The present invention relates to a pharmaceutical or cosmetic carrier or composition for topical application onto skin and/or mucosal membranes (e.g., the mucosa of the nose, mouth, eye, ear, vagina or rectum). More particularly, the present invention relates to (i) a cosmetic or pharmaceutical carrier or composition characterized by rheological properties which render the carrier or composition semi-solid at rest and liquid upon application of shear forces (e.g., spread forces) thereto; (ii) methods of preparing same; and (iii) methods of utilizing same for treating a variety of skin or mucosal membrane diseases or disorders.
Most of the skin or mucosal membrane diseases or disorders are the result of inflammation caused by inflammatory agents, such as, but not limited to, bacterial, fungal, viral, parasitic, autoimmune, allergic, hormonal and/or malignant inflammatory agents. The most common skin diseases or disorders include eczema, psoriasis and dermatitis, including contact dermatitis, atopic dermatitis and seborrheic dermatitis.
Eczema and dermatitis result from inflammatory processes that involve the upper dermis and epidermis of the skin. When eczema develops, the keratinocytes in the epidermis distend from one another and fluid is accumulated there amongst in a process known as spongiosis.
In chronic forms of eczema or dermatitis the main change include thickening of the epidermis, which leads to itching, roughening and scaling of the skin surface. The loss of water from the skin leads to inflammation of the horny layer, which later result in cracked and sore skin.
Dermatitis is further classified into contact dermatitis (allergic or non allergic), atopic dermatitis and seborrheic dermatitis.
Non allergic contact dermatitis occurs in response to skin irritants, such as acids, alkalis, oils, detergents and solvents.
Allergic contact dermatitis occurs as a result of sensitization to repeated exposure to an antigen. Allergic contact dermatitis appears in skin areas that were in direct contact with the antigen.
Atopic dermatitis, which affects mainly infants, is characterized by sensitization of the skin to a wide range of common antigens.
Seborrheic dermatitis affects the scalp and other hairy areas, the face, and flexural areas and results from yeast or bacteria induced inflammation. Most people suffer from dandruff which is a mild form of seborrheic dermatitis.
Psoriasis is a dominant autosomal inherited inflammatory disease characterized by enhanced proliferation of keratinocytes which proliferation leads to formation of scaly plaques on, for example, the knees, elbows, buttocks, and which are esthetically unpleasant and cause discomfort to the affected subject.
Skin diseases or disorders are usually treated by creams, gels or ointments containing antifungal agents, steroidal agents and/or antibacterial agents. In many instances such creams, gels and ointments are difficult to spread, result in a greasy and sticky appearance and are usually not appealing for use.
Genital infections are caused by fungal, viral and microbial agents. Genital infections are treated either systematically, or by the use of creams, ointments or pessaries, which usually leak or otherwise fail to spread well and lead to ineffective therapeutic concentration of the therapeutically active agent(s) therein.
Genital herpes infections are widespread from the 70's and apart from the discomfort they inflict, genital herpes infections may, in some cases, develop into severe disease. Presently, there is no effective medication for genital herpes.
Trichomoniasis is an infection of the urogenital tract caused due to infection by the protozoan Trichomonas vaginalis. Trichomoniasis is associated with uncomfort itching and vaginal excretion in women.
Candidiasis is caused by Candida albicans and results in itching in the genital area and white discharge therefrom.
Mucosal membrane inflammations can affect other organs such as for example, the eye. Conjunctivitis, caused by different types of bacteria, such as, but not limited to, Staphylococcus aureus, Streptococcus pneumoniae or Haemophilus influenzae, is generally treated with antibiotic ointments, e.g., bacitracin 500 U/g or gentamicin 0.3 percent ophthalmic ointment instilled into the affected eye. The compliance to these ointments is usually poor due to the sticky feeling they exert.
As is evident from the above descriptions, one of the important routes of administration of a drug for treating a skin or mucosal membrane is by topical application of a drug onto the skin or mucosal membrane. This method is useful for local treatment but it is also possible to apply pessaries via the rectum as an efficient delivery method of systemic agents that are not degraded in the intestine.
Many pharmaceutical carriers are presently known, most of them have disadvantages when topically applied onto the skin or mucosal membranes. For example, when ointments containing petroleum as a carrier are applied onto a skin wound, metabolic products and excreta from the wound cannot be easily removed therefrom because of the difficulty of passing through the hydrophobic petroleum barrier. In addition, the active drug ingredient, which is dissolved or dispersed in the petroleum carrier, is not efficiently absorbed into the wound tissue, thus, the efficacy of the drug is affected. Another example is ophthalmologic ointments, which are applied into the eye, and make the eye area sticky and uncomfortable. Moreover, in physiological aspect, petroleum restricts respiration of a wound tissue and is disturbing to the normal respiration of the skin.
Many groups of drugs including, for example, antibiotic, antifungal, antiinflammatory, anesthetic, analgesic, antiallergic, corticosteroid, retinoid and antiproliferative medications are preferably administered typically using a hydrophobic carrier such as petroleum. However, due to the undesirable consistency of petroleum and similar hydrophobic carriers, their topical use is limited. An additional disadvantage of petroleum-carrier including products relates to the greasy feeling following their topical application to the skin or mucosal membranes.
Besides petroleum, other hydrophobic pharmaceutical carriers are known, including liquid paraffin, lanolin, beeswax, vegetable oil, glycerin monostearate, higher alcohols, polyethylene glycol and some emulsifying agents. All of these agents either suffer the limitations described hereinabove with respect to petroleum or have undesirable (fast) flow properties.
Several hydrophobic liquids, e.g., mono- and poly-unsaturated oils from vegetable and marine sources, silicone oils, mineral oils, and liquid hydrophobic plant-derived oils are known for their therapeutic effects when applied topically. Oils may also contain essential nutritional constituents, such as oil-soluble vitamins (e.g., vitamin A and vitamin E), minerals and other therapeutically effective constituents. Administration of such therapeutic oils in a liquid form does not exert sufficient amounts of the therapeutic agents, because of the oil flow-spread properties. Other examples of therapeutic oils include mineral and silicone oils, which are useful for the treatment of skin dehydration and other medical diseases or disorders. These oils are also liquid at ambient temperature.
There is thus a widely recognized need for, and it would be highly advantageous to have a new pharmaceutical or cosmetic composition or carrier which is semi-solid at rest and which liquefies upon application of shear forces thereto, because such a pharmaceutical or cosmetic composition or carrier can be topically applied as a semi-solid onto an affected area and then turn into a liquid upon spreading, resulting in faster absorption and less greasiness and stickiness.
According to one aspect of the present invention there is provided a pharmaceutical or cosmetic carrier comprising, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent.
According to another aspect of the present invention there is provided a method of preparing a pharmaceutical or cosmetic carrier, the method comprising the steps of mixing a hydrophobic solvent and a solidifying agent at a temperature above a melting temperature of the solidifying agent so as to obtain a mixture containing 75-99 percent of the hydrophobic solvent by weight and 1-25 percent of the solidifying agent by weight; and cooling the mixture.
According to yet another aspect of the present invention there is provided a pharmaceutical or cosmetic composition comprising, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, wherein at least one of the solidifying agent and the hydrophobic solvent has a therapeutic or cosmetic beneficial effect.
According to still another aspect of the present invention there is provided a pharmaceutical or cosmetic composition comprising (a) a pharmaceutical or cosmetic carrier containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent; and (b) a therapeutically or cosmetically effective amount of a biologically active substance.
According to an additional aspect of the present invention there is provided a method of preparing a pharmaceutical or cosmetic composition, the method comprising the steps of mixing a hydrophobic solvent and a solidifying agent at a temperature above a melting temperature of the solidifying agent so as to obtain a pharmaceutical or cosmetic mixture containing 75-99 percent of the hydrophobic solvent by weight and 1-25 percent of the solidifying agent by weight and further mixing into the mixture a therapeutically or cosmetically effective amount of a biologically active substance.
According to yet an additional aspect of the present invention there is provided a method of treating a disease or disorder of a skin or a mucosal membrane, the method comprising the step of topically administrating to the skin or the mucosal membrane a pharmaceutical or cosmetic composition containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, wherein at least one of the solidifying agent and the hydrophobic solvent has a therapeutic or cosmetic beneficial effect.
According to a further aspect of the present invention there is provided a method of treating a disease or disorder of a skin or a mucosal membrane, the method comprising the step of topically administrating to the skin or the mucosal membrane a pharmaceutical or cosmetic composition containing (a) a pharmaceutical or cosmetic carrier containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent; and (b) a therapeutically or cosmetically effective amount of a biologically active substance.
According to further features in preferred embodiments of the invention described below, the solidifying agent is selected from the group consisting of at least one long chain fatty alcohol having at least 15 carbon atoms in its carbon backbone and at least one fatty acid, having at least 18 carbon atoms in its carbon backbone.
According to still further features in the described preferred embodiments the solidifying agent includes a substance selected such that under ambient conditions, the carrier is semi-solid at rest and liquefies upon application of shear forces thereto.
According to still further features in the described preferred embodiments the hydrophobic solvent is selected from the group consisting of at least one marine animal derived oil, at least one terrestrial animal derived oil, at least one mineral oil, at least one silicone oil and at least one plant-derived oil.
According to still further features in the described preferred embodiments the hydrophobic solvent includes an oil selected from the group consisting of olive oil, soybean oil, canola oil, rapeseed oil, cottonseed oil, coconut oil, palm oil, sesame oil, sunflower oil, safflower oil, rice bran oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, corn oil, flaxseed oil, wheat germ oil, rape seed oil, evening primrose oil, rosehip oil, tea tree oil, melaleuca oil and jojova oil.
According to still further features in the described preferred embodiments the hydrophobic solvent includes an oil selected from the group consisting of omega-3 oil and omega-6 oil.
According to still further features in the described preferred embodiments the solidifying agent has at least one alkyl group side chain in its carbon backbone.
According to still further features in the described preferred embodiments the carbon backbone of the fatty acid and/or the fatty alcohol has at least one hydroxyl group at position α or β.
According to still further features in the described preferred embodiments the carbon backbone of the fatty acid or the fatty alcohol has at least one hydroxyl group at positions 8-14.
According to still further features in the described preferred embodiments the solidifying agent includes a 12-hydroxy fatty acid.
According to still further features in the described preferred embodiments at least one of the solidifying agent and the hydrophobic solvent have a therapeutic or cosmetic beneficial effect.
According to still further features in the described preferred embodiments the skin or the mucosal membrane disease or disorder includes inflammation caused by an inflammatory agent selected from the group consisting of a bacterial inflammatory agent, a fungal inflammatory agent, a viral inflammatory agent, a parasitic inflammatory agent, an autoimmune inflammatory agent, an allergic inflammatory agent, a hormonal inflammatory agent and a malignant inflammatory agent.
According to still further features in the described preferred embodiments the skin disease or disorder is selected from the group consisting of psoriasis, acne, seborrhea, seborrheic dermatitis, alopecia and excessive hair growth, itching, wounds, burns, cuts, ulcers, seborrheic dermatitis of the face and trunk, seborrheic blepharitis, contact dermatitis, stasis dermatitis and exfoliative dermatitis.
According to still further features in the described preferred embodiments the statis dermatitis is selected from the group consisting of gravitational eczema, varicose eczema and the exfoliative dermatitis is erythroderma.
According to still further features in the described preferred embodiments the biologically active substance is selected from the group consisting of an antibiotic agent, a free radical generating agent, an antifungal agent, an antiviral agent, a non-nucleoside reverse transcriptase inhibitor, a nucleoside-analog reverse transcriptase inhibitor, a protease inhibitor, a protease inhibitor, a non-steroidal antiinflammatory drug, an immunosuppressant, an antihistamine agent, an antiinflammatory agent, a retinoid agent, a tar agent, an antipruritics agent and a scabicide agent.
According to still further features in the described preferred embodiments (a) the antibiotic agent is selected from the group consisting of chloramphenicol, tetracyclines, synthetic and semi-synthetic penicillins, beta-lactames, quinolones, fluoroquinolones, macrolide antibiotics, peptide antibiotics, cyclosporines, erythromycin and clindamycin; (b) the free radical generating agent is benzoyl peroxide; (c) the antifungal agent is selected from the group consisting of azoles, diazole, triazole, miconazole, fluconazole, ketoconazole, clotrimazole, itraconazole griseofulvin, ciclopirox, amorolfine, terbinafine, Amphotericin B and potassium iodide; (d) the antiviral agent is selected from the group of flucytosine (5FC), Vidarabine, acyclovir and Gancyclovir; (e) the nucleoside-analog reverse transcriptase inhibitor is selected from the group consisting of Zidovudine, Stavudine and Lamivudine; (f) the non-nucleoside reverse transcriptase inhibitor is selected from the group consisting of Nevirapine and Delavirdine; (g) the protease inhibitor is selected from the group consisting of Saquinavir, Ritonavir, Indinavir, Nelfinavir, Ribavirin Amantadine, Rimantadine and Interferon; (h) the immunosuppressant is selected from the group consisting of Clobetasol proprionate, Halobetasol proprionate, Betamethasone diproprionate, Betamethasone valerate, Fluocinolone acetonide, Halcinonide, Betamethasone valerate, Fluocinolone acetonide, Hydrocortisone valerate, Triamcinolone acetonide, Hydrocortisone and hexachlorobenzene; (i) the antiinflammatory agent is a vitamin B3 derivative; (j) the retinoid agent is selected from the group consisting of isotretinoin, adapalene and tretinoin; (k) the tar agent is selected from the group consisting of coal tar and cade oil; (l) the antihistamine agent is doxepine hydrochloride; (m) the antipruritic agent is crotampiton; and (n) the scabicide agent is selected from the group consisting of benzyl benzoate, malathion and crotamiton.
According to still further features in the described preferred embodiments the biologically active substance is effective in the treatment of psoriasis, acne, seborrhea, seborrheic dermatitis, alopecia and excessive hair growth, ichthyosis, wounds, burns, cuts, ulcers, psoriasis, seborrheic dermatitis of the face and trunk, seborrheic blepharitis, contact dermatitis, stasis dermatitis or exfoliative dermatitis.
According to still further features in the described preferred embodiments the statis dermatitis is selected from the group consisting of gravitational eczema; varicose eczema, whereas the exfoliative dermatitis is erythroderma.
The present invention successfully addresses the shortcomings of the presently known configurations by providing a biologically active carrier or composition, which is semi solid at rest and liquefies upon application of shear forces thereto, which is therefore easy to spread, highly absorbable, non greasy and non-sticky and which can be used for the treatment of a great number of diseases and syndromes affecting the skin and mucosal membranes.
The invention is herein described, by way of example only, with reference to the accompanying drawing.
The present invention is of (i) a pharmaceutical or cosmetic carrier or composition for topical application, preferably characterized by rheological properties which render the carrier or composition a semi-solid at rest and a liquid upon application of shear forces thereto; (ii) methods of preparing same; and (iii) methods of utilizing same for treating skin or mucosal membrane diseases or disorders.
The principles and operation of the present invention may be better understood with reference to the accompanying descriptions and examples.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of composition set forth in the following description or examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
According to one aspect of the present invention there is provided a pharmaceutical or cosmetic carrier comprising, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, which solvent per se is typically liquid at ambient temperature.
As used herein in the specification and in the claims section that follows, the term “carrier” means a base which is, as is defined in the Collins dictionary, the main ingredient of a mixture. Thus, as used herein a “pharmaceutical carrier” is a pharmaceutical base which is used in the preparation of pharmaceutical compositions, whereas a “cosmetic carrier” is a cosmetic base which is used in the preparation of cosmetic compositions.
According to another aspect of the present invention there is provided a method of preparing a pharmaceutical or cosmetic carrier. The method according to this aspect of the invention is effected by mixing a hydrophobic solvent and a solidifying agent at a temperature above a melting temperature of the solidifying agent so as to obtain a mixture containing 75-99 percent of the hydrophobic solvent by weight and 1-25 percent of the solidifying agent by weight; and cooling the mixture, e.g., to room temperature. Preferably, prior to the step of mixing, both the hydrophobic solvent and the solidifying agent are brought to the temperature above the melting temperature of the solidifying agent.
According to still another aspect of the present invention there is provided a pharmaceutical or cosmetic composition comprising, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, wherein at least one of the solidifying agent and/or the hydrophobic solvent has a therapeutic or cosmetic beneficial effect.
According to yet another aspect of the present invention there is provided a method of preparing a pharmaceutical or cosmetic composition. The method according to this aspect of the invention is effected by mixing a hydrophobic solvent and a solidifying agent at a temperature above a melting temperature of the solidifying agent so as to obtain a mixture containing 75-99 percent of the hydrophobic solvent by weight and 1-25 percent of the solidifying agent by weight; and cooling the mixture, e.g., to room temperature. Preferably, prior to the step of mixing, both the hydrophobic solvent and the solidifying agent are brought to the temperature above the melting temperature of the solidifying agent, e.g., 60-80° C.
Thus, the present invention offers a method of treating a disease or disorder of a skin or a mucosal membrane, such as, but not limited to, a mucosa of a nose, a mucosa of a mouth, a mucosa of an eye, a mucosa of an ear, a mucosa of a vagina and a mucosa of a rectum. The method according to this aspect of the present invention is effected by topically administrating to the skin or the mucosal membrane a pharmaceutical or cosmetic composition containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, wherein at least one of the solidifying agent and the hydrophobic solvent has a therapeutic or cosmetic beneficial effect.
Most preferably, the amount of the solidifying agent in a pharmaceutical or cosmetic carrier according to the present invention is about 4 percent to about 12 percent, whereas the amount of the hydrophobic solvent is about 88 percent to about 96 percent of the total weight of the carrier. As used herein the term about refers to ±20%.
According to a preferred embodiment of the present invention, the solidifying agent includes at least one long chain fatty alcohol having at least 15 carbon atoms in its carbon backbone and/or at least one fatty acid, having at least 18 carbon atoms in its carbon backbone. Preferably, the solidifying agent has at least one alkyl group side chain in its carbon backbone. Additionally or alternatively, the carbon backbone of the fatty acid or the fatty alcohol has at least one hydroxyl group at position α and β. Still additionally or alternatively, the carbon backbone of the fatty acid or the fatty alcohol has at least one hydroxyl group at positions 8-14. According to presently preferred embodiments of the invention, the solidifying agent preferably includes a 12-hydroxy fatty acid.
According to another preferred embodiment of the present invention, the solidifying agent includes a substance selected such that ambient conditions, the carrier is semi-solid at rest and liquefies upon application of shear forces thereto, i.e., has thixotropic properties.
As mentioned above, preferred solidifying agents, according to the present invention, include fatty alcohols having 15 or more carbons in their carbon chain, such as acetyl alcohol and stearyl alcohol (or mixtures thereof). Other examples of fatty alcohols include arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (e.g., up to C50). The concentration of the fatty alcohol, required to obtain the thixotropic properties is inversely related to the length of its carbon chains.
Fatty alcohols, derived from beeswax, comprising a mixture of alcohols, where the majority have at least 20 carbon atoms in their carbon chain, are especially suited as solidifying agents according to the present invention.
Another preferred class of solidifying agents includes fatty acids having 18 or more carbons in their carbon chain, such as and stearic acid, arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (e.g., up to C50), or mixtures thereof.
The concentration of the fatty acid required to obtain a thickened carrier is inversely related to the length of its carbon chains. Stearic acid, for example, exerts a considerable thickening effect at about 10 percent concentration, whereas behenic acid would obtain the same thickening effect at a 5 percent concentration.
Optionally, the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond.
A further class of solidifying agent according to the present invention comprises long chain fatty alcohols or fatty acids, wherein the carbon atom chain is branched. In an additional preferred class of solidifying agents, the carbon chain of the fatty acid is substituted with a hydroxyl group, e.g., 12 hydroxy stearic acid.
An important property of the fatty alcohols and fatty acids used in context of the carrier and composition of the present invention is related to their therapeutic properties per se. Long chain saturated and mono unsaturated fatty alcohols, e.g., stearyl alcohol, erycyl alcohol, arachidyl alcohol and docosanol have been reported to possess antiviral, antiinfective, antiproliferative and antiinflammatory properties (see, U.S. Pat. No. 4,874,794, which is incorporated herein by reference). Longer chain fatty alcohols, e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc., are also known for their metabolism modifying properties and tissue energizing properties. Long chain fatty acids have also been reported to possess antiinfective characteristics. Thus, the pharmaceutical or cosmetic carrier of the present invention provides an extra therapeutic or cosmetic benefit in comparison with currently used vehicles, such as petroleum, which are inert and non-active.
According to still another preferred embodiment of the present invention, the hydrophobic solvent includes at least one marine animal derived oil, at least one terrestrial animal derived oil, at least one mineral oil, at least one silicone oil and/or at least one plant-derived oil. Examples include, but are not limited to, olive oil, soybean oil, canola oil, rapeseed oil, cottonseed oil, coconut oil, palm oil, sesame oil, sunflower oil, safflower oil, rice bran oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, corn oil, flaxseed oil, wheat germ oil, rape seed oil, evening primrose oil, rosehip oil, tea tree oil, melaleuca oil and/or jojova oil.
