Physical vapor deposition of an aluminum nitride film

Information

  • Patent Grant
  • 9484198
  • Patent Number
    9,484,198
  • Date Filed
    Wednesday, April 15, 2015
    9 years ago
  • Date Issued
    Tuesday, November 1, 2016
    7 years ago
Abstract
A method for physical vapor deposition of an aluminum nitride film, comprising: positioning a substrate and an aluminum target in a chamber; vacuuming the chamber so that a chamber pressure is at a base pressure between 7.1×10−7-5×10−6 torr; conducting a working gas composed of argon gas and nitrogen gas into the chamber so that the chamber pressure is at a working pressure between 3-7 mtorr; and depositing the aluminum nitride film on the substrate by applying a high power impulse power supply to the aluminum target and applying a direct current bias power supply to the substrate under the working pressure and a substrate temperature between room temperature (25° C.) to 200° C.; wherein a power of the high power impulse power supply is between 500-600 W and a frequency thereof is between 750-1250 Hz, and a bias of the direct current bias power supply is between −50-0 V.
Description
CROSS REFERENCE

This non-provisional application claims priority of American Provisional Application No. 61/984,427, filed on Apr. 25, 2014, the content thereof is incorporated by reference herein.


FIELD OF THE INVENTION

The present invention relates to a method for deposition of an aluminum nitride film, and more particularly to a method for physical vapor deposition of an aluminum nitride film.


BACKGROUND OF THE INVENTION

Aluminum nitride (AlN) is a III/V group semiconductor compound and a ceramic material. Aluminum nitride has a hexagonal wurtzite structure, and its nitrogen atom and aluminum atom are covalently linked to form a tetrahedral structure. The energy gap of aluminum nitride is about 6.2 eV, the highest in all III/V group semiconductor compounds, and this compound is of transmittance, high thermal conductivity, high hardness, thermal resistance, chemical resistance, piezoelectricity, and biocompatibility. Since aluminum nitride has a thermal expansion coefficient approximate to that of silicon, the compound is suitable for a chip package. Accordingly, aluminum nitride is mostly used as a heat sink, an electronic ceramic substrate, a material for an electronic element package, and a surface acoustic wave device.


Current deposition of an aluminum nitride film is conducted via chemical vapor deposition (CVD) or physical vapor deposition (PVD), and the latter is further subdivided into molecular beam epitaxy (MBE), medium frequency magnetron sputtering, and direct current/radio frequency magnetron sputtering. Although physical vapor deposition of an aluminum nitride film is popular and rapid, it is implemented at a high temperature. This results in limiting the selection of a substrate for deposition so as to influence the subsequent application of the film. For example, in the physical vapor deposition described in Taiwan Patent Application NO. 201425631, an aluminum nitride film is formed on a substrate at 400° C. For further example, in the physical vapor deposition described in China Patent Application NO. 102122936, an aluminum nitride film is deposited on a substrate at 830-900° C.


Therefore, there is a need to develop a novel method for physical vapor deposition of an aluminum nitride film, and the method can be implemented at a low temperature to improve the selection of a substrate for deposition.


SUMMARY OF THE INVENTION

An objective of the present invention is to provide a method for physical vapor deposition of an aluminum nitride film, which can be performed at a low temperature to vary the selection of a substrate.


To achieve the foregoing and/or other objective(s), the present invention discloses a method for physical vapor deposition of an aluminum nitride film. The method comprises the following steps of: positioning a substrate and an aluminum target in a chamber; vacuuming the chamber so that a chamber pressure is at a base pressure between 7.1×10−7-5×10−6 torr; conducting a working gas composed of argon gas and nitrogen gas into the chamber so that the chamber pressure is at a working pressure between 3-7 mtorr; and depositing the aluminum nitride film on the substrate by applying a high power impulse power supply to the aluminum target and applying a direct current bias power supply to the substrate under the working pressure and a substrate temperature between room temperature (25° C.) to 200° C., wherein a power of the high power impulse power supply is between 500-600 W and a frequency thereof is between 750-1250 Hz, and a bias of the direct current bias power supply is between −50-0 V.


In an embodiment of the present invention, an on time of the high power impulse power supply is between 20-50 μs, and an off time thereof is between 772-1299 μs.


In an embodiment of the present invention, a duty cycle of the high power impulse power supply is between 2.5%-5%.


In an embodiment of the present invention, the argon gas is conducted at a flow rate between 10-25 sccm, and the nitrogen gas is conducted at a flow rate between 10-20 sccm.


In an embodiment of the present invention, a total time in the depositing step is between 60-120 min.


In an embodiment of the present invention, a rotational speed of the substrate relative to the chamber is between 15-25 rpm.


