Phenylethynyl capped imides

Information

  • Patent Grant
  • 5817744
  • Patent Number
    5,817,744
  • Date Filed
    Friday, February 14, 1997
    28 years ago
  • Date Issued
    Tuesday, October 6, 1998
    26 years ago
Abstract
The physical properties of high performance composites can be tailored by using blends to make the composites. The resulting composites are relatively easy to make and have long-term, high performance capabilities even in harsh service conditions. The blends of the present invention include at least one oligomer having an aromatic, aliphatic, or mixed aromatic and aliphatic backbone from one chemical family and an unsaturated hydrocarbon end cap and at least one polymer from a different chemical family. Upon curing, the oligomer in the blend addition polymerize to form composites possessing advanced properties with respect to those exhibited by the pure oligomer or the pure polymer. Coreactive oligomer blends can be used instead of a pure oligomer to form composites that include addition polymers, block copolymers, and the compatible polymer, thereby further achieving a tailoring of properties in the cured composite. The blends can be prepregged and cured to form composites.
Description

TECHNICAL FIELD
The present invention relates to polymeric blends comprising crosslinking oligomer(s) and polymer(s) wherein the backbones of the oligomer(s) and polymer(s) are from different chemical families.
BACKGROUND OF THE INVENTION
Recently, chemists have sought to synthesize oligomers for high performance advanced composites suitable for aerospace applications. These composites should exhibit solvent resistance; be tough, impact resistant, and strong; be easy to process; and be thermoplastic. Oligomers and composites that have thermo-oxidative stability and, accordingly, can be used at elevated temperatures are particularly desirable.
While epoxy-based composites are suitable for many applications, their brittle nature and susceptibility to thermal and hydrolytic degradation make them inadequate for many aerospace applications, especially those applications which require thermally stable, tough composites or service in harsh conditions. Accordingly, research has recently focused on polyimide composites to achieve an acceptable balance between thermal or hydrolytic stability, solvent resistance, and toughness. Still the maximum temperatures for use of the polyimide composites, such as PMR-15, are about 600.degree.-625.degree. F., since they have glass transition temperatures of about 690.degree. F. PMR-15 also suffers from brittleness.
There has been a progression of polyimide sulfone compounds synthesized to provide unique properties or combinations of properties. For example, Kwiatkowski and Brode synthesized maleic-capped linear polyarylimides as disclosed in U.S. Pat. No. 3,839,287. Holub and Evans synthesized maleic- or nadic-capped, imido-substituted polyester compositions as disclosed in U.S. Pat. No. 3,729,446. We synthesized thermally stable polysulfone oligomers as disclosed in U.S. Pat. No. 4,476,184 or U.S. Pat. No. 4,536,559, and have continued to make advances with polyetherimidesulfones, polybenzoxazolesulfones, polybutadienesulfones, and "star" or "star-burst" multidimensional oligomers. We have shown surprisingly high glass transition temperatures yet reasonable processing and desirable physical properties in many of these oligomers and their composites.
Polybenzoxazoles, such as those disclosed in our U.S. Pat. Nos. 4,965,336 (to Lubowitz & Sheppard) and 4,868,270 (to Lubowitz, Sheppard, and Stephenson), may be used at temperatures up to about 750.degree.-775.degree. F., since these composites have glass transition temperatures of about 840.degree. F. Some aerospace applications need composites which have even higher use temperatures while maintaining toughness, solvent resistance, ease of processing, formability, strength, and impact resistance.
Multidimensional oligomers, such as disclosed in U.S. Pat. No. 5,210,213, are easier to process than some advanced composite oligomers since they can be handled at lower temperatures. Upon curing, however, the oligomers chemically crosslink through their end caps in addition polymerization so that the thermal resistance of the resulting composite is markedly increased with only a minor loss of stiffness, matrix stress transfer (impact resistance), toughness, elasticity, and other mechanical properties. Glass transition temperatures above 95.degree. F. are achievable.
Commercial polyesters, when combined with well-known diluents, such as styrene, do not exhibit satisfactory thermal and oxidative resistance to be useful for aircraft or aerospace applications. Polyarylesters (i.e., arylates) are often unsatisfactory, also, since the resins often are semi-crystalline which may makes them insoluble in laminating solvents, intractable in fusion, and subject to shrinking or warping during composite fabrication. Those polyarylesters that are soluble in conventional laminating solvents remain so in composite form, thereby limiting their usefulness in structural composites. The high concentration of ester groups contributes to resin strength and tenacity, but also makes the resin susceptible to the damaging effects of water absorption. High moisture absorption by commercial polyesters can lead to distortion of the composite when it is loaded at elevated temperature.
High performance, aerospace, polyester advanced composites, however, can be prepared using crosslinkable, end capped polyester imide ether sulfone oligomers that have an acceptable combination of solvent resistance, toughness, impact resistance, strength, ease of processing, formability, and thermal resistance. By including Schiff base (--CH.dbd.N--), imidazole, thiazole, or oxazole linkages in the oligomer chain, the linear, advanced composites formed with polyester oligomers of our copending application U.S. Ser. No. 07/137,493, now U.S. Pat. No. 5,705,598, can have semiconductive or conductive properties when appropriately doped.
Conductive and semiconductive plastics have been extensively studied (see, e.g., U.S. Pat. Nos. 4,375,427; 4,338,222; 3,966,987; 4,344,869; and 4,344,870), but these polymers do not possess the blend of properties which are essential for aerospace applications. That is, the conductive polymers do not possess the blend of (1) toughness, (2) stiffness, (3) elasticity, (4) ease of processing, (5) impact resistance (and other matrix stress transfer capabilities), (6) retention of properties over a broad range of temperatures, and (7) high temperature resistance that is desirable on aerospace advanced composites. The prior art composites are often too brittle.
Thermally stable multidimensional oligomers having semiconductive or conductive properties when doped with suitable dopants are also known and are described in our copending applications (including U.S. Ser. No. 07/212,404 to Lubowitz, Sheppard, and Torre). The linear arms of the oligomers contain conductive linkages, such as Schiff base (--N.dbd.CH--) linkages, between aromatic groups. Sulfone and ether linkages are interspersed in the arms. Each arm is terminated with a mono- or difunctional end cap (i.e. an end cap having one or two crosslinking functionalities) to allow controlled crosslinking upon heat-induced or chemically-induced curing. Other "semiconductive" oligomers are described in our other copending applications.
Polyamide oligomers and blends are described in our U.S. Pat. Nos. 4,935,523; 4,847,333; and 4,876,328, and polyetherimide oligomers and blends are described in our U.S. Pat. No. 4,851,495.
Polyamideimides are generally injection-moldable, amorphous, engineering thermoplastics which absorb water (swell) when subjected to humid environments or immersed in water. Polyamideimides are generally described in the following patents: U.S. Pat. No. 3,658,938; U.S. Pat. Nos. 4,628,079; 4,599,383; 4,574,144; or 3,988,344. The thermal integrity and solvent-resistance can be greatly enhanced by capping amideimide backbones with monomers that present one or two crosslinking functionalities at each end of the oligomer, as described in U.S. Pat. No. 5,104,967.
Blends of these oligomers are described in many of our earlier applications and comprising a mixture of an oligomer and a compatible polymer, generally of the same family, of substantially the same backbone. The polymer is formed by an analogous condensation generally substituting a noncrosslinking end-cap monomer (such as phenol, benzoic acid chloride, or aniline) for the crosslinking end cap used in the oligomers.
Interpenetrating or semi-interpenetrating networks are also known, such as those described by Egli et al. in "Semi-Interpenetrating Networks of LARC-TPI" available from NASA-Langley Research Center.
Mixed polymer blends, such as an amideimide/phenoxyphenylsulfone blend, are described in U.S. Pat. No. 3,658,939.
SUMMARY OF THE INVENTION
Blends present promise for tailoring the mechanical properties of composites while retaining ease of processing. The present invention comprises advanced composite blends that are mixed chemical blends of a linear or multi-dimensional crosslinking oligomer(s) of one chemical family, such as a heterocycle, and corresponding linear or multidimensional polymer(s), unable to crosslink, from a different chemical family, such as ethersulfone. Generally the polymer has an average formula weight that is initially higher than that of the oligomer, but the formula weight of the oligomeric portion of the blend will increase appreciably during curing through addition (i.e. homo-) polymerization between the crosslinking functionalities. The ratio of oligomer(s) to polymer(s) can be varied to achieve the desired combination of physical properties. Usually the ratio is such that the addition polymer formed during curing constitutes no more than about 50 mol % of the composite.
While two component blends are preferred, the blends can be more complex mixtures of oligomers or polymers with coreactants, if desired. The blends may even include coreactive oligomers as will be explained.
The linear oligomers generally have the formula:
Y.sub.i --A--Y.sub.i
wherein
i=1 or 2;
A=an aromatic, aliphatic, or aromatic/aliphatic hydrocarbon backbone;
Y=an unsaturated hydrocarbon residue including a segment selected from the group consisting of: ##STR1## R.sub.1 =lower alkyl, aryl, substituted alkyl, substituted aryl (including hydroxyl or halo-substituents), lower alkoxy, aryloxy, halogen, or mixtures thereof (preferably lower alkyl);
G=--SO.sub.2 --, --S--, --O--, --CH.sub.2 --, --CO--, --SO--, --CHR--, or --CR.sub.2 -- (preferably --O-- or --CH.sub.2 --);
j=0, 1, or 2;
T=methallyl or allyl;
R=hydrogen, lower alkyl, or phenyl; and
Me=methyl.
The backbone (A) is preferably selected from imidesulfone; ethersulfone; amide; imide; ether; ester; estersulfone; etherimide; amideimide; oxazole, thiazole, imidazole (i.e. heterocycles); or heterocycle sufone.
In coreactive oligomer blends, Y preferably is selected from the group consisting of: ##STR2## wherein G=--CH.sub.2 --, --SO.sub.2 --, --S--, --O--, or --CO--, and
R=hydrogen, lower alkyl, or phenyl, and the blend includes a second (coreactive) oligomer of the general formula:
Z.sub.i --B--Z.sub.i
wherein
i=1 or 2;
B=a hydrocarbon backbone that is the same or different from A;
Z=a hydrocarbon residue including a segment selected from the group consisting of: ##STR3## .PHI.=phenyl; and X=--O-- or --S--.
Generally, the hydrocarbons (A or B) in these coreactive oligomer blends are entirely aromatic with phenyl radicals between the linkages, although aliphatic radicals can be used.
The coreactive oligomer blends, which can be cured to form block copolymers, comprise any ratio of the coreactive oligomers. Changing the ratio changes the physical properties in the final composites. Curing the coreactive oligomers involves mutual (interlinking) polymerization and addition polymerization. Therefore, generally equimolar mixtures are used in the blends.
The individual oligomers should initially have relatively low average formula weights and, accordingly, should remain relatively easy to process until the curing reaction when the extended chain and block copolymers are formed to produce the composite. A complex mixture of at least three types of addition polymer are formed upon curing.
In the present invention, the oligomers or the coreactive oligomer blends are further blended with a noncrosslinking polymer having a backbone from a different chemical family. The polymer can be from any one of the families described for the oligomers, but the oligomeric and polymeric backbones must be different to form what we elect to call an advanced composite (i.e. mixed chemical) blend. The resulting blend may yield IPN or semi-IPN morphology in the consolidated resin (composite) state.
Preferably the polymer has an average formula weight initially greater than that of the oligomer, because the formula weight of the oligomer in the cured composite will increase through addition polymerization. The cured composite will have a blend of two, "long" molecules, and will not suffer from a broad distribution of formula weights that reduce the physical properties obtainable in some prior art blends, such as suggested by Kwiatkowski in U.S. Pat. No. 3,658,939.
Preferred oligomer/polymer combinations in the advanced composites blends of the present invention include:
amideimide/imide;
amideimide/heterocycle;
amideimide/heterocycle sulfone;
imide/heterocycle;
imide/heterocycle sulfone;
imide/amide;
ester/amide; and
ester/imide.
Multidimensional oligomers have an aromatic hub and three or more chains or arms radiating from the hub. The chains include backbones similar to those for the linear oligomers and are capped with the crosslinking end cap monomers previously described. Corresponding polymers are quenched with noncrosslinking radicals, as will be described. These oligomers can also be used to form advanced composite blends.
BEST MODE CONTEMPLATED FOR MAKING AND USING THE INVENTION
Advanced composite (mixed chemical) blends of the present invention comprise a mixture of a crosslinking oligomer from one chemical family, generally selected from the group consisting of:
imidesulfone;
ether;
ethersulfone;
amide;
imide;
ester;
estersulfone;
etherimide;
amideimide;
oxazole;
oxazole sulfone;
thiazole;
thiazole sulfone;
imidazole; and
imidazole sulfone,
and a noncrosslinking polymer from a different chemical family. Coreactants may be included in the blends, or they may comprise mixtures of three or more oligomers/polymers, as will be explained. Because the oligomer's average formula weight will appreciably increase upon curing, generally the average formula weight of the polymer in the uncured blend will be greater than that of the oligomer. For example, a linear oligomer may have an average formula weight of about 500-5000 while the corresponding polymer has an average formula weight of about 20,000-40,000. Upon curing, the oligomer and polymer will generally have average formula weights that are closer because of addition polymerization of the oligomer. Therefore, the problems sometimes encountered with blends having components of widely different average formula weight are not as pronounced in composites formed from the advanced composite blends of the present invention.
Advanced composite blends allow tailoring of the properties of high performance composites. They allow averaging of the properties of resins from different families to provide composites that do not have as severe shortcomings as the pure compounds. For example, the rigid nature of heterocycles (oxazole, thiazole, or imidazole) can be reduced by an advanced composite blend comprising a heterocycle oligomer and an ethersulfone polymer. The resulting composite will have a use temperature (thermo-oxidative stability) higher than pure ethersulfone and a flexibility greater than the pure heterocycle. Accordingly, the resulting composites have a blending or averaging of physical properties, which makes them candidates for particularly harsh conditions.