As used herein “tea tree oil” or “melaleuca oil” both refer to distillates of the leaves of the Australian tree, Melaleuca alternifolia. Tea tree oil is assigned the Chemical Abstract number 68647-73-4 and is commercially available from a variety of sources. Tea tree oil is recognized as having properties as a solvent, antiseptic, antibacterial, antifungal, and pain reliever, as well as other uses. Melaleuca oil has been used in soaps, shampoos, hand creams, tooth pastes, and household cleaners, as well as for treatment of warts and oral candidiasis.
A particularly preferred class of oils to be used in context of the present invention include poly-unsaturated oils which contains omega-3 and omega-6 fatty acids. Thus, in a presently most preferred embodiment of the present invention the carrier contains at least 6 percent omega-3 oil and/or omega-6 oil.
The above described pharmaceutical or cosmetic carrier may be used in the preparation of a pharmaceutical or cosmetic composition comprising (a) a pharmaceutical or cosmetic carrier containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, which is typically liquid at ambient temperature; and (b) a therapeutically or cosmetically effective amount of a biologically active substance. Preferably, at least one of the solidifying agent and the hydrophobic solvent has a therapeutic or cosmetic beneficial effect.
As used herein in the specification and in the claims section that follows the phrase “biologically active substance” refers to an active ingredient which has a therapeutic or cosmetic effect following its administration to an organism (human or animal). The therapeutic or cosmetic effect can be curing, minimizing, preventing or ameliorating a disease or disorder, or improving the physical appearance and aesthetics (e.g., skin hydration) or may have any other therapeutic or cosmetic beneficial effect. The biologically active substance may be, for example, a drug, a vitamin or a vaccine. Thus, the biologically active substances employed in context of the present invention are generally selected from the broad categories of medicaments, agricultural products and cosmetic products. The biologically active substance may be a single drug or a combination of drugs that are dissolved or spread in the carrier of the present invention. Therefore, they are usually, yet not obligatorily, hydrophobic. The concentration of the substance is selected so as to exert its therapeutic or cosmetic effect.
According to another aspect of the invention there is provided a method of preparing a pharmaceutical or cosmetic composition. The method according to this aspect of the present invention is effected by (a) mixing a hydrophobic solvent and a solidifying agent at a temperature above a melting temperature of the solidifying agent so as to obtain a pharmaceutical or cosmetic mixture containing 75-99 percent of the hydrophobic solvent by weight, and 1-25 percent of the solidifying agent by weight; and (b) further mixing into the carrier mixture a therapeutically or cosmetically effective amount of a biologically active substance. Preferably, prior to the step of mixing, both the hydrophobic solvent and the solidifying agent are brought to the temperature above the melting temperature of the solidifying agent, e.g., 60-80° C.
According to a preferred embodiment of this aspect of the present invention the biologically active substance is an antibiotic agent, e.g., chloramphenicol, tetracyclines, synthetic and semi-synthetic penicillins, beta-lactames, quinolones, fluoroquinolones, macrolide antibiotics, peptide antibiotics, cyclosporines, erythromycin and clindamycin; a free radical, e.g., benzoyl peroxide; a generating agent; an antifungal agent, e.g., azoles, diazoles, triazoles, miconazole, fluconazole, ketoconazole, clotrimazole, itraconazole griseofulvin, ciclopirox, amorolfine, terbinafine, Amphotericin B and potassium iodide; an antiviral agent, e.g., flucytosine (5FC), Vidarabine, acyclovir and Gancyclovir; a non-nucleoside reverse transcriptase inhibitor, Nevirapine and Delavirdine; a nucleoside-analog reverse transcriptase inhibitor, a protease inhibitor, e.g., e.g., Zidovudine, Stavudine and Lamivudine, a protease inhibitor, e.g., Saquinavir, Ritonavir, Indinavir, Nelfinavir, Ribavirin Amantadine, Rimantadine and Interferon; a non-steroidal antiinflammatory drug, e.g., Voltarene; an immuno, e.g., Clobetasol proprionate, Halobetasol proprionate, Betamethasone diproprionate, Betamethasone valerate, Fluocinolone acetonide, Halcinonide, Betamethasone valerate, Fluocinolone acetonide, Hydrocortisone valerate, Triamcinolone acetonide, Hydrocortisone and hexachlorobenzene; an antihistamine, e.g., doxepine hydrochloride; an antiinflammatory agent, e.g., vitamin B3 or a derivative thereof; a retinoid agent, e.g., isotretinoin, adapalene and tretinoin; a tar agent, e.g., coal tar and cade oil; an antipruritics agent, e.g., crotampiton; or a scabicide agent, e.g., benzyl benzoate, malathion and crotamiton.
The biologically active substance is preferably selected effective in the treatment of a disease or disorder, such as, but not limited to, psoriasis, acne, seborrhea, seborrheic dermatitis, alopecia and excessive hair growth, ichthyosis, wounds, burns, cuts, ulcers, psoriasis, seborrheic dermatitis of the face and trunk, seborrheic blepharitis, contact dermatitis, stasis dermatitis (e.g., gravitational eczema, varicose eczema) or exfoliative dermatitis (e.g., erythroderma).
Thus, the present invention offers another method of treating a disease or disorder of a skin or a mucosal membrane, such as, but not limited to, a mucosa of a nose, a mucosa of a mouth, a mucosa of an eye, a mucosa of an ear, a mucosa of a vagina and mucosa of a rectum. The method is effected by topically administrating thereto a pharmaceutical or cosmetic composition containing (a) a pharmaceutical or cosmetic carrier containing, by weight, 1-25 percent of a solidifying agent and 75-99 percent of a hydrophobic solvent, which is typically liquid at ambient temperature; and (b) a therapeutically or cosmetically effective amount of a biologically active substance.
The pH of the composition or carrier of the present invention is preferably maintained in the range of about pH 5.5-7.0. Acids, bases, and buffers can be used according to methods well known in the art for adjusting the pH of the carrier or composition.
Pharmaceutical compositions manufactured using the carrier according to the present invention are very easy to use. When applied on the afflicted body surface of humans or animals, they are in a semi-solid state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed. The ease of the application is demonstrated herein in Example 3, where it was compared, in a double blind test to a commercial hydrocortisone preparation. The subjects' score regarding their feeling about the preparation (e.g., the greasiness, stickiness, absorption, penetration, ease of spreading and lack of shiny look) was significantly higher than the score for the commercial preparation.
Additional particulars concerning the use of a variety of biologically active substances in context of the present invention, advantages of the present invention over prior art designs and a variety of applications of the present invention are provided hereinafter.
Treatment of Wounds:
The present invention may find special advantages in the treatment of wounds. Skin wounds which can be treated using the compositions of the present invention include burn wounds, sunburn, cuts, abrasions, acute and chronic wounds and the like. Treatment of burn, ulcers, acute and chronic wounds typically is directed to keeping the wound as clean as possible and making the patient as comfortable as possible. It has been recognized in this respect that keeping the wound moist is advantageous to patient comfort. While maintaining a moist environment will effect some cooling of the tissue, it would be advantageous to be able to decrease the intradermal temperature of a burn wound, which would help to alter the progression of the tissue damage due to heat within the tissues.
Accordingly, it would be advantageous to provide a method for improved treatment of a burn wound that permits significant lowering of the intradermal temperature of the burn wound such that the extent of the burn wound may be limited. Compositions which have antimicrobial agents combined with agents that lead to cooling effect, and which are devoid of adherence to the wound offer relief to people who are suffering from burns or ulcers. The present invention provides a protective moisture barrier to contribute to the sterility of the dressing and to maintain the moistness of the dressing. Sterility is enhanced by the bacteriostatic properties of the wound treatment composition, as well as the shielding action of the barrier's physical presence. An additional barrier to bacteria and contamination is the packaging utilized with the present invention and which is addressed in more detail below.
The wound treatment composition of the present invention comprises as the hydrophobic solvent, for example without limitation, tea tree oil, melaleuca oil and other ingredients in a thixotropic gel formulation. As stated hereinabove, Tea tree oil, or Melaleuca alternifolia, is a natural plant extract. The unique wound treatment composition, in addition to creating a moist, soothing environment, is also inherently bacteriostatic. It helps leave the surface of wounds clean and odor free. The odor of chronic wounds is a major concern of health care workers and caregivers. The effectiveness of Melaleuca is increased in the presence of blood and organic material, rather than decreased as is the case with other bacteriostatic products. Melaleuca oil is a natural oil which is considered to be safe and effective on all kinds of cuts and abrasions, surgical wounds, diabetic and mouth ulcers and foot fungi.
The application of the composition of the present invention onto cuts, wounds, burns and ulcers is beneficial both in the cure of an infection or in the protection of the skin from infection. In all such cases, the composition of the present invention is easy to use, being semi-solid when applied and becoming liquid instantly upon rubbing onto the skin.
Suppositories:
For treatment of vaginal infections, suppositories provide an effective mode for administration of a therapeutic agent. Although suppositories have attained some success, they have some disadvantages. Most of the current commercial vaginal suppositories, either melt or dissolve in the vaginal tract into an oily or aqueous liquid. This resulting liquid in turn tends to leak out or is expelled out of the vaginal cavity resulting either in soiled clothing and/or inferior efficacy. Accordingly, it is an object of the present invention to provide an effective antifungal suppository formulation, which overcomes the noted disadvantages associated with the prior art suppositories.
The suppository formulation of the invention is useful in treating vaginal fungus infections in mammalian species, such as humans, cats, dogs and the like. The suppository formulation will be easily inserted into the vaginal cavity and will melt at body temperature soon after insertion. Upon melting, the suppository turns into a gel/cream like consistency, which will adheres to the vaginal membrane thereby providing prolonged duration of effectiveness.
As mentioned above, a pharmaceutical or cosmetic composition in accordance with the teachings of the present invention may include a biologically active substance. The following provides some examples.
Antiviral Agents:
The carrier or composition of the present invention is beneficial in the treatment of viral infections. For example, cold sores are caused by the herpes simplex Type 1 virus and are sometimes referred to as facial herpes. Mollusca are small viral growths that appear singly or in groups on the face, trunk, lower abdomen, pelvis, inner thighs or penis. Shingles (herpes zoster), which usually only occurs once in a lifetime, appears as a rash (clusters of blisters with a red base). It is caused by the same virus responsible for chickenpox. Warts are a common, benign skin tumor caused by viral infection. Eye viral infections, such as viral conjunctivitis is highly contagious and spreads by droplet, fomites, and hand-to-eye inoculation.
Viral infections are currently treated with various antiviral agents, as is summarized in Table 1 below:
It will be appreciated that the intrinsic antiviral effects of the solidifying agents, e.g., fatty alcohols and acids, provides a synergistic effect that will result in a higher therapeutic response.
Antiparasite Agents:
The biologically active substance contained in a composition of the present invention in a therapeutically effective amount may be an antiparasite agent, such as, but not limited to, hexachlorobenzene, carbamate, naturally occurring pyrethroids, permethrin, allethrin, malathion, piperonyl butoxide or mixtures of these drugs.
Antimicrobial Agents:
Antimicrobial agents, also referred to as germicidal agents, which may be used in compositions of the present invention include phenols, including cresols and resorcinols. Antibacterial compositions according to the present invention may be used to treat infections of the skin. An example of a very common skin infection is acne, which involve infestation of the sebaceous gland with p. acnes, as well as Staphylococus aurus or Pseudomonas. Various antibacterial agents have been utilized to treat acne, however, their efficacy is limited due to their low penetration into the hydrophobic environment of the sebaceous gland. The composition of the present invention, being hydrophobic by nature would facilitate an enhanced rate of penetration. Examples of useful antiacne actives include the keratolytics such as salicylic acid (o-hydroxybenzoic acid), derivatives of salicylic acid such as 5-octanoyl salicylic acid, and resorcinol; retinoids such as retinoic acid and its derivatives (e.g., cis and trans); sulfur-containing D and L amino acids and their derivatives and salts, particularly their N-acetyl derivatives, a preferred example of which is N-acetyl-L-cysteine; lipoic acid; antibiotics and antimicrobials such as benzoyl peroxide, octopirox, tetracycline, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, 3,4,4′-trichlorobanilide, azelaic acid and its derivatives, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, ethyl acetate, clindamycin and meclocycline; sebostats such as flavonoids; and bile salts such as scymnol sulfate and its derivatives, deoxycholate and cholate.
The intrinsic antibacterial and antiinflammatory effects of the solidifying agents, i.e., fatty alcohols and acids, of the composition of the present invention provide a combined synergetic effect that results in a better therapeutic response to treatment.
Eye infections are another preferred target for the composition of the present invention. Conjunctivitis, involving bacteria such as Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae is generally treated with antibiotic ointments, e.g., bacitracin 500 U/g or 0.3 percent ophthalmic ointment instilled into the affected eye. Yet, ointment applied into the eye created a sticky feeling and causes major disturbances to the patient. The composition of the present invention, which turns from semi-solid consistency into liquid instantly after application, does not have that disadvantage and thus, treatment compliance is expected to improve. The same advantage is expected when the composition of the present invention is topically applied to mucosal membranes, the oral cavity, the vagina or the rectum.
Another example is parachlorometaxylenol, which is an antimicrobial agent and is suitable for use in the compositions described in the present invention.
Phenols, in concentrations of about 0.2, 1.0, and 1.3 percent by weight are bacteriostatic, bactericidal, and fungicidal, respectively. While it is not intended that the present invention be bound by any particular theory, it is believed that the germicidal action of phenols at these concentrations is effected through protein denaturation. The phenol-protein interaction is relatively weak, allowing the phenol molecule to penetrate deeply into the tissue. Thus, phenol can penetrate relatively dense, intact keratinous matrices, such as the stratum corneum or the nail plate. Several phenol derivatives are more potent than phenol itself, and the most important among these are the halogenated phenols and bis-phenols, the alkyl-substituted phenols and the resorcinols.
Optionally, the present invention may provide a solution for body odors by including hydrophobic antibacterial compounds to help destroy and/or control the amount of bacteria present on the skin, which aids in body odor control.
Hydrophobic antibacterials useful in the present invention include triclosan, triclocarbon, eucalyptol, menthol, methylsalicylate, thymol, and mixtures thereof. Preferred are triclosan and triclocarbon. When included in the composition of the present invention, the hydrophobic antibacterials may be at a level of from about 0.1 percent to about 1.5 percent and preferably from about 0.1 percent to about 0.3 percent, by weight of the composition.
Antifungal Agents:
Fungal infections are another object of treatment using the compositions of the present invention. Superficial fungal infection of the skin is one of the commonest skin disease seen in general practice. Dermatophytosis is probably the most common superficial fungal infection of the skin. It is caused by a group of fungi, which are capable of metabolizing the keratin of human epidermis, nails or hair. There are 3 genera of dermatophytes causing dermatophytosis i.e., microsporum, trichophyton and epidermophyton.
Candidiasis is an infection caused by the yeast like fungus Candida albicans or occasionally other species of Candida. Clinical syndromes of candidiasis include (a) oral candidiasis (oral thrush); (b) candidiasis of the skin and genital mucous membrane; and (c) candida paronychia, which inflicts the nail.
The pharmaceutical composition of the present invention can contain an antifungal drug, which is active against dermatophytes and candida. The drug may include azoles, diazoles, triazoles, miconazole, fluconazole, ketoconazole, clotrimazole, itraconazole griseofulvin, ciclopirox, amorolfine, terbinafine, Amphotericin B, potassium iodide, flucytosine (5FC) and any combination thereof at a therapeutically effective concentration. U.S. Pat. No. 4,352,808 discloses 3-aralkyloxy-2,3-dihydro-2-(1H-imidazolylmethyl)benzo[b]thiophene compounds having antifungal and antibacterial activity.
Steroidal Antiinflammatory Agents:
Suitable steroidal antiinflammatory agents usable in the composition of the present invention may include, although are not limited to, corticosteroids such as hydrocortisone, hydroxyltriamcinolone alphamethyl dexamethasone, dexamethasone-phosphate, beclomethasone dipropionate, clobetasol valerate, desonide, desoxymethasone, desoxycorticosterone acetate, dexamethasone, dichlorisone, diflorasone diacetate, diflucortolone valerate, fluadrenolone, fluclarolone acetonide, fludrocortisone, flumethasone pivalate, fluosinolone acetonide, fluocinonide, flucortine butylester, fluocortolone, fluprednidene (fluprednylidene)acetate, flurandrenolone, halcinonide, hydrocortisone acetate, hydrocortisone butyrate, methylprednisolone, triamcinolone acetonide, cortisone, cortodoxone, flucetonide, fludrocortisone, difluorosone diacetate, fluradrenalone acetonide, medrysone, amc, amcinafide, betamethasone and the balance of its esters, chloroprednisone, chloroprednisone acetate, clocortelone, clescinolone, dichlorisone, difluprednate, flucloronide, flunisolide, fluoromethalone, fluperolone, fluprednisolone, hydrocortisone valerate, hydrocortisone cyclopentylproprionate, hydrocortamate, meprednisone, paramethasone, prednisolone, prednisone, beclomethasone dipropionate, betamethasone dipropionate, triamcinolone, and mixtures thereof may be used. The preferred steroidal antiinflammatory for use in the present invention is hydrocortisone.
Table 2 below provides a summary of currently available corticosteroid agent.
Since all corticosteroid drugs are hydrophobic, the carrier of the present invention is most suitable as a vehicle to facilitate an enhanced rate of penetration and better topical distribution thereof.
Furthermore, the intrinsic antiviral, antibacterial and antiinflammatory effects of the solidifying agents, i.e., fatty alcohols and acids, provide a combined synergetic effect that should result in a better therapeutic response to treatment.
Psoriasis is a very common chronic inflammatory skin disease, which may be the target of treatment using a composition of the present invention. Psoriasis is marked by periodic flare-ups of sharply defined red patches covered by a silvery, flaky surface.
Corticosteroid ointments, greasy preparations containing small amount of water, are commonly used for treating psoriasis. Their main disadvantage is in their stickiness, which remains for long time after treatment is over. In this respect it should be noted that the present invention exemplifies the use of a hydrocortisone containing composition that was prepared according to the teachings of the present invention (see Example 1 below). The hydrocortisone preparation was compared to a commercial composition (Example 2) and was shown be highly efficient in the treatment of psoriatic patients. Major reduction in the severity of the disease symptoms, i.e., disappearance of the silvery scales, and reduction of the oedema, erythema and pruritus were observed. Moreover the patients reported that unlike the ointments which are currently available in the market (see Table 2 above), the composition of the present invention was well distributed and absorbed into the skin, without leaving an undesirable greasiness and shiny appearance which characterized the prior art formulations.
Examples of other inflammatory diseases or disorders, which can be treated by the composition of the present invention, wherein the drug is a steroid are: seborrheic dermatitis of the face and trunk, seborrheic blepharitis, contact dermatitis, stasis dermatitis (gravitational eczema; varicose eczema), exfoliative dermatitis (erythroderma), lichen simplex chronicus, pemphigus, conjunctivitis and uveitis.
Topical antihistaminic preparations currently available include 1 percent and 2 percent diphenhydramine (Benadryl® and Caladryl®), 5 percent doxepin (Zonalon®) cream, phrilamine maleate, chlorpheniramine and tripelennamine, phenothiazines, promethazine hydrochloride (Phenergan®) and dimethindene maleate. These drugs, as well as additional antihistamines can also be included in the composition of the present invention.
Additionally, so-called “natural” antiinflammatory agents are useful in context of the present invention. For example, candelilla wax, alpha bisabolol, aloe vera, Manjistha (extracted from plants in the genus Rubia, particularly Rubia cordifolia), and Guggal (extracted from plants in the genus Commiphora, particularly Commiphora mukul, may be used as an active ingredient in the composition of the present invention.
Non-Steroidal Antiinflammatory Drugs (NSAIDs):
Another preferred embodiment of the present invention is administration of non-steroidal antiinflammatory drugs (herein NSAIDs) using a composition of the present invention. NSAIDs have been used extensively in recent years for treatment of chronic rheumatic or arthritic conditions and for management of pain. The compounds are believed to bring relief by inhibiting biosynthesis of prostaglandins at affected joints or in other tissue areas. Salicylic acid, or aspirin, and ibuprofen are well-known examples of NSAIDs drugs. Patients using NSAIDs drugs administered orally face an increased risk for peptic ulcers and gastrointestinal blood loss resulting in anemia. Such adverse reactions especially plague patients taking NSAIDs drugs over prolonged periods. Administration of NSAIDs to using the carrier of the present invention will prevent gastrointestinal complications associated with the oral administration of NSAIDs. Such compositions can be used for prolonged treatment of arthritis and other diseases or disorders treated by NSAIDs drugs, while avoiding the gastrointestinal complications associated with oral dose delivery. Application of NSAIDs drugs in a topical composition to the skin of a patient allows a predetermined amount of the NSAIDs drug to be administered continuously to the patient and avoids undesirable effects present with a single or multiple administrations of larger dosages. By maintaining a sustained dosage rate, the NSAIDs drug level in the patient's blood can be better maintained within the optimal therapeutic range.
