain derived from the human FK506 protein. Administration of bioinert, small molecule AP1903 (rimiducid), induces cross linking of the drug binding domains and dimerization of the fusion protein and in turn the dimerization of Caspase 9. This results in the activation of downstream effector Caspase 3 and subsequent induction of cellular apoptosis (Straathof et al., Blood, 2005, 105: 4247-4254; incorporated herein by reference in its entirety). Preclinical trials using CART including an iCasp9 gene have shown effective elimination of CAR T cells invivo in mouse models and demonstrate the potential efficacy of this approach. (Budde et al, Plos One, 2013, 8: e82742.10.1371; Hoyos et al., Leukemia, 2010; 24(6):1160-1170). In one embodiment, the payload of the invention may comprise Caspase9. In one aspect, the effector module of the invention may be a DD-Caspase9 fusion polypeptide. In some embodiments, the payload of the invention may be full length Caspase 9 (SEQ ID NO. 8364, encoded by SEQ ID No. 8365, 8366) or caspase 9 delta CD (SEQ ID NO. 8367, encoded by SEQ ID No. 8368). The Caspases 9 sequences described herein may optionally include a stop codon at the C terminal of the sequence.


In some instances, the iCasp9/CID system has been shown to have a basal rate of dimerization even in the absence of rimiducid, resulting in unintended cell death. Regulating the expression levels of iCasp9/CID is critical for maximizing the efficacy of iCasp9/CID system. Biocircuits of the present invention and/or any of their components may be utilized in regulating or tuning the iCasp9/CID system in order to optimize its utility. Other examples of proteins used in dimerization-induced apoptosis paradigm may include, but are not limited to Fas receptor, the death effector domain of Fas-associated protein, FADD, Caspase 1, Caspase 3, Caspase 7 and Caspase 8. (Belshaw P. J. et al, Chem Biol., 996,3:731-738; MacCorkle R. A. et al, Proc Natl Acad Sci, 1998, 95:3655-3660; Spencer, D. M. et al., Curr Biol. 1996; 6:839-847; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, the safety switch of the present invention may comprise a metabolic enzyme, such as herpes simplex virus thymidine kinase (HSV-TK) and cytosine deaminase (CD). HSV-TK phosphorylates nucleoside analogs, including acyclovir and ganciclovir (GCV) to generate triphosphate form of nucleosides. When incorporated into DNA, it leads to chain termination and cell death. Unlike the mammalian thymidine kinase, HSV-TK is characterized by 1000-fold higher affinity to nucleoside analogs such as GCV, making it suitable for use as a suicide gene in mammalian cells. Cytosine deaminase (CD) can converts 5-fluorocytosine (5-FC) into the cytotoxic 5-fluorouracil (5-FU) (Tiraby et al., FEMS Lett., 1998, 167: 41-49).


In some embodiments, the safety switch of the present invention may comprise a CYP4B1 mutant (as suicide gene), which may be co-expressed in a CAR engineered T cells (Roellecker et al., Gen Ther., 2016, May 19, doi: 10.1038/gt.2016.38).


In some embodiments, the payload of the present invention may comprise a fusion construct that can induce cell death, for example, a polypeptide with the formula of St-R1-S1-Q-52-R2, wherein the St is a stalk sequence, R1/2 and Q are different epitopes; and S1/2 are optional spacer sequences (See, International patent publication NO.: WO2013/153391; the content of which are incorporated herein by reference in their entirety).


In some embodiments, safety switch may be mediated by therapeutic antibodies which specifically bind to an antigen that is expressed in the plasma membrane of adoptively transferred cells. The antigen-antibody interaction allows cell removal after administration of a specific monoclonal antibody against the antigen. As non-limiting examples, payloads of the present invention may comprise the antigen and antibody pair used to mediate safety switch such as CD20 and anti-CD20 antibody (Griffioen et al., Haematologica, 2009, 94:1316-1320), a protein tag and anti-tag antibody (Kieback et al., Natl. Acad. Sci. U.S.A., 2008, 105: 623-628), a compact suicide gene (RQR8) combining epitopes from CD34 (as a marker moiety) and CD20 (as a suicide moiety) which enables CD34 selection, cell tracking, as well as cell deletion after anti-CD20 monoclonal antibody administration (Philip et al., Blood, 2014, 124: 1277-1287); truncated human EGFR polypeptide and anti-EGFR monoclonal antibody (Wang et al., Blood, 2011, 118:1255-1263); and a compact polypeptide safety switch having a structural formula as discussed in U.S. Patent Application Publication NO: 2015/0093401; the contents of each of which are incorporated herein by reference in their entirety.


10. Regulatory Switch


The utility of adoptive cell therapy (ACT) has been limited by the high incidence of graft versus host disease (GVHD). GVHD occurs when adoptively transferred T cells elicit an immune response resulting in host tissue damage. Recognition of host antigens by the graft cells triggers a proinflammatory cytokine storm cascade that signifies acute GVHD. GVHD is characterized as an imbalance between the effector and the regulatory arms of the immune system. In some embodiments, the payloads of the present invention may be used as regulatory switches. As used herein “regulatory switch” refers proteins, which when expressed in target cells increase tolerance to the graft by enhancing the regulatory arm of the immune system.


In one embodiment, regulatory switches may include payloads that preferentially promote the expansion of regulatory T (Treg cells). Tregs are a distinct population of cells that are positively selected on high affinity ligands in the thymus and play an important role in the tolerance to self-antigens. In addition, T regs have also been shown to play a role in peripheral tolerance to foreign antigens. Since Tregs promote immune tolerance, expansion of Tregs with the compositions of the invention may be desirable to limit GVHD.


In some embodiments, the regulatory switch may include, but is not limited to T regs activation factors such NFκB, FOXO, nuclear receptor Nr4a, Retinoic acid receptor alpha, NFAT, AP-1 and SMAD. Such factors can result in the expression of Fork headbox P3 (FOXP3) in T cells resulting in the activation of the regulatory T cell program and the expansion of T cells.


In one embodiment, the regulatory switch may be FOXP3, a transcriptional regulator in T cells. A function of FOXP3 is to suppress the function of NFAT, which leads to the suppression of expression of many genes including IL2 and effector T-cell cytokines. FOXP3 acts also as a transcription activator for genes such as CD2S, Cytotoxic T-Lymphocyte Antigen Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), glucocorticoid-induced TNF receptor family gene (GITR) and folate receptor 4. FOXP3 also inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC (RAR related orphan receptor C). Isoforms of FOXP3 lacking exon2 (FOXP3 delta 2), or exon 7 (FOXP3 delta 7) may also be used as regulatory switches. In one aspect, the effector module of the invention may be a DD-FOXP3 fusion polypeptide. FOXP3 may be a full length FOXP3 (SEQ ID NO. 8369, encoded by SEQ ID NO. 8370); or FOXP3 (amino acid 2-431 of WT) (SEQ ID NO. 8371, encoded by SEQ ID NO. 8372), delta 2 FOXP3 (SEQ ID NO. 8373, encoded by SEQ ID NO. 8374); or FOXP3 delta (amino acid 2-396 of WT) (SEQ ID NO. 8375, encoded by SEQ ID NO. 8376).


11. Homing Receptors


In some embodiments, payloads of the present invention may comprise homing receptors that guide immunotherapeutic cells to different anatomical compartments, such as designated tumor sites. For example, T cells expressing a chimeric antigen receptor may be further modified to express a homing receptor that is not normally expressed by the T cell. As used herein, the term “homing receptor” is a receptor that guides a cell expressing the receptor to a designated organ, a particular tissue, or a particular type of cell. Such trafficking receptors favor T cell accumulation in certain target organs. In some embodiments, the homing receptors of the present invention may be adhesion molecules. In other embodiments, the homing receptors of the invention may be chemokine receptors which mediate chemotaxis to chemokines. As non-limiting examples, a homing receptor may be a B cell zone homing receptor such as CXCR5; T cell zone homing receptor such as CXCR7; a gastrointestinal homing receptor such as CCR9 and integrin α4β7 (also known as lymphocyte Peyer patch adhesion molecule); a skin homing receptor such as CLA (cutaneous lymphocyte-associated antigen receptor), CCR4, CCR8 and CCR10 (See, e.g., International Patent Publication NO.: WO2016025454; the contents of which are incorporated herein by reference in their entirety). Other homing receptors include, without limitation, CXCR2 and CXCR1 which redirect chemokine receptor modified tumor-infiltrating lymphocytes to melanoma tumor (Idorn et al., Methods Mol. Biol., 2016, 1428: 261-276; and Sapoznik et al., Cancer Immunol Immunother., 2012, 61(10): 1833-1847); CCR2 which, when expressed by CD8+ T cells, can home modified CD8+ T cells to the site of prostate cancer in which the CCL2 (a CCR2 ligand) expression is increased (Garetto et al., Oncotarget, 2016, May 10. doi: 10.18632/oncotarget.9280); and CD103 as an intestinal homing receptor.


12. Immune Signaling


Treatment with immunotherapeutic agents may induce immune cell signaling, leading to the activation of cell-type specific immune activities, ultimately resulting in an immune response. In some embodiments, payloads of the present invention may be immune signaling biomolecules used to achieve exogenous control of signaling pathways. Exemplary immune signaling biomolecules include transcription factors such as Nuclear factor of activated T-cells (NFAT) (e.g., NFAT, NFAT2, NFAT3 and NFAT 4), Nuclear Factor Kappa B (NFκB), Signal transducer and activator of transcription (STAT), Activator protein-1 (AP-1), Rel, Fos, and Jun; kinases such as Janus Kinase (JAK), Extracellular signal-regulated kinases (ERK), Mitogen-Activated Protein Kinases (MAPK), Mammalian target of rapamycin (mTOR), Phosphoinositide-dependent kinase (PDK), Protein kinase B (PKB), IkB kinase (IKK), Calcium/Calmodulin dependent kinase (CaMK); and other signaling molecules such as Ras, Cbl, Calmodulin (CaM), Calpain, and IkkB kinase.


In one embodiment, the payloads of the present invention may be administered in conjunction with inhibitors of SHP-1 and/or SHP-2. The tyrosine-protein phosphatase SHP1 (also known as PTPN6) and SHP2 (also known as PTPN11) are involved in the Programmed Cell Death (PD1) inhibitory signaling pathway. The intracellular domain of PD1 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). ITSM has been shown to recruit SHP-1 and 2. This generates negative costimulatory micro clusters that induce the dephosphorylation of the proximal TCR signaling molecules, thereby resulting in suppression of T cell activation, which can lead to T cell exhaustion. In one embodiment, inhibitors of SHP-1 and 2 may include expressing dominant negative versions of the proteins in T cells, TILs or other cell types to relieve exhaustion. Such mutants can bind to the endogenous, catalytically active proteins, and inhibit their function. In one embodiment, the dominant negative mutant of SHP-1 and/or SHP-2 lack the phosphatase domain required for catalytic activity. In some embodiments, any of the dominant negative SHP-1 mutants taught Bergeron S et al. (2011). Endocrinology. 2011 December; 152(12):4581-8; Dustin J B et al. (1999) J Immunol. March 1; 162(5):2717-24; Berchtold S (1998) Mol Endocrinol. April; 12(4):556-67 and Schram et al. (2012) Am J Physiol Heart Circ Physiol. 1; 302 (1):H231-43; may be useful in the invention (the contents of each of which are incorporated by reference in their entirety).


13. Oncolytic Viruses


In some embodiments, payloads of the present invention may comprise oncolytic viruses or any components of oncolytic viruses. In some embodiments, the payload may be oncolytic viruses or components that have been genetically modified oncolytic viruses for use in oncolytic virotherapy. As used herein, the term “virotherapy” refers to a therapeutic use of oncolytic viruses (replication competent viruses) to attack and destroy cancer cells. Oncolytic viruses refer to those viruses that are able to eliminate malignancies by direct targeting and killing of cancer cells within the tumor, without causing harm to normal tissues. Exemplary oncolytic viruses and genetically engineered oncolytic viruses with cancer specific tropism may include Arvoviruses, Adenoviruses, Coxsackie viruses, Herpes Simplex Viruses (HSVs), Measles, Mumps viruses, Moloney leukemia viruses, Myxovirus, Newcastle Disease Viruses, Reoviruses, Rhabdovirus, Vesticular Stomatic Viruses, and Vaccinia Viruses (VV). It may also be chimeric viruses with increased oncolytic potential such as an adeno-parvovirus chimera in U.S. Pat. No. 9,441,246. The oncolytic viruses may be modified to be less susceptible to immune suppression while more specifically targeting particular classes of cancer cells, or be modified to insert and express cancer-suppressing transgenes. Modifications to the oncolytic virus may also be made to improve replicative potential of the virus, increase viral titers, and/or enhance the range cancer cells that can be infected by the virus. Examples of modified oncolytic viruses that may be used as payload include U.S. Patent NO.: U.S. Pat. No. 8,282,917B2, International Patent Publication NO.: WO2011070440, WO2004078206A1, WO2016144564, WO2016119052, WO2009111892; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present invention may be one or more coat proteins of the viruses, inserted transgenes, other factors that can increase intratumoral virus replication and the combinations.


In some instance, two or more oncolytic viruses may also be used as payload within the same SRE or in two or more SREs to achieve synergistic killing of target cancer cells as described in International Patent Publication NO.: WO2010020056 (the contents of which are incorporated herein by reference in their entirety).


14. Genomic Editing Systems


In some embodiments, payloads of the present invention may be components of gene editing systems including a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), CRISPR enzyme (Cas9), CRISPR-Cas9 or CRISPR system and CRISPR-CAS9 complex. It may also be other genomic editing systems, such as Zinc finger nucleases, TALEN (Transcription activator-like effector-based nucleases) and meganucleases.


Additional Features


The effector module of the present invention may further comprise a signal sequence which regulates the distribution of the payload, a cleavage and/or processing feature which facilitate cleavage of the payload from the effector module construct, a targeting and/or penetrating signal which can regulate the cellular localization of the effector module, and/or one or more linker sequences which link different components (e.g. a DD and a payload) of the effector module. In some embodiments, the effector module may further comprise of one or more additional features such as linker sequences (with specific sequences and lengths), cleavage sites, regulatory elements (that regulate expression of the protein of interest such as microRNA targeting sites), signal sequences that lead the effector module to a specific cellular or subcellular location, penetrating sequences, or tags and biomarkers for tracking the effector module.


1. Signal Sequences


In addition to the SRE (e.g., DD) and payload region, effector modules of the invention may further comprise one or more signal sequences. Signal sequences (sometimes referred to as signal peptides, targeting signals, target peptides, localization sequences, transit peptides, leader sequences or leader peptides) direct proteins (e.g., the effector module of the present invention) to their designated cellular and/or extracellular locations. Protein signal sequences play a central role in the targeting and translocation of nearly all secreted proteins and many integral membrane proteins.


A signal sequence is a short (5-30 amino acids long) peptide present at the N-terminus of the majority of newly synthesized proteins that are destined towards a particular location. Signal sequences can be recognized by signal recognition particles (SRPs) and cleaved using type I and type II signal peptide peptidases. Signal sequences derived from human proteins can be incorporated as a regulatory module of the effector module to direct the effector module to a particular cellular and/or extracellular location. These signal sequences are experimentally verified and can be cleaved (Zhang et al., Protein Sci. 2004, 13:2819-2824).


In some embodiments, a signal sequence may be, although not necessarily, located at the N-terminus or C-terminus of the effector module, and may be, although not necessarily, cleaved off the desired effector module to yield a “mature” payload, i.e., an immunotherapeutic agent as discussed herein.


In some examples, a signal sequence may be a secreted signal sequence derived from a naturally secreted protein, and its variant thereof. In some instances, the secreted signal sequences may be cytokine signal sequences such as, but not limited to, IL2 signal sequence comprising amino acid of SEQ ID NO. 261 (encoded by the nucleotide sequence of SEQ ID NO. 262-265), and/or p40 signal sequence comprising the amino acid sequence of SEQ ID NO. 266 (encoded by the nucleotide sequence of SEQ ID NO. 267-275).


In some instances, signal sequences directing the payload to the surface membrane of the target cell may be used. Expression of the payload on the surface of the target cell may be useful to limit the diffusion of the payload to non-target in vivo environments, thereby potentially improving the safety profile of the payloads. Additionally, the membrane presentation of the payload may allow for physiologically and qualitative signaling as well as stabilization and recycling of the payload for a longer half-life. Membrane sequences may be the endogenous signal sequence of the N terminal component of the payload. Optionally, it may be desirable to exchange this sequence for a different signal sequence. Signal sequences may be selected based on their compatibility with the secretory pathway of the cell type of interest so that the payload is presented on the surface of the T cell. In some embodiments, the signal sequence may be IgE signal sequence comprising amino acid of SEQ ID NO. 276 (encoded by the nucleotide sequence of SEQ ID NO. 277) or CD8a signal sequence comprising amino acid SEQ ID NO. 278 (encoded by the nucleotide sequence of SEQ ID NO. 279-283).


Other examples of signal sequences include, a variant may be a modified signal sequence discussed in U.S. Pat. Nos. 8,148,494, 8,258,102, 9,133,265, 9,279,007, and U.S. patent application publication NO. 2007/0141666; and International patent application publication NO. WO1993/018181; the contents of each of which are incorporated herein by reference in their entirety. In other examples, a signal sequence may be a heterogeneous signal sequence from other organisms such as virus, yeast and bacteria, which can direct an effector module to a particular cellular site, such as a nucleus (e.g., EP 1209450). Other examples may include Aspartic Protease (NSP24) signal sequences from Trichoderma that can increase secretion of fused protein such as enzymes (e.g., U.S. Pat. No. 8,093,016 to Cervin and Kim), bacterial lipoprotein signal sequences (e.g., PCT application publication NO. 1991/09952 to Lau and Rioux), E. coli enterotoxin II signal peptides (e.g., U.S. Pat. No. 6,605,697 to Kwon et al.), E. coli secretion signal sequence (e.g., U.S. patent publication NO. 2016/090404 to Malley et al.), a lipase signal sequence from a methylotrophic yeast (e.g., U.S. Pat. No. 8,975,041), and signal peptides for DNases derived from Coryneform bacteria (e.g., U.S. Pat. No. 4,965,197); the contents of each of which are incorporated herein by reference in their entirety.


Signal sequences may also include nuclear localization signals (NLSs), nuclear export signals (NESs), polarized cell tubulo-vesicular structure localization signals (See, e.g., U.S. Pat. No. 8,993,742; Cour et al., Nucleic Acids Res. 2003, 31(1): 393-396; the contents of each of which are incorporated herein by reference in their entirety), extracellular localization signals, signals to subcellular locations (e.g. lysosome, endoplasmic reticulum, golgi, mitochondria, plasma membrane and peroxisomes, etc.) (See, e.g., U.S. Pat. No. 7,396,811; and Negi et al., Database, 2015, 1-7; the contents of each of which are incorporated herein by reference in their entirety).


2. Cleavage Sites


In some embodiments, the effector module comprises a cleavage and/or processing feature. The effector module of the present invention may include at least one protein cleavage signal/site. The protein cleavage signal/site may be located at the N-terminus, the C-terminus, at any space between the N- and the C-termini such as, but not limited to, half-way between the N- and C-termini, between the N-terminus and the half-way point, between the half-way point and the C-terminus, and combinations thereof.


The effector module may include one or more cleavage signal(s)/site(s) of any proteinases. The proteinases may be a serine proteinase, a cysteine proteinase, an endopeptidase, a dipeptidase, a metalloproteinase, a glutamic proteinase, a threonine proteinase and an aspartic proteinase. In some aspects, the cleavage site may be a signal sequence of furin, actinidin, calpain-1, carboxypeptidase A, carboxypeptidase P, carboxypeptidase Y, caspase-1, caspase-2, caspase-3, caspase-4, caspase-5, caspase-6, caspase-7, caspase-8, caspase-9, caspase-10, cathepsin B, cathepsin C, cathepsin G, cathepsin H, cathepsin K, cathepsin L, cathepsin S, cathepsin V, clostripain, chymase, chymotrypsin, elastase, endoproteinase, enterokinase, factor Xa, formic acid, granzyme B, Matrix metallopeptidase-2, Matrix metallopeptidase-3, pepsin, proteinase K, SUMO protease, subtilisin, TEV protease, thermolysin, thrombin, trypsin and TAGZyme.


In one embodiment, the cleavage site is a furin cleavage site comprising the amino acid sequence SARNRQKRS (SEQ ID NO. 284, encoded by the nucleotide sequence of SEQ ID NO. 285), or a revised furin cleavage site comprising the amino acid sequence ARNRQKRS (SEQ ID NO. 286, encoded by the nucleotide sequence of SEQ ID NO. 287), or a modified furin site comprising the amino acid sequence ESRRVRRNKRSK (SEQ ID NO. 288, encoded by the nucleotide sequence of SEQ ID NO. 289-291).


3. Protein Tags


In some embodiments, the effector module of the invention may comprise a protein tag. The protein tag may be used for detecting and monitoring the process of the effector module. The effector module may include one or more tags such as an epitope tag (e.g., a FLAG or hemagglutinin (HA) tag). A large number of protein tags may be used for the present effector modules. They include, but are not limited to, self-labeling polypeptide tags (e.g., haloalkane dehalogenase (halotag2 or halotag7), ACP tag, clip tag, MCP tag, snap tag), epitope tags (e.g., FLAG, HA, His, and Myc), fluorescent tags (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), and its variants), bioluminescent tags (e.g. luciferase and its variants), affinity tags (e.g., maltose-binding protein (MBP) tag, glutathione-S-transferase (GST) tag), immunogenic affinity tags (e.g., protein A/G, IRS, AU1, AU5, glu-glu, KT3, S-tag, HSV, VSV-G, Xpress and V5), and other tags (e.g., biotin (small molecule), StrepTag (StrepII), SBP, biotin carboxyl carrier protein (BCCP), eXact, CBP, CYD, HPC, CBD intein-chitin binding domain, Trx, NorpA, and NusA.


In other embodiments, a tag may also be selected from those disclosed in U.S. Pat. Nos. 8,999,897; 8,357,511; 7,094,568; 5,011,912; 4,851,341; and 4,703,004; U.S. patent application publication NOs.: 2013/115635 and 2013/012687; and International application publication NO.: WO2013/091661; the contents of each of which are incorporated herein by reference in their entirety.


In some aspects, a multiplicity of protein tags, either the same or different tags, may be used; each of the tags may be located at the same N- or C-terminus, whereas in other cases these tags may be located at each terminus.


4. Targeting Peptides


In some embodiments, the effector module of the invention may further comprise a targeting and/or penetrating peptide. Small targeting and/or penetrating peptides that selectively recognize cell surface markers (e.g. receptors, trans-membrane proteins, and extra-cellular matrix molecules) can be employed to target the effector module to the desired organs, tissues or cells. Short peptides (5-50 amino acid residues) synthesized in vitro and naturally occurring peptides, or analogs, variants, derivatives thereof, may be incorporated into the effector module for homing the effector module to the desired organs, tissues and cells, and/or subcellular locations inside the cells.


In some embodiments, a targeting sequence and/or penetrating peptide may be included in the effector module to drive the effector module to a target organ, or a tissue, or a cell (e.g., a cancer cell). In other embodiments, a targeting and/or penetrating peptide may direct the effector module to a specific subcellular location inside a cell.


A targeting peptide has any number of amino acids from about 6 to about 30 inclusive. The peptide may have 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids. Generally, a targeting peptide may have 25 or fewer amino acids, for example, 20 or fewer, for example 15 or fewer.


Exemplary targeting peptides may include, but are not limited to, those disclosed in the art, e.g., U.S. Pat. Nos. 9,206,231, 9,110,059, 8,706,219; and 8,772,449, and U.S. application publication NOs. 2016/089447. 2016/060296. 2016/060314. 2016/060312. 2016/060311. 2016/009772. 2016/002613. 2015/314011 and 2015/166621. and International application publication NOs. WO2015/179691 and WO2015/183044; the contents of each of which are incorporated herein by reference in their entirety.


5. Linkers


In some embodiments, the effector module of the invention may further comprise a linker sequence. The linker region serves primarily as a spacer between two or more polypeptides within the effector module. A “linker” or “spacer”, as used herein, refers to a molecule or group of molecules that connects two molecules, or two parts of a molecule such as two domains of a recombinant protein.


In some embodiments, “Linker” (L) or “linker domain” or “linker region” or “linker module” or “peptide linker” as used herein refers to an oligo- or polypeptide region of from about 1 to 100 amino acids in length, which links together any of the domains/regions of the effector module (also called peptide linker). The peptide linker may be 1-40 amino acids in length, or 2-30 amino acids in length, or 20-80 amino acids in length, or 50-100 amino acids in length. Linker length may also be optimized depending on the type of payload utilized and based on the crystal structure of the payload. In some instances, a shorter linker length may be preferably selected. In some aspects, the peptide linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Serine (S), Cysteine (C), Threonine (T), Methionine (M), Proline (P), Phenylalanine (F), Tyrosine (Y), Tryptophan (W), Histidine (H), Lysine (K), Arginine (R), Aspartate (D), Glutamic acid (E), Asparagine (N), and Glutamine (Q). One or more of these amino acids may be glycosylated, as is understood by those in the art. In some aspects, amino acids of a peptide linker may be selected from Alanine (A), Glycine (G), Proline (P), Asparagine (R), Serine (S), Glutamine (Q) and Lysine (K).


In one example, an artificially designed peptide linker may preferably be composed of a polymer of flexible residues like Glycine (G) and Serine (S) so that the adjacent protein domains are free to move relative to one another. Longer linkers may be used when it is desirable to ensure that two adjacent domains do not interfere with one another. The choice of a particular linker sequence may concern if it affects biological activity, stability, folding, targeting and/or pharmacokinetic features of the fusion construct. Examples of peptide linkers include, but are not limited to: SG, MH, GGSG (SEQ ID NO. 292, encoded by the nucleotide sequence of SEQ ID NO. 293; GGSGG (SEQ ID NO. 294), encoded by the nucleotide sequence of SEQ ID NOs. 295-299; GGSGGG (SEQ ID NO. 78), encoded by the nucleotide sequence of SEQ ID NO. 93 and 300; SGGGS (SEQ ID NO. 301), encoded by the nucleotide sequence of SEQ ID NO. 302-303; GGSGGGSGG (SEQ ID NO. 77), encoded by the nucleotide sequence of SEQ ID NO. 92; GGGGG (SEQ ID NO. 304), GGGGS (SEQ ID NO. 305) or (GGGGS)n (n=2 (SEQ ID NO. 306), 3 (SEQ ID NO. 307; encoded by SEQ ID NO. 308-313), 4 (SEQ ID NO. 314), 5 (SEQ ID NO. 315), or 6 (SEQ ID NO. 316)), SSSSG (SEQ ID NO. 317) or (SSSSG)n (n=2 (SEQ ID NO. 318), 3 (SEQ ID NO. 319), 4 (SEQ ID NO. 320), 5 (SEQ ID NO. 321), or 6 (SEQ ID NO. 322)), SGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO. 323), encoded by the nucleotide sequence of SEQ ID NO. 324; EFSTEF (SEQ ID NO. 325), encoded by the nucleotide sequence of SEQ ID NOs. 326-327; GKSSGSGSESKS (SEQ ID NO. 328), GGSTSGSGKSSEGKG (SEQ ID NO. 329), GSTSGSGKSSSEGSGSTKG (SEQ ID NO. 330), GSTSGSGKPGSGEGSTKG (SEQ ID NO. 331), VDYPYDVPDYALD (SEQ ID NO. 332), encoded by the nucleotide sequence of SEQ ID NO. 333; or EGKSSGSGSESKEF (SEQ ID NO. 334); or GSGSGS (SEQ ID NO. 8330), encoded by the nucleotide sequence of SEQ ID NO. 8347; or GSGSGSGS (SEQ ID NO. 8331), encoded by the nucleotide sequence of SEQ ID NO. 8348; or GSGSGGGSGS (SEQ ID NO. 8332), encoded by the nucleotide sequence of SEQ ID NO. 8349; SGSGSGS linker (SEQ ID NO: 8382), or SG linker, encoded by AGTGGT; or an LD Linker comprising Lysine Aspartic acid, encoded by CTAGAT. Linkers may also be DNA restriction enzyme recognition sites or modifications thereof such as flexible GS or G/S rich linker; BamH1 Site encoded by GGATCC; flexible G/S rich linker or BamH1 Site; SR/Xba I site, encoded by TCTAGA; or a GSG linker (BamH1-Gly) linker, encoded by GGATCCGGA.


In other examples, a peptide linker may be made up of a majority of amino acids that are sterically unhindered, such as Glycine (G) and Alanine (A). Exemplary linkers are polyglycines (such as (G)4 (SEQ ID NO: 8378), (G)5 (SEQ ID NO: 8379), (G)8 (SEQ ID NO: 8380)), poly(GA), and polyalanines. The linkers described herein are exemplary, and linkers that are much longer and which include other residues are contemplated by the present invention.


A linker sequence may be a natural linker derived from a multi-domain protein. A natural linker is a short peptide sequence that separates two different domains or motifs within a protein.


In some aspects, linkers may be flexible or rigid. In other aspects, linkers may be cleavable or non-cleavable. As used herein, the terms “cleavable linker domain or region” or “cleavable peptide linker” are used interchangeably. In some embodiments, the linker sequence may be cleaved enzymatically and/or chemically. Examples of enzymes (e.g., proteinase/peptidase) useful for cleaving the peptide linker include, but are not limited, to Arg-C proteinase, Asp-N endopeptidase, chymotrypsin, clostripain, enterokinase, Factor Xa, glutamyl endopeptidase, Granzyme B, Achromobacter proteinase I, pepsin, proline endopeptidase, proteinase K, Staphylococcal peptidase I, thermolysin, thrombin, trypsin, and members of the Caspase family of proteolytic enzymes (e.g. Caspases 1-10). Chemical sensitive cleavage sites may also be included in a linker sequence. Examples of chemical cleavage reagents include, but are not limited to, cyanogen bromide, which cleaves methionine residues; N-chloro succinimide, iodobenzoic acid or BNPS-skatole [2-(2-nitrophenylsulfenyl)-3-methylindole], which cleaves tryptophan residues; dilute acids, which cleave at aspartyl-prolyl bonds; and e aspartic acid-proline acid cleavable recognition sites (i.e., a cleavable peptide linker comprising one or more D-P dipeptide moieties). The fusion module may include multiple regions encoding peptides of interest separated by one or more cleavable peptide linkers.


In other embodiments, a cleavable linker may be a “self-cleaving” linker peptide, such as 2A linkers (for example T2A), 2A-like linkers or functional equivalents thereof and combinations thereof. In some embodiments, the linkers include the picornaviral 2A-like linker, CHYSEL sequences of porcine teschovirus (P2A), Thosea asigna virus (T2A) or combinations, variants and functional equivalents thereof. In some embodiments, the biocircuits of the present invention may include 2A peptides. The 2A peptide is a sequence of about 20 amino acid residues from a virus that is recognized by a protease (2A peptidases) endogenous to the cell. The 2A peptide was identified among picornaviruses, a typical example of which is the Foot- and Mouth disease virus (Robertson B H, et. al., J Virol 1985, 54:651-660). 2A-like sequences have also been found in Picornaviridae like equine rhinitis A virus, as well as unrelated viruses such as porcine teschovirus-1 and the insect Thosea asigna virus (TaV). In such viruses, multiple proteins are derived from a large polyprotein encoded by an open reading frame. The 2A peptide mediates the co-translational cleavage of this polyprotein at a single site that forms the junction between the virus capsid and replication polyprotein domains. The 2A sequences contain the consensus motif D-V/I-E-X-N-P-G-P (SEQ ID NO: 8381). These sequences are thought to act co-translationally, preventing the formation of a normal peptide bond between the glycine and last proline, resulting in the ribosome skipping of the next codon (Donnelly M L et al. (2001). J Gen Virol, 82:1013-1025). After cleavage, the short peptide remains fused to the C-terminus of the protein upstream of the cleavage site, while the proline is added to the N-terminus of the protein downstream of the cleavage site. Of the 2A peptides identified, four have been widely used namely FMDV 2A (abbreviated herein as F2A); equine rhinitis A virus (ERAV) 2A (E2A); porcine teschovirus-12A (P2A) and Thoseaasigna virus 2A (T2A). In some embodiments, the 2A peptide sequences useful in the present invention are selected from SEQ ID NO. 8-11 of International Patent Publication WO2010042490, the contents of which are incorporated by reference in its entirety. In some embodiments, the cleavage site may be a P2A cleavable peptide (SEQ ID NO. 8239), encoded by the nucleotide sequence of SEQ ID NO. 8269.


Other linkers will be apparent to those skilled in the art and may be used in connection with alternate embodiments of the invention.


The linkers of the present invention may also be non-peptide linkers. For example, alkyl linkers such as —NH—(CH2) α-C(O)—, wherein a=2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1-C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc.


In some aspects, the linker may be an artificial linker from U.S. Pat. Nos. 4,946,778, 5,525,491, 5,856,456, and International patent publication NO. WO2012/083424; the contents of each of which are incorporated herein by reference in their entirety.


6. Embedded Stimulus, Signals and Other Regulatory Features


microRNAs (or miRNA) are 19-25 nucleotide long noncoding RNAs that bind to the 3′UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. The polynucleotides of the invention may comprise one or more microRNA target sequences, microRNA sequences, or microRNA seeds. Such sequences may correspond to any known microRNA such as those taught in U.S. Publication No. US2005/0261218 and U.S. Publication No. US2005/0059005, the contents of which are incorporated herein by reference in their entirety. As a non-limiting embodiment, known microRNAs, their sequences and their binding site sequences in the human genome are listed Table 14 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


A microRNA sequence comprises a “seed” region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence. A microRNA seed may comprise positions 2-8 or 2-7 of the mature microRNA. In some embodiments, a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. In some embodiments, a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. See for example, Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P; Mol Cell. 2007 Jul. 6; 27(1):91-105. The bases of the microRNA seed have complete complementarity with the target sequence. By engineering microRNA target sequences into the polynucleotides encoding the biocircuit components, effector modules, SREs or payloads of the invention one can target the molecule for degradation or reduced translation, provided the microRNA in question is available. This process will reduce the hazard of off target effects upon nucleic acid molecule delivery.


Identification of microRNA, microRNA target regions, and their expression patterns and role in biology have been reported (Bonauer et al., Curr Drug Targets 2010 11:943-949; Anand and Cheresh Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 Dec. 20. doi: 10.1038/leu2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; Gentner and Naldini, Tissue Antigens. 2012 80:393-403 and all references therein; each of which is herein incorporated by reference in its entirety).


For example, if the polynucleotide is not intended to be delivered to the liver but ends up there, then miR-122, a microRNA abundant in liver, can inhibit the expression of the polynucleotide if one or multiple target sites of miR-122 are engineered into the polynucleotide. Introduction of one or multiple binding sites for different microRNA can be engineered to further decrease the longevity, stability, and protein translation of a polynucleotide hence providing an additional layer of tenability beyond the stimulus selection, SRE design and payload variation.


As used herein, the term “microRNA site” refers to a microRNA target site or a microRNA recognition site, or any nucleotide sequence to which a microRNA binds or associates. It should be understood that “binding” may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the target sequence at or adjacent to the microRNA site.


Conversely, for the purposes of the polynucleotides of the present invention, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-122 binding sites may be removed to improve protein expression in the liver.


Regulation of expression in multiple tissues can be accomplished through introduction or removal or one or several microRNA binding sites.


Specifically, microRNAs are known to be differentially expressed in immune cells (also called hematopoietic cells), such as antigen presenting cells (APCs) (e.g. dendritic cells and macrophages), macrophages, monocytes, B lymphocytes, T lymphocytes, granulocytes, natural killer cells, etc. Immune cell specific microRNAs are involved in immunogenicity, autoimmunity, the immune-response to infection, inflammation, as well as unwanted immune response after gene therapy and tissue/organ transplantation. Immune cells specific microRNAs also regulate many aspects of development, proliferation, differentiation and apoptosis of hematopoietic cells (immune cells). For example, miR-142 and miR-146 are exclusively expressed in the immune cells, particularly abundant in myeloid dendritic cells. Introducing the miR-142 binding site into the 3′-UTR of a polypeptide of the present invention can selectively suppress the gene expression in the antigen presenting cells through miR-142 mediated mRNA degradation, limiting antigen presentation in professional APCs (e.g. dendritic cells) and thereby preventing antigen-mediated immune response after gene delivery (see, Annoni A et al., blood, 2009, 114, 5152-5161, the content of which is herein incorporated by reference in its entirety.)


In one embodiment, microRNAs binding sites that are known to be expressed in immune cells, in particular, the antigen presenting cells, can be engineered into the polynucleotides to suppress the expression of the polynucleotide in APCs through microRNA mediated RNA degradation, subduing the antigen-mediated immune response, while the expression of the polynucleotide is maintained in non-immune cells where the immune cell specific microRNAs are not expressed.


Many microRNA expression studies have been conducted, and are described in the art, to profile the differential expression of microRNAs in various cancer cells/tissues and other diseases. Some microRNAs are abnormally over-expressed in certain cancer cells and others are under-expressed. For example, microRNAs are differentially expressed in cancer cells (WO2008/154098, US2013/0059015, US2013/0042333, WO2011/157294); cancer stem cells (US2012/0053224); pancreatic cancers and diseases (US2009/0131348, US2011/0171646, US2010/0286232, U.S. Pat. No. 8,389,210); asthma and inflammation (U.S. Pat. No. 8,415,096); prostate cancer (US2013/0053264); hepatocellular carcinoma (WO2012/151212, US2012/0329672, WO2008/054828, U.S. Pat. No. 8,252,538); lung cancer cells (WO2011/076143, WO2013/033640, WO2009/070653, US2010/0323357); cutaneous T cell lymphoma (WO2013/011378); colorectal cancer cells (WO2011/0281756, WO2011/076142); cancer positive lymph nodes (WO2009/100430, US2009/0263803); nasopharyngeal carcinoma (EP2112235); chronic obstructive pulmonary disease (US2012/0264626, US2013/0053263); thyroid cancer (WO2013/066678); ovarian cancer cells (US2012/0309645, WO2011/095623); breast cancer cells (WO2008/154098, WO2007/081740, US2012/0214699), leukemia and lymphoma (WO2008/073915, US2009/0092974, US2012/0316081, US2012/0283310, WO2010/018563, the content of each of which is incorporated herein by reference in their entirety).


In one embodiment, microRNA may be used as described herein in support of the creation of tunable biocircuits.


In some embodiments, effector modules may be designed to encode (as a DNA or RNA or mRNA) one or more payloads, SREs and/or regulatory sequence such as a microRNA or microRNA binding site. In some embodiments, any of the encoded payloads or SREs may be stabilized or de-stabilized by mutation and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.


Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present invention embraces biocircuits which are multifactorial in their tenability.


In some embodiments, compositions of the invention may include optional proteasome adaptors. As used herein, the term “proteasome adaptor” refers to any nucleotide/amino acid sequence that targets the appended payload for degradation. In some aspects, the adaptors target the payload for degradation directly thereby circumventing the need for ubiquitination reactions. Proteasome adaptors may be used in conjunction with destabilizing domains to reduce the basal expression of the payload. Exemplary proteasome adaptors include the UbL domain of Rad23 or hHR23b, HPV E7 which binds to both the target protein Rb and the S4 subunit of the proteasome with high affinity, which allows direct proteasome targeting, bypassing the ubiquitination machinery; the protein gankyrin which binds to Rb and the proteasome subunit S6.


Such biocircuits may be engineered to contain one, two, three, four or more tuned features.


Polynucleotides


The present invention provides polynucleotides encoding novel hPDE5 DDs, effector modules comprising payloads and associated DDs, biocircuit systems comprising DDs and effector modules, and other components of the present invention.


The invention provides isolated biocircuit polypeptides, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing; vectors comprising polynucleotides of the invention; and cells expressing polypeptides, polynucleotides and vectors of the invention. The polypeptides, polynucleotides, viral vectors and cells are useful for inducing anti-tumor immune responses in a subject.


The term “polynucleotide” or “nucleic acid molecule” in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides, e.g., linked nucleosides. These polymers are often referred to as polynucleotides. Exemplary nucleic acids or polynucleotides of the invention include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization) or hybrids thereof.


In some embodiments, polynucleotides of the invention may be a messenger RNA (mRNA) or any nucleic acid molecule and may or may not be chemically modified. In one aspect, the nucleic acid molecule is a mRNA. As used herein, the term “messenger RNA (mRNA)” refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.


Traditionally, the basic components of an mRNA molecule include at least a coding region, a 5′UTR, a 3′UTR, a 5′ cap and a poly-A tail. Building on this wild type modular structure, the present invention expands the scope of functionality of traditional mRNA molecules by providing payload constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the polynucleotide, for example tenability of function. As used herein, a “structural” feature or modification is one in which two or more linked nucleosides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide without significant chemical modification to the nucleosides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications. However, structural modifications will result in a different sequence of nucleotides. For example, the polynucleotide “ATCG” may be chemically modified to “AT-5 meC-G”. The same polynucleotide may be structurally modified from “ATCG” to “ATCCCG”. Here, the dinucleotide “CC” has been inserted, resulting in a structural modification to the polynucleotide.


In some embodiments, polynucleotides of the present invention may harbor 5′UTR sequences which play a role in translation initiation. 5′UTR sequences may include features such as Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of genes, Kozak sequences have the consensus XCCR (A/G) CCAUG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG) and X is any nucleotide. In one embodiment, the Kozak sequence is ACCGCC. By engineering the features that are typically found in abundantly expressed genes of target cells or tissues, the stability and protein production of the polynucleotides of the invention can be enhanced.


Further provided are polynucleotides, which may contain an internal ribosome entry site (IRES) which play an important role in initiating protein synthesis in the absence of 5′ cap structure in the polynucleotide. An IRES may act as the sole ribosome binding site, or may serve as one of the multiple binding sites. Polynucleotides of the invention containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes giving rise to bicistronic and/or multicistronic nucleic acid molecules.


In some embodiments, polynucleotides encoding biocircuits, effector modules, DDs and payloads may include from about 30 to about 100,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 3,000, from 1,000 to 5,000, from 1,000 to 7,000, from 1,000 to 10,000, from 1,000 to 25,000, from 1,000 to 50,000, from 1,000 to 70,000, from 1,000 to 100,000, from 1,500 to 3,000, from 1,500 to 5,000, from 1,500 to 7,000, from 1,500 to 10,000, from 1,500 to 25,000, from 1,500 to 50,000, from 1,500 to 70,000, from 1,500 to 100,000, from 2,000 to 3,000, from 2,000 to 5,000, from 2,000 to 7,000, from 2,000 to 10,000, from 2,000 to 25,000, from 2,000 to 50,000, from 2,000 to 70,000, and from 2,000 to 100,000 nucleotides). In some aspects, polynucleotides of the invention may include more than 10,000 nucleotides.


Regions of the polynucleotides which encode certain features such as cleavage sites, linkers, trafficking signals, tags or other features may range independently from 10-1,000 nucleotides in length (e.g., greater than 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).


In some embodiments, polynucleotides of the present invention may further comprise embedded regulatory moieties such as microRNA binding sites within the 3′UTR of nucleic acid molecules which when bind to microRNA molecules, down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. Conversely, for the purposes of the polynucleotides of the present invention, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-142 and miR-146 binding sites may be removed to improve protein expression in the immune cells. In some embodiments, any of the encoded payloads may be may be regulated by an SRE and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.


In some embodiments, polynucleotides of the present invention may encode fragments, variants, derivatives of polypeptides of the inventions. In some aspects, the variant sequence may keep the same or a similar activity. Alternatively, the variant may have an altered activity (e.g., increased or decreased) relative to the start sequence. Generally, variants of a particular polynucleotide or polypeptide of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25:3389-3402.)