Particularly preferred oligomer/polymer combinations include:
amideimide/imide;
amideimide/imidesulfone;
amideimide/heterocycle;
amideimide/heterocycle sulfone;
imide/heterocycle;
imidesulfone/heterocycle;
imide/heterocycle sulfone;
imide/amide;
imidesulfone/amide;
ester/amide;
estersulfone/amide;
ester/imide;
ester/imidesulfone;
estersulfone/imide; or estersulfone/imidesulfone.
In each case the oligomer can be either component in the mixture.
Linear oligomers have the general formula:
D.sub.i --A--D.sub.i
wherein
i=1 or 2;
A=a hydrocarbon residue, preferably from one of the families previously described and having an aromatic, aliphatic, or aromatic and aliphatic backbone; and
D=an unsaturated hydrocarbon radical that is suitable for crosslinking.
The oligomeric component may itself be a coreactive oligomer blend rather than a single oligomeric component. That is, the oligomer may include two precursors that polymerize to form block copolymers upon curing through mutually reactive end caps on the respective precursors. The resulting composites include a mix of addition polymers created by crosslinking chain extension and block copolymers formed through a resin interlinking reaction. The coreactive oligomer blends generally include at least one oligomer of the general formula:
D.sub.i --A--D.sub.i
wherein D preferably is selected from the group consisting of: ##STR4## G=--SO.sub.2 --, --S--, --O--, --CO--, or --CH.sub.2 --; and R=hydrogen, lower alkyl, or phenyl and another oligomer of the general formula:
Z.sub.i --B--Z.sub.i
wherein
i=1 or 2;
B=a hydrocarbon backbone that is in the same or from a different chemical family as A; and
Z=a hydrocarbon residue including an end cap radical selected from the group consisting of: ##STR5## X=--O-- or --S--. The backbones (A or B) in this circumstance, as with the pure component oligomers, are generally individually selected from the group consisting of:
imidesulfones;
ethersulfones;
amides;
ethers;
esters;
estersulfones;
imides;
etherimides;
amideimides;
oxazoles;
thiazoles;
imidazoles, or
heterocycle (i.e. oxazole, thiazole imidazole) sulfones;
and generally include only aromatic (typically phenyl) radicals between linkages, although they may have other aromatic, aliphatic, or aromatic and aliphatic radicals. Although this description will primarily describe para isomers of these backbones, other isomers (particularly meta) can be used. The aromatic radicals in the backbones may also include nonreactive substituents in some cases, such as aryl, lower alkyl, or lower alkoxy.
Oligomers of the general formula: D.sub.i --A--D.sub.i or Z.sub.i --B--Z.sub.i are prepared by reacting suitable end cap monomers with the monomer reactants (polymer precursors) that are commonly used to form the desired backbones. For example, an imide or an imidesulfone is prepared by reacting an end cap monomer with a diamine with a dianhydride in accordance with the method described in U.S. Pat. No. 4,584,364. Ethersulfones or ethers can be prepared on reacting an end cap monomer with a suitable dialcohol (i.e. diol, bisphenol, or dihydric phenol) with a dihalogen as described in U. S. Pat. No. 4,414,269 or other ether condensation reactions.
The crosslinking end cap monomers are readily prepared by the condensation of the corresponding anhydride and a suitable amine, as described in U.S. Pat. No. 4,604,437 with respect to the allyl-substituted or methallyl-substituted methylbicyclo�2.2.1!hept-5-ene-2,3-dicarboximides.
For the coreactive oligomers, the end cap monomers generally are selected from the group consisting of: ##STR6## wherein i=1 or 2;
G=--SO.sub.2 --, --S--, --O--, --CO--, --CH.sub.2 --, --SO--, --CHR--, or --CR.sub.2 --;
R=hydrogen, lower alkyl, or phenyl;
W=--OH, --NH.sub.2, or --COX; and
X=halogen.
Similarly, the end cap monomers for the Z.sub.i --B--Z.sub.i oligomers generally are selected from the group consisting of aminophenol, aminobenzoic acid halide, H.sub.2 N--.PHI.--SH, ##STR7## or the like, wherein .phi.=phenyl and W=--OH, --NH.sub.2, or --COX.
Upon curing, the oligomers in coreactive oligomer blends addition polymerize by crosslinking and form block copolymers through the Michaels addition reaction between the hydrocarbon unsaturation of one oligomer and the amine, hydroxyl, or sulfhydryl group of the other. The reaction of the hydrocarbon unsaturation of one oligomer with the ##STR8## functionality of the other follows the mechanism described in U.S. Pat. No. 4,719,283 to form a cyclohexane linkage by bridging across the double bond. With the acetylene (triple) unsaturation, a cyclohexene linkage would result.
The Michaels addition reaction is illustrated as follows: ##STR9## wherein V=--NH--, --O--, or --S--. For the other end caps, we believe a reverse Diels-Alder decomposition reaction (induced by heating the oligomers) results in the formation of a reactive maleic moiety and the off-gassing of a cyclopentadiene. The methylene bridge decomposes to the maleic compound at about 625.degree.-670.degree. F. (330.degree.-355.degree. C.) while the --O-- bridge decomposes at the lower temperature of about 450.degree. F. (230.degree. C.).
The reactive group might also be --CNO instead of the amine, but we do not recommend use of this compound.
Thus, the linear oligomers in the present invention have the general formula: D.sub.i --A--D.sub.i ; wherein A and i are as previously defined and ##STR10## R.sub.1 =lower alkyl, aryl, substituted alkyl or substituted aryl (including hydroxyl or halo-substituents), lower alkoxy, aryloxy, halogen, or mixtures thereof (preferably lower alkyl)
G=--O--, --S--, --SO.sub.2 --, --CH.sub.2 --, --CO--, --SO--, --CHR--, or --CR.sub.2 --;
i=1 or 2;
j=0, 1, or 2;
T=methallyl or allyl;
Me=methyl; and
R=hydrogen, lower alkyl, or phenyl.
All reactions used in the preparation of the oligomers should be carried out in suitable solvents and under an inert atmosphere. To prepare imide or imidesulfones, then, of the general formula D.sub.i --A--D.sub.i or Z.sub.i --B'Z.sub.i, the respective amine end cap preferably is mixed with a diamine and a dianhydride. To prepare ethers or ethersulfones, the respective hydroxy (i.e., phenol) end cap is mixed with suitable dialcohols (i.e., diols) and dihalogens or dinitrohydrocarbons. To prepare amides, the respective amide or acid halide end cap is mixed with suitable dicarboxylic acid halides and diamines. To prepare esters or estersulfones, the respective hydroxy or acid halide end cap is mixed with suitable dialcohols and dicarboxylic acid halides.
To prepare etherimides, the respective amine end caps are reacted with: ##STR11## wherein Y=nitro- or halo- (i.e. nitrophthalic anhydride or halophthalic anhydride) to form an imide while leaving an active nitro- or halo-functionality. This intermediate is then mixed with suitable nitro/anhydrides and compounds of the formula: H.sub.2 N--R--XH, as suggested in our U.S. Pat. Nos. 3,847,869, 4,107,147 or 4,851,495.
To prepare amideimides, the method of U.S. Ser. No. 07/092,740, now abandoned, is used, which comprises condensing simultaneously an amine or acid halide end cap with suitable dicarboxylic acid halides (i.e. dibasic acid halides) and diamines, wherein either or both of the diamines or diacid halides include intermediate imide linkages. Alternatively, the amideimides can be prepared by condensing the respective amine end cap with suitable dianhydrides and diamines, wherein either or both of the dianhydrides or diamines include amide linkages.
Heterocycle or heterocycle sulfone oligomers (i.e. oxazole, thiazoles, or imidazoles) are prepared by condensing acid halide end caps with four-functional compounds, like diaminodihydroxybenzene, and dicarboxylic acid halides (or the acids).
The synthesis of these oligomers and the representative classes of reactants will now be presented in greater detail to illustrate the scope of the invention and to describe the nature of the preferred reactants.
Amideimides are characterized by backbones of two general types, namely: ##STR12## wherein R.sub.3 =an aromatic, aliphatic, or alicyclic radical, and preferably a phenoxyphenyl sulfone; and
R.sub.2 =a trivalent organic radical, and preferably phenyl.
Accordingly, linear polyamideimides include oligomers of the general formula: ##STR13## wherein Y=an end cap residue of either type;
R.sub.2 =a trivalent organic radical, and preferably phenyl;
R.sub.3 =an aromatic, aliphatic, or alicyclic radical, and preferably a phenoxyphenyl sulfone.
R.sub.4 =a divalent organic radical;
m=a small integer, usually from 0-5, but generally sufficiently large to impart thermoplastic properties in the oligomer;
.phi.=phenyl; and
i=1 or 2.
The amideimides are generally made by condensing suitable end cap monomers, diacid halides, diamines, and dianhydrides. The dianhydrides can be prepared by condensing 2 moles of an acid halide anhydride of the formula: ##STR14## with a diamine of the formula: H.sub.2 N--R.sub.3 --NH.sub.2. The diamine, in this case, can be selected from the group consisting of: ##STR15## q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--; Me=methyl;
m=a small integer; and
D=--CO--, --SO.sub.2 --, --(CF.sub.3).sub.2 C-- or mixtures thereof.
Other diamines that may be used, but that are not preferred, include those described in U.S. Pat. Nos. 4,504,632; 4,058,505; 4,576,857; 4,251,417; and 4,215,418. The aryl or polyaryl "sulfone" diamines previously described are preferred, since these diamines are soluble in conventional synthetic solvents and provide high thermal stability to the resulting oligomers and composites.
Diamines may include "Schiff base" conductive linkages (particularly --N.dbd.CH--), analogous to diacid halides which will be described.
Particularly preferred ethersulfone (i.e. phenoxyphenyl sulfone) diamines are those in which R.sup.1 is ##STR16## and R" is ##STR17## so that the phenoxyphenyl sulfone diamines include: ##STR18##
The molecular weights of these diamines varies from about 500 to about 2000. Using lower molecular weight diamines seems to enhance the mechanical properties of the difunctional polyamideimide oligomers, each of which has alternating ether "sulfone" segments in the backbone.
Phenoxyphenyl sulfone diamines of this general nature can be prepared by reacting two moles of aminophenol with (n+1) moles of an aryl radical having terminal, reactive halo- functional groups (dihalogens), such as 4,4'-dichlorodiphenylsulfone, and a suitable bisphenol (i.e., dialcohol, dihydric phenol, or diol). The bisphenol is preferably selected from the group consisting of:
2,2-bis-(4-hydroxyphenyl)-propane (i.e., bisphenol-A);
bis-(2-hydroxyphenyl)-methane;
bis-(4-hydroxyphenyl)-methane;
1,1-bis-(4-hydroxyphenyl)-ethane;
1,2-bis-(4-hydroxyphenyl)-ethane;
1,1-bis-(3-chloro-4-hydroxyphenyl)-ethane;
1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-ethane;
2,2-bis-(3-phenyl-4-hydroxyphenyl)-propane;
2,2-bis-(4-hydroxynaphthyl)-propane
2,2-bis-(4-hydroxyphenyl)-pentane;
2,2-bis-(4-hydroxyphenyl)-hexane;
bis-(4-hydroxyphenyl)-phenylmethane;
bis-(4-hydroxyphenyl)-cyclohexylmethane;
1,2-bis-(4-hydroxyphenyl)-1,2-bis-(phenyl)-ethane;
2,2-bis-(4-hydroxyphenyl)-1-phenylpropane;
bis-(3-nitro-4-hydrophenyl)-methane;
bis-(4-hydroxy-2,6-dimethyl-3-methoxyphenyl)-methane;
2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane;
2,2-bis-(3-bromo-4-hydroxyphenyl)-propane; or mixtures thereof, as disclosed in U.S. Pat. No. 3,262,914. Bisphenols having aromatic character (i.e., absence of aliphatic segments), such as bisphenol-A, are preferred.
The dihalogens in this circumstance preferably are selected from the group consisting of: ##STR19## wherein X=halogen, preferably chlorine; and
q=--S--, --SO.sub.2 --, --CO--, --(CH.sub.3).sub.2 C--, and --(CF.sub.3).sub.2 C--, and preferably either --SO.sub.2 -- or --CO--.
The condensation reaction creates ether diamines that ordinarily include intermediate "sulfone" linkages. The condensation generally occurs through a phenate mechanism in the presence of K.sub.2 CO.sub.3 or another base in a DMSO/toluene solvent. The grain size of the K.sub.2 CO.sub.3 (s) should fall within the 100-250 ANSI mesh range.
Additional methods for preparing phenoxyphenysulfones of this general type are disclosed in U.S. Pat. Nos. 3,839,287 and 3,988,374.
The diacid halide or dicarboxylic acid (i.e. dibasic acid) may include an aromatic chain segment selected from the group consisting of:
(a) phenyl; (b) naphthyl; (c) biphenyl;
(d) a polyaryl "sulfone" divalent radical of the general formula: ##STR20## wherein D=--S--, --O--, --CO--, --SO.sub.2 --, --(CH.sub.3).sub.2 C--, --(CF.sub.3).sub.2 C--, or mixtures thereof throughout the chain; or
(e) a divalent radical having conductive linkages, illustrated by Schiff base compounds selected from the group consisting of: ##STR21## wherein R is selected from the group consisting of: phenyl; biphenyl; naphthyl; or
a divalent radical of the general formula: ##STR22## wherein W=--SO.sub.2 -- or --CH.sub.2 --; and q=0-4; or
(f) a divalent radical of the general formula: ##STR23## wherein R.sup.1 =a C.sub.2 to C.sub.12 divalent aliphatic alicyclic, or aromatic radical, and, preferably, phenyl (as described in U.S. Pat. No. 4,556,697).
Thiazole, oxazole, or imidazole linkages, especially between aryl groups, may also be used as the conductive linkages to form the conductive or semiconductive oligomers.
The preferred diacid halides include: ##STR24##
Schiff base dicarboxylic acids and diacid halides can be prepared by the condensation of aldehydes and aminobenzoic acid (or other amine acids) in the general reaction scheme: ##STR25## or similar syntheses.
