The present disclosure relates to heat exchangers for heating or cooling bulk solids.
Indirect-heat thermal processors for heating or cooling bulk solids may utilize hot gases for heating or drying bulk solids or cool gases for cooling the bulk solids as the bulk solids flow through the heater, cooler, or dyer. The use of such gases is inefficient as large volumes of air or other gases are utilized and waste heat in the exhaust gas is difficult to recover.
Heat transfer plates or tubes provide improved efficiency in heat exchangers by indirectly heating or cooling bulk solids that flow, under the force of gravity, through a heat exchanger. The heat transfer plates or tubes include a heat exchange fluid flowing through the plates or tubes and the bulk solids are heated or cooled as they flow through spaces between adjacent heat transfer plates or tubes.
Applications for such heat exchangers vary widely. The heat transfer systems including plates or tubes referred to above are generally useful in relatively low pressure and low temperature heat exchange applications. Such heat exchangers are unsuitable in other applications in which high temperature fluids or high pressure fluids are utilized due to limitations of the heat transfer plates and tubes. For example, applications for energy recovery and storage may involve hot bulk solids and high pressure heat exchange fluid from which heat recovery is desirable.
Improvements to heat exchangers are desirable.
According to one aspect of an embodiment, a heat exchanger includes an inlet for receiving bulk solids, a plurality of heat transfer plate assemblies, a plurality of spacers disposed between adjacent heat transfer plate assemblies, and supports for supporting the plurality of heat transfer plate assemblies. The heat transfer plate assemblies include a first sheet having a first pair of holes extending through the first sheet and channels extending along a surface thereof, for the flow of fluid from a first of the first pair of holes, through the channels, to a second of the first pair of holes, and a second sheet bonded to the first sheet to enclose the channels between the first sheet and the second sheet, the second sheet including a second pair of holes generally aligned with the first pair of holes of the first sheet to form first through holes and second through holes to facilitate flow of the fluid through the first through holes, through the channels, and through the second through holes. The spacers are disposed between adjacent heat transfer plate assemblies to space the adjacent heat transfer plate assemblies apart to facilitate the flow of the bulk solids from the inlet, between the adjacent heat transfer plate assemblies.
According to another aspect of an embodiment, a heat exchanger is provided. The heat exchanger includes an inlet for receiving bulk solids, a plurality of heat transfer plate assemblies arranged in banks with the heat transfer plate assemblies of each bank arranged generally parallel to each other, a plurality of spacers disposed between adjacent heat transfer plate assemblies within each bank, and supports for supporting the banks of heat transfer plate assemblies. Each heat transfer plate assembly includes a first sheet having channels extending along a surface thereof, and a second sheet bonded to the first sheet to enclose the channels between the first sheet and the second sheet. The first sheet and the second sheet together have first through holes near a first side edge of the heat transfer plate assemblies, in fluid communication with first ends of the channels, and second through holes near a second side edge of the heat transfer plate assemblies, in fluid communication with second ends of the channels to facilitate flow of the fluid through the first through holes, through the channels, and through the second through holes. The spacers are disposed between adjacent heat transfer plate assemblies within each bank, to space the adjacent heat transfer plate assemblies apart to facilitate the flow of the bulk solids from the inlet, between the adjacent heat transfer plate assemblies, the spacers including holes extending therethrough. The heat transfer plate assemblies and spacers in each bank are coupled together such that the first through holes of the heat transfer plate assemblies and holes of the spacers form a first conduit, and the second through holes and spacers form a second conduit in each bank.
According to yet another embodiment, there is provided a bank of heat transfer plate assemblies for use in a heat exchanger. The bank of heat transfer plate assemblies includes a plurality of heat transfer plate assemblies arranged generally parallel to each other. The heat transfer plate assemblies include a first sheet having channels extending along a surface thereof, and a second sheet bonded to the first sheet to enclose the channels between the first sheet and the second sheet, the first sheet and the second sheet together having first through holes near a first side edge of the heat transfer plate assemblies and in fluid communication with first ends of the channels, and second through holes near a second side edge of the heat transfer plate assemblies and in fluid communication with second ends of the channels to facilitate flow of the fluid through the first through holes, through the channels, and through the second through holes. The bank also includes a plurality of spacers disposed between adjacent heat transfer plate assemblies to space the adjacent heat transfer plate assemblies apart to facilitate the flow of the bulk solids between the adjacent heat transfer plate assemblies, the spacers including holes extending therethrough. The heat transfer plate assemblies and spacers in the bank are coupled together such that the first through holes of the heat transfer plate assemblies and holes of the spacers form a first conduit, and the second through holes and spacers form a second conduit.
