Polishing pad with transparent window having reduced window leakage for a chemical mechanical polishing apparatus

Information

  • Patent Grant
  • 6524164
  • Patent Number
    6,524,164
  • Date Filed
    Tuesday, August 29, 2000
    24 years ago
  • Date Issued
    Tuesday, February 25, 2003
    21 years ago
Abstract
The polishing pad for a chemical mechanical polishing apparatus and method of making the same has a polishing pad with a bottom layer, a polishing surface on a top layer and a transparent sheet of material interposed between the two layers. Slurry from the chemical mechanical polishing process is prevented from penetrating the impermeable transparent sheet to the bottom layer of the polishing pad.
Description




TECHNICAL FIELD




This invention relates generally to semiconductor manufacture, and more particularly to a method for forming a transparent window in a polishing pad for use in chemical mechanical polishing (CMP).




BACKGROUND




In the process of fabricating modem semiconductor integrated circuits (ICs), it is necessary to form various material layers and structures over previously formed layers and structures. However, the prior formations often leave the top surface topography of an in process wafer highly irregular, with bumps, areas of unequal elevation, troughs, trenches, and/or other surface irregularities. These irregularities cause problems when forming the next layer. For example, when printing a photolithographic pattern having small geometries over previously formed layers, a very shallow depth of focus is required. Accordingly, it becomes essential to have a flat and planar surface, otherwise, some parts of the pattern will be in focus and other parts will not. In fact, surface variations on the order of less than 1000 Å over a 25×25 mm die would be preferable. In addition, if the irregularities are not leveled at each major processing step, the surface topography of the wafer can become even more irregular, causing further problems as the layers stack up during further processing. Depending on the die type and the size of the geometries involved, the surface irregularities can lead to poor yield and device performance. Consequently, it is desirable to effect some type of planarization, or leveling, of the IC structures. In fact, most high density IC fabrication techniques make use of some method to form a planarized wafer surface at critical points in the manufacturing process.




One method for achieving semiconductor wafer planarization or topography removal is the chemical mechanical polishing (CMP) process. In general, the chemical mechanical polishing (CMP) process involves holding and/or rotating the wafer against a rotating polishing platen under a controlled pressure. As shown in

FIG. 1

, a typical CMP apparatus


10


includes a polishing head


12


for holding the semiconductor wafer


14


against the polishing platen


16


. The polishing platen


16


is covered with a pad


18


. This pad


18


typically has a backing layer


20


which interfaces with the surface of the platen and a covering layer


22


which is used in conjunction with a chemical polishing slurry to polish the wafer


14


. However, some pads have only a covering layer and no backing layer. The covering layer


22


is usually a blown polyurethane pad (e.g. Rodel IC1000) or a sheet of polyurethane with a grooved surface (e.g. Rodel OXP3000). The pad material is wetted with the chemical polishing slurry containing both an abrasive and chemicals. One typical chemical slurry includes KOH (Potassium Hydroxide) and fumed-silica particles. The platen is usually rotated about its central axis


24


. In addition, the polishing head is usually rotated about its central axis


26


, and translated across the surface of the platen


16


via a translation arm


28


. Although just one polishing head is shown in

FIG. 1

, CMP devices typically have more than one of these heads spaced circumferentially around the polishing platen.




A particular problem encountered during a CMP process is in the determination that a part has been planarized to a desired flatness or relative thickness. In general, there is a need to detect when the desired surface characteristics or planar condition has been reached. This has been accomplished in a variety of ways. Early on, it was not possible to monitor the characteristics of the wafer during the CMP process. Typically, the wafer was removed from the CMP apparatus and examined elsewhere. If the wafer did not meet the desired specifications, it had to be reloaded into the CMP apparatus and reprocessed. This was a time consuming and labor-intensive procedure. Alternatively, the examination might have revealed that an excess amount of material had been removed, rendering the part unusable. There was, therefore, a need in the art for a device which could detect when the desired surface characteristics or thickness had been achieved, in-situ, during the CMP process.




Several devices and methods have been developed for the in-situ detection of endpoints during the CMP process. For instance, devices and methods that are associated with the use of ultrasonic sound waves, and with the detection of changes in mechanical resistance, electrical impedance, or wafer surface temperature, have been employed. These devices and methods rely on determining the thickness of the wafer or a layer thereof, and establishing a process endpoint, by monitoring the change in thickness. In the case where the surface layer of the wafer is being thinned, the change in thickness is used to determine when the surface layer has the desired depth. And, in the case of planarizing a patterned wafer with an irregular surface, the endpoint is determined by monitoring the change in thickness and knowing the approximate depth of the surface irregularities. When the change in thickness equals the depth of the irregularities, the CMP process is terminated. Although these devices and methods work reasonably well for the applications for which they were intended, there is still a need for systems which provide a more accurate determination of the endpoint.




