Polishing apparatus including attitude controller for dressing apparatus

Information

  • Patent Grant
  • 6322434
  • Patent Number
    6,322,434
  • Date Filed
    Friday, March 10, 2000
    24 years ago
  • Date Issued
    Tuesday, November 27, 2001
    23 years ago
Abstract
A dressing apparatus dresses the polishing surface of a turntable while controlling the orientation of a dresser body with electromagnetic forces, thereby allowing an increase in the degree of flatness of the polishing surface of the turntable. A polishing apparatus having the dressing apparatus is also provided. The dressing apparatus includes a dresser body which dresses the polishing surface by contacting it. A pressing device presses the dresser body against the polishing surface of the turntable. An orientation controller controls the orientation of the dresser body by utilizing electromagnetic forces.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a polishing apparatus for polishing a semiconductor wafer surface, particularly a semiconductor wafer with a device pattern formed thereon by engaging the semiconductor wafer surface with a polishing cloth to effect planarization of the wafer surface. More particularly, the present invention relates to a dressing apparatus for dressing a polishing cloth bonded to a turntable of such a polishing apparatus.




With recent rapid progress in technology for fabricating high-integration semiconductor devices, circuit wiring patterns have been becoming increasingly fine, with spaces between wiring patterns also decreasing. As wiring spacing decreases to less than 0.5 microns, the depth of focus in circuit pattern formation in photolithography and the like becomes shallower. Accordingly, surfaces of semiconductor wafers on which circuit pattern images are to be formed by a stepper are required to be polished by a polishing apparatus to have an exceptionally high degree of surface flatness or planarization. As one method for such a planarization, for example, a chemical/mechanical polishing (CMP) method has been used, in which mechanical polishing is carried out while a polishing solution having a predetermined chemical composition is supplied.




In a conventional polishing apparatus for polishing a semiconductor wafer surface, in particular, a semiconductor wafer with a device pattern formed thereon to effect planarization thereof, a nonwoven fabric is used as a polishing cloth bonded to the upper surface of a turntable.




However, the degree of integration of ICs and LSIs has been increasing in recent years. Consequently, it is demanded that a polished surface be planarized to an even higher degree. To meet such a demand, a relatively rigid polishing cloth, for example, a polishing cloth made of urethane foam has come into use.




Polishing is carried out by rotating a turntable which has a polishing cloth affixed thereto, with the polishing cloth being kept in contact with a semiconductor wafer during rotation of the turntable. During the polishing operation, however, abrasive particles (grains) and substances removed from the wafer surface during polishing tend to adhere to the polishing cloth, resulting in a deterioration of the quality of the polishing cloth, and a concomitant deleterious effect on the polishing operation. Consequently, when polishing of semiconductor wafers is repeatedly carried out using the same polishing cloth, the quality of polishing is adversely affected, and there is a danger that a wafer surface will not be evenly polished. To avoid this problem, conditioning known as “dressing” is carried out to normalize the surface of the polishing cloth before, after or during polishing of a semiconductor wafer.




When dressing a rigid polishing cloth made of a urethane foam or the like, a dresser tool comprising a material of high hardness such as diamond is generally employed. The polishing cloth is thus subject to grinding each time it is dressed. A polishing cloth made of urethane foam, for example, IC1000 (manufactured by Rodel Nitta Company) is designed to have tolerances of 1 micrometer or less each time it is dressed.




It is imperative that a polishing cloth have a flat polishing surface, in order for it to be able to polish an object uniformly to a high degree of planarity. Variations in orientation or attitude of a dresser tool resulting in non-uniformity of pressure during dressing result in a polishing cloth which does not have the requisite degree of flatness, and which is thus unable to polish a wafer to a required degree of planarity.




In the dresser tool described above, a decrease in the amount of pressure applied to a polishing cloth during dressing results in a decrease in the amount of grinding to which the polishing cloth is subject. This translates into an increase in the working life of the polishing cloth. However, such a decrease in the amount of pressure applied by a dresser to a polishing cloth during dressing has a negative influence on the stability of the dresser, whereby dressing may produce an uneven or undulating surface on a polishing cloth.