Other diacid halides that can be used, but that are not preferred, are disclosed in U.S. Pat. No. 4,504,632, and include:
adipylchloride,
malonyl chloride,
succinyl chloride,
glutaryl chloride,
pimelic acid dichloride,
suberic acid dichloride,
azelaic acid dichloride,
sebacic acid dichloride,
dodecandioic acid dichloride,
phthaloyl chloride,
isophthaloyl chloride,
terephthaloyl chloride,
1,4-naphthalene dicarboxylic acid dichloride, and
4,4'-diphenylether dicarboxylic acid dichloride.
Polyaryl or aryl diacid halides are preferred to achieve the highest thermal stabilities in the resulting oligomers and composites insofar as aliphatic bonds are not as thermally stable as aromatic bonds. Particularly preferred compounds include intermediate electronegative (i.e., "sulfone") linkages (such as --SO.sub.2 --, --S--, --CO--, and --(CF.sub.3).sub.2 C--) to improve toughness of the resulting oligomers.
The corresponding amideimide of the formula: ##STR26## can be prepared if the acid anhydride: ##STR27## is used instead of the acid halide anhydride. The resulting intermediate products are dicarboxylic acids rather than dianhydrides. These dicarboxylic acids (or their diacid halides) can be used with the diamines previously described.
Dianhydrides useful for the synthesis of amideimides also include:
(a) pyromellitic dianhydride,
(b) benzophenonetetracarboxylic dianhydride (BTDA), and
(c) 5-(2,5-diketotetrahydrofuryl)-3-methylcyclohexene-1,2-dicarboxylic anhydride (MCTC), and may be any aromatic or aliphatic dianhydride, such as those disclosed in U.S. Pat. Nos. 3,933,862; 4,504,632; 4,577,034; 4,197,397; 4,251,417; 4,251,418; or 4,251,420. Mixtures of dianhydrides might be used. Lower molecular weight dianhydrides are preferred, and MCTC or other aliphatic dianhydrides are the most preferred for the lower curing polyamideimides having caps with two crosslinking functionalities.
Of course, the dianhydrides also include those intermediates resulting from the condensation of the acid halide anhydride with any of the diamines previously described. Similarly, the dicarboxylic acids and diacid halides include those intermediates prepared by the condensation of the acid anhydride with any of the diamines previously described. The corresponding dicarboxylic acid is converted to the diacid halide (i.e. chloride) in the presence of SOCl.sub.2 (i.e. thionyl chloride).
The amideimides of the present invention can be synthesized by several schemes, as previously described. To obtain repeating units of the general formula: ##STR28## an acid halide anhydride particularly ##STR29## can be mixed with a diamine and with an amine end cap in the ratio of n:n:2 wherein n=an integer greater than or equal to 1. In this reaction, the acid halide anhydride will react with the diamine to form an intermediate dianhydride which will condense with the diamine and amine end cap. The reaction may be carried out in two distinct stages under which the dianhydride is first prepared by mixing substantially stoichiometric amounts (or excess diamine) of the acid halide anhydride and diamine followed by the addition of a mixture of more diamine and the end cap. Of course, the diamine used to form the dianhydride may differ from that used in the second stage of the reaction, or it may be a mixture of diamines from the outset.
The related amideimide having repeating units of the general formula: ##STR30## can be synthesized by reacting the acid anhydride with the diamine to form intermediate dicarboxylic acids, which can then react with more diamine or an amine end cap to complete the oligomer. Again, the reaction can be separated into steps.
The amideimide oligomers (as with all oligomers) appear to possess greater solvent resistance if the condensation of the dianhydride/dicarboxylic acid with the diamine and end cap is done simultaneously rather than sequentially.
While use of an amine end cap has been described above, corresponding oligomers can be formed by using an acid halide end cap, if the diamine is provided in excess. In this case the reaction mixture generally comprises the acid halide anhydride or the acid anhydride, the end cap, and the diamine and the synthesis is completed generally in one step.
All reactions should be conducted under an inert atmosphere and at elevated temperatures, if the reaction rate needs to be increased. The reaction mixture should be well stirred throughout the synthesis. Chilling the reaction mixture can slow the reaction rate and can assist in controlling the oligomeric product.
As suggested in U.S. Pat. No. 4,599,383, the diamine may be in the form of its derivative OCN--R--NCO, if desired.
The amideimides described in U.S. Pat. Nos. 4,599,383; 3,988,374; 4,628,079; 3,658,938; and 4,574,144 can all be capped with the crosslinking monomers to convert the polymers to oligomers that are suitable for forming advanced composite blends.
Polyetherimides and polysulfoneimides are capped to form oligomers that are suitable for use in the coreactive oligomer blends. Preferred compounds have the general formula: ##STR31## wherein X=--O-- or --S--; ##STR32## n=1 or 2; Z.sub.1 =D or Z, as previously defined;
R=a trivalent C.sub.(6-13) aromatic organic radical; and
R=a divalent C.sub.(6-30) aromatic organic radical.
The polyetherimide oligomers can be prepared by several reaction schemes. One such method comprises the simultaneous condensation of: ##STR33## in the ratio of I:II:III:IV=1:1:m:m+1, wherein m is an integer greater than or equal to one, and Y.sub.1 =halo- or nitro-. The product has the general formula previously described. The reaction occurs in a suitable solvent under an inert atmosphere. If necessary, the reaction mixture can be heated to facilitate the reaction. The reaction conditions are generally comparable to those described in U.S. Pat. Nos. 3,847,869 and 4,107,147.
Alternatively, the polyetherimides can be prepared by reacting a polyetherimide polymer made by the self-condensation of a phthalimide salt of the formula: ##STR34## with crosslinking end cap moieties of the formulae: ##STR35## wherein X=--O-- or --S--; ##STR36## n=1 or 2; Z.sub.1 =D or Z, as previously described;
Y.sub.1 =halo- or nitro-;
R'=a divalent C.sub.(6-30) aromatic organic radical, and
M=an alkali metal ion or ammonium salt or hydrogen.
The self-condensation proceeds as described in U.S. Pat. No. 4,297,474 in a dipolar aprotic solvent. The end cap moieties can be introduced during the self-condensation to quench the polymerization, or they might be added following completion of the polymerization and recovery of the polyetherimide polymer from methanol. Improved solvent resistance in the cured composites is best achieved, however, by the quenching sequence rather than by the capping sequence which follows polymerization.
Yet another preferred method for synthesizing the polyetherimides of the present invention involves the simultaneous condensation of about 2 m+2 moles of nitrophthalic anhydride with about m+1 moles of diamine, about m moles of dialcohol (i.e., bisphenol, dial, or dihydric phenol), and 2 moles of A.sub.1 --OH in a suitable solvent under an inert atmosphere. Here, the dialcohol may actually be in the form of a phenate.
In this reaction, the diamines (which preferably have aromatic ethersulfone backbones) react with the anhydride to form intermediates of the following nature in the backbone: ##STR37## wherein R.sub.2 =a residue of the diamine. Similarly, the dialcohol reacts with the nitro-functionality to form an ether linkage of the general formula: ##STR38## wherein R.sub.3 =a residue of the dialcohol. The A.sub.1 --OH end caps quench the polymerization. The resulting polyetherimides have the general formula: ##STR39##
Another preferred synthesis comprises the simultaneous condensation of about 2 m+2 moles of nitrophthalic anhydride with about m+1 moles of dialcohol, m moles of diamine, and 2 moles A.sub.1 --NH.sub.2 in a suitable solvent under an inert atmosphere. Again, the dialcohol may be in the phenate form. The resulting oligomer has a general formula: ##STR40##
Yet another preferred synthesis comprises the simultaneous condensation of 2 m moles of nitrophthalic anhydride with about m+1 moles of dialcohol, m moles of diamine, and 2 moles of A.sub.1 --NO.sub.2 (a nitro-terminated end cap) in a suitable solvent under an inert atmosphere. Again, the dialcohol may be in the phenate form or a corresponding sulfhydryl (thio) can be used to form a thioether. The resulting oligomer has the general formula: ##STR41##
In any of the syntheses, the dialcohol can be replaced by a comparable disulfhydryl of the formula: HS--R.sub.2 --SH. Mixtures of dialcohols, or disulfhydryls, or dialcohols and disulfhydryls can be used.
Although the bisphenols previously described can be used, for etherimides, the dialcohol is generally a polyaryl compound and preferably is selected from the group consisting of:
HO--Ar--OH;
HO--Ar--L--Ar'--L--Ar--OH;
HO--Ar'--L--Ar--L--Ar'--OH;
wherein
L=--CH.sub.2 --, --(CH.sub.3).sub.2 C--, --(CF.sub.3).sub.2 C--, --O--, --S--, --SO.sub.2 -- or --CO--; ##STR42## T and T.sub.1 =lower alkyl, lower alkoxy, aryl, aryloxy, substituted alkyl, substituted aryl, halogen, or mixtures thereof;
q=0-4;
k=0-3; and
j=0, 1, or 2.
The dialcohols also include hydroquinone; bisphenol-A; p,p'-biphenol; 4,4'-dihydroxydiphenylsulfide; 4,4'-dihydroxydiphenylether; 4,4'-dihydroxydiphenylisopropane; 4,4'-dihydroxydiphenylhexafluoropropane; a dialcohol having a Schiff base segment, the radical being selected from the group consisting of: ##STR43## wherein R is selected from the group consisting of:
phenyl;
biphenyl;
naphthyl; or
a radical of the general formula: ##STR44## wherein W=--CH.sub.2 -- or --SO.sub.2 --; or a dialcohol selected from the group: ##STR45## wherein L is as previously defined;
Me=methyl;
m=an integer, generally less than 5, and preferably 0 or 1; and
D=any of --CO--, --SO.sub.2 --, or --(CF.sub.3).sub.2 C--.
While bisphenol-A is preferred in the etherimide synthesis (because of cost and availability), the other dialcohols can be used to add rigidity to the oligomer without significantly increasing the average formula weight, and, therefore, can increase the solvent resistance. Random or a block copolymers are possible.
Furthermore, the dialcohols may also be selected from the those described in U.S. Pat. Nos. 4,584,364; 3,262,914; or 4,611,048. The hydroxy-terminated etherimides of U.S. Pat. No. 4,611,048 can be reacted with A.sub.1 --NO.sub.2 to provide crosslinking etherimides of the present invention.
Dialcohols of this nature are commercially available. Some may be easily synthesized by reacting halide intermediates with bis-phenates, such as by the reaction of 4,4'-dichlorodiphenylsulfone with bis(disodium biphenolate).
The oligomers can be synthesized in a homogeneous reaction scheme wherein all the reactants are mixed at one time (and this scheme is preferred), or in a stepwise reaction. The diamine and dialcohols can be mixed, for example, followed by addition of the nitrophthalic anhydride to initiate the polymerization and thereafter the end caps to quench it. Those skilled in the art will recognize the different methods that might be used. To the extent possible, undesirable competitive reactions should be minimized by controlling the reaction steps (i.e., addition of reactants) and the reaction conditions.
Suitable diamines include those diamines described with reference to the amideimide synthesis.
Anhydrides of the formula: ##STR46## wherein X=--O-- or --S--;
R=a trivalent C.sub.(6-13) aromatic organic radical; ##STR47## n=1 or 2; and Z.sub.1 =D or Z, as previously defined,
are useful in the synthesis of the etherimides of the present invention, and are prepared by the condensation of the corresponding end cap phenol or thiol (--XH) with a nitro- or halo- anhydride that contains the R moiety.
In at least one synthesis of the etherimides, a compound of the formula: ##STR48## is an intermediate or reactant, wherein: R=a trivalent C.sub.(6-13) aromatic organic radical; ##STR49## Y=halo or nitro; n=1 or 2; and
Z.sub.1 =D, Y, or Z.
This intermediate if formed by reacting A--NH.sub.2 with a substituted phthalic anhydride of the formula: ##STR50## These substituted anhydrides are described in U.S. Pat. Nos. 4,297,474 and 3,847,869.
Polysulfoneimide oligomers corresponding to the etherimides can be prepared by reacting about m+1 moles of a dianhydride with about m moles of a diamine and about 2 moles of an amine end cap (A.sub.1 --NH.sub.2). The resulting oligomer has the general formula: ##STR51## wherein R and R' are divalent aromatic organic radicals having from 2-20 carbon atoms. R and R' may include halogenated aromatic C.sub.(6-20) hydrocarbon derivatives; alkylene radicals and cycloalkylene radicals having from 2-20 carbon atoms; C.sub.(2-8) alkylene terminated polydiorganosiloxanes; and radicals of the formula: ##STR52## wherein q=--C.sub.y H.sub.2y --, --CO--, --SO.sub.2 --, --O--, or --S--; and
y=1 to 5.
Comparable polymers, usable in blends of the sulfoneimides, are described in U.S. Pat. No. 4,107,147, which is incorporated by reference. Other aromatic dithiodianhydrides are described in U.S. Pat. No. 3,933,862.
Heterocycle or heterocycle sulfone oligomers can be prepared by the condensation of:
(a) 2 moles of an amine, phenol, or sulfhydryl end-cap monomer;
(b) n moles of a four-functional compound, and
(c) (n+1) moles of a suitable dicarboxylic acid halide,
or by the condensation of:
(a) 2 moles of an acid halide end-cap monomer;
(b) (n+1) moles of a four-functional compound; and
(c) n moles of a dicarboxylic acid halide.
Suitable diacid halides include those compounds described with the reference to the amideimide syntheses.
The four-functional compound has the general formula: ##STR53## wherein R is an hydrocarbon radical (preferably, an aromatic radical, if the highest thermal stability is sought); Y=--OH, --NH.sub.2, or --SH; and the amine functionalities (--NH.sub.2) are not substituted on the same carbon atom as the Y substituents. The four-functional compound generally is selected from the group consisting of: dihydoxybenzidine, dimercaptobenzidine, dihydroxydiaminobenzene, dimercaptodiaminobenzene, diaminobenzidine, or a compound having the general formula: ##STR54## wherein M=--CO--, --SO.sub.2, --(CF.sub.3).sub.2 C--, --S--, or --O--; and
Y=--OH, --SH, or --NH.sub.2.