Embodiments of the present invention will be described, by way of example, with reference to the drawings and to the following description, in which:
For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. Numerous details are set forth to provide an understanding of the embodiments described herein. The embodiments may be practiced without these details. In other instances, well-known methods, procedures, and components have not been described in detail to avoid obscuring the embodiments described. The description is not to be considered as limited to the scope of the embodiments described herein.
The disclosure generally relates to heat exchangers for heating or cooling bulk solids, and the corresponding cooling or heating of the heat transfer fluid. The heat exchanger includes an inlet for receiving bulk solids, a plurality of heat transfer plate assemblies, a plurality of spacers disposed between adjacent heat transfer plate assemblies, and supports for supporting the plurality of heat transfer plate assemblies. The heat transfer plate assemblies include a first sheet having a first pair of holes extending through the first sheet and channels extending along a surface thereof, for the flow of fluid from a first of the first pair of holes, through the channels, to a second of the first pair of holes, and a second sheet bonded to the first sheet to enclose the channels between the first sheet and the second sheet, the second sheet including a second pair of holes generally aligned with the first pair of holes of the first sheet to form first through holes and second through holes to facilitate flow of the fluid through the first through holes, through the channels, and through the second through holes. The spacers are disposed between adjacent heat transfer plate assemblies to space the adjacent heat transfer plate assemblies apart to facilitate the flow of the bulk solids from the inlet, between the adjacent heat transfer plate assemblies.
The heat transfer plate assemblies are arranged in rows. In the present example, the heat transfer plate assemblies 108 are arranged in eight rows, referred to as banks 110, 112, 114, 116, 118, 120, 122, 124, each including a plurality of the heat transfer plate assemblies 108. The heat transfer plate assemblies 108 in the first bank 110 are generally parallel to each other and are spaced apart to leave passageways between adjacent heat transfer plate assemblies 108 for the flow of bulk solids. Similarly, the heat transfer plate assemblies 108 of the subsequent banks 112, 114, 116, 118, 120, 122, 124 are generally parallel to each other and are spaced apart to leave passageways between the adjacent heat transfer plate assemblies 108 of each of the banks for the flow of bulk solids.
The banks 110, 112, 114, 116, 118, 120, 122, 124 are arranged generally vertically with the first bank 110 at the top, followed by the second bank 112, the third bank 114, the fourth bank 116, the fifth bank 118, the sixth bank 120, the seventh bank 122, and the eight, or bottom bank 124.
The banks 110, 112, 114, 116, 118, 120, 122, 124 are supported on support rails 126 that extend under the bottom bank 124 of heat transfer plate assemblies 108. Further support rails may also be utilized, for example, between banks. Alternatively or in addition, supports may extend above one or more banks for supporting the banks from above. Although the heat exchanger 100 of
The bulk solids flow through the spaces between the heat transfer plate assemblies 108, which spaces provide the passageways through the banks 110, 112, 114, 116, 118, 120, 122, 124 of the heat transfer plate assemblies 108. The bulk solids that contact the heat transfer plate assemblies 108 are deflected into the passageways.
The bulk solids then flow from the passageways and are discharged, for example, through a discharge hopper 148 in which the bulk solids are discharged under a “choked” flow to control the rate of flow through the heat exchanger 100, and out of the heat exchanger 100. In the example shown in
Reference is now made to
Each of the sheets include a pair of holes 408, 410 extending through the thickness of the sheets, with a first one of the holes 408 near a first side edge 406 and the second hole 410 near the opposing side edge 406.
Three of the sheets 402 include channels 412 therein. The channels 412 may be selectively etched in each sheet, for example, by photoetching to create channels 412 in a face of the sheet 402, with the channels 412 extending continuously from the first hole 408 to the second hole 410. The channels 412 do not extend through the entire thickness of the sheet 402. The channels 412 are spaced from each other and are distributed between the long edges 404 of the sheet. In the present example, 13 channels 412 are shown extending from the first hole 408 to the second hole 410. Any suitable number of channels 412 may be successfully employed, however. As indicated, the channels 412 may be formed by selectively photoetching the sheets 402. The resulting channels 412 are generally half-circular in cross section as a result of the selective etching process.