SUMMARY OF THE INVENTION




In view of the above-described circumstances, an object of the present invention is to provide an apparatus for dressing a polishing surface of a turntable wherein control of the attitude (i.e., tilt angle with respect to the polishing surface) or orientation of a dresser tool thereof is effected by utilizing electromagnetic forces. As a result, the polishing surface of a turntable can be polished to a requisite high degree of flatness.




Another object of the present invention is to provide polishing apparatus provided with such a dressing apparatus.




To attain the above-described objects, the present invention provides a dressing apparatus for dressing a polishing surface of a turntable that comes into sliding contact with an object to be polished. The dressing apparatus includes a dresser body which comes into contact with the polishing surface to effect dressing. A pressing device presses the dresser body against the polishing surface of the turntable. An attitude controller controls the attitude or orientation of the dresser body by utilizing an electromagnetic force.




In addition, the present invention provides a polishing apparatus which includes a turntable having a polishing surface that comes into sliding contact with an object to be polished, and a dressing apparatus for dressing the polishing surface. The dressing apparatus includes a dresser body for dressing the polishing surface by coming into contact with the polishing surface. A pressing device presses the dresser body against the polishing surface of the turntable. An attitude controller controls the attitude or orientation of the dresser body by utilizing an electromagnetic force.




According to the present invention, the attitude or orientation of a dresser is controlled by utilizing an electromagnetic force, thereby allowing dressing to be carried out while maintaining an optimum distribution of surface pressure on the polishing surface applied by the dresser. Accordingly, it is possible to obtain a polishing surface having a high degree of flatness.




The above and other objects, features and advantages of the present invention will become more apparent from the following description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a vertical sectional view showing the general arrangement of a first embodiment of the polishing apparatus according to the present invention.





FIG. 2

is a fragmentary sectional view showing an essential part of the dressing apparatus according to the present invention.





FIG. 3

is a sectional view taken along the line III—III in FIG.


2


.





FIG. 4

is a sectional view taken along the line IV—IV in FIG.


3


.





FIG. 5

is a block diagram showing the functional arrangement of a control part for controlling an attitude controller for a dresser.





FIG. 6

is a diagram illustrating the relationship between the tilt α of the dresser with respect to an X-axis and the tilt β of the dresser with respect to a Y-axis.




FIGS.


7


(


a


)-(


c


) show details of the structure of a dresser body, in which: FIG.


7


(


a


) is a bottom view;




FIG.


7


(


b


) is a sectional view taken along the line a—a in FIG.


7


(


a


); and FIG.


7


(


c


) is an enlarged view of a portion b shown in FIG.


7


(


b


).





FIG. 8

is a vertical sectional view showing the general arrangement of a second embodiment of the polishing apparatus according to the present invention.





FIG. 9

is a sectional view taken along the line IX—IX in FIG.


8


.





FIG. 10

is a sectional view taken along the line X—X in FIG.


9


.





FIG. 11

is a block diagram showing the functional arrangement of a control part for controlling an attitude controller for a turntable.











DETAILED DESCRIPTION OF THE INVENTION




Embodiments of the dressing apparatus and polishing apparatus according to the present invention will be described below in detail with reference to

FIGS. 1

to


11


.





FIG. 1

is a vertical sectional view showing the general arrangement of a first embodiment of the polishing apparatus according to the present invention, and

FIG. 2

is a fragmentary sectional view showing an essential part of the dressing apparatus according to the present invention.




As shown in

FIGS. 1 and 2

, the polishing apparatus includes a turntable


1


having a polishing cloth


2


bonded to the upper surface thereof, and a dressing apparatus


5


for dressing the polishing cloth


2


. The dressing apparatus


5


includes a dresser


6


for dressing the polishing cloth


2


, and a dresser driving shaft


7


for supporting the dresser


6


and applying a pressing force and rotational driving force to the dresser


6


. The dressing apparatus


5


further includes a universal coupling


8


for transmitting pressing force from the dresser driving shaft


7


to the dresser


6


while allowing these members to tilt relative to each other, and an attitude controller


11


for controlling the attitude or orientation of the dresser


6


. A dressing liquid supply nozzle


60


is provided above the turntable


1


to supply a dressing liquid onto the polishing cloth


2


on the turntable


1


. The upper surface of the polishing cloth


2


constitutes a polishing surface that comes into sliding contact with a surface of a semiconductor wafer to be polished.