In some embodiments, polynucleotides of the present invention may be modified. As used herein, the terms “modified”, or as appropriate, “modification” refers to chemical modification with respect to A, G, U (T in DNA) or C nucleotides. Modifications may be on the nucleoside base and/or sugar portion of the nucleosides which comprise the polynucleotide. In some embodiments, multiple modifications are included in the modified nucleic acid or in one or more individual nucleoside or nucleotide. For example, modifications to a nucleoside may include one or more modifications to the nucleobase and the sugar. Modifications to the polynucleotides of the present invention may include any of those taught in, for example, International Publication NO. WO2013/052523, the contents of which are incorporated herein by reference in its entirety.


As described herein “nucleoside” is defined as a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”). As described herein, “nucleotide” is defined as a nucleoside including a phosphate group.


In some embodiments, the modification may be on the internucleoside linkage (e.g., phosphate backbone). Herein, in the context of the polynucleotide backbone, the phrases “phosphate” and “phosphodiester” are used interchangeably. Backbone phosphate groups can be modified by replacing one or more of the oxygen atoms with a different substituent. Further, the modified nucleosides and nucleotides can include the wholesale replacement of an unmodified phosphate moiety with another internucleoside linkage. Examples of modified phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can also be modified by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates). Other modifications which may be used are taught in, for example, International Application NO.: WO2013/052523, the contents of which are incorporated herein by reference in their entirety.


Chemical modifications and/or substitution of the nucleotides or nucleobases of the polynucleotides of the invention which are useful in the present invention include any modified substitutes known in the art, for example, (±)1-(2-Hydroxypropyl)pseudouridine TP, (2R)-1-(2-Hydroxypropyl)pseudouridine TP, 1-(4-Methoxy-phenyl)pseudo-UTP, 2′-O-dimethyladenosine, 1,2′-O-dimethylguanosine, 1,2′-O-dimethylinosine, 1-Hexyl-pseudo-UTP, 1-Homoallylpseudouridine TP, 1-Hydroxymethylpseudouridine TP, 1-iso-propyl-pseudo-UTP, 1-Me-2-thio-pseudo-UTP, 1-Me-4-thio-pseudo-UTP, 1-Me-alpha-thio-pseudo-UTP, 1-Me-GTP, 2′-Amino-2′-deoxy-ATP, 2′-Amino-2′-deoxy-CTP, 2′-Amino-2′-deoxy-GTP, 2′-Amino-2′-deoxy-UTP, 2′-Azido-2′-deoxy-ATP, tubercidine, undermodified hydroxywybutosine, uridine 5-oxyacetic acid, uridine 5-oxyacetic acid methyl ester, wybutosine, wyosine, xanthine, Xanthosine-5′-TP, xylo-adenosine, zebularine, α-thio-adenosine, α-thio-cytidine, α-thio-guanosine, and/or α-thio-uridine.


Polynucleotides of the present invention may comprise one or more of the modifications taught herein. Different sugar modifications, base modifications, nucleotide modifications, and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in the polynucleotide of the invention. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a polynucleotide such that the function of the polynucleotide is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification. The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e. any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%).


In some embodiments, one or more codons of the polynucleotides of the present invention may be replaced with other codons encoding the native amino acid sequence to tune the expression of the SREs, through a process referred to as codon selection. Since mRNA codon, and tRNA anticodon pools tend to vary among organisms, cell types, sub cellular locations and over time, the codon selection described herein is a spatiotemporal (ST) codon selection.


In some embodiments of the invention, certain polynucleotide features may be codon optimized. Codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cell by replacing at least 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 or more codons of the native sequence with codons that are most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Codon usage may be measured using the Codon Adaptation Index (CAI) which measures the deviation of a coding polynucleotide sequence from a reference gene set. Codon usage tables are available at the Codon Usage Database (www.kazusa.or.jp/codon/) and the CAI can be calculated by EMBOSS CAI program (emboss.sourceforge.net/). Codon optimization methods are known in the art and may be useful in efforts to achieve one or more of several goals. These goals include to match codon frequencies in target and host organisms to ensure proper folding, bias nucleotide content to alter stability or reduce secondary structures, minimize tandem repeat codons or base runs that may impair gene construction or expression, customize transcriptional and translational control regions, insert or remove protein signaling sequences, remove/add post translation modification sites in encoded protein (e.g. glycosylation sites), add, remove or shuffle protein domains, insert or delete restriction sites, modify ribosome binding sites and degradation sites, to adjust translational rates to allow the various domains of the protein to fold properly, or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art, and non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.), OptimumGene (GenScript, Piscataway, N.J.), algorithms such as but not limited to, DNAWorks v3.2.3, and/or proprietary methods. In one embodiment, a polynucleotide sequence or portion thereof is codon optimized using optimization algorithms. Codon options for each amino acid are well-known in the art as are various species table for optimizing for expression in that particular species.


In some embodiments of the invention, certain polynucleotide features may be codon optimized. For example, a preferred region for codon optimization may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon optimization of the payload encoding region or open reading frame (ORF).


After optimization (if desired), the polynucleotide components are reconstituted and transformed into a vector such as, but not limited to, plasmids, viruses, cosmids, and artificial chromosomes.


Spatiotemporal codon selection may impact the expression of the polynucleotides of the invention, since codon composition determines the rate of translation of the mRNA species and its stability. For example, tRNA anticodons to optimized codons are abundant, and thus translation may be enhanced. In contrast, tRNA anticodons to less common codons are fewer and thus translation may proceed at a slower rate. Presnyak et al. have shown that the stability of an mRNA species is dependent on the codon content, and higher stability and thus higher protein expression may be achieved by utilizing optimized codons (Presnyak et al. (2015) Cell 160, 1111-1124; the contents of which are incorporated herein by reference in their entirety). Thus, in some embodiments, ST codon selection may include the selection of optimized codons to enhance the expression of the SRES, effector modules and biocircuits of the invention. In other embodiments, spatiotemporal codon selection may involve the selection of codons that are less commonly used in the genes of the host cell to decrease the expression of the compositions of the invention. The ratio of optimized codons to codons less commonly used in the genes of the host cell may also be varied to tune expression.


In some embodiments, certain regions of the polynucleotide may be modified using codon selection methods. For example, a preferred region for codon selection may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon selection of the payload encoding region or open reading frame (ORF).


The stop codon of the polynucleotides of the present invention may be modified to include sequences and motifs to alter the expression levels of the SREs, payloads and effector modules of the present invention. Such sequences may be incorporated to induce stop codon readthrough, wherein the stop codon may specify amino acids e.g. selenocysteine or pyrrolysine. In other instances, stop codons may be skipped altogether to resume translation through an alternate open reading frame. Stop codon read through may be utilized to tune the expression of components of the effector modules at a specific ratio (e.g. as dictated by the stop codon context). Examples of preferred stop codon motifs include UGAN, UAAN, and UAGN, where N is either C or U.


Polynucleotide modifications and manipulations can be accomplished by methods known in the art such as, but not limited to, site directed mutagenesis and recombinant technology. The resulting modified molecules may then be tested for activity using in vitro or in vivo assays such as those described herein or any other suitable screening assay known in the art.


In some embodiments, polynucleotides of the invention may comprise two or more effector module sequences, or two or more payload sequences, which are in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times. In these patterns, each letter, A, B, or C represent a different effector module component.


In yet another embodiment, polynucleotides of the invention may comprise two or more effector module component sequences with each component having one or more SRE sequences (DD sequences), or two or more payload sequences. As a non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times in each of the regions. As another non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times across the entire polynucleotide. In these patterns, each letter, A, B, or C represent a different sequence or component.


According to the present invention, polynucleotides encoding distinct biocircuits, effector modules, SREs and payload constructs may be linked together through the 3′-end using nucleotides which are modified at the 3′-terminus. Chemical conjugation may be used to control the stoichiometry of delivery into cells. Polynucleotides can be designed to be conjugated to other polynucleotides, dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases, proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell, hormones and hormone receptors, non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, or a drug. As non-limiting examples, they may be conjugates with other immune conjugates.


In some embodiments, the compositions of the polynucleotides of the invention may generated by combining the various components of the effector modules using the Gibson assembly method. The Gibson assembly reaction consists of three isothermal reactions, each relying on a different enzymatic activity including a 5′ exonuclease which generates long overhangs, a polymerase which fills in the gaps of the annealed single strand regions and a DNA ligase which seals the nicks of the annealed and filled-in gaps. Polymerase chain reactions are performed prior to Gibson assembly which may be used to generate PCR products with overlapping sequence. These methods can be repeated sequentially, to assemble larger and larger molecules. For example, the method can comprise repeating a method as above to join a second set of two or more DNA molecules of interest to one another, and then repeating the method again to join the first and second set DNA molecules of interest, and so on. At any stage during these multiple rounds of assembly, the assembled DNA can be amplified by transforming it into a suitable microorganism, or it can be amplified in vitro (e.g., with PCR).


In some embodiments, polynucleotides of the invention may encode effector modules comprising a destabilizing domain (DD) and at least one payload taught herein. The DD domain may be a hPDE5 mutant comprising one, two, three, four, five or more mutations


In some embodiments, the effector module may be a PDE5-GFP fusion encoded by SEQ ID NO. 95-106; 205-222; 234-236; 256-260; 378-379; 469-503; and 526-533. In some embodiments, the effector module may be hPDE5-CAR constructs, encoded by SEQ ID NO. 8285-8298 or a hPDE5-IL15-IL15Ra constructs, encoded by SEQ ID NO. 8352-8361.


Cells


In accordance with the present invention, cells genetically modified to express at least one biocircuit, SRE (e. g, DD), effector module and immunotherapeutic agent of the invention, are provided. Cells of the invention may include, without limitation, immune cells, stem cells and tumor cells. In some embodiments, immune cells are immune effector cells, including, but not limiting to, T cells such as CD8+ T cells and CD4+ T cells (e.g., Th1, Th2, Th17, Foxp3+ cells), memory T cells such as T memory stem cells, central T memory cells, and effector memory T cells, terminally differentiated effector T cells, natural killer (NK) cells, NK T cells, tumor infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), and dendritic cells (DCs), other immune cells that can elicit an effector function, or the mixture thereof. T cells may be Tαβ cells and Tγδ cells. In some embodiments, stem cells may be from human embryonic stem cells, mesenchymal stem cells, and neural stem cells. In some embodiments, T cells may be depleted endogenous T cell receptors (See U.S. Pat. Nos. 9,273,283; 9,181,527; and 9,028,812; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, cells of the invention may be autologous, allogeneic, syngeneic, or xenogeneic in relation to a particular individual subject.


In some embodiments, cells of the invention may be mammalian cells, particularly human cells. Cells of the invention may be primary cells or immortalized cell lines.


In some embodiments, cells of the invention may include expansion factors as payload to trigger proliferation and expansion of the cells. Exemplary payloads include RAS such as KRAS, NRAS, RRAS, RRAS2, MRAS, ERAS, and HRAS, DIRAS such as DIRAS1, DIRAS2, and DIRAS3, NKIRAS such as NKIRAS1, and NKIRAS2, RAL such as RALA, and RALB, RAP such as RAP1A, RAP1B, RAP2A, RAP2B, and RAP2C, RASD such as RASD1, and RASD2, RASL such as RASL10A, RASL10B, RASL11A, RASL11B, and RASL12, REM such as REM1, and REM2, GEM, RERG, RERGL, and RRAD.


Engineered immune cells can be accomplished by transducing a cell compositions with a polypeptide of a biocircuit, an effector module, a SRE and/or a payload of interest (i.e., immunotherapeutic agent), or a polynucleotide encoding said polypeptide, or a vector comprising said polynucleotide. The vector may be a viral vector such as a lentiviral vector, a gamma-retroviral vector, a recombinant AAV, an adenoviral vector and an oncolytic viral vector. In other aspects, non-viral vectors for example, nanoparticles and liposomes may also be used. In some embodiments, immune cells of the invention are genetically modified to express at least one immunotherapeutic agent of the invention which is tunable using a stimulus. In some examples, two, three or more immunotherapeutic agents constructed in the same biocircuit and effector module are introduced into a cell. In other examples, two, three, or more biocircuits, effector modules, each of which comprises an immunotherapeutic agent, may be introduced into a cell.


In some embodiments, immune cells of the invention may be T cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein (known as CAR T cells). Accordingly, at least one polynucleotide encoding a CAR system (or a TCR) described herein, or a vector comprising the polynucleotide is introduced into a T cell. The T cell expressing the CAR or TCR binds to a specific antigen via the extracellular targeting moiety of the CAR or TCR, thereby a signal via the intracellular signaling domain (s) is transmitted into the T cell, and as a result, the T cell is activated. The activated CAR T cell changes its behavior including release of a cytotoxic cytokine (e.g., a tumor necrosis factor, and lymphotoxin, etc.), improvement of a cell proliferation rate, change in a cell surface molecule, or the like. Such changes cause destruction of a target cell expressing the antigen recognized by the CAR or TCR. In addition, release of a cytokine or change in a cell surface molecule stimulates other immune cells, for example, a B cell, a dendritic cell, a NK cell, and a macrophage.


The CAR introduced into a T cell may be a first-generation CAR including only the intracellular signaling domain from TCR CD3 zeta, or a second-generation CAR including the intracellular signaling domain from TCR CD3 zeta and a costimulatory signaling domain, or a third-generation CAR including the intracellular signaling domain from TCR CD3 zeta and two or more costimulatory signaling domains, or a split CAR system, or an on/off switch CAR system. In one example, the expression of the CAR or TCR is controlled by a destabilizing domain (DD) such as a hDHFR mutant, in the effector module of the invention. The presence or absence of hDHFR binding ligand such as TMP is used to tune the CAR or TCR expression in transduced T cells or NK cells.


In some embodiments, CAR T cells of the invention may be further modified to express another one, two, three or more immunotherapeutic agents. The immunotherapeutic agents may be another CAR or TCR specific to a different target molecule; a cytokine such as IL2, IL12, IL15 and IL18, or a cytokine receptor such as IL15Ra; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed. These molecules may be included in the same effector module or in separate effector modules.


In one embodiment, the CAR T cell (including TCR T cell) of the invention may be an “armed” CAR T cell which is transformed with an effector module comprising a CAR and an effector module comprising a cytokine. The inducible or constitutively secrete active cytokines further armor CAR T cells to improve efficacy and persistence. In this context, such CAR T cell is also referred to as “armored CAR T cell”. The “armor” molecule may be selected based on the tumor microenvironment and other elements of the innate and adaptive immune systems. In some embodiments, the molecule may be a stimulatory factor such as IL2, IL12, IL15, IL18, type I IFN, CD40L and 4-1 BBL which have been shown to further enhance CAR T cell efficacy and persistence in the face of a hostile tumor microenvironment via different mechanisms (Yeku et al., Biochem Soc Trans., 2016, 44(2): 412-418).


In some aspects, the armed CAR T cell of the invention is modified to express a CD19 CAR and IL12. Such T cells, after CAR mediated activation in the tumor, release inducible IL12 which augments T-cell activation and attracts and activates innate immune cells to eliminate CD19-negative cancer cells.


In one embodiment, T cells of the invention may be modified to express an effector module comprising a CAR and an effector module comprising a suicide gene.


In one embodiment, the CAR T cell (including TCR T cell) of the invention may be transformed with effector modules comprising a cytokine and a safety switch gene (e.g., suicide gene). The suicide gene may be an inducible caspase such as caspase 9 which induces apoptosis, when activated by an extracellular stimulus of a biocircuit system. Such induced apoptosis eliminates transferred cell as required to decrease the risk of direct toxicity and uncontrolled cell proliferation.


In some embodiments, immune cells of the invention may be NK cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein.


Natural killer (NK) cells are members of the innate lymphoid cell family and characterized in humans by expression of the phenotypic marker CD56 (neural cell adhesion molecule) in the absence of CD3 (T-cell co-receptor). NK cells are potent effector cells of the innate immune system which mediate cytotoxic attack without the requirement of prior antigen priming, forming the first line of defense against diseases including cancer malignancies and viral infection.


Several pre-clinical and clinical trials have demonstrated that adoptive transfer of NK cells is a promising treatment approach against cancers such as acute myeloid leukemia (Ruggeri et al., Science; 2002, 295: 2097-2100; and Geller et al., Immunotherapy, 2011, 3: 1445-1459). Adoptive transfer of NK cells expressing CAR such as DAP12-Based Activating CAR revealed improved eradication of tumor cells (Topfer et al., J Immunol. 2015; 194:3201-3212). NK cell engineered to express a CS-1 specific CAR also displayed enhanced cytolysis and interferon-γ (IFNγ) production in multiple myeloma (Chu et al., Leukemia, 2014, 28(4): 917-927).


NK cell activation is characterized by an array of receptors with activating and inhibitory functions. The important activation receptors on NK cells include CD94/NKG2C and NKG2D (the C-type lectin-like receptors), and the natural cytotoxicity receptors (NCR) NKp30, NKp44 and NKp46, which recognize ligands on tumor cells or virally infected cells. NK cell inhibition is essentially mediated by interactions of the polymorphic inhibitory killer cell immunoglobulin-like receptors (KIRs) with their cognate human-leukocyte-antigen (HLA) ligands via the alpha-1 helix of the HLA molecule. The balance between signals that are generated from activating receptors and inhibitory receptors mainly determines the immediate cytotoxic activation.


NK cells may be isolated from peripheral blood mononuclear cells (PBMCs), or derived from human embryonic stem (ES) cells and induced pluripotent stem cells (iPSCs). The primary NK cells isolated from PBMCs may be further expanded for adoptive immunotherapy. Strategies and protocols useful for the expansion of NK cells may include interleukin 2 (IL2) stimulation and the use of autologous feeder cells, or the use of genetically modified allogeneic feeder cells. In some aspects, NK cells can be selectively expanded with a combination of stimulating ligands including IL15, IL21, IL2, 41 BBL, IL12, IL18, MICA, 2B4, LFA-1, and BCM1/SLAMF2 (e.g., U.S. patent publication NO: US20150190471).


Immune cells expressing effector modules comprising a CAR and/or other immunotherapeutic agents can be used as cancer immunotherapy. The immunotherapy comprises the cells expressing a CAR and/or other immunotherapeutic agents as an active ingredient, and may further comprise a suitable excipient. Examples of the excipient may include the pharmaceutically acceptable excipients, including various cell culture media, and isotonic sodium chloride.


In some embodiments, cells of the present invention may be dendritic cells that are genetically modified to express the compositions of the invention. Such cells may be used as cancer vaccines.


III. Pharmaceutical Compositions and Formulations

The present invention further provides pharmaceutical compositions comprising one or more biocircuits, effector modules, SREs (e.g., DDs), stimuli and payloads of interest (i.e., immunotherapeutic agents), vectors, cells and other components of the invention, and optionally at least one pharmaceutically acceptable excipient or inert ingredient.


As used herein the term “pharmaceutical composition” refers to a preparation of biocircuits, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, cells and described herein, or pharmaceutically acceptable salts thereof, optionally with other chemical components such as physiologically suitable carriers and excipients. The pharmaceutical compositions of the invention comprise an effective amount of one or more active compositions of the invention. The preparation of a pharmaceutical composition that contains at least one composition of the present invention and/or an additional active ingredient will be known to those skilled in the art considering the present disclosure, as exemplified by Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, incorporated herein by reference.


The term “excipient” or “inert ingredient” refers to an inactive substance added to a pharmaceutical composition and formulation to further facilitate administration of an active ingredient. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to any one or more biocircuits, effector modules, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, and cells to be delivered as described herein. The phrases “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human, as appropriate.


In some embodiments, pharmaceutical compositions and formulations are administered to humans, human patients or subjects. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, non-human mammals, including agricultural animals such as cattle, horses, chickens and pigs, domestic animals such as cats, dogs, or research animals such as mice, rats, rabbits, dogs and non-human primates. It will be understood that, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biological Standards.


A pharmaceutical composition and formulation in accordance with the invention may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.


The compositions of the present invention may be formulated in any manner suitable for delivery. The formulation may be, but is not limited to, nanoparticles, poly (lactic-co-glycolic acid) (PLGA) microspheres, lipidoids, lipoplex, liposome, polymers, carbohydrates (including simple sugars), cationic lipids and combinations thereof.


In one embodiment, the formulation is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG and PEGylated lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA and DODMA.


For polynucleotides of the invention, the formulation may be selected from any of those taught, for example, in International Application PCT/US2012/069610, the contents of which are incorporated herein by reference in its entirety.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient or inert ingredient, and/or any additional ingredients in a pharmaceutical composition in accordance with the invention will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1 and 100, e.g., between 0.5 and 50, between 1-30, between 5-80, at least 80 (w/w) active ingredient.


Efficacy of treatment or amelioration of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of compositions of the present invention, “effective against” for example a cancer, indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease load, reduction in tumor mass or cell numbers, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating the particular type of cancer.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10 in a measurable parameter of disease, and preferably at least 20, 30, 40, 50 or more can be indicative of effective treatment. Efficacy for a given composition or formulation of the present invention can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant change is observed.


IV. Delivery Modalities and/or Vectors

Vectors


The present invention also provides vectors that package polynucleotides of the invention encoding biocircuits, effector modules, SREs (DDs) and payload constructs, and combinations thereof. In some embodiments, polynucleotides encoding destabilizing domains, effector modules and biocircuit systems, are provided. Vectors comprising polynucleotides of the invention are provided. In some aspects, the vector may be a non-viral vector, or a viral vector. In some embodiments, the vector of the invention is a viral vector. The viral vector may include, but is not limited to a retroviral vector, an adenoviral vector, an adeno-associated viral vector, or a lentiviral vector. In some embodiments, the vector of the invention may be a non-viral vector, such as a nanoparticles and liposomes.


Vectors of the present invention may also be used to deliver the packaged polynucleotides to a cell, a local tissue site or a subject. These vectors may be of any kind, including DNA vectors, RNA vectors, plasmids, viral vectors and particles. Viral vector technology is well known and described in Sambrook et al. (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York). Viruses, which are useful as vectors include, but are not limited to lentiviral vectors, adenoviral vectors, adeno-associated viral (AAV) vectors, herpes simplex viral vectors, retroviral vectors, oncolytic viruses, and the like.


In general, vectors contain an origin of replication functional in at least one organism, a promoter sequence and convenient restriction endonuclease site, and one or more selectable markers e.g. a drug resistance gene.


As used herein a promoter is defined as a DNA sequence recognized by transcription machinery of the cell, required to initiate specific transcription of the polynucleotide sequence of the present invention. Vectors can comprise native or non-native promoters operably linked to the polynucleotides of the invention. The promoters selected may be strong, weak, constitutive, inducible, tissue specific, development stage-specific, and/or organism specific. One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of polynucleotide sequence that is operatively linked to it. Another example of a preferred promoter is Elongation Growth Factor-1. Alpha (EF-1. alpha). Other constitutive promoters may also be used, including, but not limited to simian virus 40 (SV40), mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV), long terminal repeat (LTR), promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter as well as human gene promoters including, but not limited to the phosphoglycerate kinase (PGK) promoter, actin promoter, the myosin promoter, the hemoglobin promoter, the Ubiquitin C (Ubc) promoter, the human U6 small nuclear protein promoter and the creatine kinase promoter. In some instances, inducible promoters such as but not limited to metallothionine promoter, glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter may be used. In some embodiments, the promoter may be selected from the following a CMV promoter, comprising a nucleotide sequence of SEQ ID NO. 335, an EF1a promoter, comprising a nucleotide sequence of SEQ ID NOs. 336-337, and a PGK promoter, comprising a nucleotide sequence of SEQ ID NO. 338.


In some embodiments, the optimal promoter may be selected based on its ability to achieve minimal expression of the SREs and payloads of the invention in the absence of the ligand and detectable expression in the presence of the ligand.


Additional promoter elements e.g. enhancers may be used to regulate the frequency of transcriptional initiation. Such regions may be located 10-100 base pairs upstream or downstream of the start site. In some instances, two or more promoter elements may be used to cooperatively or independently activate transcription.


In some embodiments, the recombinant expression vector may comprise regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host cell into which the vector is to be introduced.


1. Lentiviral Vectors


In some embodiments, lentiviral vectors/particles may be used as vehicles and delivery modalities. Lentiviruses are subgroup of the Retroviridae family of viruses, named because reverse transcription of viral RNA genomes to DNA is required before integration into the host genome. As such, the most important features of lentiviral vehicles/particles are the integration of their genetic material into the genome of a target/host cell. Some examples of lentivirus include the Human Immunodeficiency Viruses: HIV-1 and HIV-2, the Simian Immunodeficiency Virus (SIV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Jembrana Disease Virus (JDV), equine infectious anemia virus (EIAV), equine infectious anemia virus, visna-maedi and caprine arthritis encephalitis virus (CAEV).


Typically, lentiviral particles making up the gene delivery vehicle are replication defective on their own (also referred to as “self-inactivating”). Lentiviruses can infect both dividing and non-dividing cells by virtue of the entry mechanism through the intact host nuclear envelope (Naldini L et al., Curr. Opin. Biotechnol, 1998, 9: 457-463). Recombinant lentiviral vehicles/particles have been generated by multiply attenuating the HIV virulence genes, for example, the genes Env, Vif, Vpr, Vpu, Nef and Tat are deleted making the vector biologically safe. Correspondingly, lentiviral vehicles, for example, derived from HIV-1/HIV-2 can mediate the efficient delivery, integration and long-term expression of transgenes into non-dividing cells. As used herein, the term “recombinant” refers to a vector or other nucleic acid containing both lentiviral sequences and non-lentiviral retroviral sequences.


Lentiviral particles may be generated by co-expressing the virus packaging elements and the vector genome itself in a producer cell such as human HEK293T cells. These elements are usually provided in three (in second generation lentiviral systems) or four separate plasmids (in third generation lentiviral systems). The producer cells are co-transfected with plasmids that encode lentiviral components including the core (i.e. structural proteins) and enzymatic components of the virus, and the envelope protein(s) (referred to as the packaging systems), and a plasmid that encodes the genome including a foreign transgene, to be transferred to the target cell, the vehicle itself (also referred to as the transfer vector). In general, the plasmids or vectors are included in a producer cell line. The plasmids/vectors are introduced via transfection, transduction or infection into the producer cell line. Methods for transfection, transduction or infection are well known by those of skill in the art. As non-limiting example, the packaging and transfer constructs can be introduced into producer cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with a dominant selectable marker, such as neo, DHFR, Gln synthetase or ADA, followed by selection in the presence of the appropriate drug and isolation of clones.


The producer cell produces recombinant viral particles that contain the foreign gene, for example, the effector module of the present invention. The recombinant viral particles are recovered from the culture media and titrated by standard methods used by those of skill in the art. The recombinant lentiviral vehicles can be used to infect target cells.


Cells that can be used to produce high-titer lentiviral particles may include, but are not limited to, HEK293T cells, 293G cells, STAR cells (Relander et al., Mol. Ther., 2005, 11: 452-459), FreeStyle™ 293 Expression System (ThermoFisher, Waltham, Mass.), and other HEK293T-based producer cell lines (e.g., Stewart et al., Hum Gene Ther. 2011, 22(3):357-369; Lee et al., Biotechnol Bioeng, 2012, 10996): 1551-1560; Throm et al., Blood. 2009, 113(21): 5104-5110; the contents of each of which are incorporated herein by reference in their entirety).


In some aspects, the envelope proteins may be heterologous envelop proteins from other viruses, such as the G protein of vesicular stomatitis virus (VSV G) or baculoviral gp64 envelop proteins. The VSV-G glycoprotein may especially be chosen among species classified in the vesiculovirus genus: Carajas virus (CJSV), Chandipura virus (CHPV), Cocal virus (COCV), Isfahan virus (ISFV), Maraba virus (MARAV), Piry virus (PIRYV), Vesicular stomatitis Alagoas virus (VSAV), Vesicular stomatitis Indiana virus (VSIV) and Vesicular stomatitis New Jersey virus (VSNJV) and/or stains provisionally classified in the vesiculovirus genus as Grass carp rhabdovirus, BeAn 157575 virus (BeAn 157575), Boteke virus (BTKV), Calchaqui virus (CQIV), Eel virus American (EVA), Gray Lodge virus (GLOV), Jurona virus (JURY), Klamath virus (KLAV), Kwatta virus (KWAV), La Joya virus (LJV), Malpais Spring virus (MSPV), Mount Elgon bat virus (MEBV), Perinet virus (PERV), Pike fry rhabdovirus (PFRV), Porton virus (PORV), Radi virus (RADIV), Spring viremia of carp virus (SVCV), Tupaia virus (TUPV), Ulcerative disease rhabdovirus (UDRV) and Yug Bogdanovac virus (YBV). The gp64 or other baculoviral env protein can be derived from Autographa californica nucleopolyhedrovirus (AcMNPV), Anagrapha falcifera nuclear polyhedrosis virus, Bombyx mori nuclear polyhedrosis virus, Choristoneura fumiferana nucleopolyhedrovirus, Orgyia pseudotsugata single capsid nuclear polyhedrosis virus, Epiphyas postvittana nucleopolyhedrovirus, Hyphantria cunea nucleopolyhedrovirus, Galleria mellonella nuclear polyhedrosis virus, Dhori virus, Thogoto virus, Antheraea pemyi nucleopolyhedrovirus or Batken virus.


Additional elements provided in lentiviral particles may comprise retroviral LTR (long-terminal repeat) at either 5′ or 3′ terminus, a retroviral export element, optionally a lentiviral reverse response element (RRE), a promoter or active portion thereof, and a locus control region (LCR) or active portion thereof. Other elements include central polypurine tract (cPPT) sequence to improve transduction efficiency in non-dividing cells, Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE) which enhances the expression of the transgene, and increases titer. The effector module is linked to the vector.


Methods for generating recombinant lentiviral particles are discussed in the art, for example, U.S. Pat. Nos. 8,846,385; 7,745,179; 7,629,153; 7,575,924; 7,179,903; and 6,808,905; the contents of each of which are incorporated herein by reference in their entirety.


Lentivirus vectors used may be selected from, but are not limited to pLVX, pLenti, pLenti6, pLJM1, FUGW, pWPXL, pWPI, pLenti CMV puro DEST, pLJM1-EGFP, pULTRA, pInducer20, pHIV-EGFP, pCW57.1, pTRPE, pELPS, pRRL, and pLionII.


Lentiviral vehicles known in the art may also be used (See, U.S. Pat. NOs. 9, 260, 725; 9,068,199; 9,023,646; 8,900,858; 8,748,169; 8,709,799; 8,420,104; 8,329,462; 8,076,106; 6,013,516; and 5,994,136; International Patent Publication NO.: WO2012079000; the contents of each of which are incorporated herein by reference in their entirety).


2. Retroviral Vectors (γ-Retroviral Vectors)


In some embodiments, retroviral vectors may be used to package and deliver the biocircuits, biocircuit components, effector modules, SREs or payload constructs of the present invention. Retroviral vectors (RVs) allow the permanent integration of a transgene in target cells. In addition to lentiviral vectors based on complex HIV-1/2, retroviral vectors based on simple gamma-retroviruses have been widely used to deliver therapeutic genes and demonstrated clinically as one of the most efficient and powerful gene delivery systems capable of transducing a broad range of cell types. Example species of Gamma retroviruses include the murine leukemia viruses (MLVs) and the feline leukemia viruses (FeLV).


In some embodiments, gamma-retroviral vectors derived from a mammalian gamma-retrovirus such as murine leukemia viruses (MLVs), are recombinant. The MLV families of gamma retroviruses include the ecotropic, amphotropic, xenotropic and polytropic subfamilies. Ecotropic viruses are able to infect only murine cells using mCAT-1 receptor. Examples of ecotropic viruses are Moloney MLV and AKV. Amphotropic viruses infect murine, human and other species through the Pit-2 receptor. One example of an amphotropic virus is the 4070A virus. Xenotropic and polytropic viruses utilize the same (Xpr1) receptor, but differ in their species tropism. Xenotropic viruses such as NZB-9-1 infect human and other species but not murine species, whereas polytropic viruses such as focus-forming viruses (MCF) infect murine, human and other species.


Gamma-retroviral vectors may be produced in packaging cells by co-transfecting the cells with several plasmids including one encoding the retroviral structural and enzymatic (gag-pol) polyprotein, one encoding the envelope (env) protein, and one encoding the vector mRNA comprising polynucleotide encoding the compositions of the present invention that is to be packaged in newly formed viral particles.


In some aspects, the recombinant gamma-retroviral vectors are pseudotyped with envelope proteins from other viruses. Envelope glycoproteins are incorporated in the outer lipid layer of the viral particles which can increase/alter the cell tropism. Exemplary envelop proteins include the gibbon ape leukemia virus envelope protein (GALV) or vesicular stomatitis virus G protein (VSV-G), or Simian endogenous retrovirus envelop protein, or Measles Virus H and F proteins, or Human immunodeficiency virus gp120 envelope protein, or cocal vesiculovirus envelop protein (See, e.g., U.S. application publication NO.: 2012/164118; the contents of which are incorporated herein by reference in its entirety). In other aspects, envelope glycoproteins may be genetically modified to incorporate targeting/binding ligands into gamma-retroviral vectors, binding ligands including, but not limited to, peptide ligands, single chain antibodies and growth factors (Waehler et al., Nat. Rev. Genet. 2007, 8(8):573-587; the contents of which are incorporated herein by reference in its entirety). These engineered glycoproteins can retarget vectors to cells expressing their corresponding target moieties. In other aspects, a “molecular bridge” may be introduced to direct vectors to specific cells. The molecular bridge has dual specificities: one end can recognize viral glycoproteins, and the other end can bind to the molecular determinant on the target cell. Such molecular bridges, for example ligand-receptor, avidin-biotin, and chemical conjugations, monoclonal antibodies and engineered fusogenic proteins, can direct the attachment of viral vectors to target cells for transduction (Yang et al., Biotechnol. Bioeng., 2008, 101(2): 357-368; and Maetzig et al., Viruses, 2011, 3, 677-713; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, the recombinant gamma-retroviral vectors are self-inactivating (SIN) gammaretroviral vectors. The vectors are replication incompetent. SIN vectors may harbor a deletion within the 3′ U3 region initially comprising enhancer/promoter activity. Furthermore, the 5′ U3 region may be replaced with strong promoters (needed in the packaging cell line) derived from Cytomegalovirus or RSV, or an internal promoter of choice, and/or an enhancer element. The choice of the internal promoters may be made according to specific requirements of gene expression needed for a particular purpose of the invention.


In some embodiments, polynucleotides encoding the biocircuit, biocircuit components, effector module, SRE are inserted within the recombinant viral genome. The other components of the viral mRNA of a recombinant gamma-retroviral vector may be modified by insertion or removal of naturally occurring sequences (e.g., insertion of an IRES, insertion of a heterologous polynucleotide encoding a polypeptide or inhibitory nucleic acid of interest, shuffling of a more effective promoter from a different retrovirus or virus in place of the wild-type promoter and the like). In some examples, the recombinant gamma-retroviral vectors may comprise modified packaging signal, and/or primer binding site (PBS), and/or 5′-enhancer/promoter elements in the U3-region of the 5′-long terminal repeat (LTR), and/or 3′-SIN elements modified in the U3-region of the 3′-LTR. These modifications may increase the titers and the ability of infection.


Gamma retroviral vectors suitable for delivering biocircuit components, effector modules, SREs or payload constructs of the present invention may be selected from those disclosed in U.S. Pat. Nos. 8,828,718; 7,585,676; 7,351,585; U.S. application publication NO.: 2007/048285; PCT application publication NOs.: WO2010/113037; WO2014/121005; WO2015/056014; and EP Pat. Nos. EP1757702; EP1757703 (the contents of each of which are incorporated herein by reference in their entirety).


3. Adeno-Associated Viral Vectors (AAV)


In some embodiments, polynucleotides of present invention may be packaged into recombinant adeno-associated viral (rAAV) vectors. Such vectors or viral particles may be designed to utilize any of the known serotype capsids or combinations of serotype capsids. The serotype capsids may include capsids from any identified AAV serotypes and variants thereof, for example, AAV1, AAV2, AAV2G9, AAV3, AAV4, AAV4-4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 and AAVrh10.


In one embodiment, the AAV serotype may be or have a sequence as described in United States Publication No. US20030138772, herein incorporated by reference in its entirety, such as, but not limited to, AAV1 (SEQ ID NO: 6 and 64 of US20030138772), AAV2 (SEQ ID NO: 7 and 70 of US20030138772), AAV3 (SEQ ID NO: 8 and 71 of US20030138772), AAV4 (SEQ ID NO: 63 of US20030138772), AAV5 (SEQ ID NO: 114 of US20030138772), AAV6 (SEQ ID NO: 65 of US20030138772), AAV7 (SEQ ID NO: 1-3 of US20030138772), AAV8 (SEQ ID NO: 4 and 95 of US20030138772), AAV9 (SEQ ID NO: 5 and 100 of US20030138772), AAV10 (SEQ ID NO: 117 of US20030138772), AAV11 (SEQ ID NO: 118 of US20030138772), AAV12 (SEQ ID NO: 119 of US20030138772), AAVrh10 (amino acids 1 to 738 of SEQ ID NO: 81 of US20030138772) or variants thereof. Non-limiting examples of variants include SEQ ID NOs: 9, 27-45, 47-62, 66-69, 73-81, 84-94, 96, 97, 99, 101-113 of US20030138772, the contents of which are herein incorporated by reference in their entirety.


In one embodiment, the AAV serotype may have a sequence as described in Pulicherla et al. (Molecular Therapy, 2011, 19(6):1070-1078), U.S. Pat. Nos. 6,156,303; 7,198,951; U.S. Patent Publication NOs.: US2015/0159173 and US2014/0359799; and International Patent Publication NOs.: WO1998/011244, WO2005/033321 and WO2014/14422; the contents of each of which are incorporated herein by reference in their entirety.


AAV vectors include not only single stranded vectors but self-complementary AAV vectors (scAAVs). scAAV vectors contain DNA which anneals together to form double stranded vector genome. By skipping second strand synthesis, scAAVs allow for rapid expression in the cell.


The rAAV vectors may be manufactured by standard methods in the art such as by triple transfection, in sf9 insect cells or in suspension cell cultures of human cells such as HEK293 cells.


The biocircuits, biocircuit components, effector modules, SREs or payload constructs may be encoded in one or more viral genomes to be packaged in the AAV capsids taught herein.


Such vectors or viral genomes may also include, in addition to at least one or two ITRs (inverted terminal repeats), certain regulatory elements necessary for expression from the vector or viral genome. Such regulatory elements are well known in the art and include for example promoters, introns, spacers, stuffer sequences, and the like.


In some embodiments, more than one effector module or SRE (e.g. DD) may be encoded in a viral genome.


4. Oncolytic Viral Vector


In some embodiments, polynucleotides of present invention may be packaged into oncolytic viruses, such as vaccine viruses. Oncolytic vaccine viruses may include viral particles of a thymidine kinase (TK)-deficient, granulocyte macrophage (GM)-colony stimulating factor (CSF)-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor (e.g., U.S. Pat. No. 9,226,977).


In some embodiments, the viral vector of the invention may comprise two or more immunotherapeutic agents taught herein, wherein the two or more immunotherapeutic agents may be included in one effector module under the regulation of the same DD. In this case, the two or more immunotherapeutic agents are tuned by the same stimulus simultaneously. In other embodiments, the viral vector of the invention may comprise two or more effector modules, wherein each effector module comprises a different immunotherapeutic agent. In this case, the two or more effector modules and immunotherapeutic agents are tuned by different stimuli, providing separately independent regulation of the two or more components.


5. Messenger RNA (mRNA)


In some embodiments, the effector modules of the invention may be designed as a messenger RNA (mRNA). As used herein, the term “messenger RNA” (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo. Such mRNA molecules may have the structural components or features of any of those taught in International Application number PCT/US2013/030062, the contents of which are incorporated herein by reference in its entirety.


Polynucleotides of the invention may also be designed as taught in, for example, Ribostem Limited in United Kingdom patent application serial number 0316089.2 filed on Jul. 9, 2003 now abandoned, PCT application number PCT/GB2004/002981 filed on Jul. 9, 2004 published as WO2005005622, United States patent application national phase entry Ser. No. 10/563,897 filed on Jun. 8, 2006 published as US20060247195 now abandoned, and European patent application national phase entry serial number EP2004743322 filed on Jul. 9, 2004 published as EP1646714 now withdrawn; Novozymes, Inc. in PCT application number PCT/US2007/88060 filed on Dec. 19, 2007 published as WO2008140615, United States patent application national phase entry Ser. No. 12/520,072 filed on Jul. 2, 2009 published as US20100028943 and European patent application national phase entry serial number EP2007874376 filed on Jul. 7, 2009 published as EP2104739; University of Rochester in PCT application number PCT/US2006/46120 filed on Dec. 4, 2006 published as WO2007064952 and U.S. patent application Ser. No. 11/606,995 filed on Dec. 1, 2006 published as US20070141030; BioNTech AG in European patent application serial number EP2007024312 filed Dec. 14, 2007 now abandoned, PCT application number PCT/EP2008/01059 filed on Dec. 12, 2008 published as WO2009077134, European patent application national phase entry serial number EP2008861423 filed on Jun. 2, 2010 published as EP2240572, United States patent application national phase entry Ser. No. 12/735,060 filed Nov. 24, 2010 published as US20110065103, German patent application serial number DE 10 2005 046 490 filed Sep. 28, 2005, PCT application PCT/EP2006/0448 filed Sep. 28, 2006 published as WO2007036366, national phase European patent EP1934345 published Mar. 21, 2012 and national phase U.S. patent application Ser. No. 11/992,638 filed Aug. 14, 2009 published as 20100129877; Immune Disease Institute Inc. in U.S. patent application Ser. No. 13/088,009 filed Apr. 15, 2011 published as US20120046346 and PCT application PCT/US2011/32679 filed Apr. 15, 2011 published as WO20110130624; Shire Human Genetic Therapeutics in U.S. patent application Ser. No. 12/957,340 filed on Nov. 20, 2010 published as US20110244026; Sequitur Inc. in PCT application PCT/US1998/019492 filed on Sep. 18, 1998 published as WO1999014346; The Scripps Research Institute in PCT application number PCT/US2010/00567 filed on Feb. 24, 2010 published as WO2010098861, and United States patent application national phase entry Ser. No. 13/203,229 filed Nov. 3, 2011 published as US20120053333; Ludwig-Maximillians University in PCT application number PCT/EP2010/004681 filed on Jul. 30, 2010 published as WO2011012316; Cellscript Inc. in U.S. Pat. No. 8,039,214 filed Jun. 30, 2008 and granted Oct. 18, 2011, U.S. patent application Ser. No. 12/962,498 filed on Dec. 7, 2010 published as US20110143436, 12/962,468 filed on Dec. 7, 2010 published as US20110143397, Ser. No. 13/237,451 filed on Sep. 20, 2011 published as US20120009649, and PCT applications PCT/US2010/59305 filed Dec. 7, 2010 published as WO2011071931 and PCT/US2010/59317 filed on Dec. 7, 2010 published as WO2011071936; The Trustees of the University of Pennsylvania in PCT application number PCT/US2006/32372 filed on Aug. 21, 2006 published as WO2007024708, and United States patent application national phase entry Ser. No. 11/990,646 filed on Mar. 27, 2009 published as US20090286852; Curevac GMBH in German patent application serial numbers DE10 2001 027 283.9 filed Jun. 5, 2001, DE10 2001 062 480.8 filed Dec. 19, 2001, and DE 20 2006 051 516 filed Oct. 31, 2006 all abandoned, European patent numbers EP1392341 granted Mar. 30, 2005 and EP1458410 granted Jan. 2, 2008, PCT application numbers PCT/EP2002/06180 filed Jun. 5, 2002 published as WO2002098443, PCT/EP2002/14577 filed on Dec. 19, 2002 published as WO2003051401, PCT/EP2007/09469 filed on Dec. 31, 2007 published as WO2008052770, PCT/EP2008/03033 filed on Apr. 16, 2008 published as WO2009127230, PCT/EP2006/004784 filed on May 19, 2005 published as WO2006122828, PCT/EP2008/00081 filed on Jan. 9, 2007 published as WO2008083949, and U.S. patent application Ser. No. 10/729,830 filed on Dec. 5, 2003 published as US20050032730, Ser. No. 10/870,110 filed on Jun. 18, 2004 published as US20050059624, Ser. No. 11/914,945 filed on Jul. 7, 2008 published as US20080267873, Ser. No. 12/446,912 filed on Oct. 27, 2009 published as US2010047261 now abandoned, Ser. No. 12/522,214 filed on Jan. 4, 2010 published as US20100189729, Ser. No. 12/787,566 filed on May 26, 2010 published as US20110077287, Ser. No. 12/787,755 filed on May 26, 2010 published as US20100239608, Ser. No. 13/185,119 filed on Jul. 18, 2011 published as US20110269950, and Ser. No. 13/106,548 filed on May 12, 2011 published as US20110311472 all of which are herein incorporated by reference in their entirety.