Isomers of the four-functional compound may also be used so long as the isomers include two pairs of an amine and a "Y" functionality on adjacent carbons on an aromatic radical. The resulting oligomers include oxazole, thiazole, or imidazole linkages.
Capped polyimides are prepared by reacting diamines and dianhydrides, often having one crosslinking functionality on each end and ethersulfone segments alternating with segments formed from unsaturated, aliphatic dianhydrides, like MCTC, as described in U.S. Ser. No. 07/046,376, now abandoned. These polyimides having one crosslinking site are prepared by reacting:
(1) 2 moles of a monoanhydride end cap;
(2) n+1 moles of the diamine; and,
(3) n moles of the dianhydride;
wherein n is a small integer.
The monoanhydride end caps in this case have the general formula: ##STR55## wherein P= ##STR56## wherein R.sub.1, i, j, G, R, Me, and T are as previously defined.
Corresponding polyimide oligomers can be prepared using 2 moles of an amine end cap with n moles of diamine and (n+1) moles of dianhydride. These polyimides can have one or two crosslinking sites at each end of the molecules. Of course, aminophenol or its thio counterpart can be used to provide a monofunctional, capped oligomer that includes an active --OH or --SH functionality.
Preferred diamines for the polyimide condensation include ethersulfone diamines of the general formula: ##STR57## wherein R and R' are aromatic radicals, at least one of R and R' being a diaryl radical wherein the aryl rings are joined by a "sulfone" (i.e. electronegative) linkage, and q is an integer from 0 to 27 inclusive. Preferably R is selected from the group consisting of: ##STR58## wherein L=--SO.sub.2 --, --(CF.sub.3).sub.2 C--, or --S--. R' is preferably selected from the group consisting of: ##STR59## wherein M=--SO.sub.2 --, --S--, --O--, --(CH.sub.3).sub.2 C--, or --(CF.sub.3).sub.2 C--.
Preferred diamines are those in which R is ##STR60## and R' is ##STR61## Accordingly, the diamines generally contain at least one phenoxyphenylsulfone group, such as: ##STR62## These diamines have alternating ether and "sulfone" linkages, wherein "sulfone" designates an electronegative linkage (--M--) as previously defined.
In the monofunctional, thermoplastic, crosslinkable, polyimide oligomers, the dianhydride preferably is 5-(2,5-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (MCTC), an unsaturated, aliphatic dianhydride.
The diamines and dianhydrides react to form repeating imide linkages along the generally linear backbone of the oligomers. Preferred properties in the oligomer are obtained when the backbone is periodically disrupted by the inclusion of an aliphatic moiety, especially an MCTC residue.
Diamines which include phenoxyphenylsulfone moieties are preferred, since these diamines provide the blend of physical properties in the oligomers which are desired. Impact resistance and toughness is afforded with the electronegative "sulfone" linkages which act as joints or swivels between the aryl groups. The aliphatic residues, such as those from MCTC, provide lower melt temperatures, and allow the use of lower temperature end caps, such as oxynadic and dimethyl oxynadic (DONA) end caps. The resulting oligomers cure at lower temperatures than other solvent-resistant oligomers, have the desirable features of polyimides, and have better solvent-resistance than conventional polyimides, such as those described in U.S. Pat. Nos. 3,998,786 or 3,897,395 (D'Alelio).
These polyimide oligomers may be used to form prepregs by the conventional method of impregnating a suitable fabric with a mixture of the oligomer and a solvent. Suitable coreactants, such as p-phenylenediamine, benzidine, and 4,4'-methylenedianiline, may be added to the solvent when preparing prepregs.
The difunctional crosslinking polyimides constitute a broader class of oligomers than the corresponding class of monofunctional polyimides. That is, the diamines and dianhydrides for this difunctional class can be drawn from a broader list, and can include, typically, any aromatic or aliphatic diamine or dianhydride. Lower molecular weight aromatic diamines and dianhydrides are preferred.
To prepare the difunctional crosslinking polyimides the suitable diamines include all those previously described with respect to the amideimide condensation and those with respect to the monofunctional imide condensation. The dianhydrides include any or a mixture of the dianhydrides previously described.
The most preferred linear polyimides are prepared with dianhydrides selected from para- and meta- dianhydrides of the general formula: ##STR63## wherein M=--SO.sub.2 -- or --CO--, reacted with ##STR64## Thermal stabilities in excess of 800.degree. F. are believed to be achievable with these oligomers.
Solvent resistant, thermoplastic aromatic poly(imidesulfone) oligomers are also described in U.S. Pat. Nos. 4,398,021 and 4,489,027. Melt-fusible polyimides made by the condensation of dianhydrides and diamines are described in U.S. Pat. No. 4,485,140.
Polyamides are prepared by condensing dicarboxylic acid halides with diamines and acid halide or amine end caps. There polyamides are generally formed from the diacid halides and diamines that have previously been described.
Polyesters or polyestersulfones are prepared by condensing the diacid halides and dialcohols (i.e., bisphenols, dihydric phenols, or diols) previously described. Polyethers or ethersulfones are prepared by condensing dinitro compounds or dihalogens and dialcohols or by other conventional syntheses wherein suitable end-cap monomers are added to quench the synthesis and to provide one or more coreactive functionalities at each end of the oligomers.
The dihalogens is generally a compound selected from those described previously with respect to the synthesis of diamines. Dinitro compounds are generally prepared by reacting nitrophthalic anhydride with the diamines. Of course, dihalogens can be prepared in the same way by replacing the nitrophthalic anhydride with halophthalic anhydride. Nitroaniline, nitrobenzoic acid, or nitrophenol may also be condensed with dianhydrides, dicarboxylic acid halides, diamines, dialcohols, or dihalogeus to prepare other dinitro compounds that include amide, imide, ether, or ester linkages between the terminal phenyl radicals and the precursor backbones. The synthesis of the dinitro compounds or dihalogens can occur prior to mixing the other reactants with these compounds or the steps can be combined in suitable circumstances to directly react all the precursors into the oligomers. For example, a polyether oligomer can be prepared by simultaneously condensing a mixture of an end cap imidophenol (such as a compound described in U.S. Pat. No. 4,661,604), nitrophthalic anhydride, phenylene diamine, and HO--.phi.--O--.phi.--O--.phi.--O--.phi.--OH, wherein .phi.=phenyl.
While other common resin backbones may be capped in a corresponding manner and used in advanced composite blends of the present invention, the linear backbones described above are the most directly suited for aerospace applications.
Although the concept of advanced composite blends is probably best suited to linear morphology, the advanced composite blends of the present invention also include multidimensional oligomers and polymers. Linear morphology is preferred because the resulting composites have mixtures of polymers of relatively large and roughly equivalent average formula weight. The individual polymers are similar in structure. We have found it difficult in many circumstances to process multidimensional oligomers that have appreciable average formula weights, so the properties of composites made from multidimensional advanced composite blends might suffer because of diversity of formula weights. Furthermore, the addition polymerization reaction for multidimensional oligomers results in formation of a complex, 3-dimensional network of crosslinked oligomers that is difficult or impossible to match with the multidimensional polymers, because these polymers simply have extended chains or short chains. That is, upon curing, the multidimensional oligomers crosslink to chemically interconnect the arms or chains through the end caps, thereby forming a network of interconnected hubs with intermediate connecting chains. The connecting chains have moderate formula weight, although the cured oligomer can have appreciable formula weight. In contrast, the polymer (which does not crosslink) simply has a hub with arms of moderate formula weight. While, for linear morphology, the disadvantages of blended composites that have a wide diversity of average formula weight polymers as constituents can be overcome by curing relatively low formula weight oligomers into relatively high average formula weight cured polymers that are roughly equivalent to the polymer constituents, the polymers in the multidimensional morphology are likely to have average formula weights lower than the oligomeric component. Therefore, we believe that the best results for the present invention may be achieved with systems having linear morphology.
Although we have yet to verify our theory experimentally, it may be possible and desirable to synthesize the polymeric component of the multidimensional advanced composite blend when curing the oligomer, and, in that way, forming relatively comparable oligomeric and polymeric networks. To achieve this effect, we would mix, for example, a multidimensional oligomer with comparable polymeric precursors, such as triamines and tricarboxylic acid halides. Upon curing, the precursors would condense to form amide linkages to form bridges between hubs in a manner comparable to the oligomeric connecting chains.
The potential problem of structural mismatch and the proposed solution for achieving comparable average formula weights in multidimensional advanced composite blends will probably be better understood after the oligomers and blends are described in greater detail.
A multidimensional oligomer includes an aromatic hub and three or more radiating chains or arms, each chain terminating with a crosslinking end cap segment. Each chain includes the resin linkages previously described. Each chain is substantially the same. For example, a multidimensional ether can be prepared by the simultaneous condensation of phloroglucinol with a dihalogen and an imidophenol end cap monomer.
In multidimensional oligomers the higher density of crosslinking functionalities in a multidimensional array provides increased thermo-oxidative stability to the cured composites. Usually the hub will have three radiating chains to form a "Y" pattern. In some cases, four chains may be used. Including more chains leads to steric hindrance as the hub is too small to accommodate the radiating chains. A trisubstituted phenyl hub is highly preferred with the chains being symmetrically placed about the hub. Biphenyl, naphthyl, azaline (e.g., melamine), or other aromatic moieties may also be used as the hub radical.
Details of the several preferred multidimensional oligomers will now be described in a manner similar to that used for the linear oligomers.
Multidimensional polyamideimide oligomers include oligomers of the general formula: ##STR65## wherein Y, R.sub.2, R.sub.3, R.sub.4, and m are as previously defined with respect to the linear amideimides, Ar=an organic radical of valency w; .phi.=phenyl, and w=3 or 4. Preferably, Ar is an aromatic radical (generally phenyl) generally selected from phenyl, naphthyl, biphenyl, azalinyl (such as melamine), or triazine derivatives of the general formula: ##STR66## wherein R.sub.5 =a divalent hydrocarbon residue containing 1-12 carbon atoms, as described in U.S. Pat. No. 4,574,154.
The hub may also be a residue of an etheranhydride of the formula: ##STR67## or an etheramine of the formula:
Ar--�--O--.phi.--NH.sub.2 !.sub.w
The best results are likely to occur when the arm length of the oligomers is as short as possible (to allow ease of processing) and the oligomer has six crosslinking sites (to allow the highest density of crosslinking). The most preferred hub includes the phenyl radical, since these compounds are relatively inexpensive, are more readily obtained, and provide oligomers with high thermal stability.
The chains of the oligomers include crosslinking end caps which improve the solvent-resistance of the cured composites. These end caps may be thermally or chemically activated during the curing step to provide a strongly crosslinked, complex, multi-dimensional array of interconnected oligomers. When the goal is an advanced composite having a glass transition temperature above 900.degree. F. (and preferably above 950.degree. F.) each end cap should have high thermal stability and a high thermal activation temperature. End caps with two crosslinking functionalities (difunctional end caps) are expected to yield the highest crosslinked arrays, which may be the most stable.
The oligomers may be formed by the attachment of arms to the hub followed by chain extension and chain termination. For example, trihydroxybenzene may be mixed with p-aminophenol and 4,4'-dibromodiphenylsulfone and reacted under an inert atmosphere at an elevated temperature to achieve an amino-terminated "star" of the general formula: ##STR68## that can be reacted with suitable diacid halides, diamines, and end caps to yield a polyamideimide oligomer.
The etheranhydride hub can be synthesized by reacting nitrophthalic anhydride or halophthalic anhydride with Ar(--OH).sub.w in a suitable solvent under an inert atmosphere, as described generally in U.S. Pat. Nos. 3,933,862 and 4,851,495 (thio-analogs).
The oligomers of course, might be made by reacting nitrophthalic anhydride with an amine end cap followed by the condensation with the hydroxy hub or in similar reaction schemes that will be understood by those of ordinary skill.
The oligomers can be synthesized in a homogeneous reaction scheme wherein all the reactants are mixed at one time, or in a stepwise reaction scheme wherein the radiating chains are affixed to the hub and the product of the first reaction is subsequently reacted with the end cap groups. Of course, the hub may be reacted with end-capped arms that include one reactive, terminal functionality for linking the arm to the hub. Homogeneous reaction is preferred, resulting undoubtedly in a mixture of oligomers because of the complexity of the reactions. The products of the processes (even without distillation or isolation of individual species) are preferred oligomer mixtures which can be used without further separation to form the desired advanced composites.
Linear or multidimensional oligomers can be synthesized from a mixture of four or more reactants so that extended chains may be formed. Adding components, however, adds to the complexity of the reaction and of its control. Undesirable competitive reactions may result or complex mixtures of macromolecules having widely different properties may be formed, because the chain extenders and chain terminators are mixed, and compete with one another.
Multidimensional etherimides can be made by reacting the etheranhydride hub with compounds of the formulae II, III, and IV previously described.
Multidimensional amides are prepared by condensing a nitro, amine, or acid halide hub with suitable diamines, dicarboxylic acid halides, and amine or acid halide end cap monomers to form oligomers of the general formulae:
Ar--�--CONH--P--NHCO--Q--CONH--.phi.--D.sub.i !.sub.w ;
Ar--�--NHCO--Q--CONH--P--NHCO--.phi.--D.sub.i !.sub.w ;
Ar--�--CONH--.phi.--D.sub.i !.sub.w ;
Ar--�--NHCO--.phi.--D.sub.i !.sub.w ;
Ar--�--CONH--P--NHCO--.phi.--D.sub.i !.sub.w ;
or
Ar--�--NHCO--Q--CONH--.phi.--D.sub.i !.sub.w,
wherein Ar, w, --.phi.--, i, and D are as previously defined, P=a residue of a diamine, and Q=a residue a dicarboxylic acid halide. If made using anhydride end cap monomers, such as one selected from: ##STR69## the multidimensional oligomers include those of the formulae: ##STR70## wherein E=a residue of the above identified anhydrides, and P and Q as previously described.
Multidimensional imides can be made using the amine, etheranhydride, or etheramine hubs with suitable diamines, dianhydrides, and amine or anhydride end caps, as will be understood by those of ordinary skill. Particularly preferred multidimensional imides include those prepared by condensing anhydride end caps directly with the amine hubs.