As shown in

FIG. 2

, the dresser


6


includes a dresser body


9


comprising a dressing plate


9




a,


which constitutes a lower part of the dresser body


9


, and a mounting plate


9




b,


which constitutes an upper part of the dresser body


9


connected to the dresser drive shaft


7


. The dresser


6


further includes a diamond ring


10


electrodeposited on a projecting portion of the bottom surface of the dresser body


9


(see FIGS.


7


A-


7


C).




As shown in

FIG. 1

, the dresser driving shaft


7


is coupled to a dresser air cylinder


22


secured to a dresser head


21


. The dresser air cylinder


22


causes the dresser driving shaft


7


to move vertically, causing the diamond electrodeposited ring


10


on the lower end surface of the dresser


6


to be pressed against the turntable


1


.




The dresser driving shaft


7


is coupled to a rotating cylinder


23


through a key (not shown). The rotating cylinder


23


has a timing pulley


24


on an outer peripheral portion thereof. The timing pulley


24


is connected through a timing belt


25


to a timing pulley


27


provided on a dresser motor


26


secured to the dresser head


21


. Accordingly, the dresser motor


26


drivingly rotates the rotating cylinder


23


and the dresser driving shaft


7


through the timing pulley


27


, the timing belt


25


and the timing pulley


24


, thereby drivingly rotating the dresser


6


. The dresser head


21


is supported by a dresser head shaft


29


fixedly supported on a frame.




The universal coupling


8


, which transmits a pressing force from the dresser driving shaft


7


to the dresser


6


while allowing these members to tilt relative to each other, has a spherical bearing mechanism


40


that allows the dresser


6


and the dresser driving shaft


7


to tilt relative to each other. The universal coupling


8


further has a rotation transmitting mechanism


45


for transmitting the rotation of the dresser driving shaft


7


to the dresser body


9


. The spherical bearing mechanism


40


includes a spherical recess


41




a


formed in the center of the lower surface of a driving flange


41


secured to the lower end of the dresser driving shaft


7


. The spherical bearing mechanism


40


further includes a spherical recess


9




c


formed in the center of the upper surface of the mounting plate


9




b,


and a ball bearing


42


interposed between the two recesses


41




a


and


9




c.


The ball bearing


42


is made of a material of high hardness, such as a ceramic.




The rotation transmitting mechanism


45


includes a driving pin (not shown) secured to the driving flange


41


and a driven pin (not shown) secured to the mounting plate


9




b.


The driven pin and the driving pin are vertically movable relative to each other. Therefore, even when the dresser body


9


tilts, the driven pin and the driving pin are kept in engagement with each other, with a point of contact shifting between them. Thus, the rotation transmitting mechanism


45


transmits the rotational torque of the dresser driving shaft


7


to the dresser body


9


in a reliable and stable fashion.




Next, the attitude controller


11


for controlling the attitude of the dresser


6


will be described with reference to

FIGS. 2

to


6


.

FIG. 2

is a fragmentary sectional view showing an essential part of the dressing apparatus, as stated above.

FIG. 3

is a view as seen in the direction of the arrow III—III in FIG.


2


. and

FIG. 4

is a sectional view taken along the line IV—IV in FIG.


3


.




As shown in

FIGS. 2 and 3

, the attitude controller


11


includes an electromagnetic core


12


secured to the dresser head


21


. Four magnetic poles


12




a,




12




b,




12




c


and


12




d


project radially outward from the electromagnetic core


12


. Four electromagnetic coils


13




a,




13




b,




13




c


and


13




d


are wound on the magnetic poles


12




a


to


12




d,


respectively. The attitude controller


11


further includes a cylindrical armature


14


facing the magnetic poles


12




a


to


12




d


across a gap. The armature


14


is secured to the dresser body


9


.