In some embodiments, the effector modules may be designed as self-amplifying RNA. “Self-amplifying RNA” as used herein refers to RNA molecules that can replicate in the host resulting in the increase in the amount of the RNA and the protein encoded by the RNA. Such self-amplifying RNA may have structural features or components of any of those taught in International Patent Application Publication No. WO2011005799 (the contents of which are incorporated herein by reference in their entirety.)


V. Dosing, Delivery and Administrations

The compositions of the invention may be delivered to a cell or a subject through one or more routes and modalities. The viral vectors containing one or more effector modules, SREs, immunotherapeutic agents and other components described herein may be used to deliver them to a cell and/or a subject. Other modalities may also be used such as mRNAs, plasmids, and as recombinant proteins.


1. Delivery to Cells


In another aspect of the invention, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the invention and vectors comprising said polynucleotides may be introduced into cells such as immune effector cells.


In one aspect of the invention, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the invention, may be packaged into viral vectors or integrated into viral genomes allowing transient or stable expression of the polynucleotides. Preferable viral vectors are retroviral vectors including lentiviral vectors. In order to construct a retroviral vector, a polynucleotide molecule encoding a biocircuit, an effector module, a DD or a payload of interest (i.e. an immunotherapeutic agent) is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. The recombinant viral vector is then introduced into a packaging cell line containing the gag, pol, and env genes, but without the LTR and packaging components. The recombinant retroviral particles are secreted into the culture media, then collected, optionally concentrated, and used for gene transfer. Lentiviral vectors are especially preferred as they are capable of infecting both dividing and non-dividing cells.


Vectors may also be transferred to cells by non-viral methods by physical methods such as needles, electroporation, sonoporation, hydroboration; chemical carriers such as inorganic particles (e.g. calcium phosphate, silica, gold) and/or chemical methods. In some embodiments, synthetic or natural biodegradable agents may be used for delivery such as cationic lipids, lipid nano emulsions, nanoparticles, peptide based vectors, or polymer based vectors.


In some embodiments, the polypeptides of the invention may be delivered to the cell directly. In one embodiment, the polypeptides of the invention may be delivered using synthetic peptides comprising an endosomal leakage domain (ELD) fused to a cell penetration domain (CLD). The polypeptides of the invention are co introduced into the cell with the ELD-CLD-synthetic peptide. ELDs facilitate the escape of proteins that are trapped in the endosome, into the cytosol. Such domains are derived proteins of microbial and viral origin and have been described in the art. CPDs allow the transport of proteins across the plasma membrane and have also been described in the art. The ELD-CLD fusion proteins synergistically increase the transduction efficiency when compared to the co-transduction with either domain alone. In some embodiments, a histidine rich domain may optionally be added to the shuttle construct as an additional method of allowing the escape of the cargo from the endosome into the cytosol. The shuttle may also include a cysteine residue at the N or C terminus to generate multimers of the fusion peptide. Multimers of the ELD-CLD fusion peptides generated by the addition of cysteine residue to the terminus of the peptide show even greater transduction efficiency when compared to the single fusion peptide constructs. The polypeptides of the invention may also be appended to appropriate localization signals to direct the cargo to the appropriate sub-cellular location e.g. nucleus. In some embodiments any of the ELDs, CLDs or the fusion ELD-CLD synthetic peptides taught in the International Patent Publication, WO2016161516 and WO2017175072 may be useful in the present invention (the contents of each of which are herein incorporated by reference in their entirety).


2. Dosing


The present invention provides methods comprising administering any one or more compositions for immunotherapy to a subject in need thereof. These may be administered to a subject using any amount and any route of administration effective for preventing or treating a clinical condition such as cancer, infection diseases and other immunodeficient diseases.


Compositions in accordance with the invention are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, or prophylactically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, previous or concurrent therapeutic interventions and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.


Compositions of the invention may be used in varying doses to avoid T cell anergy, prevent cytokine release syndrome and minimize toxicity associated with immunotherapy. For example, low doses of the compositions of the present invention may be used to initially treat patients with high tumor burden, while patients with low tumor burden may be treated with high and repeated doses of the compositions of the invention to ensure recognition of a minimal tumor antigen load. In another instance, the compositions of the present invention may be delivered in a pulsatile fashion to reduce tonic T cell signaling and enhance persistence in vivo. In some aspects, toxicity may be minimized by initially using low doses of the compositions of the invention, prior to administering high doses. Dosing may be modified if serum markers such as ferritin, serum C-reactive protein, IL6, IFNγ, and TNF-α are elevated.


In one embodiment, polypeptides and/or polynucleotides expressing the compositions described herein e.g. effector modules, are administered to a subject in need thereof to treat cancer. In one embodiment, a population of cells comprising the biocircuits, effector modules and/or the SREs described herein is administered to a subject in need thereof to treat cancer.


In one embodiment, the cells expressing the compositions described herein is administered at a dose and/or dosing schedule described herein.


In one embodiment, compositions are introduced into immune cells (e.g., T cells, NK cells). The compositions may be introduced into the immune cells by methods including but not limited to viral transduction, transfection and/or in vitro transcription. In some embodiments, the immune cells are transduced with retroviruses. In one aspect, the retrovirus may be a lentivirus. In some aspects, the titer of the lentiviruses may be used to tune the expression of the payload. In some embodiments, the titer of the lentivirus may have a multiplicity of infection (MOI) ranging from 0.001-0.01, 0.01-0.1, 0.1-1, or 1-10. In some embodiments, the MOI may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


In some embodiments, the subject (e.g., human) receives an initial administration of immune cells comprising the compositions described herein e.g. SREs, and one or more subsequent administrations of cells. In some embodiments, a therapeutically effective amount of the compositions and/or cells described herein may be administered to the subject. In some embodiments, the therapeutically effective amount may indicate the precise amount required to tumor inhibition, tumor prevalence and/or tumor burden. The therapeutically effective amount may be determined with consideration of the subject's age, weight, tumor size, sex, extent of infection or metastasis. In some embodiments, the cells expressing the compositions described herein may be administered at a dosage of 104 to 109 cells/kg body weight of the subject. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319: 1676, 1988; the contents of which are incorporated herein by reference in their entirety).


In some aspects, subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., T cells. These T cell isolates may be expanded by methods known in the art and treated such that the compositions of the invention may be introduced into the cell. Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain aspects, following or concurrent with the transplant, subjects receive an infusion of the immune cells of the present invention. In an additional aspect, expanded cells are administered before or following surgery.


The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices.


In one embodiment, the compositions are introduced into immune cells (e.g., T cells, NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of immune cells (e.g., T cells, NK cells) of the invention, and one or more subsequent administrations of the immune cells (e.g., T cells, NK cells) of the invention, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the immune cells (e.g., T cells, NK cells) of the invention are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of the immune cells (e.g., T cells, NK cells) of the invention are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one administration of the immune cells (e.g., T cells, NK cells) per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no immune cells (e.g., T cells, NK cells) administrations, and then one or more additional administration of the immune cells (e.g., T cells, NK cells) (e.g., more than one administration of the immune cells (e.g., T cells, NK cells) per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of immune cells (e.g., T cells, NK cells), and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the immune cells (e.g., T cells, NK cells) are administered every other day for 3 administrations per week. In one embodiment, the immune cells (e.g., T cells, NK cells) of the invention are administered for at least two, three, four, five, six, seven, eight or more weeks. In some embodiments, a dose of immune cells expressing compositions of the invention described herein comprises about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises at least about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises up to about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises about 1.1×106-1.8×107 cells/kg. In some embodiments, a dose of immune cells comprises about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises at least about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises up to about 1×107, 1.5×107, 2×107, 2.5×107, 3×107, 3.5×107, 4×107, 5×107, 1×108, 1.5×108, 2×108, 2.5×108, 3×108, 3.5×108, 4×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1-3×107 to 1-3×108 cells.


In one embodiment, the cells expressing the compositions described herein, are administered as a first line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In another embodiment, the cells expressing the compositions described herein, are administered as a second, third, fourth line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In some embodiments, the subject may undergo preconditioning prior to the administration of the cells.


Also provided herein are methods of administering ligands in accordance with the invention to a subject in need thereof. The ligand may be administered to a subject or to cells, using any amount and any route of administration effective for tuning the biocircuits of the invention. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. The subject may be a human, a mammal, or an animal. Compositions in accordance with the invention are typically formulated in unit dosage form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. In certain embodiments, the ligands in accordance with the present invention may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.001 mg/kg to about 0.05 mg/kg, from about 0.005 mg/kg to about 0.05 mg/kg, from about 0.001 mg/kg to about 0.005 mg/kg, from about 0.05 mg/kg to about 0.5 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, from about 10 mg/kg to about 100 mg/kg, from about 50 mg/kg to about 500 mg/kg, from about 100 mg/kg to about 1000 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired effect. In some embodiments, the dosage levels may be 1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 100 mg/kg, 110 mg/kg, 120 mg/kg, 130 mg/kg, 140 mg/kg, 150 mg/kg, 160 mg/kg, 170 mg/kg, 180 mg/kg, 190 mg/kg or mg/kg of subject body weight per day, or more times a day, to obtain the desired effect.


The present disclosure provides methods for delivering to a cell or tissue any of the ligands described herein, comprising contacting the cell or tissue with said ligand and can be accomplished in vitro, ex vivo, or in vivo. In certain embodiments, the ligands in accordance with the present invention may be administered to cells at dosage levels sufficient to deliver from about 1 nM to about 10 nM, from about 5 nM to about 50 nM, from about 10 nM to about 100 nM, from about 50 nM to about 500 nM, from about 100 nM to about 1000 nM, from about 1 μM to about 10 μM, from about 504 to about 50 μM, from about 10 μM to about 100 μM from about 2504 to about 250 μM, from about 50 μM to about 500 μM. In some embodiments, the ligand may be administered to cells at doses selected from but not limited to 0.0064 μM, 0.0032 μM, 0.016 μM, 0.08 μM, 0.4 μM, 1 μM, 2 μM, 5 μM, 10 μM, 25 μM, 50 μM, 75 μM, 100 μM, 150 μM, 200 μM, 250 μM.


The desired dosage of the ligands of the present invention may be delivered only once, three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. As used herein, a “split dose” is the division of “single unit dose” or total daily dose into two or more doses, e.g., two or more administrations of the “single unit dose”. As used herein, a “single unit dose” is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event. The desired dosage of the ligand of the present invention may be administered as a “pulse dose” or as a “continuous flow”. As used herein, a “pulse dose” is a series of single unit doses of any therapeutic administered with a set frequency over a period of time. As used herein, a “continuous flow” is a dose of therapeutic administered continuously for a period of time in a single route/single point of contact, i.e., continuous administration event. A total daily dose, an amount given or prescribed in 24-hour period, may be administered by any of these methods, or as a combination of these methods, or by any other methods suitable for a pharmaceutical administration.


3. Administration


In some embodiments, the compositions for immunotherapy may be administered to cells ex vivo and subsequently administered to the subject. Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; the contents of each of which are incorporated herein by reference in their entirety. Isolation of NK cells is described in U.S. Pat. Nos. 7,435,596; the contents of which are incorporated by reference herein in its entirety.


In some embodiments, depending upon the nature of the cells, the cells may be introduced into a host organism e.g. a mammal, in a wide variety of ways including by injection, transfusion, infusion, local instillation or implantation. In some aspects, the cells of the invention may be introduced at the site of the tumor. The number of cells that are employed will depend upon a number of circumstances, the purpose for the introduction, the lifetime of the cells, the protocol to be used, for example, the number of administrations, the ability of the cells to multiply, or the like. The cells may be in a physiologically-acceptable medium.


In some embodiments, the cells of the invention may be administrated in multiple doses to subjects having a disease or condition. The administrations generally effect an improvement in one or more symptoms of cancer or a clinical condition and/or treat or prevent cancer or clinical condition or symptom thereof.


In some embodiments, the compositions for immunotherapy may be administered in vivo. In some embodiments, polypeptides of the present invention comprising biocircuits, effector molecules, SREs, payloads of interest (immunotherapeutic agents) and compositions of the invention may be delivered in vivo to the subject. In vivo delivery of immunotherapeutic agents is well described in the art. For example, methods of delivery of cytokines are described in the E.P. Pat. No.: EP0930892 A1, the contents of which are incorporated herein by reference.


Routes of Delivery


The pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs (e.g., DDs), payloads (i.e. immunotherapeutic agents), vectors and cells of the present invention may be administered by any route to achieve a therapeutically effective outcome.


These include, but are not limited to enteral (into the intestine), gastroenteral, epidural (into the dura matter), oral (by way of the mouth), transdermal, peridural, intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin), intradermal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intravenous bolus, intravenous drip, intra-arterial (into an artery), intramuscular (into a muscle), intracranial (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intrasinal infusion, intravitreal, (through the eye), intravenous injection (into a pathologic cavity) intracavitary (into the base of the penis), intravaginal administration, intrauterine, extra-amniotic administration, transdermal (diffusion through the intact skin for systemic distribution), transmucosal (diffusion through a mucous membrane), transvaginal, insufflation (snorting), sublingual, sublabial, enema, eye drops (onto the conjunctiva), in ear drops, auricular (in or by way of the ear), buccal (directed toward the cheek), conjunctival, cutaneous, dental (to a tooth or teeth), electro-osmosis, endocervical, endosinusial, endotracheal, extracorporeal, hemodialysis, infiltration, interstitial, intra-abdominal, intra-amniotic, intra-articular, intrabiliary, intrabronchial, intrabursal, intracartilaginous (within a cartilage), intracaudal (within the cauda equine), intracisternal (within the cisterna magna cerebellomedularis), intracorneal (within the cornea), dental intracorneal, intracoronary (within the coronary arteries), intracorporus cavernosum (within the dilatable spaces of the corporus cavernosa of the penis), intradiscal (within a disc), intraductal (within a duct of a gland), intraduodenal (within the duodenum), intradural (within or beneath the dura), intraepidermal (to the epidermis), intraesophageal (to the esophagus), intragastric (within the stomach), intragingival (within the gingivae), intraileal (within the distal portion of the small intestine), intralesional (within or introduced directly to a localized lesion), intraluminal (within a lumen of a tube), intralymphatic (within the lymph), intramedullary (within the marrow cavity of a bone), intrameningeal (within the meninges), intramyocardial (within the myocardium), intraocular (within the eye), intraovarian (within the ovary), intrapericardial (within the pericardium), intrapleural (within the pleura), intraprostatic (within the prostate gland), intrapulmonary (within the lungs or its bronchi), intrasinal (within the nasal or periorbital sinuses), intraspinal (within the vertebral column), intrasynovial (within the synovial cavity of a joint), intratendinous (within a tendon), intratesticular (within the testicle), intrathecal (within the cerebrospinal fluid at any level of the cerebrospinal axis), intrathoracic (within the thorax), intratubular (within the tubules of an organ), intratumor (within a tumor), intratympanic (within the aurus media), intravascular (within a vessel or vessels), intraventricular (within a ventricle), iontophoresis (by means of electric current where ions of soluble salts migrate into the tissues of the body), irrigation (to bathe or flush open wounds or body cavities), laryngeal (directly upon the larynx), nasogastric (through the nose and into the stomach), occlusive dressing technique (topical route administration which is then covered by a dressing which occludes the area), ophthalmic (to the external eye), oropharyngeal (directly to the mouth and pharynx), parenteral, percutaneous, periarticular, peridural, perineural, periodontal, rectal, respiratory (within the respiratory tract by inhaling orally or nasally for local or systemic effect), retrobulbar (behind the pons or behind the eyeball), intramyocardial (entering the myocardium), soft tissue, subarachnoid, subconjunctival, submucosal, topical, transplacental (through or across the placenta), transtracheal (through the wall of the trachea), transtympanic (across or through the tympanic cavity), ureteral (to the ureter), urethral (to the urethra), vaginal, caudal block, diagnostic, nerve block, biliary perfusion, cardiac perfusion, photopheresis or spinal.


Kits


The also provides a kit comprising any of the polynucleotides or expression vectors described herein.


The present invention includes a variety of kits for conveniently and/or effectively carrying out methods of the present invention. Typically, kits will comprise sufficient amounts and/or numbers of components to allow a user to perform one or multiple treatments of a subject(s) and/or to perform one or multiple experiments.


In one embodiment, the present invention provides kits for inhibiting genes in vitro or in vivo, comprising a biocircuit of the present invention or a combination of biocircuits of the present invention, optionally in combination with any other suitable active agents.


The kit may further comprise packaging and instructions and/or a delivery agent to form a formulation composition. The delivery agent may comprise, for example, saline, a buffered solution.


In additional embodiments, assay screening kits are provided. The kit includes a container for the screening assay. An instruction for the use of the assay and the information about the screening method are to be included in the kit.


In some embodiments, the DDs, effector modules and biocircuit system and compositions of the invention may be used as research tools to investigate protein activity in a biological system such a cell and a subject. In other embodiments, the DDs, effector modules and biocircuit system and compositions of the invention may be used for treating a disease such as a cancer and a genetic disorder.


VI. Applications

In one aspect of the present invention, methods for reducing a tumor volume or burden are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit system and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).


In another aspect of the present invention, methods for inducing an anti-tumor immune response in a subject are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).


The methods, per the present invention, may be adoptive cell transfer (ACT) using genetically engineered cells such as immune effector cells of the invention, cancer vaccines comprising biocircuit systems, effector modules, DDs, payloads of interest (i.e., immunotherapeutic agents) of the invention, or compositions that manipulate the tumor immunosuppressive microenvironment, or the combination thereof. These treatments may be further employed with other cancer treatment such as chemotherapy and radiotherapy.


1. Adoptive Cell Transfer (Adoptive Immunotherapy)


Recent progress in the field of cancer immunology has allowed the development of several approaches to help the immune system keep the cancer at bay. Such immunotherapy approaches include the targeting of cancer antigens through monoclonal antibodies or through adoptive transfer of ex vivo engineered T cells (e.g., which contain chimeric antigen receptors or engineered T cell receptors). The present invention also provides methods for inducing immune responses in a subject using the compositions of the invention. Also provided are methods for reducing a tumor burden in a subject using the compositions of the invention. The present invention also provides immune cells engineered to include one or more polypeptides, polynucleotides, or vectors of the present invention. The cells may be immune effector cells, including T cells such as cytotoxic T cells, helper T cells, memory T cells, regulatory T cells, natural killer (NK) cells, NK T cells, cytokine-induced killer (CIK) cells, cytotoxic T lymphocytes (CTLs), and tumor infiltrating lymphocytes (TILs). The engineered cell may be used for adoptive cell transfer for treating a disease (e.g., a cancer).


In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may be used in the modulation or alteration or exploitation of the immune system to target one or more cancers. This approach may also be considered with other such biological approaches, e.g., immune response modifying therapies such as the administration of interferons, interleukins, colony-stimulating factors, other monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents are also envisioned as anti-cancer therapies to be combined with the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention.


Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the patient's own immune system to fight the cancer. In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention are designed as immune-oncology therapeutics.


In some embodiments, cells which are genetically modified to express at least one biocircuit system, effector module, DD, and/or payload of interest (immunotherapeutic agent) may be used for adoptive cell therapy (ACT). As used herein, Adoptive cell transfer refers to the administration of immune cells (from autologous, allogenic or genetically modified hosts) with direct anticancer activity. ACT has shown promise in clinical application against malignant and infectious disease. For example, T cells genetically engineered to recognize CD19 have been used to treat follicular B cell lymphoma (Kochenderfer et al., Blood, 2010, 116:4099-4102; and Kochenderfer and Rosenberg, Nat Rev Clin Oncol., 2013, 10(5): 267-276) and ACT using autologous lymphocytes genetically-modified to express anti-tumor T cell receptors has been used to treat metastatic melanoma (Rosenberg and Dudley, Curr. Opin. Immunol. 2009, 21: 233-240).


Immune cells for adoptive cell therapy may be selected from but not limited to selected from a CD8+ T cell, a CD4+ T cell, a helper T cell, a natural killer (NK) cell, a NKT cell, a cytotoxic T lymphocyte (CTL), a tumor infiltrating lymphocyte (TIL), a memory T cell, a regulatory T (Treg) cell, a cytokine-induced killer (CIK) cell, a dendritic cell, a human embryonic stem cell, a mesenchymal stem cell, a hematopoietic stem cell, or a mixture thereof.


There are several types of cellular immunotherapies, including tumor infiltrating lymphocyte (TIL) therapy, genetically engineered T cells bearing chimeric antigen receptors (CARs), and recombinant TCR technology. In some embodiments, the compositions of the present invention may be utilized to alter TIL (tumor infiltrating lymphocyte) populations in a subject. In one embodiment, any of the payloads described herein may be utilized to change the ratio of CD4 positive cells to CD8 positive populations. In some embodiments, TILs may be sorted ex vivo and engineered to express any of the cytokines described herein. Payloads of the invention may be used to expand CD4 and/or CD8 populations of TILs to enhance TIL mediated immune response.


In one embodiment, the chimeric antigen receptor (CAR) of the present invention may be a conditionally active CAR. A wild type protein or domain thereof, such as those described herein may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and domains and uses of such conditional active biologic proteins and domains are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2016033331, the contents of which are incorporated herein by reference in their entirety. As a non-limiting example, the CAR comprises at least one antigen specific targeting region evolved from a wild type protein or a domain thereof and one or more of a decrease in activity in the assay at the normal physiological condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof, and an increase in activity in the assay under the aberrant condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof.


According to the present invention, the biocircuits and systems may be used in the development and implementation of cell therapies such as adoptive cell therapy. Certain effector modules useful in cell therapy are given in FIGS. 7-12. The biocircuits, their components, effector modules and their SREs and payloads may be used in cell therapies to effect TCR removal-TCR gene disruption, TCR engineering, to regulate epitope tagged receptors, in APC platforms for stimulating T cells, as a tool to enhance ex vivo APC stimulation, to improve methods of T cell expansion, in ex vivo stimulation with antigen, in TCR/CAR combinations, in the manipulation or regulation of TILs, in allogeneic cell therapy, in combination T cell therapy with other treatment lines (e.g. radiation, cytokines), to encode engineered TCRs, or modified TCRs, or to enhance T cells other than TCRs (e.g. by introducing cytokine genes, genes for the checkpoint inhibitors PD1, CTLA4).


In some embodiments, improved response rates are obtained in support of cell therapies.


Expansion and persistence of cell populations may be achieved through regulation or fine tuning of the payloads, e.g., the receptors or pathway components in T cells, NK cells or other immune-related cells. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which enhance T-cell or NK cell response. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which inhibit T-cell or NK cell response.


Provided herein are methods for use in adoptive cell therapy. The methods involve preconditioning a subject in need thereof, modulating immune cells with SRE, biocircuits and compositions of the present invention, administering to a subject, engineered immune cells expressing compositions of the invention and the successful engraftment of engineered cells within the subject.


In some embodiments, SREs, biocircuits and compositions of the present invention may be used to minimize preconditioning regimens associated with adoptive cell therapy. As used herein “preconditioning” refers to any therapeutic regimen administered to a subject in order to improve the outcome of adoptive cell therapy. Preconditioning strategies include, but are not limited to total body irradiation and/or lymphodepleting chemotherapy. Adoptive therapy clinical trials without preconditioning have failed to demonstrate any clinical benefit, indicating its importance in ACT. Yet, preconditioning is associated with significant toxicity and limits the subject cohort that is suitable for ACT. In some instances, immune cells for ACT may be engineered to express cytokines such as IL12 and IL15 as payload using SREs of the present invention to reduce the need for preconditioning (Pengram et al. (2012) Blood 119 (18): 4133-41; the contents of which are incorporated by reference in their entirety).


In some embodiments, the neurotoxicity may be associated with CAR or TIL therapy. Such neurotoxicity may be associated CD19-CARs. Toxicity may be due to excessive T cell infiltration into the brain. In some embodiments, neurotoxicity may be alleviated by preventing the passage of T cells through the blood brain barrier. This can be achieved by the targeted gene deletion of the endogenous alpha-4 integrin inhibitors such as tysabri/natalizumab may also be useful in the present invention.


In some embodiments, the effector modules may encode one or more cytokines. In some embodiments, the cytokine is IL15. Effector modules encoding IL15 may be designed to induce proliferation in cytotoxic populations and avoid stimulation of T regs. In other cases, the effector modules which induce proliferation in cytotoxic populations may also stimulate NK and NKT cells.


In some embodiments, effector modules may encode, or be tuned or induced to produce, one or more cytokines for expansion of cells in the biocircuits of the invention. In such cases the cells may be tested for actual expansion. Expansion may be at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more.


In some embodiments, the tumor microenvironment may be remodeled using a biocircuit containing an effector module encoding IL17.


In some embodiments, biocircuits, their components, SREs or effector modules are designed to modulate Tregs to attenuate autoimmune disorders. In such a case, IL2 may be regulated using a singly tuned module or one having multiple tuned features as described herein.


In some embodiments, immune cells for ACT may be dendritic cells, T cells such as CD8+ T cells and CD4+ T cells, natural killer (NK) cells, NK T cells, Cytotoxic T lymphocytes (CTLs), tumor infiltrating lymphocytes (TILs), lymphokine activated killer (LAK) cells, memory T cells, regulatory T cells (Tregs), helper T cells, cytokine-induced killer (CIK) cells, and any combination thereof. In other embodiments, immune stimulatory cells for ACT may be generated from embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC). In some embodiments, autologous or allogeneic immune cells are used for ACT.


In some embodiments, cells used for ACT may be T cells engineered to express T cell receptors (TCRs) with new specificities or CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In other embodiments, cells used for ACT may be NK cells engineered to express CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In addition to adoptive transfer of genetically modified T cells (e.g., CAR T cells) for immunotherapy, alternate types of CAR-expressing leukocytes, either alone, or in combination with CAR T cells may be used for adoptive immunotherapy. In one example, a mixture of T cells and NK cells may be used for ACT. The expression level of CARs in T cells and NK cells, according to the present invention, is tuned and controlled by a small molecule that binds to the DD(s) operably linked to the CAR in the effector module.


In some embodiments, NK cells engineered to express the present compositions may be used for ACT. NK cell activation induces perforin/granzyme-dependent apoptosis in target cells. NK cell activation also induces cytokine secretion such as IFNγ, TNF-α and GM-CSF. These cytokines enhance the phagocytic function of macrophages and their antimicrobial activity, and augment the adaptive immune response via up-regulation of antigen presentation by antigen presenting cells such as dendritic cells (DCs) (Reviewed by Vivier et al., Nat. Immunol., 2008, 9(5): 503-510).


Other examples of genetic modification may include the introduction of chimeric antigen receptors (CARs) and the down-regulation of inhibitory NK cell receptors such as NKG2A. Examples of CARs include, but are not limited to, CD19 and CD20 specific CARs against B cell malignancies, CARs targeting CD33 on leukemia cells, CS1 CAR and CD138 CAR on myeloma cells, GD2 CAR on neuroblastoma cells, Her2/Neu and erbB2 on breast cancer cells, carcinoembryonic antigen (CEA) on colon cancers, EpCAM on epithelial tumors, GPA7 on melanoma, NKG2D ligand on leukemia and solid tumors, and TRAIL R1 on various tumor targets. The CARs may be POIs of the effector modules and regulated by the binding of the DD with its corresponding ligand.


In another example, NK cells for ACT may be modified to express an effector module comprising the high-affinity CD16-158V polymorphism (HA-CD16) which augments NK cell mediated antibody dependent cell cytotoxicity (ADCC) against tumors. Infusion of NK cells genetically modified to express HA-CD16 could be used as a strategy to improve the efficacy of antibody-based therapies for cancer patients.


NK cells may also be genetically reprogrammed to circumvent NK cell inhibitory signals upon interaction with tumor cells. For example, using CRISPR, ZFN, or TALEN to genetically modify NK cells to silence their inhibitory receptors may enhance the anti-tumor capacity of NK cells.


Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating and expanding cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; U.S. Patent Publication No.: US20160348072A1 and International Patent Publication NO: WO2016168595A1; the contents of each of which are incorporated herein by reference in their entirety. Isolation and expansion of NK cells is described in U.S. Patent Publication NO.: US20150152387A1, U.S. Pat. No. 7,435,596; and Oyer, J. L. (2016). Cytotherapy. 18(5):653-63; the contents of each of which are incorporated by reference herein in its entirety. Specifically, human primary NK cells may be expanded in the presence of feeder cells e.g. a myeloid cell line that has been genetically modified to express membrane bound IL15, IL21, IL12 and 4-1 BBL.


In some instances, sub populations of immune cells may be enriched for ACT. Methods for immune cell enrichment are taught in International Patent Publication NO.: WO2015039100A1. In another example, T cells positive for B and T lymphocyte attenuator marker BTLA) may be used to enrich for T cells that are anti-cancer reactive as described in U.S. Pat. No. 9,512,401 (the content of each of which are incorporated herein by reference in their entirety).


In some embodiments, immune cells for ACT may be depleted of select sub populations to enhance T cell expansion. For example, immune cells may be depleted of Foxp3+T lymphocytes to minimize the ant-tumor immune response using methods taught in U.S. Patent Publication NO.: U.S. 20160298081A1; the contents of which are incorporated by reference herein in their entirety.


In some embodiments, activation and expansion of T cells for ACT is achieved antigenic stimulation of a transiently expressed Chimeric Antigen Receptor (CAR) on the cell surface. Such activation methods are taught in International Patent NO.: WO2017015427, the content of which are incorporated herein by reference in their entirety.


In some embodiments, immune cells may be activated by antigens associated with antigen presenting cells (APCs). In some embodiments, the APCs may be dendritic cells, macrophages or B cells that antigen specific or nonspecific. The APCs may autologous or homologous in their organ. In some embodiments the APCs may be artificial antigen presenting cells (aAPCs) such as cell based aAPCs or acellular aAPCs. Cell based aAPCs are may be selected from either genetically modified allogeneic cells such as human erythroleukemia cells or xenogeneic cells such as murine fibroblasts and Drosophila cells. Alternatively, the APCs may be be acellular wherein the antigens or costimulatory domains are presented on synthetic surfaces such as latex beads, polystyrene beads, lipid vesicles or exosomes.


In some embodiments, adoptive cell therapy is carried out by autologous transfer, wherein the cells are derived from a subject in need of a treatment and the cells, following isolation and processing are administered to the same subject. In other instances, ACT may involve allogenic transfer wherein the cells are isolated and/or prepared from a donor subject other than the recipient subject who ultimately receives cell therapy. The donor and recipient subject may be genetically identical, or similar or may express the same HLA class or subtype.


In some embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by the same biocircuit system. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to the same hDHFR destabilizing domain. The expression of IL12 and CD19 CAR is tuned using TMP simultaneously. In other embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by different biocircuit systems. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to different DDs in two separate effector modules, thereby can be tuned separately using different stimuli. In another example, a suicide gene and a CAR construct may be linked to two separate effector modules.


Following genetic modulation using SREs, biocircuits and compositions of the invention, cells are administered to the subject in need thereof. Methods for administration of cells for adoptive cell therapy are known and may be used in connection with the provided methods and compositions. For example, adoptive T cell therapy methods are described, e.g., in U.S. Patent Application Publication No. 2003/0170238 to Gruenberg et al; U.S. Pat. No. 4,690,915 to Rosenberg; Rosenberg (2011) Nat Rev Clin Oncol. 8(10):577-85). See, e.g., Themeli et al. (2013) Nat Biotechnol. 31(10): 928-933; Tsukahara et al. (2013) Biochem Biophys Res Commun 438(1): 84-9; Davila et al. (2013) PLoS ONE 8(4): e61338; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, immune cells for ACT may be modified to express one or more immunotherapeutic agents which facilitate immune cells activation, infiltration, expansion, survival and anti-tumor functions. The immunotherapeutic agents may be a second CAR or TCR specific to a different target molecule; a cytokine or a cytokine receptor; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed.


In some embodiments, immune cells used for adoptive cell transfer can be genetically manipulated to improve their persistence, cytotoxicity, tumor targeting capacity, and ability to home to disease sites in vivo, with the overall aim of further improving upon their capacity to kill tumors in cancer patients. One example is to introduce effector modules of the invention comprising cytokines such as gamma-cytokines (IL2 and IL15) into immune cells to promote immune cell proliferation and survival. Transduction of cytokine genes (e.g., gamma-cytokines IL2 and IL15) into cells will be able to propagate immune cells without addition of exogenous cytokines and cytokine expressing NK cells have enhanced tumor cytotoxicity.


Another example includes the use of genetic modification for directing the infused NK cells to proper tumor tissues. NK cells may be genetically engineered with an effector module that encodes the CCR7 receptor to improve their migration toward one of its ligands CCL19. Other strategies may involve utilizing chemokine receptors, such as CXCR3 to improve NK cell migration to inflamed tissues, such as those infiltrated with metastatic tumors.


NK cells may be modified to become insensitive to suppressive cytokines such as TGF-β, thereby preserving their cytotoxicity. For example, NK cells can be genetically modified to express the dominant negative mutant form of TGF-β type II receptor (DNTβRII) on their surface that render NK cells resistant to the suppressive effects of TGF-β.


In some embodiments, biocircuits, their components, SREs or effector modules are designed to be significantly less immunogenic than other biocircuits or switches in the art.


As used herein, “significantly less immunogenic” refers to a detectable decrease in immunogenicity. In another embodiment, the term refers to a fold decrease in immunogenicity. In another embodiment, the term refers to a decrease such that an effective amount of the biocircuits, their components, SREs or effector modules which can be administered without triggering a detectable immune response. In another embodiment, the term refers to a decrease such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response. In another embodiment, the decrease is such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response.


In another embodiment, the biocircuits, their components, SREs or effector modules is 2-fold less immunogenic than its unmodified counterpart or reference compound. In another embodiment, immunogenicity is reduced by a 3-fold factor. In another embodiment, immunogenicity is reduced by a 5-fold factor. In another embodiment, immunogenicity is reduced by a 7-fold factor. In another embodiment, immunogenicity is reduced by a 10-fold factor. In another embodiment, immunogenicity is reduced by a 15-fold factor. In another embodiment, immunogenicity is reduced by a fold factor. In another embodiment, immunogenicity is reduced by a 50-fold factor. In another embodiment, immunogenicity is reduced by a 100-fold factor. In another embodiment, immunogenicity is reduced by a 200-fold factor. In another embodiment, immunogenicity is reduced by a 500-fold factor. In another embodiment, immunogenicity is reduced by a 1000-fold factor. In another embodiment, immunogenicity is reduced by a 2000-fold factor. In another embodiment, immunogenicity is reduced by another fold difference.


Methods of determining immunogenicity are well known in the art, and include, e.g. measuring secretion of cytokines (e.g. IL12, IFNalpha, TNF-alpha, RANTES, MIP-1 alpha or beta, IL6, IFN beta, or IL8), measuring expression of DC activation markers (e.g. CD83, HLA-DR, CD80 and CD86), or measuring ability to act as an adjuvant for an adaptive immune response.


The present invention provides method of inducing an immune response in a cell. As used herein the term “immune response” refers to the activity of the cells of the immune system in response to stimulus, or an antigen. In some embodiments, the antigen may be a cancer antigen. In some aspects, the methods of inducing an immune response may involve administering to the cell, a therapeutically effective amount of any of the compositions described herein. In one aspect, the method may involve administering the pharmaceutical compositions described herein. In one aspect, the method may involve administering the polynucleotides, vectors. In some embodiments, induction of the immune response occurs due to the expression and or function of the immunotherapeutic agents described herein. Methods of inducing immune response further may involve administering to the cell, an effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some embodiments, the immunotherapeutic agent is capable of inducing an immune response in response to the stimulus. The induction of the immune response may occur in a cell within a subject i.e. in vivo, ex vivo or in vitro. The induction of an immune response may be evaluated by measuring the release of cytokine such as IL2 and IFNγ from the cells. In some embodiments, the induction of an immune response may be measured by evaluating the cell surface markers such as but not limited to CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, WIC class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFNγ receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, WIC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCL5, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.


2. Cancer Vaccines


In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and compositions of the present invention may be used for cancer vaccines. In one aspect, dendritic cells are modified to express the compositions of the invention and used as cancer vaccines.


In some embodiments, cancer vaccine may comprise peptides and/or proteins derived from tumor associated antigen (TAA). Such strategies may be utilized to evoke an immune response in a subject, which in some instances may be a cytotoxic T lymphocyte (CTL) response. Peptides used for cancer vaccines may also modified to match the mutation profile of a subject. For example, EGFR derived peptides with mutations matched to the mutations found in the subject in need of therapy have been successfully used in patients with lung cancer (Li F et al. (2016) Oncoimmunology. October 7; 5 (12): e1238539; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, cancer vaccines of the present invention may superagonist altered peptide ligands (APL) derived from TAAs. These are mutant peptide ligands deviate from the native peptide sequence by one or more amino acids, which activate specific CTL clones more effectively than native epitopes. These alterations may allow the peptide to bind better to the restricting Class I MHC molecule or interact more favorably with the TCR of a given tumor-specific CTL subset. APLs may be selected using methods taught in U.S. Patent Publication NO.: US20160317633A1, the contents of which are incorporated herein by reference in their entirety.


3. Tumor Microenvironment (TME)


In some embodiments, biocircuits, their components, SREs or effector modules are designed to reshape the tumor microenvironment in order to extend utility of the biocircuit or a pharmaceutical composition beyond direct cell killing.


In some embodiments, biocircuits, their components, SREs or effector modules are designed to reduce, mitigate or eliminate the CAR cytokine storm. In some embodiments, such reduction, mitigation and/or elimination occurs in solid tumors or tumor microenvironments.


In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and pharmaceutical compositions of the present invention may be used to convert the immunosuppressive microenvironment to increase immune responses.


In some embodiments, the invention provides methods for converting the inhibitory immunoregulatory signals from immunosuppressive cytokines secreted by cancer cells or the surrounding tumor stroma into stimulatory signals using compositions of the invention. Immunosuppressive cytokines include without limitation, IL13, IL4, TGF-beta, IL6, IL8, and IL10. In one aspect, the genetically modified tumor-specific T cells (e.g., CAR T cells) or T cells with native tumor specificity may be further engineered to express an effector module comprising a chimeric switch receptor that binds to inhibitory/suppressive cytokines and converts their intracellular consequences to an immunostimulatory/activating signal, thus improving the efficacy of tumor-specific T cells. The chimeric switch receptor is composed of the extracellular domains of an inhibitory cytokine receptor (e.g., IL13R, IL4R, IL10R, TGFβR1/ALK5, TGFβR2, and TGFβR3/β-glycan) fused with the intracellular signal transducing domains derived from stimulatory cytokine receptors such as IL2R (i.e., IL2Rα/CD25, IL2Rβ/CD122, and common γ chain receptor/CD132 which is shared by various cytokine receptors) and/or IL7R (IL7Rα/CD127, common γ chain receptor/CD132). These manipulations render tumor specific T cells or CAR T cells resistant to the suppressive tumor microenvironment.


In some embodiments, the present invention provides methods to abrogate the immunosuppressive effects produced by myeloid derived suppressor cells (MDSCs). Tumor cells secrete indoleamine 2,3-dioxygenase (IDO) which promotes immunosuppression through the recruitment of MDSCs. The immunosuppressive environment is further promoted by the MDSCs through nitric oxide synthase (NOS) and arginase 1 (ARG1) which can degrade extracellular arginine. Amino acid deprivation within the tumor microenvironment suppresses T cell anti-tumor activity. In some embodiments, payloads of the present invention may comprise inhibitors of NOS, ARG1 and tryptophan metabolism pathway such as IDO. In one embodiment, the payload may include inhibitors of colony stimulating factor receptor 1 (CSFR1) which required for the proliferation and function of MDSCs.


In some embodiments, dominant negative mutants of inhibitory co receptor such as PD-1, CTLA-4, LAG-3, TIM-3, KIRs, or BTLA may be utilized as payloads of the invention to overcome inhibitory signals in the tumor microenvironment.


4. Combination Treatments


In some embodiments, it is desirable to combine compositions, vectors and cells of the invention for administration to a subject. Compositions of the invention comprising different immunotherapeutic agents may be used in combination for enhancement of immunotherapy.


Immunotherapeutic Agents


In some embodiments, it is desirable to combine compositions of the invention with adjuvants, that can enhance the potency and longevity of antigen-specific immune responses. Adjuvants used as immunostimulants in combination therapy include biological molecules or delivery carriers that deliver antigens. As non-limiting examples, the compositions of the invention may be combined with biological adjuvants such as cytokines, Toll Like Receptors, bacterial toxins, and/or saponins. In other embodiments, the compositions of the present invention may be combined with delivery carriers. Exemplary delivery carriers include, polymer microspheres, immune stimulating complexes, emulsions (oil-in-water or water-in-oil), aluminum salts, liposomes or virosomes.


In some embodiments, immune effector cells modified to express biocircuits, effector modules, DDs and payloads of the invention may be combined with the biological adjuvants described herein. Dual regulation of CAR and cytokines and ligands to segregate the kinetic control of target-mediated activation from intrinsic cell T cell expansion. Such dual regulation also minimizes the need for pre-conditioning regimens in patients. As a non-limiting example, DD regulated CAR e.g. CD19 CAR may be combined with cytokines e.g. IL12 to enhance the anti-tumor efficacy of the CAR (Pegram H. J., et al. Tumor-targeted T cells modified to secrete IL12 eradicate systemic tumors without need for prior conditioning. Blood. 2012; 119:4133-41; the contents of each of which are incorporated herein by reference in their entirety). As another non-limiting example, Merchant et al. combined dendritic cell-based vaccinations with recombinant human IL7 to improve outcome in high-risk pediatric sarcomas patients (Merchant, M. S. et. al. Adjuvant immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas. Clin Cancer Res. 2016. 22(13):3182-91; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, immune effector cells modified to express one or more antigen-specific TCRs or CARs may be combined with compositions of the invention comprising immunotherapeutic agents that convert the immunosuppressive tumor microenvironment.


In one aspect, effector immune cells modified to express CARs specific to different target molecules on the same cell may be combined. In another aspect, different immune cells modified to express the same CAR construct such as NK cells and T cells may be used in combination for a tumor treatment, for instance, a T cell modified to express a CD19 CAR may be combined with a NK cell modified to express the same CD19 CAR to treat B cell malignancy.


In other embodiments, immune cells modified to express CARs may be combined with checkpoint blockade agents.


In some embodiments, immune effector cells modified to expressed biocircuits, effector modules, DDs and payloads of the invention may be combined with cancer vaccines of the invention.


In some embodiments, an effector module comprising a CAR may be used in combination with an effector module comprising a cytokine, or an effector module comprising a safety switch, or an effector module comprising a metabolic factor, or an effector module comprising a homing receptor.


In one embodiment, an effector module comprising a CD19 CAR may be used in combination with amino pyrimidine derivatives such as the Burkit's tyrosine receptor kinase (BTK) inhibitor using methods taught in International Patent Application NO.: WO2016164580, the contents of which are incorporated herein by reference in their entirety.


