This application claims benefit of priority to Indian patent application number 201941023935, filed Jun. 17, 2019, which is herein incorporated by reference in its entirety.
Embodiments of the present disclosure generally relate to planarization of surfaces on substrates and on layers formed on substrates. More specifically, embodiments of the present disclosure relate to planarization of surfaces on substrates for advanced packaging applications.
Chemical mechanical planarization (CMP) is one process commonly used in the manufacture of high-density integrated circuits to planarize or polish a layer of material deposited on a substrate. Chemical mechanical planarization and polishing are useful in removing undesired surface topography and surface defects, such as rough surfaces, agglomerated materials, crystal lattice damage, scratches, and contaminated layers or materials. Chemical mechanical planarization is also useful in forming features on a substrate by removing excess material deposited to fill the features, and to provide an even surface for subsequent patterning operations.
In conventional CMP techniques, a substrate carrier or polishing head mounted on a carrier assembly positions a substrate secured therein in contact with a polishing pad mounted on a platen in a CMP apparatus. The carrier assembly provides a controllable load, i.e., pressure, on the substrate to urge the substrate against the polishing pad. An external driving force moves the polishing pad relative to the substrate. Thus, the CMP apparatus creates polishing or rubbing movement between the surface of the substrate and the polishing pad while dispersing a polishing composition, or slurry, to affect both chemical activity and mechanical activity.
Recently, polymeric materials have been increasingly used as material layers in the fabrication of integrated circuit chips due to the versatility of polymers for many advanced packaging applications. However, conventional CMP techniques are inefficient for polymeric material planarization due to the reduced removal rates associated with polymer chemistries. Thus, planarization of polymeric material layers becomes a limiting factor in the fabrication of advanced packaging structures.
Therefore, there is a need in the art for a method and apparatus for improved planarization of polymeric material surfaces.
Embodiments of the present disclosure generally relate to planarization of surfaces on substrates and on layers formed on substrates. More specifically, embodiments of the present disclosure relate to planarization of surfaces on substrates for advanced packaging applications, such as surfaces of polymeric material layers.
In one embodiment, a method of substrate planarization is provided. The method includes positioning a substrate formed of a polymeric material into a polishing apparatus. A surface of the substrate is exposed to a first polishing process in which a grinding slurry is delivered to a polishing pad of a polishing apparatus. The grinding slurry includes colloidal particles having a grit size between about 1.2 μm and about 53 μm, a non-ionic polymer dispersion agent, and an aqueous solvent. The substrate surface is then exposed to a second polishing process in which a polishing slurry is delivered to the polishing pad of the polishing apparatus. The polishing slurry includes colloidal particles having a grit size between about 25 nm and about 500 nm.
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description of the implementations, briefly summarized above, may be had by reference to implementations, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical implementations of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective implementations.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one implementation may be beneficially incorporated in other implementations without further recitation.
Embodiments of the present disclosure generally relate to planarization of surfaces on substrates and on layers formed on substrates. More specifically, embodiments of the present disclosure relate to planarization of surfaces on substrates for advanced packaging applications, such as surfaces of polymeric material layers. In one implementation, the method includes mechanically grinding a substrate surface against a polishing surface in the presence of a grinding slurry during a first polishing process to remove a portion of a material formed on the substrate; and then chemically mechanically polishing the substrate surface against the polishing surface in the presence of a polishing slurry during a second polishing process to reduce any roughness or unevenness caused by the first polishing process.
Certain details are set forth in the following description and in
Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments. Accordingly, other embodiments can have other details, components, dimensions, angles and features without departing from the spirit or scope of the present disclosure. In addition, further embodiments of the disclosure can be practiced without several of the details described below.
Embodiments described herein will be described below in reference to a planarization process that can be carried out using a chemical mechanical polishing system, such as a REFLEXION®, REFLEXION® LK™, REFLEXION® LK Prime™ and MIRRA MESA® polishing system available from Applied Materials, Inc. of Santa Clara, California Other tools capable of performing planarization and polishing processes may also be adapted to benefit from the implementations described herein. In addition, any system enabling the planarization processes described herein can be used to advantage. The apparatus description described herein is illustrative and should not be construed or interpreted as limiting the scope of the embodiments described herein.
During polishing, a downforce on the carrier ring 109 urges the carrier ring 109 against the polishing pad 105, thus preventing the substrate 110 from slipping from the substrate carrier 108. The substrate carrier 108 rotates about a carrier axis 114 while the flexible diaphragm 111 urges a desired surface of the substrate 110 against the polishing surface of the polishing pad 105. The platen 102 rotates about a platen axis 104 in an opposite rotational direction from the rotation direction of the substrate carrier 108 while the substrate carrier 108 sweeps back and forth from a center region of the platen 102 to an outer diameter of the platen 102 to, in part, reduce uneven wear of the polishing pad 105. As illustrated in
During polishing, a fluid 116 is introduced to the polishing pad 105 through a fluid dispenser 118 positioned over the platen 102. Typically, the fluid 116 is a polishing fluid, a polishing or grinding slurry, a cleaning fluid, or a combination thereof. In some embodiments, the fluid 116 is a polishing fluid comprising a pH adjuster and/or chemically active components, such as an oxidizing agent, to enable chemical mechanical polishing and planarization of the material surface of the substrate 110 in conjunction with the abrasives of the polishing pad 105.
In one example, the substrate comprises a silicon material such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers, patterned or non-patterned wafers, silicon on insulator (SOI), carbon doped silicon oxides, silicon nitride, doped silicon, and other suitable silicon materials. In one example, the substrate comprises a polymeric material such as polyimide, polyamide, parylene, silicone, epoxy, glass fiber-reinforced epoxy molding compound, epoxy resin with ceramic particles disposed therein, and other suitablee polymeric materials.
