1. Field of the Invention
The present invention relates to a plasma display panel (hereafter PDP), and more particularly to a PDP which can keep color temperature or color deviation constant regardless the display load factor.
2. Description of the Related Art
PDP is a flat display panel which implements a 42 inch large screen. PDP has a gas discharge space where discharge gas is sealed between the front face side substrate and the rear face side substrate. By ultra-violet rays generated by the space charges, ions and electrons, which are generated by discharging in the gas discharge space, fluorescent substances formed inside are excited and the desired color display is implemented. Generally fluorescent substances for three primary colors, red (R), green (G) and blue (B) are formed in each pixel, and the color display based on the combination of the three primary colors is executed by controlling the each emission intensity in each pixel.
In this case, if the grayscale of RGB is 256, for example, a black display is executed when all the grayscales of RGB are 0, and the white display is executed when all the grayscales of RGB are 256. When the grayscales of RGB are less than 256 but are all equal, the white display with low luminance (gray) is executed.
For the color temperature of white created by three primary colors, it is generally said that 9000–10000K is the optimum for Japanese. And it is said that 6000K is the optimum for Europeans and Americans. White for PDP is desirable to be set to the above optimum color temperature values.
As
As
It is a serious problem where white turns a color in this manner depending on the display load factor.
It is accordingly an object of the present invention to provide a PDP where the chromaticity coordinates of white do not fluctuate depending on the display load factor.
It is another object of the present invention to provide a PDP where the color temperature of white does not fluctuate depending on the display load factor.
It is still another object of the present invention to provide a PDP where the deviation of the chromaticity coordinate values of white on the black body radiation curve do not fluctuate even if the display load factor changes.
To achieve the above objects, one aspect of the present invention is characterized in that the PDP drive means makes correction so as to decrease the emission intensity of green or to increase the emission intensity of blue as the display load factor increases compared with the case when the display load factor is lower. Or, the PDP drive means makes correction so as to increase the emission intensity of green or to decrease the emission intensity of blue as the display load factor decreases compared with the case when the display load factor is higher. Such a correction is effective when the monochromatic emission luminance of the fluorescent substance has such a saturation characteristic that the decrease in green is greater than blue as the emission frequency increases. Therefore, when the saturation characteristic is the opposite in terms of the relationship between green and blue, the increase/decrease of the emission intensity in the above correction must be the opposite.
There are various ways to detect the display load factor. In a preferred embodiment, for example, the power consumption of the panel is monitored, and if the power consumption increases, display is corrected such that the emission intensity of green is decreased or the emission intensity of blue is increased. If power consumption decreases, on the other hand, display is corrected such that the emission intensity of green is increased or the emission intensity of blue is increased.
In the case of another preferred embodiment, the drive frequency of the sustain discharge pulse is monitored and if the drive frequency decreases, display is corrected such that the emission intensity of green is decreased or the emission intensity of blue is increased. If the drive frequency increases, on the other hand, display is corrected such that the emission intensity of green is increased or the emission intensity of blue is decreased.
As the above mentioned correction method for increasing or decreasing the emission intensity, increasing or decreasing the signal intensity of green and blue to be supplied is preferable. Because of this, the signal intensity of green for white, for example, is corrected to be lower as the display load factor increases so that white, which is the same as when the display load factor is lower, is displayed.
The above invention prevents the optimum chromaticity coordinate values from deviating by the fluctuation of the color temperature value or by the deviation of the color temperature of white to be displayed along with the fluctuation of the display load factor.
To achieve the above objects, another aspect of the present invention is characterized in that the PDP drive means controls the drive frequency of the sustain discharge pulse so as to be limited in the range where the emission intensity of the fluorescent substances of the panel does not saturate. In this case, when the emission intensity of the fluorescent substances of RGB of the panel have different saturation characteristics as the drive frequency increases, the drive means does not use the drive frequency which reaches the saturation area. Therefore, influence by the emission intensity saturation characteristic of the fluorescent substances of RGB is eliminated, the color temperature value or the deviation of the color temperature of white to be displayed is kept roughly constant without depending on the display load factor, and deviation from the optimum chromaticity coordinate values is prevented.
To achieve the above objects, the present invention is a plasma display panel which displays colors by exciting a plurality of fluorescent substances using ultra-violet rays generated during discharge, wherein depending on a change of the display load factor, the plasma display panel drive unit corrects display by changing the emission intensity of a fluorescent substance of a predetermined color so that the ratio of the emission intensity of the above fluorescent substance of each color during white display is roughly the same when the above display load factor is low and high.
It is still another object of the present invention to provide a PDP where white does not turn color depending on the display load factor by maintaining the chromaticity coordinate values during white display within ±0.005uv of the deviation area from the color temperature curve denoted by the black body radiation curve, regardless the display load which depends on the luminance of the display image or display area.
Embodiments of the present invention will now be described with reference to the accompanying drawings. These embodiments, however, do not restrict the technical scope of the present invention.