The four sheets 402 that together make up the heat transfer plate assembly 108, are stacked together such that each face 414 that includes the channels 412, abuts an adjacent sheet 402 to enclose the channels between sheets 402. The stack of sheets 402 is heated in a vacuum furnace with mechanical pressure applied, to cause diffusion of the sheets 402 into each other. The diffusion results in a single heat transfer plate assembly of about 0.240 inches thickness (6.096 mm) that includes the stacked sheets 402 that are diffusion bonded together.
In the example shown in
Diffusion bonding may be carried out on several stacks of sheets 402 to create several diffusion bonded plates at a time. The diffusion bonded plates may be maintained separate by including a sheet or plate of dissimilar material that does not diffusion bond with the material of the sheets 402, between each stack of the sheets 402 that form a single heat transfer plate assembly 108.
In the above description, each sheet 402 is described as including the first hole 408 and the second hole 410. Alternatively, the sheets may be selectively etched as described and diffusion bonded prior to creating the holes through the resulting heat transfer plate assembly 108.
Referring to
The heat transfer plate assemblies 108 are stacked with two spacers 502 disposed between each pair of adjacent heat transfer plate assemblies 108, as illustrated in
As illustrated in
The end plates 702, spacers 502, and heat transfer plate assemblies 108 may all be joined together in the stack by diffusion bonding, by heating in a vacuum and under mechanical pressure. Thus, the end plates 702, the spacers 502, and the heat transfer plate assemblies 108 are joined together to form a single, unitary bank of heat transfer plate assemblies. Alternatively, the end plates 702, the heat transfer plate assemblies 108, and the spacers 502 may be bonded together by brazing or utilizing any other suitable bonding technique.
When joined to provide the unitary bank, the nozzles 708 of the end plates 702 are in fluid communication with the holes 504 in the spacers 502 and with the holes 408, 410 in the sheets 402 that form the heat transfer plate assemblies 108. Thus, the through holes of the heat transfer plate assemblies 108 in the first bank are all in fluid communication by the spacers to form a continuous conduit, utilized as a fluid manifold through the heat transfer plate assemblies 108 and spacers 502. Two continuous fluid manifolds are thus formed through the heat transfer plate assemblies 108 and the spacers 502 in the unitary bank.
The nozzles 708 may be utilized as a fluid inlet and a fluid outlet to facilitate the flow of fluid into one of the fluid manifolds formed in the heat transfer plate assemblies 108 and the spacers 502, through the channels in the sheets 402 that form the heat transfer plate assemblies 108, and out through the other fluid manifold formed in the heat transfer plate assemblies 108. Thus, two integral fluid manifolds are formed in the bank of heat transfer plate assemblies 108, for use as an inlet manifold and an outlet manifold.
A plurality of banks are joined together in a stack as illustrated in
Referring now to
Referring to
Referring again to
The bottom bank 124 includes an inlet flange 130 attached to a nozzle 708 of an end plate on a first side 132 of the heat exchanger 100, which nozzle 708 is utilized as the fluid inlet to the inlet manifold formed in the heat transfer plate assemblies 108 and spacers 502. A heat exchange fluid source is coupled to the inlet flange 130 when the heat exchanger 100 is in use, for supplying a heat exchange fluid, such as supercritical carbon dioxide, to the heat exchanger 100. The nozzle 708 that is coupled to the end plate on an opposing side, referred to as the second side 134, and is in fluid communication with the outlet manifold formed in the bottom bank 124, is fluidly coupled by a fluid line 136 to the nozzle 708 that is coupled to the inlet manifold formed in the seventh bank 122. Thus, the fluid line 136 couples the fluid outlet manifold of the bottom bank 124 to the fluid inlet manifold of the bank above (the seventh bank 122). A fluid line 138 coupled to the nozzle 708 on the first side 132 of the heat exchanger 100 that is in fluid communication with the fluid outlet manifold of the seventh bank 122 is coupled to the nozzle 708 that is in fluid communication with the inlet manifold of the sixth bank 120. The coupling of fluid outlet manifolds to fluid inlet manifolds of the bank above continues such that the fluid flows in a serpentine fashion through the heat exchanger, to the top bank 110. Thus, the inlet manifold of each of the top, second, third, fourth, fifth, sixth, and seventh banks 110, 112, 114, 116, 118, 120, 122 is coupled to the fluid outlet manifold of the respective bank below. The remaining nozzles 708 that are not utilized for coupling an inlet flange 130, an outlet flange 140, or a fluid line such as the fluid lines 136, 138, are plugged to substantially seal the nozzles and thereby inhibit the flow of the heat exchange fluid out of these unutilized nozzles 708.