Multidimensional polyesters can be made using hydroxy or carboxylic acid hubs (particularly cyuranic acid) with suitable diols and diacid halides. Carboxylic acid hubs include those compounds described in U.S. Pat. No. 4,617,390 and compounds prepared by reacting polyols, such as phloroglucinol, with nitrobenzoic acid or nitrophthalic acid to form ether linkages and active, terminal carboxylic acid funtionalities. The nitrobenzoic acid products would have three active sites while the nitrophthalic acid products would have six; each having the respective formula:
.phi.--�--O--.phi.--COOH!.sub.3
or
.phi.--�--O--.phi.--(COOH).sub.2 !.sub.3
wherein .phi.=phenyl. Of course other nitro/acids can be used.
Hubs can also be formed by reacting the corresponding halo-hub (such a tribromobenzene) with aminophenol to form triamine compounds represented by the formula: ##STR71## which can then be reacted with an acid anhydride to form a polycarboxylic acid of the formula: ##STR72## wherein .phi.=phenyl; the hub being characterized by an intermediate ether and imide linkage connecting aromatic groups. Thio-analogs are also contemplated, in accordance with U.S. Pat. No. 3,933,862.
The hub may also be a polyol such as those described in U.S. Pat. No. 4,709,008 to tris(hydroxyphenyl)alkanes of the general formula: ##STR73## wherein R=hydrogen or methyl and can be the same or different. The polyols are made by reacting, for example, 4-hydroxybenzaldehyde or 4-hydroxyacetophenone with an excess of phenol under acid conditions (as disclosed in U.S. Pat. Nos. 4,709,008; 3,579,542; and 4,394,469).
The polyols may also be reacted with nitrophthalic anhydride, nitroaniline, nitrophenol, or nitrobenzoic acids to form other compounds suitable as hubs as will be understood by those of ordinary skill.
Phenoxyphenyl sulfone arms radiating from a hub with a terminal amine, carboxylic acid, or hydroxyl group are also precursors for making multidimensional polyester oligomers of the present invention.
The best results are likely to occur when the hub is phloroglucinol or cyuranic acid. In either case a suitable end-cap monomer (phenol or acid halide) can be reacted with the hub to form "short-armed," a multidimensional oligomers having three or six crosslinking sites. These compounds are the simplest multidimensional oligomers and are relatively inexpensive to synthesize.
Multidimensional amides, amide imides, heterocycles, and heterocycle sulfones can be prepared using these carboxylic acid hubs, as will be understood by those of ordinary skill in the art.
Multidimensional oligomers of the formula: ##STR74## can also be synthesized with an Ullmann aromatic ether synthesis followed by a Friedel-Crafts reaction, as will be further explained.
Here, Q= ##STR75## q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--, and preferably --SO.sub.2 --, or --CO--; and
Y.sub.1 =a crosslinking end cap as previously defined (i.e. D.sub.i --.phi.--).
To form the Ar----O--.phi.--CO--Y.sub.1 !.sub.w oligomers, preferably a halosubstituted hub is reacted with phenol in DMAC with a base (NaOH) over a Cu Ullmann catalyst to produce an ether "star" with active hydrogens para- to the ether linkages. End caps terminated with acid halide functionalities can react with these active aryl groups in a Friedel-Crafts reaction to yield the desired product. For example, 1 mole of trichlorobenzene can be reacted with about 3 moles of phenol in the Ullmann ether reaction to yield an intermediate of the general formula: .phi.--(--O--.phi.).sub.3, which can be reacted with about 3 moles of (Y.sub.1)--COCl to produce the final, crosslinkable, ether/carbonyl oligomer.
Similarly, to form the Ar--�--O--.phi.--CO--Q--CO--Y.sub.1 !.sub.w oligomers, the hub is extended preferably by reacting a halo-substituted hub with phenol in the Ullmann ether synthesis to yield the ether intermediate of the Ar--�--O--.phi.--CO----Y.sub.1 !.sub.w compounds. This intermediate is mixed with the appropriate stoichiometric amounts of a diacid halide of the formula XOC--Q--COX and an end cap of the formula D.sub.i --.phi. in the Friedel-Crafts reaction to yield the desired, chain-extended ether/carbonyl star and star-burst oligomers.
The end caps crosslink at different temperatures (i.e. their unsaturation is activated at different curing temperatures), so the cap should be selected to provide cured composites of the desired thermal stability. That is, the backbone of the oligomer should be stable to at least the cure temperature of the caps. The multidimensional morphology allows the oligomers to be cured at a temperature far below the use temperature of the resulting composite, so completely aromatic backbones connected by heteroatoms are preferred to enhance the thermal stability.
Blends can improve impact resistance of pure oligomer composites without causing a significant loss of solvent resistance. The advanced composite (i.e. mixed chemical) blends of the present invention comprise mixtures of one or more crosslinkable oligomer and one or more polymer from a different chemical family. The polymers are incapable of crosslinking. The crosslinkable oligomer and the compatible polymer can be blended together by mixing mutually soluble solutions of each. While the blend is often equimolar in the oligomer and polymer, the ratio of the oligomer and polymer can be adjusted to achieve the desired physical properties. The properties of the composite formed from the advanced composite blend can be adjusted by altering the ratio of formula weights for the polymer and oligomer.
In synthesizing the polymers, quenching compounds can be employed, if desired, to regulate the polymerization of the comparable polymer, so that, especially for linear systems, the polymer has an average formula weight initially substantially greater than the crosslinkable oligomer. For thermal stability, an aromatic quenching compound, such as aniline, phenol, or benzoic acid chloride is preferred. The noncrosslinking polymer can be made by the same synthetic method as the oligomer with the substitution of a quenching cap for the crosslinking end cap.
While the best advanced composite blends are probably those of modest formula weight and those in which the oligomer and polymer are in equimolar proportions, other compositions may be prepared, as will be recognized by those of ordinary skill in the art.
Solvent resistance of the cured composite may decrease markedly if the polymer is provided in large excess to the oligomer in the blend.
The advanced composite blends may, in the case of coreactive oligomers and in other cases, include multiple oligomers or multiple polymers, such as a mixture of an amideimide oligomer, an amide oligomer, and an imide polymer or a mixture of an amideimide oligomer, an amideimide polymer, and an imide polymer (i.e. blended amideimide further blended with imide). When polyimide oligomers are used, the advanced composite blend can include a coreactant, such as p-phenylenediamine, benzidine, or 4,4'-methylene-dianiline. Ethersulfone oligomers can include these imide coreactants or anhydride or anhydride-derivative coreactants, as described in U.S. Pat. No. 4,414,269. Other combinations of oligomers, polymers, and coreactants can be used, as will be recognized by those of ordinary skill in the art.
As discussed above, the oligomeric component of the advanced composite blend may itself be a blend of the oligomer and a compatible polymer from the same chemical family, further blended with the compatible polymer from the different family. The advanced composite blends, also, can simply be made from three or more oligomeric or polymeric components. They generally include only one oligomeric component unless coreactive oligomers are used.
The advanced composite blends may yield semi-interpenetrating networks of the general type described by Egli et al., "Semi-Interpenetrating Networks of LARC-TPI" available from NASA-Langley Research Center.
The coreactive oligomer blends used in the advanced composite blends of the present invention are prepared by mixing mutually soluble mixtures of the two (or more) resins, as with making oligomer-polymer blends.
As suggested at the outset of the discussion of multidimensional morphology, formula weight matching in the cured composite poses a problem. We have found it difficult to process high average formula weight multidimensional oligomers, so we suspect that it will be difficult to prepare an advanced composite blend that includes a polymer of relatively high average formula weight. To overcome this potential problem, we theorize that it may be possible to prepare a blend that includes the oligomer and polymeric precursors. For example, a polyether oligomer of the general formula: ##STR76## might be mixed with polyamide polymeric precursors of the general formulae:
Ar--�--CONH--.phi.--SO.sub.2 --.phi.--O--.phi.--NH.sub.2 !.sub.3
and
Ar--�--NHCO--Q--COOH!.sub.3
wherein Ar=an aromatic hub, .phi.=phenyl, and Q=a residue of a dicarboxylic acid, so that, upon curing, the oligomer crosslinks and the polymeric precursors condense through the amine and acid to form a polyamide polymer. This approach may be best suited for the lower curing oligomers. The product may include addition polymers and block copolymers of the oligomer and one or both of the polymeric precursors.
Generally the coreactive oligomer blends are selected to tailor the physical properties of the resulting block copolymer composites. For example, stiffening can be achieved for a composite made from an ethersulfone oligomer by adding a benzoxazole oligomer as a coreactant. Those skilled in the art will recognize the benefits to be gained through coreactive oligomer blends. The relatively stiff and rigid heterocycle oligomers can be toughened in this way.
Dopants for creating semiconductive or conductive composites with "Schiff base" oligomers are preferably selected from compounds commonly used to dope other polymers, namely, (1) dispersions of alkali metals (for high activity) or (2) strong chemical oxidizers, particularly alkali perchlorates (for lower activity). Arsenic compounds and elemental halogens, while active dopants, are too dangerous for general usage, and are not recommended.
The dopants react with the oligomers or polymers to form charge transfer complexes. N-type semiconductors result from doping with alkali metal dispersions. P-type semi-conductors result from doping with elemental iodine or perchlorates. Dopant should be added to the oligomer or blend prior to forming the prepreg.
While research into conductive or semiconductive polymers has been active, the resulting compounds (mainly polyacetylenes, polyphenylenes, and polyvinylacetylenes) are unsatisfactory for aerospace applications because the polymers are:
(a) unstable in air;
(b) unstable at high temperatures;
(c) brittle after doping;
(d) toxic because of the dopants; or
(e) intractable.
These problems are overcome or significantly reduced with the conductive oligomers of the present invention.
As used in describing the suitable diacid halides and diamines, "Schiff base" is used throughout this specification in a generic way rather than in its typical chemical way, and is used to represent conductive linkages, such as --CH.dbd.N--, oxazoles, thiazoles, imidazoles, or mixtures thereof. The heterocycle oligomers may simply need to be doped to exhibit semiconductive properties, and --CH.dbd.N-- bonds may be unnecessary.
While conventional theory holds that semiconductive polymers should have (1) low ionization potentials, (2) long conjugation lengths, and (3) planar backbones, there is an inherent trade-off between conductivity and toughness or processibility, if these constraints are followed. To overcome the processing and toughness shortcomings common with Schiff base, oxazole, imidazole, or thiazole polymers, the oligomers of the present invention, include "sulfone" (i.e., electronegative) linkages interspersed along the backbone providing a mechanical swivel for the rigid, conductive segments of the arms. Phenoxyphenylsulfone or phenoxyphenylketone moieties are preferred to provide added toughness.
The advanced composite blends of the present invention can be combined with reinforcing materials and cured to composite materials using heat or chemicals to activate crosslinking or interlinking between end caps. Prepregs can be prepared by conventional prepregging techniques. While woven fabrics are the typical reinforcement, the fibers can be continuous or discontinuous (in chopped or whisker form) and may be ceramic, organic, carbon (graphite), or glass, as suited for the desired application. Curing generally is conducted in conventional vacuum bagging techniques at elevated temperatures. The curing temperature varies with the choice of end cap. If desired, mixtures of end caps might be used.
The advanced composite blends of the present invention can also be used as adhesives, varnishes, films, and coatings.
Although polyaryl compounds are generally described, aliphatic moieties can be included in the backbones, in some cases, although the ultimate use temperatures of these oligomers or composites may be lower than those oligomers that have entirely polyaryl backbones.
While para isomerization has primarily been shown, other isomers are possible. Furthermore, the aryl groups can have substituents, if desired, such as halogen, lower alkyl up to about 4 carbon atoms, lower alkoxy up to about 4 carbon atoms, or aryl. Substituents may create steric hindrance problems in synthesizing the oligomers or in crosslinking the oligomers into the final composites.





HYPOTHETICAL EXAMPLES
1. Synthesis of Compound (a) ##STR77##
A diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.3 is reacted with two moles of an acid anhydride of the formula: ##STR78## to form a dicarboxlic acid intermediate of the formula: ##STR79## The intermediate is converted to the corresponding diacid chloride in the presence of SOCl.sub.2, which is then condensed with one mole of a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2 and two moles of an amine end cap of the formula Y.sub.i --.phi.--NH.sub.2 to yield the desired product.
If excess diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2 is used along with an acid halide end cap of the formula Y.sub.i --.phi.--COX, the product can have the formula: ##STR80## 2. Synthesis of compound (b) ##STR81##
A diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2 is reacted with ##STR82## to yield a dianhydride intermediate of the formula: ##STR83## The intermediate is then condensed with Y.sub.i --O--NH.sub.2 and a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2 to yield the desired product.
3. Synthesis of compound (d) ##STR84##
A diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2 is reacted with an acid anhydride as in Example 1 to form a dicarboxylic acid intermediate that can be reacted with another diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2 and an acid halide end cap of the formula Y.sub.i --O--COCl to yield the desired product.
4. Synthesis of compound (e) ##STR85##
An aromatic hub like triaminobenzene is condensed with a phthalyl acid anhydride and an amine end cap to yield the desired product.
5. Synthesis of compound (f) ##STR86##
An amine-substituted hub like triaminobenzene, is reacted with the dicarboxylic acid intermediate of Example 1, a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2, and an amine end cap in the ratio of 1 mole of hub: (w) (m+1) moles of intermediate: (w) (m) moles of diamine:w moles of end cap to prepare the desired multidimensional product.
6. Synthesis of compound (g) ##STR87##
An aromatic amine hub is reacted with the dianhydride intermediate of Example 2, a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2, and an amine end cap on the ratio of 1 mole hub:(w) (m+1) moles dianhydride:(w) (m) moles diamine:w moles end cap to yield the desired product.
7. Synthesis of compound (h) ##STR88##
An aromatic acid or acid halide hub, like cyuranic acid, is reacted with a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2, a dicarboxylic acid intermediate of Example 1, and an acid halide end cap in the ratio of 1 mole hub:(w) (m+1) moles diamine:(w) (m) moles intermediate:w moles end cap to yield the desired product.