Examples of NSAIDs include the following categories: propionic acid derivatives; acetic acid derivatives; fenamic acid derivatives; biphenylcarboxylic acid derivatives; and oxicams. All of these NSAIDs are fully described in the U.S. Pat. No. 4,985,459 to Sunshine et al. which is incorporated herein by reference. Examples of useful NSAIDs include acetyl salicylic acid, ibuprofen, naproxen, benoxaprofen, flurbiprofen, fenoprofen, fenbufen, ketoprofen, indoprofen, pirprofen, carprofen, oxaprozin, pranoprofen, mniroprofen, tioxaprofen, suprofen, alminoprofen, tiaprofenic acid, fluprofen and bucloxic acid.
Antioxidants/Radical Scavengers:
Suitable antioxidants/radical scavengers useful in context of the present invention include ascorbic acid (vitamin C) and its salts, tocopherol (vitamin E), and its derivatives such as tocopherol sorbate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (commercially available under the trade name Trolox®), gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, the ascorbyl esters of fatty acids, amines (e.g., N,N-diethylhydroxylamine, amino-guanidine), sulfhydryl compounds (e.g., glutathione), and dihydroxy fumaric acid and its salts may be used, as well as EDTA, BHT and the like.
Antibiotics:
Antibiotics which may be used in context of the composition of the present invention, include, but are not limited to, chloramphenicol, tetracyclines, synthetic and semi-synthesic penicillins, beta-lactames, quinolones, fluoroquinolones, macrolide antibiotics, peptide antibiotics, cyclosporines, erythromycin and clindamycin.
Topical Anesthetics:
Examples of topical anesthetic drugs useful in context of the composition of the present invention include benzocaine, lidocaine, bupivacaine, chloroprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexylcaine, procaine, cocaine, ketamine, pramoxine, phenol, and pharmaceutically acceptable salts thereof.
Retinol:
Another preferred group of drugs useful in context of the composition of the present invention include retinol, all trans retinoic acid and derivatives, isomers and analogs thereof, collectively termed “retinoids”. Compositions according to the present invention, which contain retinoids as the active ingredient can be used for the treatment of acne, seborrhea, various dermatoses, inflammation of the skin, mucosal membranes, eye, vagina and the rectum, psoriasis and cancers, by application onto the affected area.
Other Drugs:
As is further detailed hereinunder, it is possible to provide the composition of the present invention onto a dermal patch to generate a transdermal delivery apparatus and applying such patch onto the skin in order to attain effective superficial treatment or enhanced penetration of a drug into the skin or through the skin.
Utilizing such a strategy, one can apply drugs which are currently administered systemically or that require transdermal delivery, in the preferred therapeutic system of the present invention. The following provides some examples for such drugs.
A broad range of analgesics may be utilized including, without limitation, morphine, codeine, heroine, methadone, thebaine, orpiarine, buprenorphine, morphinans, benzomorphans, acetaminophen, butorphanol, diflunisal, fenoprofen, fentanyl, fentanyl citrate, hydrocodone, aspirin, sodium salicylate, ibuprofen, oxymorphone, pentaxicine, naproxen, nalbuphine, mefenamic acid, meperidine and dihydroergotamine.
A typical narcotic antagonist is haloxone. Exemplary antitussive agents include, without limitation, diphenhydramine, guaifenesin, hydromorphone, ephedrine, phenylpropanolamine, theophylline, codeine, noscapine, levopropoxyphene, carbetapentane, chlorpehndianol and benzonatate.
Among the sedatives which may be utilized are, without limitation, chloral hydrate, butabarbital, alprazolam, amobarbital, chlordiazepoxide, diazepam, mephobarbital, secobarbital, diphenhydramine, ethinamate, flurazepam, halazepam, haloperidol, prochlorperazine, oxazepam, and talbutal.
Examples of cardiac drugs are, without limitation, quinidine, propranolol, nifedipine, procaine, dobutamine, digitoxin, phenyloin, sodium nitroprusside, nitroglycerin, verapamil HCl, digoxin, nicardipine HCl, and isosorbide dinitrate.
Antiemetics are illustrated by, without limitation, thiethylperazine, metoclopramide, cyclizine, meclizine, prochlorperazine, doxylamine succinate, promethazine, triflupromazine, and hydroxyzine.
A typical dopamine receptor agonist is bromocriptine mesylate. Exemplary amino acid, peptide and protein hormones include, without limitation, thyroxine, growth hormone (GH), interstitial cell stimulating hormone (ICSH), follicle-stimulating hormone (FSH), thyrotrophic hormone (TSH), adrenocorticotropic hormone (ACTH), gonadotropin releasing hormone (GnRH) such as leuprolide acetate, vasopressin and their active degradation products Some products may have sufficiently high molecular weights that absorption through the stratum corneum or mucous membranes may be difficult. Therefore, the invention is applicable only to those hormones which have molecular weights and stereo configurations which will allow passage through the skin.
Female sex hormones which can be used include, without limitations, estradiol, diethylstilbestrol, conjugated estrogens, estrone, norethindrone, medroxyprogesterone, progesterone, and norgestrel.
Typical male sex hormones which may be utilized may be represented by, without limitation, testosterone, methyltestosterone, and fluoxymesterone.
The above listed active permeants may, along with others not specifically disclosed, be used separately or in combination according to the treatment regimen desired.
Cosmetic Agents:
The carrier according to the present invention can also be used to prepare cosmetics for beauty purpose by the addition of skin care agents and perfumes.
Sun Screen Agents:
Also useful in context of the composition of the present invention are sun screening agents. A wide variety of sun screening agents are described in U.S. Pat. No. 5,087,445, to Haffey et al. U.S. Pat. No. 5,073,372, to Turner et al., U.S. Pat. No. 5,073,371, to Turner et al. and Segarin, et al., at Chapter VIII, pages 189 et seq., of Cosmetics Science and Technology all of which are incorporated herein by reference in their entirety. Preferred among those sunscreens which are useful in the composition of the instant invention are those selected from the group consisting of 2-ethylhexyl p-methoxycinnamate, octyl methoxycinnamate, 1-p-aminobenzoate, p-aminobenzoic acid, 2-phenylbenzimidazole-5-sulfonic acid, octocrylene, oxybenzone, homomethyl salicylate, octyl salicylate, 4,4′-methoxy-t-butyldibenzoylmethane, 4-isopropyl dibenzoylmethane, 3-benzylidene camphor, 3-(4-methylbenzylidene) camphor, titanium dioxide, zinc oxide, silica, iron oxide, and mixtures thereof. Still other useful sunscreens are those disclosed in U.S. Pat. Nos. 4,937,370, to Sabatelli and 4,999,186, to Sabatelli et al. These two later references are incorporated by reference herein in their entirety. The sun screening agents disclosed therein have, in a single molecule, two distinct chromophore moieties which exhibit different ultra-violet radiation absorption spectra. One of the chromophore moieties absorbs predominantly in the UVB radiation range and the other absorbs strongly in the UVA radiation range. These sun screening agents provide higher efficacy, broader UV absorption, lower skin penetration and longer lasting efficacy relative to conventional sunscreens. Especially preferred examples of these sunscreens include those selected from the group consisting of 4-N,N-(2-ethylhexyl)methylaminobenzoic acid ester of 2,4-hydroxybenzophenone, 4-N,N-(2-ethylhexyl)methylaminobenzoic acid ester with 4-hydroxydibenzoylmethane, 4-N,N-(2-ethylhexyl)methylaminobenzoic acid ester of 2-hydroxy-4-(2-hydroxyethoxy)benzophenone, 4-N,N-(2-ethylhexyl)-methylaminobenzoic acid ester of 4-(2-hydroxyethoxy)dibenzoylmethane, and mixtures thereof. Generally, the sunscreens can comprise from about 0.5 percent to about 20 percent of the compositions useful herein. Exact amounts will vary depending upon the sunscreen chosen and the desired Sun Protection Factor (SPF). SPF is a commonly used measure of photoprotection of a sunscreen against erythema. See Federal Register, Vol. 43, No. 166, pp. 38206-38269, Aug. 25, 1978.
Artificial Tanning Agents and Accelerators:
Examples of artificial tanning agents accelerators which can be used in context of the present invention include dihydroxyacetone, tyrosine, tyrosine esters such as ethyl tyrosinate, and phospho-DOPA.
Reducing Body Odors:
The body fluids includes eccrine sweat, apocrine sweat, sebum, build up of sensible moisture from transepidermal water loss, vaginal discharge, urine, and mixtures thereof. The body odor are odors, which are generated as a result of the natural functioning of a human body. Such odors include, but are not limited to odors produced by microorganisms of the human skin (i.e. bacterial decomposition of skin secretions), urine, or vaginal discharge, and mixtures thereof. The present invention is therefore relevant to a method of reducing body odor comprising the application of a perfume-free, odor-absorbing composition which includes the carrier of the present invention.
Antiwrinkle and Antiskin Atrophy Agents:
Examples of antiwrinkle and antiskin atrophy actives which can be used in context of the present invention include retinoic acid and its derivatives (e.g., cis and trans); salicylic acid and derivatives thereof, sulfur-containing D and L amino acids and their derivatives and salts, particularly the N-acetyl derivatives, a preferred example of which is N-acetyl L-gsteine; thiols, e.g. ethane thiol; alpha-hydroxy acids, e.g. glycolic acid, and lactic acid; phytic acid, lipoic acid; lysophosphatidic acid, and skin peel agents (e.g., phenol and the like).
Excipients and Additional Agents:
The pharmaceutical or cosmetic composition of the present invention may further include a variety of pharmaceutical or cosmetic ingredients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and bestow their cosmetic acceptability. Such excipients, may be selected from the group consisting of water, surfactants, emulsifiers, diglycerides, triglycerides, stabilizing agents, antioxidants, glycerol, ethanol, propanol, isopropanol, butanol, polymeric gelling agents, flavoring, colorant and odorant agents and other formulation components, used in the art of pharmaceutical and cosmetic formulary.
Additional active and inactive ingredients may also include, without limitation, local analgesics such as benzocaine, menthol, and the like (wherein menthol is also capable of providing a soothing, cooling sensation), as well emollients, antihistamines, fragrances, thickeners and preservatives other than those already listed.
Emollients:
The compositions of the present invention can also include an emollient. Emollient is used to smooth the surface of the skin. Examples of suitable emollients include, but are not limited to, volatile and non-volatile silicone oils (e.g., dimethicone, cyclomethicone, dimethiconol, and the like), highly branched hydrocarbons, and mixtures thereof. Emollients useful in the instant invention are further described in U.S. Pat. No. 4,919,934, to Deckner et al., which is incorporated herein by reference in its entirety. The emollients can typically comprise in total from about 0.1 percent to about 25 percent, more preferably from about 0.5 percent to about 10 percent, and most preferably from about 0.5 percent to about 5 percent by weight of the composition.
A variety of additional ingredients can be incorporated into the composition of the present invention. Non-limiting examples of these additional ingredients include vitamins and derivatives thereof (e.g. tocopherol, panthenol, and the like); other thickening agents (e.g., polyacrylamide and C13-C14 isoparaffin and laureth-7, available as Sepigel 305 from Seppic Corp., Fairfield, N.J.; and branched polysaccharides such as scleroglucan available under the tradename Clearogel® CS 11 from Michel Mercier Products Inc., Mountainside, N.J.); saturated and/or unsaturated alkyl alpha hydroxy acids; resins; gums (e.g. guar gum, xanthan gum and the like); waxes (both naturally occurring and synthetic); polymers for aiding the film-forming properties and substantivity of the composition (such as a copolymer of eicosene and vinyl pyrrolidone, an example of which is available from GAF Chemical Corporation as Ganex V-220®); abrasive scrub particles for cleansing and exfoliating the skin, e.g., ACuscrub® Mild Abrasives (e.g., ACuscrub® 30, 31, 32, 40, 41, 42, 43, 44, 50, 51, and 52) available from Allied Signal, Inc., Morristown, N.J.; and 3M Brand PMU Capsules microencapsulated mineral oil available from 3M Corporation, St. Paul, Minn.; preservatives for maintaining the antimicrobial integrity of the compositions; skin penetration aids such as DMSO, 1-dodecylazacycloheptan-2-one (available as Azone® from the Upjohn Co.) and the like; skin bleaching (or lightening) agents including but not limited to hydroquinone, kojic acid and sodium metabisulfite; chelators and sequestrants; and aesthetic components such as fragrances, pigments, colorings, essential oils, skin sensates, astringents, skin soothing agents, skin healing agents and the like, nonlimiting examples of these aesthetic components include panthenol and derivatives (e.g. ethyl panthenol), aloe vera, pantothenic acid and its derivatives, clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate, allantoin, bisabalol, dipotassium glycyrrhizinate and the like.
The carrier system may also comprise, when desired, a suitable gelling agent including, but not limited to, cellulose esters such as hydroxypropyl cellulose (Klucel®), hydroxyethyl cellulose (Natrosol®), polyvinylpyrrolidone (Povidone®), carboxyvinyl polymer (HIVIS105®) and the like that may be provided in any amount necessary to thicken the composition to a desired gel consistency. When formulated as a gel, the base composition exhibits favorable spreadability characteristics. In addition, it remains visible on the skin surface longer, thereby instilling in the user the impression that the vehicle is more completely delivering its active ingredient(s).
In addition to the aforementioned ingredients, it should also be noted that the following ingredients may also be included in the inventive composition, as desired: coloring agents, fragrances, conditioners, moisturizers, surfactants, antioxidants, preservatives, etc.
Preferred ingredients are saturated and/or unsaturated alkyl alpha hydroxy acids, at a level of from about 0.05 percent to about 5 percent by weight of the composition, such as lactic acid, lactate salts (e.g., ammonium and quaternary alyl ammonium), glycolic acid, glycolate salts (e.g., ammonium and quaternary allyl ammonium), and fruit acids. A discussion of alpha hydroxy acids is disclosed in Walter P. Smith, Hydroxy Acids and Skin Aging, Soap/Cosmetics/Chemical Specialties. pp. 54-59, (September 1993), which is herein incorporated by reference in its entirety.
Preservatives:
Antimicrobial preservatives useful in the present invention include biocidal and biostatic compounds (substances that kill microorganisms and/or regulate the growth of microorganisms). Suitable antimicrobial preservatives have a solubility of 0.3 percent or greater. In addition, suitable preservatives are those which can come into contact with skin without high irritation potential. Preservatives suitable for use in the present compositions are described in U.S. Pat. No. 5,534,165, to Pilosof et al.
It is preferable to use a broad spectrum preservative such as one that is effective both on bacteria (both gram positive and gram negative) and fungi. A limited spectrum preservative such as one that is only effective on a single group of microorganisms, for example fungi, can be used in combination with a broad spectrum preservative or other limited spectrum preservatives with complimentary and/or supplementary activity. A mixture of broad spectrum preservatives can also be used.
Colorants and Dyes:
Colorants and dyes can be optionally added to the odor absorbing compositions for visual appeal and performance impression. When colorants are used, care must be taken in the selection of choosing dyes that will not color skin. Preferred colorants for use in the present compositions are highly water-soluble dyes, e.g., acid blue 3, acid blue 104, acid green 1, acid green 25, acid yellow 3, acid yellow 73 sodium salt, D&C green No. 5, 6 & 8, D&C yellow No. 7, 8, 10 & 11, D&C violet No. 2, FD&C blue No. 1 & 2, FD&C green No. 3, FD&C yellow No. 5 & 6, and mixtures thereof.
Other Optional Ingredients:
The composition of the present invention can optionally contain adjunct odor-controlling materials, such as zinc salts, cationic polymers, anionic polymers, carbonate salts, bicarbonate salts, zeolites, and activated carbon; chelating agents; colorants; and/or antiperspirants.
Optionally, the composition of the present invention can include zinc salts for added odor absorption and/or antimicrobial benefit for the cyclodextrin solution. Zinc compounds have been used most often for their ability to ameliorate malodor, e.g., in mouth wash products, as disclosed in U.S. Pat. Nos. 4,325,939 and 4,469,674 to Shah, et al. Highly-ionized zinc salts, such as zinc chloride, provide the best source of zinc ions. The zinc salt, zinc phenolsulfonate, is preferred for use in the skin composition of the present invention; although others may also fall within the scope of the present invention. However, care must be taken in selecting zinc salts, as well as their levels, since some may be irritants to the skin and they are not preferred for use in the present invention.
Administration Via Dermal Patch:
The compositions of the present invention may also be delivered to the skin using conventional dermal-type patches or articles, wherein the active ingredients composition is contained within a laminated structure, that serves as a drug delivery device to be affixed to the skin. In such a structure, the active ingredients composition is contained in a layer, or “reservoir”, underlying an upper backing layer. The laminated structure may contain a single reservoir, or it may contain multiple reservoirs. In one embodiment, the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during active ingredients delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like. The particular polymeric adhesive selected will depend on the particular active ingredients, vehicle, etc., i.e., the adhesive must be compatible with all components of the active ingredients-containing composition. Alternatively, the active ingredients-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form.
The backing layer in these laminates, which serves as the upper surface of the device, functions as the primary structural element of the laminated structure and provides the device with much of its flexibility. The material selected for the backing material should be selected so that it is substantially impermeable to the active ingredients and to any other components of the active ingredients-containing composition, thus preventing loss of any components through the upper surface of the device. The backing layer may be either occlusive or nonocclusive, depending on whether it is desired that the skin become hydrated during active ingredients delivery. The backing is preferably made of a sheet or film of a preferably flexible elastomeric material. Examples of polymers that are suitable for the backing layer include polyethylene, polypropylene, and polyesters.
During storage and prior to use, the laminated structure includes a release liner. Immediately prior to use, this layer is removed from the device to expose the basal surface thereof, either the active ingredients reservoir or a separate contact adhesive layer, so that the system may be affixed to the skin. The release liner should be made from a active ingredients/vehicle impermeable material.
Such devices may be fabricated using conventional techniques, known in the art, for example by casting a fluid admixture of adhesive, active ingredients and vehicle onto the backing layer, followed by lamination of the release liner. Similarly, the adhesive mixture may be cast onto the release liner, followed by lamination of the backing layer. Alternatively, the active ingredients reservoir may be prepared in the absence of active ingredients or excipient, and then loaded by “soaking” in a active ingredients/vehicle mixture.
Therapeutic Effect and Dosage:
The therapeutic efficacy of the compositions described herein can be determined by standard pharmaceutical procedures in experimental animal models or human beings. The data obtained from these studies can be used in formulating a range of dosage for use in human (See e.g., Fingl, et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p. 1).
The effective concentration of the drug is calculated by procedures known in the art that can be employed to determine the effective local concentration. For example, corticosteroid induced vasoconstriction in man may provide a preliminary useful hint to topical antiinflammatory activity.
The amount of a composition to be administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc.
Short term studies over one or two weeks may not be the only relevant investigation for the clinical comparison of the topical drugs. In practice these are sometimes applied over long periods of time and the differences may be apparent only after months of treatment. For this reason, depending on the novelty of the product and the indications claimed, certain studies of efficacy as well as of safety will be required.
Since the hydrophobic agent can be derived from a biological source, it is necessary to assess the repeatability of the therapeutic effect as well as the reproducibility, the specificity and the accuracy of the agent. This should be done by an analytical chemistry laboratory which is defined as GLP (Good Laboratory Practice).
Compositions of the present invention may, if desired, be presented in a bottle or jar or other container approved by the FDA, which may contain one or more unit dosage forms containing the active ingredient. Compositions such as those described in the present invention may be particularly susceptible to microbial and other contamination, and special measures need to be taken to prevent any contamination. The pack or dispenser may also be accompanied by a notice associated with the container in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the compositions or human or veterinary administration. Such notice, for example, may be of labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert. Compositions comprising a preparation of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. Suitable conditions indicated on the label may include treatment for acne or for psoriasis and the like.
The gist and advantages of the present invention over the prior art:
The gist of the present invention is based on the striking discovery that the addition of fatty alcohols to hydrophobic liquids, such as saturated, mono-unsaturated or poly-unsaturated oils, as well as mineral and silicone oils, may alter the physicochemical properties of the material, including the solidification thereof. This appears to be particularly relevant when the fatty alcohol has a molecular weight greater than 200 Da and at least one hydroxyl group in its chemical structure. The addition of a fatty alcohol to a liquid oil also gives rise to thixotropic properties (e.g., being semi-solid at rest and liquid upon application of shear forces thereto). This property enables application of a thixotropic mixture as a semi-solid state to a body surface, which subsequently becomes substantially liquid and therefore more spreadable and penetrable when rubbed onto the body surface. Thus, one of the most important properties of the carrier and composition of the present invention is that they are semi-solid at rest and that they liquefy upon application of shear forces thereto. Semi-solid hydrophobic formulations are important not only for the pharmaceutical market but also for cosmetic products, such as carriers of sunscreen compounds, oil-soluble plant extracts, materials for scrubbing purposes and other active and non-active cosmetic ingredients. Unlike aqueous liquids, which are rather easy to solidify due to their hydrogen bond forming ability, oils are difficult to solidify. Several methods have been proposed to increase the viscosity of oils. Various gelling agent, such as inorganic complexing agents (U.S. Pat. No. 4,780,309), hydrocolloids (U.S. Pat. No. 4,576,645), polymers and copolymers (U.S. Pat. Nos. 5,985,821; 5,925,707), polysaccharides (U.S. Pat. No. 5,961,998) have been previously described in the context of solidifying oils for use in food and cosmetics. The use of waxes, fatty alcohols, fatty acids and 12 hydroxy stearic acid in solidifying waste oils, in order to facilitate the removal of such oils have also been described (JP-A-112385/1979; JP-A-106298/1980). U.S. Pat. No. 5,817,322 teaches pharmaceutical compositions, comprising an oil and beeswax as a gelling agent, which form a netted framework of the beeswax and form a film after application on a body surface.