The drive method shown in
Comparing case A, where the display load factor is small, and case B, where the display load factor is large, the drive frequency is high in case A and low in case B, and power consumption decreases in case A and increases in case B, as
Therefore, when the relative composing ratio of each color in white is set to the optimum in the area where the display load factor is low, for example, correction is made such that the emission intensity of green is decreased in case B, where the display load factor is high, more so than case A, where the display load factor is low. Or, correction is made such that the emission intensity of blue is increased in case B, where the display load factor is high, more so than case A, where the display load factor is low. Or, green and blue are simultaneously corrected.
When the relative composing ratio of each color in white is set to an optimum in the area where the display load factor is high, on the other hand, correction is made such that the emission intensity of green is increased in case A, where the display load factor is small, more so than case B, where the display load factor is high. Or, correction is made such that the emission intensity of blue is decreased in case A, where the display load factor is low, more so than case B, where the display load factor is high. Or, green and blue are simultaneously corrected.
Each pixel has fluorescent substances 13R, 13G and 13B for RGB respectively, and a desired color is displayed by the combination of the emission intensity of the three primary colors. When the emission intensity of the three primary colors are all at a maximum, for example, white, which has the maximum grayscales, is reproduced, and when the emission intensity of the three primary colors are all zero, black is reproduced.
The grayscale of the plasma display panel is displayed by matching each bit of the display data to the sub-frame period and changing the length of the sustain discharge period in the sub-frame according to the weighting of the bit. For example, a when 2j grayscale display is executed with j bits, one frame is divided into j number of sub-frames. The length of the sustain discharge period Ts sf(j) of each sub-frame is in the ratio of 1:2:4:8: . . . 2j-1. Here, the address period Ta sf and the reset period Tr are the same lengths for all the sub-frames.
One sub-frame period consists of the reset period Tr, address period Ta, and the sustain discharge period Ts (Ts sf). In the reset period Tr, all the Y electrodes are set to 0V, pulses are applied to all the address electrodes and X electrodes respectively, and after all the cells discharge, a self-erasing discharge for self neutralization and for ending the discharge is executed. Then, in the addressing period Ta, address selection and discharge are executed for each line to turn the cells on/off according to the display data, and the priming charge is stored. Then pulses are applied alternately to the X electrodes and Y electrodes for the sustain discharge during the sustain discharge period Ts, and an image for one sub-frame is displayed. The luminance is determined by the number of times of pulses during the sustain discharge period.
In this way, the luminance of 0 to 2j-1 grayscales can be displayed by turning on the sub-frames from 1 to j selectively.
Increasing the drive frequency of the sustain discharge pulse in the sustain discharge period Ts increases the general number of times of emissions, and increases the luminance. Increasing the drive frequency, however, tends to increase the power consumption of the panel.
The drive unit 80 comprises address drivers 89A and 89B for driving the address electrodes A, a scan driver 86 for driving the Y electrodes during scanning, an X common driver 85 for commonly driving the X electrodes, and Y common driver 87 for commonly driving the Y electrodes. The image data DF for each frame from the outside includes RGB image data, and is stored in a frame memory 830 in a data processing circuit 83 via a signal intensity adjustment part 91. Synchronization signals Vsync and Hsync from the outside are supplied to a scan controller 81 and a common driver controller 82 respectively.
The data processing circuit 83, the scan controller 81 for controlling panel driving and the common driver controller 82 constitute the control circuit 90. The data processing circuit 83 executes, for example, gamma conversion and conversion to the sub-field data Dsf based on binary processing for the supplied RGB image data for each frame, and stores the result to the frame memory 830. And, the sub-field data Dsf is supplied to the address drivers 89A and 89B according to the timing signal, which is not illustrated, from the scan controller 81.
The scan controller 81 supplies the timing signal to the scan driver 86 during the address period TA according to the above mentioned synchronization signal to be supplied. The common driver 82 supplies predetermined timing signals to the X and Y common drivers 85 and 87 during the reset period TR and the sustain discharge period TS. The common driver 82 includes a function to control the drive frequency of the sustain discharge pulse during the sustain discharge period so that overall power consumption does not become higher than a predetermined value.
This power consumption can be detected, for example, by the current to be consumed by the power supply circuit 84. The power consumption according to the display load factor can also be detected by the X common driver which supplies a drive pulse with the drive frequency to the X electrodes during the sustain discharge period. In this case, a power detection part 92, illustrated in
In the first embodiment, when the power consumption PW1 increases, as shown in
When the power consumption PW1 decreases, as shown in
After the intensity of the green and/or blue image signals are adjusted, the image signals are supplied to the data processing circuit 83. Therefore, the color temperature value and the deviation of white are maintained a roughly at a constant regardless the level of power consumption.
The intensity of green and blue image signals can also be adjusted within the data processing part 83. For example, the intensity of green and blue image signals can be adjusted for correction by increasing or decreasing the output value of the gamma table during gamma conversion. By using the signal intensity adjustment unit 91, a conventional data processing circuit 83 can be used as is.
A green and blue grayscale correction, similar to above, may be executed based on overall power fluctuation detected in the power supply circuit 84.