8. Synthesis of compound (i) ##STR89##
An aromatic amine hub is reacted with a dicarboxylic acid intermediate (or dihalide) of Example 1 and an amine end cap on the ratio of 1 mole hub:w moles intermediate:w moles cap to yield the desired product.
9. Synthesis of compound (1) ##STR90##
An aromatic amine hub is reacted with the intermediate of Example 8, a diamine, and an acid halide end cap in the ratio of 1 mole hub:w moles intermediate:w moles diamine, and w moles cap to form the desired product.
10. Synthesis of compound (k) ##STR91##
An aromatic amine hub is reacted with the intermediate of Example 1, a diamine of the formula H.sub.2 N--R.sub.4 --NH.sub.2, and an acid or acid halide end cap of the formula: ##STR92## on the ratio of 1 mole hub:(w) (m) moles intermediate:(w) (m) moles diamine:w moles end cap to form the desired product.
The end cap is prepared by condensing an amine end cap of the formula: Y.sub.i --.phi.--NH.sub.2 with an acid anhydride of the formula: ##STR93## The acid halide is prepared from the acid in the presence of SOCl.sub.2. 11. Synthesis of compound (1) ##STR94##
An aromatic amine hub is reacted with the dicarboxylic acid intermediate of Example 1, a diamine of the formula: H.sub.2 N--R.sub.3 --NH.sub.4, and an amine end cap in the ratio of 1 mole hub:(w) (m+1) moles intermediate:(w) (m) moles diamine:w moles end cap to form the desired product.
12. Synthesis of compound (m) ##STR95##
An aromatic amine hub is reacted with an acid halide anhydride of the formula: ##STR96## a diamine, and an acid halide end cap in the ratio of 1 mole hub:w moles acid halide anhydride:w moles diamine:w moles end cap to form the desired product. Preferably the reaction occurs in two steps with the reaction of occurs on two steps with the reaction of the hub and acid halide anhydride followed by the addition of the diamine and end cap.
13. Synthesis of compound (n) ##STR97##
An aromatic amine hub is reacted with an acid anhydride of the formula: ##STR98## and an amine end cap on the ratio of 1 mole hub:w moles acid anhydride:w moles end cap to form the desired product.
14. Synthesis of compound (O) ##STR99##
An aromatic amine hub is reacted with the acid anhydride of Example 13, a diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, and an acid halide end cap in the ratio of 1 mole hub:w moles acid anhydride:w moles diamine:w moles end cap to yield the desired product. Preferably the reaction occurs in two steps comprising the initial reaction between the hub and the acid anhydride with the subsequent simultaneous addition of the diamine and end cap.
15. Synthesis of compound (p) ##STR100##
An aromatic amine hub is reacted with an acid anhydride of Example 13, a diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, and an amine end cap in the ratio of 1 mole hub:2 w moles acid anhydride:w moles diamine:w moles end cap to yield the desired product. Preferably the end cap and half of the acid anhydride are mixed to form an end cap conjugate of the formula: ##STR101## prior to mixing the reactants to form the oligomer. It also may be wise to mix the remaining acid anhydride with the hub to form an intermediate of the formula: ##STR102## prior to adding the diamine and end cap conjugate.
Alternatively, the product can be made by reacting the hub with dianhydride intermediate of Example 2 and an amine end cap.
16. Synthesis of compound (g) ##STR103##
An aromatic amine hub is reacted with the intermediate of Example 2, a diamine of the formula: H.sub.2 N--R.sub.4 --NH.sub.2, and an end cap conjugate formed by reacting an end cap amine with an acid halide anhydride of the formula: ##STR104## in the ratio of 1 mole hub:w moles intermediate:w moles end cap conjugate. The conjugate has the formula: ##STR105##
Alternatively, the product can be prepared by reacting the hub with an acid anhydride of the formula: ##STR106## followed by reaction with an amine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, the intermediate of Example 11 and an amine end cap. Stepwise addition of the diamine to the extended hub followed is by addition of the intermediate of Example 1 and amine end cap will reduce competitive side reactions.
17. Synthesis of compound (r) ##STR107##
An aromatic amine hub is reacted with an acid anhydride of the formula: ##STR108## to form an acid hub intermediate which is reacted with a diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, a dicarboxylic acid or acid halide intermediate of Example 1, and an acid or acid halide end cap in the ratio of 1 mole hub intermediate:(w) (m+1) moles diamine:(w) (m) moles dicarboxylic acid intermediate:w moles end cap to yield the desired product.
Alternatively, a similar product can be formed by reacting an amine hub with the dianhydride intermediate of Example 2, a diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, and acid anhydride of the formula: ##STR109## a second diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, and an acid halide end cap in a stepwise reaction.
18. Synthesis of compound (s) ##STR110##
An aromatic amine hub is reacted with the dianhydride intermediate of Example 2, a diamine of the formula H.sub.2 N--R.sub.3 --NH.sub.2, and an amine end cap in the ratio of 1 mole hub:2 w moles intermediate:w moles diamine:w moles end cap to yield the desired product.
19. Synthesis of compound (t) ##STR111##
An aromatic acid hub is reacted with a diamine, an acid anhydride, and an amine end cap in the ratio of 1 mole hub:w moles diamine:w moles acid anhydride:w moles end cap to yield the desired product. Preferably, the reaction includes the steps of reacting the acid anhydride with the end cap prior to addition of the hub and diamine.
20. Synthesis of compound (u) ##STR112##
An aromatic acid hub is reacted with a diamine to form an amine extended hub conjugate that is reacted with an acid halide anhydride, another diamine, and an acid halide end cap to yield the desired product. Preparing an end cap conjugate by reacting the second diamine with the end cap prior to the addition of the other reactants reduces side or competitive reactions.
21. Synthesis of compound (v) ##STR113##
An aromatic acid hub is reacted with a diamine, the intermediate of Example 1, and an amine end cap in the ratio of 1 mole hub:w moles diamine:w moles intermediate:w moles end cap. Preferably, the reaction occurs in two stages with the hub being mixed with the diamine to form an amine conjugate to which the acid or acid halide intermediate and end cap is added simultaneously.
22. Synthesis of amideimide having one diamine ##STR114##
Two moles of an amine end cap are reacted with about (m+2) moles of an acid anhydride, such as phthalyl acid anhydride, and about (2 m+1) moles of a diamine, such as H.sub.2 N--.phi.--SO.sub.2 --.phi.--O--.phi.--SO.sub.2 --.phi.--NH.sub.2, to yield the desired product. To avoid side or competitive reactions, it is probably desirable to prepare a dicarboxylic acid intermediate of the formula: ##STR115## by mixing the acid anhydride and diamine in the ratio of about 2 moles acid anhydride:1 mole diamine prior to adding the remaining reactants for simultaneous condensation to the oligomer.
Comparable oligomers to those described in Examples 1-21 can be prepared by using the same diamine (H.sub.2 N--R.sub.3 --NH.sub.2) in the condensation reaction to prepare the intermediate acids or anhydrides and in the oligomeric condensation. That is, in these oligomers, R.sub.3 is the same as R.sub.4.
23. Synthesis of a multidimensional polyamide
The oligomer is prepared by reacting: ##STR116## under an inert atmosphere to yield: ##STR117## 24. Synthesis of another polyamide
Another preferred multidimensional oligomer is prepared by reacting: ##STR118## under an inert atmosphere to yield: ##STR119## wherein q=--SO.sub.2 --, --CO--, --S--, or --(CF.sub.3).sub.2 C--, and preferably --SO.sub.2 -- or --CO--
25. Synthesis of a difunctional, multidimensional polyamide
The oligomer is prepared by reacting: ##STR120## under an inert atmosphere to yield: ##STR121##
Competitive side reactions between the reactants in Example 25 will likely hinder the yield of this product and will make isolation of the product difficult. Yield can be enhanced by adding the reactants serially, but the physical properties of the resulting oligomers might be impaired.
26. Synthesis using an etheramine hub
Yet another multidimensional oligomer is prepared by reacting: ##STR122## under an inert atmosphere to yield: ##STR123## 27. Synthesis of a multidimensional polyamide using anhydride end cap
The oligomer is prepared by reacting: ##STR124## under an inert atmosphere to yield: ##STR125## 28. Synthesis using melamine as a hub
The oligomer is prepared by reacting melamine with nadic anhydride to yield: ##STR126## 29. Synthesis of a polyamide having an acid halide hub, a diamine arms, and anhydride end caps
The oligomer is prepared by reacting about 1 mole of ##STR127## with about 3 moles of phenylenediamine and about 3 moles of ##STR128## to yield primarily: ##STR129##
Better yield might be obtained by reacting the anhydride with aminobenzoic acid and converting the --COOH functionality to an amine followed by condensation of the monofunctional amine cap with the acid halide hub.
30. Preparation of an advanced composite blend
The polyamideimide oligomer of Example 1, wherein R.sub.2 =R.sub.3 =R.sub.4 =phenyl, m=1, i=2, and Y= ##STR130## is dissolved in a suitable solvent.
A relative high average formula weight polyether polymer is made by condensing a dialcohol of the general formula:
HO--.phi.--O--.phi.--O--.phi.--O--.phi.--OH
with Cl--.phi.--Cl and phenol (to quench the polymerization) under an inert atmosphere in the same solvent as used with the polyamideimide or another solvent miscible with that of the polyamideimide.
The two solutions are mixed to form the advanced composite blend, which can be prepregged or dried prior to curing to an advanced amideimide/ether composite.
31. Preparation of a multidimensional advanced composite blend
A multidimensional, polyether sulfone polymer is prepared by reacting phloroglucinol with Cl--.phi.--Cl and a dialcohol of the general formula: HO--.phi.--O--.phi.--SO.sub.2 --.phi.--O--.phi.--OH. The polymerization is quenched with either .phi.--Cl or phenol. The condensation occurs in a suitable solvent under an inert atmosphere. The product is not recovered from the solvent.
A multidimensional, polyamide oligomer is prepared in the same solvent as used for the polymer or in another miscible solvent by condensing cyuranic acid chloride with ##STR131## The product is not recovered, but the reaction mixture is mixed with the polymer product to form a multidimensional advanced composite blend that can be prepregged or dried prior to curing to form a multidimensional, polyamide/polyethersulfone, advanced composite.
Those skilled in the art will readily recognize alterations, variations, or modifications which might be made to the preferred embodiments that have been described without departing from the inventive concept. Therefore, the claims should be interpreted liberally with the support of the full range of equivalents known to those of ordinary skill based upon this description. The claims should be limited only as is necessary in view of the pertinent prior art.
Claims
  • 1. A phenylethynyl-capped imide of the formula:
  • Y.sub.2 --A--Y.sub.2
  • wherein
  • A is an aromatic, aliphatic, or aromatic/aliphatic imide residue;
  • Y is ##STR132## and .O slashed. is phenylene.
  • 2. The imide of claim 1 wherein A is made by condensing a dianhydride monomer and a diamine monomer and wherein the dianhydride is ##STR133## and the diamine is ##STR134## or a mixture thereof.
  • 3. A phenylethynyl-terminated imide of the formula:
  • Y.sub.i ----A----Y.sub.i
  • wherein
  • i is 2;
  • Y ##STR135## .O slashed. is phenylene; and A is an aromatic or aromatic/aliphatic imide residue that includes at least one segment of the formula:
  • --.O slashed.--O--.O slashed.--SO.sub.2 --.O slashed.--O--.O slashed.--.
  • 4. The imide of claim 3 wherein A is an alternating imide made by the condensation of a dianhydride and a diamine.
  • 5. The imide of claim 4 wherein A is aromatic.
  • 6. The imide of claim 3 wherein A is aromatic.
  • 7. A phenylethynyl-terminated imide of the formula: ##STR136## wherein i is 1 or 2;
  • .O slashed. is phenylene; and
  • A is the residue of a dianhydride.
  • 8. The imide of claim 7 wherein i is 2.
  • 9. The imide of claim 7 wherein A includes alternating residues of a dianhydride monomer and a diamine monomer.
  • 10. The imide of claim 9 wherein the dianhydride is ##STR137## and the diamine is ##STR138## or a mixture thereof.
  • 11. The imide of claim 7 wherein A is aromatic.
  • 12. A phenylethynyl-terminated imide of the formula: ##STR139## wherein i is 1 or 2;
  • .O slashed. is phenylene; and
  • A is the residue of a diamine.
  • 13. A method for making a phenylethynyl-terminated imide, comprising the step of:
  • condensing a monoamine of the formula: ##STR140## wherein i is 1 or 2;
  • W is --NH.sub.2 ; and
  • R is phenylene
  • with an anhydride functionality or its equivalent to form an imide linkage.
REFERENCE TO RELATED APPLICATIONS

This application is a divisional application based upon U.S. patent application Ser. No. 08/477,560, filed Jun. 7, 1995, which was a continuation of U.S. Ser. No. 07/619,677 filed Nov. 29, 1990 and now U.S. Pat. No. 5,645,925, which was a continuation of U.S. Ser. No. 07/167,604 filed Mar. 14, 1988, now abandoned.