However, the prior art fails to teach a carrier or composition for topical application which is semi-solid at rest and which liquefies upon application of shear forces thereto.
Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
Stearyl alcohol (60 grams) was heated to 80° C. USP olive oil (940 grams) was heated to the same temperature. While at 80° C., the stearyl alcohol was added to the preheated olive oil. 20 grams glycerin, 20 grams tri-stearin, 1 gram of an antioxidant mixture were added by agitation. 1 gram of betamethasone valerate was added and the mixture was poured into containers (5 gram tubes) and was allowed to cool spontaneously. While the mixture cooled to ambient temperature it gradually turned into a semi-solid.
In a preliminary experiment, five patients with psoriasis were treated with the corticosteroid preparation described in Example 1, twice a day, for 10 days. In three out of five patients the psoriatic plaques and skin thickness were significantly reduced after 7-10 days of treatment (
Eight subjects were requested to apply 1 gram of the corticosteroid composition described in Example 1 on one arm and 1 gram of commercial betamethasone valerate ointment, on the other arm. The study was performed in a double blind manner. The subjects had to describe their opinion about the ease of application, ease of spreading, spreadability and penetrability of each of the products and to give their scores on a scale of 0 to 3 (0=poor; 1=barely acceptable; 2=acceptable and 3=excellent).
As can be clearly seen in Table 3 below, the corticosteroid composition of Example 1 obtained higher score in each of the study parameters.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 11/294,318, filed Dec. 5, 2005, which is a continuation of U.S. patent application Ser. No. 10/392,071, filed on Mar. 19, 2003, now U.S. Pat. No. 6,994,863, which is a divisional of U.S. patent application Ser. No. 09/653,267, filed on Aug. 31, 2000, now U.S. Pat. No. 6,967,023, which is a non-provisional of U.S. Provisional Patent Application No. 60/216,162, filed Jul. 3, 2000, all of which applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1159250 | Moulton | Nov 1915 | A |
1666684 | Carstens | Apr 1928 | A |
1924972 | Beckert | Aug 1933 | A |
2085733 | Bird | Jul 1937 | A |
2390921 | Clark | Dec 1945 | A |
2524590 | Boe | Oct 1950 | A |
2586287 | Apperson | Feb 1952 | A |
2617754 | Neely | Nov 1952 | A |
2767712 | Waterman | Oct 1956 | A |
2968628 | Reed | Jan 1961 | A |
3004894 | Johnson et al. | Oct 1961 | A |
3062715 | Reese et al. | Nov 1962 | A |
3067784 | Gorman | Dec 1962 | A |
3092255 | Hohman | Jun 1963 | A |
3092555 | Horn | Jun 1963 | A |
3141821 | Compeau | Jul 1964 | A |
3142420 | Gawthrop | Jul 1964 | A |
3144386 | Brightenback | Aug 1964 | A |
3149543 | Naab | Sep 1964 | A |
3154075 | Weckesser | Oct 1964 | A |
3178352 | Erickson | Apr 1965 | A |
3236457 | Kennedy et al. | Feb 1966 | A |
3244589 | Sunnen | Apr 1966 | A |
3252859 | Silver | May 1966 | A |
3261695 | Sienkiewicz | Jul 1966 | A |
3263867 | Lehmann | Aug 1966 | A |
3263869 | Corsette | Aug 1966 | A |
3298919 | Bishop et al. | Jan 1967 | A |
3301444 | Wittke | Jan 1967 | A |
3303970 | Breslau et al. | Feb 1967 | A |
3330730 | Hernandez | Jul 1967 | A |
3333333 | Noack | Aug 1967 | A |
3346451 | Collins et al. | Oct 1967 | A |
3366494 | Bower et al. | Jan 1968 | A |
3369034 | Chalmers | Feb 1968 | A |
3377004 | Wittke | Apr 1968 | A |
3384541 | Clark et al. | May 1968 | A |
3395214 | Mummert | Jul 1968 | A |
3395215 | Schubert | Jul 1968 | A |
3401849 | Weber, III | Sep 1968 | A |
3419658 | Sanders | Dec 1968 | A |
3456052 | Gordon | Jul 1969 | A |
3527559 | Sliwinski | Sep 1970 | A |
3540448 | Sunnen | Nov 1970 | A |
3559890 | Brooks et al. | Feb 1971 | A |
3561262 | Borucki | Feb 1971 | A |
3563098 | Weber, III | Feb 1971 | A |
3574821 | Pfirrmann | Apr 1971 | A |
3577518 | Shepherd | May 1971 | A |
3667461 | Zamarra | Jun 1972 | A |
3751562 | Nichols | Aug 1973 | A |
3770648 | Mackles | Nov 1973 | A |
3787566 | Gauvreau | Jan 1974 | A |
3819524 | Schubert et al. | Jun 1974 | A |
3841525 | Siegel | Oct 1974 | A |
3849580 | Weinstein et al. | Nov 1974 | A |
3865275 | De Nunzio | Feb 1975 | A |
3866800 | Schmitt | Feb 1975 | A |
3882228 | Boncey et al. | May 1975 | A |
3886084 | Vassiliades | May 1975 | A |
3890305 | Weber et al. | Jun 1975 | A |
3912665 | Spitzer et al. | Oct 1975 | A |
3923970 | Breuer | Dec 1975 | A |
3929985 | Webb, Jr. | Dec 1975 | A |
3952916 | Phillips | Apr 1976 | A |
3959160 | Horsler et al. | May 1976 | A |
3962150 | Viola | Jun 1976 | A |
3963833 | DeSalva et al. | Jun 1976 | A |
3966090 | Prussin et al. | Jun 1976 | A |
3966632 | Colliopoulos et al. | Jun 1976 | A |
3970219 | Spitzer et al. | Jul 1976 | A |
3970584 | Hart et al. | Jul 1976 | A |
3993224 | Harrison | Nov 1976 | A |
3997467 | Jederstrom | Dec 1976 | A |
4001391 | Feinstone et al. | Jan 1977 | A |
4001442 | Stahlberger et al. | Jan 1977 | A |
4018396 | Showmaker et al. | Apr 1977 | A |
4019657 | Spitzer et al. | Apr 1977 | A |
4083974 | Turi | Apr 1978 | A |
4102995 | Hebborn | Jul 1978 | A |
4110426 | Barnhurst et al. | Aug 1978 | A |
4124149 | Spitzer et al. | Nov 1978 | A |
4145411 | Mende | Mar 1979 | A |
4151272 | Geary et al. | Apr 1979 | A |
4160827 | Cho et al. | Jul 1979 | A |
4213979 | Levine | Jul 1980 | A |
4214000 | Papa | Jul 1980 | A |
4226344 | Booth et al. | Oct 1980 | A |
4229432 | Geria | Oct 1980 | A |
4230701 | Holick et al. | Oct 1980 | A |
4241048 | Durbak et al. | Dec 1980 | A |
4241149 | Labes et al. | Dec 1980 | A |
4252787 | Sherman et al. | Feb 1981 | A |
4254104 | Suzuki et al. | Mar 1981 | A |
4268499 | Keil | May 1981 | A |
4271149 | Winicov et al. | Jun 1981 | A |
4292250 | DeLuca et al. | Sep 1981 | A |
4292326 | Nazzaro-Porro et al. | Sep 1981 | A |
4299826 | Luedders | Nov 1981 | A |
4305936 | Klein | Dec 1981 | A |
4309995 | Sacco | Jan 1982 | A |
4310510 | Sherman et al. | Jan 1982 | A |
4323694 | Scala, Jr. | Apr 1982 | A |
4325939 | Shah | Apr 1982 | A |
4329990 | Sneider | May 1982 | A |
4335120 | Holick et al. | Jun 1982 | A |
4352808 | Rane et al. | Oct 1982 | A |
4385161 | Caunt et al. | May 1983 | A |
4386104 | Nazzaro-Porro | May 1983 | A |
4393066 | Garrett et al. | Jul 1983 | A |
4427670 | Ofuchi et al. | Jan 1984 | A |
4439416 | Cordon et al. | Mar 1984 | A |
4439441 | Hallesy et al. | Mar 1984 | A |
4440320 | Wernicke | Apr 1984 | A |
4447486 | Hoppe et al. | May 1984 | A |
4469674 | Shah et al. | Sep 1984 | A |
4508705 | Chaudhuri et al. | Apr 1985 | A |
4522948 | Walker | Jun 1985 | A |
4529601 | Broberg et al. | Jul 1985 | A |
4529605 | Lynch et al. | Jul 1985 | A |
4552872 | Cooper et al. | Nov 1985 | A |
4574052 | Gupte et al. | Mar 1986 | A |
4576961 | Lorck et al. | Mar 1986 | A |
4595526 | Lai | Jun 1986 | A |
4603812 | Stoesser et al. | Aug 1986 | A |
4627973 | Moran et al. | Dec 1986 | A |
4628063 | Haines et al. | Dec 1986 | A |
4661524 | Thomson et al. | Apr 1987 | A |
4672078 | Sakai et al. | Jun 1987 | A |
4673569 | Shernov et al. | Jun 1987 | A |
4678463 | Millar | Jul 1987 | A |
4701320 | Hasegawa et al. | Oct 1987 | A |
4725609 | Kull, Jr. et al. | Feb 1988 | A |
4738396 | Doi et al. | Apr 1988 | A |
4741855 | Grote et al. | May 1988 | A |
4752465 | Mackles | Jun 1988 | A |
4770634 | Pellico | Sep 1988 | A |
4780309 | Geria et al. | Oct 1988 | A |
4784842 | London et al. | Nov 1988 | A |
4792062 | Goncalves | Dec 1988 | A |
4798682 | Ansmann | Jan 1989 | A |
4804674 | Curtis-Prior et al. | Feb 1989 | A |
4806262 | Snyder | Feb 1989 | A |
4808388 | Beutler et al. | Feb 1989 | A |
4822613 | Rodero | Apr 1989 | A |
4822614 | Rodero | Apr 1989 | A |
4826048 | Skorka et al. | May 1989 | A |
4827378 | Gillan et al. | May 1989 | A |
4828837 | Uster et al. | May 1989 | A |
4836217 | Fischer et al. | Jun 1989 | A |
4837019 | Georgalas et al. | Jun 1989 | A |
4837378 | Borgman | Jun 1989 | A |
4844902 | Grohe | Jul 1989 | A |
4847068 | Dole et al. | Jul 1989 | A |
4849117 | Bronner et al. | Jul 1989 | A |
4855294 | Patel et al. | Aug 1989 | A |
4863900 | Pollock et al. | Sep 1989 | A |
4867967 | Crutcher | Sep 1989 | A |
4873078 | Edmundson et al. | Oct 1989 | A |
4874794 | Katz | Oct 1989 | A |
4877805 | Kligman | Oct 1989 | A |
4885282 | Thornfeldt | Dec 1989 | A |
4897262 | Nandagiri et al. | Jan 1990 | A |
4902281 | Avoy | Feb 1990 | A |
4906453 | Tsoucalas | Mar 1990 | A |
4913893 | Varco et al. | Apr 1990 | A |
4919934 | Deckner et al. | Apr 1990 | A |
4954487 | Cooper et al. | Sep 1990 | A |
4956049 | Bernheim et al. | Sep 1990 | A |
4957732 | Grollier et al. | Sep 1990 | A |
4963351 | Weston | Oct 1990 | A |
4966779 | Kirk | Oct 1990 | A |
4970067 | Panandiker et al. | Nov 1990 | A |
4975466 | Bottcher et al. | Dec 1990 | A |
4981367 | Brazelton | Jan 1991 | A |
4981677 | Thau | Jan 1991 | A |
4981679 | Briggs et al. | Jan 1991 | A |
4981845 | Pereira | Jan 1991 | A |
4985459 | Sunshine et al. | Jan 1991 | A |
4992478 | Geria | Feb 1991 | A |
4993496 | Riedle et al. | Feb 1991 | A |
5002540 | Brodman et al. | Mar 1991 | A |
5002680 | Schmidt et al. | Mar 1991 | A |
5007556 | Lover | Apr 1991 | A |
5013297 | Cattanach | May 1991 | A |
5015471 | Birtwistle et al. | May 1991 | A |
5019375 | Tanner et al. | May 1991 | A |
5034220 | Helioff et al. | Jul 1991 | A |
5035895 | Shibusawa et al. | Jul 1991 | A |
5053228 | Mori et al. | Oct 1991 | A |
5071648 | Rosenblatt | Dec 1991 | A |
5071881 | Parfondry et al. | Dec 1991 | A |
5073371 | Turner et al. | Dec 1991 | A |
5082651 | Healey et al. | Jan 1992 | A |
5087618 | Bodor | Feb 1992 | A |
5089252 | Grollier et al. | Feb 1992 | A |
5091111 | Neumiller | Feb 1992 | A |
5094853 | Hagarty | Mar 1992 | A |
5100917 | Flynn et al. | Mar 1992 | A |
5104645 | Cardin et al. | Apr 1992 | A |
5112359 | Murphy et al. | May 1992 | A |
5114718 | Damani | May 1992 | A |
5122519 | Ritter | Jun 1992 | A |
5130121 | Kopolow et al. | Jul 1992 | A |
5133972 | Ferrini et al. | Jul 1992 | A |
5135915 | Czarniecki et al. | Aug 1992 | A |
5137714 | Scott | Aug 1992 | A |
5143717 | Davis | Sep 1992 | A |
5156765 | Smrt | Oct 1992 | A |
5164357 | Bartman et al. | Nov 1992 | A |
5164367 | Pickart | Nov 1992 | A |
5167950 | Lins | Dec 1992 | A |
5171577 | Griat et al. | Dec 1992 | A |
5196405 | Packman | Mar 1993 | A |
5204093 | Victor | Apr 1993 | A |
5208031 | Kelly | May 1993 | A |
5217707 | Szabo et al. | Jun 1993 | A |
5219877 | Shah et al. | Jun 1993 | A |
5221696 | Ke et al. | Jun 1993 | A |
5230897 | Griffin et al. | Jul 1993 | A |
5236707 | Stewart, II | Aug 1993 | A |
5252246 | Ding et al. | Oct 1993 | A |
5254334 | Ramirez et al. | Oct 1993 | A |
5262407 | Leveque et al. | Nov 1993 | A |
5266592 | Grub et al. | Nov 1993 | A |
5279819 | Hayes | Jan 1994 | A |
5286475 | Louvet et al. | Feb 1994 | A |
5300286 | Gee | Apr 1994 | A |
5301841 | Fuchs | Apr 1994 | A |
5308643 | Osipow et al. | May 1994 | A |
5314904 | Egidio et al. | May 1994 | A |
5322683 | Mackles et al. | Jun 1994 | A |
5326557 | Glover et al. | Jul 1994 | A |
5344051 | Brown | Sep 1994 | A |
5346135 | Vincent | Sep 1994 | A |
5352437 | Nakagawa et al. | Oct 1994 | A |
5369131 | Poli et al. | Nov 1994 | A |
5378451 | Gorman et al. | Jan 1995 | A |
5378730 | Lee et al. | Jan 1995 | A |
5380761 | Szabo Anna Z. et al. | Jan 1995 | A |
5384308 | Henkin | Jan 1995 | A |
5385943 | Nazzaro-Porro | Jan 1995 | A |
5389676 | Michaels | Feb 1995 | A |
5397312 | Rademaker et al. | Mar 1995 | A |
5398846 | Corba et al. | Mar 1995 | A |
5399205 | Shinohara et al. | Mar 1995 | A |
5411992 | Eini et al. | May 1995 | A |
5422361 | Munayyer et al. | Jun 1995 | A |
5429815 | Faryniarz et al. | Jul 1995 | A |
5435996 | Glover et al. | Jul 1995 | A |
5447725 | Damani et al. | Sep 1995 | A |
5449520 | Frigerio et al. | Sep 1995 | A |
5451404 | Furman | Sep 1995 | A |
5482965 | Rajadhyaksha | Jan 1996 | A |
5491245 | Gruning et al. | Feb 1996 | A |
5500211 | George et al. | Mar 1996 | A |
5508033 | Briand | Apr 1996 | A |
5512555 | Waldstreicher | Apr 1996 | A |
5514367 | Lentini et al. | May 1996 | A |
5514369 | Salka et al. | May 1996 | A |
5520918 | Smith | May 1996 | A |
5523078 | Baylin | Jun 1996 | A |
5527534 | Myhling | Jun 1996 | A |
5527822 | Scheiner | Jun 1996 | A |
5529770 | McKinzie et al. | Jun 1996 | A |
5531703 | Skwarek et al. | Jul 1996 | A |
5534261 | Rodgers et al. | Jul 1996 | A |
5536743 | Borgman | Jul 1996 | A |
5540853 | Trinh et al. | Jul 1996 | A |
5545401 | Shanbrom | Aug 1996 | A |
5567420 | McEleney et al. | Oct 1996 | A |
5576016 | Amselem et al. | Nov 1996 | A |
5578315 | Chien et al. | Nov 1996 | A |
5585104 | Ha et al. | Dec 1996 | A |
5589157 | Hatfield | Dec 1996 | A |
5589515 | Suzuki et al. | Dec 1996 | A |
5597560 | Bergamini et al. | Jan 1997 | A |
5603940 | Candau et al. | Feb 1997 | A |
5605679 | Hansenne et al. | Feb 1997 | A |
5608119 | Amano et al. | Mar 1997 | A |
5611463 | Favre | Mar 1997 | A |
5612056 | Jenner et al. | Mar 1997 | A |
5613583 | Kono et al. | Mar 1997 | A |
5613623 | Hildebrandt | Mar 1997 | A |
5614171 | Clavenna et al. | Mar 1997 | A |
5614178 | Bloom et al. | Mar 1997 | A |
5635469 | Fowler et al. | Jun 1997 | A |
5641480 | Vermeer | Jun 1997 | A |
5643600 | Mathur | Jul 1997 | A |
5645842 | Gruning et al. | Jul 1997 | A |
5650554 | Moloney | Jul 1997 | A |
5658575 | Ribier et al. | Aug 1997 | A |
5658749 | Thornton | Aug 1997 | A |
5658956 | Martin et al. | Aug 1997 | A |
5663208 | Martin | Sep 1997 | A |
5672634 | Tseng et al. | Sep 1997 | A |
5679324 | Lisboa et al. | Oct 1997 | A |
5683710 | Akemi et al. | Nov 1997 | A |
5686088 | Mitra et al. | Nov 1997 | A |
5693258 | Tonomura et al. | Dec 1997 | A |
5695551 | Buckingham et al. | Dec 1997 | A |
5700396 | Suzuki et al. | Dec 1997 | A |
5716611 | Oshlack et al. | Feb 1998 | A |
5716621 | Bello | Feb 1998 | A |
5719122 | Chiodini et al. | Feb 1998 | A |
5719197 | Kanios et al. | Feb 1998 | A |
5725872 | Stamm et al. | Mar 1998 | A |
5725874 | Oda | Mar 1998 | A |
5730964 | Waldstreicher | Mar 1998 | A |
5733558 | Breton et al. | Mar 1998 | A |
5733572 | Unger et al. | Mar 1998 | A |
5747049 | Tominaga | May 1998 | A |
5753241 | Ribier et al. | May 1998 | A |
5753245 | Fowler et al. | May 1998 | A |
5759520 | Sachetto | Jun 1998 | A |
5759579 | Singh et al. | Jun 1998 | A |
5767104 | Bar-Shalom et al. | Jun 1998 | A |
5773410 | Yamamoto | Jun 1998 | A |
5783202 | Tomlinson et al. | Jul 1998 | A |
5788664 | Scalise | Aug 1998 | A |
5792448 | Dubief et al. | Aug 1998 | A |
5792922 | Moloney et al. | Aug 1998 | A |
5797955 | Walters | Aug 1998 | A |
5804546 | Hall et al. | Sep 1998 | A |
5817322 | Xu | Oct 1998 | A |
5824650 | De Lacharriere et al. | Oct 1998 | A |
5833960 | Gers-Barlag et al. | Nov 1998 | A |
5833961 | Siegfried et al. | Nov 1998 | A |
5837270 | Burgess | Nov 1998 | A |
5840744 | Borgman | Nov 1998 | A |
5840771 | Oldham et al. | Nov 1998 | A |
5843411 | Hernandez et al. | Dec 1998 | A |
5846983 | Sandborn et al. | Dec 1998 | A |
5849042 | Lim et al. | Dec 1998 | A |
5856452 | Moloney et al. | Jan 1999 | A |
5858371 | Singh et al. | Jan 1999 | A |
5865347 | Welschoff | Feb 1999 | A |
5866040 | Nakama et al. | Feb 1999 | A |
5869529 | Sintov et al. | Feb 1999 | A |
5871720 | Gutierrez et al. | Feb 1999 | A |
5877216 | Place et al. | Mar 1999 | A |
5879469 | Avram et al. | Mar 1999 | A |
5881493 | Restive | Mar 1999 | A |
5885581 | Massand | Mar 1999 | A |
5889028 | Sandborn et al. | Mar 1999 | A |
5889054 | Yu et al. | Mar 1999 | A |
5891458 | Britton et al. | Apr 1999 | A |
5902574 | Stoner et al. | May 1999 | A |
5902789 | Stoltz | May 1999 | A |
5905092 | Osborne et al. | May 1999 | A |
5910382 | Goodenough et al. | Jun 1999 | A |
5911981 | Dahms et al. | Jun 1999 | A |
5912007 | Pan et al. | Jun 1999 | A |
5914122 | Otterbeck et al. | Jun 1999 | A |
5914310 | Li et al. | Jun 1999 | A |