Further, the substrate may have various morphologies and dimensions. In one embodiment, the substrate is a circular substrate having a diameter between about 50 mm and about 500 mm, such as between about 100 mm and about 400 mm. For example, the substrate is a circular substrate having a diameter between about 150 mm and about 350 mm, such as between about 200 mm and about 300 mm. In some embodiments, the circular substrate has a diameter of about 200 mm, about 300 mm, or about 301 mm. In another example, the substrate is a polygonal substrate having a width between about 50 mm and about 650 mm, such as between about 100 mm and about 600 mm. For example, the substrate is a polygonal substrate having a width between about 200 mm and about 500 mm, such as between about 300 mm and about 400 mm. In some embodiments, the substrate has a panel shape with lateral dimensions up to about 500 mm and a thickness up to about 1 mm. In one embodiment, the substrate has a thickness between about 0.5 mm and about 1.5 mm. For example, the substrate is a circular substrate having a thickness between about 0.7 mm and about 1.4 mm, such as between about 1 mm and about 1.2 mm, such as about 1.1 mm. Other morphologies and dimensions are also contemplated.
At operation 220, the surface of the substrate to be planarized is exposed to a first polishing process in the polishing apparatus. The first polishing process is utilized to remove a desired thickness of material from the substrate. In one embodiment, the first polishing process is a mechanical grinding process utilizing a grinding slurry supplied to a polishing pad of the polishing apparatus. The grinding slurry includes colloidal particles dispersed in a solution comprising a dispersion agent. In one embodiment, the colloidal particles utilized in the grinding slurry are formed from an abrasive material such as silica (SiO2), alumina (AL2O3), ceria (CeO2), ferric oxide (Fe2O3), zirconia (ZrO2), diamond (C), boron nitride (BN), and titania (TiO2). In one embodiment, the colloidal particles are formed from silicon carbide (SiC).
The colloidal particles utilized for the first polishing process range in grit size from about 1 μm to about 55 μm, such as between about 1.2 μm and about 53 μm. For example, the colloidal particles have a grit size between about 1.2 μm and about 50 μm; between about 1.2 μm and about 40 μm; between about 1.2 μm and about 30 μm; between about 1.2 μm and about 20 μm; between about 1.2 μm and about 10 μm; between about 5 μm and about 50 μm; between about 5 μm and about 40 μm; between about 5 μm and about 30 μm; between about 5 μm and about 20 μm; between about 5 μm and about 15 μm; between about 10 μm and about 55 μm; between about 20 μm and about 55 μm; between about 30 μm and about 55 μm; between about 40 μm and about 55 μm; between about 50 μm and about 55 μm. Increasing the grit size of the colloidal particles dispersed in the grinding slurry may increase the rate at which material may be removed from the substrate during the mechanical grinding process.
A weight percentage of the colloidal particles in the grinding slurry ranges from about 1% to about 25%, such as between about 2% and about 20%. For example, the weight percentage of the colloidal particles in the grinding slurry ranges from about 5 to about 15%; from about 6% to about 14%; from about 7% to about 13%; from about 8% to about 12%; from about 9% to about 11%. In one embodiment, the weight percentage of the colloidal particles in the grinding slurry is about 10%.
The dispersion agent in the grinding slurry is selected to increase the grinding efficiency of the colloidal particles. In one embodiment, the dispersion agent is a non-ionic polymer dispersant, including but not limited to polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG), and polyvinylpyrrolidone (PVP). In one example, the dispersion agent is PEG with a molecular weight up to 2000. For example, the dispersion agent may be PEG 200, PEG 400, PEG 600, PEG 800, PEG 1000, PEG 1500, or PEG 2000. The dispersion agent is mixed with water or an aqueous solvent comprising water in a ratio between about 1:1 volume/volume (v/v) and about 1:4 (v/v) dispersion agent:water or aqueous solvent. For example, the dispersion agent is mixed with water or an aqueous solvent in a ratio of about 1:2 (v/v) dispersion agent:water or aqueous solvent.
In some embodiments, the grinding slurry further includes a pH adjustor, such as potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH), ammonium hydroxide (NH4OH), nitric acid (HNO3) or the like. The pH of the grinding slurry can be adjusted to a desired level by the addition of one or more pH adjustors.
During the first polishing process, the substrate surface and the polishing pad, such as polishing pad 105, are contacted at a pressure less than about 15 pounds per square inch (psi). Removal of a desired thickness of material from the substrate may be performed with a mechanical grinding process having a pressure of about 10 psi or less, for example, from about 1 psi to about 10 psi. In one aspect of the process, the substrate surface and polishing pad are contacted at a pressure between about 3 psi and about 10 psi, such as between about 5 psi and about 10 psi. Increasing the pressure at which the polishing pad and substrate surface contact generally increases the rate at which material may be removed from the substrate during the first polishing process.
In one embodiment, the platen is rotated at a velocity from about 50 rotations per minute (rpm) to about 100 rpm, and the substrate carrier is rotated at a velocity from about 50 rpm to about 100 rpm. In one aspect of the process, the platen is rotated at a velocity between about 70 rpm and about 90 rpm and the substrate carrier is rotated at a velocity between about 70 rpm and about 90 rpm.
Mechanical grinding of the substrate during the first polishing process as described above can achieve an improved removal rate of substrate material compared to conventional planarization and polishing process. For example, a removal rate of polyimide material of between about 6 μm/min and about 10 μm/min can be achieved. In another example, a removal rate of epoxy material of between about 6 μm/min and about 12 μm/min can be achieved. In yet another example, a removal rate of silicon material of between about 4 μm/min and about 6 μm/min can be achieved.
After completion of the first polishing process, the surface of the substrate, now having a reduced thickness, is exposed to a second polishing process in the same polishing apparatus at operation 230. The second polishing process is utilized to reduce any roughness or unevenness caused by the first polishing process. In one embodiment, the second polishing process is a CMP process utilizing a polishing slurry having finer colloidal particles than described with reference to the mechanical grinding process.