In an embodiment of the present invention, a hardness of the aluminum nitride film is between 15.6-28 GPa.


In an embodiment of the present invention, a visible transmittance of the aluminum nitride film is between 67.6%-82.5%.


In an embodiment of the present invention, the substrate is a silicon substrate, a plastic substrate, a glass substrate, or a flexible and soft substrate.


In the present method, the aluminum nitride film is formed on the substrate at a low temperature. As such, the selection of the substrate can be varied. Furthermore, the aluminum nitride film is a film of high hardness and/or high visible transmittance in certain embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph illustrating the transmittance of the aluminum nitride films in Examples 1-5 and Comparative Example, and the glass sheet; and



FIG. 2 is a graph illustrating the transmittance of the aluminum nitride films in Examples 6-14, and the glass sheet.





DETAILED DESCRIPTION OF THE INVENTION

The detailed description and preferred embodiments of the invention will be set forth in the following content, and provided for people skilled in the art so as to understand the characteristic of the invention.


Example 1

A (100) P-type monocrystalline silicon substrate or a glass substrate was dipped in ethanol, and cleaned for 15 min under ultrasonication. After being removed from the ethanol, the substrate was dried by a nitrogen gas blow. The dried substrate was placed in a sample holder, and then the sample holder was placed in a chamber with an aluminum target. After which, the chamber was vacuumed so that its pressure was at 1.4×10-6 torr (the pressure herein is called “base pressure”). The substrate was heated at 200° C. (the temperature herein is called “substrate temperature”), and argon gas was conducted to the chamber at a flow rate of 80 sccm to make the chamber pressure at 100 mtorr (the pressure herein is called “etching pressure”). After that, under the substrate temperature and the etching pressure, a direct power supply with −350 V bias was applied to the substrate to etch the substrate for 15 min.


After the substrate etching process, an impulse power supply with 500 W power was applied to the aluminum target to pre-sputter the target for 20 min. Afterward, a working gas composed of argon gas at a 10 sccm flow rate and nitrogen gas at a 20 sccm flow rate was conducted into the chamber to let the chamber pressure be at 5 mtorr (the pressure herein is called “working pressure”). Under the working pressure, the substrate temperature, and a 20 rpm rotational speed of the substrate relative to the chamber, a high power impulse power supply with 600 W power, 1000 Hz frequency, 50/950 μs/μs on/off time, and 5% duty cycle was applied to the aluminum target, and a direct current bias power supply with −30 V bias was applied to the substrate to deposit an aluminum nitride film on the substrate for 60 min. Finally, when these supplies were turned off and the substrate was cooled to room temperature, the aluminum nitride film on the substrate was taken out of the chamber.


Examples 2-14

The aluminum nitride films in Examples 2-14 were manufactured following the procedure described in Example 1, except for the deposition conditions listed in Table 1 below.


Comparative Example

The aluminum nitride film in Comparative Example was manufactured following the procedure described in Example 1, except for the deposition conditions listed in Table 1 below.









TABLE 1







Conditions for depositing the films in Examples 1-14, and Comparative Example















high power impulse power supply


working gas
bias of
substrate























on/off
duty
base
working
argon
nitrogen
direct current
Tem-
rotational
deposition



Power
Frequency
time
cycle
pressure
pressure
gas
gas
bias power
perature
speed
time


Example
(W)
(Hz)
(μs/μs)
(%)
(torr)
(mtorr)
(sccm)
(sccm)
supply (V)
(° C.)
(rpm)
(min)






