5922331 | Mausner | Jul 1999 | A |
5925669 | Katz et al. | Jul 1999 | A |
5948682 | Moloney | Sep 1999 | A |
5951544 | Konwitz | Sep 1999 | A |
5951989 | Heymann | Sep 1999 | A |
5951993 | Scholz et al. | Sep 1999 | A |
5952373 | Lanzendorfer et al. | Sep 1999 | A |
5952392 | Katz et al. | Sep 1999 | A |
5955414 | Brown et al. | Sep 1999 | A |
5959161 | Kenmochi et al. | Sep 1999 | A |
5961957 | McAnalley | Oct 1999 | A |
5961998 | Arnaud et al. | Oct 1999 | A |
5972310 | Sachetto | Oct 1999 | A |
5976555 | Liu et al. | Nov 1999 | A |
5980904 | Leverett et al. | Nov 1999 | A |
5990100 | Rosenberg et al. | Nov 1999 | A |
5993846 | Friedman et al. | Nov 1999 | A |
6001341 | Genova et al. | Dec 1999 | A |
6006948 | Auer | Dec 1999 | A |
6019967 | Breton et al. | Feb 2000 | A |
6024942 | Tanner et al. | Feb 2000 | A |
6030630 | Fleury et al. | Feb 2000 | A |
6033647 | Touzan et al. | Mar 2000 | A |
6039936 | Restle et al. | Mar 2000 | A |
6042848 | Lawyer et al. | Mar 2000 | A |
6045779 | Mueller et al. | Apr 2000 | A |
6071536 | Suzuki et al. | Jun 2000 | A |
6075056 | Quigley, Jr. et al. | Jun 2000 | A |
6080394 | Lin et al. | Jun 2000 | A |
6087317 | Gee | Jul 2000 | A |
6090772 | Kaiser et al. | Jul 2000 | A |
6093408 | Hasenoehrl et al. | Jul 2000 | A |
6096756 | Crain et al. | Aug 2000 | A |
6110477 | Hernandez et al. | Aug 2000 | A |
6110966 | Pollock | Aug 2000 | A |
6113888 | Castro et al. | Sep 2000 | A |
6116466 | Gueret | Sep 2000 | A |
6121210 | Taylor | Sep 2000 | A |
6126920 | Jones et al. | Oct 2000 | A |
6140355 | Egidio et al. | Oct 2000 | A |
6146645 | Deckers et al. | Nov 2000 | A |
6146664 | Siddiqui | Nov 2000 | A |
6162834 | Sebillotte-Arnaud et al. | Dec 2000 | A |
6165455 | Torgerson et al. | Dec 2000 | A |
6168576 | Reynolds | Jan 2001 | B1 |
6171347 | Kunz et al. | Jan 2001 | B1 |
6180669 | Tamarkin | Jan 2001 | B1 |
6183762 | Deckers et al. | Feb 2001 | B1 |
6186367 | Harrold | Feb 2001 | B1 |
6187290 | Gilchrist et al. | Feb 2001 | B1 |
6189810 | Nerushai et al. | Feb 2001 | B1 |
6190365 | Abbott et al. | Feb 2001 | B1 |
6204285 | Fabiano et al. | Mar 2001 | B1 |
6210656 | Touzan et al. | Apr 2001 | B1 |
6210742 | Deckers et al. | Apr 2001 | B1 |
6214318 | Osipow et al. | Apr 2001 | B1 |
6214788 | Velazco et al. | Apr 2001 | B1 |
6221381 | Shelford et al. | Apr 2001 | B1 |
6221823 | Crisanti et al. | Apr 2001 | B1 |
6224888 | Vatter et al. | May 2001 | B1 |
6231837 | Stroud et al. | May 2001 | B1 |
6232315 | Shafer et al. | May 2001 | B1 |
6251369 | Stoltz | Jun 2001 | B1 |
6258374 | Friess et al. | Jul 2001 | B1 |
6271295 | Powell et al. | Aug 2001 | B1 |
6274150 | Simonnet et al. | Aug 2001 | B1 |
6287546 | Reich et al. | Sep 2001 | B1 |
6294550 | Place et al. | Sep 2001 | B1 |
6229032 | Hamilton | Oct 2001 | B1 |
6299023 | Arnone | Oct 2001 | B1 |
6299900 | Reed et al. | Oct 2001 | B1 |
6305578 | Hildebrandt et al. | Oct 2001 | B1 |
6306841 | Place et al. | Oct 2001 | B1 |
6308863 | Harman | Oct 2001 | B1 |
6319913 | Mak et al. | Nov 2001 | B1 |
6328950 | Franzke et al. | Dec 2001 | B1 |
6328982 | Shiroyama et al. | Dec 2001 | B1 |
6333362 | Lorant | Dec 2001 | B1 |
6335022 | Simonnet et al. | Jan 2002 | B1 |
6341717 | Auer | Jan 2002 | B2 |
6344218 | Dodd et al. | Feb 2002 | B1 |
6348229 | Eini et al. | Feb 2002 | B1 |
6358541 | Goodman | Mar 2002 | B1 |
6364854 | Ferrer et al. | Apr 2002 | B1 |
6372234 | Deckers et al. | Apr 2002 | B1 |
6375960 | Simonnet et al. | Apr 2002 | B1 |
6382982 | Wilcox et al. | May 2002 | B1 |
6383471 | Chen et al. | May 2002 | B1 |
6395258 | Steer | May 2002 | B1 |
6395300 | Straub et al. | May 2002 | B1 |
6403061 | Candau et al. | Jun 2002 | B1 |
6403069 | Chopra et al. | Jun 2002 | B1 |
6410036 | De Rosa et al. | Jun 2002 | B1 |
6423323 | Neubourg | Jul 2002 | B2 |
6428772 | Singh et al. | Aug 2002 | B1 |
6433003 | Bobrove et al. | Aug 2002 | B1 |
6433024 | Popp et al. | Aug 2002 | B1 |
6433033 | Isobe et al. | Aug 2002 | B1 |
6437006 | Yoon et al. | Aug 2002 | B1 |
6440429 | Torizuka et al. | Aug 2002 | B1 |
6447801 | Salafsky et al. | Sep 2002 | B1 |
6455076 | Hahn et al. | Sep 2002 | B1 |
6468989 | Chang et al. | Oct 2002 | B1 |
6479058 | McCadden | Nov 2002 | B1 |
6486168 | Skwierczynski et al. | Nov 2002 | B1 |
6488947 | Bekele | Dec 2002 | B1 |
6511655 | Muller et al. | Jan 2003 | B1 |
6514487 | Barr | Feb 2003 | B1 |
6524594 | Santora et al. | Feb 2003 | B1 |
6531118 | Gonzalez et al. | Mar 2003 | B1 |
6534455 | Maurin et al. | Mar 2003 | B1 |
6536629 | van der Heijden | Mar 2003 | B2 |
6544530 | Friedman | Apr 2003 | B1 |
6544562 | Singh et al. | Apr 2003 | B2 |
6547063 | Zaveri et al. | Apr 2003 | B1 |
6548074 | Mohammadi | Apr 2003 | B1 |
6562355 | Renault | May 2003 | B1 |
6566350 | Ono et al. | May 2003 | B2 |
6582679 | Stein et al. | Jun 2003 | B2 |
6582710 | Deckers et al. | Jun 2003 | B2 |
6589509 | Keller et al. | Jul 2003 | B2 |
6596287 | Deckers et al. | Jul 2003 | B2 |
6599513 | Deckers et al. | Jul 2003 | B2 |
6620773 | Stork et al. | Sep 2003 | B1 |
6638981 | Williams et al. | Oct 2003 | B2 |
6649571 | Morgan | Nov 2003 | B1 |
6649574 | Cardis et al. | Nov 2003 | B2 |
6672483 | Roy | Jan 2004 | B1 |
6682726 | Marchesi et al. | Jan 2004 | B2 |
6691898 | Hurray et al. | Feb 2004 | B2 |
6709663 | Espinoza | Mar 2004 | B2 |
6723309 | Deane | Apr 2004 | B1 |
6730288 | Abram | May 2004 | B1 |
6753000 | Breton et al. | Jun 2004 | B2 |
6753167 | Moloney et al. | Jun 2004 | B2 |
6762158 | Lukenbach et al. | Jul 2004 | B2 |
6765001 | Gans et al. | Jul 2004 | B2 |
6774114 | Castiel et al. | Aug 2004 | B2 |
6777591 | Chaudhary et al. | Aug 2004 | B1 |
6790435 | Ma et al. | Sep 2004 | B1 |
6796973 | Contente et al. | Sep 2004 | B1 |
RE38623 | Hernandez et al. | Oct 2004 | E |
6811767 | Bosch et al. | Nov 2004 | B1 |
6834778 | Jinbo et al. | Dec 2004 | B2 |
6843390 | Bristor | Jan 2005 | B1 |
6875438 | Kraemer et al. | Apr 2005 | B2 |
6881271 | Ochiai et al. | Apr 2005 | B2 |
6890567 | Nakatsu et al. | May 2005 | B2 |
6902737 | Quemin et al. | Jun 2005 | B2 |
6911211 | Eini et al. | Jun 2005 | B2 |
6946120 | Wai-Chiu So et al. | Sep 2005 | B2 |
6946139 | Henning | Sep 2005 | B2 |
6951654 | Malcolm et al. | Oct 2005 | B2 |
6955816 | Klysz | Oct 2005 | B2 |
6956062 | Beilfuss et al. | Oct 2005 | B2 |
6958154 | Andolino Brandt et al. | Oct 2005 | B2 |
6967012 | Eini et al. | Nov 2005 | B2 |
6967023 | Eini et al. | Nov 2005 | B1 |
6968982 | Burns | Nov 2005 | B1 |
6969521 | Gonzalez et al. | Nov 2005 | B1 |
RE38964 | Shillington | Jan 2006 | E |
6994863 | Eini et al. | Feb 2006 | B2 |
7002486 | Lawrence | Feb 2006 | B2 |
7014844 | Mahalingam et al. | Mar 2006 | B2 |
7021499 | Hansen et al. | Apr 2006 | B2 |
7029659 | Abram | Apr 2006 | B2 |
7060253 | Mundschenk | Jun 2006 | B1 |
7078058 | Jones et al. | Jul 2006 | B2 |
7083799 | Giacomoni | Aug 2006 | B1 |
7137536 | Walters et al. | Nov 2006 | B2 |
7195135 | Garcia | Mar 2007 | B1 |
7222802 | Sweeton | May 2007 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7226230 | Liberatore | Jun 2007 | B2 |
7235251 | Hamer et al. | Jun 2007 | B2 |
7270828 | Masuda et al. | Sep 2007 | B2 |
7455195 | Mekata | Nov 2008 | B2 |
7497354 | Decottignies et al. | Mar 2009 | B2 |
7575739 | Tamarkin et al. | Aug 2009 | B2 |
7645803 | Tamarkin et al. | Jan 2010 | B2 |
7654415 | van der Heijden | Feb 2010 | B2 |
7682523 | Eini et al. | Mar 2010 | B2 |
7682623 | Eini et al. | Mar 2010 | B2 |
7700076 | Tamarkin et al. | Apr 2010 | B2 |
7704518 | Tamarkin et al. | Apr 2010 | B2 |
7793807 | Goujon et al. | Sep 2010 | B2 |
7820145 | Tamarkin et al. | Oct 2010 | B2 |
7960416 | Sato et al. | Jun 2011 | B2 |
20010006654 | Cannell et al. | Jul 2001 | A1 |
20010027218 | Stern et al. | Oct 2001 | A1 |
20010027981 | Vlodek | Oct 2001 | A1 |
20010036450 | Verite et al. | Nov 2001 | A1 |
20020002151 | Ono et al. | Jan 2002 | A1 |
20020004063 | Zhang | Jan 2002 | A1 |
20020013481 | Schonrock et al. | Jan 2002 | A1 |
20020015721 | Simonnet et al. | Feb 2002 | A1 |
20020032171 | Chen et al. | Mar 2002 | A1 |
20020035046 | Lukenbach et al. | Mar 2002 | A1 |
20020035070 | Gardlik et al. | Mar 2002 | A1 |
20020035087 | Barclay | Mar 2002 | A1 |
20020035182 | L'Alloret et al. | Mar 2002 | A1 |
20020039591 | Dahle | Apr 2002 | A1 |
20020044659 | Ohta | Apr 2002 | A1 |
20020045659 | Michelet et al. | Apr 2002 | A1 |
20020048798 | Avery et al. | Apr 2002 | A1 |
20020058010 | Picard-Lesboueyries et al. | May 2002 | A1 |
20020072544 | Miller et al. | Jun 2002 | A1 |
20020090386 | Haslwanter et al. | Jul 2002 | A1 |
20020098215 | Douin et al. | Jul 2002 | A1 |
20020111281 | Vishnupad | Aug 2002 | A1 |
20020117516 | Lasserre et al. | Aug 2002 | A1 |
20020134376 | Castro et al. | Sep 2002 | A1 |
20020136755 | Tyrrell et al. | Sep 2002 | A1 |
20020143188 | Garvey et al. | Oct 2002 | A1 |
20020153390 | Vlodek | Oct 2002 | A1 |
20020165170 | Wilson et al. | Nov 2002 | A1 |
20020182162 | Shahinpoor et al. | Dec 2002 | A1 |
20020187181 | Godbey et al. | Dec 2002 | A1 |
20020198136 | Mak et al. | Dec 2002 | A1 |
20030006193 | Ikeda et al. | Jan 2003 | A1 |
20030031693 | Breton et al. | Feb 2003 | A1 |
20030053961 | Eccard | Mar 2003 | A1 |
20030077297 | Chen et al. | Apr 2003 | A1 |
20030078172 | Guiramand et al. | Apr 2003 | A1 |
20030114520 | Pereira et al. | Jun 2003 | A1 |
20030118515 | Jew et al. | Jun 2003 | A1 |
20030130247 | Gans et al. | Jul 2003 | A1 |
20030175232 | Elliott et al. | Sep 2003 | A1 |
20030175315 | Yoo et al. | Sep 2003 | A1 |
20030180347 | Young et al. | Sep 2003 | A1 |
20030185839 | Podolsky | Oct 2003 | A1 |
20030194379 | Brugger et al. | Oct 2003 | A1 |
20030195128 | Deckman et al. | Oct 2003 | A1 |
20030206955 | Sonneville-Aubrun et al. | Nov 2003 | A1 |
20030215472 | Bonda et al. | Nov 2003 | A1 |
20040018228 | Fischell et al. | Jan 2004 | A1 |
20040028752 | Kamm et al. | Feb 2004 | A1 |
20040038912 | Michelet et al. | Feb 2004 | A1 |
20040053797 | Chen et al. | Mar 2004 | A1 |
20040058878 | Walker | Mar 2004 | A1 |
20040063787 | Villanueva | Apr 2004 | A1 |
20040067970 | Foster et al. | Apr 2004 | A1 |
20040072638 | Enos et al. | Apr 2004 | A1 |
20040076651 | Brocks et al. | Apr 2004 | A1 |
20040078896 | Hellyer et al. | Apr 2004 | A1 |
20040079361 | Clayton et al. | Apr 2004 | A1 |
20040105825 | Henning | Jun 2004 | A1 |
20040120917 | Perrier et al. | Jun 2004 | A1 |
20040127554 | Ghisalberti | Jul 2004 | A1 |
20040138179 | Goldstein et al. | Jul 2004 | A1 |
20040151671 | Abram et al. | Aug 2004 | A1 |
20040151756 | Richards et al. | Aug 2004 | A1 |
20040161447 | Paul | Aug 2004 | A1 |
20040184992 | Abram | Sep 2004 | A1 |
20040185123 | Mazzio et al. | Sep 2004 | A1 |
20040191196 | Tamarkin | Sep 2004 | A1 |
20040192754 | Shapira et al. | Sep 2004 | A1 |
20040195276 | Fuchs | Oct 2004 | A1 |
20040197276 | Takase et al. | Oct 2004 | A1 |
20040197295 | Riedel et al. | Oct 2004 | A1 |
20040219122 | Masuda et al. | Nov 2004 | A1 |
20040219176 | Dominguez | Nov 2004 | A1 |
20040220187 | Stephenson et al. | Nov 2004 | A1 |
20040229813 | DiPiano et al. | Nov 2004 | A1 |
20040234475 | Lannibois-Drean et al. | Nov 2004 | A1 |
20040241099 | Popp et al. | Dec 2004 | A1 |
20040247531 | Riedel et al. | Dec 2004 | A1 |
20040253275 | Eini et al. | Dec 2004 | A1 |
20040258627 | Riedel et al. | Dec 2004 | A1 |
20040265240 | Tamarkin et al. | Dec 2004 | A1 |
20050002976 | Wu | Jan 2005 | A1 |
20050013853 | Gil-Ad et al. | Jan 2005 | A1 |
20050031547 | Tamarkin et al. | Feb 2005 | A1 |
20050042182 | Arkin et al. | Feb 2005 | A1 |
20050054991 | Tobyn et al. | Mar 2005 | A1 |
20050069566 | Tamarkin et al. | Mar 2005 | A1 |
20050074414 | Tamarkin et al. | Apr 2005 | A1 |
20050075407 | Tamarkin et al. | Apr 2005 | A1 |
20050079139 | Jacques et al. | Apr 2005 | A1 |
20050084551 | Jensen et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050101936 | Gonzales et al. | May 2005 | A1 |
20050106197 | Blin et al. | May 2005 | A1 |
20050123494 | Swaile et al. | Jun 2005 | A1 |
20050123496 | Shah et al. | Jun 2005 | A1 |
20050186142 | Tamarkin et al. | Aug 2005 | A1 |
20050186147 | Tamarkin et al. | Aug 2005 | A1 |
20050189377 | Lanzendorfer et al. | Sep 2005 | A1 |
20050196414 | Dake et al. | Sep 2005 | A1 |
20050205086 | Tamarkin et al. | Sep 2005 | A1 |
20050207837 | Kosh et al. | Sep 2005 | A1 |
20050222090 | Cheng et al. | Oct 2005 | A1 |
20050232869 | Tamarkin et al. | Oct 2005 | A1 |
20050244342 | Friedman et al. | Nov 2005 | A1 |
20050244354 | Speron | Nov 2005 | A1 |
20050245902 | Cornish et al. | Nov 2005 | A1 |
20050252995 | Westphal et al. | Nov 2005 | A1 |
20050255048 | Hirsh et al. | Nov 2005 | A1 |
20050258189 | Peterson et al. | Nov 2005 | A1 |
20050266035 | Healy et al. | Dec 2005 | A1 |
20050268416 | Sommers | Dec 2005 | A1 |
20050271596 | Friedman et al. | Dec 2005 | A1 |
20050271598 | Friedman et al. | Dec 2005 | A1 |
20050276836 | Wilson et al. | Dec 2005 | A1 |
20050281755 | Zarif et al. | Dec 2005 | A1 |
20050281766 | Martin et al. | Dec 2005 | A1 |
20050285912 | Delametter et al. | Dec 2005 | A1 |
20050287081 | Aust et al. | Dec 2005 | A1 |
20060008432 | Scarampi et al. | Jan 2006 | A1 |
20060018937 | Friedman et al. | Jan 2006 | A1 |
20060018938 | Neubourg | Jan 2006 | A1 |
20060029565 | Xu et al. | Feb 2006 | A1 |
20060051301 | Galopin et al. | Mar 2006 | A1 |
20060054634 | Mekata | Mar 2006 | A1 |
20060057168 | Larm et al. | Mar 2006 | A1 |
20060088561 | Eini et al. | Apr 2006 | A1 |
20060099151 | Neubourg | May 2006 | A1 |
20060108377 | Glynn et al. | May 2006 | A1 |
20060110418 | Johnson | May 2006 | A1 |
20060014990 | Bortz et al. | Jun 2006 | A1 |
20060114745 | Ollmann et al. | Jun 2006 | A1 |
20060121073 | Goyal et al. | Jun 2006 | A1 |
20060140984 | Tamarkin et al. | Jun 2006 | A1 |
20060140990 | Bortz et al. | Jun 2006 | A1 |
20060160713 | Sekine et al. | Jul 2006 | A1 |
20060165616 | Brock et al. | Jul 2006 | A1 |
20060177392 | Walden | Aug 2006 | A1 |
20060193789 | Tamarkin et al. | Aug 2006 | A1 |
20060193813 | Simonnet | Aug 2006 | A1 |
20060204446 | Lulla et al. | Sep 2006 | A1 |
20060222675 | Sabnis et al. | Oct 2006 | A1 |
20060233721 | Tamarkin et al. | Oct 2006 | A1 |
20060239937 | Neubourg | Oct 2006 | A2 |
20060251684 | Annis et al. | Nov 2006 | A1 |
20060254597 | Thompson | Nov 2006 | A1 |
20060263323 | Hoang et al. | Nov 2006 | A1 |
20060269485 | Friedman et al. | Nov 2006 | A1 |
20060272199 | Licciardello et al. | Dec 2006 | A1 |
20060275218 | Tamarkin et al. | Dec 2006 | A1 |
20060275221 | Tamarkin et al. | Dec 2006 | A1 |
20060285912 | Eini et al. | Dec 2006 | A1 |
20060292080 | Abram et al. | Dec 2006 | A1 |
20070009607 | Jones | Jan 2007 | A1 |
20070017696 | Lin et al. | Jan 2007 | A1 |
20070020213 | Tamarkin et al. | Jan 2007 | A1 |
20070020304 | Tamarkin et al. | Jan 2007 | A1 |
20070027055 | Koivisto et al. | Feb 2007 | A1 |
20070036831 | Baker | Feb 2007 | A1 |
20070059253 | Popp et al. | Mar 2007 | A1 |
20070069046 | Eini et al. | Mar 2007 | A1 |
20070071688 | Illel et al. | Mar 2007 | A1 |
20070098647 | Neubourg | May 2007 | A1 |
20070134174 | Irwin et al. | Jun 2007 | A1 |
20070140999 | Puglia et al. | Jun 2007 | A1 |
20070142263 | Stahl et al. | Jun 2007 | A1 |
20070148112 | Dingley et al. | Jun 2007 | A1 |
20070148194 | Amiji et al. | Jun 2007 | A1 |
20070154402 | Trumbore et al. | Jul 2007 | A1 |
20070160548 | Riccardi et al. | Jul 2007 | A1 |
20070237724 | Abram et al. | Oct 2007 | A1 |
20070253911 | Tamarkin et al. | Nov 2007 | A1 |
20070264317 | Yosha et al. | Nov 2007 | A1 |
20070271235 | Frank et al. | Nov 2007 | A1 |
20070280891 | Tamarkin et al. | Dec 2007 | A1 |
20070281999 | Fox et al. | Dec 2007 | A1 |
20070292355 | Tamarkin et al. | Dec 2007 | A1 |
20070292359 | Friedman et al. | Dec 2007 | A1 |
20070292461 | Tamarkin et al. | Dec 2007 | A1 |
20080008397 | Kisilev | Jan 2008 | A1 |
20080015263 | Bolotin et al. | Jan 2008 | A1 |
20080015271 | Abram et al. | Jan 2008 | A1 |
20080031907 | Tamarkin et al. | Feb 2008 | A1 |