In one embodiment, the colloidal particles utilized for the second polishing process range in grit size from about 20 nm to about 500 nm, such as between about 25 nm and about 300 nm. For example, the colloidal particles have a grit size between about 25 nm and about 250 nm; between about 25 nm and about 200 nm; between about 25 nm and about 150 nm; between about 25 nm and about 100 nm; between about 25 nm and about 75 nm; between about 25 nm and about 50 nm; between about 100 nm and about 300 nm; between about 100 nm and about 250 nm; between about 100 nm and about 225 nm; between about 100 nm and about 200 nm; between about 100 nm and about 175 nm; between about 100 nm and about 150 nm; between about 100 nm and about 125 nm; between about 150 nm and about 250 nm; between about 150 nm and about 250 nm; between about 150 and about 225 nm; between about 150 nm and about 200 nm; between about 150 nm and about 175 nm. Increasing the grit size of the colloidal particles dispersed in the polishing slurry generally increases the rate at which material may be removed from the substrate during the second polishing process.
The colloidal particles utilized in the polishing slurry are formed from SiO2, AL2O3, CeO2, Fe2O3, ZrO2, C, BN, TiO2, SiC, or the like. In one embodiment, the colloidal particles utilized in the polishing slurry are formed from the same material as the colloidal particles in the grinding slurry. In another embodiment, the colloidal particles utilized in the polishing slurry are formed from a different material than the colloidal particles in the grinding slurry.
A weight percentage of the colloidal particles in the polishing slurry ranges from about 1% to about 30%, such as between about 1% and about 25%. For example, the weight percentage of the colloidal particles in the grinding slurry ranges from about 1% to about 15%; from about 1% to about 10%; from about 1% to about 5%; from about 10% to about 30%; from about 10% to about 25%.
In some embodiments, the colloidal particles are dispersed in a solution including water, alumina (Al2O3), KOH, or the like. The polishing slurry may have a pH in a range of about 4 to about 10, such as between about 5 and about 10. For example, the polishing slurry has a pH in a range of about 7 to about 10, such as about 9. One or more pH adjustors may be added to the polishing slurry to adjust the pH of the polishing slurry to a desired level. For example, the pH of the polishing slurry may be adjusted by the addition of TMAH, NH4OH, HNO3, or the like.
During the second polishing process, the substrate surface and the polishing pad are contacted at a pressure less than about 15 psi. Smoothening of the substrate surface may be performed with a second polishing process having a pressure of about 10 psi or less, for example, from about 2 psi to about 10 psi. In one aspect of the process, the substrate surface and polishing pad are contacted at a pressure between about 3 psi and about 10 psi, such as between about 5 psi and about 10 psi.
In one embodiment, the platen is rotated during the second polishing process at a velocity from about 50 rpm to about 100 rpm, and the substrate carrier is rotated at a velocity from about 50 rpm to about 100 rpm. In one aspect of the process, the platen is rotated at a velocity between about 70 rpm and about 90 rpm and the substrate carrier is rotated at a velocity between about 70 rpm and about 90 rpm.
After the first and/or second polishing processes, the used slurries may be processed through a slurry management and recovery system for subsequent reuse. For example, the polishing apparatus may include a slurry recovery drain disposed below the polishing platen, such as platen 102. The slurry recovery drain may be fluidly coupled to a slurry recovery tank having one or more filters to separate reusable colloidal particles from the used grinding and polishing slurries based on size. Separated colloidal particles may then be washed and reintroduced into a fresh batch of slurry for further polishing processes.
The polishing and grinding slurries may be constantly circulated or agitated within the slurry management and recovery system. Constant circulation or agitation of the slurries prevents settling of the colloidal particles and maintains substantially uniform dispersion of the colloidal particles in the slurries. In one example, the slurry management and recovery system includes one or more vortex pumps to pump the slurries throughout the system. The open and spherical pumping channels reduce the risk of the colloidal particles clogging the pumps, thus enabling efficient circulation of the slurries within the slurry management and recovery system. In a further example, the slurry management and recovery system includes one or more slurry containment tanks having mixing apparatuses configured to constantly agitate stored slurries.
It has been observed that substrates planarized by the processes described herein have exhibited reduced topographical defects, improved profile uniformity, improved planarity, and improved substrate finish. Furthermore, the processes described herein provide improved removal rates of various materials utilized with substrates for advanced packaging applications, such as polymeric materials.
