1. Field of the Invention
This invention discloses a physisorption-based microcontact printing process capable of controlling film thickness, primarily for creating patterned thin films of organic molecules in micron and submicron scales. This invention employs the thin-film growth technology and the microcontact printing technology together to improve the deficiency that the conventional microcontact printing process fails to control the thickness of the transferred pattern. At the final phase of the microcontact printing process, when the stamp is going to disengage from the transferred pattern, an additional demolding step is applied to effectively control the quality of the transferred pattern. Possible applications of this invention include, but not limited to, fabrication of electronic, optoelectronic, and micro electro-mechanical systems, and elements of nanotechnology.
2. Description of the Related Art
The relevant prior art is listed below:
The art of microcontact printing (μCP) was first disclosed in a technical paper published by A. Kumar and G. M. Whitesides in 1993 as indicated in KW93. Similar to a regular printing process, μCP is operated by that a stamp with a designed pattern is used to print ink molecules onto a substrate to enable formation of the designed pattern on the substrate. Different from the regular printing process, μCP can transfer patterns in micron or nanometer scale because it employs a stamp which raised surfaces are made of materials with very low surface free energy, e.g. PDMS, poly(dimethylsiloxane), and carefully selects ink and substrate such that the ink molecules are favorably adsorbed chemically or physically onto the substrate when they are brought into contact with the substrate.
a-1d illustrate the chemisorption-based μCP originally proposed in the paper in 1993 as indicated in KW93. It starts with preparation of a Si substrate 102 coated with a gold thin film 104, as shown in
Evidently, the chemisorption-based μCP is constrained by the limited choices of the combinations of the ink and the substrate. Under such circumstance, the application scope of such μCP is greatly limited. In light of this, several physisorption-based μCPs were proposed, including a thermal assist approach indicated in GNR00, a cold-welding approach indicated in KBF00 and KSF02, a van der Waals force approach indicated in LZB04, and an electrical charge approach indicated in JW01. Although the property of minimally printable pattern size could merely reach the micron or submicron scale, failing to match that of the chemisorption-based μCP in the nanometer scale, these physisorption-based μCP processes effectively extend the application scope of the μCP.
a-2d illustrate the idea of the μCP based on the thermal assist approach, which procedure is similar to that of the original chemisorption-based μCP. According to GNR00, a glass substrate 202 coated with indium tin oxide (ITO) or gold 204, as shown in
a-3d illustrate the μCP based on the cold-welding approach. First, a thin film 304 of a metal is plated on a substrate 302, as shown in
The μCP based on van der Waals force approach was proposed and named soft contact lamination method in a paper indicated in LZB04. It was used to create the cathode of an organic light-emitting diode (LED). According to LZB04,
a-5d illustrate the μCP based on the electrical charge approach. A conductive substrate 502 coated with a thin film 504 made of an electret material, such as PMMA, poly(methyl methacrylate), is prepared first as shown in
As indicated above, the physisorption-based μCPs, even the μCP as a whole, are still in their infancy and many deficiencies remain. For example, three of the aforementioned four physisorption-based approaches, namely, the cold-welding, van der Waals force, and electrical charge approaches, are not applicable to the organic materials. Although the thermal assist approach is applicable to the organic materials, it is not capable of controlling the thickness of the transferred pattern.
This invention presents a physisorption-based μCP designed for organic materials and capable of thickness control. One of its innovations is the proposal of an additional process step, called the demolding phase, to the existing μCP practices for better quality control of printed patterns. In the demolding phase, the printing pressure and temperature are decreased in a coordinated manner according to the P-V-T (Pressure-specific Volume-Temperature) rheological property of the ink molecules to achieve better morphology and reduced residual internal stress in the printed patterns. The idea of the demolding phase is borrowed from the P-V-T control practice in the injection molding process indicated in ML89, which is briefly described in the following.
The primary objective of the present invention is to provide a physisorption-based microcontact printing process capable of controlling film thickness primarily for creating patterns of organic thin films in micron and submicron scales, which effectively controls the thickness of the printed organic patterns.
The secondary objective of the present invention is to provide a physisorption-based microcontact printing process capable of controlling film thickness primarily for creating patterns of organic thin films in micron and submicron scales, which controls the quality of surface roughness and residual internal stress in the printed organic patterns.
The foregoing objectives of the present invention are attained by the process including an inking phase, a printing phase, and a demolding phase as summarized below.
Conventional practices for inking the printing stamp include imprinting, dip-coating, or spraying. These methods do not offer effective control in the amount of ink molecules applied, let alone the thickness control of the printed pattern. To improve such deficiency of thickness control, the present invention proposes an inking phase involving a thin-film growth, through which a thin-film of ink molecules with the desired thickness is deposited on the printing stamp, indirectly achieving thickness control of the printed pattern. The inking phase of the present invention includes two steps of surface wetting and thin-film growth.