As shown in

FIG. 4

, the magnetic poles


12




a


to


12




d


each have a U-shaped sectional configuration having a 90-degree rotation. The upper horizontally projecting portions of the magnetic poles


12




a


to


12




d


are wound with the electromagnetic coils


13




a


to


13




d,


respectively. The magnetic poles


12




a


to


12




d


and the armature


14


are formed from a magnetic material, e.g. a permalloy. As shown in

FIG. 3

, the electromagnetic coil


13




a


is placed at a position in positive alignment with the X-axis. The electromagnetic coil


13




b


is placed at a position in negative alignment with the X-axis. The electromagnetic coil


13




c


is placed at a position in positive alignment with the Y-axis. The electromagnetic coil


13




d


is placed at a position in negative alignment with the Y-axis. Four pairs of displacement sensors


15




a




1


,


15




a




2


;


15




b




1


,


15




b




2


;


15




c




1


,


15




c




2


; and


15




d




1


,


15




d




2


are placed on two axes P and Q at an angle of 45 degrees with respect to the X- and Y-axes. Each pair of displacement sensors consists of upper and lower displacement sensors. Each displacement sensor pair is held by a sensor holder


17


.





FIG. 5

is a block diagram showing the functional arrangement of a control part for controlling the attitude controller


11


. As shown in the figure, the control part has a subtracter


30


and a controller


31


. The subtracter


30


is supplied with desired values for the attitude of the dresser


6


. and values α and β of displacement of a controlled object (dresser


6


) that are detected by sensors


15


(displacement sensors


15




a




1


,


15




a




2


;


15




b




1


,


15




b




2


;


15




c




1


,


15




c




2


; and


15




d




1


,


15




d




2


) and converted in a coordinate converter


35


. Differences between the desired values and the displacement values α and β derived from the subtracter


30


are input to the controller


31


as error signals eα and eβ. As shown in

FIG. 6

, α and β indicate a tilt with respect to an X-axis and a tilt with respect to a Y-axis, respectively. The X-axis and the Y-axis lie along a horizontal plane. In this case, the dresser


6


performs a combined motion consisting of tilting with respect to the X-axis and tilting with respect to the Y-axis about the bearing ball


42


acting as the center of rotation.




The error signals eα and eβ are subjected to a tilt control and attenuation processing in a PID+local phase-lead processing section


31


-


1


and are further passed through a notch filter


31


-


2


to remove vibrational components, and converted into voltage command signals Vα and Vβ. Then, in a coordinate converter


31


-


3


, the voltage command signals Vα and Vβ are converted into control signals V


xu


and V


yu


output by the attitude controller for supply to a driver section


32


.




The driver section


32


includes the electromagnetic coils


13




a,




13




b,




13




c


and


13




d


and drive circuits


24


for exciting these coils. The control signals V


xu


and V


yu


are supplied to the respective drive circuits


24


, in which they are converted into excitation currents I


xu


+, I


xu


−, I


yu


+ and I


yu


− for displacing the armature


14


in any of the positive and negative directions of the X- and Y-axes shown in FIG.


3


. The excitation currents I


xu


+, I


xu


−, I


yu


+ and I


yu


− are supplied to the electromagnetic coils


13




a,




13




b,




13




c


and


13




d


to control the attitude of the controlled object (dresser


6


). In this case, the center of rotation (bearing ball


42


) of the dresser


6


and the X- and Y-axes of the armature


14


shown in

FIG. 3

are set apart from each other by a predetermined height (L). Therefore, when the armature


14


is displaced in the positive or negative direction of the X- or Y-axis shown in

FIG. 3

, the dresser body


9


, that is, the dresser


6


. can be tilted in the desired direction with respect to the horizontal plane about the bearing ball


42


as the center of rotation.




FIG.


7


(


a


)-(


c


) show details of the structure of the dressing plate


9




a,


in which: FIG.


7


(


a


) is a bottom view; FIG.


7


(


b


) is a sectional view taken along the line a—a in FIG.


7


(


a


); and FIG.


7


(


c


) is an enlarged view of a portion b shown in FIG.


7


(


b


). The dressing plate


9




a


has a disk-shaped configuration. An annular belt-shaped projecting portion


9




d


with a predetermined width is formed at the peripheral edge of the lower surface thereof to allow fine particles of diamond to be electrodeposited thereon. Thus, a diamond electrodeposited ring


10


is provided on the surface of the projecting portion


9




d


by electrodeposition of fine particles of diamond.