Cancer


In some embodiments, methods of the invention may include combination of the compositions of the invention with other agents effective in the treatment of cancers, infection diseases and other immunodeficient disorders, such as anti-cancer agents. As used herein, the term “anti-cancer agent” refers to any agent which is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer.


In some embodiments, anti-cancer agent or therapy may be a chemotherapeutic agent, or radiotherapy, immunotherapeutic agent, surgery, or any other therapeutic agent which, in combination with the present invention, improves the therapeutic efficacy of treatment.


In some embodiments, compositions of the present invention may be used in combination with immunotherapeutics other than the inventive therapy described herein, such as antibodies specific to some target molecules on the surface of a tumor cell.


Exemplary chemotherapies include, without limitation, Acivicin; Aclarubicin; Acodazole hydrochloride; Acronine; Adozelesin; Aldesleukin; Altretamine; Ambomycin; Ametantrone acetate; Amsacrine; Anastrozole; Anthramycin; Asparaginase; Asperrin, Sulindac, Curcumin, alkylating agents including: Nitrogen mustards such as mechlor-ethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas such as carmustine (BC U), lomustine (CCNU), and semustine (methyl-CC U); thylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrrolidine analogs such as 5-fluorouracil, fluorodeoxyuridine, gemcitabine, cytosine arabinoside (AraC, cytarabine), 5-azacytidine, 2,2′-difluorodeoxycytidine, purine analogs such as 6-mercaptopurine, 6-thioguanine, azathioprine, 2′-deoxycoformycin (pentostatin), erythrohydroxynonyladenine (EHNA), fludarabine phosphate, and 2-chlorodeoxyadenosine (cladribine, 2-CdA); natural products including antimitotic drugs such as paclitaxel, vinca alkaloids including vinblastine (VLB), vincristine, and vinorelbine, taxotere, estramustine, and estramustine phosphate; epipodophyllotoxins such as etoposide and teniposide; antibiotics, such as actinomycin D, daunomycin (rubidomycin), doxorubicin, mitoxantrone, idarubicin, bleomycins, plicamycin (mithramycin), mitomycin C, and actinomycin; enzymes such as L-asparaginase, cytokines such as interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, TNF-beta and GM-CSF, anti-angiogenic factors, such as angiostatin and endostatin, inhibitors of FGF or VEGF such as soluble forms of receptors for angiogenic factors, including soluble VGF/VEGF receptors, platinum coordination complexes such as cisplatin and carboplatin, anthracenediones such as mitoxantrone, substituted urea such as hydroxyurea, methylhydrazine derivatives including N-methylhydrazine (MIFf) and procarbazine, adrenocortical suppressants such as mitotane (o,ρ′-DDD) and aminoglutethimide; hormones and antagonists including adrenocorticosteroid antagonists such as prednisone and equivalents, dexamethasone and aminoglutethimide; progestin such as hydroxyprogesterone caproate, medroxyprogesterone acetate and megestrol acetate; estrogen such as diethylstilbestrol and ethinyl estradiol equivalents; antiestrogen such as tamoxifen; androgens including testosterone propionate and fluoxymesterone/equivalents; antiandrogens such as flutamide, gonadotropin-releasing hormone analogs and leuprolide; non-steroidal antiandrogens such as flutamide; kinase inhibitors, histone deacetylase inhibitors, methylation inhibitors, proteasome inhibitors, monoclonal antibodies, oxidants, anti-oxidants, telomerase inhibitors, BH3 mimetics, ubiquitin ligase inhibitors, stat inhibitors and receptor tyrosin kinase inhibitors such as imatinib mesylate (marketed as Gleevac or Glivac) and erlotinib (an EGF receptor inhibitor) now marketed as Tarveca; anti-virals such as oseltamivir phosphate, Amphotericin B, and palivizumab; Sdi 1 mimetics; Semustine; Senescence derived inhibitor 1; Sparfosic acid; Spicamycin D; Spiromustine; Splenopentin; Spongistatin 1; Squalamine; Stipiamide; Stromelysin inhibitors; Sulfinosine; Superactive vasoactive intestinal peptide antagonist; Velaresol; Veramine; Verdins; Verteporfin; Vinorelbine; Vinxaltine; Vitaxin; Vorozole; Zanoterone; Zeniplatin; Zilascorb; and Zinostatin stimalamer; PI3Kβ small-molecule inhibitor, GSK2636771; pan-PI3K inhibitor (BKM120); BRAF inhibitors. Vemurafenib (Zelboraf) and dabrafenib (Tafinlar); or any analog or derivative and variant of the foregoing.


In one embodiment, the invention further relates to the use of pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention for treating one or more forms of cancer, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention can also be administered in conjunction with one or more additional anti-cancer treatments, such as biological, chemotherapy and radiotherapy. Accordingly, a treatment can include, for example, imatinib (Gleevac), all-trans-retinoic acid, a monoclonal antibody treatment (gemtuzumab, ozogamicin), chemotherapy (for example, chlorambucil, prednisone, prednisolone, vincristine, cytarabine, clofarabine, farnesyl transferase inhibitors, decitabine, inhibitors of MDR1), rituximab, interferon-α, anthracycline drugs (such as daunorubicin or idarubicin), L-asparaginase, doxorubicin, cyclophosphamide, doxorubicin, bleomycin, fludarabine, etoposide, pentostatin, or cladribine), bone marrow transplant, stem cell transplant, radiation therapy, anti-metabolite drugs (methotrexate and 6-mercaptopurine), or any of the antibodies taught herein such as those in Table 6 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety), or combinations thereof.


Radiotherapeutic agents and factors include radiation and waves that induce DNA damage for example, γ-irradiation, X-rays, UV-irradiation, microwaves, electronic emissions, radioisotopes, and the like. Therapy may be achieved by irradiating the localized tumor site with the above described forms of radiations. It is most likely that all of these factors effect a broad range of damage DNA, on the precursors of DNA, the replication and repair of DNA, and the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.


Radiation therapy (also called radiotherapy, X-ray therapy, or irradiation) is the use of ionizing radiation to kill cancer cells and shrink tumors. Radiation therapy can be administered externally via external beam radiotherapy (EBRT) or internally via brachytherapy. The effects of radiation therapy are localized and confined to the region being treated. Radiation therapy may be used to treat almost every type of solid tumor, including cancers of the brain, breast, cervix, larynx, lung, pancreas, prostate, skin, stomach, uterus, or soft tissue sarcomas. Radiation is also used to treat leukemia and lymphoma.


In some embodiments, the chemotherapeutic agent may be an immunomodulatory agent such as lenalidomide (LEN). Recent studies have demonstrated that lenalidomide can enhance antitumor functions of CAR modified T cells (Otahal et al., Oncoimmunology, 2015, 5(4): e1115940). Some examples of anti-tumor antibodies include tocilizumab, siltuximab.


Chemotherapy is the treatment of cancer with drugs that can destroy cancer cells. In current usage, the term “chemotherapy” usually refers to cytotoxic drugs which affect rapidly dividing cells in general, in contrast with targeted therapy. Chemotherapy drugs interfere with cell division in various possible ways, e.g. with the duplication of DNA or the separation of newly formed chromosomes. Most forms of chemotherapy target all rapidly dividing cells and are not specific to cancer cells, although some degree of specificity may come from the inability of many cancer cells to repair DNA damage, while normal cells generally can.


Most chemotherapy regimens are given in combination. Exemplary chemotherapeutic agents include, but are not limited to, 5-FU Enhancer, 9-AC, AG2037, AG3340, Aggrecanase Inhibitor, Aminoglutethimide, Amsacrine (m-AMSA), Asparaginase, Azacitidine, Batimastat (BB94), BAY 12-9566, BCH-4556, Bis-Naphthalimide, Busulfan, Capecitabine, Carboplatin, Carmustaine+Polifepr Osan, cdk4/cdk2 inhibitors, Chlorambucil, CI-994, Cisplatin, Cladribine, CS-682, Cytarabine HCl, D2163, Dactinomycin, Daunorubicin HCl, DepoCyt, Dexifosamide, Docetaxel, Dolastain, Doxifluridine, Doxorubicin, DX8951f, E 7070, EGFR, Epirubicin, Erythropoietin, Estramustine phosphate sodium, Etoposide (VP16-213), Farnesyl Transferase Inhibitor, FK 317, Flavopiridol, Floxuridine, Fludarabine, Fluorouracil (5-FU), Flutamide, Fragyline, Gemcitabine, Hexamethylmelamine (HMM), Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Interferon Alfa-2b, Interleukin-2, Irinotecan, ISI 641, Krestin, Lemonal DP 2202, Leuprolide acetate (LHRH-releasing factor analogue), Levamisole, LiGLA (lithium-gamma linolenate), Lodine Seeds, Lometexol, Lomustine (CCNU), Marimistat, Mechlorethamine HCl (nitrogen mustard), Megestrol acetate, Meglamine GLA, Mercaptopurine, Mesna, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Mitotane (o.p′-DDD), Mitoxantrone, Mitoxantrone HCl, MMI 270, MMP, MTA/LY 231514, Octreotide, ODN 698, OK-432, Oral Platinum, Oral Taxoid, Paclitaxel (TAXOL.®), PARP Inhibitors, PD 183805, Pentostatin (2′ deoxycoformycin), PKC 412, Plicamycin, Procarbazine HCl, PSC 833, Ralitrexed, RAS Farnesyl Transferase Inhibitor, RAS Oncogene Inhibitor, Semustine (methyl-CCNU), Streptozocin, Suramin, Tamoxifen citrate, Taxane Analog, Temozolomide, Teniposide (VM-26), Thioguanine, Thiotepa, Topotecan, Tyrosine Kinase, UFT (Tegafur/Uracil), Valrubicin, Vinblastine sulfate, Vindesine sulfate, VX-710, VX-853, YM 116, ZD 0101, ZD 0473/Anormed, ZD 1839, ZD 9331.


Other agents may be used in combination with compositions of the invention may also include, but not limited to, agents that affect the upregulation of cell surface receptors and their ligands such as Fas/Fas ligand, DR4 or DR5/TRAIL and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion such as focal adhesion kinase (FAKs) inhibitors and Lovastatin, or agents that increase the sensitivity of the hyper proliferative cells to apoptotic inducers such as the antibody C225.


The combinations may include administering the compositions of the invention and other agents at the same time or separately. Alternatively, the present immunotherapy may precede or follow the other agent/therapy by intervals ranging from minutes, days, weeks to months.


5. Therapeutic Uses


Provided in the present invention is a method of reducing a tumor volume or burden in a subject in need, the method comprising introducing into the subject a composition of the invention.


The present invention also provides methods for treating a cancer in a subject, comprising administering to the subject an effective amount of an immune effector cell genetically modified to express at least one effector module of the invention.


Cancer


Various cancers may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “cancer” refers to any of various malignant neoplasms characterized by the proliferation of anaplastic cells that tend to invade surrounding tissue and metastasize to new body sites and refers to the pathological condition characterized by such malignant neoplastic growths. Cancers may be tumors or hematological malignancies, and include but are not limited to, all types of lymphomas/leukemias, carcinomas and sarcomas, such as those cancers or tumors found in the anus, bladder, bile duct, bone, brain, breast, cervix, colon/rectum, endometrium, esophagus, eye, gallbladder, head and neck, liver, kidney, larynx, lung, mediastinum (chest), mouth, ovaries, pancreas, penis, prostate, skin, small intestine, stomach, spinal marrow, tailbone, testicles, thyroid and uterus.


Types of carcinomas which may be treated with the compositions of the present invention include, but are not limited to, papilloma/carcinoma, choriocarcinoma, endodermal sinus tumor, teratoma, adenoma/adenocarcinoma, melanoma, fibroma, lipoma, leiomyoma, rhabdomyoma, mesothelioma, angioma, osteoma, chondroma, glioma, lymphoma/leukemia, squamous cell carcinoma, small cell carcinoma, large cell undifferentiated carcinomas, basal cell carcinoma and sinonasal undifferentiated carcinoma.


Types of carcinomas which may be treated with the compositions of the present invention include, but are not limited to, soft tissue sarcoma such as alveolar soft part sarcoma, angiosarcoma, dermatofibrosarcoma, desmoid tumor, desmoplastic small round cell tumor, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and Askin's tumor, Ewing's sarcoma (primitive neuroectodermal tumor), malignant hemangioendothelioma, malignant schwannoma, osteosarcoma, and chondrosarcoma.


As a non-limiting example, the carcinoma which may be treated may be Acute granulocytic leukemia, Acute lymphocytic leukemia, Acute myelogenous leukemia, Adenocarcinoma, Adenosarcoma, Adrenal cancer, Adrenocortical carcinoma, Anal cancer, Anaplastic astrocytoma, Angiosarcoma, Appendix cancer, Astrocytoma, Basal cell carcinoma, B-Cell lymphoma), Bile duct cancer, Bladder cancer, Bone cancer, Bowel cancer, Brain cancer, Brain stem glioma, Brain tumor, Breast cancer, Carcinoid tumors, Cervical cancer, Cholangiocarcinoma, Chondrosarcoma, Chronic lymphocytic leukemia, Chronic myelogenous leukemia, Colon cancer, Colorectal cancer, Craniopharyngioma, Cutaneous lymphoma, Cutaneous melanoma, Diffuse astrocytoma, Ductal carcinoma in situ, Endometrial cancer, Ependymoma, Epithelioid sarcoma, Esophageal cancer, Ewing sarcoma, Extrahepatic bile duct cancer, Eye cancer, Fallopian tube cancer, Fibrosarcoma, Gallbladder cancer, Gastric cancer, Gastrointestinal cancer, Gastrointestinal carcinoid cancer, Gastrointestinal stromal tumors, General, Germ cell tumor, Glioblastoma multiforme, Glioma, Hairy cell leukemia, Head and neck cancer, Hemangioendothelioma, Hodgkin lymphoma, Hodgkin's disease, Hodgkin's lymphoma, Hypopharyngeal cancer, Infiltrating ductal carcinoma, Infiltrating lobular carcinoma, Inflammatory breast cancer, Intestinal Cancer, Intrahepatic bile duct cancer, Invasive/infiltrating breast cancer, Islet cell cancer, Jaw cancer, Kaposi sarcoma, Kidney cancer, Laryngeal cancer, Leiomyosarcoma, Leptomeningeal metastases, Leukemia, Lip cancer, Liposarcoma, Liver cancer, Lobular carcinoma in situ, Low-grade astrocytoma, Lung cancer, Lymph node cancer, Lymphoma, Male breast cancer, Medullary carcinoma, Medulloblastoma, Melanoma, Meningioma, Merkel cell carcinoma, Mesenchymal chondrosarcoma, Mesenchymous, Mesothelioma, Metastatic breast cancer, Metastatic melanoma, Metastatic squamous neck cancer, Mixed gliomas, Mouth cancer, Mucinous carcinoma, Mucosal melanoma, Multiple myeloma, Nasal cavity cancer, Nasopharyngeal cancer, Neck cancer, Neuroblastoma, Neuroendocrine tumors, Non-Hodgkin lymphoma, Non-Hodgkin's lymphoma, Non-small cell lung cancer, Oat cell cancer, Ocular cancer, Ocular melanoma, Oligodendroglioma, Oral cancer, Oral cavity cancer, Oropharyngeal cancer, Osteogenic sarcoma, Osteosarcoma, Ovarian cancer, Ovarian epithelial cancer, Ovarian germ cell tumor, Ovarian primary peritoneal carcinoma, Ovarian sex cord stromal tumor, Paget's disease, Pancreatic cancer, Papillary carcinoma, Paranasal sinus cancer, Parathyroid cancer, Pelvic cancer, Penile cancer, Peripheral nerve cancer, Peritoneal cancer, Pharyngeal cancer, Pheochromocytoma, Pilocytic astrocytoma, Pineal region tumor, Pineoblastoma, Pituitary gland cancer, Primary central nervous system lymphoma, Prostate cancer, Rectal cancer, Renal cell cancer, Renal pelvis cancer, Rhabdomyosarcoma, Salivary gland cancer, Sarcoma, Sarcoma, bone, Sarcoma, soft tissue, Sarcoma, uterine, Sinus cancer, Skin cancer, Small cell lung cancer, Small intestine cancer, Soft tissue sarcoma, Spinal cancer, Spinal column cancer, Spinal cord cancer, Spinal tumor, Squamous cell carcinoma, Stomach cancer, Synovial sarcoma, T-cell lymphoma), Testicular cancer, Throat cancer, Thymoma/thymic carcinoma, Thyroid cancer, Tongue cancer, Tonsil cancer, Transitional cell cancer, Transitional cell cancer, Transitional cell cancer, Triple-negative breast cancer, Tubal cancer, Tubular carcinoma, Ureteral cancer, Ureteral cancer, Urethral cancer, Uterine adenocarcinoma, Uterine cancer, Uterine sarcoma, Vaginal cancer, and Vulvar cancer.


In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of multiple myeloma such as a CS1 CAR, a CD38 CAR, a CD138 CAR, and a BCMA CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of acute myeloid leukemia such as a CD33 CAR, a CD123 CAR, and a CLL1 CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of T cell leukemia such as a CD5 CAR, and a CD7 CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of solid tumors such a mesothelin CAR, a GD2 CAR, a GPC3 CAR, a Her2 CAR, an EGFR CAR, a Mud CAR, an EpCAM CAR, a PD-L1 CAR, a CEA CAR, a Muc16 CAR, a CD133 CAR, a CD171 CAR, a CD70 CAR, a CLD18 CAR, a cMET CAR, a EphA2 CAR, a FAP CAR, a Folate Receptor CAR, an IL13Rα2 CAR, an MG7 CAR, a PSMA CAR, a ROR1 CAR, and a VEGFR2 CAR.


The present invention also provides methods of reducing tumor burden in a subject. In some embodiments. As used herein, “tumor burden” refers to the number of cancer cells, or the amount of cancer in a subject. In some aspects tumor burden also refers to tumor load. In some embodiments, the tumor may be disseminated throughout the body of the subject. In one aspect, the tumor may be a liquid tumor such as leukemia or a lymphoma. The methods of reducing tumor burden may involve administering to the subject, a therapeutically effective amount of the immune cells. Immune cells may be engineered to express the compositions described herein. In some embodiments, the immune cells expressing the compositions of the invention may be administered to the subject via any of the routes of delivery described herein. Also provided herein are dosing regimens for administering the immune cells. In some embodiments, the subject may also be administered a therapeutically effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some aspects, the immunotherapeutic agents may be capable of reducing the tumor burden. Regimens for ligand/stimulus dosing are also provided. Reduction in tumor burden may be measured by any of the methods known in the art including tumor imaging, and measurement of marker proteins. In some aspects, bioluminescent imaging may be used to measure tumor burden. Bioluminescence imaging utilizes native light emission from bioluminescent proteins such as luciferase. Such bioluminescent proteins can participate in chemical reactions that release photons by the addition of suitable substrates. The release of photons can be captured by sensitive detection methods and quantified. Tumor cells may be engineered to express luciferase and the efficacy of the compositions described herein to reduce tumor burden may quantified by imaging. In some aspects, the tumor burden may be measured by the flux of photons (photons per sec). In some embodiments, photon flux positively correlates with tumor burden.


Diseases and Toxins


Various infectious diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “infectious disease” refers to any disorders caused by organisms such as bacteria, viruses, fungi or parasites. As a non-limiting example, the infectious disease may be Acute bacterial rhinosinusitis, 14-day measles, Acne, Acrodermatitis chronica atrophicans (ACA)-(late skin manifestation of latent Lyme disease), Acute hemorrhagic conjunctivitis, Acute hemorrhagic cystitis, Acute rhinosinusitis, Adult T-cell Leukemia-Lymphoma (ATLL), African Sleeping Sickness, AIDS (Acquired Immunodeficiency Syndrome), Alveolar hydatid, Amebiasis, Amebic meningoencephalitis, Anaplasmosis, Anthrax, Arboviral or parainfectious, Ascariasis—(Roundworm infections), Aseptic meningitis, Athlete's foot (Tinea pedis), Australian tick typhus, Avian Influenza, Babesiosis, Bacillary angiomatosis, Bacterial meningitis, Bacterial vaginosis, Balanitis, Balantidiasis, Bang's disease, Barmah Forest virus infection, Bartonellosis (Verruga peruana; Carrion's disease; Oroya fever), Bat Lyssavirus Infection, Bay sore (Chiclero's ulcer), Baylisascaris infection (Racoon roundworm infection), Beaver fever, Beef tapeworm, Bejel (endemic syphilis), Biphasic meningoencephalitis, Black Bane, Black death, Black piedra, Blackwater Fever, Blastomycosis, Blennorrhea of the newborn, Blepharitis, Boils, Bornholm disease (pleurodynia), Borrelia miyamotoi Disease, Botulism, Boutonneuse fever, Brazilian purpuric fever, Break Bone fever, Brill, Bronchiolitis, Bronchitis, Brucellosis (Bang's disease), Bubonic plague, Bullous impetigo, Burkholderia mallei (Glanders), Burkholderia pseudomallei (Melioidosis), Buruli ulcers (also Mycoburuli ulcers), Busse, Busse-Buschke disease (Cryptococcosis), California group encephalitis, Campylobacteriosis, Candidiasis, Canefield fever (Canicola fever; 7-day fever; Weil's disease; leptospirosis; canefield fever), Canicola fever, Capillariasis, Carate, Carbapenem-resistant Enterobacteriaceae (CRE), Carbuncle, Carrion's disease, Cat Scratch fever, Cave disease, Central Asian hemorrhagic fever, Central European tick, Cervical cancer, Chagas disease, Chancroid (Soft chancre), Chicago disease, Chickenpox (Varicella), Chiclero's ulcer, Chikungunya fever, Chlamydial infection, Cholera, Chromoblastomycosis, Ciguatera, Clap, Clonorchiasis (Liver fluke infection), Clostridium Difficile Infection, Clostridium Perfringens (Epsilon Toxin), Coccidioidomycosis fungal infection (Valley fever; desert rheumatism), Coenurosis, Colorado tick fever, Condyloma accuminata, Condyloma accuminata (Warts), Condyloma lata, Congo fever, Congo hemorrhagic fever virus, Conjunctivitis, cowpox, Crabs, Crimean, Croup, Cryptococcosis, Cryptosporidiosis (Crypto), Cutaneous Larval Migrans, Cyclosporiasis, Cystic hydatid, Cysticercosis, Cystitis, Czechoslovak tick, D68 (EV-D68), Dacryocytitis, Dandy fever, Darling's Disease, Deer fly fever, Dengue fever (1, 2, 3 and 4), Desert rheumatism, Devil's grip, Diphasic milk fever, Diphtheria, Disseminated Intravascular Coagulation, Dog tapeworm, Donovanosis, Donovanosis (Granuloma inguinale), Dracontiasis, Dracunculosis, Duke's disease, Dum Dum Disease, Durand-Nicholas-Favre disease, Dwarf tapeworm, E. Coli infection (E. coli), Eastern equine encephalitis, Ebola Hemorrhagic Fever (Ebola virus disease EVD), Ectothrix, Ehrlichiosis (Sennetsu fever), Encephalitis, Endemic Relapsing fever, Endemic syphilis, Endophthalmitis, Endothrix, Enterobiasis (Pinworm infection), Enterotoxin-B Poisoning (Staph Food Poisoning), Enterovirus Infection, Epidemic Keratoconjunctivitis, Epidemic Relapsing fever, Epidemic typhus, Epiglottitis, Erysipelis, Erysipeloid (Erysipelothricosis), Erythema chronicum migrans, Erythema infectiosum, Erythema marginatum, Erythema multiforme, Erythema nodosum, Erythema nodosum leprosum, Erythrasma, Espundia, Eumycotic mycetoma, European blastomycosis, Exanthem subitum (Sixth disease), Eyeworm, Far Eastern tick, Fascioliasis, Fievre boutonneuse (Tick typhus), Fifth Disease (erythema infectiosum), Filatow-Dukes' Disease (Scalded Skin Syndrome; Ritter's Disease), Fish tapeworm, Fitz-Hugh-Curtis syndrome-Perihepatitis, Flinders Island Spotted Fever, Flu (Influenza), Folliculitis, Four Corners Disease, Four Corners Disease (Human Pulmonary Syndrome (HPS)), Frambesia, Francis disease, Furunculosis, Gas gangrene, Gastroenteritis, Genital Herpes, Genital Warts, German measles, Gerstmann-Straussler-Scheinker (GSS), Giardiasis, Gilchrist's disease, Gingivitis, Gingivostomatitis, Glanders, Glandular fever (infectious mononucleosis), Gnathostomiasis, Gonococcal Infection (Gonorrhea), Gonorrhea, Granuloma inguinale (Donovanosis), Guinea Worm, Haemophilus Influenza disease, Hamburger disease, Hansen's disease—leprosy, Hantaan disease, Hantaan-Korean hemorrhagic fever, Hantavirus Pulmonary Syndrome, Hantavirus Pulmonary Syndrome (HPS), Hard chancre, Hard measles, Haverhill fever—Rat bite fever, Head and Body Lice, Heartland fever, Helicobacterosis, Hemolytic Uremic Syndrome (HUS), Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Herpangina, Herpes—genital, Herpes labialis, Herpes—neonatal, Hidradenitis, Histoplasmosis, Histoplasmosis infection (Histoplasmosis), His-Werner disease, HIV infection, Hookworm infections, Hordeola, Hordeola (Stye), HTLV, HTLV-associated myelopathy (HAM), Human granulocytic ehrlichiosis, Human monocytic ehrlichiosis, Human Papillomavirus (HPV), Human Pulmonary Syndrome, Hydatid cyst, Hydrophobia, Impetigo, Including congenital (German Measles), Inclusion conjunctivitis, Inclusion conjunctivitis-Swimming Pool conjunctivitis—Pannus, Infantile diarrhea, Infectious Mononucleosis, Infectious myocarditis, Infectious pericarditis, Influenza, Isosporiasis, Israeli spotted fever, Japanese Encephalitis, Jock itch, Jorge Lobo disease—lobomycosis, Jungle yellow fever, Junin Argentinian hemorrhagic fever, Kala Azar, Kaposi's sarcoma, Keloidal blastomycosis, Keratoconjunctivitis, Kuru, Kyasanur forest disease, LaCrosse encephalitis, Lassa hemorrhagic fever, Legionellosis (Legionnaires Disease), Legionnaire's pneumonia, Lemierre's Syndrome (Postanginal septicemia), Lemming fever, Leprosy, Leptospirosis (Nanukayami fever; Weil's disease), Listeriosis (Listeria), Liver fluke infection, Lobo's mycosis, Lockjaw, Loiasis, Louping Ill, Ludwig's angina, Lung fluke infection, Lung fluke infection (Paragonimiasis), Lyme disease, Lymphogranuloma venereum infection (LGV), Machupo Bolivian hemorrhagic fever, Madura foot, Mal del pinto, Malaria, Malignant pustule, Malta fever, Marburg hemorrhagic fever, Masters disease, Maternal Sepsis (Puerperal fever), Measles, Mediterranean spotted fever, Melioidosis (Whitmore's disease), Meningitis, Meningococcal Disease, MERS, Milker's nodule, Molluscum contagiosum, Moniliasis, monkeypox, Mononucleosis, Mononucleosis-like syndrome, Montezuma's Revenge, Morbilli, MRSA (methicillin-resistant Staphylococcus aureus) infection, Mucormycosis-Zygomycosis, Multiple Organ Dysfunction Syndrome or MODS, Multiple-system atrophy (MSA), Mumps, Murine typhus, Murray Valley Encephalitis (MVE), Mycoburuli ulcers, Mycoburuli ulcers-Buruli ulcers, Mycotic vulvovaginitis, Myositis, Nanukayami fever, Necrotizing fasciitis, Necrotizing fasciitis-Type 1, Necrotizing fasciitis-Type 2, Negishi, New world spotted fever, Nocardiosis, Nongonococcal urethritis, Non-Polio (Non-Polio Enterovirus), Norovirus infection, North American blastomycosis, North Asian tick typhus, Norwalk virus infection, Norwegian itch, O'Hara disease, Omsk hemorrhagic fever, Onchoceriasis, Onychomycosis, Opisthorchiasis, Opthalmia neonatorium, Oral hairy leukoplakia, Orf, Oriental Sore, Oriental Spotted Fever, Ornithosis (Parrot fever; Psittacosis), Oroya fever, Otitis externa, Otitis media, Pannus, Paracoccidioidomycosis, Paragonimiasis, Paralytic Shellfish Poisoning (Paralytic Shellfish Poisoning), Paronychia (Whitlow), Parotitis, PCP pneumonia, Pediculosis, Peliosis hepatica, Pelvic Inflammatory Disease, Pertussis (also called Whooping cough), Phaeohyphomycosis, Pharyngoconjunctival fever, Piedra (White Piedra), Piedra (Black Piedra), Pigbel, Pink eye conjunctivitis, Pinta, Pinworm infection, Pitted Keratolysis, Pityriasis versicolor (Tinea versicolor), Plague; Bubonic, Pleurodynia, Pneumococcal Disease, Pneumocystis, Pneumonia, Pneumonic (Plague), Polio or Poliomyelitis, Polycystic hydatid, Pontiac fever, Pork tapeworm, Posada-Wernicke disease, Postanginal septicemia, Powassan, Progressive multifocal leukoencephalopathy, Progressive Rubella Panencephalitis, Prostatitis, Pseudomembranous colitis, Psittacosis, Puerperal fever, Pustular Rash diseases (Small pox), Pyelonephritis, Pylephlebitis, Q-Fever, Quinsy, Quintana fever (5-day fever), Rabbit fever, Rabies, Racoon roundworm infection, Rat bite fever, Rat tapeworm, Reiter Syndrome, Relapsing fever, Respiratory syncytial virus (RSV) infection, Rheumatic fever, Rhodotorulosis, Ricin Poisoning, Rickettsialpox, Rickettsiosis, Rift Valley Fever, Ringworm, Ritter's Disease, River Blindness, Rocky Mountain spotted fever, Rose Handler's disease (Sporotrichosis), Rose rash of infants, Roseola, Ross River fever, Rotavirus infection, Roundworm infections, Rubella, Rubeola, Russian spring, Salmonellosis gastroenteritis, San Joaquin Valley fever, Sao Paulo Encephalitis, Sao Paulo fever, SARS, Scabies Infestation (Scabies) (Norwegian itch), Scalded Skin Syndrome, Scarlet fever (Scarlatina), Schistosomiasis, Scombroid, Scrub typhus, Sennetsu fever, Sepsis (Septic shock), Severe Acute Respiratory Syndrome, Severe Acute Respiratory Syndrome (SARS), Shiga Toxigenic Escherichia coli (STEC/VTEC), Shigellosis gastroenteritis (Shigella), Shinbone fever, Shingles, Shipping fever, Siberian tick typhus, Sinusitis, Sixth disease, Slapped cheek disease, Sleeping sickness, Smallpox (Variola), Snail Fever, Soft chancre, Southern tick associated rash illness, Sparganosis, Spelunker's disease, Sporadic typhus, Sporotrichosis, Spotted fever, Spring, St. Louis encephalitis, Staphylococcal Food Poisoning, Staphylococcal Infection, Strep. throat, Streptococcal Disease, Streptococcal Toxic-Shock Syndrome, Strongyloiciasis, Stye, Subacute Sclerosing Panencephalitis, Subacute Sclerosing Panencephalitis (SSPE), Sudden Acute Respiratory Syndrome, Sudden Rash, Swimmer's ear, Swimmer's Itch, Swimming Pool conjunctivitis, Sylvatic yellow fever, Syphilis, Systemic Inflammatory Response Syndrome (SIRS), Tabes dorsalis (tertiary syphilis), Taeniasis, Taiga encephalitis, Tanner's disease, Tapeworm infections, Temporal lobe encephalitis, Temporal lobe encephalitis, tetani (Lock Jaw), Tetanus Infection, Threadworm infections, Thrush, Tick, Tick typhus, Tinea barbae, Tinea capitis, Tinea corporis, Tinea cruris, Tinea manuum, Tinea nigra, Tinea pedis, Tinea unguium, Tinea versicolor, Torulopsis, Torulopsis, Toxic Shock Syndrome, Toxoplasmosis, transmissible spongioform (CJD), Traveler's diarrhea, Trench fever 5, Trichinellosis, Trichomoniasis, Trichomycosis axillaris, Trichuriasis, Tropical Spastic Paraparesis (TSP), Trypanosomiasis, Tuberculosis (TB), Tuberculosis, Tularemia, Typhoid Fever, Typhus fever, Ulcus molle, Undulant fever, Urban yellow fever, Urethritis, Vaginitis, Vaginosis, Vancomycin Intermediate (VISA), Vancomycin Resistant (VRSA), Varicella, Venezuelan Equine encephalitis, Verruga peruana, Vibrio cholerae (Cholera), Vibriosis (Vibrio), Vincent's disease or Trench mouth, Viral conjunctivitis, Viral Meningitis, Viral meningoencephalitis, Viral rash, Visceral Larval Migrans, Vomito negro, Vulvovaginitis, Warts, Waterhouse, Weil's disease, West Nile Fever, Western equine encephalitis, Whipple's disease, Whipworm infection, White Piedra, Whitlow, Whitmore's disease, Winter diarrhea, Wolhynia fever, Wool sorters' disease, Yaws, Yellow Fever, Yersinosis, Yersinosis (Yersinia), Zahorsky's disease, Zika virus disease, Zoster, Zygomycosis, John Cunningham Virus (JCV), Human immunodeficiency virus (HIV), Influenza virus, Hepatitis B, Hepatitis C, Hepatitis D, Respiratory syncytial virus (RSV), Herpes simplex virus 1 and 2, Human Cytomegalovirus, Epstein-Barr virus, Varicella zoster virus, Coronaviruses, Poxviruses, Enterovirus 71, Rubella virus, Human papilloma virus, Streptococcus pneumoniae, Streptococcus viridans, Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-intermediate Staphylococcus aureus (VISA), Vancomycin-resistant Staphylococcus aureus (VRSA), Staphylococcus epidermidis (S. epidermidis), Clostridium Tetani, Bordetella pertussis, Bordetella paratussis, Mycobacterium, Francisella tularensis, Toxoplasma gondii, Candida (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. lusitaniae) and/or any other infectious diseases, disorders or syndromes.


Various toxins may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of toxins include Ricin, Bacillus anthracis, Shiga toxin and Shiga-like toxin, Botulinum toxins.


Various tropical diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of tropical diseases include Chikungunya fever, Dengue fever, Chagas disease, Rabies, Malaria, Ebola virus, Marburg virus, West Nile Virus, Yellow Fever, Japanese encephalitis virus, St. Louis encephalitis virus.


Various foodborne illnesses and gastroenteritis may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of foodborne illnesses and gastroenteritis include Rotavirus, Norwalk virus (Norovirus), Campylobacter jejuni, Clostridium difficile, Entamoeba histolytica, Helicobacter pylori, Enterotoxin B of Staphylococcus aureus, Hepatitis A virus (HAV), Hepatitis E, Listeria monocytogenes, Salmonella, Clostridium perfringens, and Salmonella.


Various infectious agents may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of infectious agents include adenoviruses, Anaplasma phagocytophilum, Ascaris lumbricoides, Bacillus anthracis, Bacillus cereus, Bacteroides sp, Barmah Forest virus, Bartonella bacilliformis, Bartonella henselae, Bartonella quintana, beta-toxin of Clostridium perfringens, Bordetella pertussis, Bordetella parapertussis, Borrelia burgdorferi, Borrelia miyamotoi, Borrelia recurrentis, Borrelia sp., Botulinum toxin, Brucella sp., Burkholderia pseudomallei, California encephalitis virus, Campylobacter, Candida albicans, chikungunya virus, Chlamydia psittaci, Chlamydia trachomatis, Clonorchis sinensis, Clostridium difficile bacteria, Clostridium tetani, Colorado tick fever virus, Corynebacterium diphtherias, Corynebacterium minutissimum, Coxiella burnetii, coxsackie A, coxsackie B, Crimean-Congo hemorrhagic fever virus, cytomegalovirus, dengue virus, Eastern Equine encephalitis virus, Ebola viruses, echovirus, Ehrlichia chaffeensis, Ehrlichia equi, Ehrlichia sp., Entamoeba histolytica, Enterobacter sp., Enterococcus faecalis, Enterovirus 71, Epstein-Barr virus (EBV), Erysipelothrix rhusiopathiae, Escherichia coli, Flavivirus, Fusobacterium necrophorum, Gardnerella vaginalis, Group B streptococcus, Haemophilus aegyptius, Haemophilus ducreyi, Haemophilus influenzae, hantavirus, Helicobacter pylori, Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, herpes simplex virus 1 and 2, human herpes virus 6, human herpes Virus 8, human immunodeficiency virus 1 and 2, human T-cell leukemia viruses I and II, influenza viruses (A, B, C), Jamestown Canyon virus, Japanese encephalitis antigenic, Japanese encephalitis virus, John Cunninham virus, juninvirus, Kaposi's Sarcoma-associated Herpes Virus (KSHV), Klebsiella granulomatis, Klebsiella sp Kyasanur Forest Disease virus, La Crosse virus, Lassavirus, Legionella pneumophila, Leptospira interrogans, Listeria monocytogenes, lymphocytic choriomeningitis virus, lyssavirus, Machupovirus, Marburg virus, measles virus, MERS coronavirus (MERS-CoV), Micrococcus sedentarius, Mobiluncus sp., Molluscipoxvirus, Moraxella catarrhalis, Morbilli-Rubeola virus, Mumps virus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium ulcerans, Mycoplasma genitalium, Mycoplasma sp, Nairovirus, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia, Norwalk virus, norovirus, Omsk hemorrhagic fever virus, papilloma virus, parainfluenza viruses 1-3, parapoxvirus, parvovirus B19, Peptostreptococcus sp., Plasmodium sp., polioviruses types I, II, and III, Proteus sp., Pseudomonas aeruginosa, Pseudomonas pseudomallei, Pseudomonas sp., rabies virus, respiratory syncytial virus, ricin toxin, Rickettsia australis, Rickettsia conori, Rickettsia honei, Rickettsia prow azekii, Ross River Virus, rotavirus, rubellavirus, Saint Louis encephalitis, Salmonella typhi, Sarcoptes scabiei, SARS-associated coronavirus (SARS-CoV), Serratia sp., Shiga toxin and Shiga-like toxin, Shigella sp., Sin Nombre Virus, Snowshoe hare virus, Staphylococcus aureus, Staphylococcus epidermidis, Streptobacillus moniliformis, Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus group A-H, Streptococcus pneumoniae, Streptococcus pyogenes, Treponema pallidum subsp. Pallidum, Treponema pallidum var. carateum, Treponema pallidum var. endemicum, Tropheryma whippelii, Ureaplasma urealyticum, Varicella-Zoster virus, variola virus, Vibrio cholerae, West Nile virus, yellow fever virus, Yersinia enterocolitica, Yersinia pestis, and Zika virus.


Various rare diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “rare disease” refers to any disease that affects a small percentage of the population. As a non-limiting example, the rare disease may be Acrocephalosyndactylia, Acrodermatitis, Addison Disease, Adie Syndrome, Alagille Syndrome, Amylose, Amyotrophic Lateral Sclerosis, Angelman Syndrome, Angiolymphoid Hyperplasia with Eosinophilia, Arnold-Chiari Malformation, Arthritis, Juvenile Rheumatoid, Asperger Syndrome, Bardet-Biedl Syndrome, Barrett Esophagus, Beckwith-Wiedemann Syndrome, Behcet Syndrome, Bloom Syndrome, Bowen's Disease, Brachial Plexus Neuropathies, Brown-Sequard Syndrome, Budd-Chiari Syndrome, Burkitt Lymphoma, Carcinoma 256, Walker, Caroli Disease, Charcot-Marie-Tooth Disease, Chediak-Higashi Syndrome, Chiari-Frommel Syndrome, Chondrodysplasia Punctata, Colonic Pseudo-Obstruction, Colorectal Neoplasms, Hereditary Nonpolyposis, Craniofacial Dysostosis, Creutzfeldt-Jakob Syndrome, Crohn Disease, Cushing Syndrome, Cystic Fibrosis, Dandy-Walker Syndrome, De Lange Syndrome, Dementia, Vascular, Dermatitis Herpetiformis, DiGeorge Syndrome, Diffuse Cerebral Sclerosis of Schilder, Duane Retraction Syndrome, Dupuytren Contracture, Ebstein Anomaly, Eisenmenger Complex, Ellis-Van Creveld Syndrome, Encephalitis, Enchondromatosis, Epidermal Necrolysis, Toxic, Facial Hemiatrophy, Factor XII Deficiency, Fanconi Anemia, Felty's Syndrome, Fibrous Dysplasia, Polyostotic, Fox-Fordyce Disease, Friedreich Ataxia, Fusobacterium, Gardner Syndrome, Gaucher Disease, Gerstmann Syndrome, Giant Lymph Node Hyperplasia, Glycogen Storage Disease Type I, Glycogen Storage Disease Type II, Glycogen Storage Disease Type IV, Glycogen Storage Disease Type V, Glycogen Storage Disease Type VII, Goldenhar Syndrome, Guillain-Barre Syndrome, Hallermann's Syndrome, Hamartoma Syndrome, Multiple, Hartnup Disease, Hepatolenticular Degeneration, Hepatolenticular Degeneration, Hereditary Sensory and Motor Neuropathy, Hirschsprung Disease, Histiocytic Necrotizing Lymphadenitis, Histiocytosis, Langerhans-Cell, Hodgkin Disease, Homer Syndrome, Huntington Disease, Hyperaldosteronism, Hyperhidrosis, Hyperostosis, Diffuse Idiopathic Skeletal, Hypopituitarism, Inappropriate ADH Syndrome, Intestinal Polyps, Isaacs Syndrome, Kartagener Syndrome, Kearns-Sayre Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay-Weber Syndrome, Kluver-Bucy Syndrome, Korsakoff Syndrome, Lafora Disease, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Langer-Giedion Syndrome, Leigh Disease, Lesch-Nyhan Syndrome, Leukodystrophy, Globoid Cell, Li-Fraumeni Syndrome, Long QT Syndrome, Machado-Joseph Disease, Mallory-Weiss Syndrome, Marek Disease, Marfan Syndrome, Meckel Diverticulum, Meige Syndrome, Melkersson-Rosenthal Syndrome, Meniere Disease, Mikulicz's Disease, Miller Fisher Syndrome, Mobius Syndrome, Moyamoya Disease, Mucocutaneous Lymph Node Syndrome, Mucopolysaccharidosis I, Mucopolysaccharidosis II, Mucopolysaccharidosis III, Mucopolysaccharidosis IV, Mucopolysaccharidosis VI, Multiple Endocrine Neoplasia Type 1, Munchausen Syndrome by Proxy, Muscular Atrophy, Spinal, Narcolepsy, Neuroaxonal Dystrophies, Neuromyelitis Optica, Neuronal Ceroid-Lipofuscinoses, Niemann-Pick Diseases, Noonan Syndrome, Optic Atrophies, Hereditary, Osteitis Deformans, Osteochondritis, Osteochondrodysplasias, Osteolysis, Essential, Paget Disease Extramammary, Paget's Disease, Mammary, Panniculitis, Nodular Nonsuppurative, Papillon-Lefevre Disease, Paralysis, Pelizaeus-Merzbacher Disease, Pemphigus, Benign Familial, Penile Induration, Pericarditis, Constrictive, Peroxisomal Disorders, Peutz-Jeghers Syndrome, Pick Disease of the Brain, Pierre Robin Syndrome, Pigmentation Disorders, Pityriasis Lichenoides, Polycystic Ovary Syndrome, Polyendocrinopathies, Autoimmune, Prader-Willi Syndrome, Pupil Disorders, Rett Syndrome, Reye Syndrome, Rubinstein-Taybi Syndrome, Sandhoff Disease, Sarcoma, Ewing's, Schnitzler Syndrome, Sjogren's Syndrome, Sjogren-Larsson Syndrome, Smith-Lemli-Opitz Syndrome, Spinal Muscular Atrophies of Childhood, Sturge-Weber Syndrome, Sweating, Gustatory, Takayasu Arteritis, Tangier Disease, Tay-Sachs Disease, Thromboangiitis Obliterans, Thyroiditis, Autoimmune, Tietze's Syndrome, Togaviridae Infections, Tolosa-Hunt Syndrome, Tourette Syndrome, Uveomeningoencephalitic Syndrome, Waardenburg's Syndrome, Wegener Granulomatosis, Weil Disease, Werner Syndrome, Williams Syndrome, Wilms Tumor, Wolff-Parkinson-White Syndrome, Wolfram Syndrome, Wolman Disease, Zellweger Syndrome, Zollinger-Ellison Syndrome, and von Willebrand Diseases.