1
600
1000
50/950
5
1.4 × 10-6  
5
10
20
−30
200
20
60


2
600
1000
40/960
4
5 × 10-6
5
10
20
−30
200
20
75


3
600
1000
35/965
3.5
5 × 10-6
5
10
20
−30
200
20
120


4
600
1250
28/772
3.5
5 × 10-6
5
10
20
−30
200
20
120


5
600
833
 42/1158
3.5
7.1 × 10-7  
5
10
20
−30
200
20
120


6
500
750
 34/1299
2.6
5 × 10-6
5
25
10
−50
room tem-
20
120












perature




7
500
750
 40/1293
3
5 × 10-6
5
25
10
−30
100
20
120


8
500
750
 47/1286
3.5
5 × 10-6
5
25
10
0
200
20
120


9
500
1000
25/975
2.53
5 × 10-6
5
25
10
0
100
20
120


10
500
1000
30/970
3
5 × 10-6
5
25
10
−50
200
20
120


11
500
1000
35/965
3.5
5 × 10-6
5
25
10
−30
room tem-
20
120












perature




12
500
1250
20/780
2.5
5 × 10-6
5
25
10
−30
200
20
120


13
500
1250
24/776
3
5 × 10-6
5
25
10

room tem-
20
120











0
perature




14
500
1250
28/772
3.5
5 × 10-6
5
25
10
−50
100
20
120


Comparative
600
1000
35/965
3.5
5 × 10-6
5
10
20
150
200
0
120










Hardness Analysis


A nano-indentation system (TI-900 TriboIndenter, Hysitron, America) was used to measure the hardness of the films in Examples 1-14 and Comparative Example. During the measurement, a Berkovich probe tip was loaded on each film according to the Oliver and Pharr method (J. Mater. Res. 7, 1564 (1992)), and the tip was made of diamond and had an equivalent cone angle of 142.3 degree. Also, the maximum loading weight was of 5 mN, and the loading rate was of 1000 N/s. The result of the hardness measurement is listed in Table 2 below. Note that the films in Examples 1-14 are harder than that in Comparative Example.


Transmittance Analysis


A UV-vis spectrophotometer was introduced to analyze the transmittances of the foregoing films and a glass sheet. The result of the transmittance measurement is shown in FIGS. 1-2 and Table 2 below. According to the result, the visible transmittances (wavelength: 400-700 nm) of the films in Examples 1-14 are greater than that of the film in Comparative Example, but less than that of the glass sheet.









TABLE 2







Hardness and visible transmittance of the films in Examples 1-14


and Comparative Example, and the glass sheet













visible




hardness
transmittance




(GPa)
(%)















Example 1
20.4
76.4



Example 2
21.5
67.6



Example 3
28
69.2



Example 4
27
69.9



Example 5
26.5
69.5



Example 6
24.9
73.6



Example 7
21.1
80.7



Example 8
15.6
81.1



Example 9
18
81.4



Example 10
24.1
79.4



Example 11
24.7
82.1



Example 12
18.3
79.6



Example 13
16
82.1



Example 14
18
82.5



Comparative
9.4
16.7



Example





Glass sheet

92.7










As shown above, the method of the present invention is proven to be implemented at a low temperature. Therefore, the selection of the substrate is varied. In addition, the product in the method is also proven to likely be hard and visibly transparent.


While the invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.

Claims
  • 1. A method for physical vapor deposition of an aluminum nitride film, comprising: positioning a substrate and an aluminum target in a chamber;vacuuming the chamber so that a chamber pressure is at a base pressure between 7.1×10−7-5×10−6 torr;conducting a working gas composed of argon gas and nitrogen gas into the chamber so that the chamber pressure is at a working pressure between 3-7 mtorr; anddepositing the aluminum nitride film on the substrate by applying a high power impulse power supply to the aluminum target and applying a direct current bias power supply to the substrate under the working pressure and a substrate temperature between room temperature (25° C.) to 200° C.;wherein a power of the high power impulse power supply is between 500-600 W and a frequency thereof is between 750-1250 Hz, and a bias of the direct current bias power supply is between −50-0 V.
  • 2. The method as claimed in claim 1, wherein an on time of the high power impulse power supply is between 20-50 μs, and an off time thereof is between 772-1299 μs.
  • 3. The method as claimed in claim 1, wherein a duty cycle of the high power impulse power supply is between 2.5%-5%.
  • 4. The method as claimed in claim 1, wherein the argon gas is conducted at a flow rate between 10-25 sccm, and the nitrogen gas is conducted at a flow rate between 10-20 sccm.
  • 5. The method as claimed in claim 1, wherein a total time in the depositing step is between 60-120 min.
  • 6. The method as claimed in claim 1, wherein a rotational speed of the substrate relative to the chamber is between 15-25 rpm.
  • 7. The method as claimed in claim 1, wherein a hardness of the aluminum nitride film is between 15.6-28 GPa.
  • 8. The method as claimed in claim 1, wherein a visible transmittance of the aluminum nitride film is between 67.6%-82.5%.
  • 9. The method as claimed in claim 1, wherein the substrate is a silicon substrate, a plastic substrate, a glass substrate, or a flexible and soft substrate.
  • 10. The method as claimed in claim 1, wherein a hardness of the aluminum nitride film is between 15.6-28 GPa, and a visible transmittance thereof is between 67.6%-82.5%.
US Referenced Citations (6)
Number Name Date Kind
4818357 Case Apr 1989 A
8389313 Miki Mar 2013 B2
20030109076 Senda Jun 2003 A1
20080303054 Yokoyama Dec 2008 A1
20110001163 Sasaki Jan 2011 A1
20110163350 Yokoyama Jul 2011 A1
Foreign Referenced Citations (2)
Number Date Country
102122936 Jul 2011 CN
201425631 Jul 2014 TW
Provisional Applications (1)
Number Date Country
61984427 Apr 2014 US