As is well known, in a polishing operation, a semiconductor wafer carried by a wafer carrier is pressed against the polishing cloth


2


, while an abrasive liquid is supplied onto the polishing cloth. When the polishing operation is continued for a predetermined period of time, abrasive particles (grains) and substances removed from a wafer adhere to the polishing cloth


2


causing a deterioration in the surface of the polishing cloth


2


. Therefore, a dressing operation for recovering the surface condition or polishing surface of the polishing cloth


2


is carried out by using the dressing apparatus


5


before, after or during polishing of a semiconductor wafer. More specifically, the turntable


1


and the dresser


6


are rotated, and a dressing liquid such as pure water is supplied from the dressing liquid supply nozzle


60


toward approximately the center of rotation of the polishing cloth


2


. In this state, the surface of the diamond electrodeposited ring


10


is brought into contact with the polishing cloth surface to thereby shave the polishing cloth surface and effect dressing. The diamond electrodeposited ring


10


has a structure in which fine particles of diamond are deposited on the surface of the projecting portion


9




d,


and the diamond deposited portion is plated with nickel, thereby fixing the fine particles of diamond with the deposited nickel layer.




In this embodiment, the dimensions of the dresser


6


are, for example, as follows. The diameter of the dresser body


9


is 250 millimeters, and the diamond electrodeposited ring


10


having a width of 6 millimeters is formed on the peripheral edge of the lower surface of the dresser body


9


. The diamond electrodeposited ring


10


is split into a plurality of portions (8 portions in the illustrated example). The diameter of the dresser body


9


is set to be larger than the diameter of a semiconductor wafer as an object to be polished so that when a semiconductor wafer is polished, the dressed surface of the polishing cloth includes sufficient margins for the surface of the semiconductor wafer to be polished in both radially inward and outward directions of the turntable


1


. It should be noted that the diamond dresser having a diamond electrodeposited ring may be replaced with an SiC dresser using a ring having a plurality of SiC sectors. In this case, the SiC dresser has a structure similar to that shown in FIGS.


7


(


a


)-(


c


). The SiC dresser has a large number of pyramidal projections of several tens of micrometers in size on the surface thereof.




During the above-described dressing process, the attitude of the dresser body


9


is controlled by the attitude controller


11


. In this case, as has been stated above, the tilt of the dresser body


9


is detected by processing the outputs of the displacement sensors


15


(


15




a




1


,


15




a




2


;


15




b




1


,


15




b




2


;


15




c




1


,


15




c




2


; and


15




d




1


,


15




d




2


), and the tilt of the dresser body


9


is rectified to cause the dresser body


9


to lie in a horizontal plane. Alternatively, the dresser body


9


is controlled to a desired angle in a desired direction with respect to the horizontal plane. As such, a strictly parallel relation between the dressing surface of the dresser body


9


, that is, the lower surface of the diamond electrodeposited ring


10


, and the upper surface of the polishing cloth


2


, that is, the polishing surface can be maintained during the dressing operation.




According to this embodiment, a force for pressing the dresser body


9


against the polishing surface of the turntable


1


is obtained by transmitting the pressing force of the air cylinder


22


directly to the dresser


6


. To control the attitude of the dresser


6


, the state of the polishing surface on the upper side of the turntable


1


, including undulations or the like, are previously measured and input to the controller so that an optimum attitude of the dresser


6


is obtained on the basis of the data input in advance. Thus, optimum attitude of the carrier


6


is effected by the attitude controller


11


on the basis of the detection of the attitude by means of the displacement sensors


15


.




With reference to

FIGS. 8

to


11


, there is shown a polishing apparatus provided with a dressing apparatus in accordance with a second embodiment of this invention.

FIG. 8

is a vertical sectional view of the polishing apparatus.

FIG. 9

is a sectional view taken along the line IX—IX in FIG.


8


.

FIG. 10

is a sectional view taken along the line X—X in FIG.


9


.




In the second embodiment, the arrangement of a dresser unit including a dresser


6


and an attitude controller


11


is the same as in the first embodiment. The second embodiment differs from the first embodiment in the arrangement of a turntable. That is, in the second embodiment, the turntable is provided with an attitude controller.