Various autoimmune diseases and autoimmune-related diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “autoimmune disease” refers to a disease in which the body produces antibodies that attack its own tissues. As a non-limiting example, the autoimmune disease may be Acute Disseminated Encephalomyelitis (ADEM), Acute necrotizing hemorrhagic leukoencephalitis, Addison's disease, Agammaglobulinemia, Alopecia areata, Amyloidosis, Ankylosing spondylitis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome (APS), Autoimmune angioedema, Autoimmune aplastic anemia, Autoimmune dysautonomia, Autoimmune hepatitis, Autoimmune hyperlipidemia, Autoimmune immunodeficiency, Autoimmune inner ear disease (AIED), Autoimmune myocarditis, Autoimmune oophoritis, Autoimmune pancreatitis, Autoimmune retinopathy, Autoimmune thrombocytopenic purpura (ATP), Autoimmune thyroid disease, Autoimmune urticaria, Axonal & neuronal neuropathies, Balo disease, Behcet's disease, Bullous pemphigoid, Cardiomyopathy, Castleman disease, Celiac disease, Chagas disease, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic recurrent multifocal ostomyelitis (CRMO), Churg-Strauss syndrome, Cicatricial pemphigoid/benign mucosal pemphigoid, Crohn's disease, Cogans syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST disease, Essential mixed cryoglobulinemia, Demyelinating neuropathies, Dermatitis herpetiformis, Dermatomyositis, Devic's disease (neuromyelitis optica), Discoid lupus, Dressler's syndrome, Endometriosis, Eosinophilic esophagitis, Eosinophilic fasciitis, Erythema nodosum, Experimental allergic encephalomyelitis, Evans syndrome, Fibromyalgia**, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Giant cell myocarditis, Glomerulonephritis, Goodpasture's syndrome, Granulomatosis with Polyangiitis (GPA) (formerly called Wegener's Granulomatosis), Graves' disease, Guillain-Barre syndrome, Hashimoto's encephalitis, Hashimoto's thyroiditis, Hemolytic anemia, Henoch-Schonlein purpura, Herpes gestationis, Hypogammaglobulinemia, Idiopathic thrombocytopenic purpura (ITP), IgA nephropathy, IgG4-related sclerosing disease, Immunoregulatory lipoproteins, Inclusion body myositis, Interstitial cystitis, Juvenile arthritis, Juvenile diabetes (Type 1 diabetes), Juvenile myositis, Kawasaki syndrome, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosis, Ligneous conjunctivitis, Linear IgA disease (LAD), Lupus (SLE), Lyme disease, chronic, Meniere's disease, Microscopic polyangiitis, Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Multiple sclerosis, Myasthenia gravis, Myositis, Narcolepsy, Neuromyelitis optica (Devic's), Neutropenia, Ocular cicatricial pemphigoid, Optic neuritis, Palindromic rheumatism, PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus), Paraneoplastic cerebellar degeneration, Paroxysmal nocturnal hemoglobinuria (PNH), Parry Romberg syndrome, Parsonnage-Turner syndrome, Pars planitis (peripheral uveitis), Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia, POEMS syndrome, Polyarteritis nodosa, Type I, II, & III autoimmune polyglandular syndromes, Polymyalgia rheumatica, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Progesterone dermatitis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Psoriasis, Psoriatic arthritis, Idiopathic pulmonary fibrosis, Pyoderma gangrenosum, Pure red cell aplasia, Raynauds phenomenon, Reactive Arthritis, Reflex sympathetic dystrophy, Reiter's syndrome, Relapsing polychondritis, Restless legs syndrome, Retroperitoneal fibrosis, Rheumatic fever, Rheumatoid arthritis, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sjogren's syndrome, Sperm & testicular autoimmunity, Stiff person syndrome, Subacute bacterial endocarditis (SBE), Susac's syndrome, Sympathetic ophthalmia, Takayasu's arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Tolosa-Hunt syndrome, Transverse myelitis, Ulcerative colitis, Undifferentiated connective tissue disease (UCTD), Uveitis, Vasculitis, Vesiculobullous dermatosis, Vitiligo, and Wegener's granulomatosis (now termed Granulomatosis with Polyangiitis (GPA).


Various kidney diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the kidney disease Abderhalden-Kaufmann-Lignac syndrome (Nephropathic Cystinosis), Abdominal Compartment Syndrome, Acute Kidney Failure/Acute Kidney Injury, Acute Lobar Nephronia, Acute Phosphate Nephropathy, Acute Tubular Necrosis, Adenine Phosphoribosyltransferase Deficiency, Adenovirus Nephritis, Alport Syndrome, Amyloidosis, ANCA Vasculitis Related to Endocarditis and Other Infections, Angiomyolipoma, Analgesic Nephropathy, Anorexia Nervosa and Kidney Disease, Angiotensin Antibodies and Focal Segmental Glomerulosclerosis, Antiphospholipid Syndrome, Anti-TNF-α Therapy-related Glomerulonephritis, APOL1 Mutations, Apparent Mineralocorticoid Excess Syndrome, Aristolochic Acid Nephropathy, Chinese Herbal Nephropathy, Balkan Endemic Nephropathy, Bartter Syndrome, Beeturia, β-Thalassemia Renal Disease, Bile Cast Nephropathy, BK Polyoma Virus Nephropathy in the Native Kidney, Bladder Rupture, Bladder Sphincter Dyssynergia, Bladder Tamponade, Border-Crossers' Nephropathy, Bourbon Virus and Acute Kidney Injury, Burnt Sugarcane Harvesting and Acute Renal Dysfunction, Byetta and Renal Failure, C1q Nephropathy, Cannabinoid Hyperemesis Acute Renal Failure, Cardiorenal syndrome, Carfilzomib-Indiced Renal Injury, CFHR5 nephropathy, Charcot-Marie-Tooth Disease with Glomerulopathy, Cherry Concentrate and Acute Kidney Injury, Cholesterol Emboli, Churg-Strauss syndrome, Chyluria, Colistin Nephrotoxicity, Collagenofibrotic Glomerulopathy, Collapsing Glomerulopathy, Collapsing Glomerulopathy Related to CMV, Congenital Nephrotic Syndrome, Conorenal syndrome (Mainzer-Saldino Syndrome or Saldino-Mainzer Disease), Contrast Nephropathy, Copper Sulfate Intoxication, Cortical Necrosis, Crizotinib-related Acute Kidney Injury, Cryoglobuinemia, Crystalglobulin-Induced Nephropathy, Crystal-Induced Acute Kidney injury, Cystic Kidney Disease, Acquired, Cystinuria, Dasatinib-Induced Nephrotic-Range Proteinuria, Dense Deposit Disease (MPGN Type 2), Dent Disease (X-linked Recessive Nephrolithiasis), Dialysis Disequilibrium Syndrome, Diabetes and Diabetic Kidney Disease, Diabetes Insipidus, Dietary Supplements and Renal Failure, Drugs of Abuse and Kidney Disease, Duplicated Ureter, EAST syndrome, Ebola and the Kidney, Ectopic Kidney, Ectopic Ureter, Edema, Swelling, Erdheim-Chester Disease, Fabry's Disease, Familial Hypocalciuric Hypercalcemia, Fanconi Syndrome, Fraser syndrome, Fibronectin Glomerulopathy, Fibrillary Glomerulonephritis and Immunotactoid Glomerulopathy, Fraley syndrome, Focal Segmental Glomerulosclerosis, Focal Sclerosis, Focal Glomerulosclerosis, Galloway Mowat syndrome, Giant Cell (Temporal) Arteritis with Kidney Involvement, Gestational Hypertension, Gitelman Syndrome, Glomerular Diseases, Glomerular Tubular Reflux, Glycosuria, Goodpasture Syndrome, Hair Dye Ingestion and Acute Kidney Injury, Hantavirus Infection Podocytopathy, Hematuria (Blood in Urine), Hemolytic Uremic Syndrome (HUS), Atypical Hemolytic Uremic Syndrome (aHUS), Hemophagocytic Syndrome, Hemorrhagic Cystitis, Hemorrhagic Fever with Renal Syndrome (HFRS, Hantavirus Renal Disease, Korean Hemorrhagic Fever, Epidemic Hemorrhagic Fever, Nephropathis Epidemica), Hemosiderosis related to Paroxysmal Nocturnal Hemoglobinuria and Hemolytic Anemia, Hepatic Glomerulopathy, Hepatic Veno-Occlusive Disease, Sinusoidal Obstruction Syndrome, Hepatitis C-Associated Renal Disease, Hepatorenal Syndrome, Herbal Supplements and Kidney Disease, High Blood Pressure and Kidney Disease, HIV-Associated Nephropathy (HIVAN), Horseshoe Kidney (Renal Fusion), Hunner's Ulcer, Hyperaldosteronism, Hypercalcemia, Hyperkalemia, Hypermagnesemia, Hypernatremia, Hyperoxaluria, Hyperphosphatemia, Hypocalcemia, Hypokalemia, Hypokalemia-induced renal dysfunction, Hypokalemic Periodic Paralysis, Hypomagnesemia, Hyponatremia, Hypophosphatemia, IgA Nephropathy, IgG4 Nephropathy, Interstitial Cystitis, Painful Bladder Syndrome (Questionnaire), Interstitial Nephritis, Ivemark's syndrome, Ketamine-Associated Bladder Dysfunction, Kidney Stones, Nephrolithiasis, Kombucha Tea Toxicity, Lead Nephropathy and Lead-Related Nephrotoxicity, Leptospirosis Renal Disease, Light Chain Deposition Disease, Monoclonal Immunoglobulin Deposition Disease, Liddle Syndrome, Lightwood-Albright Syndrome, Lipoprotein Glomerulopathy, Lithium Nephrotoxicity, LMX1B Mutations Cause Hereditary FSGS, Loin Pain Hematuria, Lupus, Systemic Lupus Erythematosis, Lupus Kidney Disease, Lupus Nephritis, Lupus Nephritis with Antineutrophil Cytoplasmic Antibody Seropositivity, Lyme Disease-Associated Glomerulonephritis, Malarial Nephropathy, Malignancy-Associated Renal Disease, Malignant Hypertension, Malakoplakia, Meatal Stenosis, Medullary Cystic Kidney Disease, Medullary Sponge Kidney, Megaureter, Melamine Toxicity and the Kidney, Membranoproliferative Glomerulonephritis, Membranous Nephropathy, MesoAmerican Nephropathy, Metabolic Acidosis, Metabolic Alkalosis, Methotrexate-related Renal Failure, Microscopic Polyangiitis, Milk-alkalai syndrome, Minimal Change Disease, MDMA (Molly; Ecstacy; 3,4-Methylenedioxymethamphetamine) and Kidney Failure, Multicystic dysplastic kidney, Multiple Myeloma, Myeloproliferative Neoplasms and Glomerulopathy, Nail-patella Syndrome, Nephrocalcinosis, Nephrogenic Systemic Fibrosis, Nephroptosis (Floating Kidney, Renal Ptosis), Nephrotic Syndrome, Neurogenic Bladder, Nodular Glomerulosclerosis, Non-Gonococcal Urethritis, Nutcracker syndrome, Orofaciodigital Syndrome, Orotic Aciduria, Orthostatic Hypotension, Orthostatic Proteinuria, Osmotic Diuresis, Ovarian Hyperstimulation Syndrome, Page Kidney, Papillary Necrosis, Papillorenal Syndrome (Renal-Coloboma Syndrome, Isolated Renal Hypoplasia), Parvovirus B19 and the Kidney, The Peritoneal-Renal Syndrome, Posterior Urethral Valve, Post-infectious Glomerulonephritis, Post-streptococcal Glomerulonephritis, Polyarteritis Nodosa, Polycystic Kidney Disease, Posterior Urethral Valves, Preeclampsia, Propofol infusion syndrome, Proliferative Glomerulonephritis with Monoclonal IgG Deposits (Nasr Disease), Propolis (Honeybee Resin) Related Renal Failure, Proteinuria (Protein in Urine), Pseudohyperaldosteronism, Pseudohypobicarbonatemia, Pseudohypoparathyroidism, Pulmonary-Renal Syndrome, Pyelonephritis (Kidney Infection), Pyonephrosis, Radiation Nephropathy, Ranolazine and the Kidney, Refeeding syndrome, Reflux Nephropathy, Rapidly Progressive Glomerulonephritis, Renal Abscess, Perinephric Abscess, Renal Agenesis, Renal Arcuate Vein Microthrombi-Associated Acute Kidney Injury, Renal Artery Aneurysm, Renal Artery Stenosis, Renal Cell Cancer, Renal Cyst, Renal Hypouricemia with Exercise-induced Acute Renal Failure, Renal Infarction, Renal Osteodystrophy, Renal Tubular Acidosis, Renin Secreting Tumors (Juxtaglomerular Cell Tumor), Reset Osmostat, Retrocaval Ureter, Retroperitoneal Fibrosis, Rhabdomyolysis, Rhabdomyolysis related to Bariatric Surgery, Rheumatoid Arthritis-Associated Renal Disease, Sarcoidosis Renal Disease, Salt Wasting, Renal and Cerebral, Schistosomiasis and Glomerular Disease, Schimke immuno-osseous dysplasia, Scleroderma Renal Crisis, Serpentine Fibula-Polycystic Kidney Syndrome, Exner Syndrome, Sickle Cell Nephropathy, Silica Exposure and Chronic Kidney Disease, Sri Lankan Farmers' Kidney Disease, Sjögren's Syndrome and Renal Disease, Synthetic Cannabinoid Use and Acute Kidney Injury, Kidney Disease Following Hematopoietic Cell Transplantation, Kidney Disease Related to Stem Cell Transplantation, Thin Basement Membrane Disease, Benign Familial Hematuria, Trigonitis, Tuberculosis, Genitourinary, Tuberous Sclerosis, Tubular Dysgenesis, Immune Complex Tubulointerstitial Nephritis Due to Autoantibodies to the Proximal Tubule Brush Border, Tumor Lysis Syndrome, Uremia, Uremic Optic Neuropathy, Ureteritis Cystica, Ureterocele, Urethral Caruncle, Urethral Stricture, Urinary Incontinence, Urinary Tract Infection, Urinary Tract Obstruction, Vesicointestinal Fistula, Vesicoureteral Reflux, Volatile Anesthetics and Acute Kidney Injury, Von Hippel-Lindau Disease, Waldenstrom's Macroglobulinemic Glomerulonephritis, Warfarin-Related Nephropathy, Wasp Stings and Acute Kidney Injury, Wegener's Granulomatosis, Granulomatosis with Polyangiitis, West Nile Virus and Chronic Kidney Disease, and Wunderlich syndrome.


Various cardiovascular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the cardiovascular disease may be Ischemic heart disease also known as coronary artery disease, Cerebrovascular disease (Stroke), Peripheral vascular disease, Heart failure, Rheumatic heart disease, and Congenital heart disease.


Various antibody deficiencies may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the antibody deficiencies may be X-Linked Agammaglobulinemia (XLA), Autosomal Recessive Agammaglobulinemia (ARA), Common Variable Immune Deficiency (CVID), IgG (IgG1, IgG2, IgG3 and IgG4) Subclass Deficiency, Selective IgA Deficiency, Specific Antibody Deficiency (SAD), Transient Hypogammaglobulinemia of Infancy, Antibody Deficiency with Normal or Elevated Immunoglobulins, Selective IgM Deficiency, Immunodeficiency with Thymoma (Good's Syndrome), Transcobalamin II Deficiency, Warts, Hypogammaglobulinemia, Infection, Myelokathexis (WHIM) Syndrome, Drug-Induced Antibody Deficiency, Kappa Chain Deficiency, Heavy Chain Deficiencies, Post-Meiotic Segregation (PMS2) Disorder, and Unspecified Hypogammaglobulinemia.


Various ocular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the ocular disease may be thyroid eye disease (TED), Graves' disease (GD) and orbitopathy, Retina Degeneration, Cataract, optic atrophy, macular degeneration, Leber congenital amaurosis, retinal degeneration, cone-rod dystrophy, Usher syndrome, leopard syndrome, photophobia, and photoaversion.


Various neurological diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the neurological disease may be Absence of the Septum Pellucidum, Acid Lipase Disease, Acid Maltase Deficiency, Acquired Epileptiform Aphasia, Acute Disseminated Encephalomyelitis, Attention Deficit-Hyperactivity Disorder (ADHD), Adie's Pupil, Adie's Syndrome, Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Agnosia, Aicardi Syndrome, Aicardi-Goutieres Syndrome Disorder, AIDS—Neurological Complications, Alexander Disease, Alpers' Disease, Alternating Hemiplegia, Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Anencephaly, Aneurysm, Angelman Syndrome, Angiomatosis, Anoxia, Antiphospholipid Syndrome, Aphasia, Apraxia, Arachnoid Cysts, Arachnoiditis, Arnold-Chiari Malformation, Arteriovenous Malformation, Asperger Syndrome, Ataxia, Ataxia Telangiectasia, Ataxias and Cerebellar or Spinocerebellar Degeneration, Atrial Fibrillation and Stroke, Attention Deficit-Hyperactivity Disorder, Autism Spectrum Disorder, Autonomic Dysfunction, Back Pain, Barth Syndrome, Batten Disease, Becker's Myotonia, Behcet's Disease, Bell's Palsy, Benign Essential Blepharospasm, Benign Focal Amyotrophy, Benign Intracranial Hypertension, Bernhardt-Roth Syndrome, Binswanger's Disease, Blepharospasm, Bloch-Sulzberger Syndrome, Brachial Plexus Birth Injuries, Brachial Plexus Injuries, Bradbury-Eggleston Syndrome, Brain and Spinal Tumors, Brain Aneurysm, Brain Injury, Brown-Sequard Syndrome, Bulbospinal Muscular Atrophy, Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), Canavan Disease, Carpal Tunnel Syndrome, Causalgia, Cavernomas, Cavernous Angioma, Cavernous Malformation, Central Cervical Cord Syndrome, Central Cord Syndrome, Central Pain Syndrome, Central Pontine Myelinolysis, Cephalic Disorders, Ceramidase Deficiency, Cerebellar Degeneration, Cerebellar Hypoplasia, Cerebral Aneurysms, Cerebral Arteriosclerosis, Cerebral Atrophy, Cerebral Beriberi, Cerebral Cavernous Malformation, Cerebral Gigantism, Cerebral Hypoxia, Cerebral Palsy, Cerebro-Oculo-Facio-Skeletal Syndrome (COFS), Charcot-Marie-Tooth Disease, Chiari Malformation, Cholesterol Ester Storage Disease, Chorea, Choreoacanthocytosis, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Chronic Orthostatic Intolerance, Chronic Pain, Cockayne Syndrome Type II, Coffin Lowry Syndrome, Colpocephaly, Coma, Complex Regional Pain Syndrome, Congenital Facial Diplegia, Congenital Myasthenia, Congenital Myopathy, Congenital Vascular Cavernous Malformations, Corticobasal Degeneration, Cranial Arteritis, Craniosynostosis, Cree encephalitis, Creutzfeldt-Jakob Disease, Cumulative Trauma Disorders, Cushing's Syndrome, Cytomegalic Inclusion Body Disease, Cytomegalovirus Infection, Dancing Eyes-Dancing Feet Syndrome, Dandy-Walker Syndrome, Dawson Disease, De Morsier's Syndrome, Dejerine-Klumpke Palsy, Dementia, Dementia-Multi-Infarct, Dementia-Semantic, Dementia-Subcortical, Dementia With Lewy Bodies, Dentate Cerebellar Ataxia, Dentatorubral Atrophy, Dermatomyositis, Developmental Dyspraxia, Devic's Syndrome, Diabetic Neuropathy, Diffuse Sclerosis, Dravet Syndrome, Dysautonomia, Dysgraphia, Dyslexia, Dysphagia, Dyspraxia, Dyssynergia Cerebellaris Myoclonica, Dyssynergia Cerebellaris Progressiva, Dystonias, Early Infantile Epileptic Encephalopathy, Empty Sella Syndrome, Encephalitis, Encephalitis Lethargica, Encephaloceles, Encephalopathy, Encephalopathy (familial infantile), Encephalotrigeminal Angiomatosis, Epilepsy, Epileptic Hemiplegia, Erb's Palsy, Erb-Duchenne and Dej erine-Klumpke Palsies, Essential Tremor, Extrapontine Myelinolysis, Fabry Disease, Fahr's Syndrome, Fainting, Familial Dysautonomia, Familial Hemangioma, Familial Idiopathic Basal Ganglia Calcification, Familial Periodic Paralyses, Familial Spastic Paralysis, Farber's Disease, Febrile Seizures, Fibromuscular Dysplasia, Fisher Syndrome, Floppy Infant Syndrome, Foot Drop, Friedreich's Ataxia, Frontotemporal Dementia, Gaucher Disease, Generalized Gangliosidoses, Gerstmann's Syndrome, Gerstmann-Straussler-Scheinker Disease, Giant Axonal Neuropathy, Giant Cell Arteritis, Giant Cell Inclusion Disease, Globoid Cell Leukodystrophy, Glossopharyngeal Neuralgia, Glycogen Storage Disease, Guillain-Barré Syndrome, Hallervorden-Spatz Disease, Head Injury, Headache, Hemicrania Continua, Hemifacial Spasm, Hemiplegia Alterans, Hereditary Neuropathies, Hereditary Spastic Paraplegia, Heredopathia Atactica Polyneuritiformis, Herpes Zoster, Herpes Zoster Oticus, Hirayama Syndrome, Holmes-Adie syndrome, Holoprosencephaly, HTLV-1 Associated Myelopathy, Hughes Syndrome, Huntington's Disease, Hydranencephaly, Hydrocephalus, Hydrocephalus-Normal Pressure, Hydromyelia, Hypercortisolism, Hypersomnia, Hypertonia, Hypotonia, Hypoxia, Immune-Mediated Encephalomyelitis, Inclusion Body Myositis, Incontinentia Pigmenti, Infantile Hypotonia, Infantile Neuroaxonal Dystrophy, Infantile Phytanic Acid Storage Disease, Infantile Refsum Disease, Infantile Spasms, Inflammatory Myopathies, Iniencephaly, Intestinal Lipodystrophy, Intracranial Cysts, Intracranial Hypertension, Isaacs' Syndrome, Joubert Syndrome, Kearns-Sayre Syndrome, Kennedy's Disease, Kinsbourne syndrome, Kleine-Levin Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay Syndrome (KTS), Klüver-Bucy Syndrome, Korsakoffs Amnesic Syndrome, Krabbe Disease, Kugelberg-Welander Disease, Kuru, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Lateral Femoral Cutaneous Nerve Entrapment, Lateral Medullary Syndrome, Learning Disabilities, Leigh's Disease, Lennox-Gastaut Syndrome, Lesch-Nyhan Syndrome, Leukodystrophy, Levine-Critchley Syndrome, Lewy Body Dementia, Lipid Storage Diseases, Lipoid Proteinosis, Lissencephaly, Locked-In Syndrome, Lou Gehrig's Disease, Lupus-Neurological Sequelae, Lyme Disease—Neurological Complications, Machado-Joseph Disease, Macrocephaly, Megalocephaly, Melkersson-Rosenthal Syndrome, Meningitis, Meningitis and Encephalitis, Menkes Disease, Meralgia Paresthetica, Metachromatic Leukodystrophy, Microcephaly, Migraine, Miller Fisher Syndrome, Mini Stroke, Mitochondrial Myopathy, Moebius Syndrome, Monomelic Amyotrophy, Motor Neuron Diseases, Moyamoya Disease, Mucolipidoses, Mucopolysaccharidosis, Multi-Infarct Dementia, Multifocal Motor Neuropathy, Multiple Sclerosis, Multiple System Atrophy, Multiple System Atrophy with Orthostatic Hypotension, Muscular Dystrophy, Myasthenia-Congenital, Myasthenia Gravis, Myelinoclastic Diffuse Sclerosis, Myoclonic Encephalopathy of Infants, Myoclonus, Myopathy, Myopathy-Congenital, Myopathy-Thyrotoxic, Myotonia, Myotonia Congenita, Narcolepsy, Neuroacanthocytosis, Neurodegeneration with Brain Iron Accumulation, Neurofibromatosis, Neuroleptic Malignant Syndrome, Neurological Complications of AIDS, Neurological Complications of Lyme Disease, Neurological Consequences of Cytomegalovirus Infection, Neurological Manifestations of Pompe Disease, Neurological Sequelae Of Lupus, Neuromyelitis Optica, Neuromyotonia, Neuronal Ceroid Lipofuscinosis, Neuronal Migration Disorders, Neuropathy-Hereditary, Neurosarcoidosis, Neurosyphilis, Neurotoxicity, Nevus Cavernosus, Niemann-Pick Disease, O'Sullivan-McLeod Syndrome, Occipital Neuralgia, Ohtahara Syndrome, Olivopontocerebellar Atrophy, Opsoclonus Myoclonus, Orthostatic Hypotension, Overuse Syndrome, Pain—Chronic, Pantothenate Kinase-Associated Neurodegeneration, Paraneoplastic Syndromes, Paresthesia, Parkinson's Disease, Paroxysmal Choreoathetosis, Paroxysmal Hemicrania, Parry-Romberg, Pelizaeus-Merzbacher Disease, Pena Shokeir II Syndrome, Perineural Cysts, Periodic Paralyses, Peripheral Neuropathy, Periventricular Leukomalacia, Persistent Vegetative State, Pervasive Developmental Disorders, Phytanic Acid Storage Disease, Pick's Disease, Pinched Nerve, Piriformis Syndrome, Pituitary Tumors, Polymyositis, Pompe Disease, Porencephaly, Post-Polio Syndrome, Postherpetic Neuralgia, Post infectious Encephalomyelitis, Postural Hypotension, Postural Orthostatic Tachycardia Syndrome, Postural Tachycardia Syndrome, Primary Dentatum Atrophy, Primary Lateral Sclerosis, Primary Progressive Aphasia, Prion Diseases, Progressive Hemifacial Atrophy, Progressive Locomotor Ataxia, Progressive Multifocal Leukoencephalopathy, Progressive Sclerosing Poliodystrophy, Progressive Supranuclear Palsy, Prosopagnosia, Pseudo-Torch syndrome, Pseudotoxoplasmosis syndrome, Pseudotumor Cerebri, Psychogenic Movement, Ramsay Hunt Syndrome I, Ramsay Hunt Syndrome II, Rasmussen's Encephalitis, Reflex Sympathetic Dystrophy Syndrome, Refsum Disease, Refsum Disease—Infantile, Repetitive Motion Disorders, Repetitive Stress Injuries, Restless Legs Syndrome, Retrovirus-Associated Myelopathy, Rett Syndrome, Reye's Syndrome, Rheumatic Encephalitis, Riley-Day Syndrome, Sacral Nerve Root Cysts, Saint Vitus Dance, Salivary Gland Disease, Sandhoff Disease, Schilder's Disease, Schizencephaly, Seitelberger Disease, Seizure Disorder, Semantic Dementia, Septo-Optic Dysplasia, Severe Myoclonic Epilepsy of Infancy (SMEI), Shaken Baby Syndrome, Shingles, Shy-Drager Syndrome, Sjögren's Syndrome, Sleep Apnea, Sleeping Sickness, Sotos Syndrome, Spasticity, Spina Bifida, Spinal Cord Infarction, Spinal Cord Injury, Spinal Cord Tumors, Spinal Muscular Atrophy, Spinocerebellar Atrophy, Spinocerebellar Degeneration, Steele-Richardson-Olszewski Syndrome, Stiff-Person Syndrome, Striatonigral Degeneration, Stroke, Sturge-Weber Syndrome, Subacute Sclerosing Panencephalitis, Subcortical Arteriosclerotic Encephalopathy, Short-lasting, Unilateral, Neuralgiform (SUNCT) Headache, Swallowing Disorders, Sydenham Chorea, Syncope, Syphilitic Spinal Sclerosis, Syringohydromyelia, Syringomyelia, Systemic Lupus Erythematosus, Tabes Dorsalis, Tardive Dyskinesia, Tarlov Cysts, Tay-Sachs Disease, Temporal Arteritis, Tethered Spinal Cord Syndrome, Thomsen's Myotonia, Thoracic Outlet Syndrome, Thyrotoxic Myopathy, Tic Douloureux, Todd's Paralysis, Tourette Syndrome, Transient Ischemic Attack, Transmissible Spongiform Encephalopathies, Transverse Myelitis, Traumatic Brain Injury, Tremor, Trigeminal Neuralgia, Tropical Spastic Paraparesis, Troyer Syndrome, Tuberous Sclerosis, Vascular Erectile Tumor, Vasculitis Syndromes of the Central and Peripheral Nervous Systems, Von Economo's Disease, Von Hippel-Lindau Disease (VHL), Von Recklinghausen's Disease, Wallenberg's Syndrome, Werdnig-Hoffman Disease, Wernicke-Korsakoff Syndrome, West Syndrome, Whiplash, Whipple's Disease, Williams Syndrome, Wilson Disease, Wolman's Disease, X-Linked Spinal and Bulbar Muscular Atrophy.


Various psychological disorders may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the psychological disorders may be Aboulia, Absence epilepsy, Acute stress Disorder, Adjustment Disorders, Adverse effects of medication NOS, Age related cognitive decline, Agoraphobia, Alcohol Addiction, Alzheimer's Disease, Amnesia (also known as Amnestic Disorder), Amphetamine Addiction, Anorexia Nervosa, Anterograde amnesia, Antisocial personality disorder (also known as Sociopathy), Anxiety Disorder (Also known as Generalized Anxiety Disorder), Anxiolytic related disorders, Asperger's Syndrome (now part of Autism Spectrum Disorder), Attention Deficit Disorder (Also known as ADD), Attention Deficit Hyperactivity Disorder (Also known as ADHD), Autism Spectrum Disorder (also known as Autism), Autophagia, Avoidant Personality Disorder, Barbiturate related disorders, Benzodiazepine related disorders, Bereavement, Bibliomania, Binge Eating Disorder, Bipolar disorder (also known as Manic Depression, includes Bipolar I and Bipolar II), Body Dysmorphic Disorder, Borderline intellectual functioning, Borderline Personality Disorder, Breathing-Related Sleep Disorder, Brief Psychotic Disorder, Bruxism, Bulimia Nervosa, Caffeine Addiction, Cannabis Addiction, Catatonic disorder, Catatonic schizophrenia, Childhood amnesia, Childhood Disintegrative Disorder (now part of Autism Spectrum Disorder), Childhood Onset Fluency Disorder (formerly known as Stuttering), Circadian Rhythm Disorders, Claustrophobia, Cocaine related disorders, Communication disorder, Conduct Disorder, Conversion Disorder, Cotard delusion, Cyclothymia (also known as Cyclothymic Disorder), Delerium, Delusional Disorder, dementia, Dependent Personality Disorder (also known as Asthenic Personality Disorder), Depersonalization disorder (now known as Depersonalization/Derealization Disorder), Depression (also known as Major Depressive Disorder), Depressive personality disorder, Derealization disorder (now known as Depersonalization/Derealization Disorder), Dermotillomania, Desynchronosis, Developmental coordination disorder, Diogenes Syndrome, Disorder of written expression, Dispareunia, Dissocial Personality Disorder, Dissociative Amnesia, Dissociative Fugue, Dissociative Identity Disorder (formerly known as Multiple Personality Disorder), Down syndrome, Dyslexia, Dyspareunia, Dysthymia (now known as Persistent Depressive Disorder), Eating disorder NOS, Ekbom's Syndrome (Delusional Parasitosis), Emotionally unstable personality disorder, Encopresis, Enuresis (bedwetting), Erotomania, Exhibitionistic Disorder, Expressive language disorder, Factitious Disorder, Female Sexual Disorders, Fetishistic Disorder, Folie á deux, Fregoli delusion, Frotteuristic Disorder, Fugue State, Ganser syndrome, Gambling Addiction, Gender Dysphoria (formerly known as Gender Identity Disorder), Generalized Anxiety Disorder, General adaptation syndrome, Grandiose delusions, Hallucinogen Addiction, Haltlose personality disorder, Histrionic Personality Disorder, Primary hypersomnia, Huntington's Disease, Hypoactive sexual desire disorder, Hypochondriasis, Hypomania, Hyperkinetic syndrome, Hypersomnia, Hysteria, Impulse control disorder, Impulse control disorder NOS, Inhalant Addiction, Insomnia, Intellectual Development Disorder, Intermittent Explosive Disorder, Joubert syndrome, Kleptomania, Korsakoff's syndrome, Lacunar amnesia, Language Disorder, Learning Disorders, Major Depression (also known as Major Depressive Disorder), major depressive disorder, Male Sexual Disorders, Malingering, Mathematics disorder, Medication-related disorder, Melancholia, Mental Retardation (now known as Intellectual Development Disorder), Misophonia, Morbid jealousy, Multiple Personality Disorder (now known as Dissociative Identity Disorder), Munchausen Syndrome, Munchausen by Proxy, Narcissistic Personality Disorder, Narcolepsy, Neglect of child, Neurocognitive Disorder (formerly known as Dementia), Neuroleptic-related disorder, Nightmare Disorder, Non Rapid Eye Movement, Obsessive-Compulsive Disorder, Obsessive-Compulsive Personality Disorder (also known as Anankastic Personality Disorder), Oneirophrenia, Onychophagia, Opioid Addiction, Oppositional Defiant Disorder, Orthorexia (ON), Pain disorder, Panic attacks, Panic Disorder, Paranoid Personality Disorder, Parkinson's Disease, Partner relational problem, Passive-aggressive personality disorder, Pathological gambling, Pedophilic Disorder, Perfectionism, Persecutory delusion, Persistent Depressive Disorder (also known as Dysthymia), Personality change due to a general medical condition, Personality disorder, Pervasive developmental disorder (PDD), Phencyclidine related disorder, Phobic disorder, Phonological disorder, Physical abuse, Pica, Polysubstance related disorder, Postpartum Depression, Post-traumatic embitterment disorder (PTED), Post-Traumatic Stress Disorder, Premature ejaculation, Premenstrual Dysphoric Disorder, Psychogenic amnesia, Psychological factor affecting medical condition, Psychoneurotic personality disorder, Psychotic disorder, not otherwise specified, Pyromania, Reactive Attachment Disorder, Reading disorder, Recurrent brief depression, Relational disorder, REM Sleep Behavior Disorder, Restless Leg Syndrome, Retrograde amnesia, Retts Disorder (now part of Autism Spectrum Disorder), Rumination syndrome, Sadistic personality disorder, Schizoaffective Disorder, Schizoid Personality Disorder, Schizophrenia, Schizophreniform disorder, Schizotypal Personality Disorder, Seasonal Affective Disorder, Sedative, Hypnotic, or Anxiolytic Addiction, Selective Mutism, Self-defeating personality disorder, Separation Anxiety Disorder, Sexual Disorders Female, Sexual Disorders Male, Sexual Addiction, Sexual Masochism Disorder, Sexual Sadism Disorder, Shared Psychotic Disorder, Sleep Arousal Disorders, Sleep Paralysis, Sleep Terror Disorder (now part of Nightmare Disorder, Social Anxiety Disorder, Somatization Disorder, Specific Phobias, Stendhal syndrome, Stereotypic movement disorder, Stimulant Addiction, Stuttering (now known as Childhood Onset Fluency Disorder), Substance related disorder, Tardive dyskinesia, Tobacco Addiction, Tourettes Syndrome, Transient tic disorder, Transient global amnesia, Transvestic Disorder, Trichotillomania, Undifferentiated Somatoform Disorder, Vaginismus, and Voyeuristic Disorder.


Various lung diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the lung diseases may be Asbestosis, Asthma, Bronchiectasis, Bronchitis, Chronic Cough, Chronic Obstructive Pulmonary Disease (COPD), Croup, Cystic Fibrosis, Hantavirus, Idiopathic Pulmonary Fibrosis, Pertussis, Pleurisy, Pneumonia, Pulmonary Embolism, Pulmonary Hypertension, Sarcoidosis, Sleep Apnea, Spirometry, Sudden Infant Death Syndrome (SIDS), Tuberculosis, Alagille Syndrome, Autoimmune Hepatitis, Biliary Atresia, Cirrhosis, ERCP (Endoscopic Retrograde Cholangiopancreatography), and Hemochromatosis. Nonalcoholic Steatohepatitis, Porphyria, Primary Biliary Cirrhosis, Primary Sclerosing Cholangitis.


Various bone diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the bone diseases may be osteoporosis, neurofibromatosis, osteogenesis imperfecta (OI), rickets, osteosarcoma, achondroplasia, fracture, osteomyelitis, Ewing tumor of bone, osteomalacia, hip dysplasia, Paget disease of bone, marble bone disease, osteochondroma, bone cancer, bone disease, osteochondrosis, osteoma, fibrous dysplasia, cleidocranial dysostosis, osteoclastoma, bone cyst, metabolic bone disease, melorheostosis, callus, Caffey syndrome, and mandibulofacial dysostosis.


Various blood diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the blood diseases may be Anemia and CKD (for health care professionals), Aplastic Anemia and Myelodysplastic Syndromes, Deep Vein Thrombosis, Hemochromatosis, Hemophilia, Henoch-Schönlein Purpura, Idiopathic Thrombocytopenic Purpura, Iron-Deficiency Anemia, Pernicious Anemia, Pulmonary Embolism, Sickle Cell Anemia, Sickle Cell Trait and Other Hemoglobinopathies, Thalassemia, Thrombotic Thrombocytopenic Purpura, and Von Willebrand Disease.


In some embodiment, biocircuits of the invention may be used for the treatment of infectious diseases. Biocircuits of the invention may be introduced in cells suitable for adoptive cell transfer such as macrophages, dendritic cells, natural killer cells, and or T cells. Infectious diseases treated by the biocircuits of the invention may be diseases caused by viruses, bacteria, fungi, and/or parasites. IL15-IL15Ra payloads of the invention may be used to increase immune cell proliferation and/or persistence of the immune cells useful in treating infectious diseases.


6. Microbiome


Alterations in the composition of the microbiome may impact the action of anti-cancer therapies. A diverse community of symbiotic, commensal and pathogenic microorganisms exist in all environmentally exposed sites in the body and is herein referred to as the “Microbiome.” Environmentally exposed sites of the body that may be inhabited by a microbiome include the skin, nasopharynx, the oral cavity, respiratory tract, gastrointestinal tract, and the reproductive tract.


In some embodiments, microbiome engineered with the biocircuits of the present invention may be used to improve the efficacy of the anti-cancer immunotherapies. Sivan et al., found that mice with Bifidobacterium in their gut microbiome were more responsive to immune check point blockage e.g. anti PD-L1 immunotherapy in subcutaneous melanoma tumor model (Sivan A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350:1084-9; the contents of which are incorporated herein by reference in their entirety). In one embodiment, protein, RNA and/or other biomolecules derived from the microbiome may be used as a payload to influence the efficacy of the anti-cancer immunotherapies. In other embodiments, the microorganisms may be delivered along with immunotherapeutic compositions of the present invention to improve the efficacy of immunotherapy.


7. Tools and Agents for Making Therapeutics


Provided in the present invention are tools and agents that may be used in generating immunotherapeutics for reducing a tumor volume or burden in a subject in need. A considerable number of variables are involved in producing a therapeutic agent, such as structure of the payload, type of cells, method of gene transfers, method and time of ex vivo expansion, pre-conditioning and the amount and type of tumor burden in the subject. Such parameters may be optimized using tools and agents described herein.


Cell Lines


The present disclosure provides a mammalian cell that has been genetically modified with the compositions of the invention. Suitable mammalian cells include primary cells and immortalized cell lines. Suitable mammalian cell lines include, but are not limited to Human embryonic kidney cell line 293, fibroblast cell line NIH 3T3, human colorectal carcinoma cell line HCT116, ovarian carcinoma cell line SKOV-3, immortalized T cell lines Jurkat cells, lymphoma cell line Raji cells, NALM-6 cells, K562 cells, HeLa cells, PC12 cells, HL-60 cells, NK cell lines (e.g. NKL. NK962, and YTS), and the like. In some instances, the cell is not an immortalized cell line, but instead a cell obtained from an individual and is herein referred to as a primary cell. For example, the cell is a T lymphocyte obtained from an individual. Other examples include, but are not limited to cytotoxic cells, stem cells, peripheral blood mononuclear cells or progenitor cells obtained from an individual.


Tracking SREs, Biocircuits and Cell Lines


In some embodiments, it may be desirable to track the compositions of the invention or the cells modified by the compositions of the invention. Tracking may be achieved by using payloads such as reporter moieties, which, as used herein, refers to any protein capable of creating a detectable signal, in response to an input. Examples include alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase, β-glucuronidase, peroxidase, β-lactamase, catalytic antibodies, bioluminescent proteins e.g. luciferase, and fluorescent proteins such as Green fluorescent protein (GFP).


Reporter moieties may be used to monitor the response of the DD upon addition of the ligand corresponding to the DD. In other instances, reporter moieties may be used to track cell survival, persistence, cell growth, and/or localization in vitro, in vivo, or ex vivo.


In some embodiments, the preferred reporter moiety may be luciferase proteins. In one embodiment, the reporter moiety is the Renilla luciferase, or a firefly luciferase.


Animal Models


The utility and efficacy of the compositions of the present invention may be tested in vivo animal models, preferably mouse models. Mouse models used to may be syngeneic mouse models wherein mouse cells are modified with compositions of the invention and tested in mice of the same genetic background. Examples include pMEL-1 and 4T1 mouse models.


Alternatively, xenograft models where human cells such as tumor cells and immune cells are introduced into immunodeficient mice may also be utilized in such studies. Immunodeficient mice used may be CByJ.Cg-Foxn1nu/J, B6; 129S7-Rag1tm1Mom/J, B6.129S7-Rag1tm1Mom/J, B6. CB17-Prkdcscid/SzJ, NOD.129S7 (B6)-Rag1tm1Mom/J, NOD.Cg-Rag1tm1Mom Prf1tm1Sd/Sz, NOD.CB17-Prkdcscid/SzJ, NOD.Cg-PrkdcscidB2mtm1Unc/J, NOD-scid IL2Rgnull, Nude (nu) mice, SCID mice, NOD mice, RAG1/RAG2 mice, NOD-Scid mice, IL2 rgnull mice, b2 mnull mice, NOD-scid IL2rγnull mice, NOD-scid-B2 mnull mice, and HLA transgenic mice.


Cellular Assays


In some embodiments, the effectiveness of the compositions of the inventions as immunotherapeutic agents may be evaluated using cellular assays. Levels of expression and/or identity of the compositions of the invention may be determined according to any methods known in the art for identifying proteins and/or quantitating proteins levels. In some embodiments, such methods may include Western Blotting, flow cytometry, and immunoprecipitation.


Provided herein are methods for functionally characterizing cells expressing SRE, biocircuits and compositions of the invention. In some embodiments, functional characterization is carried out in primary immune cells or immortalized immune cell lines and may be determined by expression of cell surface markers. Examples of cell surface markers for T cells include, but are not limited to, CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, MHC class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFN 7 receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCL5, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.