While the foregoing is directed to implementations of the present disclosure, other and further implementations of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
201941023935 | Jun 2019 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
4073610 | Cox | Feb 1978 | A |
5126016 | Glenning et al. | Jun 1992 | A |
5268194 | Kawakami et al. | Dec 1993 | A |
5353195 | Fillion et al. | Oct 1994 | A |
5367143 | White, Jr. | Nov 1994 | A |
5374788 | Endoh et al. | Dec 1994 | A |
5474834 | Tanahashi et al. | Dec 1995 | A |
5670262 | Dalman | Sep 1997 | A |
5767480 | Anglin et al. | Jun 1998 | A |
5783870 | Mostafazadeh et al. | Jul 1998 | A |
5841102 | Noddin | Nov 1998 | A |
5878485 | Wood et al. | Mar 1999 | A |
6039889 | Zhang et al. | Mar 2000 | A |
6087719 | Tsunashima | Jul 2000 | A |
6117704 | Yamaguchi et al. | Sep 2000 | A |
6211485 | Burgess | Apr 2001 | B1 |
6384473 | Peterson et al. | May 2002 | B1 |
6388202 | Swirbel et al. | May 2002 | B1 |
6388207 | Figueroa et al. | May 2002 | B1 |
6459046 | Ochi et al. | Oct 2002 | B1 |
6465084 | Curcio et al. | Oct 2002 | B1 |
6489670 | Peterson et al. | Dec 2002 | B1 |
6495895 | Peterson et al. | Dec 2002 | B1 |
6506632 | Cheng et al. | Jan 2003 | B1 |
6512182 | Takeuchi et al. | Jan 2003 | B2 |
6538312 | Peterson et al. | Mar 2003 | B1 |
6555906 | Towle et al. | Apr 2003 | B2 |
6576869 | Gower et al. | Jun 2003 | B1 |
6593240 | Page | Jul 2003 | B1 |
6631558 | Burgess | Oct 2003 | B2 |
6661084 | Peterson et al. | Dec 2003 | B1 |
6713719 | De Steur et al. | Mar 2004 | B1 |
6724638 | Inagaki et al. | Apr 2004 | B1 |
6775907 | Boyko et al. | Aug 2004 | B1 |
6781093 | Conlon et al. | Aug 2004 | B2 |
6799369 | Ochi et al. | Oct 2004 | B2 |
6894399 | Vu et al. | May 2005 | B2 |
7028400 | Hiner et al. | Apr 2006 | B1 |
7062845 | Burgess | Jun 2006 | B2 |
7064069 | Draney et al. | Jun 2006 | B2 |
7078788 | Vu et al. | Jul 2006 | B2 |
7091589 | Mori et al. | Aug 2006 | B2 |
7091593 | Ishimaru et al. | Aug 2006 | B2 |
7105931 | Attarwala | Sep 2006 | B2 |
7129117 | Hsu | Oct 2006 | B2 |
7166914 | DiStefano et al. | Jan 2007 | B2 |
7170152 | Huang et al. | Jan 2007 | B2 |
7192807 | Huemoeller et al. | Mar 2007 | B1 |
7211899 | Taniguchi et al. | May 2007 | B2 |
7271012 | Anderson | Sep 2007 | B2 |
7274099 | Hsu | Sep 2007 | B2 |
7276446 | Robinson et al. | Oct 2007 | B2 |
7279357 | Shimoishizaka et al. | Oct 2007 | B2 |
7312405 | Hsu | Dec 2007 | B2 |
7321164 | Hsu | Jan 2008 | B2 |
7449363 | Hsu | Nov 2008 | B2 |
7458794 | Schwaighofer et al. | Dec 2008 | B2 |
7511365 | Wu et al. | Mar 2009 | B2 |
7690109 | Mori et al. | Apr 2010 | B2 |
7714431 | Huemoeller et al. | May 2010 | B1 |
7723838 | Takeuchi et al. | May 2010 | B2 |
7754530 | Wu et al. | Jul 2010 | B2 |
7808799 | Kawabe et al. | Oct 2010 | B2 |
7839649 | Hsu | Nov 2010 | B2 |
7843064 | Kuo et al. | Nov 2010 | B2 |
7852634 | Sakamoto et al. | Dec 2010 | B2 |
7855460 | Kuwajima | Dec 2010 | B2 |
7868464 | Kawabata et al. | Jan 2011 | B2 |
7887712 | Boyle et al. | Feb 2011 | B2 |
7914693 | Jeong et al. | Mar 2011 | B2 |
7915737 | Nakasato et al. | Mar 2011 | B2 |
7932595 | Huemoeller et al. | Apr 2011 | B1 |
7932608 | Tseng et al. | Apr 2011 | B2 |
7955942 | Pagaila et al. | Jun 2011 | B2 |
7978478 | Inagaki et al. | Jul 2011 | B2 |
7982305 | Railkar et al. | Jul 2011 | B1 |
7988446 | Yeh et al. | Aug 2011 | B2 |
8069560 | Mori et al. | Dec 2011 | B2 |
8137497 | Sunohara et al. | Mar 2012 | B2 |
8283778 | Trezza | Oct 2012 | B2 |
8314343 | Inoue et al. | Nov 2012 | B2 |
8367943 | Wu et al. | Feb 2013 | B2 |
8384203 | Toh et al. | Feb 2013 | B2 |
8390125 | Tseng et al. | Mar 2013 | B2 |
8426246 | Toh et al. | Apr 2013 | B2 |
8476769 | Chen et al. | Jul 2013 | B2 |
8518746 | Pagaila et al. | Aug 2013 | B2 |
8536695 | Liu et al. | Sep 2013 | B2 |
8628383 | Starling et al. | Jan 2014 | B2 |
8633397 | Jeong et al. | Jan 2014 | B2 |
8698293 | Otremba et al. | Apr 2014 | B2 |
8704359 | Tuominen et al. | Apr 2014 | B2 |
8710402 | Lei et al. | Apr 2014 | B2 |
8710649 | Huemoeller et al. | Apr 2014 | B1 |
8728341 | Ryuzaki et al. | May 2014 | B2 |
8772087 | Barth et al. | Jul 2014 | B2 |
8786098 | Wang | Jul 2014 | B2 |
8877554 | Tsai et al. | Nov 2014 | B2 |
8890628 | Nair et al. | Nov 2014 | B2 |
8907471 | Beyne et al. | Dec 2014 | B2 |
8921995 | Railkar et al. | Dec 2014 | B1 |
8952544 | Lin et al. | Feb 2015 | B2 |
8980691 | Lin | Mar 2015 | B2 |
8990754 | Bird et al. | Mar 2015 | B2 |
8994185 | Lin et al. | Mar 2015 | B2 |
8999759 | Chia | Apr 2015 | B2 |
9059186 | Shim et al. | Jun 2015 | B2 |
9064936 | Lin et al. | Jun 2015 | B2 |