The top bank 110 includes an outlet flange 140 attached to a nozzle 708 on an end plate on a first side 132 of the heat exchanger for coupling an outlet line thereto for the flow of the heat exchange fluid, after passing through the heat transfer plate assemblies 108 and out of the heat exchanger 100. In the present example, 8 banks are utilized and the outlet flange 140 is attached to the nozzle 708 on the end plate on the first side 132 of the heat exchanger. Alternatively, an outlet flange may be attached to a nozzle on an end plate on the second side 134 when there are an odd number of banks of heat transfer plate assemblies 108.
Thus, the heat exchange fluid is utilized for indirect heat exchange with the bulk solids as the heat exchange fluid heats the heat transfer plate assemblies 108 for the transfer of heat to the bulk solids as the bulk solids flow through the heat exchanger 100. The heat exchange fluid, however, is separate from and not in contact with the bulk solids that are heated or cooled in the heat exchanger 100. The heat exchange fluid may be introduced to the heat transfer plate assemblies 108 at high temperature and pressure, for example, utilizing supercritical CO2 at a pressure of 200 bar.
The heat transfer plate assemblies 108 of one bank may be offset from the heat transfer plate assemblies of an adjacent bank in any suitable manner. For example, an end plate 702 on one side of a bank may be thicker than the end plate 702 on the opposing side of the bank. The banks may be assembled such that the thicker end plate 702 is one side for a first bank and is on an opposing side for the adjacent bank. Thus, the thicker end plate 702 is located on alternate sides. Utilizing this assembly including banks with the thicker end plates located on alternating sides, the heat transfer plate assemblies 108 may be laterally offset such that the heat transfer plate assemblies 108 of the banks are not all vertically aligned, facilitating heating or cooling of the bulk solids. The resulting dimensions of each bank are such that the banks are similar in size and thus, the outer surfaces of the end plates 702 of one bank are vertically aligned with the outer surfaces of the end plates 702 of a subsequent bank.
End plates 702 of different thicknesses on alternating sides is one example of a suitable assembly for achieving an offset in the heat transfer plate assemblies 108 from bank to bank. Such an offset may be realized utilizing any other suitable assembly such that the heat transfer plate assemblies 108 of one bank 110, 112, 114, 116, 118, 120, 122 are not vertically aligned with the heat transfer plate assemblies 108 of a vertically adjacent bank 110, 112, 114, 116, 118, 120, 122 while maintaining similar outer dimensions of the banks 110, 112, 114, 116, 118, 120, 122.
Each bank 110, 112, 114, 116, 118, 120, 122 of heat transfer plate assemblies 108 is sealed by the end plates 702 and the spacers 502 that, for example, are diffusion bonded together. The banks 110, 112, 114, 116, 118, 120, 122 may be joined together in a stack, and a seal, such as a gasket disposed between vertically adjacent banks 110, 112, 114, 116, 118, 120, 122, for example, to inhibit both dust and air from escaping from the heat exchanger 100. The use of such gaskets may be advantageous when a pressure differential exists between the interior of the heat exchanger 100 and outside the heat exchanger 100 or when a sweep gas is utilized. Alternatively, the banks 110, 112, 114, 116, 118, 120, 122 may be joined together in a stack in the heat exchanger 100 without additional seals such that surfaces of vertically adjacent banks 110, 112, 114, 116, 118, 120, 122 of heat transfer plate assemblies abut each other to inhibit escape of particles out of the heat exchanger 100.
The operation of the heat exchanger 100 will now be described with reference to
The bulk solids then flow through out of the discharge hopper 148, which controls the flow of bulk solids from the heat exchanger 100, and out the outlet 150 through which the heated or cooled bulk solids are discharged from the heat exchanger 100.
In the above description, the sheets 402 are etched and diffusion bonded together to form the heat transfer plate assemblies 108. Rather than etching, followed by diffusion bonding, the heat transfer plate assemblies 108 may be 3D printed and then bonded together. Alternatively, the channels 412 may be machined or laser cut into the sheets 402 prior to assembly. The heat transfer plate assemblies may be brazed together rather than diffusion bonded.