8. Gene Editing


The CRISPR-Cas9 system is a novel genome editing system which has been rapidly developed and implemented in a multitude of model organisms and cell types, and supplants other genome editing technologies, such as TALENs and ZFNs. CRISPRs are sequence motifs are present in bacterial and archaeal genomes, and are composed of short (about 24-48 nucleotide) direct repeats separated by similarly sized, unique spacers (Grissa et al. BMC Bioinformatics 8, 172 (2007). They are generally flanked by a set of CRISPR-associated (Cas) protein-coding genes that are required for CRISPR maintenance and function (Barrangou et al., Science 315, 1709 (2007), Brouns et al., Science 321, 960 (2008), Haft et al. PLoS Comput Biol 1, e60 (2005)). CRISPR-Cas systems provide adaptive immunity against invasive genetic elements (e.g., viruses, phages and plasmids) (Horvath and Barrangou, Science, 2010, 327: 167-170; Bhaya et al., Annu. Rev. Genet., 2011, 45: 273-297; and Brrangou R, RNA, 2013, 4: 267-278). Three different types of CRISPR-Cas systems have been classified in bacteria and the type II CRISPR-Cas system is most studied. In the bacterial Type II CRISPR-Cas system, small CRISPR RNAs (crRNAs) processed from the pre-repeat-spacer transcript (pre-crRNA) in the presence of a trans-activating RNA (tracrRNA)/Cas9 can form a duplex with the tracrRNA/Cas9 complex. The mature complex is recruited to a target double strand DNA sequence that is complementary to the spacer sequence in the tracrRNA: crRNA duplex to cleave the target DNA by Cas9 endonuclease (Garneau et al., Nature, 2010, 468: 67-71; Jinek et al., Science, 2012, 337: 816-821; Gasiunas et al., Proc. Natl Acad. Sci. USA, 109: E2579-2586; and Haurwitz et al., Science, 2010, 329: 1355-1358). Target recognition and cleavage by the crRNA: tracrRNA/Cas9 complex in the type II CRISPR-CAS system not only requires a sequence in the tracrRNA: crRNA duplex that is a complementary to the target sequence (also called “protospacer” sequence) but also requires a protospacer adjacent motif (PAM) sequence located 3′ end of the protospacer sequence of a target polynucleotide. The PAM motif can vary between different CRISPR-Cas systems.


CRISPR-Cas9 systems have been developed and modified for use in genetic editing and prove to be a high effective and specific technology for editing a nucleic acid sequence even in eukaryotic cells. Many researchers disclosed various modifications to the bacterial CRISPR-Cas systems and demonstrated that CRISPR-Cas systems can be used to manipulate a nucleic acid in a cell, such as in a mammalian cell and in a plant cell. Representative references include U.S. Pat. Nos. 8,993,233; 8,999,641; 8,945,839; 8,932,814; 8,906,616; 8,895,308; 8,889,418; 8,889,356; 8,871,445; 8,865,406; 8,771,945; and 8,697,359; U.S. patent publication NOs.: 20150031134; 20150203872; 20150218253; 20150176013; 20150191744; 20150071889; 20150067922; and 20150167000; each of which is incorporated herein by reference in their entirety.


However, controlling the effects and activity of the CRISPR-Cas system (e.g., guide RNA and nuclease) has been challenging and often can be problematic.


The biocircuits of the present invention and/or any of their components may be utilized in regulating or tuning the CRISPR/Cas9 system to optimize its utility.


In some embodiments, the payloads of the effector modules of the invention may include alternative isoforms or orthologs of the Cas9 enzyme.


The most commonly used Cas9 is derived from Streptococcus pyogenes and the RuvC domain can be inactivated by a D10A mutation and the HNH domain can be inactivated by an H840A mutation.


In addition to Cas9 derived from S. pyogenes, other RNA guided endonucleases (RGEN) may also be used for programmable genome editing. Cas9 sequences have been identified in more than 600 bacterial strains. Though Cas9 family shows high diversity of amino acid sequences and protein sizes, All Cas9 proteins share a common architecture with a central HNH nuclease domain and a split RuvC/RHase H domain. Examples of Cas9 orthologs from other bacterial strains including but not limited to, Cas proteins identified in Acaryochloris marina MBIC11017; Acetohalobium arabaticum DSM 5501; Acidithiobacillus caldus; Acidithiobacillus ferrooxidans ATCC 23270; Alicyclobacillus acidocaldarius LAA1; Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446; Allochromatium vinosum DSM 180; Ammonfex degensii KC4; Anabaena variabilis ATCC 29413; Arthrospira maxima CS-328; Arthrospira platensis str. Paraca; Arthrospira sp. PCC 8005; Bacillus pseudomycoides DSM 12442; Bacillus selenitireducens MLS10; Burkholderiales bacterium 1_1_47; Caldicelulosiruptor becscii DSM 6725; Candidatus Desulforudis audaxviator MP104C; Caldicellulosiruptor hydrothermalis 108; Clostridium phage c-st; Clostridium botulinum A3 str. Loch Maree; Clostridium botulinum Ba4 str. 657; Clostridium difficile QCD-63q42; Crocosphaera watsonii WH 8501; Cyanothece sp. ATCC 51142; Cyanothece sp. CCY0110; Cyanothece sp. PCC 7424; Cyanothece sp. PCC 7822; Exiguobacterium sibiricum 255-15; Finegoldia magna ATCC 29328; Ktedonobacter racemifer DSM 44963; Lactobacillus delbrueckii subsp. bulgaricus PB2003/044-T3-4; Lactobacillus salivarius ATCC 11741; Listeria innocua; Lyngbya sp. PCC 8106; Marinobacter sp. ELB17; Methanohalobium evestigatum Z-7303; Microcystis phage Ma-LMM01; Microcystis aeruginosa NIES-843; Microscilla marina ATCC 23134; Microcoleus chthonoplastes PCC 7420; Neisseria meningitidis; Nitrosococcus halophilus Nc4; Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111; Nodularia spumigena CCY9414; Nostoc sp. PCC 7120; Oscillatoria sp. PCC 6506; Pelotomaculum thermopropionicum SI; Petrotoga mobilis SJ95; Polaromonas naphthalenivorans CJ2; Polaromonas sp. JS666; Pseudoalteromonas haloplanktis TAC125; Streptomyces pristinaespiralis ATCC 25486; Streptomyces pristinaespiralis ATCC 25486; Streptococcus thermophilus; Streptomyces viridochromogenes DSM 40736; Streptosporangium roseum DSM 43021; Synechococcus sp. PCC 7335; and Thermosipho africanus TCF52B (Chylinski et al., RNA Biol., 2013; 10(5): 726-737).


In addition to Cas9 orthologs, other Cas9 variants such as fusion proteins of inactive dCas9 and effector domains with different functions may be served as a platform for genetic modulation. Any of the foregoing enzymes may be useful in the present invention.


9. Stem Cell Applications


The biocircuits of the present invention and/or any of their components may be utilized in the regulated reprogramming of cells, stem cell engraftment or other application where controlled or tunable expression of such reprogramming factors are useful.


The biocircuits of the present invention may be used in reprogramming cells including stem cells or induced stem cells. Induction of induced pluripotent stem cells (iPSC) was first achieved by Takahashi and Yamanaka (Cell, 2006. 126(4):663-76; herein incorporated by reference in its entirety) using viral vectors to express KLF4, c-MYC, OCT4 and SOX2 otherwise collectively known as KMOS.


Excisable lentiviral and transposon vectors, repeated application of transient plasmid, episomal and adenovirus vectors have also been used to try to derive iPSC (Chang, C. W., et al., Stem Cells, 2009. 27(5):1042-1049; Kaji, K., et al., Nature, 2009. 458(7239):771-5; Okita, K., et al., Science, 2008. 322(5903):949-53; Stadtfeld, M., et al., Science, 2008. 322(5903):945-9; Woltjen, K., et al., Nature, 2009; Yu, J., et al., Science, 2009:1172482; Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8):348-62; each of which is herein incorporated by reference in its entirety).


DNA-free methods to generate human iPSC has also been derived using serial protein transduction with recombinant proteins incorporating cell-penetrating peptide moieties (Kim, D., et al., Cell Stem Cell, 2009. 4(6): 472-476; Zhou, H., et al., Cell Stem Cell, 2009. 4(5):381-4; each of which is herein incorporated by reference in its entirety), and infectious transgene delivery using the Sendai virus (Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85 (8): p. 348-62; herein incorporated by reference in its entirety).


The effector modules of the present invention may include a payload comprising any of the genes including, but not limited to, OCT such as OCT4, SOX such as SOX1, SOX2, SOX3, SOX15 and SOX18, NANOG, KLF such as KLF1, KLF2, KLF4 and KLF5, MYC such as c-MYC and n-MYC, REM2, TERT and LIN28 and variants thereof in support of reprogramming cells. Sequences of such reprogramming factors are taught in for example International Application PCT/US2013/074560, the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the payload of the present invention may be cardiac lineage specification factors such as eomesodermin (EOMES), a T-box transcription factor; WNT signaling pathway components such as WNT3 and WNT 3A. EOMES is crucially required for the development of the heart. Cardiomyocyte programming by EOMES involves autocrine activation of the canonical WNT signaling pathway and vice versa. Under conditions that are conducive to promoting cardiac lineage, WNT signaling activates EOMES and EOMES in turn promotes WNT signaling creating a self-sustaining loop that promotes the cardiac lineage. An activation loop that is too weak or too strong promotes non-cardiac fates such as endodermal and other mesodermal fates respectively. The DDs of the present invention may be used to tune EOMES and WNT payload levels to generate an activation loop that initiate and/or sustain cardiac specification during gastrulation.


VII. Definitions

At various places in the present specification, features or functions of the compositions of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual sub-combination of the members of such groups and ranges. The following is a non-limiting list of term definitions.


Activity: As used herein, the term “activity” refers to the condition in which things are happening or being done. Compositions of the invention may have activity and this activity may involve one or more biological events. In some embodiments, biological events may include cell signaling events. In some embodiments, biological events may include cell signaling events associated protein interactions with one or more corresponding proteins, receptors, small molecules or any of the biocircuit components described herein.


Adoptive cell therapy (ACT): The terms “Adoptive cell therapy” or “Adoptive cell transfer”, as used herein, refer to a cell therapy involving in the transfer of cells into a patient, wherein cells may have originated from the patient, or from another individual, and are engineered (altered) before being transferred back into the patient. The therapeutic cells may be derived from the immune system, such as Immune effector cells: CD4+ T cell; CD8+ T cell, Natural Killer cell (NK cell); and B cells and tumor infiltrating lymphocytes (TILs) derived from the resected tumors. Most commonly transferred cells are autologous anti-tumor T cells after ex vivo expansion or manipulation. For example, autologous peripheral blood lymphocytes can be genetically engineered to recognize specific tumor antigens by expressing T-cell receptors (TCR) or chimeric antigen receptor (CAR).


Agent: As used herein, the term “agent” refers to a biological, pharmaceutical, or chemical compound. Non-limiting examples include simple or complex organic or inorganic molecule, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, antibody fragment, a receptor, and soluble factor.


Agonist: the term “agonist” as used herein, refers to a compound that, in combination with a receptor, can produce a cellular response. An agonist may be a ligand that directly binds to the receptor. Alternatively, an agonist may combine with a receptor indirectly by, for example, (a) forming a complex with another molecule that directly binds to the receptor, or (b) otherwise resulting in the modification of another compound so that the other compound directly binds to the receptor. An agonist may be referred to as an agonist of a particular receptor or family of receptors, e.g., agonist of a co-stimulatory receptor.


Antagonist: the term “antagonist” as used herein refers to any agent that inhibits or reduces the biological activity of the target(s) it binds.


Antigen: the term “antigen” as used herein is defined as a molecule that provokes an immune response when it is introduced into a subject or produced by a subject such as tumor antigens which arise by the cancer development itself. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells such as cytotoxic T lymphocytes and T helper cells, or both. An antigen can be derived from organisms, subunits of proteins/antigens, killed or inactivated whole cells or lysates. In the context of the invention, the terms “antigens of interest” or “desired antigens” refers to those proteins and/or other biomolecules provided herein that are immunospecifically bound or interact with antibodies of the present invention and/or fragments, mutants, variants, and/or alterations thereof described herein. In some embodiments, antigens of interest may comprise any of the polypeptides or payloads or proteins described herein, or fragments or portions thereof.


Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).


Alkyl: The terms “alkyl”, “alkoxy”, “hydroxyalkyl”, “alkoxy alkyl”, and “alkoxy carbonyl”, as used herein, include both straight and branched chains containing one to twelve carbon atoms, and/or which may or may not be substituted.


Alkenyl: The terms “alkenyl” and “alkynyl” as used herein alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.


Aryl: The term “aryl” as used herein alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of five to fourteen ring members, wherein at least one ring is aromatic and wherein each ring in the system contains 3 to 8 ring members. The term “aryl” may be used interchangeably with the term “aryl ring.”


Aromatic: The term “aromatic” as used herein, refers to an unsaturated hydrocarbon ring structure with delocalized pi electrons. As used herein “aromatic” may refer to monocyclic, bicyclic or polycyclic aromatic compounds.


Aliphatic: The term “aliphatic” or “aliphatic group” as used herein, refers to a straight or branched C1-C8 hydrocarbon chain or a monocyclic C3-C8 hydrocarbon or bicyclic C8-C12 hydrocarbon which are fully saturated or that contains one or more units of unsaturation, that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or “cycloalkyl”), and that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.


Associated with: As used herein, the terms “associated with,” “conjugated,” “linked,” “attached,” and “tethered,” when used with respect to two or more moieties, mean that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serve as linking agents, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions. An “association” need not be strictly through direct covalent chemical bonding. It may also suggest ionic or hydrogen bonding or a hybridization based connectivity sufficiently stable such that the “associated” entities remain physically associated.


Autologous: the term “autologous” as used herein is meant to refer to any material derived from the same individual to which it is later to be re-introduced into the individual.


Barcode: the term “barcode” as used herein refers to polynucleotide or amino acid sequence that distinguishes one polynucleotide or amino acid from another.


Biocircuit system: As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present invention and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts. In the context of the present invention, a biocircuit includes a destabilizing domain (DD) biocircuit system.


Checkpoint factor: As used herein, a checkpoint factor is any moiety or molecule whose function acts at the junction of a process. For example, a checkpoint protein, ligand or receptor may function to stall or accelerate the cell cycle.


Co-stimulatory molecule: As used herein, in accordance with its meaning in immune T cell activation, refers to a group of immune cell surface receptor/ligands which engage between T cells and APCs and generate a stimulatory signal in T cells which combines with the stimulatory signal in T cells that results from T cell receptor (TCR) recognition of antigen/MHC complex (pMHC) on APCs


Cytokines: the term “cytokines”, as used herein, refers to a family of small soluble factors with pleiotropic functions that are produced by many cell types that can influence and regulate the function of the immune system.


Delivery: the term “delivery” as used herein refers to the act or manner of delivering a compound, substance, entity, moiety, cargo or payload. A “delivery agent” refers to any agent which facilitates, at least in part, the in vivo delivery of one or more substances (including, but not limited to compounds and/or compositions of the present invention) to a cell, subject or other biological system cells.


Destabilized: As used herein, the term “destable,” “destabilize,” “destabilizing region” or “destabilizing domain” means a region or molecule that is less stable than a starting, reference, wild-type or native form of the same region or molecule.


Engineered: As used herein, embodiments of the invention are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.


Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; (4) folding of a polypeptide or protein; and (5) post-translational modification of a polypeptide or protein.


Feature: As used herein, a “feature” refers to a characteristic, a property, or a distinctive element.


Formulation: As used herein, a “formulation” includes at least a compound and/or composition of the present invention and a delivery agent.


Fragment: A “fragment,” as used herein, refers to a portion. For example, fragments of proteins may comprise polypeptides obtained by digesting full-length protein. In some embodiments, a fragment of a protein includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250 or more amino acids. In some embodiments, fragments of an antibody include portions of an antibody.


Functional: As used herein, a “functional” biological molecule is a biological entity with a structure and in a form in which it exhibits a property and/or activity by which it is characterized.


Heterocycle: The term “heterocycle”, “heterocyclyl”, or “heterocyclic” as used herein refers to monocyclic, bicyclic or tricyclic ring systems having three to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members and is non-aromatic.


Hotspot: As used herein, a “hotspot” or a “mutational hotspot” refers to an amino acid position in a protein coding gene that is mutated (by substitutions) more frequently relative to elsewhere within the same gene.


Hydrophilic: As used herein, “hydrophilic” refers to a molecule that interacts with or has affinity for water.


Hydrophobic: As used herein, “hydrophobic” refers to a molecule that does not interact or have affinity for water.


Immune cells: the term “an immune cell”, as used herein, refers to any cell of the immune system that originates from a hematopoietic stem cell in the bone marrow, which gives rise to two major lineages, a myeloid progenitor cell (which give rise to myeloid cells such as monocytes, macrophages, dendritic cells, megakaryocytes and granulocytes) and a lymphoid progenitor cell (which give rise to lymphoid cells such as T cells, B cells and natural killer (NK) cells). Exemplary immune system cells include a CD4+ T cell, a CD8+ T cell, a CD4− CD8− double negative T cell, a T γδ cell, a Tαβ cell, a regulatory T cell, a natural killer cell, and a dendritic cell. Macrophages and dendritic cells may be referred to as “antigen presenting cells” or “APCs,” which are specialized cells that can activate T cells when a major histocompatibility complex (MHC) receptor on the surface of the APC complexed with a peptide interacts with a TCR on the surface of a T cell.



Immunotherapy: the term “immunotherapy” as used herein, refers to a type of treatment of a disease that uses immunological tools, such as monoclonal antibodies, receptor-immunoglobulin fusion proteins, vaccines and/or immune cells.


In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).


In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).


Linker: As used herein, a linker refers to a moiety that connects two or more domains, moieties or entities. In one embodiment, a linker may comprise 10 or more atoms. In a further embodiment, a linker may comprise a group of atoms, e.g., 10-1,000 atoms, and can be comprised of the atoms or groups such as, but not limited to, carbon, amino, alkylamino, oxygen, sulfur, sulfoxide, sulfonyl, carbonyl, and imine. In some embodiments, a linker may comprise one or more nucleic acids comprising one or more nucleotides. In some embodiments, the linker may comprise an amino acid, peptide, polypeptide or protein. In some embodiments, a moiety bound by a linker may include, but is not limited to an atom, a chemical group, a nucleoside, a nucleotide, a nucleobase, a sugar, a nucleic acid, an amino acid, a peptide, a polypeptide, a protein, a protein complex, a payload (e.g., a therapeutic agent), or a marker (including, but not limited to a chemical, fluorescent, radioactive or bioluminescent marker). The linker can be used for any useful purpose, such as to form multimers or conjugates, as well as to administer a payload, as described herein. Examples of chemical groups that can be incorporated into the linker include, but are not limited to, alkyl, alkenyl, alkynyl, amido, amino, ether, thioether, ester, alkylene, heteroalkylene, aryl, or heterocyclyl, each of which can be optionally substituted, as described herein. Examples of linkers include, but are not limited to, unsaturated alkanes, polyethylene glycols (e.g., ethylene or propylene glycol monomeric units, e.g., diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, tetraethylene glycol, or tetraethylene glycol), and dextran polymers, Other examples include, but are not limited to, cleavable moieties within the linker, such as, for example, a disulfide bond (—S—S—) or an azo bond (—N═N—), which can be cleaved using a reducing agent or photolysis. Non-limiting examples of a selectively cleavable bonds include an amido bond which may be cleaved for example by the use of tris(2-carboxyethyl) phosphine (TCEP), or other reducing agents, and/or photolysis, as well as an ester bond which may be cleaved for example by acidic or basic hydrolysis.


Lipophilic: As used herein, the term “lipophilic” refers to an affinity for lipids or fats.


Metabolite: Metabolites are the intermediate products of metabolic reactions catalyzed by enzymes that naturally occur within cells. This term is usually used to describe small molecules, fragments of larger biomolecules or processed products.


Modified: As used herein, the term “modified” refers to a changed state or structure of a molecule or entity as compared with a parent or reference molecule or entity. Molecules may be modified in many ways including chemically, structurally, and functionally. In some embodiments, compounds and/or compositions of the present invention are modified by the introduction of non-natural amino acids.


Mutation: As used herein, the term “mutation” refers to a change and/or alteration. In some embodiments, mutations may be changes and/or alterations to proteins (including peptides and polypeptides) and/or nucleic acids (including polynucleic acids). In some embodiments, mutations comprise changes and/or alterations to a protein and/or nucleic acid sequence. Such changes and/or alterations may comprise the addition, substitution and or deletion of one or more amino acids (in the case of proteins and/or peptides) and/or nucleotides (in the case of nucleic acids and or polynucleic acids). In some embodiments, wherein mutations comprise the addition and/or substitution of amino acids and/or nucleotides, such additions and/or substitutions may comprise 1 or more amino acid and/or nucleotide residues and may include modified amino acids and/or nucleotides. The resulting construct, molecule or sequence of a mutation, change or alteration may be referred to herein as a mutant.


Neoantigen: the term “neoantigen”, as used herein, refers to a tumor antigen that is present in tumor cells but not normal cells and do not induce deletion of their cognate antigen specific T cells in thymus (i.e., central tolerance). These tumor neoantigens may provide a “foreign” signal, similar to pathogens, to induce an effective immune response needed for cancer immunotherapy. A neoantigen may be restricted to a specific tumor. A neoantigen be a peptide/protein with a missense mutation (missense neoantigen), or a new peptide with long, completely novel stretches of amino acids from novel open reading frames (neoORFs). The neoORFs can be generated in some tumors by out-of-frame insertions or deletions (due to defects in DNA mismatch repair causing microsatellite instability), gene-fusion, read-through mutations in stop codons, or translation of improperly spliced RNA (e.g., Saeterdal et al., Proc Natl Acad Sci USA, 2001, 98: 13255-13260).


Off-target: As used herein, “off target” refers to any unintended effect on any one or more target, gene, cellular transcript, cell, and/or tissue.


Operably linked: As used herein, the phrase “operably linked” refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like.


Phenyl: As used herein, “phenyl” refers to a cyclic group of atoms with a formula C6H5.


Payload or payload of interest (POI): the terms “payload” and “payload of interest (POI)”, as used herein, are used interchangeable. A payload of interest (POI) refers to any protein or compound whose function is to be altered. In the context of the present invention, the POI is a component in the immune system, including both innate and adaptive immune systems. Payloads of interest may be a protein, a fusion construct encoding a fusion protein, or non-coding gene, or variant and fragment thereof. Payload of interest may, when amino acid based, may be referred to as a protein of interest.


Pharmaceutically acceptable excipients: the term “pharmaceutically acceptable excipient,” as used herein, refers to any ingredient other than active agents (e.g., as described herein) present in pharmaceutical compositions and having the properties of being substantially nontoxic and non-inflammatory in subjects. In some embodiments, pharmaceutically acceptable excipients are vehicles capable of suspending and/or dissolving active agents. Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspending or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol.


Pharmaceutically acceptable salts: Pharmaceutically acceptable salts of the compounds described herein are forms of the disclosed compounds wherein the acid or base moiety is in its salt form (e.g., as generated by reacting a free base group with a suitable organic acid). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Pharmaceutically acceptable salts include the conventional non-toxic salts, for example, from non-toxic inorganic or organic acids. In some embodiments, a pharmaceutically acceptable salt is prepared from a parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmaceutical Salts: Properties, Selection, and Use, P. H. Stahl and C. G. Wermuth (eds.), Wiley-VCH, 2008, and Berge et al., Journal of Pharmaceutical Science, 66, 1-19 (1977), each of which is incorporated herein by reference in its entirety. Pharmaceutically acceptable solvate: The term “pharmaceutically acceptable solvate,” as used herein, refers to a crystalline form of a compound wherein molecules of a suitable solvent are incorporated in the crystal lattice. For example, solvates may be prepared by crystallization, recrystallization, or precipitation from a solution that includes organic solvents, water, or a mixture thereof. Examples of suitable solvents are ethanol, water (for example, mono-, di-, and tri-hydrates), N-methylpyrrolidinone (NMP), dimethyl sulfoxide (DMSO), N, N′-dimethylformamide (DMF), N, N′-dimethylacetamide (DMAC), 1,3-dimethyl-2-imidazolidinone (DMEU), 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone (DMPU), acetonitrile (ACN), propylene glycol, ethyl acetate, benzyl alcohol, 2-pyrrolidone, benzyl benzoate, and the like. When water is the solvent, the solvate is referred to as a “hydrate.” In some embodiments, the solvent incorporated into a solvate is of a type or at a level that is physiologically tolerable to an organism to which the solvate is administered (e.g., in a unit dosage form of a pharmaceutical composition).


Piperazine: As used herein, “piperazine” refers to a six membered ring containing two nitrogen atoms at opposite positions in the ring.


Protein of interest: As used herein, the terms “proteins of interest” or “desired proteins” include those provided herein and fragments, mutants, variants, and alterations thereof.


Purine: As used herein, “purine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is an imidazole ring and one of the heterocycles is a pyrimidine ring.


Pyrimidine: As used herein, “pyrimidine” refers to an aromatic heterocyclic structure similar to benzene, but wherein two of the carbon atoms are replaced by nitrogen atoms.


Pyridopyrimidine: As used herein, “Pyridopyrimidine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a purine ring and one of the heterocycles is a pyrimidine ring.


Quinazoline: As used herein, the term, “Quinazoline” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a benzene ring and one of the heterocycles is a pyrimidine ring.


Stable: As used herein “stable” refers to a compound or entity that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.


Stabilized: As used herein, the term “stabilize”, “stabilized,” “stabilized region” means to make or become stable. In some embodiments, stability is measured relative to an absolute value. In some embodiments, stability is measured relative to a secondary status or state or to a reference compound or entity.


Standard CAR: As used herein, the term “standard CAR” refers to the standard design of a chimeric antigen receptor. The components of a CAR fusion protein including the extracellular scFv fragment, transmembrane domain and one or more intracellular domains are linearly constructed as a single fusion protein.


Stimulus response element (SRE): the term “stimulus response element (SRE), as used herein, is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1 and 100 or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more. One non-limiting example of an SRE is a destabilizing domain (DD).


Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the invention may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.


T cell: A T cell is an immune cell that produces T cell receptors (TCRs). T cells can be naïve (not exposed to antigen; increased expression of CD62L, CCR7, CD28, CD3, CD127, and CD45RA, and decreased expression of CD45RO as compared to TCM), memory T cells (TM) (antigen-experienced and long-lived), and effector cells (antigen-experienced, cytotoxic). TM can be further divided into subsets of central memory T cells (TCM, increased expression of CD62L, CCR7, CD28, CD127, CD45RO, and CD95, and decreased expression of CD54RA as compared to naïve T cell and effector memory T cells (TEM, decreased expression of CD62L, CCR7, CD28, CD45RA, and increased expression of CD127 as compared to naïve T cells or TCM). Effector T cells (TE) refers to antigen-experienced CD8+ cytotoxic T lymphocytes that have decreased expression of CD62L, CCR7, CD28, and are positive for granzyme and perforin as compared to TCM. Other exemplary T cells include regulatory T cells, such as CD4+CD25+(Foxp3+) regulatory T cells and Treg17 cells, as well as Tr1, Th3, CD8+CD28−, and Qa-1 restricted T cells.


T cell receptor: T cell receptor (TCR) refers to an immunoglobulin superfamily member having a variable antigen binding domain, a constant domain, a transmembrane region, and a short cytoplasmic tail, which is capable of specifically binding to an antigen peptide bound to a MHC receptor. A TCR can be found on the surface of a cell or in soluble form and generally is comprised of a heterodimer having α and β chains (also known as TCRα and TCRβ, respectively), or γ and δ chains (also known as TCRγ and TCRδ, respectively). The extracellular portion of TCR chains (e.g., α-chain, β-chain) contains two immunoglobulin domains, a variable domain (e.g., α-chain variable domain or Vα, β-chain variable domain or Vβ) at the N-terminus, and one constant domain (e.g., α-chain constant domain or Cα and β-chain constant domain or Cβ) adjacent to the cell membrane. Similar to immunoglobulin, the variable domains contain complementary determining regions (CDRs) separated by framework regions (FRs). A TCR is usually associated with the CD3 complex to form a TCR complex. As used herein, the term “TCR complex” refers to a complex formed by the association of CD3 with TCR. For example, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a homodimer of CD3ζ chains, a TCRα chain, and a TCRβ chain. Alternatively, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a homodimer of CD3ζ chains, a TCRγ chain, and a TCR chain. A “component of a TCR complex,” as used herein, refers to a TCR chain (i.e., TCRα, TCRβ, TCRγ or TCRδ), a CD3 chain (i.e., CD3γ, CD3δ, CD3ε or CD3ζ, or a complex formed by two or more TCR chains or CD3 chains (e.g., a complex of TCRα and TCRβ, a complex of TCRγ and TCRδ, a complex of CD3ε and CD3δ, a complex of CD3γ and CD3ε, or a sub-TCR complex of TCRα, TCRβ, CD3γ, CD3δ, and two CD3ε chains.


Therapeutic Agent: The term “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect. Therapeutic agents of the present invention include any of the biocircuit components taught herein either alone or in combination with other therapeutic agents.


Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition. In some embodiments, a therapeutically effective amount is provided in a single dose. In some embodiments, a therapeutically effective amount is administered in a dosage regimen comprising a plurality of doses. Those skilled in the art will appreciate that in some embodiments, a unit dosage form may be considered to comprise a therapeutically effective amount of a particular agent or entity if it comprises an amount that is effective when administered as part of such a dosage regimen.


Triazine: As used herein, “triazine” is a class of nitrogen containing heterocycles with a structure similar to benzene, but wherein three carbon atoms are replaced by nitrogen atoms.


Treatment or treating: As used herein, the terms “treatment” or “treating” denote an approach for obtaining a beneficial or desired result including and preferably a beneficial or desired clinical result. Such beneficial or desired clinical results include, but are not limited to, one or more of the following: reducing the proliferation of (or destroying) cancerous cells or other diseased, reducing metastasis of cancerous cells found in cancers, shrinking the size of the tumor, decreasing symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, delaying the progression of the disease, and/or prolonging survival of individuals.


Tune: As used herein, the term “tune” means to adjust, balance or adapt one thing in response to a stimulus or toward a particular outcome. In one non-limiting example, the SREs and/or DDs of the present invention adjust, balance or adapt the function or structure of compositions to which they are appended, attached or associated with in response to particular stimuli and/or environments.


Variant: As used herein, the term “variant” refers to a first composition (e.g., a first DD or payload), that is related to a second composition (e.g., a second DD or payload, also termed a “parent” molecule). The variant molecule can be derived from, isolated from, based on or homologous to the parent molecule. The term variant can be used to describe either polynucleotides or polypeptides.


VIII. EQUIVALENTS AND SCOPE

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the invention described herein. The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the appended claims.


In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.


It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


In addition, it is to be understood that any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the invention (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.


It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the invention in its broader aspects.


While the present invention has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the invention. The present invention is further illustrated by the following nonlimiting examples.


EXAMPLES
Example 1. Generation of Novel Ligand Responsive DDs by Mutagenesis Screening

Study Design


To engineer constructs that display ligand dependent stability, a candidate ligand binding domain (LBD) is selected and a cell-based screen using yellow fluorescent protein (YFP) as a reporter for protein stability is designed to identify mutants of the candidate LBD possessing the desired characteristics of a destabilizing domain: low protein levels in the absence of a ligand of the LBD, (i.e., low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation (Banaszynski, et al., (2006) Cell; 126(5): 995-1004). The candidate LBD binds to a desired ligand but not endogenous signaling molecules.


The candidate LBD sequence (as a template) is first mutated using a combination of nucleotide analog mutagenesis and error-prone PCR, to generate libraries of mutants based on the template candidate domain sequence. The libraries generated are cloned in-frame at either the 5′- or 3′-ends of the YFP gene, and a retroviral expression system is used to stably transduce the libraries of YFP fusions into NIH3T3 fibroblasts.


The transduced NIH3T3 cells are subjected to three to four rounds of sorting using fluorescence-activated cell sorting (FACS) to screen the libraries of candidate DDs. Transduced NIH3T3 cells are cultured in the absence of the high affinity ligand of the ligand binding domain (LBD), and cells that exhibit low levels of YFP expression are selected through FACS.


Screening Strategy I


The selected cell population is cultured in the presence of the high affinity ligand of the ligand binding domain for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells that exhibit high levels of YFP expression are selected through FACS and the selected cell population is split into two groups and treated again with the high affinity ligand of the ligand binding domain at different concentrations; one group is treated with the lower concentration of the ligand and the other is treated with a high concentration of the ligand, for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells expressing mutants that are responsive to lower concentrations of the ligand are isolated.


The isolated cells responsive to the lower concentration of the ligand are treated with the ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media. This fourth sorting is designed to enrich cells that exhibit fast kinetics of degradation (Iwamoto et al., Chem Biol. 2010 Sep. 24; 17(9): 981-988).


Screening Strategy II


The selected cell population is subject to additional one or more sorts by FACS in the absence of high affinity ligand of LBD and cells that exhibit low levels of YFP expression are selected for further analysis. Cells are treated with high affinity ligand of the ligand binding domain, for a period of time (e.g. 24 hours), and sorted again by FACS. Cells expressing high levels of YFP are selected for through FACS. Cells with high expression of YFP are treated with ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media to enrich cells that exhibit fast kinetics of degradation. Any of the sorting steps may be repeated to identify DDs with ligand dependent stability.


The cells are recovered after sorting. The identified candidate cells are harvested and the genomic DNA is extracted. The candidate DDs are amplified by PCR and isolated. The candidate DDs are sequenced and compared to the LBD template to identify the mutations in candidate DDs.


Example 2. Novel DDs Derived from Human PDE5 by Site Directed Mutagenesis

To identify novel destabilizing domain mutations, mutagenic PCR was performed on the open reading frame of human PDE5 catalytic domain (SEQ ID NO. 3) using non-natural nucleotides. The mutant library was ligated in frame with an AcGFP reporter at C-terminus and cloned into pLVX-IRES-Puro vectors. The lentivirus library was then used to infect HEK 293T cells. Cells were selected with puromycin and the library was screened using screening strategies described in Example 1. DNA was extracted from the cell pool, cloned into vectors, and transformed into E. coli. Individual clones were sequenced and cloned in frame with a linker GGSGGGSGG (SEQ ID NO. 77) and AcGFP at C terminus into pLVX.IRES puro. The catalytic domain of wildtype hPDE5 was also cloned into pLVX.IRES. Puro and used as a control. HEK293 cells were transduced with individual clones and selected with puromycin.


HEK293 cells expressing OT-hPDE5N constructs were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the stability of hPDE5 mutants was evaluated at the protein level. Cell lysates obtained from hPDE5N construct expressing cells were immunoblotted using the AcGFP antibody (Clonetech, Mountain View, Calif.). Samples were also immunoblotted with the GAPDH antibody to ensure uniform protein loading. The immunoblot demonstrated that OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-006, OT-hPDE5N-008, OT-hPDE5N-009, OT-hPDE5N-010 showed an increase in PDE5-GFP protein levels with Sildenafil treatment when compared to DMSO treatment suggesting a Sildenafil dependent stabilization of the construct. Further, the hPDE5-GFP levels with DMSO treatment in OT-hPDE5N-002, OT-hPDE5N-003, and OT-hPDE5N-006 was lower than in the wildtype hPDE5 construct, OT-hPDE5N-001, indicating that these constructs are destabilized in the absence of ligand.


The GFP expression in cells expressing hPDE5 constructs was measured by FACS. HEK293 cells expressing OT-hPDE5N-001 to OT-hPDE5N-010 were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the mean fluorescence intensity (MFI) was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation co-efficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs (OT-hPDE5N-002 to OT-hPDE5N-010) compared to the hPDE5 wildtype construct (OT-hPDE5N-001) in the absence of the ligand. Destabilizing mutation co-efficient less than 1 and stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 19.









TABLE 19







GFP expression in hPDE5 derived DDs













Destabilizing



MFI
Stabilization
mutation co-











Constructs
DMSO
Sildenafil
ratio
efficient














OT-hPDE5N-001
11064
25789
2.33



OT-hPDE5N-002
1649
12285
7.45
0.15


OT-hPDE5N-003
1184
7303
6.17
0.11


OT-hPDE5N-004
795
1065
1.34
0.07


OT-hPDE5N-005
6924
29491
4.26
0.63


OT-hPDE5N-006
1542
19211
12.46
0.14


OT-hPDE5N-007
3038
7078
2.33
0.27


OT-hPDE5N-008
1134
13189
11.63
0.10


OT-hPDE5N-009
744
15587
20.95
0.07


OT-hPDE5N-010
5053
21755
4.31
0.46









As shown in Table 19, all constructs demonstrated a stabilization ratio greater than one, indicating that all constructs show ligand (Sildenafil) dependent stabilization. The stabilization ratios of OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 was greater than 10 indicating strong ligand dependent stabilization. Constructs OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-005, and OT-hPDE5N-010 showed stabilization ratio in the range of 2 to 10 indicating modest ligand dependent stabilization. The destabilizing mutation coefficient observed with all constructs was less than 1 indicating that all hPDE5 mutants are destabilized as compared to the wildtype hPDE5. Notably, constructs OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-004, OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 demonstrated destabilizing mutation coefficients less than 0.2 indicating strong destabilizing in the absence of ligand. OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 were identified as mutants with desirable characteristics of a DD i.e., low basal expression in the absence of ligand and high expression in the presence of ligand.


Example 3. Sildenafil Dependent Stabilization of hPDE5 Mutants

HEK293 cells expressing OT-hPDE5N-006, OT-hPDE5N-008, or OT-hPDE5N-009 constructs were incubated with varying concentrations of Sildenafil ranging from 0.005 μM to 10 μM, or vehicle control (DMSO) for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 20.









TABLE 20







Sildenafil Dose titration











OT-hPDE5N-006
OT-hPDE5N-008
OT-hPDE5N-009













Sildenafil

Stabilization

Stabilization

Stabilization


dose (μM)
MFI
ratio
MFI
ratio
MFI
ratio
















Untreated
7036

4388

3506



0.0005
6848
0.97
4422
1.01
3513
1.00


0.0015
7239
1.03
4557
1.04
3473
0.99


0.0046
7218
1.03
4397
1.00
3539
1.01


0.0137
7127
1.01
4274
0.97
3683
1.05


0.041
8097
1.15
4395
1.00
4171
1.19


0.123
12248
1.74
4875
1.11
6463
1.84


0.37
22018
3.13
6753
1.54
13076
3.73


1.11
34171
4.86
10495
2.39
23468
6.69


3.33
49220
7.00
17960
4.09
34615
9.87


10
67084
9.53
32480
7.40
47793
13.63









As shown in Table 20, all three constructs showed an increase in stabilization ratio with increasing doses of Sildenafil indicating a ligand dose-dependent stabilization of hPDE5 mutants. The half maximal effective concentration or EC50 was approximately 104.


Sildenafil dependent stabilization of hPDE5 mutants was also measured over a period of time. HEK293 cells expressing OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 were treated with 10 μM of Sildenafil for 2, 4, 6, 16, 24, and 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 21.









TABLE 21







Time course of Sildenafil treatment











OT-hPDE5N-006
OT-hPDE5N-008
OT-hPDE5N-009













Time

Stabilization

Stabilization

Stabilization


(h)
MFI
ratio
MFI
ratio
MFI
ratio
















Parental
675

667

673



0
7921

5304

4195



2
12088
1.54
7290
1.37
6337
1.51


4
14046
1.77
8675
1.64
8159
1.95


6
16710
2.11
10929
2.06
10203
2.43


16
39029
4.93
19034
3.59
26279
6.26


24
51534
6.51
27246
5.14
36516
8.71


48
70811
8.94
34796
6.56
47407
11.30









As shown in Table 21, all three constructs showed an increase in stabilization ratio with increasing duration of treatment with Sildenafil indicating a time-dependent increase in stabilization of hPDE5 mutants.


Example 4. Vardenafil Dependent Stabilization of hPDE5 DDs

Vardenafil has an IC50 of 0.7 nM and is a more potent inhibitor of hPDE5 than Sildenafil which has an IC50 of 3.9 nM (Doggrell S, et al. (2007) Int J Impot. Res 19(3):281-95). To test if Vardenafil is capable of stabilizing hPDE5 DDs, HEK293 cells expressing OT-hPDE5-006, OT-hPDE5-008, and OT-hPDE5-009 were treated with Vardenafil at concentrations ranging from 0.0005 μM to 10 μM for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 22.









TABLE 22







Vardenafil Dose Titration











OT-hPDE5N-006
OT-hPDE5N-008
OT-hPDE5N-009













Vardenafil

Stabilization

Stabilization

Stabilization


dose (μM)
MFI
ratio
MFI
ratio
MFI
ratio
















Parental
988

999

980



0
11287

7971

5841



0.0005
11770
1.04
7894
0.99
5954
1.02


0.0015
12965
1.15
8099
1.02
6601
1.13


0.0046
18739
1.66
8897
1.12
9946
1.70


0.0137
36940
3.27
12440
1.56
21894
3.75


0.041
58755
5.21
18527
2.32
39580
6.78


0.123
91994
8.15
33614
4.22
63622
10.89


0.37
125140
11.09
61010
7.65
86481
14.81


1.11
144927
12.84
95149
11.94
105930
18.14


3.33
172990
15.33
134306
16.85
123757
21.19


10
188068
16.66
166236
20.86
139165
23.83









As shown in Table 22, all three constructs showed an increase in stabilization ratio with increasing doses of Vardenafil indicating a Vardenafil dose-dependent stabilization of hPDE5 DDs. The half maximal effective concentration or EC50 was approximately 0.1-0.3 μM which was less than the EC50 observed with sildenafil (˜1 μM) indicating that Vardenafil may stabilize hPDE5 DDs more potently than sildenafil.


The ability of Vardenafil to stabilize hPDE5 derived DDs was measured in cell lines stably transduced with hPDE5 DDs e.g. HEK293 cells, HCT-116 cells, and SKOV-3 cells. Cells were transduced with OT-hPDE5N-006, 008, and 009 constructs and incubated with 1 μM or 10 μM Vardenafil or with DMSO for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 23.









TABLE 23







Vardenafil Dose Titration











OT-hPDE5N-006
OT-hPDE5N-008
OT-hPDE5N-009



(hPDE5- F736A)
(hPDE5- Y728L)
(hPDE5- R732L)















Stabilization

Stabilization

Stabilization


Dose
MFI
ratio
MFI
ratio
MFI
ratio
















DMSO
9604

5191

3605



Vardenafil
110603
11.52
68816
13.26
81484
22.60


(1 μM)








Vardenafil
143351
14.93
123150
23.72
106403
29.52


(10 μM)









As shown in Table 23, all three constructs showed an increase in stabilization ratio with both doses of Vardenafil indicating a ligand dose-dependent stabilization of hPDE5 DDs. These data are consistent with the results observed with the dose response of Vardenafil observed in Table 22.


Example 5. hPDE5 C Terminus Fusion Proteins

DDs may be positioned upstream or downstream of the payload within an SRE. hPDE5 mutants generated by site mutagenesis as discussed in example 2 are fused at the C-terminus of GFP to test if the hPDE5 mutants can destabilize proteins of interest when fused to the C-terminus of the protein of interest. A linker is placed between GFP and hPDE5 and cloned into pLVX.IRES. Puro. HEK 293T cells stably expressing GFP-hPDE5 (wildtype and mutant) constructs are incubated with 10 μM Sildenafil or 10 μM Vardenafil or DMSO (control) for 48 hours. Following the incubation, mean fluorescence intensity (MFI) is measured using FACS. All hPDE5 (mutant)-GFP constructs are expected to stabilize GFP in the presence of ligand while they are expected to destabilize GFP in the absence of ligand when fused to C terminus.