9070637 | Yoda et al. | Jun 2015 | B2 |
9099313 | Lee et al. | Aug 2015 | B2 |
9111914 | Lin et al. | Aug 2015 | B2 |
9142487 | Toh et al. | Sep 2015 | B2 |
9159678 | Cheng et al. | Oct 2015 | B2 |
9161453 | Koyanagi | Oct 2015 | B2 |
9210809 | Mallik et al. | Dec 2015 | B2 |
9224674 | Malatkar et al. | Dec 2015 | B2 |
9275934 | Sundaram et al. | Mar 2016 | B2 |
9318376 | Holm et al. | Apr 2016 | B1 |
9355881 | Goller et al. | May 2016 | B2 |
9363898 | Tuominen et al. | Jun 2016 | B2 |
9396999 | Yap et al. | Jul 2016 | B2 |
9406645 | Huemoeller et al. | Aug 2016 | B1 |
9499397 | Bowles et al. | Nov 2016 | B2 |
9530752 | Nikitin et al. | Dec 2016 | B2 |
9554469 | Hurwitz et al. | Jan 2017 | B2 |
9660037 | Zechmann et al. | May 2017 | B1 |
9698104 | Yap et al. | Jul 2017 | B2 |
9704726 | Toh et al. | Jul 2017 | B2 |
9735134 | Chen | Aug 2017 | B2 |
9748167 | Lin | Aug 2017 | B1 |
9754849 | Huang et al. | Sep 2017 | B2 |
9837352 | Chang et al. | Dec 2017 | B2 |
9837484 | Jung et al. | Dec 2017 | B2 |
9859258 | Chen et al. | Jan 2018 | B2 |
9875970 | Yi et al. | Jan 2018 | B2 |
9887103 | Scanlan et al. | Feb 2018 | B2 |
9887167 | Lee et al. | Feb 2018 | B1 |
9893045 | Pagaila et al. | Feb 2018 | B2 |
9978720 | Theuss et al. | May 2018 | B2 |
9997444 | Meyer et al. | Jun 2018 | B2 |
10014292 | Or-Bach et al. | Jul 2018 | B2 |
10037975 | Hsieh et al. | Jul 2018 | B2 |
10053359 | Bowles et al. | Aug 2018 | B2 |
10090284 | Chen et al. | Oct 2018 | B2 |
10109588 | Jeong et al. | Oct 2018 | B2 |
10128177 | Kamgaing et al. | Nov 2018 | B2 |
10153219 | Jeon et al. | Dec 2018 | B2 |
10163803 | Chen et al. | Dec 2018 | B1 |
10170386 | Kang et al. | Jan 2019 | B2 |
10177083 | Kim et al. | Jan 2019 | B2 |
10211072 | Chen et al. | Feb 2019 | B2 |
10229827 | Chen et al. | Mar 2019 | B2 |
10256180 | Liu et al. | Apr 2019 | B2 |
10269773 | Yu et al. | Apr 2019 | B1 |
10297518 | Lin et al. | May 2019 | B2 |
10297586 | Or-Bach et al. | May 2019 | B2 |
10304765 | Chen et al. | May 2019 | B2 |
10347585 | Shin et al. | Jul 2019 | B2 |
10410971 | Rae et al. | Sep 2019 | B2 |
10424530 | Alur et al. | Sep 2019 | B1 |
10515912 | Lim et al. | Dec 2019 | B2 |
10522483 | Shuto | Dec 2019 | B2 |
10553515 | Chew | Feb 2020 | B2 |
10570257 | Sun et al. | Feb 2020 | B2 |
10658337 | Yu et al. | May 2020 | B2 |
20010020548 | Burgess | Sep 2001 | A1 |
20010030059 | Sugaya et al. | Oct 2001 | A1 |
20020036054 | Nakatani et al. | Mar 2002 | A1 |
20020048715 | Walczynski | Apr 2002 | A1 |
20020070443 | Mu et al. | Jun 2002 | A1 |
20020074615 | Honda | Jun 2002 | A1 |
20020135058 | Asahi et al. | Sep 2002 | A1 |
20020158334 | Vu et al. | Oct 2002 | A1 |
20020170891 | Boyle et al. | Nov 2002 | A1 |
20030059976 | Nathan et al. | Mar 2003 | A1 |
20030221864 | Bergstedt et al. | Dec 2003 | A1 |
20030222330 | Sun et al. | Dec 2003 | A1 |
20040080040 | Dotta et al. | Apr 2004 | A1 |
20040118824 | Burgess | Jun 2004 | A1 |
20040134682 | En et al. | Jul 2004 | A1 |
20040248412 | Liu et al. | Dec 2004 | A1 |
20050012217 | Mori et al. | Jan 2005 | A1 |
20050170292 | Tsai et al. | Aug 2005 | A1 |
20060014532 | Seligmann et al. | Jan 2006 | A1 |
20060073234 | Williams | Apr 2006 | A1 |
20060128069 | Hsu | Jun 2006 | A1 |
20060145328 | Hsu | Jul 2006 | A1 |
20060160332 | Gu et al. | Jul 2006 | A1 |
20060270242 | Verhaverbeke et al. | Nov 2006 | A1 |
20060283716 | Hafezi et al. | Dec 2006 | A1 |
20070035033 | Ozguz et al. | Feb 2007 | A1 |
20070042563 | Wang et al. | Feb 2007 | A1 |
20070077865 | Dysard et al. | Apr 2007 | A1 |
20070111401 | Kataoka et al. | May 2007 | A1 |
20070130761 | Kang et al. | Jun 2007 | A1 |
20080006945 | Lin et al. | Jan 2008 | A1 |
20080011852 | Gu et al. | Jan 2008 | A1 |
20080090095 | Nagata et al. | Apr 2008 | A1 |
20080113283 | Ghoshal et al. | May 2008 | A1 |
20080119041 | Magera et al. | May 2008 | A1 |
20080173792 | Yang et al. | Jul 2008 | A1 |
20080173999 | Chung et al. | Jul 2008 | A1 |
20080293332 | Watanabe | Nov 2008 | A1 |
20080296273 | Lei et al. | Dec 2008 | A1 |
20090084596 | Inoue et al. | Apr 2009 | A1 |
20090243065 | Sugino et al. | Oct 2009 | A1 |
20090250823 | Racz et al. | Oct 2009 | A1 |
20090278126 | Yang et al. | Nov 2009 | A1 |
20100013081 | Toh et al. | Jan 2010 | A1 |
20100062287 | Beresford et al. | Mar 2010 | A1 |
20100062687 | Oh | Mar 2010 | A1 |
20100144101 | Chow et al. | Jun 2010 | A1 |
20100148305 | Yun | Jun 2010 | A1 |
20100160170 | Horimoto et al. | Jun 2010 | A1 |
20100248451 | Pirogovsky et al. | Sep 2010 | A1 |
20100264538 | Swinnen et al. | Oct 2010 | A1 |
20100301023 | Unrath et al. | Dec 2010 | A1 |