US Referenced Citations (472)
Number Name Date Kind
H183 Karasz et al. Jan 1987
RE29316 Bargain et al. Jul 1977
RE30922 Heilman et al. May 1982
3105839 Renner Oct 1963
3148173 Axelrood Sep 1964
3236705 Gilman et al. Feb 1966
3236808 Goldberg et al. Feb 1966
3262914 Goldberg et al. Jul 1966
3265708 Stiteler Aug 1966
3267081 Rudner et al. Aug 1966
3313783 Iwakura et al. Apr 1967
3354129 Edmonds et al. Nov 1967
3355272 D'Alessandro Nov 1967
3386969 Levine Jun 1968
3408349 Matsunaga Oct 1968
3431235 Lubowitz Mar 1969
3435003 Craven Mar 1969
3449442 Williams et al. Jun 1969
3450711 Megna et al. Jun 1969
3453236 Culbertson Jul 1969
3454673 Schmidt Jul 1969
3458486 Ray et al. Jul 1969
3461461 Anthony et al. Aug 1969
3525717 Butler et al. Aug 1970
3528950 Lubowitz Sep 1970
3530087 Hayes et al. Sep 1970
3536670 Aeiony et al. Oct 1970
3562223 Bargain et al. Feb 1971
3563951 Dormagen et al. Feb 1971
3565549 Lubowitz et al. Feb 1971
3592841 Broadhead Jul 1971
3598768 Bach Aug 1971
3609181 Lubowitz et al. Sep 1971
3616193 Lubowitz et al. Oct 1971
3624042 Lubowitz et al. Nov 1971
3631222 Vogel Dec 1971
3632428 Lubowitz et al. Jan 1972
3635891 Lubowitz et al. Jan 1972
3641207 Lauchlan Feb 1972
3647529 Lubowitz et al. Mar 1972
3652710 Holub Mar 1972
3658764 Bargain et al. Apr 1972
3658938 Kwiatkowski et al. Apr 1972
3663507 Vogel May 1972
3689464 Holub et al. Sep 1972
3697308 Lubowitz et al. Oct 1972
3697345 Lubowitz et al. Oct 1972
3699074 Lubowitz et al. Oct 1972
3699075 Lubowitz Oct 1972
3708370 Lubowitz et al. Jan 1973
3708439 Sayigh et al. Jan 1973
3708459 Lubowitz Jan 1973
3729446 Holub et al. Apr 1973
3745149 Serafini et al. Jul 1973
3748311 Burns et al. Jul 1973
3748312 Burns et al. Jul 1973
3749722 Holub Jul 1973
3749735 Loria Jul 1973
3757088 Osborn Sep 1973
3759777 Lubowitz et al. Sep 1973
3761441 D'Alessandro et al. Sep 1973
3763101 Jones et al. Oct 1973
3770697 Holub et al. Nov 1973
3772250 Economy et al. Nov 1973
3773718 Klebe et al. Nov 1973
3781240 Lubowitz et al. Dec 1973
3781249 Lubowitz Dec 1973
3803081 Lubowitz Apr 1974
3812159 Lubowitz May 1974
3827927 Lubowitz et al. Aug 1974
3839287 Kwiatkowski et al. Oct 1974
3843593 Shell et al. Oct 1974
3847867 Heath et al. Nov 1974
3847869 Williams, III Nov 1974
3853815 Lubowitz Dec 1974
3859252 Cho Jan 1975
3879349 Bilow et al. Apr 1975
3879393 Havera Apr 1975
3879428 Heath et al. Apr 1975
3887582 Holub et al. Jun 1975
3890272 D'Alelio Jun 1975
3895064 Brode et al. Jul 1975
3896147 Stephen Jul 1975
3897395 D'Alelio Jul 1975
3909507 Betts et al. Sep 1975
3914334 Lubowitz et al. Oct 1975
3919177 Campbell Nov 1975
3920768 Kwiatkowski Nov 1975
3925324 Gerard Dec 1975
3933862 Williams, III Jan 1976
3935167 Marvel et al. Jan 1976
3935320 Chiu et al. Jan 1976
3941746 Stephen Mar 1976
3953420 Dimroth et al. Apr 1976
3956320 Heath et al. May 1976
3957732 Hirooka et al. May 1976
3957862 Heath et al. May 1976
3966678 Gruffaz et al. Jun 1976
3966726 Toth et al. Jun 1976
3966987 Suzuki et al. Jun 1976
3970714 Bargain Jul 1976
3972902 Heath et al. Aug 1976
3988344 Nakaoji Oct 1976
3988374 Brode et al. Oct 1976
3991026 Matsuda et al. Nov 1976
3993630 Darmory et al. Nov 1976
3998786 D'Alelio Dec 1976
4000146 Gerber Dec 1976
4005134 Markezich Jan 1977
4005154 Bargain Jan 1977
4013600 Cassat Mar 1977
4020069 Johnson et al. Apr 1977
4026871 D'Alelio May 1977
4038261 Crouch et al. Jul 1977
4051177 Braden et al. Sep 1977
4055543 D'Alelio Oct 1977
4058505 D'Alelio Nov 1977
4060515 D'Alelio Nov 1977
4064289 Yokoyama et al. Dec 1977
4075171 D'Alelio Feb 1978
4097456 Barie Jun 1978
4100137 Lemieux et al. Jul 1978
4100138 Bilow et al. Jul 1978
4101488 Ishizuka et al. Jul 1978
4107147 Williams, III et al. Aug 1978
4107153 Akijama et al. Aug 1978
4107174 Baumann et al. Aug 1978
4108837 Johnson et al. Aug 1978
4108926 Arnold et al. Aug 1978
4111879 Mori et al. Sep 1978
4115231 Darms et al. Sep 1978
4115362 Inata et al. Sep 1978
4116937 Jones et al. Sep 1978
4124593 Gschwend et al. Nov 1978
4126619 Darms et al. Nov 1978
4128574 Markezich et al. Dec 1978
4132715 Roth Jan 1979
4132716 Kvita et al. Jan 1979
4134895 Roth et al. Jan 1979
4142870 Lovejoy Mar 1979
4158731 Baumann et al. Jun 1979
4166168 D'Alelio Aug 1979
4167663 Granzow et al. Sep 1979
4168366 D'Alelio Sep 1979
4172836 Baumann et al. Oct 1979
4174326 Baumann et al. Nov 1979
4175175 Johnson et al. Nov 1979
4176223 Irwin Nov 1979
4179551 Jones et al. Dec 1979
4183839 Gagliani Jan 1980
4187364 Darms et al. Feb 1980
4189560 Roth et al. Feb 1980
4193927 Baumann et al. Mar 1980
4197397 D'Alelio Apr 1980
4200731 Massey et al. Apr 1980
4206106 Heilman et al. Jun 1980
4218555 Antonoplos et al. Aug 1980
4221895 Woo Sep 1980
4225497 Baudouin et al. Sep 1980
4225498 Baudouin et al. Sep 1980
4231934 Oba et al. Nov 1980
4234712 Keller et al. Nov 1980
4237262 Jones Dec 1980
4239883 Stenzenberger Dec 1980
4244853 Serafini et al. Jan 1981
4250096 Kvita et al. Feb 1981
4251417 Chow et al. Feb 1981
4251418 Chow et al. Feb 1981
4251419 Heilman et al. Feb 1981
4251420 Antonoplos et al. Feb 1981
4255313 Antonoplos et al. Mar 1981
4266047 Jablonski et al. May 1981
4269961 Jones et al. May 1981
4271079 Maeda et al. Jun 1981
4273916 Jones Jun 1981
4276407 Bilow et al. Jun 1981
4288583 Zahir et al. Sep 1981
4288607 Bier et al. Sep 1981
4289699 Oba et al. Sep 1981
4293670 Robeson et al. Oct 1981
4297472 Heiss Oct 1981
4297474 Williams, III et al. Oct 1981
4298720 Yamazaki et al. Nov 1981
4299750 Antonoplos et al. Nov 1981
4299946 Balme et al. Nov 1981
4302575 Takekoshi Nov 1981
4323662 Oba et al. Apr 1982
4338222 Limburg et al. Jul 1982
4338225 Sheppard Jul 1982
4344869 Blinne et al. Aug 1982
4344870 Blinne et al. Aug 1982
4351932 Street et al. Sep 1982
4358561 Keske et al. Nov 1982
4360644 Naarmann et al. Nov 1982
4365068 Darms et al. Dec 1982
4375427 Miller et al. Mar 1983
4376710 Gardos et al. Mar 1983
4381363 Reinhart, Jr. Apr 1983
4389504 St. Clair et al. Jun 1983
4393188 Takahashi et al. Jul 1983
4395497 Naarmann et al. Jul 1983
4400613 Popelish Aug 1983
4405770 Schoenberg et al. Sep 1983
4407739 Naarmann et al. Oct 1983
4409382 Keller Oct 1983
4410686 Hefner, Jr. et al. Oct 1983
4414269 Lubowitz et al. Nov 1983
4417039 Reinhardt et al. Nov 1983
4417044 Parekh Nov 1983
4418181 Monacelli Nov 1983
4423202 Choe Dec 1983
4429108 Stephens Jan 1984
4438273 Landis Mar 1984
4438280 Monacelli Mar 1984
4446191 Miyadera et al. May 1984
4448925 Hanson May 1984
4460783 Nishikawa et al. Jul 1984
4465809 Smith Aug 1984
4467011 Brooks et al. Aug 1984
4476184 Lubowitz et al. Oct 1984
4476295 Stephens Oct 1984
4482683 Quella et al. Nov 1984
4485140 Gannett et al. Nov 1984
4485231 Landis Nov 1984
4489027 St. Clair et al. Dec 1984
4504632 Holub et al. Mar 1985
4507466 Tomalia et al. Mar 1985
4510272 Loszewski Apr 1985
4515962 Renner May 1985
4519926 Basalay et al. May 1985
4520198 D'Alelio et al. May 1985
4526838 Fujioka et al. Jul 1985
4533692 Wolfe et al. Aug 1985
4533693 Wolfe et al. Aug 1985
4533724 Wolfe et al. Aug 1985
4535117 Mathis et al. Aug 1985
4536559 Lubowitz et al. Aug 1985
4542203 Veno et al. Sep 1985
4543203 Ueno et al. Sep 1985
4547553 Lubowitz et al. Oct 1985
4555563 Hefner, Jr. et al. Nov 1985
4556697 Curatolo et al. Dec 1985
4556705 McCready Dec 1985
4558120 Tomalia et al. Dec 1985
4562231 Dean Dec 1985
4562232 Smith Dec 1985
4563498 Lucas Jan 1986
4563514 Liu et al. Jan 1986
4564553 Pellegrini et al. Jan 1986
4567216 Qureshi et al. Jan 1986
4567240 Hergenrother et al. Jan 1986
4568737 Tomalia et al. Feb 1986
4574144 Yates, III et al. Mar 1986
4574148 Wicker, Jr. et al. Mar 1986
4574154 Okamoto et al. Mar 1986
4576857 Gannett et al. Mar 1986
4577034 Durvasula Mar 1986
4578433 Muenstedt et al. Mar 1986
4578470 Webb Mar 1986
4579916 Schmid et al. Apr 1986
4584364 Lubowitz et al. Apr 1986
4587329 Tomalia et al. May 1986
4590363 Bernard May 1986
4599383 Satoji Jul 1986
4600769 Kumar et al. Jul 1986
4604437 Renner Aug 1986
4608414 Kitsunai et al. Aug 1986
4608426 Stern Aug 1986
4609683 Grigsby, Jr. et al. Sep 1986
4611022 Hefner, Jr. Sep 1986
4611048 Peters Sep 1986
4614767 Dean Sep 1986
4615832 Kress et al. Oct 1986
4616070 Zeiner et al. Oct 1986
4616071 Holubka Oct 1986
4617390 Hoppe et al. Oct 1986
4624888 St. Clair et al. Nov 1986
4628067 Chen, Sr. et al. Dec 1986
4628079 Zecher et al. Dec 1986
4629777 Pfeifer Dec 1986
4631337 Tomalia et al. Dec 1986
4638027 Mark et al. Jan 1987
4640944 Brooks Feb 1987
4649080 Fischer et al. Mar 1987
4654410 Kashiwame et al. Mar 1987
4657973 Endo et al. Apr 1987
4657977 Peters Apr 1987
4657987 Rock et al. Apr 1987
4657990 Daoust et al. Apr 1987
4660057 Watanabe et al. Apr 1987
4661604 Lubowitz et al. Apr 1987
4663378 Allen May 1987
4663399 Peters May 1987
4663423 Yamada et al. May 1987
4663424 Stix et al. May 1987
4663425 Evers et al. May 1987
4680326 Leland et al. Jul 1987
4680377 Matsumura et al. Jul 1987
4684714 Lubowitz et al. Aug 1987
4686242 Turner et al. Aug 1987
4690972 Johnson et al. Sep 1987
4691025 Domeier et al. Sep 1987
4694064 Tomalia et al. Sep 1987
4695610 Egli et al. Sep 1987
4699975 Katto et al. Oct 1987
4703081 Blackwell et al. Oct 1987
4708983 Liang Nov 1987
4709004 Dai Nov 1987
4709006 Tsai et al. Nov 1987
4709008 Shimp Nov 1987
4714768 Hemkielm et al. Dec 1987
4716212 Gaughan Dec 1987
4719283 Bartmann Jan 1988
4727118 Egami Feb 1988
4728742 Renner Mar 1988
4730030 Hahn et al. Mar 1988
4730630 Hahn et al. Mar 1988
4737550 Tomalia Apr 1988
4739030 Lubowitz et al. Apr 1988
4739075 Odagiri et al. Apr 1988
4739115 Byrd et al. Apr 1988
4740563 McCready et al. Apr 1988
4740564 McCready et al. Apr 1988
4740584 Shimp Apr 1988
4742166 Renner May 1988
4748227 Matzner et al. May 1988
4755584 Tomioka et al. Jul 1988
4755585 Hanson et al. Jul 1988
4757118 Das et al. Jul 1988
4757128 Domb et al. Jul 1988
4757150 Guggenheim et al. Jul 1988
4759986 Marikar et al. Jul 1988
4760106 Gardner et al. Jul 1988
4764427 Hara et al. Aug 1988
4766180 Wong Aug 1988
4766197 Clendinning et al. Aug 1988
4769424 Takekoshi et al. Sep 1988
4769426 Iwasaki et al. Sep 1988
4769436 Beck et al. Sep 1988
4774282 Qureshi Sep 1988
4777208 Hefner, Jr. Oct 1988
4778830 Streu et al. Oct 1988
4778859 Ai et al. Oct 1988
4778898 Vonlanthen et al. Oct 1988
4786669 Dewhirst Nov 1988
4786685 Takida et al. Nov 1988
4786713 Rule et al. Nov 1988
4798685 Yaniger Jan 1989
4798686 Hocker et al. Jan 1989
4798882 Petri Jan 1989
4801676 Hisgen et al. Jan 1989
4801677 Eckhardt et al. Jan 1989
4804722 Hesse et al. Feb 1989
4804724 Harris et al. Feb 1989
4806407 Skinner et al. Feb 1989