Example 6. Novel DDs Derived from Human hPDEs by Site Directed Mutagenesis

Known mutations in phosphodiesterases that affect protein stability are identified and utilized to identify novel hPDE derived DDs. Mutations previously identified include, but are not limited to, hPDE5 (I778T), or hPDE6C (H602L), hPDE6C (E790K), hPDE6C(R104W), hPDE6C (Y323N), and hPDE6C (P391L) or hPDE4D (S752A), hPDE4D (S754A), hPDE4D (S752A, S754A), and hPDE4D (E757A, E758A, D759A) (Zhu et al. (2010) Mol Cell Biol. 4379-4390; Alexandre et al. (2015). Endocr. Relat. Cancer 22(4):519-30; Cheguru P. et al. (2015) Mol Cell Neurosci; 64: 1-8; the contents of each of which are incorporated herein by reference in their entirety). Human PDE mutants are fused to a linker, and a reporter gene e.g. GFP. The reporter constructs are transfected into cells such as NIH 3T3 cells and 293T cells. Transfected cells are incubated with appropriate ligand e.g. Sildenafil and Vardenafil for hPDE5 or Apremilast and Roflumilast for hPDE4. Fluorescence signal is measured by FACS and mean fluorescence signal intensity is calculated.


Example 7. Characterization of hPDE5 Mutants Using Thermal Shift Assays

Thermal shift assays can be used to measure the thermal denaturation temperature of a protein as an indicator of its stability in response to different conditions such as pH, ions, salts, additives, drugs, and/or mutations. Additionally, thermal shift assays can be used to understand the correlation between ligand binding, enzymatic activity and stabilization potencies. Human PDE5 mutants are mixed with a thermal assay dye, thermal assay buffer, and ligand (or DMSO control). Samples are also treated with varying concentrations of factors such as drugs, salts, ions, or other parameters. The samples are loaded into an instrument such as a real-time PCR instrument and the temperature ramp rates is set within a range of approximately 0.1-10 degrees Celsius per minute. The fluorescence in each condition is measured at regular intervals, over a temperature range spanning the typical protein unfolding temperatures of 25-95 degrees Celsius.


Example 8. Characterization of hPDE5 Truncation Mutants

The data shown in the previous examples show that the catalytic domain of hPDE5 was a suitable template for the identification of destabilizing domains. Several truncation mutants of the full length hPDE5 were generated to identify regions beyond the catalytic within the catalytic domain that may serve as a template for identifying DDs. The truncation mutants tested included amino acids 535-860 of hPDE5 WT (E535-Q860), amino acids 535 to 836 of hPDE5 WT (E535-S836), amino acids 590 to 860 of hPDE5 WT (M590-Q860), amino acids 590 to 836 of hPDE5 WT (M590-S836), wherein the amino acids positions are with respect to SEQ ID NO. 1. The DD mutation R732L was incorporated into all truncation mutants and its destabilizing potential was compared to E535-Q860 wildtype by fusing the mutants to an SG linker and reporter, AcGFP. HCT-116 cells were stably transduced with the constructs described above and treated with 10 μM stabilizing ligands, Sildenafil, or Vardenafil or DMSO for 48 hours. As a control, parental untransduced cells and cells expressing OT-hPDE5N-001, or OT-hPDE5N-028 were also included in the analysis. The mean fluorescence intensity (MFI) of GFP was analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 24.









TABLE 24







Expression of hPDE5 truncation mutants













Sildenafil
Vardenafil
Destabilizing



MFI
Stabilization
Stabilization
mutation













Construct
DMSO
Sildenafil
Vardenafil
ratio
ratio
coefficient
















Parental
2093
3735
3200
1.78
1.53



OT-hPDE5N-001
42973
53736
49344
1.25
1.15



OT-hPDE5N-028
150356
187845
170129
1.25
1.13



OT-hPDE5N-019
64942
66860
67388
1.03
1.04



OT-hPDE5N-020
9248
55636
93216
6.02
10.08
0.14


OT-hPDE5N-021
4542
4608
5188
1.01
1.14
0.07


OT-hPDE5N-022
3395
3434
3523
1.01
1.04
0.05


OT-hPDE5N-023
2689
2686
2660
1.00
0.99
0.04


OT-hPDE5N-024
2809
2663
2770
0.95
0.99
0.04









As shown in Table 24, OT-hPDE5N-020 construct consisting of E535-Q860 amino acids of hPDE5 with the R732L mutant displayed the strongest ligand dependent stabilization with both ligands with the highest stabilization ratio. The destabilizing mutation coefficient was also calculated for constructs 020-024 and this analysis showed that the constructs were all effective in destabilizing the payload. This suggests that the removal of residues from the catalytic domain does not appear to enhance the ligand dependent stabilization potential of hPDE5.


Protein expression analysis of the truncation mutants was performed in parallel via western blot. HCT 116 cells expressing OT-hPDE5N-019 to OT-hPDE5N-024 were treated with 10 μM Vardenafil for 24 hours and immunoblotted for AcGFP using anti AcGFP antibodies (catalog no. 63277, Clonetech, Mountain View, Calif.). GAPDH levels were also analyzed to ensure even protein loading. OT-hPDE5N-020 construct consisting of E535-Q860 i.e. amino acids 535 to 860 of hPDE5 WT (SEQ ID NO. 1) with the R732L mutant showed vardenafil dependent stabilization. This result is consistent with the FACS analysis. Stabilization was not observed with OT-hPDE5N-021, while constructs OT-hPDE5N-022, OT-hPDE5N-023, and OT-hPDE5N-024 showed no AcGFP expression, both in the presence and absence of vardenafil, indicating that the expression of the construct in these mutants is below the detection levels of the western blot method.


Example 9. Characterization of hPDE5 Combination Mutants

Single destabilizing mutants identified were combined to test if the combining two or more mutations generates domains with greater destabilizing potential either additively or synergistically. Desirable qualities of a DD include, low expression of the SRE in the absence of ligand and ligand dependent stabilization of the SRE. Constructs were generated using DDs linked to GFP using an SG linker. HCT-116 cells were stably transduced with the constructs described above and treated with 10 μM stabilizing ligands, Sildenafil, or Vardenafil or DMSO for 48 hours. As a control, parental untransduced cells and cells expressing OT-hPDE5N-001, or OT-hPDE5N-028 were also included in the analysis. The mean fluorescence intensity (MFI) of GFP was analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 25.









TABLE 25







Expression of hPDE5 combination mutants













Sildenafil
Vardenafil
Destabilizing



MFI
Stabilization
Stabilization
mutation













Construct
DMSO
Sildenafil
Vardenafil
ratio
ratio
coefficient
















Parental
2093
3735
3200
1.78
1.53



OT-hPDE5N-001
42973
53736
49344
1.25
1.15



OT-hPDE5N-028
150356
187845
170129
1.25
1.13



OT-hPDE5N-019
64942
66860
67388
1.03
1.04



OT-hPDE5N-025
12633
13862
53848
1.10
4.26
0.19


OT-hPDE5N-026
8625
48592
109667
5.63
12.72
0.13









As shown in Table 25, only the OT-hPDE5N-026 construct with R732L and D764N mutations showed Sildenafil dependent stabilization with a ratio of 5.63. Similar results were obtained with OT-hPDE5N-026 upon treatment with Vardenafil. OT-hPDE5N-025 however only showed Vardenafil dependent stabilization with a ratio of 4.26. Both constructs were destabilized in the absence of ligand. As expected, hPDE5 wildtype constructs did not show any significant ligand dependent stabilization. These data suggest that the strategy of combining mutations may be used to identify improved DDs as well as DDs that are stabilized by specific ligands.


Protein expression analysis of the combination mutants was performed in parallel via western blot. HCT 116 cells expressing OT-hPDE5N-025, and 26 were treated with 10 μM Vardenafil for 24 hours and immunoblotted for AcGFP using anti AcGFP antibodies (catalog no. 63277, Clonetech, Mountain View, Calif.). GAPDH levels were also analyzed to ensure even protein loading. OT-hPDE5N-025 with hPDE5 (F736A, D764N) and OT-hPDE5N-026 with hPDE5 (R732L, D764N) constructs consisting showed Vardenafil dependent stabilization of AcGFP protein levels as measured via western blotting. This result is consistent with the FACS analysis.


The response of hPDE5 combination mutants to increasing doses of sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 wildtype construct were also included as controls. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio indicated as SR in Table 26 was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 26.









TABLE 26







Sildenafil dose response of combination mutants












OT-
OT-
OT-
OT-



hPDE5N-
hPDE5N-
hPDE5N-
hPDE5N-


Dose (μM
019
020
025
026















Sildenafil)
MFI
SR
MFI
SR
MFI
SR
MFI
SR


















DMSO
62116

6172

10736

7093



30
75478
1.22
47992
7.78
26837
2.50
69864
9.85


10


27693
4.49
13263
1.24
34587
4.88


3.33


23549
3.82
10384
0.97
22392
3.16


1.11


15952
2.58
9636
0.90
10353
1.46


0.37


12739
2.06
9802
0.91
6961
0.98


0.12


6441
1.04
8619
0.80
6603
0.93


0.04


5299
0.86
8688
0.81
5948
0.84









As shown in Table 26, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of sildenafil were higher than the single mutant OT-hPDE5N-020 construct. The combination mutant 025, achieved stabilization ratios much lower than the 026 construct for any given ligand dose. The destabilizing mutation co-efficient ratios obtained for the OT-hPDE5N-020 (ratio=0.1), OT-hPDE5N-025 (ratio=0.17), and OT-hPDE5N-026 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Sildenafil.


The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation co-efficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 27.









TABLE 27







Vardenafil dose response of combination mutants












OT-
OT-
OT-
OT-



hPDE5N-
hPDE5N-
hPDE5N-
hPDE5N-


Dose (μM
019
020
025
026















Vardenafil)
MFI
SR
MFI
SR
MFI
SR
MFI
SE


















DMSO
62116

7829

7694

5156



30
70898
1.14
75323
9.62
46109
5.99
55843
10.83


10


39089
4.99
29971
3.90
35191
6.83


3.33


35564
4.54
29520
3.84
40408
7.84


1.11


30879
3.94
12634
1.64
32868
6.37


0.37


24847
3.17
6667
0.87
14543
2.82


0.12


16866
2.15
7314
0.95
10676
2.07


0.04


14745
1.88
6174
0.80
5497
1.07









As shown in Table 27, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of Vardenafil were higher than the single mutant OT-hPDE5N-020 construct. The combination mutant 025, achieved stabilization ratios much lower than the 026 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-hPDE5N-020 (ratio=0.13), OT-hPDE5N-025 (ratio=0.12), and OT-hPDE5N-026 (ratio=0.08) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Vardenafil.


The response of hPDE5 combination mutants to increasing doses of Tadalafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Tadalafil for 24 hours at doses ranging from 0.14 to 100 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Tadalafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in Tadalafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-0019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 28.









TABLE 28







Tadalafil dose response of combination mutants












OT-
OT-
OT-
OT-



hPDE5N-
hPDE5N-
hPDE5N-
hPDE5N-


Dose (μM
019
020
025
026















Vardenafil)
MFI
SR
MFI
SR
MFI
SR
MFI
SR


















DMSO
36453

3806

6043

3746



100
58468
1.60
34041
8.94
23542
3.90
30029
8.02


33.33


44713
11.75
20464
3.39
30028
8.02


11.11


30641
8.05
13789
2.28
24499
6.54


3.7


26480
6.96
9515
1.57
17317
4.62


1.23


20458
5.38
8634
1.43
9283
2.48


0.41


13206
3.47
6141
1.02
6044
1.61


0.14


8512
2.24
5768
0.95
4682
1.25









As shown in Table 28, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of Tadalafil were higher than the single mutant OT-hPDE5N-020 construct, except at the 100 μM concentration of the drug. The combination mutant OT-hPDE5-025, achieved stabilization ratios much lower than the OT-hPDE5-026 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-hPDE5N-020 (ratio=0.1), OT-hPDE5N-025 (ratio=0.17), and OT-hPDE5N-026 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Tadalafil.


The stabilization ratios obtained for the highest concentrations of all three ligands, Sildenafil, Vardenafil and Tadalafil for each of the constructs were compared and are shown Table 29.









TABLE 29







Comparative analysis of hPDE5 ligands









Stabilization ratio












OT-
OT-
OT-
OT-



hPDE5N-
hPDE5N-
hPDE5N-
hPDE5N-


Ligand
019
020
025
026














Sildenafil
1.22
7.78
2.5
9.85


(30 μM)






Vardenafil
1.14
9.62
5.99
10.83


(30 μM)






Tadalafil
1.60
8.94
3.9
8.02


(100 μM)













As shown in Table 29, based on the stabilization ratios it was evident that OT-hPDE5N-026 was effectively stabilized by all three ligands, in comparison to both the single mutant construct as well as the other combination mutant construct (OT-hPDE5N-025). Both combination mutants were most effectively stabilized by Vardenafil, which is the most potent inhibitor of hPDE5. Construct OT-hPDE5N-025 was stabilized more effectively by Tadalafil than Sildenafil, although only by a small margin—this observation is noteworthy as Sildenafil is a much stronger inhibitor of hPDE5 than Tadalafil


The response of hPDE5 combination mutants to increasing duration treatment with sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil at 0.5 or 5 μM for 0-72 hours. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-hPDE5-020. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios for time course experiments with 5 or 0.5 μM are presented in Table 30 and Table 31 respectively.









TABLE 30







Response to Sildenafil (5 μM) over time











OT-hPDE5N-020
OT-hPDE5N-025
OT-hPDE5N-026















Stabilization

Stabilization

Stabilization


Time (hours)
MFI
ratio
MFI
ratio
MFI
ratio
















0
2668

3364

2769



72
58479
21.92
26995
8.02
90413
32.65


48
46604
17.47
22061
6.56
65233
23.56


24
20955
7.85
16705
4.97
27962
10.10


20
15529
5.82
13280
3.95
21603
7.80


16
14855
5.57
12280
3.65
17600
6.36


12
9097
3.41
9199
2.73
10451
3.77


8
5672
2.13
7021
2.09
6179
2.23


4
4236
1.59
6314
1.88
4266
1.54
















TABLE 31







Response to Sildenafil (0.5 μM) over time











OT-hPDE5N-020
OT-hPDE5N-025
OT-hPDE5N-026















Stabilization

Stabilization

Stabilization


Time (hours)
MFI
ratio
MFI
ratio
MFI
ratio
















0
2727

3245

2611



72
58786
21.56
6906
2.13
31835
12.19


48
45754
16.78
6682
2.06
27231
10.43


24
20524
7.53
6144
1.89
17848
6.84


20
16142
5.92
6003
1.85
13318
5.10


16
14469
5.31
5600
1.73
11390
4.36


12
9058
3.32
5122
1.58
8126
3.11


8
5461
2.00
5083
1.57
5742
2.20


4
4127
1.51
5322
1.64
3870
1.48









As shown in Table 30 and Table 31, the stabilization ratios for OT-hPDE5N-026 construct obtained over time at 5 μM dose of Sildenafil were higher than the single mutant OT-hPDE5N-020 construct. However, this pattern was reversed at lower dose of 0.5 μM where the single mutant construct showed greater stabilization. The combination mutant OT-hPDE5-025, achieved stabilization ratios much lower than the OT-hPDE5-026 construct for both ligand doses at any given time. These data indicate that the choice of a suitable DD may sometime depend on the duration of the ligand treatment desired as well as the concentration of the ligand that is available for use in a system.


Example 10. Mutagenesis of DD Hotspots

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. To improve the DD characteristics of these constructs, the amino acid at the hotspot position is mutated to any of the known amino acids, including, but not limited to lysine, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of hotspot mutations is generated by site directed mutagenesis and each of the mutants in the library is fused to a reporter protein e.g. AcGFP via a linker. The properties of the DDs are analyzed in the presence and absence of ligands via western blot and FACS as previously described. Ligands that are evaluated include, but not limited Sildenafil, Vardenafil and Tadalafil.


Example 11. Optimizing Biocircuit Behavior

The biocircuits of the invention comprises multiple modules which can be optimized. Libraries of each of the components is generated to allow for the rapid generation of new constructs with desired behaviors. Ligand pharmacokinetics is a powerful tool for payload specific tuning in vivo, which can be used to shift the ligand response curve of the effector module to the left or right depending on the modulating factors. Several modulating factors are tested, including, but not limited to the ligand dose, concentrations, magnitude, duration, and route of administration. Destabilizing domains can also be modified to improve biocircuit behavior. The destabilizing domain is the core determinant of the dynamic range of the biocircuit. Depending on the DD selected, the ligand response curve of the effector module can be shifted up or down. The nature, position of the DD within the effector module as well as the number of DDs within an effector module are modified. DD selection is also altered depending on its degradation kinetics desired. Promoters that transcriptionally control the expression of the SREs are optimized. Choice of promoter impacts the basal-off state and affects the dynamic range of stabilization. Further, promoter choice contributes to the extent of stabilized payload produced. Other optimizable elements of the biocircuits include vector, translational elements, leader sequence, placement of the components within the SRE, codon selection, protease sites, linkers, and mRNA stability.


Example 12. Vardenafil Dose Response Curve in hPDE5 Mutants

Combination mutants were generated as described in Example 9. The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested in HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 48 hours at doses ranging from 0.1 to 10 μM or vehicle control (DMSO). Mean fluorescence intensity (MFI) of GFP was measured by FACS. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The fold change in MFI over DMSO is presented in Table 32.









TABLE 32







Vardenafil dose response












Sildenafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-



(μM)
020
025
026
















0.01
4026
4444
3815



0.04
6970
4934
3839



0.12
14832
5133
4870



0.37
26429
5007
8107



1.11
34932
5751
21857



3.33
49739
10516
49105



10.00
51306
24927
64734










As shown in Table 32, the ligand dependent stabilization obtained for OT-hPDE5N-020 construct was observed at lower doses i.e. 0.1 and 0.3 micro molar concentrations of Vardenafil compared to the other two constructs, indicating that very low doses of the ligand are sufficient to stabilize this hPDE5 mutant. The OT-hPDE5N-026 construct did not show ligand dependent stabilization at similar doses. However, at the highest dose of Vardenafil the GFP expression obtained was much higher than OT-hPDE5N-020. In contrast, OT-hPDE5N-025 showed very little expression of GFP at lower doses and only modest GFP expression compared to the other two constructs at the higher doses. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, based on the properties of the payload of interest and the expression levels desired, suitable hPDE5 DDs may be selected.


Example 13. DD Regulated Immunotherapeutic Agent Expression In Vitro

Immunotherapeutic payloads of the invention such as cytokines (e.g. IL2, IL12, IL15, IL15-IL15Ra), chimeric antigen receptors (CD19 CAR), regulatory proteins (e.g. FOXP3), safety switch (e.g. Caspase 9) are fused to any of the DDs described herein and cloned into expression vectors. Optional linkers and cleavage sites are added to optimize the confirmation of the effector module.


To test ligand dependent immunotherapeutic payload production, cells are plated in a growth media e.g. DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. Cells are transiently transfected or transduced with the constructs using Lipofectamine 2000 and incubated for 48 hrs. Following the incubation, growth media is exchanged for media containing ligands (e.g. Sildenafil, Vardenafil, and Tadalafil). Following 24-hour incubation with ligand, cells are lysed and immunoblotted using antibodies specific to the payload. For secreted payloads, such as cytokines, the growth media is harvested from the cultures expressing the effector modules of the present invention. Similar to the immunoblot, the media is assayed for the expression of the payload using methods known in the art such as ELISA and MSD assay. For cell surface expressed payloads, the expression of the payload is also assayed using methods of cell surface expression analysis that are known in the art such as flow cytometry. Expression of the payload obtained in the presence of ligand is compared to expression in the absence of ligand. Increase in the levels of the payload with increase in ligand concentrations and/or duration of treatment is indicative of DD mediated regulation of the payload. Expression is also compared to parental untransduced cells as well as cells expressing immunotherapeutic payloads that are not appended to DD (i.e. expressed constitutively).


Example 14. DD Regulated Immunotherapeutic Agent Function In Vitro

To test if DD regulated IL12's expression is capable of activating IL12 signaling. Human T-cells are isolated from PBMCs and activated with phytohemagglutinin (PHA, 2 μg/ml) for 3 days, followed by treatment with 50 IU/ml of Interleukin-2 (IL2) for 24 hrs. Cells are washed, resuspended in fresh media and rested for 4 hrs. T cells are transduced with DD-regulated IL12 constructs and treated with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) based on the DD utilized or the vehicle control. Activation via IL12 results in STAT4 phosphorylation. Additionally, IL12 promotes the differentiation of naïve T cells into Th1 cells, which results in the secretion of IFN gamma from T cells. Cells are harvested and STAT4 phosphorylation is measured using STAT4 antibody (Cell Signaling Technology, Danvers, Mass.). Cell supernatants and cell lysates are analyzed for IFNgamma. In the presence of ligand, cells expressing DD regulated IL12 are expected to have increased STAT4 phosphorylation and increased expression of IFNgamma.


IL15 and IL15/IL15Ra fusion molecule can confer the memory phenotype on T cells and increase proliferation of NK cells (Hurton L et al. (2016), PNAS, 113: E7788-7797). This dependence of NK cell proliferation on cytokines can be used to test the functionality of DD regulated or constitutively expressed cytokines and cytokine fusion proteins. NK-92 cell activation in response to ligand treatment is evaluated by FACS using a panel of markers whose increased expression is associated with NK activation. These include NKG2D, CD71, CD69; chemokine receptors such as CCR5, CXCR4, and CXCR3, Perforin, Granzyme B and Interferon gamma (IFNg). Expression of DD regulated IL15 or IL15-IL15Ra fusion molecules is expected to increase NK cell activation. To evaluate the effect by ligand-dependent stabilization of IL15 and IL15-IL15Ra on primary T cells, T cells are transduced with DD-IL15Ra constructs. T cell proliferation and memory phenotype markers (e.g. CD62L) are measured either in the presence or absence of ligand by using flow cytometry.


To test the ability of DD regulated CD19 CAR cells to kill target cells in vitro, primary T cell populations are transduced with DD regulated CD19 CAR constructs are co cultured with K562 cells expressing CD19 (target cells) in the presence or absence of the ligand specific to the DD. Multiple combinations of T cells and target cells are set up. These include DD regulated CAR expressing T cells co cultured with K562 cells (in the presence or absence of the ligand), T cells co cultured with K562 cells expressing CD19 and K562 cells expressing CD19 without T cell co culture. Additional controls include target cells only; untransduced T cells; T cells transduced with empty vector. Target cells are treated with Mitomycin C to prevent their proliferation. The K562 cells are fluorescently labelled with NucLight Red and co cultured with T cells for 300 hours. Cell death is monitored by labelling cells with Annexin V and the cell death in target K562 cells is monitored by evaluating cells that are positive for both Annexin V and NucLight Red using the IncuCyte® Live Cell Analysis System (Essen Biosciences, Ann Arbor, Mich.). Target cell killing is expected with the DD regulated CAR constructs only in the presence of ligand and when K562 target cells ectopically expressing CD19 are utilized. No cell killing is expected in untreated controls of the same co-culture set up and when T cells are co cultured with parental K562 cells that do not express CD19 in the presence or absence of ligand. Constitutive constructs are predicted to show cell killing both in the presence of ligand.


Example 15. DD Regulated Immunotherapeutic Agent Function In Vivo

The ligand-dependent in vivo function of DD-regulated immunotherapeutic payloads is characterized by evaluating the ability of T cells expressing DD regulated constructs to inhibit the growth of established tumors upon treatment with the ligands of the invention. Tumor cells such as HCT116 cells are subcutaneously xenografted into mice. T cells stably transduced with a DD regulated constructs described herein are injected intravenously into mice. Approximately, two weeks after injection when the tumors reach a size of approximately 300 cubic mm, mice are dosed with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) or vehicle control at varying concentrations every two days. Tumor volume and body weight are monitored twice a week. Plasma and tumor samples are also collected after the last dosing of the ligand and the payload levels as well as the ligand levels are measured. Tumor volume is expected to be significantly smaller in mice treated the ligand compared to vehicle treated animals. Tumor payload levels are expected to positively correlate with tumor volume.


To measure if compositions of the invention promote immune cell persistence, T cells transduced with DD-IL15/IL15Ra constructs are injected into mice. Mice are treated with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) and monitored over a period of 40-50 days. T cells transduced with a constitutive OT-IL15-008 construct and untransduced parental T cells are injected into separate mice as controls. Blood is routinely withdrawn from the mice and tested for the presence of T cells. Mice treated with the ligand are expected to retain T cells expressing hPDE5 DD-IL15-IL15Ra while T cells in vehicle treated mice are not expected to persist.


Example 16. Co-Expression of DD Regulated Payloads

Toxicity related to systemic administration of interleukins can be circumvented by using CAR-T cells to deliver interleukins to the target tissue. This combinatorial approach also has greater anti-tumor activity than interleukin and CAR therapy alone. Cells are co-transfected with CD19 CAR (constitutive or DD regulated) and DD-Interleukin e.g. DD-IL2, DD-IL12, DD-IL15 and DD-IL15/IL15Ra constructs. Transfected cells are treated with stabilizing ligands depending on the DD utilized. CD19 CAR expression is evaluated by immunoblotting for CD3 zeta. DD-IL2, DD-IL12, DD-IL15 and DD-IL15/IL15Ra expression in the media is measured by ELISA.


A DD-regulated caspase 9 has the potential improve safety and minimize the toxicity associated with CD19 CAR therapy. Cells are co-transfected with CD19 CAR (constitutive or DD regulated) and DD-caspase 9 constructs. Transfected cells are treated with stabilizing ligands depending on the DD utilized. CD19 CAR and caspase 9 expression are evaluated by immunoblotting for CD3 zeta and caspase 9 respectively.


Example 17. Sildenafil and Tadalafil Dose Response Curve in hPDE5 Mutants

Combination mutations were generated as previously described in Example 9. The response of HCT 116 cells expressing hPDE5 combination mutants to increasing doses ranging from 0.1 μM to 100 μM of Tadalafil and Sildenafil for 48 hours or vehicle control (DMSO) was tested. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to ligand treatment was compared to the single mutant construct, OT-hPDE5N-020. The MFI with ligand treatment is shown in Table 33 and Table 34.









TABLE 33







Tadalafil dose response












Tadalafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-



(μM)
020
025
026
















0.14
3616
4328
3720



0.41
5811
5002
3804



1.23
11694
5503
4810



3.70
24185
5744
7893



11.11
40380
8299
24617



33.33
57233
15831
52927



100.00
72587
31020
84334

















TABLE 34







Sildenafil dose response












Sildenafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-



(μM)
020
025
026
















0.14
3771
4398
3401



0.41
5463
4832
3681



1.23
10479
5031
4477



3.70
22441
4974
7625



11.11
35561
5675
24104



33.33
52029
9677
51416



100.00
101226
37494
136010










As shown in Table 33 and Table 34, ligand dose dependent stabilization was obtained with all three constructs. The dose dependent stabilization at lower doses (e.g., up to 11 μM of Sildenafil and Tadalafil) is more evident in the single mutant construct, OT-hPDE5-020, compared to the other two constructs. At higher concentrations of ligand, both OT-hPDE5-025 and OT-hPDE5- 026 showed ligand dependent stabilization. In fact, OT-hPDE5-026 construct demonstrated much higher MFI values at 33 and 100 compared to both OT-hPDE5-020 and OT-hPDE5-025. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, suitable hPDE5 DDs may be selected based on the properties of the payload of interest and the expression levels desired,


Example 18. Kinetics of hPDE5 Mutants

The off kinetics of hPDE5 mutants, OT-hPDE5-020 and OT-hPDE5-026 was tested by treating HCT 116 cells expressing these constructs or the wild type control construct OT-hPDE5-019. Cells were treated with ligand for 48 hours. The media containing the ligand was removed and fresh media without the ligand was added. MFI was analyzed by FACS at 0 hours (i.e., prior to the beginning of the experiment), 48 hours after ligand treatment, as well as at several time points after the ligand washout, up until 96 hours. The stabilization ratio was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 35.









TABLE 35







Off-Kinetics











OT-hPDE5-020
OT-hPDE5-026
OT-hPDE5-019 (WT)















Stabilization

Stabilization

Stabilization


Time (hrs)
MFI
Ratio
MFI
Ratio
MFI
Ratio
















0
3675

3648

45512



48
71538
19.47
57105
15.65
102137
2.24


50
63832
17.37
41074
11.26
97225
2.14


52
51544
14.03
26926
7.38
96264
2.12


54
41800
11.37
16391
4.49
95410
2.10


56
25521
6.94
7700
2.11
81733
1.80


60
19598
5.33
5635
1.54
84323
1.85


72
8062
2.19
4062
1.11
70151
1.54


80
6427
1.75
3587
0.98
63208
1.39


96
4319
1.18
3443
0.94
55918
1.23









As shown in Table 35, the stabilization ratio of hPDE5 mutants decreased following removal of the ligand. The stabilization ratio values decreased more quickly in the combination mutant OT-hPDE5-026 compared to OT-hPDE5-020 construct suggesting the destabilization of the DD is achieved more quickly in the OT-hPDE5-026 construct. The ligand dependent stabilization as indicated by the stabilization ratio, achieved with OT-hPDE5-026 construct is lower than OT-hPDE5-020 construct, which may also contribute to the superior off kinetics seen with the OT-hPDE5-026 construct.


Example 19. Behavior of hPDE5 C Terminal Mutants

The ability of hPDE5 mutants to tune the expression of payloads when appended to the C terminal of the payload was tested. OT-hPDE5C-030 was compared to OT-hPDE5C-036. NIH 3T3 cells were incubated with varying doses of Sildenafil or Vardenafil for 48 hours and MFIs were analyzed by FACS. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 36.









TABLE 36







hPDE5 C-terminal mutant's response to Sildenafil and Vardenafil









Ligand
OT-hPDE5C-030
OT-hPDE5C-036











concentration
Sildenafil
Vardenafil
Sildenafil
Vardenafil















(nM)
MFI
SR
MFI
SR
MFI
SR
MFI
SR


















0
102

104

1476

1410



100
278
2.73
971
9.34
1639
1.11
1614
1.14


300
562
5.51
1165
11.20
1648
1.12
1656
1.03


1000
1039
10.19
1235
11.88
1780
1.21
1686
1.02


3000
1276
12.51
1299
12.49
1784
1.21
1721
1.02


10000
1442
14.14
1309
12.59
1888
1.28
1721
1.00









As shown in Table 36, OT-hPDE5C-030 construct showed stabilization ratios greater than one, indicating that both Vardenafil and Tadalafil ligand could stabilize GFP expression. As expected, the wildtype construct, OT-hPDE5C-036 did not stabilization much greater than one, indicating that virtually no stabilization was achieved with the wildtype construct.


GFP expression was also measured at 24 and 48 hours to monitor the dependence of hPDE5-DD GFP constructs on the duration of ligand exposure. The results are shown in Table 37 and Table 38A, where SR indicates stabilization ratio.









TABLE 37







Dose response of hPDE5 C-terminal mutants with Sildenafil treatment









Sildenafil
OT-hPDE5C-030
OT-hPDE5C-036











concentration
24 hours
48 hours
24 hours
48 hours















(nM)
MFI
SR
MFI
SR
MFI
SR
MFI
SR


















0
108

102

1385

1476



100
243
2.25
278
2.73
1495
1.08
1639
1.11


300
380
3.52
562
5.51
1565
1.13
1648
1.12


1000
575
5.32
1039
10.19
1669
1.21
1780
1.21


3000
666
6.17
1276
12.51
1831
1.32
1784
1.21


10000


1442
14.14


1888
1.28
















TABLE 38A







Dose response of hPDE5 C-terminal mutants with Vardenafil treatment









Vardenafil
OT-hPDE5C-030
OT-hPDE5C-036











concentration
24 hours
48 hours
24 hours
48 hours















(nM)
MFI
SR
MFI
SR
MFI
SR
MFI
SR


















0
108

104

1360

1410



100
684
6.33
971
9.34
1439
1.06
1614
1.14


300
761
7.05
1165
11.20
1730
1.27
1656
1.17


1000
863
7.99
1235
11.88
1721
1.27
1666
1.18


3000
856
7.93
1299
12.49
1606
1.18
1721
1.22


10000
889
8.23
1309
12.59
1678
1.23
1721
1.22









Consistent with the responses measured at 48 hours, the responses measured at 24 hours showed that the hPDE5 mutant construct stabilized GFP expression as evidenced by the stabilization ratios greater than one, while the wildtype construct, OT-hPDE5C-036 showed stabilization ratios around 1, indicating no ligand dependent stabilization. Results were consistent between Sildenafil and Vardenafil treatment. It was noted that the stabilization ratios obtained at 48 hours was much greater than the values obtained at 24 hours suggesting, a time dependent stabilization of GFP expression. Similar results were obtained by western blot analysis using a GFP antibody. At 0.1 μM sildenafil, modest stabilization of GFP protein levels was observed via western blot. The stabilization of GFP increased when the cells were treated with 1 μM sildenafil Both 0.1 μM and 1 μM dose of vardenafil showed stabilization of GFP levels. These trends were observed both at 24 hours and 48 hours. All comparisons were made against cells that were not treated with either ligand.


The response of hPDE5C terminal mutants to lower doses of Vardenafil was also tested and is shown in Table 38B.









TABLE 38B







Dose response of hPDE5 C-terminal


mutants with Vardenafil treatment









Vardenafil

Stabilization


(nM)
MFI
ratio












0
137



1
163
1.19


3
230
1.68


10
477
3.48


30
909
6.64


100
1417
10.34


1000
1789
13.06









As shown in Table 38B, the hPDE5C terminal mutant showed a dose dependent stabilization even at lower doses of Vardenafil as indicated by the increase in the stabilization ratio. Thus, even low nano molar doses of Vardenafil are sufficient to induce ligand dependent stabilization of hPDE5 DD.


Example 20. Behavior hPDE5 Luciferase Constructs

PDE5 derived DDs were appended to reporter payload such as luciferase to generate constructs OT-hPDE5-031, OT-hPDE5-032, OT-hPDE5-033, and OT-hPDE5-035 constructs. Such constructs may be useful to study in the dynamics of destabilization and stabilization of DDs in vivo. These constructs were transduced into HCT116 cells. Cells were seeded into 96 well plates at 2000 cells per well and incubated with 1 μM or DMSO Vardenafil for 48 hours. The luciferase activity was then measured using a plate reader assay. Parental untransduced cells were used as a control to measure the background fluorescence levels. The results are shown in Table 39. In Table 39, the stabilization ratio was calculated as the fold change in luciferase signal in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5-031) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs.









TABLE 39







Stability of Luciferase constructs














Destabilizing




Control

mutation
Stabilization


Construct
(DMSO)
Vardenafil
co-efficient
ratio














Parental cells
1367.47
3824.04




OT-hPDE5-031
85429.26
127499.78

1.49


OT-hPDE5-032
88881.46
174814.64
1.04
1.97


OT-hPDE5-033
53239.88
88918.04
0.62
1.67


OT-hPDE5-035
96460.45
269718.66
1.13
2.80









The luciferase signal intensity observed in parental cells that did not express the construct indicated that some of the signal was likely background noise. Construct, OT-hPDE5-033 showed the lowest destabilizing mutation coefficient indicating the construct is destabilized. Increase in stabilization ratios was observed with all constructs including the wildtype hPDE5 construct, OT-hPDE5-031. Construct OT-hPDE5-035 showed the highest stabilization ratio indicating the strongest ligand dependent stabilization. Among the constructs tested, OT-hPDE5-033 showed destabilization in the absence of ligand and stabilization in the presence of ligand.


Example 21. Mutagenesis of the Amino Acid 732 of hPDE5

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. The amino acid at position 735 was chosen for the further analysis since the hPDE5 (R732L) mutation possessed the properties described above. To improve the DD characteristics of this DD, the amino acid at the position 732 was mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of mutations was generated by site directed mutagenesis and each of the mutants in the library was fused to a reporter protein e.g. AcGFP via a linker and transduced into HCT116 cells. The properties of the DDs were analyzed in the presence and absence of ligands via FACS as previously described. Ligands that were evaluated included, but not limited Sildenafil, and Vardenafil. The results are shown in Table 40A and Table 40B.









TABLE 40A







Ligand responsive behavior of hotspot constructs










Vardenafil
Sildenafil














0 μM

0 μM



Construct
Mutation
(DMSO)
1 μM
(DMSO)
10 μM















OT-hPDE5-001

161
294
989
219


OT-hPDE5-009
R732L
182
173
143
122


OT-hPDE5-064
R732G
176
854
298
288


OT-hPDE5-065
R732A
175
853
288
348


OT-hPDE5-066
R732V
150
507
189
113


OT-hPDE5-067
R732I
151
587
201
170


OT-hPDE5-068
R732P
355
310
379
361


OT-hPDE5-069
R732F
189
943
233
351


OT-hPDE5-070
R732W
301
179
248
158


OT-hPDE5-071
R732Y
302
345
397
648


OT-hPDE5-072
R732H
308
328
352
710


OT-hPDE5-073
R732S
566
399
760
746


OT-hPDE5-074
R732T
235
270
276
546


OT-hPDE5-075
R732D
294
422
298
394


OT-hPDE5-076
R732E
276
212
295
316


OT-hPDE5-077
R732Q
305
289
353
553


OT-hPDE5-078
R732N
313
290
315
516


OT-hPDE5-079
R732M
316
337
285
503


OT-hPDE5-080
R732C
526
349
499
707


OT-hPDE5-081
R732K
113
423
165
765
















TABLE 40B







Stabilization ratio and Destabilizing mutation


coefficient of hotspot constructs










Vardenafil
Sildenafil














Destabilizing

Destabilizing





mutation
Stabilization
mutation
Stabilization


Construct
Mutation
coefficient
ratio
coefficient
ratio















OT-hPDE5-001


1.83

0.22


OT-hPDE5-009
R732L
1.13
0.95
0.14
0.85


OT-hPDE5-064
R732G
1.09
4.85
0.3
0.97


OT-hPDE5-065
R732A
1.09
4.87
0.29
1.21


OT-hPDE5-066
R732V
0.93
3.38
0.19
0.6


OT-hPDE5-067
R732I
0.94
3.89
0.2
0.85


OT-hPDE5-068
R732P
2.2
0.87
0.38
0.95


OT-hPDE5-069
R732F
1.17
4.99
0.24
1.51


OT-hPDE5-070
R732W
1.87
0.59
0.25
0.64


OT-hPDE5-071
R732Y
1.88
1.14
0.4
1.63


OT-hPDE5-072
R732H
1.91
1.06
0.36
2.02


OT-hPDE5-073
R732S
3.52
0.7
0.77
0.98


OT-hPDE5-074
R732T
1.46
1.15
0.28
1.98


OT-hPDE5-075
R732D
1.83
1.44
0.3
1.32


OT-hPDE5-076
R732E
1.71
0.77
0.3
1.07


OT-hPDE5-077
R732Q
1.89
0.95
0.36
1.57


OT-hPDE5-078
R732N
1.94
0.93
0.32
1.64


OT-hPDE5-079
R732M
1.96
1.07
0.29
1.76


OT-hPDE5-080
R732C
3.27
0.66
0.5
1.42


OT-hPDE5-081
R732K
0.7
3.74
0.17
4.64









The destabilizing mutation coefficients and stabilization ratios obtained for each construct with the indicated ligands were analyzed to identify constructs which possessed the lowest destabilizing mutation coefficient ratio and a second sort of the data was then performed to identify constructs with the highest stabilization ratio. This analysis allowed the identification of constructs with both the lowest destabilizing mutation coefficient that also possessed the highest stabilization ratios. Based on this analysis, it was identified that virtually all mutants tested showed destabilizing mutation coefficients less than one for the DMSO control of Sildenafil treatment, indicating that all constructs are destabilized in the absence of sildenafil. In the presence of Sildenafil, OT-hPDE5-081 construct with arginine to lysine substitution showed high sildenafil dependent stabilization ratio. Similar analysis of the constructs with Vardenafil identified OT-hPDE5-081, OT-hPDE5-066, OT-hPDE5-067, and OT-hPDE5-065 as having a low destabilizing mutation coefficient and high-ligand dependent stabilization ratios. Other constructs with low destabilizing mutation coefficients and high stabilization ratios include OT-hPDE5-067, OT-hPDE5-065, OT-hPDE5-069, OT-hPDE5-074, and OT-hPDE5-075.


The response of select mutants to increasing doses of Sildenafil, Vardenafil and Tadalafil was also tested in HCT 116 cells treated with the ligand for 48 hours. The MFI values obtained with each ligand treatment are shown in Table 41A, Table 41B and Table 41C.









TABLE 41A







Vardenafil Dose Response













OT-
OT-
OT-
OT-
OT-


Vardenafil
hPDE5-
hPDE5-
hPDE5-
hPDE5-
hPDE5-


(μM)
065
067
069
074
075















0
2551
1810
2188
2854
4336


0.01
2551
1810
2188
2854
4336


0.04
8345
3356
8468
6862
7350


0.12
10946
4874
10941
13187
15637


0.37
13850
7855
12987
28895
25047


1.11
15202
11777
13754
33075
37828


3.33
16783
14531
14705
41788
44499


10
18945
17645
17021
48946
50822


30
22548
24322
20693
67364
70645


1000
22548
24322
20693
67364
70645
















TABLE 41B







Sildenafil Dose Response













OT-
OT-
OT-
OT-
OT-


Sildenafil
hPDE5-
hPDE5-
hPDE5-
hPDE5-
hPDE5-


(μM)
065
067
069
074
075















0.01
808
579
688
856
1192


0.04
1025
612
916
1041
1270


0.12
1270
592
1205
1113
1337


0.37
1931
771
2002
1835
1867


1.11
2655
1040
2711
3355
3108


3.33
3769
1709
3555
6896
6171


10
4716
2733
4427
12407
13971


30
5694
4197
5449
21258
21120


1000
5694
4197
5449
21258
21120
















TABLE 41C







Tadalafil Dose Response













OT-
OT-
OT-
OT-
OT-


Tadalafil
hPDE5-
hPDE5-
hPDE5-
hPDE5-
hPDE5-


(μM)
065
067
069
074
075















0.01
752
498
631
825
1163


0.14
1259
540
1193
1068
1361


0.41
2066
712
2075
1655
1548


1.23
3412
1041
3134
3433
2504


3.7
4690
1745
4294
6697
4821


11.11
5126
2746
4734
12843
10583


33.33
6264
3970
5293
17164
16956


100
6301
5487
5867
21113
22630


1000
6301
5487
5867
21113
22630









OT-hPDE5-074 with an arginine to threonine substitution showed the strongest increase in GFP expression at the highest dose, with all three ligands tested. At doses lower than 1 μM of Vardenafil, all constructs showed ligand dependent stabilization. At doses of Sildenafil lower than 1 μM, OT-hPDE5-069, OT-hPDE5-074 and OT-hPDE5-075 showed ligand dependent stabilization. With doses of Tadalafil lower than 1 OT-hPDE5-065, OT-hPDE5-069 and OT-hPDE5-074 showed ligand dependent stabilization. By mutagenesis of the R732 locus, DDs with a variety of properties were obtained. The selection of a particular DD may be made based on the payload utilized and the extent of expression desired with the payload. The EC50 values for each of the constructs with each of the ligands is shown in Table 41D.









TABLE 41D







EC50 for Hotspot Mutants













OT-
OT-
OT-
OT-
OT-



hPDE5-
hPDE5-
hPDE5-
hPDE5-
hPDE5-


Ligand
065
067
069
074
075















Vardenafil
0.30
2.20
0.28
1.47
1.44


Sildenafil
2.08
6.90
1.76
7.50
7.04


Tadalafil
1.45
14.28
1.33
8.64
14.54









These results are consistent with the western blot analysis of GFP protein levels in HCT 116 cells stably transduced with these mutants. The following constructs showed a strong stabilization of GFP levels in the presence of vardenafil and when compared to DMSO controls: OT-hPDE5-009, OT-hPDE5-064, OT-hPDE5-065, OT-hPDE5-068, OT-hPDE5-070, OT-hPDE5-071, OT-hPDE5-072, OT-hPDE5-073, OT-hPDE5-074, OT-hPDE5-075, OT-hPDE5-076, OT-hPDE5-077, OT-hPDE5-078, OT-hPDE5-079, and OT-hPDE5-080. Modest ligand dependent stabilization of GFP levels was observed with OT-hPDE5-066, OT-hPDE5-067, OT-hPDE5-069, and OT-hPDE5-081. All samples showed equal protein loading as measured by GAPDH protein levels.