20100307798 | Izadian | Dec 2010 | A1 |
20110062594 | Maekawa et al. | Mar 2011 | A1 |
20110097432 | Yu et al. | Apr 2011 | A1 |
20110111300 | DelHagen et al. | May 2011 | A1 |
20110204505 | Pagaila et al. | Aug 2011 | A1 |
20110259631 | Rumsby | Oct 2011 | A1 |
20110291293 | Tuominen et al. | Dec 2011 | A1 |
20110304024 | Renna | Dec 2011 | A1 |
20110316147 | Shih et al. | Dec 2011 | A1 |
20120128891 | Takei et al. | May 2012 | A1 |
20120146209 | Hu et al. | Jun 2012 | A1 |
20120164827 | Rajagopalan et al. | Jun 2012 | A1 |
20120261805 | Sundaram et al. | Oct 2012 | A1 |
20130074332 | Suzuki | Mar 2013 | A1 |
20130105329 | Matejat et al. | May 2013 | A1 |
20130196501 | Sulfridge | Aug 2013 | A1 |
20130203190 | Reed et al. | Aug 2013 | A1 |
20130286615 | Inagaki et al. | Oct 2013 | A1 |
20130341738 | Reinmuth et al. | Dec 2013 | A1 |
20140054075 | Hu | Feb 2014 | A1 |
20140092519 | Yang | Apr 2014 | A1 |
20140094094 | Rizzuto et al. | Apr 2014 | A1 |
20140103499 | Andry et al. | Apr 2014 | A1 |
20140252655 | Tran et al. | Sep 2014 | A1 |
20140353019 | Arora et al. | Dec 2014 | A1 |
20150228416 | Hurwitz et al. | Aug 2015 | A1 |
20150296610 | Daghighian et al. | Oct 2015 | A1 |
20150311093 | Li et al. | Oct 2015 | A1 |
20150359098 | Ock | Dec 2015 | A1 |
20150380356 | Chauhan et al. | Dec 2015 | A1 |
20160013135 | He et al. | Jan 2016 | A1 |
20160020163 | Shimizu et al. | Jan 2016 | A1 |
20160049371 | Lee et al. | Feb 2016 | A1 |
20160088729 | Kobuke et al. | Mar 2016 | A1 |
20160095203 | Min et al. | Mar 2016 | A1 |
20160118337 | Yoon et al. | Apr 2016 | A1 |
20160270242 | Kim et al. | Sep 2016 | A1 |
20160276325 | Nair et al. | Sep 2016 | A1 |
20160329299 | Lin et al. | Nov 2016 | A1 |
20160336296 | Jeong et al. | Nov 2016 | A1 |
20170047308 | Ho et al. | Feb 2017 | A1 |
20170064835 | Ishihara et al. | Mar 2017 | A1 |
20170223842 | Chujo et al. | Aug 2017 | A1 |
20170229432 | Lin et al. | Aug 2017 | A1 |
20170338254 | Reit et al. | Nov 2017 | A1 |
20180019197 | Boyapati et al. | Jan 2018 | A1 |
20180116057 | Kajihara et al. | Apr 2018 | A1 |
20180182727 | Yu | Jun 2018 | A1 |
20180197831 | Kim et al. | Jul 2018 | A1 |
20180204802 | Lin et al. | Jul 2018 | A1 |
20180308792 | Raghunathan et al. | Oct 2018 | A1 |
20180352658 | Yang | Dec 2018 | A1 |
20180374696 | Chen et al. | Dec 2018 | A1 |
20180376589 | Harazono | Dec 2018 | A1 |
20190088603 | Marimuthu et al. | Mar 2019 | A1 |
20190131224 | Choi et al. | May 2019 | A1 |
20190131270 | Lee et al. | May 2019 | A1 |
20190131284 | Jeng et al. | May 2019 | A1 |
20190189561 | Rusli | Jun 2019 | A1 |
20190229046 | Tsai et al. | Jul 2019 | A1 |
20190237430 | England | Aug 2019 | A1 |
20190285981 | Cunningham et al. | Sep 2019 | A1 |
20190306988 | Grober et al. | Oct 2019 | A1 |
20190355680 | Chuang et al. | Nov 2019 | A1 |
20190369321 | Young et al. | Dec 2019 | A1 |
20200003936 | Fu et al. | Jan 2020 | A1 |
20200039002 | Sercel et al. | Feb 2020 | A1 |
20200130131 | Togawa et al. | Apr 2020 | A1 |
20200357947 | Chen et al. | Nov 2020 | A1 |
20200358163 | See et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2481616 | Jan 2013 | CA |
1646650 | Jul 2005 | CN |
1971894 | May 2007 | CN |
100463128 | Feb 2009 | CN |
100502040 | Jun 2009 | CN |
100524717 | Aug 2009 | CN |
100561696 | Nov 2009 | CN |
102449747 | May 2012 | CN |
104637912 | May 2015 | CN |
105436718 | Mar 2016 | CN |
106531647 | Mar 2017 | CN |
106653703 | May 2017 | CN |
107428544 | Dec 2017 | CN |
108028225 | May 2018 | CN |
109155246 | Jan 2019 | CN |
111492472 | Aug 2020 | CN |
0264134 | Apr 1988 | EP |
1536673 | Jun 2005 | EP |
1478021 | Jul 2008 | EP |
1845762 | May 2011 | EP |
2942808 | Nov 2015 | EP |
2001244591 | Sep 2001 | JP |
2002246755 | Aug 2002 | JP |
2003188340 | Jul 2003 | JP |
2004311788 | Nov 2004 | JP |
2004335641 | Nov 2004 | JP |
4108285 | Jun 2008 | JP |
2012069926 | Apr 2012 | JP |
5004378 | Aug 2012 | JP |
5111342 | Jan 2013 | JP |
2013176835 | Sep 2013 | JP |
5693977 | Apr 2015 | JP |
5700241 | Apr 2015 | JP |
5981232 | Aug 2016 | JP |
2017148920 | Aug 2017 | JP |
2017197708 | Nov 2017 | JP |
6394136 | Sep 2018 | JP |
6542616 | Jul 2019 | JP |
6626697 | Dec 2019 | JP |
100714196 | May 2007 | KR |
100731112 | Jun 2007 | KR |
10-2008-0037296 | Apr 2008 | KR |
2008052491 | Jun 2008 | KR |
20100097893 | Sep 2010 | KR |
20120130851 | Dec 2012 | KR |
101301507 | Sep 2013 | KR |
20140086375 | Jul 2014 | KR |
101494413 | Feb 2015 | KR |
20160013706 | Feb 2016 | KR |
20180113885 | Oct 2018 | KR |
101922884 | Nov 2018 | KR |
101975302 | Aug 2019 | KR |
102012443 | Aug 2019 | KR |
201030832 | Aug 2010 | TW |
