The present invention relates to plasma generators, and more particularly to devices for processing gas using microwave plasma.
In recent years, microwave technology has been applied to generate various types of plasma. Typically, a microwave discharge, which is used as a plasma source, is achieved by coupling microwave energy into a discharge chamber containing gas to be processed. One of the difficulties in operating a conventional microwave plasma system includes sustaining plasma in a stable manner. Unstable plasma, as a result of suboptimal reactor geometry, gas inlet manifolds, chamber design, or gas flow rate, etc. may cause less than optimal condition for gas processing or reformation and may even cause the plasma to extinguish itself or damage the reactor.
As such, there is a need for microwave plasma system that has an improved plasma stability to thereby yield a higher efficiency reactor and throughput for better economics.
According to one aspect of the present invention, a plasma generating system that includes: a waveguide for transmitting a microwave energy therethrough; an inner wall disposed within the waveguide to define a plasma cavity, wherein a plasma is generated within the plasma cavity using the microwave energy; a first gas inlet mounted on a first side of the waveguide and configured to introduce a first gas into the plasma cavity and generate a first vortex flow within the plasma cavity using the first gas, the first gas inlet having a through hole through which a gas processed by the plasma exits the plasma cavity; and a plasma stabilizer having a shape of a circular hollow cylinder and installed on a second side of the waveguide, an axial direction of the plasma stabilizer being in parallel to a rotational axis of the first vortex flow.
According to another aspect of the present invention, a plasma generating system includes: a waveguide for transmitting a microwave energy therethrough; an inner wall disposed within the waveguide to define a plasma cavity, wherein a plasma is generated within the plasma cavity using the microwave energy; a first gas inlet mounted on a first side of the waveguide and configured to introduce a first gas into the plasma cavity and generate a first vortex flow within the plasma cavity using the first gas, the first gas inlet having a through hole through which a gas processed by the plasma exits the plasma cavity; and a plasma stabilizer having a shape of a circular hollow cylinder and installed on the first gas inlet, an axial direction of the plasma stabilizer being in parallel to a rotational axis of the first vortex flow.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the disclosure. It will be apparent, however, to one skilled in the art that the disclosure can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present disclosure, described below, may be implemented in a variety of ways.
Components, or modules, shown in diagrams are illustrative of exemplary embodiments of the disclosure and are meant to avoid obscuring the disclosure. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the disclosure and may be in more than one embodiment. Also, the appearances of the above-noted phrases in various places in the specification are not necessarily all referring to the same embodiment or embodiments.
The use of certain terms in various places in the specification is for illustration and should not be construed as limiting. The terms “include,” “including,” “comprise,” and “comprising” shall be understood to be open terms and any lists the follow are examples and not meant to be limited to the listed items.
The microwave supply unit 12 provides microwave energy to the plasma chamber 22 and includes: a microwave generator 14 for generating microwaves; a power supply 16 for supplying power to the microwave generator 14; and a tuner 18 for reducing the microwave energy reflected from the plasma chamber 22 and travelling toward the microwave generator 14. In embodiments, the microwave supply unit 12 may include other components, such as an isolator having a dummy load for dissipating reflected microwave energy that propagates toward the microwave generator 14 and a circulator for directing the reflected microwave energy to the dummy load and a sliding short circuit disposed at the end of the waveguide 20.
In embodiments, the inner wall 40 is formed of a material that is transparent to the microwave energy, such as quartz or ceramic. In embodiments, the inner wall 40 is formed of any other suitable dielectric material that is desirable for uniform flow, thermal resistance, chemical resistance, and electromagnetic transparency. In embodiments, the inner wall 40 has preferably, but not limited to, a shape of hollow circular cylinder.
In embodiments, each gas passageway 48 is arranged to impart spiral motion to the forward flow as the forward flow enters the plasma cavity via the gas passageway 48. In embodiments, each gas passageway 48 may be curved to enhance the vorticity of the forward flow. In embodiments, the forward flow inlet 42 is formed of any suitable material, such as ceramic, so that the inlet is electrically isolated from the waveguide 20 and withstand the heat energy from the plasma 46.
In embodiments, the plasma stabilizer 38 is formed of material that is transparent to the microwave energy, and preferably formed of the same material as the inner wall 40. In embodiments, the plasma stabilizer 38 is attached to the waveguide 20, protruding into the plasma cavity, where the axial direction of the plasma stabilizer 38 is parallel to the y-axis. In embodiments, as discussed above, the inner wall 40 may have a shape of a hollow circular cylinder and the plasma stabilizer 38 may be installed concentrically to the inner wall 40. In embodiments, the forward flow inside the plasma stabilizer 38 forms the inner vortex flow 43 and proceeds toward the other end of the waveguide 20, more specifically toward the gas outlet 32.
In embodiments, upon ignition of a plasma plume (or shortly, plasma) 46 by a plasma igniter (not shown in
In embodiments, the reverse flow exiting the reverse flow inlet 44 travels toward to the inner wall 40 and then proceeds upwardly (y-axis direction) toward the other end of the waveguide 20 along the inner wall 40 in a helical motion. Subsequently, the reverse flow reverses the flow direction to proceed downwardly and form an outer vortex flow 45. In embodiments, the rotational axis of the outer vortex flow 45 is substantially parallel to the y-axis.