Example 22: Dynamic Range of hPDE5 Regulation

HCT116 cells were transduced with hPDE5-GFP constructs, OT-hPDE5-083, OT-hPDE5-084, OT-hPDE5-085, and OT-hPDE5-094 and incubated with the indicated concentrations of ligand for 48 hours. GFP fluorescence was measured by FACS. The fold change in GFP expression over untreated DMSO control is shown in Table 42A, Table 42B and Table 42C for vardenafil, sildenafil and tadalafil respectively.









TABLE 42A







Vardenafil dose response











Vardenafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-


(log)
83
84
85
94














1.477
20.664
13.612
4.507
16.171


1.000
18.207
12.030
2.178
13.462


0.523
18.327
10.260
1.277
13.230


0.046
17.229
7.465
1.078
12.550


−0.431
16.143
4.374
1.022
11.992


−0.908
13.764
2.258
1.025
9.770


−1.386
10.108
1.323
1.015
5.477


−1.863
4.673
0.834
1.030
2.303


−2.340
2.575
0.741
1.034
1.412


−2.817
1.744
0.725
1.047
1.105
















TABLE 42B







Sildenafil dose response











Sildenafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-


(log)
83
84
85
94














2.000
11.370
14.212
1.909
11.290


1.523
12.925
15.247
1.509
13.091


1.046
12.066
10.028
1.212
12.344


0.569
10.587
5.408
1.091
10.615


0.092
9.190
2.822
0.995
8.165


−0.386
6.849
1.640
1.040
5.536


−0.863
4.225
1.249
0.993
2.540


−1.340
2.295
1.106
1.007
1.397


−1.817
1.434
1.025
1.013
1.134


−2.294
1.136
1.024
0.966
0.997
















TABLE 42C







Tadalafil dose response











Tadalafil
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-


(log)
83
84
85
94














2.000
12.074
14.919
1.498
12.606


1.523
11.481
13.740
1.224
11.910


1.046
9.897
8.083
1.011
11.144


0.569
8.403
4.360
0.945
9.902


0.092
5.445
2.312
0.973
7.992


−0.386
2.725
1.472
0.907
5.049


−0.863
1.563
1.225
0.946
2.887


−1.340
1.121
1.034
0.938
1.402


−1.817
1.095
1.013
0.976
1.077


−2.294
1.045
0.985
0.942
1.064









As shown in Table 42A, Table 42B and Table 42C, dynamic regulation of hPDE5 DDs was observed with OT-hPDE5-083, OT-hPDE5-084, and OT-hPDE5-085. The hPDE5 wildtype construct shown little to no ligand dependent stabilization with all three ligands. The stabilization concentration 50 or (SC50), which is the concentration of ligand required to achieve 50% stabilization, was also calculated for all four constructs with each of the ligands and the results are shown Table 42D.









TABLE 42D







Stabilization Concentration 50 (SC50) of hPDE5 DDs












OT-hPDE5-
OT-hPDE5-
OT-hPDE5-
OT-hPDE5-


Ligand
83
84
85
94














Vardenafil
0.04
1.15
>30
0.07


Sildenafil
0.38
6.82
>30
0.67


Tadalafil
1.97
9.54
>100
0.77









Taken together these results indicate that structure-guided mutagenesis of ligand-binding site in PDE5 generates 23 nM ligand-DD interaction. OT-hPDE5-083 with Y612F, R732L, was able to bind to Vardenafil with SC50, of 23 nM suggesting potent DD-ligand interaction.


Example 23. DD Regulated IL15-IL15-Ra Expression In Vitro

Immunotherapeutic payloads of the invention such as, IL15-IL15Ra fusion proteins, were fused to any of the DDs described herein and cloned into expression vectors, such as pLVX and pELNS vectors. To test ligand dependent IL15-IL15Ra production, HEK293T cells were transiently transfected with the constructs. Cells were then plated in DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. The growth media was exchanged for media containing ligand, e.g. Vardenafil at 10 μM. Following 48-hour incubation with ligand, cells were lysed and immunoblotted using antibodies specific to IL15Ra. hPDE5-DDs were able to regulate IL15Ra levels in the presence of Vardenafil with all three constructs tested OT-IL15-043, OT-IL15-044 and OT-IL15-045. In contrast, the IL15Ra levels remained unchanged both in the presence and absence of ligand with the constitutive construct, OT-IL15-008. It was noted that the ligand dependent stabilization was accompanied by an upward shift in the mobility of IL15Ra only in the presence of Vardenafil, indicating that the stabilization is likely accompanied by a post translation protein modification. Uniform loading of samples was demonstrated using actin as a loading control.


The effects of vector backbone on the expression of the payload were examined by cloning the OT-IL15-031 construct into the pELPS vector backbone to generate the OT-IL15-079 construct. The constructs were transduced into HEK293T cells and IL15Ra expression was assayed as described above. Only OT-IL15-031 showed vardenafil dependent stabilization of IL15Ra protein levels. Only modest ligand dependent stabilization was observed with the OT-IL15-079 construct in the presence of vardenafil.


The IL15 levels were also examined using the MSD assay. The growth media was harvested from the cells expressing IL15-IL15Ra and that were exposed to 10 μM Vardenafil or vehicle control for 48 hours. The results are shown in Table 43, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control. The destabilization ratio was calculated as the ratio of expression, of IL15Ra in the absence of the stimulus specific to the effector module i.e. Vardenafil to the expression, function or level of the protein of interest, that is expressed constitutively (OT-IL15-008) and in the absence of the stimulus specific to the SRE. Stabilization ratios greater than one and destabilization ratios less than one are desired.









TABLE 43







IL15 levels (pg/ml)














Destabilization
Stabilization


Construct
Control
Vardenafil
ratio
ratio














OT-IL15-008
710.73
799.39

1.12


OT-IL15-043
63.37
93.63
0.09
1.48


OT-IL15-044
193.09
203.21
0.27
1.05


OT-IL15-045
255.05
320.39
0.36
1.26









As shown in Table 43, all three hPDE5 regulated constructs showed destabilization ratios less than one indicating destabilization in the absence of ligand. OT-IL15-043 appeared to be the most destabilized construct. It was also the most ligand-stabilized construct, with the highest stabilization ratio.


Expression of OT-IL15-031 construct was also analyzed in HCT-116 cells via western blot. The cells were exposed to 10 μM Vardenafil for 48 hours and IL15 and IL15Ra levels were analyzed by western blot. Similar to the HEK293T cells, HCT 116 cells also displayed a Vardenafil dependent stabilization with a concomitant upward shift in mobility of IL15Ra protein indicating protein modifications.


Example 24. Effect of Linker on DD Regulation of IL15-IL15Ra

The effect of the type of linker used and the length of the linker on the regulation of the expression of the payload was tested. IL15-IL15Ra fusion constructs were linked to the hPDE5 (R732L) DD using GSGSGS (SEQ ID NO. 8330) as the linker (as in OT-IL15-111), or GSGSGSGS (SEQ ID NO. 8331) as the linker (as in OT-IL15-112) or using GSGSGGGSGS (SEQ ID NO. 8332) as the linker (as in OT-IL15-113). The IL15 portion of the construct was tagged with a Flag tag while the IL15Ra portion was tagged with a HA tag. These tags allow both the components of the construct to be tracked individually in experiments. The constructs were transiently transfected into HEK293T cells and then incubated with 1 μM Vardenafil for 24 hours. The properties of the DDs regulated IL15-IL15Ra payloads were analyzed in the presence and absence of ligands via FACS using the HA antibody as previously described. The results are shown in Table 44, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control treated samples.









TABLE 44







% HA positive cells with different linkers










Construct


Stabilization


Name
Control
Vardenafil
ratio













OT-IL15-111
37.5
63.2
1.69


OT-IL15-112
41.6
74.6
1.79


OT-IL15-113
42
69.1
1.65









As shown in Table 44, all three constructs each with a different linker resulted in a somewhat similar stabilization ratio, indicating that linker length and identity did not impact regulation of the payload by the DD. All three constructs also had a stabilization ratio greater than one suggesting that the payload expression was stabilized in the presence of the ligand. Among the three constructs tested OT-IL15-112 showed a slightly higher stabilization ratio than the other two constructs indicating that the use of the GSGSGSGS linker may result in a slightly improved ligand dependent stabilization.


Example 25. DD Regulated CD19 CAR Expression and Function

Immunotherapeutic payloads of the invention such as CD19 CAR were fused to any of the DDs described herein and cloned into expression vectors pLVX and pELNS vectors. In this manner, OT-CD19-052 (hPDE5 (WT)) and OT-CD19-053 (hPDE5 (R732L)). The HA tag was added to enable the easy detection of the chimeric proteins.


To test ligand dependent CD19 CAR production, NIH 3T3 cells were transiently transfected with the constructs. Cells were then plated in a growth media e.g. DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. The growth media was exchanged for media containing ligand, at various concentrations of Vardenafil ranging from 30 nM to 10,000 nM. Following 48-hour incubation with ligand, cells were analyzed by FACS using the HA antibody and the mean fluorescence intensity (MFI) was calculated. The results are shown in Table 45A, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. CD19 CAR in response to the stimulus, i.e. Vardenafil; to the expression, of the CD19 CAR in the absence of the stimulus, i.e. DMSO control. Stabilization ratios greater than one are desired.









TABLE 45A







CD19 CAR expression













OT-CD19-053




OT-CD19-052
(R732L)












Vardenafil
(WT)

Stabilization



(nM)
MFI
MFI
ratio
















0
0
1336




30
9125
3066
2.29



100
9592
4674
3.50



300
10509
5732
4.29



1000
10328
6738
5.04



10000
9285
3931
2.94










As shown in Table 45A, a stabilization ration greater than 1 was observed with all doses of Vardenafil, and even with the lowest concentration of Vardenafil (30 nM) suggesting that low doses of ligand may be sufficient to achieve ligand dependent stabilization. It was also noted that the stabilization ratio obtained at the highest concentration of ligand i.e. 10,000 nM was lower than the ratio obtained with 1000 nM ligand suggesting a bimodal pattern of stabilization.


The dose dependent regulation of OT-CD19-052 and OT-CD19-053 was measured in HEK 293 cells transfected with 2 ug DNA and stably selected using 2 ug/ml puromycin. CAR surface expression was detected using Protein L staining following 24 hours of ligand treatment at the indicated concentrations. The median Protein L fluorescence is shown in Table 45B.









TABLE 45B







Ligand dose dependent CAR expression











Tadalafil
Sildenafil
Vardenafil

















OT-
OT-
Empty
OT-
OT-
Empty
OT-
OT-
Empty


Ligand
CD19-
CD19-
Vector
CD19-
CD19-
Vector
CD19-
CD19-
Vector


(nM)
052
053
(pLVX)
052
053
(pLVX)
052
053
(pLVX)



















0.15
21122
4064
77
14703
2848
89.8
17946
4202
87.9


0.46
15335
3501
75.8
15335
3304
87
17746
4064
92


1.39
14662
3501
78.8
13143
3250
83.9
16175
4604
89.8


4.22
14377
3341
77
13901
2810
85.7
16450
5977
93.9


12.79
10773
3599
78.8
9419
2976
81.8
17646
9210
92


38.74
14098
4042
80
12083
3268
84.8
16175
13329
94.8


117.41
18354
6302
77
15037
3589
83
19856
20594
93.9


355.78
13785
11235
72.9
13901
5274
83.9
22406
23175
95.8


1078.11
18200
15640
80
13708
8054
88.8
22343
31138
97.7


3267.00
15950
21301
75.8
14337
13291
84.8
24933
31226
100


9900.00
21421
24654
75.8
17746
23371
84.8
26824
36249
110


30000.00
27902
33691
77
25003
25215
84.8
30617
35945
140









As shown in Table 45B, only OT-CD19-053 responded to increasing doses of ligand with increase surface CAR expression, but not the WT construct OT-CD19-052. This was observed with all three ligands. However, the highest levels of CAR expression were observed with increasing doses of vardenafil. The EC50 for vardenafil, tadalafil and sildenafil were determined to 25 nM, 380 nM, and 1500 nM respectively.


Cells were also treated with ligand for varying durations of time with ligand concentrations shown in Table 45C and Protein L expression was measured using FACS. The results are shown in Table 45C and Table 45D. Stabilization ratios are shown in Table 45E.









TABLE 45C







Time dependent increase in CAR expression with Vardenafil











Vardenafil 10 μM
Vardenafil
DMSO















Empty
OT-
OT-
1 uM
OT-
OT-
Empty



Vector
CD19-
CD19-
OT-CD19-
CD19-
CD19-
Vector


Hours
(pLVX)
052
053
053
052
053
(pLVX)

















0
1412
5188
1486
65.9
5060
1386
71.9


2
2863
11643
2918
78.7
5545
1270
71


4
3654
11258
3526
76.8
5408
1274
71.9


24
6624
10439
8005
83.7
5845
1241
71


48
7764
8118
8489
93.8
6128
1287
71


72
9282
7961
9788
92.8
6442
1329
65.9
















TABLE 45D







Time dependent increase in CAR expression with Tadalafil and Sildenafil












Tadalafil
Tadalafil
Sildenafil
Sildenafil



10 μM
1 μM
10 μM
1 μM
















Empty
OT-
OT-
OT-
Empty
OT-
OT-
OT-



Vector
CD19-
CD19-
CD19-
Vector
CD19-
CD19-
CD19-


Hours
(pLVX)
052
053
053
(pLVX)
052
053
053


















0
65
4909
1336
1368
62.8
5469
1534
1372


2
65
5911
2778
2451
65
8536
2801
2278


4
65
6196
3032
2950
63.7
8560
3256
2617


24
65
8608
6606
4346
62.8
8118
5499
3159


48
62.8
8827
7384
4683
62.8
7404
5927
3283


72
58.7
8118
8050
6027
58.7
6111
5188
3506
















TABLE 45E







Time dependent increase in CAR expression














Tadalafil
Tadalafil
Sildenafil
Sildenafil

Vardenafil



10 μM
1 μM
10 μM
1 μM
Vardenafil
1 μM

















OT-
OT-
OT-
OT-
OT-
OT-
10 μM
OT-
OT-


Time
CD19-
CD19-
CD19-
CD19-
CD19-
CD19-
OT-CD19-
CD19-
CD19-


(hrs)
052
053
053
052
053
053
052
053
053



















0
0.97
0.96
0.99
1.08
1.11
0.99
1.03
1.07
0.05


2
1.07
2.19
1.93
1.54
2.21
1.79
2.10
2.30
0.06


4
1.15
2.38
2.32
1.58
2.56
2.05
2.08
2.77
0.06


24
1.47
5.32
3.50
1.39
4.43
2.55
1.79
6.45
0.07


48
1.44
5.74
3.64
1.21
4.61
2.55
1.32
6.60
0.07


72
1.26
6.06
4.53
0.95
3.90
2.64
1.24
7.36
0.07









The analysis of the stabilization ratios indicated that OT-CD19-053 is stabilized by all three ligands with increased duration of incubation time with ligand. As expected, 10 μm dose of ligand showed much greater expression of CAR than the 1 μM dose. Regulation was evident even at the lower doses.


Constructs OT-CD19-130, OT-CD19-131 and OT-CD19-132 were cloned into pELNS vectors and transduced into T cells. Three different volumes of lentiviral supernatant were tested on cells i.e. 1 μl and 20 μl. Following transduction, cells were treated with 10 μM Vardenafil or left untreated for 24 hours beginning on day 4. Untransduced cells were also included as negative control. On day 5, the percentage CAR positive cells were measured by FACS using 1 μg/ml CD19 Fc. The results are shown in FIG. 19A.


As shown in FIG. 19A, all three constructs showed a viral dose dependent increase in the percentage of CAR positive cells, in the presence of Vardenafil. Although similar trends were observed in untreated controls, the percentage of CAR positive cells observed with no vardenafil treatment was substantially lesser than the vardenafil treated controls. Among the three constructs, OT-CD19-132 showed lowest basal expression of the CAR in the absence of ligand and the highest percentage of CAR positive cells in the presence of vardenafil. Similar observations were made when comparing the percentage CAR positive cells obtained with different constructs using 20 μl of virus as shown in FIG. 19B, where a shift in the number of cells that are CAR positive was observed in vardenafil treated cells (labelled treatment) compared to untransduced as well as untreated cells.


T cells maintained in culture for over 10 days reach quiescence and accordingly T cells transduced with OT-CD19-131 did not show vardenafil dependent CAR expression at day 11. However, restimulation of the same T cells on day 11 with CD3/CD28 beads (at 3:1 bead:cell ratio, for 24 hours concomitant with ligand treatment) restored vardenafil dependent CAR expression in T cells transduced with 20 μl of virus (FIG. 19C). The effect of restimulation on the expression of the CAR was evident at all concentrations of the virus tested FIG. 19D. Taken together, these data show that CD19 CARs operably linked to hPDE5 DDs demonstrate ligand dependent CAR expression. Further, ligand responsiveness and subsequent CAR expression may be restored in quiescent T cells by restimulation with CD3/CD28 beads.


To test the effect on different ligands on hPDE5-CAR constructs, the constructs were packaged into plasmids and transduced into T cells using 10 μl of virus. On day 9, T cells expressing either OT-CD19-111, OT-CD19-130, OT-CD19-131 or OT-CD19-132 were treated with varying doses of ligand ranging from 0.1 nM to 10 μM for 24 hours. The constitutive construct OT-CD19-063 was included as the positive control, and the cells transduced with the empty vector (pELNS) served as the negative control. Three different ligands for hPDE5 were tested including, Sildenafil, Tadalafil and Vardenafil. Cells were analyzed by FACS and sorted for singlets/live CAR positive cells. The results are shown in FIG. 19E. Among the three ligands tested, all constructs were most responsive to Vardenafil, followed by Tadalafil and Sildenafil. As seen previously, the OT-CD19-131 and OT-CD19-132 showed lower basal expression, and had the higher EC50 values than the other constructs. The experiments were repeated with the OT-CD19-131 construct by transducing T cells with different volumes of virus transduced into T cells using 10 μL, 2 μL, 0.4 μL, or 0.084, of virus and the CAR expression was measured by FACS, both in the presence of all three ligands and in the absence of the ligands. The results are shown in Table 45F, where “basal % CAR+” indicates the percentage of CAR positive cells in the absence of ligand, and the “Max % CAR+,” indicates the maximum expression of the CAR in the presence of ligand. The EC50 is defined as the concentration of a drug/ligand that gives half-maximal response. The response herein refers to the expression of the chimeric antigen receptor.









TABLE 45F







hPDE5 regulation of CD19-CAR














Virus
Basal
Max
Vardenafil
Tadalafil
Sildenafil



Volume
%
%
EC50
EC50
EC50


Construct
(uL)
CAR+
CAR+
(nM)
(nM)
(nM)
















Empty
1
0.2
0.2





vector








(pELNS)








OT-CD19-
1
30.0
30.0





063








OT-CD19-
10
3.6
37.5
140.0
1312.2
>10000.0


131








OT-CD19-
2
2.0
29
157.0
1402.8
>10000.0


131








OT-CD19-
0.4
0.9
16.1
197.7
2511.9
>10000.0


131








OT-CD19-
0.08
0.4
5.0
220.8
1857.8
>10000.0


131









Among the three ligands tested, higher transduction volume increased the maximum CAR expression level achieved, but did not alter ligand EC50 values.


To test how rapidly hPDE5-CAR can be stabilized with ligand, the indicated constructs were tested in T cells. T cells from donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with 104, lentivirus prepared from OT-CD19-063, OT-CD19-111, OT-CD19-130, OT-CD19-131, and OT-CD19-132 constructs. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and restimulated with CD3/CD28 beads for 48 hours. Cells were treated with 10 μM Tadalafil or Vardenafil at various times such that all conditions received 48 hr of bead stimulation with either 0, 2, 4, 6, 24, or 48 hours of ligand treatment. CAR surface expression was measured with 1 μg/mL CD19-Fc. The results are shown in FIG. 19F. In activated T cells, CAR surface expression occurred at nearly maximum levels by 2 hours after ligand addition.


To test whether CD19-CARs showing regulated expression also show regulated cytotoxicity, transduced T cells were tested in a cytotoxicity assay against the CD19-expressing Nalm6 tumor cell line, T cells from a human donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with 10 μL lentivirus from OT-CD19-063, OT-CD19-111, OT-CD19-130, OT-CD19-131, and OT-CD19-132. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and cocultured with CD19 expressing target cells, Nalm6-Katushka, at effector:target cell ratio of 10:1 for 6 days, in the absence or presence of Tadalafil. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time (Total NucRed Area). In the absence of ligand, i.e. DMSO, OT-CD19-131 and OT-CD19-132 showed target cell proliferation as measured by the increase in total NucRed area (red fluorescence). Constructs, OT-CD19-130, OT-CD19-111 showed very low levels of red fluorescence indicating basal activity that was comparable to the constitutively expressed CAR construct OT-CD19-063. All constructs tested showed a reduction in red fluorescence when treated with either 3 μM Tadalafil or 10 μM Tadalafil that was comparable to the red fluorescence levels observed with the constitutively expressed CAR. As expected, the untransduced cells showed high levels of red fluorescence both in the presence and absence of ligand.


Constructs showing higher basal CAR expression in T cells, OT-CD19-111 and OT-CD19-130, inhibited target cell growth in the absence of tadalafil. T cells transduced with OT-CD19-132, which had the highest Tadalafil EC50 in terms of CAR expression, required higher concentrations of ligand to generate an in vitro functional response.


To measure cytokine levels in T cells, supernatants from the previous coculture assay were harvested at 48 hours and analyzed for IFNγ and IL2 levels by MSD assay (Meso Scale Discovery's ELISA). The results are shown in FIG. 19G. The cytokine levels at the following effector to target cell rations: 10:1, 3:1, 1:1, 0.3:1, and 0.1:1. High levels of both IFNγ and IL2 are produced by OT-CD19-131 transduced T cells when co-cultured with Nalm6 targets only in the presence of 3 μM Tadalafil, correlating with the cytotoxicity observed.


To confirm the cytotoxicity and cytokine secretion is directly related to CAR expression, OT-CD19-131 transduced T cells were cocultured with Nalm6-Katushka target cells at 10:1 effector:target cell ratio for 6 days in the presence of a dose titration of Tadalafil from 10 μM to 10 nM. The fluorescence of Nalm6 cells was measured over a period of 6 days in response to the following doses of tadalafil: 0.01 μM, 0.04 μM, 0.12 μM, 0.37 μM, 1.11 μM, 3.33 μM, 10 Tadalafil doses at 0.37 μM, 1.11 μM, 3.33 μM, 10 μM showed a reduction in Nalm6 proliferation over 6 days. Lower concentrations (<0.37 μM) tadalafil did not cause a reduction in Nalm6 fluorescence, in fact, Nalm6 cells continue to proliferate over the span of 6 days. Significant CAR expression was detected by FACS using CD19-Fc at Tadalafil concentrations at or above 300 nM. This CAR expression corresponded to Tadalafil dose-dependent cytotoxicity (FIG. 19H) and cytokine secretion of IFNγ and IL2 (FIG. 19I).


The functionality of the CAR transduced T cells was also tested in vitro. T cells were transduced with OT-CD19-131 or the constitutive construct OT-CD19-063. Cells were then frozen. Prior to the experiment, T cells were thawed overnight, and cocultured with Nalm6 target cells stably expressing Katushka RFP. Nalm6 cells express high levels of CD19 antigen and are hence ideal target cells in cell killing assay that test CD19 CAR constructs. T cells were mixed with Nalm6 cells at an effector cell to target cell (E:T) ratio of 5:1 for 12 hours in the presence of 10 μM vardenafil or DMSO. Target cell apoptosis was determined by measuring Annexin V fluorescence over time using the Incucyte instrument. Cell killing is measured as the ratio of the total killed target area and to the NALM6-Katushka area (μM2). As shown in FIG. 19J, the total killed target cell area increased when Nalm6 cells were co-cultured with OT-CD19-131 expressing T cells in the presence of vardenafil. Similar trend was observed in the proliferation of Nalm6 cells (FIG. 19K). The same cells did not result in significant cell killing in presence of DMSO, showing that the target cell killing by the T cells is specifically in response to the presence of the ligand. As expected, the constitutive construct, OT-CD19-063 showed increased total killed target cell area both in the presence and absence of ligand, with a trend towards more killing in the presence of the ligand. Nalm6 cells co-cultured with untransduced T cells and Nalm6 cells that were not co-cultured with T cells did not show an increase in the total killed target area. Taken together, these data show that the regulated CAR construct, OT-CD19-131 is active on antigen positive cells only in response to ligand.


The cell supernatants were also collected from the T cell/Nalm6 cytotoxicity co-culture assays at 66 hours and Interferon gamma levels were measured by MSD assays. The results are shown in Table 45G.









TABLE 45G







Interferon gamma production (pg/mL)











Construct
DMSO
Vardenafil 10 μM















OT-CD19-131
443.99
2282.98



OT-CD19-063
3268.72
1980.48



Untransduced
16.57
18.48










As shown in Table 45G, the interferon gamma levels showed a five-fold induction in OT-CD19-131 transduced T cells with the addition of vardenafil. Vardenafil treatment did not induce interferon gamma production in OT-CD19-063 transduced T cells or untransduced T cells, indicating that the ligand specific induction of interferon gamma is related to the increased CAR expression and cell killing observed under similar conditions. The interferon gamma levels in DMSO treated OT-CD19-131 was lower than the levels observed with the constitutive construct indicating that the OT-CD19-131 cells have low basal expression of the CD19 CAR.


Example 26. In Vivo Assessment of hPDE5-Regulated CD19 CAR

To test the efficacy of ligand regulated CAR efficacy in a tumor rejection model, 5 million CAR positive T cells (25 million total T cells) were injected in Nalm6 tumor bearing female NSG mice. The Nalm6-Luc is a B-cell precursor leukemia cell line used to generate an intravenous disseminated tumor model for studying blood tumors. Mice were treated daily with vehicle or Tadalafil at the following mg/kg body weight or mpk: 10 mpk, 30 mpk, or 100 mpk. Constitutive OT-CD19-063 transduced T cells served as a positive control and untransduced T cells as a negative control. T cells were injected 7 days after the Nalm6 cells were implanted. Animals in the Tadalafil groups received 2 doses of ligand prior to T cells being injected. The objective of the study was to test the ligand dose response regulation of a hPDE5 DD CD19 CAR-T and its impact on efficacy. Further, the study was also used to address if the presence of antigen was necessary for detection and expression of the CAR. Dose groups included (a) untransduced T cells (b) untransduced vehicle treated cells (c) Un-transduced cells dosed with Tadalafil 100 mg/kg (d) 5.0 Million CD19+OT-CD19-063 CAR T cells (e) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-063 CAR T cells (Vehicle) (f) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-063 CAR T cells (Tadalafil 100 mg) (g) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CAR T cells (Vehicle) (h) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 (Tadalafil 10 mg/kg) (i) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CAR T cells (Tadalafil 30 mg/kg (j) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CART cells (Tadalafil 100 mg/kg). All animals were dosed once a day, orally for 25 days. Tumor burden assessments were made biweekly using bio luminescent imaging and the fluorescence intensity of Nalm6 Luc cells was observed over time. Two terminal collections were made to assess bone marrow, blood and spleen cell populations. Reduction in tumor burden/prevalence was measured by decreased luminescence from Nalm6-Luciferase cells, and was observed in Tadalafil treated CD19-131 animals (FIG. 20A). In FIG. 20A, “const” refers to OT-CD19-063 and “regulated” refers to OT-CD19-131. Taken together these data show that daily oral dosing of tadalafil resulted in dose-dependent suppression of tumor growth and/or reduction in tumor burden. Maximal tumor suppression was comparable to constitutive CAR with very low activity in the absence of drug. Plasma PK was also established in non-tumor-bearing mice of the hPDE5 inhibitors Tadalafil and Vardenafil after a single dose at the indicated dose levels and is shown in FIG. 20B and FIG. 20C.

Claims
  • 1. A composition comprising an effector module, said effector module comprising a stimulus response element (SRE) and at least one payload which is operably linked to said SRE, wherein the SRE comprises a destabilizing domain (DD), wherein the DD comprises the catalytic domain of a human cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5), wherein the DD comprises SEQ ID NO: 3, and wherein the DD further comprises a mutation in the amino acid at the position corresponding to amino acid 732 (R732) of SEQ ID NO: 1.
  • 2. The composition of claim 1, wherein the mutation in the amino acid at position 732 (R732) is selected from the group consisting of R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K.
  • 3. The composition of claim 2, wherein the mutation in the amino acid at position R732 is R732L.
  • 4. The composition of claim 1, wherein the DD further comprises a mutation in the amino acid at the position corresponding to amino acid 764 (D764) of SEQ ID NO: 1, wherein the mutation at D764 is selected from the group consisting of D764N and D764A.
  • 5. The composition of claim 1, wherein the DD further comprises a mutation in the amino acid at the position corresponding to amino acid 612 (Y612) of SEQ ID NO: 1, wherein the mutation at Y612 is selected from the group consisting of Y612A, Y612F, and Y612W.
  • 6. The composition of claim 1, wherein the DD further comprises an F736A mutation in the amino acid at the position corresponding to amino acid 736 (F736) of SEQ ID NO: 1.
  • 7. The composition of claim 1, wherein the DD further comprises an H653A mutation in the amino acid at the position corresponding to amino acid 653 (H653) of SEQ ID NO: 1.
  • 8. The composition of claim 1, wherein the payload is an immunotherapeutic agent.
  • 9. The composition of claim 8, wherein the immunotherapeutic agent is selected from a chimeric antigen receptor (CAR), a cytokine, a cytokine-cytokine receptor fusion polypeptide.
  • 10. The composition of claim 9, wherein the immunotherapeutic agent is a chimeric antigen receptor (CAR) that comprises: (a) an extracellular target moiety;(b) a transmembrane domain;(c) an intracellular signaling domain; and(d) optionally, one or more co-stimulatory domains.
  • 11. The composition of claim 10, wherein the extracellular target moiety is a scFv derived from an antibody that specifically recognizes a CD19 target molecule.
  • 12. The composition of claim 10, wherein the immunotherapeutic agent is a cytokine selected from the group consisting of IL2, IL12 and IL15.
  • 13. The composition of claim 10, wherein the immunotherapeutic agent is a cytokine-cytokine receptor fusion polypeptide that comprises the whole or a portion of IL15, fused to the whole or a portion of IL15Ra to produce a IL15-IL15Ra fusion polypeptide.
  • 14. The composition of claim 1, wherein the SRE is responsive to one or more stimuli, and wherein said one or more stimuli is selected from Tadalafil, Vardenafil, Sildenafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil.
  • 15. A pharmaceutical composition comprising the composition of claim 1 and a pharmaceutically acceptable excipient.
  • 16. A polynucleotide encoding the composition of claim 1.
  • 17. A pharmaceutical composition comprising the polynucleotide of claim 16 and a pharmaceutically acceptable excipient.
  • 18. A vector comprising the polynucleotide of claim 16.
  • 19. A cell comprising the polynucleotide of claim 16.
  • 20. The cell of claim 19, wherein said cell is an immune cell for adoptive cell transfer (ACT), and optionally wherein the immune cell is a CD8+ T cell, a CD4+ T cell, a memory T cell, a terminally differentiated effector T cell, a natural killer (NK) cell, a NK T cell, a tumor infiltrating lymphocyte (TIL), a cytotoxic T lymphocyte (CTL), a regulatory T cell (Treg), or a dendritic cell (DC).
  • 21. A pharmaceutical composition comprising the cell of claim 19 and a pharmaceutically acceptable excipient.
  • 22. A method of producing a modified cell, said method comprising introducing into a cell a nucleic acid molecule comprising the polynucleotide of claim 16.
  • 23. A method of modulating expression, function, and/or level of a payload in the cell of claim 19, said method comprising: administering to the cell a stimulus,wherein the SRE is responsive to the stimulus and wherein the expression, function, and/or level of the payload is modulated in response to the stimulus.
  • 24. A method of inducing an immune response in the immune cell of claim 20, wherein the payload is an immunotherapeutic agent, said method comprising: administering to the cell a therapeutically effective amount of a stimulus to modulate the expression of the immunotherapeutic agent, wherein the immunotherapeutic agent is capable of inducing an immune response in the cell in response to the stimulus.
  • 25. A method of reducing a tumor burden in a subject, comprising: (a) administering to the subject a therapeutically effective amount of the immune cells of claim 20; and(b) administering to the subject a therapeutically effective amount of a stimulus, wherein the stimulus is a ligand, to modulate the expression of the immunotherapeutic agent, thereby reducing the tumor burden.
  • 26. A method of treating a disease in a subject in need thereof, said method comprising: (a) administering to the subject a therapeutically effective amount of the cell of claim 19, wherein the cell comprises a payload that treats the disease; and(b) administering to the subject a therapeutically effective amount of a stimulus, wherein the SRE is responsive to the stimulus and wherein expression of the payload is modulated in response to the stimulus to thereby treat the disease.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/621,593 filed Dec. 11, 2019, which is a 371 national phase of PCT/US2018/037005 filed Jun. 12, 2018, which claims priority to U.S. Provisional Application No. 62/518,078 filed on Jun. 12, 2017, U.S. Provisional Application No. 62/523,850 filed on Jun. 23, 2017, U.S. Provisional Application No. 62/523,862 filed on Jun. 23, 2017, and U.S. Provisional Application No. 62/555,313 filed on Sep. 7, 2017, the contents of each of which are herein incorporated by reference in their entirety.

US Referenced Citations (17)
Number Name Date Kind
8173792 Wandless et al. May 2012 B2
8530636 Wandless et al. Sep 2013 B2
9487787 Wandless et al. Nov 2016 B2
10137180 Wandless et al. Nov 2018 B2
20020100068 Chambon et al. Jul 2002 A1
20040038373 Platz et al. Feb 2004 A1
20050048573 Artis et al. Mar 2005 A1
20090087871 Kanacher et al. Apr 2009 A1
20090215169 Wandless et al. Aug 2009 A1
20100034777 Wandless et al. Feb 2010 A1
20120076732 Feng et al. Mar 2012 A1
20140010791 Wandless et al. Jan 2014 A1
20140255361 Wandless et al. Sep 2014 A1
20140271635 Brogdon et al. Sep 2014 A1
20160145337 Galetto et al. May 2016 A1
20160202256 Church et al. Jul 2016 A1
20170157176 Wang et al. Jun 2017 A1
Foreign Referenced Citations (13)
Number Date Country
0023091 Apr 2000 WO
2007142929 Dec 2007 WO
2016048903 Mar 2016 WO
2016210293 Dec 2016 WO
2017024318 Feb 2017 WO
2017180587 Oct 2017 WO
2017210617 Dec 2017 WO
2018160993 Sep 2018 WO
2018161017 Sep 2018 WO
2018161026 Sep 2018 WO
2018161038 Sep 2018 WO
2018231759 Dec 2018 WO
2018237323 Dec 2018 WO
Non-Patent Literature Citations (42)
Entry
FKBP1A protein [Homo sapiens], National Center for Biotechnology Information, Available Online at: https://www.ncbi.nlm.nih.gov/protein/AA119733>, Oct. 4, 2006, pp. 1-2.
An et al., Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems, PLoS ONE, vol. 10, No. 12, Dec. 30, 2015, pp. 1-12.
Anguille et al., Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner, PLoS One, vol. 10, No. 5, May 7, 2015, 18 pages.
Banaszynski et al., A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules, Cell, vol. 126, No. 5, Sep, 8, 2006, pp. 995-1004.
Banaszynski et al., Chemical Control of Protein Stability and Function in Living Animals, Nature Medicine, vol. 14, No. 10, Oct. 2008, pp. 1123-1127.
Banaszynski et al., Conditional Control of Protein Function, Chemistry & Biology, vol. 13, No. 1, Jan. 2006, pp. 11-21.
Cho et al., Rapid and Tunable Control of Protein Stability in Caenorhabditis Elegans Using a Small Molecule, PLoS One, vol. 8, No. 8, Aug. 22, 2013, 5 pages.
Dettwiler et al., Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels, PLoS One, vol. 9, No. 11, Nov. 21, 2014, pp. 1-20.
Dohmen et al., Heat-Inducible Degron: a Method for Constructing Temperature-Sensitive Mutants, Science, vol. 263, Mar. 4, 1994, pp. 1273-1276.
Dolinski et al., Enhancing Adoptive Cell Therapies Through Exogenous Regulation, Poster Presented at: AACR Annual Meeting 2018, Apr. 14-18, 2018, 1 page.
Dolinski et al., Enhancing Adoptive Cell Therapies Through Exogenous Regulation, Poster Presented at: Keystone Symposium: Emerging Cellular Therapies: T Cells and Beyond (Joint meeting with Lymphocytes and their Roles in Cancer), Feb. 11-15, 2018, 1 page.
Egeler et al., Ligand-Switchable Substrates for a Ubiquitin-Proteasome System, The Journal of Biological Chemistry, vol. 286, No. 36, Sep. 9, 2011, pp. 31328-31336.
Foa et al., IL2 Treatment for Cancer: From Biology to Gene Therapy, British Journal of Cancer, vol. 66, No. 6, Dec. 1992, pp. 992-998.
Froschauer et al., Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka, PLoS One, vol. 10, No. 7, Jul. 6, 2015, pp. 1-13.
Iwamoto et al., A General Chemical Method to Regulate Protein Stability in the Mammalian Central Nervous System, Chemistry & Biology, vol. 17, No. 9, Sep. 24, 2010, pp. 981-988.
Japanese Application No. 2020-517774, Office Action dated Jul. 26, 2022, 13 pages (4 pages of Original Document and 9 pages of English Translation).
Juillerat et al., Design of Chimeric Antigen Receptors with Integrated Controllable Transient Functions, Scientific Reports, vol. 6, No. 18950, Jan. 11, 2016, pp. 1-7.
Kanemaki et al., Functional Proteomic Identification of DNA Replication Proteins by Induced Proteolysis in Vivo, Nature, vol. 423, Jun. 12, 2003, pp. 720-724.
Kaufman et al., Brief Report: Local Delivery of Vaccinia Virus Expressing Multiple Costimulatory Molecules for the Treatment of Established Tumors, Human Gene Therapy, vol. 17, No. 2, Feb. 2006, pp. 239-244.
Labib et al., Uninterrupted MCM2-7 Function Required for DNA Replication Fork Progression, Science, vol. 288, Jun. 2, 2000, pp. 1643-1646.
Liu et al., Chemical Rescue of Cleft Palate and Midline Defects in Conditional GSK-3β Mice, Nature, vol. 446, Mar. 1, 2007, pp. 79-82.
Liu et al., Destabilization Domain Approach Adapted for Regulated Protein Expression in the Protozoan Parasite Entamoeba Histolytica, International Journal for Parasitology, vol. 44, No. 10, Sep. 2014, pp. 729-735.
Maynard-Smith et al., A Directed Approach for Engineering Conditional Protein Stability Using Biologically Silent Small Molecules, Journal of Biological Chemistry, vol. 282, No. 34, Aug. 24, 2007, pp. 24866-24872.
Miyazaki et al., Destabilizing Domains Derived from the Human Estrogen Receptor, Journal of The American Chemical Society, vol. 134, No. 9, Mar. 7, 2012, pp. 3942-3945.
Morsut et al., Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors, Cell, vol. 164, No. 4, Feb. 11, 2016, pp. 780-791.
Nath et al., In Vivo Regulation of Human Crkll by Cyclophilin A and FK506-Binding Protein, Biochemical and Biophysical Research Communications, vol. 470, No. 2, Feb. 5, 2016, pp. 411-416.
Navarro et al., A Novel Destabilizing Domain Based on a Small-Molecule Dependent Fluorophore, ACS Chemical Biology, vol. 11, No. 8, Aug. 19, 2016, pp. 2101-2104.
Nicholes et al., Modular Protein Switches Derived from Antibody Mimetic Proteins, Protein Engineering, Design & Selection, vol. 29, No. 2, Feb. 2016, pp. 77-85.
Park et al., A Strategy for the Generation of Conditional Mutations by Protein Destabilization, Proceedings of the National Academy of Sciences of the United States of America, vol. 89, Feb. 1992, pp. 1249-1252.
Park et al., CRISPR/Cas9 Allows Efficient and Complete Knock-In of a Destabilization Domain-Tagged Essential Protein in a Human Cell Line, Allowing Rapid Knockdown of Protein Function, PLoS One, vol. 9, No. 4, Apr. 17, 2014, pp. 1-8.
Rakhit et al., Chemical Biology Strategies for Posttranslational Control of Protein Function, Chemistry & Biology, vol. 21, No. 9, Sep. 18, 2014, pp. 1238-1252.
Reardon et al., Dose-Dependent Exogenous Regulation of Membrane Bound Interleukin 15-Interleukin 15 Receptor Alpha Fusion Protein for Adoptive T-Cell Therapy, Poster Presented at: ASGCT 21st Annual Meeting, May 16-19, 2018, 1 page.
Rodriguez et al., Targeted Chemical-Genetic Regulation of Protein Stability in Vivo, Chemical Biology, vol. 19, No. 3, Mar. 23, 2012, pp. 391-398.
Roybal et al., Precision Tumor Recognition by T Cells with Combinatorial Antigen-Sensing Circuits, Cell, vol. 164, No. 4, Feb. 11, 2016, pp. 770-779.
Sellmyer et al., Intracellular Context Affects Levels of a Chemically Dependent Destabilizing Domain, PLOS One, vol. 7, No. 9, e43297, Available Online at: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043297&type=printable, Sep. 2012, 9 pages.
Shamah, Development of a Novel System for Exogenous Regulation of Adoptive Cell Therapy, Oral Presentation Presented at: CAR-TCR Summit, Sep. 5-8, 2017, 22 pages.
Stankunas et al., Conditional Protein Alleles Using Knockin Mice and a Chemical Inducer of Dimerization, Molecular Cell, vol. 12, No. 6, Dec. 2003, pp. 1615-1624.
Stevers et al., Characterization and Small-Molecule Stabilization of the Multisite Tandem Binding Between 14-3-3 and the R Domain of CFTR, Proceedings of the National Academy of Sciences, vol. 119, No. 9, Feb. 2016, pp. E152-E161.
Sui et al., Fine-Tuning of iPSC Derivation by an Inducible Reprogramming System at the Protein Level, Stem Cell Reports, vol. 2, No. 5, May 6, 2014, pp. 721-733.
Sun et al., Exogenous In Vitro and In Vivo Regulation of Interleukin-12 Secretion From T Cells Using Destabilizing Domain Technology, Poster Presented at: ASGCT 21st Annual Meeting, May 16-19, 2018, 1 page.
Tai et al., Destabilizing Domains Mediate Reversible Transgene Expression in the Brain, PLoS One, vol. 7, No. 9, Sep. 28, 2012, pp. 1-7.
Turko et al., Potential Roles of Conserved Amino Acids in the Catalytic Domain of the cGMP-Binding cGMP-Specific Phosphodiesterase (PDE5), The Journal of Biological Chemistry, vol. 273, No. 11, Mar. 13, 1998, pp. 6460-6466.
Related Publications (1)
Number Date Country
20230074330 A1 Mar 2023 US
Provisional Applications (4)
Number Date Country
62555313 Sep 2017 US
62523862 Jun 2017 US
62523850 Jun 2017 US
62518078 Jun 2017 US
Continuations (1)
Number Date Country
Parent 16621593 US
Child 17649592 US