4808717 Saito et al. Feb 1989
4812518 Haubennestel et al. Mar 1989
4812534 Blakely Mar 1989
4812552 Cliffton et al. Mar 1989
4812588 Schrock Mar 1989
4814416 Poll Mar 1989
4814417 Sugimori Mar 1989
4814421 Rosenquist Mar 1989
4814472 Lau Mar 1989
4816503 Cunningham et al. Mar 1989
4816526 Bristowe et al. Mar 1989
4816527 Rock Mar 1989
4816556 Gay et al. Mar 1989
4820770 Schleifstein Apr 1989
4826927 Schmid et al. May 1989
4826997 Kirchhoff May 1989
4827000 Schwartz May 1989
4829138 Barthelemy May 1989
4835197 Mercer May 1989
4837256 Gardner et al. Jun 1989
4839378 Koyama et al. Jun 1989
4845150 Kovak et al. Jul 1989
4845167 Alston et al. Jul 1989
4845185 Teramoto et al. Jul 1989
4845278 Erhan Jul 1989
4847333 Lubowitz et al. Jul 1989
4851280 Gupta Jul 1989
4851287 Hartsing, Jr. Jul 1989
4851494 Eldin et al. Jul 1989
4851495 Sheppard et al. Jul 1989
4851496 Poll et al. Jul 1989
4851501 Lubowitz et al. Jul 1989
4851505 Hayes Jul 1989
4861855 Bockrath et al. Aug 1989
4861882 Hergenrother et al. Aug 1989
4861915 Clendinning et al. Aug 1989
4861924 Riggs Aug 1989
4868270 Lubowitz et al. Sep 1989
4871475 Lubowitz et al. Oct 1989
4874834 Higashi et al. Oct 1989
4876325 Olson et al. Oct 1989
4876328 Lubowitz et al. Oct 1989
4876330 Higashi et al. Oct 1989
4891167 Clendinning et al. Jan 1990
4891408 Newman-Evans Jan 1990
4891460 Ishii Jan 1990
4895892 Satake et al. Jan 1990
4895924 Satake et al. Jan 1990
4897527 Cripps et al. Jan 1990
4902335 Kume et al. Feb 1990
4902440 Takeyama et al. Feb 1990
4902769 Cassidy et al. Feb 1990
4902773 Bodnar et al. Feb 1990
4916210 Jackson Apr 1990
4916235 Tan et al. Apr 1990
4919992 Blundell et al. Apr 1990
4923752 Cornelia May 1990
4927899 Michaud et al. May 1990
4927900 Michaud et al. May 1990
4931531 Tamai et al. Jun 1990
4931540 Mueller et al. Jun 1990
4935523 Lubowitz et al. Jun 1990
4958031 Sheppard et al. Sep 1990
4963645 Inoue et al. Oct 1990
4965336 Lubowitz et al. Oct 1990
4973662 Odagiri et al. Nov 1990
4980481 Lubowitz et al. Dec 1990
4981922 Sheppard et al. Jan 1991
4985568 Lubowitz et al. Jan 1991
4990624 Sheppard et al. Feb 1991
4996101 Landis et al. Feb 1991
5003035 Tsai et al. Mar 1991
5011905 Lubowitz et al. Apr 1991
5066028 Hino Nov 1991
5066541 Lubowitz et al. Nov 1991
5066771 Hino et al. Nov 1991
5066776 Russeler et al. Nov 1991
5071941 Lubowitz et al. Dec 1991
5075537 Lorenzen et al. Dec 1991
5082905 Lubowitz et al. Jan 1992
5086154 Camberlin et al. Feb 1992
5087701 Lubowitz et al. Feb 1992
5104967 Sheppard et al. Apr 1992
5109105 Lubowitz et al. Apr 1992
5111026 Ma May 1992
5112936 Okamoto May 1992
5112939 Lubowitz et al. May 1992
5115087 Sheppard et al. May 1992
5116935 Lubowitz et al. May 1992
5120819 Lubowitz et al. Jun 1992
5126410 Lubowitz et al. Jun 1992
5138028 Paul et al. Aug 1992
5144000 Sheppard et al. Sep 1992
5151487 Lubowitz et al. Sep 1992
5155206 Lubowitz et al. Oct 1992
5159055 Sheppard et al. Oct 1992
5175233 Lubowitz et al. Dec 1992
5175234 Lubowitz et al. Dec 1992
5175304 Sheppard Dec 1992
5198526 Lubowitz et al. Mar 1993
5210213 Sheppard et al. May 1993
5216117 Sheppard et al. Jun 1993
5227461 Lubowitz et al. Jul 1993
5230956 Cole et al. Jul 1993
5239046 Lubowitz et al. Aug 1993
5254605 Kim et al. Oct 1993
5268519 Sheppard et al. Dec 1993
5286811 Lubowitz et al. Feb 1994
5290908 D'Alelio Mar 1994
5338532 Tomalia et al. Aug 1994
5344894 Lubowitz Sep 1994
5412066 Hergenrother et al. May 1995
5493002 McGrath et al. Feb 1996
5506060 Lubowitz et al. Apr 1996
5567800 Hergenrother et al. Oct 1996
5610317 Lubowitz et al. Mar 1997
5654396 Lubowitz et al. Aug 1997
Foreign Referenced Citations (42)
Number Date Country
1175998 Sep 1984 CAX
1269576 May 1990 CAX
0152372 Jan 1985 EPX
0175484 May 1986 EPX
0067976 Mar 1987 EPX
0289695 Jan 1988 EPX
0283636 Jan 1988 EPX
0277476 Aug 1988 EPX
0292434 Nov 1988 EPX
0289798 Nov 1988 EPX
0292677 Nov 1988 EPX
0266662 Nov 1988 EPX
0294555 Dec 1988 EPX
0132547 Feb 1989 EPX
0305882 Mar 1989 EPX
0309649 Apr 1989 EPX
0310735 Apr 1989 EPX
0311735 Apr 1989 EPX
0317754 May 1989 EPX
0323540 Jul 1989 EPX
0336856 Oct 1989 EPX
0405128 Jan 1991 EPX
0418406 Mar 1991 EPX
0334778 Apr 1992 EPX
71.00975 Jan 1971 FRX
2166209 Aug 1973 FRX
2210635 Jul 1974 FRX
2272119 Dec 1975 FRX
2303818 Oct 1976 FRX
1951632 May 1971 DEX
1453625 Dec 1973 JPX
58059-219 Oct 1981 JPX
57-10011-1 Oct 1982 JPX
1210-408-A Feb 1988 JPX
907105 Oct 1962 GBX
1069061 May 1967 GBX
1099096 Jan 1968 GBX
1453625 Oct 1976 GBX
2002378 Feb 1977 GBX
2002378 Mar 1982 GBX
8101855 Jul 1981 WOX
8404313 Nov 1984 WOX
Non-Patent Literature Citations (41)
Entry
Vinogradova et al., Chem. Abs. 67:100458, Vysokomal. Soedin., Ser. A (1967) 9(8) 1797-1801.
Harris et al., "Synthesis and Characterization of Reactive End-Capped Polyimide Oligomers" Polym. Prep. 24(2), 324-325, Aug., 1983.
Harris et al., "Synthesis and Characterization of Reactive End-Capped Polyimide Oligomers," J. Macromd. Sci-Chem., A21(8&9), 1117-1135, Oct. 1984.
St. Clair, et al., Additives Lower Pickup of Moisture by Polyimides NASA Tech Briefs, 80-81, Apr., 1989.
Heidemann, "Oligomers" Encyclopedia of Polymer Science and Technology vol. 9 Molding to Petroleum Resins 485-506, 1968.
Second-generation polyimide raises continuous-use temperatures Advanced Composites, May/Jun., 1988.
Vanucci et al., 700.degree. F. Properties of Autoclave Cured PMR-II Composites NASA Tech. Memo 100923 Sep., 1988.
Vanucci, PMR Polyimide Compositions for Improved Performance at 371.degree. C. NTIS N87-16071 Apr., 1987.
Elsenbaumer et al., Highly Conductive Meta Derivatives of Poly(phenylene Sulfide) J. Polymer Sci: Polymer Phys. Ed., vol. 20, 1781-1787 1982.
Patel et al., Poly-Schiff Bases, I. Preparation of Poly-Schiff Bases from 4,4'-Diacetyl Diphenyl Ether (DDE) with Various Diamines J. of Polymer Sci: Polymer Chem. Ed., vol. 20, 1985-1992 1982.
Walton, A New Conjugated Network Polymer as an Electrical Conductor and Thermally Stable Plastic Am. Chem., Soc. Org. Coat Plast. Chem., vol. 42, 595-599 1980.
Lubowitz et al., Novel High Temperature Matrix Materials 1986.
Serafini et al., Thermally Stable Polyimides from Solutions of Monomeric Reactants Journal of Applied Polymer Science, vol. 16, pp. 905-915 1972.
Spillman et al., Copolymers of Poly(Para-Phenylene Terephthalamide) Containing a Thermally Activated Cross-Linking Agent PMSE vol. 68, Spring Meetings 139-140 1993.
Radlmann, et al., New Synthesis of Poly(ether Ketones). (44195h) Chem. Abstracts vol. 72, 1970, p. 44187 1970.
Bryant, et al., Synthesis and Properties of Phenylethynyl-Terminated Polyimides Polymer PrePrints, vol. 34, No. 1, 566-567 Mar. 1993.
Crivello et al., Polyimidothioether-Polysulfide Block Polymers Polymer Sci., Polymer Chem. Ed., vol. 13, pp. 1819-1842 1975.
Frazer, High Temperature Resistant Polymers Interscience Publishers, John Wiley & Sons, Inc., 139-213 1968.
Mittal (ed), Polyimides Plenum Press, NY, vol. 1 & 2 (selected pages) 1984.
St. Clair et al., The Development of Aerospace Polyimide Adhesives Mittal (ed), Polyimides--Synthesis Characterization and Applications, Plenum Press, NY, vol. 2, pp. 977-1041 1973.
Serafini, et al., A Review of Processable High Temperature Resistant Addition-type Laminating Resins Mittal (ed), Polyimides--Synthesis, Characterization and Applications, Plenum Press, NY, vol. 1, pp. 89-95 1973.
Stenson, Polycyanurates Find Applications; Their Chemistry Remains Puzzling Science/Technology, 208 ACS National Meeting, Washington, D.C., C&EN Northeast News Bureau 30-31 Sep. 1994.
Sutter, et al,. Easily Processable High-Temperature Polyimide NASA Tech. Briefs (two pages).
Stoakley, et al., Low-Dielectric-Constant Polyimide/Glass Composites NASA Tech. Briefs p. 24 Apr. 1994.
Bartolotta, Predicting Fatigue Lives of Metal-Matrix/Fiber Composites NASA Tech Briefs pp. 28, 30 Apr. 1994.
Vannucci, et al., Improved PMR Polyimides for Heat-Stable Laminates NASA Tech Briefs pp. 30-31. Apr. 1994.
Bryant, et al., Phenylethynyl End-Capping Reagents and Reactive Diluents NASA Tech Briefs pp. 36-37 Apr. 1994.
Jensen, et al., Phenylethynyl-Terminated Ploy(Arylene Ethers) NASA Tech Briefs p. 37 Apr. 1994.
Buckley, et al., Processable Polyimides for High Temperature Applications 36th International SAMPE Symposium pp. 1172-1181 Apr. 1991.
Edwards, et al. Constituents of the Higher Fungi. Part XIII..sup.1 2-Arly-3-methoxymaleic Anhydrides from Pulvinic Acid Derivatives. A Convenient Method for Determination of Structure of Fungaland Lichen Pulvinic Acid Derivatives Journal of The Chemical Society pp. 1538-1542 1973.
Morrison, et al., "Reactions" and Hofmann degradation of amides Organic Chemistry Second Edition pp. 591 and 735 1966.
Kwiatkowski, et al., Thermosetting Diphenyl Sulfone-Based Maleimides Journal of Polymer Science, vol. 13, pp. 961-972 1975.
Lyle, et al., Polyarylene Ethers: Maleimides, Nadimides and Blends The Interdisciplinary Symposium on Recent Advances in Polyimides and Other High Performance Polymers, San Diego, California pp. K-1-K-7 Jan. 1990.
Roberts, et al., Effect of Solution Concentration and Aging Conditions on PMR-15 Resin SAMPE Journal, pp. 24-28, 213 Mar./Apr. 1986.
Southcott, et al., "The Development of Processable, Fully Imidized, Polyimides for High-Temperature Applications" High Perform. Polym. 6, pp. 1-12, Printed in UK 1994.
Stoessel, et al., "High Performance Composites from Polyimide Matrix Resins that Utilize a Cross Linking Reaction of Biphenylene End-Caps with Acetylene Units in the Mail Chain" Journal of Applied Science, vol. 36, pp. 1847-1864 1988.
T. Takeichi, et al., "Star and Linear Imide Oligomers Containing Reactive End Caps: Preparation and Thermal Properties" Macromolecules vol. 19, No. 8 .COPYRGT.1986 American Chemical Society Aug. 1986.
T. Takeichi, et al., "Biphenylene End-Capped Imide Oligomers Having Internal Acetylene Groups in The Backbone: Preparation and Thermal Properties" Macromolecules 1986, vol. 19, pp. 2103-2108 1986 .COPYRGT.1986 American Chemical Society.
Vinogradova et al., "Polyarylates of Phenolphthalein Containing Small Amount of Phloroglucinol" Ser. A (1967) 9(8), 1797-1801 CODEN: VYSAAF Russian Journal.
Harris, et. al. "Synthesis and Characterization of Reactive End-Capped Polyimide Oligomers" Poly. Prepr. 24(2) pp. 324-325 Aug. 8 (1983).
Synthesis and Characterization of Reactive End-Capped Polyimide Oligomers Poly. Prepr. 24(2) pp. 324-325 Aug. 8 (1983).
Divisions (1)
Number Date Country
Parent 477560 Jun 1995
Continuations (2)
Number Date Country
Parent 619677 Nov 1990
Parent 167604 Mar 1988