20080031908 | Aubrun-Sonneville et al. | Feb 2008 | A1 |
20080035155 | Dahl | Feb 2008 | A1 |
20080044444 | Tamarkin et al. | Feb 2008 | A1 |
20080058055 | LeMay et al. | Mar 2008 | A1 |
20080063682 | Cashman et al. | Mar 2008 | A1 |
20080069779 | Tamarkin et al. | Mar 2008 | A1 |
20080131378 | Keller et al. | Jun 2008 | A1 |
20080138293 | Tamarkin et al. | Jun 2008 | A1 |
20080138296 | Tamarkin et al. | Jun 2008 | A1 |
20080152596 | Friedman et al. | Jun 2008 | A1 |
20080153789 | Dmowski et al. | Jun 2008 | A1 |
20080166303 | Tamarkin et al. | Jul 2008 | A1 |
20080167376 | Bar-Or et al. | Jul 2008 | A1 |
20080181854 | Eini et al. | Jul 2008 | A1 |
20080188445 | Muldoon et al. | Aug 2008 | A1 |
20080188446 | Muldoon et al. | Aug 2008 | A1 |
20080193762 | Dubertret et al. | Aug 2008 | A1 |
20080206155 | Tamarkin et al. | Aug 2008 | A1 |
20080206159 | Tamarkin et al. | Aug 2008 | A1 |
20080206161 | Tamarkin et al. | Aug 2008 | A1 |
20080241079 | Neubourg | Oct 2008 | A1 |
20080253973 | Tamarkin et al. | Oct 2008 | A1 |
20080255498 | Houle | Oct 2008 | A1 |
20080260655 | Tamarkin et al. | Oct 2008 | A1 |
20080292560 | Tamarkin et al. | Nov 2008 | A1 |
20080299220 | Tamarkin et al. | Dec 2008 | A1 |
20080311167 | Oronsky et al. | Dec 2008 | A1 |
20080317679 | Tamarkin et al. | Dec 2008 | A1 |
20090041680 | Tamarkin et al. | Feb 2009 | A1 |
20090068118 | Eini et al. | Mar 2009 | A1 |
20090090558 | Tamarkin et al. | Apr 2009 | A1 |
20090093514 | Statham et al. | Apr 2009 | A1 |
20090130029 | Tamarkin et al. | May 2009 | A1 |
20090131488 | Harel et al. | May 2009 | A1 |
20090175799 | Tamarkin et al. | Jul 2009 | A1 |
20090180970 | Tamarkin et al. | Jul 2009 | A1 |
20090291917 | Akama et al. | Nov 2009 | A1 |
20090317338 | Tamarkin et al. | Dec 2009 | A1 |
20100111879 | Tamarkin et al. | May 2010 | A1 |
20100221194 | Loupenok | Sep 2010 | A1 |
20110002857 | Tamarkin et al. | Jan 2011 | A1 |
20110002969 | Serraima et al. | Jan 2011 | A1 |
20110212033 | Tamarkin et al. | Sep 2011 | A1 |
20110268665 | Tamarkin et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
198780257 | Sep 1986 | AU |
2422244 | Sep 2003 | CA |
639913 | Dec 1983 | CH |
1 882 100 | Nov 1963 | DE |
1926796 | Nov 1965 | DE |
4140474 | Jun 1993 | DE |
10009233 | Aug 2000 | DE |
10138495 | Feb 2003 | DE |
102004016710 | Oct 2005 | DE |
2 608 226 | Sep 2007 | DE |
0 156 507 | Oct 1985 | EP |
0 186 453 | Jul 1986 | EP |
0 211 550 | Feb 1987 | EP |
0 214 865 | Mar 1987 | EP |
0 216 856 | Apr 1987 | EP |
0 270 316 | Jun 1988 | EP |
0 297 436 | Jan 1989 | EP |
0 326 196 | Aug 1989 | EP |
0 336 812 | Oct 1989 | EP |
0 391 124 | Oct 1990 | EP |
0 404 376 | Dec 1990 | EP |
0 414 920 | Mar 1991 | EP |
0 484 530 | May 1992 | EP |
0 485 299 | May 1992 | EP |
0 488 089 | Jun 1992 | EP |
0 504 301 | Sep 1992 | EP |
0 528 190 | Feb 1993 | EP |
0 535 327 | Apr 1993 | EP |
0 552 612 | Jul 1993 | EP |
0 569 773 | Nov 1993 | EP |
0 598 412 | May 1994 | EP |
0 662 431 | Jul 1995 | EP |
0 676 198 | Oct 1995 | EP |
0 738 516 | Oct 1996 | EP |
0 757 959 | Feb 1997 | EP |
0 824 911 | Feb 1998 | EP |
0 829 259 | Mar 1998 | EP |
0 928 608 | Jul 1999 | EP |
0 979 654 | Feb 2000 | EP |
0 993 827 | Apr 2000 | EP |
1 025 836 | Aug 2000 | EP |
1 055 425 | Nov 2000 | EP |
0 506 197 | Jul 2001 | EP |
1 215 258 | Jun 2002 | EP |
1 287 813 | Mar 2003 | EP |
1 308 169 | May 2003 | EP |
1 375 386 | Jan 2004 | EP |
1 428 521 | Jun 2004 | EP |
1 438 946 | Jul 2004 | EP |
1 189 579 | Sep 2004 | EP |
1 475 381 | Nov 2004 | EP |
1 483 001 | Dec 2004 | EP |
1 500 385 | Jan 2005 | EP |
1 537 916 | Jun 2005 | EP |
1 600 185 | Nov 2005 | EP |
1 734 927 | Dec 2006 | EP |
1 758 547 | Mar 2007 | EP |
1 584 324 | Nov 2007 | EP |
1 889 609 | Feb 2008 | EP |
2 591 331 | Jun 1987 | FR |
2 640 942 | Jun 1990 | FR |
2 736 824 | Jan 1997 | FR |
2 774 595 | Aug 1999 | FR |
2 789 371 | Aug 2000 | FR |
2 793 479 | Nov 2000 | FR |
2 814 959 | Apr 2002 | FR |
2 833 246 | Jun 2003 | FR |
2 840 903 | Dec 2003 | FR |
2 843 373 | Feb 2004 | FR |
2 845 672 | Apr 2004 | FR |
2 848 998 | Jun 2004 | FR |
2 860 976 | Apr 2005 | FR |
2 915 891 | Nov 2008 | FR |
808 104 | Jan 1959 | GB |
808 105 | Jan 1959 | GB |
922 930 | Apr 1963 | GB |
933 486 | Aug 1963 | GB |
998 490 | Jul 1965 | GB |
1 026 831 | Apr 1966 | GB |
1 033 299 | Jun 1966 | GB |
1 081 949 | Sep 1967 | GB |
1 121 358 | Jul 1968 | GB |
1 162 684 | Aug 1969 | GB |
1 170 152 | Nov 1969 | GB |
1 201 918 | Aug 1970 | GB |
1 347 950 | Feb 1974 | GB |
1 351 761 | May 1974 | GB |
1 351 762 | May 1974 | GB |
1 353 381 | May 1974 | GB |
1 376 649 | Dec 1974 | GB |
1 397 285 | Jun 1975 | GB |
1 408 036 | Oct 1975 | GB |
1 457 671 | Dec 1976 | GB |
1 489 672 | Oct 1977 | GB |
2 004 746 | Apr 1979 | GB |
1 561 423 | Feb 1980 | GB |
2 114 580 | Aug 1983 | GB |
2 153 686 | Aug 1985 | GB |
2 172 298 | Sep 1986 | GB |
2 206 099 | Dec 1988 | GB |
2 166 651 | May 1996 | GB |
2 337 461 | Nov 1999 | GB |
2 367 809 | Apr 2002 | GB |
2 406 330 | Mar 2005 | GB |
2 406 791 | Apr 2005 | GB |
49491 | Sep 1979 | IL |
152 486 | May 2003 | IL |
60001113 | Apr 1978 | JP |
55069682 | May 1980 | JP |
57044429 | Mar 1982 | JP |
56039815 | Apr 1984 | JP |
61275395 | Dec 1986 | JP |
62241701 | Oct 1987 | JP |
63119420 | May 1988 | JP |
1100111 | Apr 1989 | JP |
1156906 | Jun 1989 | JP |
2184614 | Jul 1990 | JP |
2255890 | Oct 1990 | JP |
4282311 | Oct 1992 | JP |
4312521 | Nov 1992 | JP |
5070340 | Mar 1993 | JP |
5213734 | Aug 1993 | JP |
6100414 | Apr 1994 | JP |
H06-263630 | Jun 1994 | JP |
6329532 | Nov 1994 | JP |
2007155667 | Jun 1995 | JP |
7215835 | Aug 1995 | JP |
2008040899 | Feb 1996 | JP |
8501529 | Feb 1996 | JP |
8119831 | May 1996 | JP |
8165218 | Jun 1996 | JP |
8277209 | Oct 1996 | JP |
09 084855 | Mar 1997 | JP |
9099553 | Apr 1997 | JP |
9110636 | Apr 1997 | JP |
10114619 | May 1998 | JP |
3050289 | Sep 1998 | JP |
2010332456 | Dec 1998 | JP |
11501045 | Jan 1999 | JP |
11250543 | Sep 1999 | JP |
2000017174 | Jan 2000 | JP |
2000080017 | Mar 2000 | JP |
2000128734 | May 2000 | JP |
2000191429 | Jul 2000 | JP |
2000239140 | Sep 2000 | JP |
2000351726 | Dec 2000 | JP |
2000354623 | Dec 2000 | JP |
2001002526 | Jan 2001 | JP |
2001019606 | Jan 2001 | JP |
2001072963 | Mar 2001 | JP |
2002012513 | Jan 2002 | JP |
2002047136 | Feb 2002 | JP |
2002524490 | Aug 2002 | JP |
2002302419 | Oct 2002 | JP |
2003012511 | Jan 2003 | JP |
2003055146 | Feb 2003 | JP |
2004047136 | Feb 2004 | JP |
2004250435 | Sep 2004 | JP |
2004348277 | Dec 2004 | JP |
2005314323 | Nov 2005 | JP |
2005350378 | Dec 2005 | JP |
2006008574 | Jan 2006 | JP |
2006036317 | Feb 2006 | JP |
2006103799 | Apr 2006 | JP |
2006525145 | Nov 2006 | JP |
2007131539 | May 2007 | JP |
S48-92282 | Mar 2012 | JP |
143232 | Jul 1998 | KR |
2001003063 | Jan 2001 | KR |
2277501 | Jun 2006 | RU |
66796 | Jun 2004 | UA |
8201821 | Jun 1982 | WO |
8605389 | Sep 1986 | WO |
8801502 | Mar 1988 | WO |
8801863 | Mar 1988 | WO |
8808316 | Nov 1988 | WO |
8906537 | Jul 1989 | WO |
9005774 | May 1990 | WO |
9111991 | Aug 1991 | WO |
9200077 | Jan 1992 | WO |
9205142 | Apr 1992 | WO |
9205763 | Apr 1992 | WO |
9211839 | Jul 1992 | WO |
9325189 | Dec 1993 | WO |
9406440 | Mar 1994 | WO |
9603115 | Feb 1996 | WO |
9619921 | Jul 1996 | WO |
9624325 | Aug 1996 | WO |
9626711 | Sep 1996 | WO |
9627376 | Sep 1996 | WO |
9639119 | Dec 1996 | WO |
9703638 | Feb 1997 | WO |
9739745 | Oct 1997 | WO |
9817282 | Apr 1998 | WO |
9818472 | May 1998 | WO |
9819654 | May 1998 | WO |
9821955 | May 1998 | WO |
9823291 | Jun 1998 | WO |
9836733 | Aug 1998 | WO |
9852536 | Nov 1998 | WO |
9908649 | Feb 1999 | WO |
9920250 | Apr 1999 | WO |
9937282 | Jul 1999 | WO |
9953923 | Oct 1999 | WO |
0009082 | Feb 2000 | WO |
0015193 | Mar 2000 | WO |
0023051 | Apr 2000 | WO |
0033825 | Jun 2000 | WO |
0038731 | Jul 2000 | WO |
0061076 | Oct 2000 | WO |
0076461 | Dec 2000 | WO |
0105366 | Jan 2001 | WO |
0108681 | Feb 2001 | WO |
0110961 | Feb 2001 | WO |
0153198 | Jul 2001 | WO |
0154212 | Jul 2001 | WO |
0154679 | Aug 2001 | WO |
0162209 | Aug 2001 | WO |
0170242 | Sep 2001 | WO |
0182880 | Nov 2001 | WO |
0182890 | Nov 2001 | WO |
0185102 | Nov 2001 | WO |
0185128 | Nov 2001 | WO |
0195728 | Dec 2001 | WO |
0200820 | Jan 2002 | WO |
0215860 | Feb 2002 | WO |
0215873 | Feb 2002 | WO |
0228435 | Apr 2002 | WO |
0241847 | May 2002 | WO |
0243490 | Jun 2002 | WO |
0262324 | Aug 2002 | WO |
0278667 | Oct 2002 | WO |
0287519 | Nov 2002 | WO |
03000223 | Jan 2003 | WO |
03002082 | Jan 2003 | WO |
03013984 | Feb 2003 | WO |
03051294 | Jun 2003 | WO |
03053292 | Jul 2003 | WO |
03055445 | Jul 2003 | WO |
03055454 | Jul 2003 | WO |
03070301 | Aug 2003 | WO |
03071995 | Sep 2003 | WO |
03075851 | Sep 2003 | WO |
03092641 | Nov 2003 | WO |
03097002 | Nov 2003 | WO |
2004017962 | Mar 2004 | WO |
2004037197 | May 2004 | WO |
2004037225 | May 2004 | WO |
2004003284 | Aug 2004 | WO |
2004064769 | Aug 2004 | WO |
2004064833 | Aug 2004 | WO |
2004071479 | Aug 2004 | WO |
2004078158 | Sep 2004 | WO |
2004078896 | Sep 2004 | WO |
2004093895 | Nov 2004 | WO |
2004112780 | Dec 2004 | WO |
2005011567 | Feb 2005 | WO |
2005018530 | Mar 2005 | WO |
2005032522 | Apr 2005 | WO |
2005044219 | May 2005 | WO |
2005063224 | Jul 2005 | WO |
2005065652 | Jul 2005 | WO |
2005076697 | Aug 2005 | WO |
2005097068 | Oct 2005 | WO |
2005102282 | Nov 2005 | WO |
2005102539 | Nov 2005 | WO |
2005117813 | Dec 2005 | WO |
2006003481 | Jan 2006 | WO |
2006010589 | Feb 2006 | WO |
2006011046 | Feb 2006 | WO |
2006020682 | Feb 2006 | WO |
2006028339 | Mar 2006 | WO |
2006031271 | Mar 2006 | WO |
2006045170 | May 2006 | WO |
2006079632 | Aug 2006 | WO |
2006081327 | Aug 2006 | WO |
2006091229 | Aug 2006 | WO |
2006100485 | Sep 2006 | WO |
2006120682 | Nov 2006 | WO |
2006121610 | Nov 2006 | WO |
2006122158 | Nov 2006 | WO |
2006129161 | Dec 2006 | WO |
2006131784 | Dec 2006 | WO |
2007007208 | Jan 2007 | WO |
2007012977 | Feb 2007 | WO |
2007023396 | Mar 2007 | WO |
2007031621 | Mar 2007 | WO |
2007039825 | Apr 2007 | WO |
2007050543 | May 2007 | WO |
2007054818 | May 2007 | WO |
2007072216 | Jun 2007 | WO |
2007085899 | Aug 2007 | WO |
2007085902 | Aug 2007 | WO |
2007099396 | Sep 2007 | WO |
2007111962 | Oct 2007 | WO |
2008008397 | Jan 2008 | WO |
2008010963 | Jan 2008 | WO |
2008038147 | Apr 2008 | WO |
2008041045 | Apr 2008 | WO |
2008075207 | Jun 2008 | WO |
2008087148 | Jul 2008 | WO |
2008110872 | Sep 2008 | WO |
2008152444 | Dec 2008 | WO |
2009007785 | Jan 2009 | WO |
2009069006 | Jun 2009 | WO |
2009072007 | Jun 2009 | WO |
2009087578 | Jul 2009 | WO |
2009090495 | Jul 2009 | WO |
2009090558 | Jul 2009 | WO |
2009098595 | Aug 2009 | WO |
2011039637 | Apr 2011 | WO |
2011039638 | Apr 2011 | WO |
Entry |
---|
U.S. Appl. No. 60/789,186, Tamarkin, Apr. 4, 2006. |
U.S. Appl. No. 60/815,948, Tamarkin, Jun. 23, 2006. |
U.S. Appl. No. 60/818,634, Friedman, Jul. 5, 2006. |
U.S. Appl. No. 60/843,140, Tamarkin, Sep. 8, 2006. |
U.S. Appl. No. 61/248,144, Tamarkin, Oct. 2, 2009. |
U.S. Appl. No. 61/322,148, Tamarkin, Apr. 8, 2010. |
U.S. Appl. No. 61/363,577, Eini, Jul. 12, 2010. |
“Burn patients need vitamin D supplements.” Decision News Media, Jan. 23, 2004, http://www.nutraingredients.com/Research/Burn-patients-need-vitamin-D-supplements, Accessed: May 5, 2010. |
“HLB Systems”, http://pharmcal.tripod.com/ch17.htm, Accessed Sep. 17, 2010, pp. 1-3. |
“Minocycline” accessed on Oct. 21, 2011 at en.wikipedia.org/wiki/Minocycline, 7 pages. |
“Reaction Rate” Accessed at en.wikipedia.org/wiki/Reaction—rate on Dec. 18, 2011, 6 pages. |
‘Niram Chemicals’ [online]. Niram Chemicals, [retrieved on Jul. 17, 2012]. Retrieved from the Internet: <URL: http://www.indiamart.com/niramchemicals/chemicals.html>, 7 pages. |
‘Surfactant’ [online]. Wikipedia, 2010, [retrieved on Oct. 24, 2010]. Retrieved from the Internet: <URL: http://en.wikipedia.org/wiki/Surfactant>, 7 pages. |
Adachi, Shuji. “Storage and Oxidative Stability of O/W/ Nano-emulsions.” Foods Food Ingredients. J. Jpn. vol. 209, No. 11. 2004. 1 page. |
Alcohol SDA 40B.http://www.pharmco-prod.com/pp./MSDS/SDA.sub.—40B.sub.—200.pdf Accessed Dec. 9, 2008, 2 pages. |
Ambrose, Ursula et al., “In Vitro Studies of Water Activity and Bacterial Growth Inhibition of Sucrose-Polyethylene Glycol 400-Hydrogen Peroxide and Xylose-Polyethylene Glycol 400- Hydrogen Peroxide Pastes Used to Treat Infected Wounds,”Antimicrobial Agents and Chemotherapy, vol. 35, No. 9, pp. 1799-1803, 1991. |
Anton, N. et al. “Water-in-Oil Nano-Emulsion Formation by the phase Method: A Novel and General Concept, a New Template for Nanoencapsulation,” Proceedings of the 33rd Annual Meeting and Exposition of the Controlled Release Society, Jul. 2006, Vienna Austria, 2 pages. |
Arct et al., “Common Cosmetic Hydrophilic Ingredients as Penetration Modifiers of Flavonoids”, International Journal of Cosmetic Science, 24(6):357-366 (2002)—Abstract, 1 page. |
Arisan, http://www.arisankimya.corn/kozmetik.htm Accessed Dec. 10, 2008, 8 pages. |
Augsburger, Larry L. et al. “Bubble Size Analysis of High Consistency Aerosol Foams and Its Relationship to Foam Rheology. Effects of Container Emptying, Propellent Type, and Time.” Journal of Pharmaceutical Sciences. vol. 57, No. 4. Apr. 1968. pp. 624-631. |
Austria, et al., “Stability of Vitamin C Derivatives in Solution and Topical Formulations”, Journal of Pharmaceutical and Biomedical Analysis, 15:795-801 (1997). |
Barry and Badal, “Stability of minocycline, doxycycline, and tetracycline stored in agar plates and microdilution trays,” Current Microbiology, 1978, 1:33-36. |
Barry, B.W. et al, Comparative bio-availability and activity of proprietary topical corticosteroid preparations: vasoconstrictor assays on thirty-one ointments, British Journal of Dermatology, 93, 563-571, 1975. |
Benet, et al., Application of NMR for the Determination of HLB Values of Nonionic Surfactants, Journal of the American Oil Chemists Society, vol. 49, 1972, 499-500. |
Bernstein, et al., Effects of the Immunomodulating Agent R837 on Acute and Latent Herpes Simplex Virus Type 2 Invections, Antimicrobial Agents and Chemotherapy, 33(9):1511-1515 (1989). |
Blute, “Phase behavior of alkyl glycerol ether surfacants”, Physical Chemistry Tenside Sur. Det., 35(3):207-212 (1998). |
Brenes, et al., “Stability of Copigmented Anthocyanins and Asorbics Acid in a Grape Juice Model System”, J. Agric Food Chem, 53(1):49-56 (2005)—Abstrace, 1 page. |
Bronopol. Revtrieved online on Jun. 4, 2011. <URL:http://chemicalland21.com/specialtychern/perchem/BRONOPOL.html>. Jul. 17, 2006. 4 pages. |
Buck, et al., “Treatment of Vaginal Intraephithelial Neoplasia (Primarily Low Grade) with Imiquimod 5% Cream”, Journal of Lower Genetial Tract Disease, 7(3):290-293 (2003). |
Bucks, Daniel a.W., et al., “Bioavailability of Topically Administered Steroids: A ‘Mass Balance’ Technique,” Journal of Investigative Dermatology, vol. 91, No. 1, Jul. 1988, pp. 29-33. |
Bunker,et al., “Alterations in Scalp Blood Flow after the Epicutaneous Application of 3% Minoxidil and 0.1% Hexyl Nicotinate in Alopecia”, Presented as a poster at the meeting of the British Society for Investigavie Dermatology, York, Sep. 1986 (2 pages). |
Burton, et al., “Hypertrichosis Due to Minoxidil”, British Journal of Dermatology, 101:593-595 (1979). |
Campos, et al., “Ascorbic Acid and Its Derivatives in Cosmetic Formulations”, Cosmetics and Toiletries, 115(6):59-62 (2000) - Abstract, 1 page. |
Carbowax 1000MSDS; http://www.sciencelab.com/xMSDS-Polyethylene.sub.—glycol.sub.—1000-9926-622. Accessed Dec. 13, 2008, 6 pages. |
Carelli, et al., “Effect of Vehicles on Yohimbine Permeation Across Excised Hairless Mouse Skin”, Pharm Acta Helv, 73(3):127-134 (1998)—Abstract, 1 page. |
Chebil, et al., “Soulbility of Flavonoids in Organic Solvents”, J. Chem. Eng. Data, 52(5):1552- 1556 (2007) - Abstract, 1 page. |
Cheshire, et al., Disorders of Sweating, www.medscape.com, Semin Neurol 23(4):399-406, 2003. |