201042019 | Dec 2010 | TW |
I594397 | Aug 2017 | TW |
201805400 | Feb 2018 | TW |
WO2011080912 | Jul 2011 | WO |
2011130300 | Oct 2011 | WO |
2013008415 | Jan 2013 | WO |
2013126927 | Aug 2013 | WO |
WO2014208270 | Dec 2014 | WO |
2015126438 | Aug 2015 | WO |
2016143797 | Sep 2016 | WO |
2017111957 | Jun 2017 | WO |
2018013122 | Jan 2018 | WO |
2018125184 | Jul 2018 | WO |
2019023213 | Jan 2019 | WO |
2019066988 | Apr 2019 | WO |
2019177742 | Sep 2019 | WO |
Entry |
---|
English translation of CN1646650A by Google Patents (Year: 2005). |
English translation of KR100731112 by Google Patents (Year: 2007). |
English translation of CN102449747A (Year: 2012). |
English translation of WO2014208270A1 by Google Patents (Year: 2014). |
English translation of TW201805400A (Year: 2018). |
English translation of KR20120130851A (Year: 2012). |
English translation of WO2011080912A1 (Year: 2011). |
English translation of TW 201030832A (Year: 2010). |
Taiwan Office Action dated Feb. 25, 2022, for Taiwan Patent Application No. 109119795. |
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/ US2021/053830. |
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053821. |
International Search Report and Written Opinion dated Oct. 7, 2021 for Application No. PCT/US2021037375. |
PCT International Search Report and Written Opinion dated Oct. 19, 2021, for International Application No. PCT/US2021/038690. |
PCT International Search Report and Written Opinion dated Feb. 17, 2021 for International Application No. PCT/US2020/057787. |
PCT International Search Report and Written Opinion dated Feb. 19, 2021, for International Application No. PCT/US2020/057788. |
U.S. Office Action dated May 13, 2021, in U.S. Appl. No. 16/870,843. |
Chen, Qiao—“Modeling, Design and Demonstration of Through-Package-Vias in Panel-Based Polycrystalline Silicon Interposers for High Performance, High Reliability and Low Cost,” a Dissertation presented to the Academic Faculty, Georgia Institute of Technology, May 2015, 168 pages. |
Annon, John Jr., et al.—“Fabrication and Testing of a TSV-Enabled Si Interposer with Cu- and Polymer-Based Multilevel Metallization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 1, Jan. 2014, pp. 153-157. |
Malta, D., et al.—“Fabrication of TSV-Based Silicon Interposers,” 3D Systems Integration Conference (3DIC), 2010 IEEE International, Nov. 16-18, 2010, 6 pages. |
Allresist Gmbh—Strausberg et al.: “Resist-Wiki: Adhesion promoter HMDS and diphenylsilanedio (AR 300-80) - . . . - ALLRESIST GmbH—Strausberg, Germany”, Apr. 12, 2019 (Apr. 12, 2019), XP055663206, Retrieved from the Internet: URL:https://web.archive.org/web/2019041220micals-adhesion-promoter-hmds-and-diphenyl2908/https://www.allresist.com/process-chemicals-adhesion-promoter-hmds-and-diphenylsilanedio/, [retrieved on Jan. 29, 2020]. |
Amit Kelkar, et al. “Novel Mold-free Fan-out Wafer Level Package using Silicon Wafer”, IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages. (IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages.). |
Arifur Rahman. “System-Level Performance Evaluation of Three-Dimensional Integrated Circuits”, vol. 8, No. 6, Dec. 2000. pp. 671-678. |
Baier, T. et al., Theoretical Approach to Estimate Laser Process Parameters for Drilling in Crystalline Silicon, Prog. Photovolt: Res. Appl. 18 (2010) 603-606, 5 pages. |
Chien-Wei Chien et al.“Chip Embedded Wafer Level Packaging Technology for Stacked RF-SiP Application”,2007 IEEE, pp. 305-310. |
Doany, F.E., et al.—“Laser release process to obtain freestanding multilayer metal-polyimide circuits,” IBM Journal of Research and Development, vol. 41, Issue 1/2, Jan./Mar. 1997, pp. 151-157. |
Dyer, P.E., et al.—“Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Applied Physics Letters, vol. 48, No. 6, Feb. 10, 1986, pp. 445-447. |
Han et al.—“Process Feasibility and Reliability Performance of Fine Pitch Si Bare Chip Embedded in Through Cavity of Substrate Core,” IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015. [Han et al. IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015.]. |
Han et al.—“Through Cavity Core Device Embedded Substrate for Ultra-Fine-Pitch Si Bare Chips; (Fabrication feasibility and residual stress evaluation)”, ICEP-IAAC, 2015, pp. 174-179. [Han et al., ICEP-IAAC, 2015, pp. 174-179.]. |
Han, Younggun, et al.—“Evaluation of Residual Stress and Warpage of Device Embedded Substrates with Piezo-Resistive Sensor Silicon Chips” technical paper, Jul. 31, 2015, pp. 81-94. |
International Search Report and the Written Opinion for International Application No. PCT/US2019/064280 dated Mar. 20, 2020, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/US2020/026832 dated Jul. 23, 2020. |