As shown in

FIG. 8

, a turntable


101


having a polishing cloth


2


on the upper surface thereof and a rotating shaft


102


of a motor (not shown) are coupled to each other through upper and lower coupling members


103


and


104


. The lower coupling member


104


is secured to the upper end of the rotating shaft


102


of the motor. The upper coupling member


103


is secured to the lower surface of the turntable


101


. A self-aligning roller bearing


105


is disposed between the lower coupling member


104


and the upper coupling member


103


to allow the turntable


101


and the upper coupling member


103


to tilt in any direction with respect to the lower coupling member


104


about the self-aligning roller bearing


105


which acts as the center of rotation. The lower coupling member


104


is provided with a short column-shaped pin


106


that is engaged with an engagement hole


103




a


provided in the upper coupling member


103


to allow the turntable


101


to rotate. It should be noted that a predetermined clearance is formed between the engagement hole


103




a


and the pin


106


to enable tilting of the turntable


101


.




In this embodiment, an attitude controller


111


for controlling the attitude of the turntable


101


is provided. The attitude controller


111


includes an electromagnetic core


112


secured to a frame


28


. The electromagnetic core


112


is provided with four magnetic poles


112




a,




112




b,




112




c


and


112




d.


Four electromagnetic coils


113




a,




113




b,




113




c


and


113




d


are wound on the magnetic poles


112




a


to


112




d,


respectively. The attitude controller


111


further includes an annular disk-shaped armature


114


facing the magnetic poles


112




a


to


112




d


across a gap. The armature


114


is secured to the turntable


101


.




As shown in

FIG. 10

, the magnetic poles


112




a


to


112




d


each have an inverted U-shaped sectional configuration. The inner portions of the inverted U-shaped magnetic poles


112




a


to


112




d


are wound with the electromagnetic coils


113




a


to


113




d,


respectively. The magnetic poles


112




a


to


112




d


and the armature


114


are formed from a magnetic material, e.g. a permalloy. As shown in

FIG. 9

, the electromagnetic coil


113




a


is placed at a position in positive alignment with the X-axis. The electromagnetic coil


113




b


is placed at a position in negative alignment with the X-axis. The electromagnetic coil


113




c


is placed at a position in positive alignment with the Y-axis. The electromagnetic coil


113




d


is placed at a position in negative alignment with the Y-axis. Four displacement sensors


115




a,




115




b,




115




c


and


115




d


are placed on two axes R and S tilted at 45 degrees with respect to the X- and Y-axes.





FIG. 11

is a block diagram showing the functional arrangement of a control part for controlling the attitude controller


111


. As shown in the figure, the turntable control part and the dresser control part each have an arrangement similar to that of the control part shown in FIG.


5


. The arrangement shown in

FIG. 11

is additionally provided with a computing device for precisely detecting relative positions of the dresser and the turntable on the basis of signals input thereto from the dresser control part and the turntable control part.




As shown in

FIG. 11

, the dresser control part has a subtracter


30


and a controller


31


. The subtracter


30


is supplied with desired values for the attitude of the dresser, and values α and β of displacement of the controlled object that are detected by sensors


15


and converted in a coordinate converter


35


and further corrected by a computing device


36


on the basis of information concerning the tilt of the turntable. Differences between the desired values and the displacement values α and β derived from the subtracter


30


are input to the controller


31


as error signals eα and eβ.




The turntable control part has a subtracter


30


′ and a controller


31


′. The subtracter


30


′ is supplied with desired values for the attitude of the turntable and values α′ and β′ of displacement of the controlled object that are detected by sensors


115


(displacement sensors


15




a,




115




b,




115




c


and


115




d


) and converted in a coordinate converter


35


′, and further modified by the computing device


36


on the basis of information concerning the tilt of the dresser. Differences between the desired values and the displacement values α′ and β′ derived from the subtracter


30


′ are input to the controller


31


′ as error signals eα′ and eβ′.




The computing device


36


computes relative errors from information concerning the tilt of the dresser and information concerning the tilt of the turntable to generate rectified displacement values α, β, α′ and β′, thereby allowing control to be effected with a high degree of accuracy. Normally, the degree of accuracy can be raised by correcting the desired position of the dresser with reference to the tilt of the turntable. Thus, the feedback R


1


to the dresser may be omitted. Further, the computing device may be omitted. As shown in

FIG. 9

, α′ and β′ indicate a tilt with respect to an X-axis and a tilt with respect to a Y-axis, respectively. In this case, the turntable


101


performs a combined motion consisting of tilting with respect to the X-axis and tilting with respect to the Y-axis about the self-aligning roller bearing


105


which acts as the center of rotation.