Chevrant-Breton, et al., “Etude du Traitement Capillaire <<Bioscalin>> dans les Alopecies Diffuses de la Femme”, Gazette Medicale, 93(17):75-79 (1986) [English abstract]. |
Chiang, et al., “Bioavailability Assessment of Topical Delivery Systems: In Vitro Delivery of Minoxidil from Prototypical Semi-Solid Formulations”, Int. J. Pharm, 49(2):109-114 (1989)—Abstract, 1 page. |
Chinnian, et al., “Photostability Profiles of Minoxidil Solutions”, PDA J. Pharm Sci Technol., 50(2):94-98 (1996)—Abstract, 1 page. |
Chollet, et al., “Development of a Topically Active Imiquimod Formulation”, Pharmaceutical Development and Technology, 4(1):35-43 (1999). |
Chollet, et al., “The Effect of Temperatures on the Solubility of Immiquimod in Isostearic Acid”, Abstract 3031, Pharmaceutical Research, vol. 14, No. 11 Supplemental (Nov.), p. S475 (1997), 2 pages. |
Coetzee, “Acceptability and Feasibility of Micralax applicators and of methyl cellulose gel placebo for large-scale clinical trials of vaginal microbicides,” NicolAIDS 2001, vol. 15, No. 14, pp. 1837-1842. |
Colloidal Silica. Retrieved online on Jun. 4, 2011. <URL:http://www.grace.com/engineeredmaterials/materialsciences/colloidalsilica/default.aspx>. Copyright 2011. 4 pages. |
Croda 2. Croda Cetomacrogol 1000 Product Information Sheet. 2011 (no month given). 1 page. |
Croda. Aracel 165 Product Summary. 2011 (no month given). 1 page. |
D.W.A. Sharp Dictionary of Chemistry, Penguin Books, 1983, 3 pages. |
Dalby, “Determination of Drug Solubility in Aerosol Propellants,” Pharmaceutical Research, vol. 8, No. 9, 1991, pp. 1206-1209. |
Dawber, et al., “Hypertrichosis in Females Applying Minoxidil Topical Solution and in Normal Controls”, JEADV, 17:271-275 (2003). |
Denatonium Benzoate http://www.newdruginfo.com/pharmaceopeia/usp28/v28230/usp28nf23s0.sub.--m- 22790.htm Accessed Dec. 9, 2008, 2 pages. |
Dentinger, et al., “Stability of Nifedipine in an Extemporaneously Compounded Oral Solution”, American Journal of Health-System Pharmacy, 60(10):1019-1022 (2003)—Abstract, 1 page. |
disorder. (2007). In the American Heritage Dictionary of the English Language. Retrieved from http://www.credoreference.com/entry/hmdictenglang/disorder. 1 page. |
Draelos, Z. D. “Antiperspirants and the Hyperhidrosis Patients.” Dermatologic Therapy. 2001. vol. 14. pages 220-224. |
Edens, et al., “Storage Stability and Safey of Active Vitamin C in a New Dual-Chamber Dispenser”, Journal of Applied Cosmetology, 17(4):136-143 (1999)—Abstract, 1 page. |
Edirisinghe, et al., “Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta”, Clin Sci (Lond). Aug. 2006; 111(2): 145-51. |
Edwards, “Imiquimod in Clinical Practice”, J. Am Acad Dermatol., 43(1, Pt 2):512-517 (2000)—Abstract, 1 page. |
Emulsifiers with HLB values. http://www.theherbarie.com/files/resources-center/formulating/Emulsifiers-.sub.—HLB.sub.--Values.pdf accessed Aug. 5, 2009 (3 pps). |
Encyclopedia of Pharmaceutical Technology, Second Edition, vol. 3, Copyright 2002, 4 pages. |
Esposito, E. et al. “Nanosystems for Skin Hydration: A Comparative Study.” International Journal of Cosmetic Science. 29. 2007. pages. 39-47. |
Ethanol, Accessed http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=E7023SIAL&N5=SEAR- CH.sub.—Concat.sub.—PNOBRAND.sub.--KEY&F=SPEC Dec. 9, 2008, 2 pages. |
Ethylene Oxide Derivatives: An Essence of Every Industry. A definition of Emulsifier. Http://www.emulsifiers.In/ethylene—oxide—derivatives2.htm. Accessed Jul. 12, 2011. 3 pages. |
Farahmand, et al., “Formulation and Evaluation of a Vitamin C Multiple Emulsion”, Pharmaceutical Development and Technology, 11(2):255-261 (2006)—Abstract, 1 page. |
Final Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., Dec. 16, 2008, 24 pages. |
Flick, Cosmetic and Toiletry Formulations, vol. 5, 2nd Edition, Copyright 1996, 63 pages. Relevant pp. 251-309. |
Fontana, Anthony J., “Water Activity: Why It is Important for Food Safety,” International Conference on Food Safety, Nov. 16-18, 1998, pp. 177-185. |
Gallarate, et al., “On the Stability of Ascorbic Acid in Emulsified Systems for Topical and Cosmetic Use”, International Journal of Pharmaceutics, 188:233-241 (1999). |
Galligan, John et al., “Adhesive Polyurethane Liners for Anterior Restorations,” J. Dent. Res., Jul.-Aug. 1968, pp. 629-632. |
Gelbard et al. “Primary Pediatric Hyperhidrosis: A Review of Current Treatment Options.” Pediatric Dermatology. 2008. 25 (6). pp. 591-598. |
Gill, A.M, et al., “Adverse Drug Reactions in a Paediatric Intensive Care Unit,” Acta Paediatr 84:438-441, 1995. |
Gladkikh, “Ascorbic Acid and Methods of Increasing its Stability in Drugs”, Translated from Khimiko-Farmatsevticheskii Zhurnal, 4(12):37-42 (1970)—1 page. |
Glaser, et al., Hyperhidrosis: A Comprehensive and Practical Approach to Patient Management, Expert Rev. Dermatol. 1(6), 773-775 (2006). |
Graves, S. et al. “Structure of Concentrated Nanoemulsions.” The Journal of Chemical Physics.. 122 America Institute of Physics. Published Apr. 1, 2005. 6 pages. |
Groveman, et al., “Lack of Efficacy of Polysorbate 60 in the Treatment of Male Pattern Baldness”, Arch Intern Med, 145:1454-1458 (1985). |
Gschnait, F., et al., “Topical Indomethacin Protects from UVB and UVA Irriadiation,” Arch. Dermatol. Res. 276:131-132, 1984. |
Hakan, et al., “The protective effect of fish oil enema in acetic acid and ethanol induced colitis,” The Turkish Journal of Gasroenterology, 2000, vol. 11, No. 2, pp. 155-161. |
Hall, Karla, “Diaper Area Hemangiomas: A Unique Set of Concerns,” http://members.tripod.com/.about.Michelle.sub.—G/diaper.html, Dec. 1, 2008, 8 pages. |
Hallstar. Retrieved online on Jun. 4, 2011. <URL:http://www.hallstar.com/pis.php?product=1H022>. 1 page. |
Hargreaves, “Chemical Formulation, An Overview of Surfactant-Based Preparations Used in Everyday Life”, The Royal SocietyLV Chemistry, pp. 114-115 (2003). |
Harrison, et al., “Effects of cytokines and R-837, a cytokine inducer, on UV-irradiation augmented recurrent genital herpes in guinea pigs”, Antivial Res., 15(4):315-322 (1991). |
Harrison, et al., “Modification of Immunological Responses and Clinical Disease During Topical R-837 Treatment of Genital HSV-2 Infection”, Antiviral Research, 10:209-224 (1988). |
Harrison, et al., “Pharmacokinetics and Safety of Iminquimod 5% Cream in the Treatment of Actinic Keratoses of the Face, Scalp, or Hands and Arms”, Arch. Dermatol. Res., 296(1):6-11 (2004)—Abstract, 1 page. |
Harrison, et al., “Posttherapy Suppression of Genital Herpes Simplex Virus (HSV) Recurrences and Enhancement of HSV-Specific T-Cell Memory by Imiquimod in Guinea Pigs”, Antimicrobial Agents and Chemotherapy, 38(9):2059-2064 (1994). |
Hashim, et al. “Tinea versicolor and visceral leishmaniasis,” Int J Dermatol., Apr. 1994; 33(4), pp. 258-259 (abstract only). |
Heart Failure, the Merck Manual, 2008 <<http://www.merck.com/mmhe/sec03/ch025/ch025a.html>> 12 pages. |
Hepburn, NC., “Cutaneous leishmaniasis,” Clin Exp Dermatol, Jul. 2000; 25(5), pp. 363-370 (abstract only). |
Hill, Randall M. (Ed.) Silicone Surfactants, Table of Contents and Chapter 7, “Silicone Surfactants: Applicants in the Personal Care Industry,” by David T. Floyd, 1999 (30 pages). |
Hormones. Http://www.greenwillowtree.com/Page.bok?file=libido.html. Jan 2001. |
http://ibabydoc.com/online/diseaseeczema.asp., Atopic Dermatitis, Copyright 2000, 6 pages. |
http://web.archive.org/web/20000106225413/http://pharmacy.wilkes.edu/kibbeweb/lab7.html, Characteristics of Surfactants and Emulsions, Jan. 29, 2010, 5 pages. |
http://www.agworkshop.com/p3.asp, AG&Co. Essential oil workshop. 1 page. Accessed Jan. 31, 2010. |
Hubbe, Martin. Mini-Encyclopedia of Papermaking Wet-End Chemistry: Additives and Ingredients, their Composition, Functions, Strategies for Use. Retrieved online on Jun. 4, 2011. <URL://http://www4.ncsu.edu/˜hubbe/CSIL.htm>. Feb. 1, 2001. 2 pages. |
hydroxyethylcellulose. Http: //terpconnect.umd.edu/-choi/MSDS/Sigma-Aldrich/HYDROXYETHYL%20CELLULOSE, 5 pages, Jan. 14, 2004. |
ICI Americas Inc. “The HLB System: A Time-Saving Guide to Emulsifier Selection.” Mar. 1980. pages 1-22. |
Ikuta, et al., “Scanning Electron Microscopic Observation of Oil/Wax/Water/Surfacant System”, Journal of SCCJ, 34(4):280-291 (2004)—Abstract, 1 page. |
Indomethacin. Retrieved online on Jun. 3, 2011. <URL:http://it03.net/com/oxymatrine/down/1249534834.pdf>. Aug. 15, 2009. 3 pages. |
Innocenzi, Daniele et al., “An Open-Label Tolerability and Effacy Study of an Aluminum Sesquichlorhydrate Topical Foam in Axillary and Palmar Primary Hyperhidrosis,” Dermatologic Therapy, vol. 21, S27-S30, 2008. |
Izquierdo, P. et al. “Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Temperature Method.” University of Barcelona. Sep. 17, 2001. 1 page. |
Jan. “Troubled Times: Detergent Foam.” http://zetatalk.com/health/theall7c.htm. Accessed Feb. 9, 2012. 2 pages. |
Joseph, “Understanding foams & foaming,” University of Minnesota (1997), at http://www.aem.umn.edu/people/faculty/joseph/archive/docs/understandingfoams.pdf, pp. 1-8. |
Kalkan, et al., The Measurement of Sweat Intensity Using a New Technique, Tr. J. of Medical Sciences 28, 515-517 (1998). |
Kanamoto, et al., “Pharmacokinetics of two rectal dosage forms of ketoprofen in patients after anal surgery,” J Pharmacobiodyn., Mar. 1988; 11(3):141-5. |
Kang, et al., “Enhancement of the Stability and Skin Penetration of Vitamin C by Polyphenol”, Immune Netw., 4(4):250-254 (2004)—Abstract, 1 page. |
Karasu, T.B. et al., “Treatment of Patients with Major Depressive Disorder, Second Edition,” pp. 1-78, 2000. |
Kathon.TM. CG (product information sheet by Rohm and Haas, Jun. 2006). |
Kim, “Stability of Minoxidil in Aqueous Solution”, Yakhak Hoechi, 30(5):228-231 (1986)—Abstract, 1 page. |
Kinnunen, “Skin reactions to hexylene glycol,” Contact Dermatitis Sep. 1989; 21(3): 154-8. |
Kleber, M.D., H.D. et al., “Treatment of Patients with Substance Use Disorders, Second Edition,” pp. 1-276, 2006. |
Koerber, S., “Humectants and Water Activity,” Water Activity News, 2000, ISSN No. 1083-3943. |
Kreuter, J. “Nanoparticles and microparticles for drug and vaccine delivery,” J. Anat. (1996) 189, pp. 503-505. |
Kumar, J. et ak., “Application of Broad Spectrum Antiseptic Povidone Iodine as Powerful Action: A Review,” Journal of Pharmaceutical Science and Technology vol. 1(2), 2009, 48-58. |
Kwak et al. “Study of Complete Transparent Nano-Emulsions which Contain Oils.” IFSCC Conference 2003, Seoul, Korea, Sep. 22-24, 2003. 3 pages. |
Lautenschlager, Dr. Hans. “A Closer Look on Natural Agents: Facts and Future Aspects.” Kosmetic Konzept. Kosmetische Praxis. 2006 (no month given). (5), 8-10. 3 pages. |
Lebwohl et al. “Treatment of Psoriasis. Part 1. Topical Therapy and Phototherapy.” J Am. Acad. Dermatol. 45:487-498. Oct. 2001. |
Lebwohl et al., “A randomized, double-blind, placebo-controlled study of clobestasol propionate 0.05% foam in the treatment of nonscalp psoriasis,” International Journal of Dermatology, 2002, 41(5):269-274. |
Lee, et al., “The Stabilization of L-Ascorbic Acid in Aqueous Solution and Water-in-Oil-in-Water Double Emulsion by Controlling pH and Electrolyte Concentration”, J. Cosmet. Sci., 55:1-12 (Jan./Feb. 2004). |
Leung, et al., “Bioadhesive Drug Delivery in Water-Soluble Polymers,” American Chemical Society, Chapter 23, 1991, pp. 350-366. |
Li, et al., “Solubility Behavior of Imiquimod in Alkanoic Acids”, Abstract 3029, Pharmaceutical Research, vol. 14, No. 11 Supplemental (Nov.), p. S475 (1997), 2 pages. |
Licking Vaginal Dryness without a Prescription. Accessed http://www.estronaut.com/a/vag.sub.—dryness.htm on Dec. 14, 2008, 3 pages. |
Lippacher, A. et al. “Liquid and Semisolid SLN Dispersions for Topical Application” Rheological Characterization. European Journal of Pharmaceutics and Biopharmaceutics. 58. 2004. pp. 561-567. |
Lupo, “Antioxidants and Vitamins in Cosmetics”, Clinics in Dermatology, 19:467-473 (2001). |
Martindale, The extra pharmacopoeia [28th] edition, Eds.: Reynolds, J.E.F. and Prasad, A.B., The Pharmaceutical Press, London, pp. 862-864, 1982. |
Martindale. 33 ed. London, Bath Press, 2002. pp. 1073 and 1473. |
Material Safety Data Sheet, Progesterone, Apr. 26, 2006, 5 pages. |
Material Safety Data Sheet, Science Lab.com, Polyethylene Glycol 1000, MSDS, Nov. 6, 2008, 6 pages. |
Merck index, 10th edition, Merck & Co., Inc.: Rahway, NJ, 1983, pp. 39 (entry 242 for allantoin). |
Merck index, 14th edition, O'Neill, ed., 2006, entry for p-amino benzoic acid. |
Merck index, 14th edition, O'Neill, ed., 2006, entry for zinc oxide. |
Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition. O'Neil et al eds. Entries 1058, 2350, 6143, and 8803. 2001. 7 pages. |
Merck Manual Home Edition. “Excessive Sweating: Sweating Disorders.” Accessed Apr. 14, 2011 at www.merckmanuals.com/home/print/sec18/ch206/ch206c.html. 2 pages. |
Merriam Webster Online Dictionary [online] retrieved from http://www.merriam-webster.com/cgi-bin/dictionary?book=dictionary&va=derivative on Jul. 5, 2008; 1 page. |
Merriam-Webster Online Dictionaary, 2008, “Mousse,” Merriam-Webster Online, Dec. 8, 2008 http://www.merriam-webster.com/dictionary/mousse, 2 pages. |
Messenger, et al., “Minoxidil: Mechanisms of Action on Hair Growth”, British Journal of Dermatology, 150:186-194 (2004). |
Metronidazole. www.usp.org/pdf/EN/veterinary/metronidazole.pdf. accessed Sep. 10, 2009, 4 pages. |
Metz, et al., “A Phase I Study of Topical Tempol for the Prevention of Alopecia Induced by Whole Brain Radiotherapy”, Clinical Cancer Research, 10:6411-6417 (2004). |
Meucci, et al., “Ascorbic Acid Stability in Aqueous Solutions”, Acta Vitaminol Enzymol, 7(3-4):147-153 (1985)—Abstract, 1 page. |
MMP Inc. International Development and Manufacturing, “Formulating specialities,” http://mmpinc.com, 3 pages. Feb. 2, 2010. |
Molan, Peter Clark, “World Wide Wounds,” Dec. 2001, 13 pages. |
Morgan, Timothy M., et al., “Enhanced Skin Permeation of Sex Hormones with Novel Topical Spray Vehicles,” Journal of Pharmaceutical Sciences, vol. 87, No. 10, Oct. 1998, pp. 1213-1218. |
Neutrogena. Http://www.cosmetoscope.com/2010/04/neutrogea-clinical-with-johnson-johnsons-cytomimic-techology/. Published Apr. 28, 2010. Accessed Sep. 11, 2010, 5 pages. |
Nietz, “Molecular orientation at surfaces of solids,” J. Phys. Chem., 1928, 32(2): 255-269. |
No Author Listed. “Opitmization of Nano-Emulsions Production by Microfluidization.” European Food Research and Technology. vol. 225, No. 5-6. Sep. 2007. Abstract. 1 page. |
Office Action for U.S. Appl. No. 11/430,437, Tamarkin et al., May 9, 2008, 27 pages. |
Office Action received from the U.S. Patent Office, U.S. Appl. No. 11/430,599, Jul. 28, 2008 (59 pages). |
Oil. Dictionary of Chemistry. Editor: DWA Sharp. Copyright 1990. |
Olsen, et al., “A Multicenter, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of a Novel Formulation of 5% Minoxidil Topical Foam Versus Placebo in the Treatment of Androgenetic Alopecia in Men”, J. Am. Acad Dermatol, 57:767-774 (2007). |
OM Cinnamate. http://www.makingcosmetics.com/sunscreens/OM-Cinnamate-p102.html accessed Sep. 26, 2009, 1 page. |
Padhi et al., “Phospho-olicines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochemical Soc., 1997, 144(4): 1188-1194. |
Pakpayat, et al., “Formulation of Ascorbic Acid Microemulstions with Alkyl Polyglycosides”, European Journal of Pharmaceutics and Biopharmaceutics, 72:444-452 (2009). |
Paula. http://ww.cosmeticscop.com/cosmetic-ingredient-dictionary/definition/259/c12-15-alkylbenzoate.aspx. Printed Oct. 24, 2010. 1 page. |
Pendergrass, “The shape and dimension of the human vagina as seen in three-dimensional vinyl polysiloxane casts,” Gynecol Obstet. Invest. 1996:42(3):178-82. |
Prescription Information for Aldara, Mar. 2007 (29 pages). |
prevent. (2007). In The American Heritage Dictionary of the English Language. Retrieved from http://www.credoreference.com/entry/hmdictenglang/prevent. 1 page. |