On the one hand, the μCP is to print the ink molecules on the stamp onto the substrate, so the stamp is made of a material with very low surface free energy to reduce the affinity between the ink molecules and stamp, thus facilitating the transfer printing of the ink molecules. On the other hand, an effective thin-film growth requires high affinity between the molecules of the thin-film and the surface of the substrate to enable deposition of a high-quality homogeneous thin film with a smooth surface. The first step of the inking phase of the present invention, i.e. surface wetting, is to reconcile the conflict between the requirement of a successful transfer printing and that of a high-quality thin-film growth. Thus, to succeed in the surface wetting, it requires two conditions as follows: effective enhancement of the affinity between the stamp surface and the ink molecules and such enhancement must be impermanent. There are two feasible methods of the surface wetting as follows. First, the stamp is coated with a wetting layer made of highly evaporative solvent properly selected to effectively enhance the affinity between the stamp surface and the ink molecules and such enhancement is impermanent because of the high evaporation rate of the solvent. Second, the stamp is done with some special surface treatment. One possible treatment is the O2 plasma treatment. According to DGB01, the PDMS stamp with low surface free energy can be treated by O2 plasma to generate a wetting layer composed of hydroxyl, carboxyl, or peroxide to enhance the surface free energy of the PDMS stamp and such enhancement of the surface free energy holds for about one day only.
After arrangement and operation of the effective surface wetting, the second step, thin-film growth, is proceeded to enable the growth of a thin film of ink molecules with a desired thickness onto the stamp. Any thin-film technique can be considered as a candidate for the step of the thin-film growth, e.g. spin coating and blade coating.
The above-mentioned inking phase involving the thin-film growth provides an effective method for thickness control of the ink molecules on the surface of the stamp, indirectly achieving the purpose of controlling the thickness of the transferred pattern through μCP. Furthermore, in the aforementioned inking phase, a pre-patterned or flat stamp can be used. While the flat stamp is used, the desired pattern can be formed by a follow-up patterning using a proper patterning technique, such as laser ablation.
In the printing phase, similar to that of the thermal assist μCP, the substrate and the stamp are not only heated to enhance the temperature thereof but also applied with an adequate pressure. The enhancement of the temperature of the substrate and the stamp improves not only the wetting condition between the ink molecules and the substrate but the adhesive condition therebetween; the applied pressure increases the effective contact area between the thin film of ink molecules and the substrate to improve the adhesion to each other; and both together successfully transfer the ink molecules to the substrate.
Because the stamp is commonly made of flexible PDMS, to securely keep the pattern on the surface of the stamp under a proper pressure from deformation, a hybrid stamp composed of a rigid stamp covered thereon with the thin film of PDMS as indicated in OTL02 can be adopted.
The currently available μCP technology did not particularly elaborate on the demolding phase but merely mentioned that the stamp is removed to complete the whole μCP after a given time of printing contact. For better surface smoothness and reduced residual internal stress in the transferred pattern, the present invention proposes an additional demolding phase where the removal of the stamp is a precisely controlled process rather than a simple removal. In the demolding phase, as the temperature of the transferred ink molecules decreases, the pressure applied to them is also lowered according to the P-V-T rheological data of the ink molecules in order to give rise to a transferred pattern with reduced surface roughness and residual internal stress.
a-1d are cross-sectional views of the conventional chemisorption-based μCP.
a-2d are cross-sectional views of the conventional μCP based on the thermal assist approach.
a-3d are cross-sectional views of the conventional μCP based on the cold-welding approach.
a-4d are cross-sectional views of the conventional μCP based on the van der Waals force approach.
a-5d are cross-sectional views of the conventional μCP based on the electrical charge approach.
a-7c are cross-sectional views of a preferred embodiment of the present invention, illustrating the inking phase when the pre-patterned stamp is used.
d-7g are cross-sectional views of the preferred embodiment of the present invention, illustrating the inking phase when the flat stamp is used and the pattern is formed in the thin film of the ink molecules via a proper patterning technique.
a-8b are cross-sectional views of the preferred embodiment of the present invention, illustrating the printing phase when the pre-patterned stamp and the flat stamp are used, respectively.
The present invention proposes a physisorption-based microcontact printing process capable of controlling film thickness, including three phases of inking, printing, and demolding. The inking phase further has two steps of surface wetting and thin-film growth. The surface wetting step is optional, depending on whether it is necessary. When it is necessary, a wetting layer is deposited onto a stamp to facilitate successful growth of a thin film of the ink molecules on the stamp in the next thin-film growth step. In the following preferred embodiments, the surface-wetting step is required.
a shows a pre-patterned stamp 702 made of a material having very low surface free energy, such as PDMS. Referring to
Sometimes, the actual operation is different from the above. It is likely to ink a flat stamp and then apply a suitable patterning approach on the ink molecules to generate a pattern. When a flat stamp (
Referring to
The third phase, i.e. the demolding phase, of the μCP of the present invention begins right after the printing phase. Switching from the printing phase to the demolding phase can occur after a given period of printing time or at a given temperature or at a given printing pressure or at any combination of these conditions. In order to effectively reduce the surface roughness and the residual internal stress in the transferred pattern 704 or 710, as shown in
Although the present invention has been described with respect to a specific preferred embodiment thereof, it is no way limited to the details of the illustrated structures and changes and modifications may be made within the scope of the appended claims.