The error signals eα′ and eβ′ are subjected to tilt control and attenuation processing in a PID+local phase-lead processing section


31


′-


1


and further passed through a notch filter


31


′-


2


to remove vibrational components, to thereby be converted into voltage command signals Vα′ and Vβ′. Then, in a coordinate converter


31


′-


3


, the voltage command signals Vα′ and Vβ′ are converted into control signals V


xl


and V


yl


for the attitude controller, which are supplied to a driver section


32


′.




The driver section


32


′ includes the electromagnetic coils


113




a,




113




b,




113




c


and


113




d


and drive circuits


24


′ for exciting these coils. The control signals V


xl


and V


yl


are supplied to the respective drive circuits


24


′, in which they are converted into excitation currents I


xl


+, I


xl


−, I


yl


+ and I


yl


− for displacing the armature


114


in any of the positive and negative directions of the X- and Y-axes shown in FIG.


8


. The excitation currents I


xl


+, I


xl


−, I


yl


+ and I


yl


− are supplied to the electromagnetic coils


113




a,




113




b,




113




c


and


113




d


to control the attitude of the controlled object (turntable


101


)


33


′.




According to the embodiment shown in

FIGS. 8

to


11


, it is possible to control the attitude of the turntable


101


in addition to the attitude of the dresser


6


. Therefore, it is possible to carry out dressing while maintaining the dressing surface of the dresser body


9


and the polishing surface on the turntable


101


in an optimum state.




As has been stated above, according to the present invention, the attitude of the dresser is controlled by utilizing electromagnetic forces, thereby allowing dressing to be carried out while maintaining an optimum distribution of surface pressure applied to the polishing surface from the dresser. Accordingly, it is possible to obtain a polishing surface having a high degree of flatness.




Further, according to the present invention, a pressing force under which the dressing surface of the dresser body is pressed against the polishing surface of the turntable is obtained by transmitting the pressing force of the air cylinder directly to the dresser. Only the control of the tilt of the dresser is effected by the attitude controller by utilising electromagnetic forces. Therefore, the attitude controller is able to be compact in size and simple in structure.




It should be noted that the present invention is not necessarily limited to the foregoing embodiments but can be modified in a variety of ways without departing from the gist of the present invention.