In embodiments, the outer vortex flow 45 surrounds the inner vortex flow 43, to thereby shield the inner wall 40 from the plasma 46. In embodiments, the reverse flow exiting the reverse flow inlet 44 may have the ambient temperature and take heat energy from the inner wall 40 as the outer vortex flow 45 travels upwardly along the inner wall 40 in the helical motion.
In embodiments, as discussed above, the inner diameter of the plasma stabilizer 38 determines the radial dimension of the inner vortex flow 43. As such, in embodiments, the inner diameter of the plasma stabilizer 38 may be adjusted so that the outer vortex flow 45 surrounds the inner vortex flow 43 and maintain the flow regime of the inner vortex flow 43 in a stable manner to thereby stabilize the plasma and yield improved throughput and efficiency.
In embodiments, the plasma 46 is used to reform the inlet gas to the desired product gas, where the inlet gas is introduced into the plasma cavity by the forward flow inlet 42 and reverse flow inlet 44. In embodiments, the gas composition of the inner vortex flow exiting the forward flow inlet 42 includes CO2, CH4 and O2, and the gas exiting the gas outlet 32 includes CO and H2 as well as a non-reacted portion of forward flow gas. In embodiments, the preferred distribution for the forward flow is 5%-95% by mass of the total flow into the plasma chamber 22. In embodiments, the reverse flow may have the same gas composition of the forward flow. In alternative embodiments, the forward flow may have different gas composition from the reverse flow. Also, the gas composition of the forward flow (and/or reverse flow) may be changed during operation. For instance, the forward flow may include a slug of argon to aid ignition of the plasma 46. In embodiments, the gas compositions and flow rates of the forward and reverse flows may be adjusted to enhance the plasma stability and efficiency of the chemical reaction in the plasma chamber 22.
As depicted, the components of the plasma chamber 122 include: inner wall 140; waveguide 120; forward flow inlet 142 and reverse flow inlet 144, where these components have the similar structures and functions of their counterparts, respectively. Unlike in the plasma chamber 22, the radial dimension of the forward flow is not controlled by the inner diameter of the plasma stabilizer 138; instead, the radial dimension of the inner vortex flow 143 is determined by the flow rate of the forward flow exiting the forward flow inlet 142. Thus, as shown in
In embodiments, the plasma stabilizer 138 is located inside the outer vortex flow 145 and suppresses the fluctuation of the radial dimension of the inner upward flow region (similar to 45-1) of the outer vortex flow 145 during operation, to thereby stabilize the overall flow regime of the inner vortex flow 143 and, in turn, stabilize the plasma 146.
As depicted, a plasma 246 is sustained inside the outer vortex flow 245, more specifically, the inner downward flow portion 245-1 of the outer vortex flow 245. In embodiments, the plasma 246 processes/reforms the gas particles in the inner downward flow portion 245-1 of the outer vortex flow 245 and the reformed gas exits the gas outlet formed in the reverse flow inlet 244.
In embodiments, the height (i.e. the length along the y-axis) of the plasma stabilizer 238 affects the height of the outer vortex flow 245. Whilst not being bound by theory, the plasma stabilizer 238 appears to suppress the fluctuation of the flow regime in the plasma cavity, to thereby stabilize the outer vortex flow 245 and the plasma 246 formed inside the outer vortex flow 245.
In embodiments, the plasma stabilizer 338 is located inside the outer vortex flow 345 and suppresses the fluctuation of the radial dimension of the inner upward flow region of the outer vortex flow 345 during operation, to thereby stabilize the overall flow regime of the outer vortex flow 345 and, in turn, stabilize the plasma 346.
In embodiments, the vortical motion of the inner and outer vortex flows in
In embodiments, the plasma stabilizer (e.g. 338) is located inside the outer vortex flow (e.g. 345) and as such, both the inner and outer surfaces of the plasma stabilizer 338 may be rifled or finned to further impart helical motion to the outer vortex flow 345.
One skilled in the art will recognize no computing system or programming language is critical to the practice of the present disclosure. One skilled in the art will also recognize that a number of the elements described above may be physically and/or functionally separated into sub-modules or combined together.
It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present disclosure. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present disclosure. It shall also be noted that elements of any claims may be arranged differently including having multiple dependencies, configurations, and combinations.
This application claims priority of U.S. Patent Application Nos. 62/823,436; 62/823,492; 62/823,505; 62/823,508; 62/823,514; 62/823,517; 62/823,472; 62/823,484; 62/823,855; 62/870,605, which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5418430 | Bayliss | May 1995 | A |
9275839 | Chen et al. | Mar 2016 | B2 |
20040173316 | Carr | Sep 2004 | A1 |
20080017616 | Lee | Jan 2008 | A1 |
20090272653 | Beech | Nov 2009 | A1 |
20110115378 | Lubomirsky | May 2011 | A1 |
20110250098 | Matveev | Oct 2011 | A1 |
20120315745 | Katayama | Dec 2012 | A1 |
20140142255 | Paulauskas | May 2014 | A1 |
20140159572 | Risby | Jun 2014 | A1 |
20190006151 | Paukner | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
10-2017-0006007 | Jan 2017 | KR |
10-2018-0114614 | Oct 2018 | KR |
2010-005201 | Jan 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20200312627 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62823436 | Mar 2019 | US | |
62823492 | Mar 2019 | US | |
62823505 | Mar 2019 | US | |
62823508 | Mar 2019 | US | |
62823514 | Mar 2019 | US | |
62823517 | Mar 2019 | US | |
62823484 | Mar 2019 | US |