Psoriasis, http://www.quickcare.org/skin/causes-of0psoriasis.html. Accessed Sep. 9, 2010—3 pages. |
Purcell, Hal C. “Natural Jojoba Oil Versus Dryness and Free Radicals.” Cosmetics and Toiletries Manufacture Worldwide. 1988. 4 pages. |
Raschke, et al., “Topical Activity of Ascorbic Acid: From In Vitro Optimization to In Vivo Efficacy”, Skin Pharmacology and Physiology, 17(4):200-206 (2004)—Abstract, 1 page. |
Ravet et al., “Electroactivity of natural 503-507 and synthetic triphylite,” J. of Power Sources, 2001, 97-98: 503-507. |
Raymond, Iodine as an Aerial Disinfectant, Journal of Hygiene, vol. 44, No. 5 (May 1946), pp. 359-361. |
Receptacle. Merriam Webster. Http://www.merriam-webster.com/dictionary/receptacle. Accessed Jul. 12, 2011. 1 page. |
Richwald, “Imiquimod”, Drugs Today, 35(7):497 (1999)—Abstract, 1 page. |
Rieger and Rhein. “Emulsifier Selection/HLB.” Surfactants in Cosmetics. 1997 (no month given). 1 page. |
Rosacea, http://clinuvel.com/skin-conditions/common-skin-conditions/rosacea#h0-6-prevention. Accessed Sep. 9, 2010, 5 pages. |
Savin, et al., “Tinea versicolor treated with terbinafine 1% solution,” Int J. Dermatol, Nov. 1999; 38(11), pp. 863-865. |
Schmidt a., “Malassezia furfur: a fungus belonging to the physiological skin flora and its relevance in skin disorders,” Curtis., Jan. 1997; 59(1), pp. 21-4 (abstract). |
Schulze, M.D., Harry “Iodine and Sodium Hypochlorite as Wound Disinfectants,” The British Medical Journal, pp. 921-922, 1915. |
Scientific Discussion for the approval of Aldara, EMEA 2005 (10 pages). |
Scott as Published in Pharmaceutical Dosage Forms; Disperse Systems, vol. 3, Copyright 1998, 120 pages. |
Seborrheic Dermatitis, http://www.cumc.columbia.edu/student/health/pdf/R-S/Seborrhea%20Dermatitis.pdf. Access Sep. 9, 2010, 2 pages. |
Shear, et al., “Pharmacoeconomic analysis of topical treatments for tinea infections,” Pharmacoeconomics. Mar. 1995; 7(3); pp. 251-267 (abstract only). |
Sheu, et al., “Effect of Tocopheryl Polyethylene Glycol Succinate on the Percutaneous Penetration of Minoxidil from Water/Ethanol/Polyethylene Glycol 400 Solutions”, Drug Dev. Ind. Pharm., 32(5):595-607 (2006)—Abstract, 1 page. |
Shim, et al., “Transdermal Delivery of Mixnoxidil with Block Copolymer Nanoparticles”, J. Control Release, 97(3):477-484 (2004)—Abstract, 1 page. |
Shrestha et al., Forming properties of monoglycerol fatty acid esters in nonpolar oil systems, Langmuir, 2006, 22: 8337-8345. |
Sigma Aldrich, “HLB-Numbers in Lithography Nanopatterning,” http://www.sigmaaldrich.com/materials-science/micro-and-nanoelectronics/l-ithography-nanopatterning/hlb-numbers.html, accessed: Feb. 2, 2009, pp. 1-3. |
Sigma-Aldrich, Material Safety Data Sheet, Hydroxyethyl Cellulose, Mar. 3, 2004, 5 pages. |
Silicone. Definition. Retrieved Apr. 19, 2011 from http://www.oxforddictionaries.com/definition/silicone?view=uk. 1 page. |
Simovic, S. et al., “The influence of Processing Variables on Performance of O/W Emulsion Gels Based on Polymeric Emulsifier (Pemulen ÒTR-2NF),” International Journal of Cosmetic Science, vol. 2(2): abstract only. Dec. 24, 2001, 1 page. |
Skin Biology, CP Serum—Copper-Peptide Serum for Skin Regeneration and Reducing Wrinkles, Skin Biology, http;//web.archive.org/web/20030810230608/http://www.skinbio.com/cpserum.-html, Dec. 1, 2008, 21 pages. |
Skin Deep Cosmetics. PPG-40-PEG-60 Lanolin Oil http://www.cosmeticsdatabase.com/ingredient/722972/PPG-40-PEG-60—Lanolin—Oil/?ingred06=722972. 3pages. |
Smith, Anne. “Sore Nipples.” Breastfeeding Mom's Sore Nipples: Breastfeeding Basics. http://breastfeedingbasics.com/articles/sore-nipples. Accessed Feb. 8, 2012. 9 pages. |
Sonneville-Aubrun, O. et al. “Nanoemulsions: A New Vehicle for Skincare Products.” Advances in Colloid and Interface Science. 108-109.. 2004. pages. 145-149. |
Squire. J, “A randomised, single-blind, single-centre clinical trial to evaluate comparative clinical efficacy of shampoos containing ciclopirox olamine (1.5%) and salicylic acid (3%), or ketoconazole (2%, Nizoral) for the treatment ofdandruff/seborrhoeic dermatitis,” Dermatolog Treat. Jun. 2002;13(2):51-60 (abstract only). |
Sreenivasa, et al., “Preparation and Evaluation of Minoxidil Gels for Topical Application in Alopecia”, Indian Journal of Pharmaceutical Sciences, 68(4):432-436 (2006), 11 pages. |
Stehle et al., Uptake of minoxidil from a new foam formulation devoid of propylene glycol to hamster ear hair follicles, J. Invest. Dermatoll., 2005, 124(4), A101. |
Sugisaka, et al., “The Physiochemical Properties of Imiquimod, The First Imidazoquinoline Immune Response Modifier”, Abstract 3030, Pharmaceutical Research, vol. 14, No. 11 Supplemental (Nov.), p. S475 (1997), 2 pages. |
Surfactant. Chemistry Glossary. Http://chemistry.about.com/od/chemistryglossary/g/surfactant.htm, 2012, 1 page. |
Sweetman, Sean C. Martindale: The Complete Drug Reference. 33rd Edition. London. Pharmaceutical Press. Jun. 21, 2002. pags. 1073 and 1473. 5 pages. |
Tadros, Tharwat F. “Surfactants in Nano-Emulsions.” Applied Surfactants: Principles and Applications. Wiley-VCH Verlag GmbH & Co. Weinheim. ISBN: 3-527-30629-3. 2005. pp. 285-308. |
Tan et al., “Effect of Carbopol and Polyvinlpyrrolidone on the Mechanical Rheological and Release Properties of Bioadhesive Polyethylene Glycol Gels,” AAPS PharmSciTech, 2000; 1(3) Article 24, 2000, 10 pages. |
Tanhehco, “Potassium Channel Modulators as Anti-Inflammatory Agents”, Expert Opinion on Therapeutic Patents, 11(7):1137-1145 (2001)—Abstract, 3 pages. |
Tarumoto, et al., Studies on toxicity of hydrocortisone 17-butyrate 21-propionate -1. Accute toxicity of hydrocortisone 17-butyrate 21-propionate and its analogues in mice, rats and dogs (author's trans), J Toxicol Sci., 1981 Jul. 6, 1981; Suppl: 1-16 (Abstract only). |
Tata, et al., “Penetration of Minoxidil from Ethanol Propylene Glycol Solutions: Effect of Application Volume on Occlusion”, Journal of Pharmaceutical Sciences, 84(6):688-691 (1995). |
Tata, et al., “Relative Influence of Ethanol and Propylene Glycol Cosolvents on Deposition of Minoxidil into the Skin”, Journal of Pharmaceutical Sciences, 83(10):1508-1510 (1994). |
Third Party Submission for U.S. Appl. No. 12/014,088, Feb. 4, 2009, 4 pages, cited by other. |
Tones-Rodriguez, JM., “New topical antifungal drugs,” Arch Med Res. 1993 Winter; 24(4), pp. 371-375 (abstract). |
Toxicology and Carcinogenesis Studies of t-Butyl Alcohol (CAS No. 75-65-0) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies), http://ntp.niehs.nih.gob/?objectid-=0709F73D-A849-80CA-5FB784E866B576D1. Accessed Dec. 9, 2008, 4 pages. |
Trofatter, “imiquimod in clinical Practice”, European Journal of Dermatology, 8(7 Supp.):17-19 (1998)—Abstract, 1 page. |
Tsai, et al., “Drug and Vehicle Deposition from Topical Applications: Use of in Vitro Mass Balance Technique with Minosidil Solutions”, J. Pharm. Sci., 81(8):736-743 (1992)—Abstract, 1 page. |
Tsai, et al., “Effect of Minoxidil Concentration on the Deposition of Drug and Vehicle into the Skin”, International Journal of Pharmaceutics, 96(1-3):111-117 (1993)—Abstract, 1 page. |
Tsai, et al., “Influence of Application Time and Formulation Reapplication on the Delivery of Minoxidil through Hairless Mouse Skin as Measured in Franz Diffusion Cells”, Skin Pharmacol., 7:270-277 (1994). |
Tyring, “Immune-Response Modifiers: A New Paradigm in the Treatment of Human Papillomavirus”, Current Therapeutic Research, 61(9):584-596 (2000)—Abstract, 1 page. |
Tzen, Jason T.C. et al. “Surface Structure and Properties of Plant Seed Oil Bodies.” Department of Botany and Plant Sciences, University of California, Riverside, California 92521. Apr. 15, 1992. 9 pages. |
Uner, M. et al. “Skin Moisturizing Effect and Skin Penetration of Ascorbyl Palmitate Entrapped in Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Incorporated into Hydrogel.” Pharmazie. 60. 2005. 5 pages. |
Veron, et al., “Stability of Minoxidil Topical Formulations”, Ciencia Pharmaceutica, 2(6):411-414 (1992), Abstract, 1 page. |
Wermuth, C.G. “Similarity in drugs: reflections on analogue design,” Drug Discovery Today, vol. 11, Nos. 7/8, Apr. 2006, pp. 348-354. |
Williams, “Scale up of an olive/water cream containing 40% diethylene glycol momoethyl ether”, Dev. Ind. Pharm., 26(1):71-77 (2000). |
Wormser et al., Protective effect of povidone-iodine ointment against skin lesions induced by sulphur and nitrogen mustards and by non-mustard vesicants, Arch. Toxicol., 1997, 71, 165-170. |
Wormser, Early topical treatment with providone-iodine ointment reduces, and sometimes prevents, skin damage following heat stimulus, Letter to the Editor, Burns 24, pp. 383, 1998. |
Yamada and Chung, “Crystal Chemistry of the Olivine-Type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as Possible 4 V Cathopde Materials for Lithium Batteries,” J. Electrochemical Soc., 2001, 148(8): A960-967. |
“Coal tars and coal-tar pitches,” Report on Carcinogens, Twelfth Edition, 2011, 3 pages. |
Adisen et al. “Topical tetracycline in the 7:953-5 treatment of acne vulgaris,” J Drugs Dermatol., 2008, 7:953-5. |
Baskaran et al., “Poloxamer-188 improves capillary blood flow and tissue viability in a cutaneous burn wound,” J. Surg. Res., 2001, 101(1):56-61. |
Bell-Syer et al. “A systematic review of oral treatments for fungal infections of the skin of the feet,” J. Dermatolog. Treat., 2001, 12:69-74. |
Boehm et al. 1994, “Synthesis of high specific activity [.sup.3 H]-9-cis-retinoic acid and its application for identifying retinoids with unusual binding properties,” J. Med. Chem., 37:408-414. |
Carapeti et al., “Topical diltiazem and bethanechol decrease anal sphincter pressure and heal anal fissures without side effects,” Dis Colon Rectum, 2000, 43(10):1359-62. |
Cook and Mortensen, “Nifedipine for 43(3):430-1 treatment of anal fissures,” Dis Colon Rectum, 2000, 43(3):430-1. |
Dumortier et al., “A review of poloxamer 407 pharmaceutical and pharmacological characteristics,” Pharmaceutical Res., 2006, 23(12):2709-2728. |
Ebadi et al., “Healing effect of topical nifedipine on skin wounds of diabetic 11(1):19-22 rats,” DARU, 2003, 11(1):19-22. |
Effendy and Maibach. “Surfactants and Experimental Irritant Contact Dermatitis.” Contact Dermatol., 1995, 33:217-225. |
Elias and Ghadially, “The aged epidermal permeability barrier,” Clinical Geriatric Medicine, Feb. 2002, pp. 103-120. |
Fantin et al., “Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (Quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus,” Antimicrob Agents and Chemothery,. 1999, 39:400-405. |
Fluter et al., “Glycerol accelerates recovery of barrier function in vivo,” Acta Derm. Venereol,. 1999, 79:418-21. |
Garti et al. “Sucrose Esters microemulsions,” J. Molec. Liquids, 1999, 80:253-296. |
Hammer et al. “Anti-Microbial Activity of Essential Oils and other Plant Extracts,” J. Applied Microbiology, 1999, 86:985-990. |
Hwang et al. “Isolation and identification of mosquito repellents in Artemisia vulgaris” J. Chem. Ecol., 11: 1297-1306, 1985. |
Knight et al., “Topical diltiazem ointment in the treatment of chronic anal fissure,” Br. J. Surg., 2001, 88(4):553-6. |
Kucharekova et al., “Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction,” Contact Dermatitis, Jun. 2002, pp. 331-338. |
Leive et al, “Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membrane,” Antimicrobial Agents and Chemotherapy, 1984, 25:539-544. |
Luepke and Kemper, “The HET-CAM Test: An Alternative to the Draize Eye Test,” FD Chem. Toxic., 1986, 24:495-196. |
Osborne and Henke, “Skin Penetration Enhancers Cited in the Technical Literature,” Pharm. Technology, Nov. 1997, pp. 58-86. |
Padi. “Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms,” Eur J. Pharmacol, 2008, 601:79-87. |
Palamaras and Kyriakis, “Calcium antagonists in dermatology: a review of the evidence and research-based studies,” Derm. Online Journal, 2005, 11(2):8. |
Passi et al., Lipophilic antioxidants in human sebum and aging, Free Radical Research, 2002, pp. 471-477. |
Perrotti et al., “Topical Nifedipine With Lidocaine Ointment vs. Active Control for Treatment of Chronic Anal Fissure,” Dis Colon Rectum, 2002, 45(11):1468-1475. |
Repa et al. “All-trans-retinol is a ligand for the retinoic acid receptors,” Proc. Natl. Acad Sci, USA, 90:7293-7297, 1993. |
Ruledge, “Some corrections to the record on insect repellents and attractants,” J. Am. Mosquito Control Assoc, 1988, 4(4): 414-425. |
Sakai et al., “Characterization of the physical properties of the stratum corneum by a new tactile sensor,” Skin Research and Technology, Aug. 2000, pp. 128-134. |
Schaefer, “Silicone Surfactants,” Tenside, Surfactants, Deterg., 1990, 27(3): 154-158. |
Simoni et al., “Retinoic acid and analogs as potent inducers of differentiation and aptosis. New promising chemopreventive and chemotherapeutic agents in oncology,” Pure Appl Chem., 2001, 73(9):1437-1444. |
Smith, “Hydroxy acids and skin again,” Soap Cosmetics Chemical Specialties, 1993, pp. 54-59. |
Solans et al. “Overview of basic aspects of microemulsions,” Industrial Applications of Microemulsions, Solans et al Eds, New York, 1997, 66:1-17. |
Squillante et al., “Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin,” European J. Pharm. Biopharm., 1998, 46(3):265-71. |
Todd et al. “Volatile Silicone Fluids for Cosmetics,” 91 Cosmetics and Toiletries, 1976, 27-32. |
Torma et al., “Biologic activities of retinoic acid and 3, 4-dehydroretinoic acid in human keratinoacytes are similar and correlate with receptor affinities and transactivation properties,” J. Invest. Dermatology, 1994, 102: 49-54. |
USP23/NF 18 The United States Pharmacopeia: The National Formulary, US Pharmacopoeia, 1995, p. 10-14. |
Van Slyke, “On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of buffer value to the of the buffer solution,” J. Biol. Chem., 1922, 52:525-570 |
Van Cutsem et al., “The antiinflammatory efects of ketoconazole,” J. AM. ACAD. Dermatol., 1991, 25(2 pt 1):257-261. |
Wang and Chen, “Preparation and surface active properties of biodegradable dextrin derivative surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281(1-3):190-193. |
Weindl et al., “Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects,” Skin Pharmacology and Physiology, 2004, 17: 207-213. |
Xynos et al., “Effect of nifedipine on rectoanal motility,” Dis Colon Rectum, 1996, 39(2):212-216. |
Yamada et al., “Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats,” J. Pharmacol. Exp. Ther., 2003, 307(1)17-23. |
Paragraph E.3.1 of regulation (EC) No. 2003 (See Directive 67/548/EEC OJ 196, 16.8, 1967, p. 1. |
Tzen et al., Lipids, proteins and structure of seed oil bodies from diverse species; Plant Physiol., 1993, 101:267-276. |
Brown et al. “Structural dependence of flavonoid interactions with Cu2+ inos: implications for their antioxidant properties,” Biochem. J., 1998, 330:1173-1178. |
Cloez-Tayarani. et al., “Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5- hydroxytryptamine2A receptors,” Int. Immunol., 2003, 15:233-40. |
“Mineral oil USP,” Chemical Abstracts Service Registry No. 8012-95-1, 2011, 7 pages. |
“Tea tree oil,” Chemical Abstract No. 68647-73-4, 2012, 2 pages. |
Lin et al., “Ferulic acid stabilizes a solution of vitamins c and e and doubles its protoprotection of skin,” J Invest Dermatol, 2005, 125:826-32. |
International Preliminary Examination Report from PCT/IL01/00025, dated Aug. 27, 2001, and International Search Report dated Jun. 22, 2001, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20100137198 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
60216162 | Jul 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09653267 | Aug 2000 | US |
Child | 10392071 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11294318 | Dec 2005 | US |
Child | 12705219 | US | |
Parent | 10392071 | Mar 2003 | US |
Child | 11294318 | US |