Claims
  • 1. A dressing apparatus for dressing a polishing surface that is to come into sliding contact with an object to be polished, said dressing apparatus comprising:a dresser body for dressing the polishing surface by contacting the polishing surface; a pressing mechanism for pressing said dresser body against the polishing surface of the turntable; and an attitude controller for controlling an attitude or orientation of said dresser body by using an electromagnetic force.
  • 2. The dressing apparatus according to claim 1, wherein said dresser body has a dressing surface formed on a lower side thereof and adapted to be engaged with the polishing surface, said attitude controller being operable to control a tilt angle of said dressing surface with respect to the polishing surface in a running direction of the polishing surface.
  • 3. A polishing apparatus comprising:a turntable having a polishing surface that is to come into sliding contact with an object to be polished; and a dressing apparatus for dressing said polishing surface, said dressing apparatus comprising: a dresser body for dressing said polishing surface by contacting said polishing surface; a pressing mechanism for pressing said dresser body against said polishing surface of said turntable; and an attitude controller for controlling an attitude or orientation of said dresser body by using an electromagnetic force.
  • 4. The polishing apparatus according to claim 3, wherein said dresser body has a dressing surface formed on a lower side thereof and adapted to be engaged with said polishing surface, said attitude controller being adapted to control a tilt angle of said dressing surface with respect to said polishing surface in a running direction of said polishing surface.
  • 5. The polishing apparatus according to claim 3, wherein said pressing mechanism is a drive shaft for rotating said dresser body, said dressing apparatus further comprising a universal joint connecting said drive shaft and said dresser body in such a manner that said dresser body can tilt relative to said drive shaft.
  • 6. The polishing apparatus according to claim 5, wherein said dressing apparatus further comprises a frame for supporting said drive shaft in such a manner that said drive shaft can rotate about a longitudinal axis of said drive shaft, said attitude controller comprising:an electromagnetic device fixed on said frame for generating the electromagnetic force; and an armature fixed on said dresser body and adapted to be moved by using the electromagnetic force generated by said electromagnetic device.
  • 7. The polishing apparatus in accordance with claim 6, wherein said attitude controller includes at least one sensor for sensing the attitude or orientation of said dresser body, said attitude controller being adapted to control the attitude of said dresser body in response to the attitude or orientation sensed by said at least one sensor.
  • 8. The polishing apparatus according to claim 3, wherein said polishing apparatus further comprises:a turntable drive shaft for rotating said turntable; a joint for connecting said turntable drive shaft to said turntable in such a manner that said turntable can be rotated while being allowed to tilt relative to said turntable drive shaft; and a turntable attitude controller for controllably tilting said turntable about said joint by using an electromagnetic force.
  • 9. The polishing apparatus according to claim 8, wherein said polishing apparatus further comprises a stationary frame, and said turntable attitude controller comprises:an electromagnetic device fixed on said stationary frame of said polishing apparatus for generating an electromagnetic force; and an armature fixed on said turntable and adapted to be moved by using the electromagnetic force generated by said electromagnetic device.
  • 10. The polishing apparatus according to claim 4, wherein said pressing mechanism is a drive shaft for rotating said dresser body, said dressing apparatus further comprising a universal joint connecting said drive shaft and said dresser body in such a manner that said dresser body can tilt relative to said drive shaft.
  • 11. A polishing apparatus comprising:a polishing surface that is to come into sliding contact with an object to be polished; and a dressing apparatus for dressing said polishing surface, said dressing apparatus comprising: a dresser body for dressing said polishing surface by contacting said polishing surface; a drive shaft for supporting said dresser body in such a manner that said dresser body can be tilted relative to said drive shaft; and an attitude controller for controlling an attitude or orientation of said dresser body by using an electromagnetic force.
  • 12. The polishing apparatus according to claim 11, wherein said dresser body has a dressing surface formed on a lower side thereof and adapted to be engaged with said polishing surface, said attitude controller being adapted to control a tilt angle of said dressing surface with respect to said polishing surface in a running direction of said polishing surface.
  • 13. The polishing apparatus according to claim 11, wherein said dressing apparatus further comprises a universal joint connecting said drive shaft and said dresser body in such a manner that said dresser body can tilt relative to said drive shaft.
  • 14. The polishing apparatus according to claim 11, wherein said dressing apparatus further comprises a frame for supporting said drive shaft in such a manner that said drive shaft can rotate about a longitudinal axis of said drive shaft, said attitude controller comprising:an electromagnetic device fixed on said frame for generating the electromagnetic force; and an armature fixed on said dresser body and adapted to be moved by using the electromagnetic force generated by said electromagnetic device.
  • 15. The polishing apparatus in accordance with claim 14, wherein said attitude controller includes a plurality of sensors for sensing the attitude or orientation of said dresser body, said attitude controller being adapted to control the attitude of said dresser body in response to the attitude or orientation sensed by said sensors.
  • 16. The polishing apparatus according to claim 11, wherein said polishing apparatus further comprises:a turntable, said polishing surface being formed on said turntable; a turntable drive shaft for rotating said turntable; a joint for connecting said turntable drive shaft to said turntable in such a manner that said turntable can be rotated while being allowed to tilt relative to said turntable drive shaft; and a turntable attitude controller for controllably tilting said turntable about said joint by using an electromagnetic force.
Priority Claims (1)
Number Date Country Kind
11-065710 Mar 1999 JP
US Referenced Citations (6)
Number Name Date Kind
5486131 Cesna et al. Jan 1996
5503590 Saitoh et al. Apr 1996
5643067 Katsuoka et al. Jul 1997
5885147 Kreager et al. Mar 1999
5904615 Jeong et al. May 1999
5951368 Watanabe et al. Sep 1999
Foreign Referenced Citations (4)
Number Date Country
0 589 433 Mar 1994 EP
2 287 422 Sep 1995 GB
10-58308 Mar 1998 JP
9950024 Oct 1999 WO
Non-Patent Literature Citations (1)
Entry
Patent Abstracts of Japan, No. 11198026, published Jul. 27, 1999; Patent Abstracts of Japan, No. 07112362, published May 2, 1995.