The signal intensity information (data) detected by the signal intensity detection unit 93 is supplied to the signal intensity adjustment unit 91. When the detected signal intensity increases, the signal intensity adjustment unit 91 adjusts the intensity of the green image signal included in the image signal to be decreased, as mentioned above. Or, the signal intensity adjustment unit 91 adjusts the intensity of the blue image signal included in the image signal to be increased.
Or, when the detected signal intensity decreases, the signal intensity adjustment unit 91 adjusts the intensity of the green image signal included in the image signal to be increased. Or, the signal intensity adjustment unit 91 adjusts the blue image signal included in the image signal to be decreased.
After the intensity of the green and/or blue image signals is adjusted, the image signals are supplied to the data processing circuit 83. Therefore, the color temperature value and the deviation of white are maintained roughly at a constant regardless the level of power consumption.
As
So, when the drive frequency f decreases, the signal intensity adjustment unit 91 adjusts the intensity of the green image signal included in the image signal to be decreased. Or, the signal intensity adjustment unit 91 adjusts the intensity of the blue image signal included in the image signal to be increased.
Or, when the drive frequency f increases, the signal intensity adjustment unit 91 adjusts the intensity of the green image signal included in the image signal to be increased. Or, the signal intensity adjustment unit 91 adjusts the intensity of the blue image signal included in the image signal to be decreased.
The drive frequency f detected by the drive frequency detection unit 94 may be supplied to the data processing circuit 83. In this case, the luminance of green or blue can be adjusted by adjusting, for example, the output values of the gamma table in the gamma conversion processing in the data processing circuit 83.
The drive frequency f is determined by the common driver controller 82. Therefore, the determined information on the drive frequency f may be supplied to the signal intensity adjustment unit 91 and the data processing circuit 83 to make the above mentioned correction.
The fourth embodiment will now be described. In the fourth embodiment, the drive frequency is monitored so that the drive frequency is limited within the frequency range fL shown in
By maintaining the drive frequency in the frequency range fL in this way, RGB fluorescent substances can be excited while avoiding the saturation characteristics. Therefore, the change of color temperature and change of deviation of white depending on the fluctuation of the display load factor can be prevented, and the relative ratio of colors to display an optimum white can be constantly maintained.
In the above embodiment, it is preferable to maintain the color temperature value of white to be displayed at ±200K or less of the set value, and the deviation at set value ±0.005uv or less.
In the above embodiment, if the chromaticity coordinate value of white to be displayed are set at the region of ±0.005uv from the color temperature curve denoted by the black body radiation curve, regardless the value of the display load factor, then a visually preferable white can be displayed because phenomena where white turns color depending on the display load factor does not occur.
In the above embodiment, if the chromaticity coordinate value during a white display is moved such that the color temperature increases and the deviation is maintained as constant as the display load factor increases, then a white with a high color temperature can be displayed, that is, a visually preferable white can be displayed, when the image load factor is high.
In the above embodiment, if the saturation characteristics of the fluorescent substances shown in
In this way, according to the present invention, the color temperature value of white can be controlled to within a predetermined range depending on the display load factor. Or, the deviation of the color temperature curve of white can be controlled to within a predetermined range. Therefore, an optimum white or a white close thereto can always be displayed and high quality images can be displayed.
The protective scope of the present invention is not restricted by the above embodiments, but the claims and all the variations which come within the meaning of the claims are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
11-186818 | Jun 1999 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4692665 | Sakuma | Sep 1987 | A |
5045846 | Gay et al. | Sep 1991 | A |
5526058 | Sano et al. | Jun 1996 | A |
5541618 | Shinoda | Jul 1996 | A |
5546101 | Sugawara | Aug 1996 | A |
5757343 | Nagakubo | May 1998 | A |
6034655 | You | Mar 2000 | A |
6034656 | Yamamoto et al. | Mar 2000 | A |
6052101 | Moon | Apr 2000 | A |
6061040 | Onodera et al. | May 2000 | A |
6100859 | Kuriyama et al. | Aug 2000 | A |
6115011 | Sano et al. | Sep 2000 | A |
6249268 | Tachibana et al. | Jun 2001 | B1 |
6331843 | Kasahara et al. | Dec 2001 | B1 |
6344839 | Denda et al. | Feb 2002 | B1 |
6348762 | Nunomura et al. | Feb 2002 | B1 |
6351253 | Kasahara et al. | Feb 2002 | B1 |
6353292 | Takamori et al. | Mar 2002 | B1 |
6356017 | Makino | Mar 2002 | B1 |
6400347 | Kang | Jun 2002 | B1 |
6424325 | Van Dijk | Jul 2002 | B1 |
6724356 | Kojima et al. | Apr 2004 | B1 |
20020008679 | Rutherford | Jan 2002 | A1 |
20020033830 | Yamakawa | Mar 2002 | A1 |
20020044105 | Nagai | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
0 614 321 | Sep 1994 | EP |
0 653 740 | May 1995 | EP |
0 924 683 | Jun 1999 | EP |
5-61437 | Dec 1993 | JP |
8-9415 | Dec 1996 | JP |
09-244574 | Sep 1997 | JP |
9-281927 | Oct 1997 | JP |
9-319331 | Dec 1997 | JP |