Italian search report and written opinion for Application No. IT 201900006736 dated Mar. 2, 2020. |
Italian Search Report and Written Opinion for Application No. IT 201900006740 dated Mar. 4, 2020. |
Junghoon Yeom', et al. “Critical Aspect Ratio Dependence in Deep Reactive Ion Etching of Silicon”, 2003 IEEE. pp. 1631-1634. |
K. Sakuma et al. “3D Stacking Technology with Low-Volume Lead-Free Interconnections”, IBM T.J. Watson Research Center. 2007 IEEE, pp. 627-632. |
Kenji Takahashi et al. “Current Status of Research and Development for Three-Dimensional Chip Stack Technology”, Jpn. J. Appl. Phys. vol. 40 (2001) pp. 3032-3037, Part 1, No. 4B, Apr. 2001. 6 pages. |
Kim et al. “A Study on the Adhesion Properties of Reactive Sputtered Molybdenum Thin Films with Nitrogen Gas on Polyimide Substrate as a Cu Barrier Layer,” 2015, Journal of Nanoscience and Nanotechnology, vol. 15, No. 11, pp.8743-8748, doi: 10.1166/jnn.2015.11493. |
Knickerbocker, J.U., et al.—“Development of next-generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection,” IBM Journal of Research and Development, vol. 49, Issue 4/5, Jul./Sep. 2005, pp. 725-753. |
Knickerbocker, John U., et al.—“3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, vol. 41, No. 8, Aug. 2006, pp. 1718-1725. |
Knorz, A. et al., High Speed Laser Drilling: Parameter Evaluation and Characterisation, Presented at the 25th European PV Solar Energy Conference and Exhibition, Sep. 6-10, 2010, Valencia, Spain, 7 pages. |
L. Wang, et al. “High aspect ratio through-wafer interconnections for 3Dmicrosystems”, 2003 IEEE. pp. 634 -637. |
Lee et al. “Effect of sputtering parameters on the adhesion force of copper/molybdenum metal on polymer substrate,” 2011, Current Applied Physics, vol. 11, pp. S12-S15, doi: 10.1016/j.cap.2011.06.019. |
Liu, C.Y. et al., Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation, Journal of Physics: Conference Series 59 (2007) 338-342, 6 pages. |
Narayan, C., et al.—“Thin Film Transfer Process for Low Cost MCM's,” Proceedings of 1993 IEEE/CHMT International Electronic Manufacturing Technology Symposium, Oct. 4-6, 1993, pp. 373-380. |
NT Nguyen et al. “Through-Wafer Copper Electroplating for Three-Dimensional Interconnects”, Journal of Micromechanics and Microengineering. 12 (2002) 395-399. 2002 IOP. |
PCT International Search Report and Written Opinion dated Aug. 28, 2020, for International Application No. PCT/US2020/032245. |
PCT International Search Report and Written Opinion dated Sep. 15, 2020, for International Application No. PCT/US2020/035778. |
Ronald Hon et al. “Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection”, 2005 IEEE. pp. 384-389. |
S. W. Ricky Lee et al. “3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling”, 2005 IEEE, pp. 798-801. |
Shen, Li-Cheng, et al.—“A Clamped Through Silicon Via (TSV) Interconnection for Stacked Chip Bonding Using Metal Cap on Pad and Metal col. Forming in Via,” Proceedings of 2008 Electronic Components and Technology Conference, pp. 544-549. |
Shi, Tailong, et al.—“First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-chip Integration,” Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference, May 30-Jun. 2, 2017, pp. 41-46. |
Srinivasan, R., et al.—“Ultraviolet Laser Ablation of Organic Polymers,” Chemical Reviews, 1989, vol. 89, No. 6, pp. 1303-1316. |
Taiwan Office Action dated Oct. 27, 2020 for Application No. 108148588. |
Trusheim, D. et al., Investigation of the Influence of Pulse Duration in Laser Processes for Solar Cells, Physics Procedia Dec. 2011, 278-285, 9 pages. |
Wu et al., Microelect. Eng., vol. 87 2010, pp. 505-509. |
Yu et al. “High Performance, High Density RDL for Advanced Packaging,” 2018 IEEE 68th Electronic Components and Technology Conference, pp. 587-593, DOI 10.1109/ETCC.2018.0009. |
Yu, Daquan—“Embedded Silicon Fan-out (eSiFO) Technology for Wafer-Level System Integration,” Advances in Embedded and Fan-Out Wafer-Level Packaging Technologies, First Edition, edited by Beth Keser and Steffen Kroehnert, published 2019 by John Wiley & Sons, Inc., pp. 169-184. |
Taiwan Office Action dated Sep. 22, 2022, for Taiwan Patent Application No. 111130159. |
Japanese Office Action dated Feb. 28, 2023, for Japanese Patent Application No. 2021-574255. |
Japanese Office Action issued to Patent Application No. 2021-574255 dated Sep. 12, 2023. |
Office Action for Korean Application No. 10-2022-7001325 dated Nov. 16, 2023. |
Number | Date | Country | |
---|---|---|---|
20200391343 A1 | Dec 2020 | US |