As described above, the heat transfer plate assemblies 108, the spacers 502, and the end plates 702 are coupled together by, for example, diffusion bonding. Alternatively, the heat transfer plate assemblies 108, the spacers 502, and the end plates 702 may be coupled together by tie rods that extend through the entire bank to align and maintain the heat transfer plate assemblies 108, the spacers 502, and the end plates 702 in the bank. The entire bank may be sealed or brazed.
In addition, the heat transfer plate assemblies 108 are described as formed from four sheets. Any other suitable number of sheets may be utilized to form the heat transfer plate assemblies 108. For example, two or more sheets may be utilized to form the heat transfer plate assemblies.
In the above-described examples, the through holes of the heat transfer plate assemblies 108 and the spacers in the first bank are all in fluid communication to form continuous conduits, utilized as fluid manifolds. The two continuous fluid manifolds are thus formed through the heat transfer plate assemblies 108 and the spacers 502 in the unitary bank. Alternatively, spacers or sheets within the heat transfer plate assemblies may include only a single hole such that heat exchange fluid travels from the inlet manifold, through more than one heat transfer plate assembly or more than one sheet, before travelling to the outlet manifold.
Advantageously, the heat transfer plate assemblies 108 and the spacers 502 form integral manifolds within the banks. A very high number of relatively thin heat transfer plate assemblies 108 may be employed without requiring a separate manifold coupled to each heat transfer plate assembly 108. High temperature and high pressure heat exchange fluid may be utilized for indirect heat exchange with the bulk solids.
The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole. All changes that come with meaning and range of equivalency of the claims are to be embraced within their scope.
The present application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/CA2018/051404 filed Nov. 6, 2018, entitled “PLATE HEAT EXCHANGER FOR HEATING OR COOLING BULK SOLIDS,” which designated, among the various States, the United States of America, and which claims priority to U.S. Provisional Patent Application No. 62/598,586 filed Dec. 14, 2017, which is hereby incorporated by reference.
The invention was made with government support under Contract No. DE-NA0003525 between the United States Department of Energy and National Technology & Engineering Solutions of Sandia, LLC, for the operation of the Sandia National Laboratories. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2018/051404 | 11/6/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/113680 | 6/20/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1528696 | Wilfrid | Mar 1925 | A |
4347896 | Rosman | Sep 1982 | A |
4420739 | Herren | Dec 1983 | A |
5167274 | Mueller | Dec 1992 | A |
5249359 | Schubert | Oct 1993 | A |
5664426 | Lu | Sep 1997 | A |
6328099 | Hilt | Dec 2001 | B1 |
RE37653 | Anderson | Apr 2002 | E |
7200007 | Yasui | Apr 2007 | B2 |
7231960 | Sakai | Jun 2007 | B2 |
7940526 | Schulz-Harder | May 2011 | B2 |
20080116246 | Rigal | May 2008 | A1 |
20090211740 | Kesseli | Aug 2009 | A1 |
20090266507 | Turnbull et al. | Oct 2009 | A1 |
20130020063 | Fetvedt | Jan 2013 | A1 |
20130292093 | Huang et al. | Nov 2013 | A1 |
20140246184 | Byman | Sep 2014 | A1 |
20150168075 | Bertilsson | Jun 2015 | A1 |
20150349353 | Hood | Dec 2015 | A1 |
20160076813 | Skold | Mar 2016 | A1 |
20160153317 | Geskes | Jun 2016 | A1 |
20160293352 | Zacharias | Oct 2016 | A1 |
20170023311 | Urbanski | Jan 2017 | A1 |
20170030660 | Cachon | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
104350350 | Feb 2015 | CN |
105074982 | Nov 2015 | CN |
0018823 | Jul 1984 | EP |
1277872 | Jun 1972 | GB |
2002250595 | Sep 2002 | JP |
1990013394 | Nov 1990 | WO |
9013394 | Nov 1990 | WO |
WO-9013394 | Nov 1990 | WO |
WO-2014064334 | May 2014 | WO |
Entry |
---|
Chinese Patent Application No. 201880086325.2, Office Action dated Jul. 1, 2021, including English translation; 27 pages. |
European Patent Application No. 18889479.4, Extended European Search Report dated Nov. 15, 2021; 10 pages. |
Number | Date | Country | |
---|---|---|---|
20210164735 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62598586 | Dec 2017 | US |