SUMMARY




The present invention provides a polishing pad for a chemical mechanical polishing apparatus. The polishing pad comprises a polishing surface, a bottom surface, and an aperture formed in the polishing surface. The aperture extends through the polishing pad from the polishing surface to the bottom surface of the pad. A transparent sheet is positioned below the polishing surface to seal the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad.




By positioning a transparent sheet below the polishing surface in a manner that seals the aperture from leakage of fluid, the present invention allows a laser interferometer, in or below the platen on which the pad is mounted, to be employed to detect the polishing condition of a wafer overlying the pad without significant diffraction of the laser light. The transparent sheet performs this function in a relatively inexpensive and light-weight manner.




The earlier stated needs can also be met by another embodiment of the present invention which provides a method of forming a polishing pad comprising the steps of forming an aperture in a polishing pad. This aperture extends from a polishing surface of the polishing pad to a bottom surface of the polishing pad. A transparent sheet is fixed below the polishing surface of the polishing pad in a position that seals the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad. In certain embodiments, the transparent sheet is positioned so that it extends across the aperture between the top surface and the bottom surface.




One of the potential advantages of positioning a transparent sheet across the aperture between the top surface and the bottom surface is the provision of a barrier to fluid flow between the top surface and the bottom surface of the polishing pad. The transparent sheet acts to prevent a flow of slurry to a location that would substantially scatter the laser light.




The foregoing and other features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a chemical mechanical polishing (CMP) apparatus constructed in accordance with prior art.





FIG. 2

is a side view of a chemical mechanical polishing apparatus with endpoint detection constructed in accordance with the present invention.





FIG. 3

simplified cross-sectional view of a window portion of a polishing pad useable in the chemical mechanical polishing apparatus of FIG.


2


.





FIG. 4

is a simplified cross-sectional view of the bottom layer of a polishing pad constructed in accordance with an embodiment of the present invention after an initial stage of preparation.





FIG. 5

is a cross-sectional view of polishing pad of

FIG. 4

, after a transparent sheet has been disposed on the top surface of the bottom layer, in accordance with embodiments of the present invention.





FIG. 6

is a cross-sectional view of the window of a polishing pad in accordance with an embodiment of the present invention, after a top layer of the polishing pad has been disposed over the transparent, sheet.





FIG. 7

is a cross-sectional view of the window apparatus of

FIG. 6

, following the fitting of a transparent window block in the aperture of the top layer of the polishing pad.





FIG. 8



a


is a top view of the bottom layer of a polishing pad in accordance with an embodiment of the invention.





FIG. 8



b


is a top view of the polishing pad of

FIG. 8



a,


after a transparent sheet has been disposed on the top surface of the bottom layer, as depicted in the cross-section of FIG.


5


.





FIG. 8



c


a top view of the polishing pad of

FIG. 8



b,


after the top layer has been disposed on the transparent sheet, as depicted in the cross-section of FIG.


6


.











DETAILED DESCRIPTION




The present invention overcomes problems associated with a polishing pad having a window that is used in conjunction with a laser interferometer in a chemical mechanical polishing apparatus to detect the endpoint of a polishing process. Among the problems addressed by the present invention, leakage of chemical mechanical polish slurry from the polishing surface on the polishing pad to the hole underneath the pad is prevented. A transparent sheet interposed between the top and bottom layers acts as a shield to block a flow path of slurry from the polishing surface. By keeping the hole free of slurry, the scattering and attenuation of laser light caused by the presence of the slurry is avoided.





FIG. 2

depicts a portion of a CMP apparatus modified in accordance with one embodiment of the present invention. A hole


30


is formed in the platen


16


and the overlying platen pad


18


. This hole


30


is positioned such that it has a view of the wafer


14


held by a polishing head


12


during a portion of the platen's rotation, regardless of the translational position of the head


12


. A laser interferometer


32


is fixed below the platen


16


in a position enabling a laser beam


34


projected by the laser interferometer


32


to pass through the hole


30


in the platen


16


and strike the surface of the overlying wafer


14


during a time when the hole


30


is adjacent the wafer


14


.




A possible configuration of a window portion of a polishing pad useable with the apparatus of

FIG. 2

is depicted in FIG.


3


. The polishing pad


40


comprises a bottom layer


42


and a top layer


44


. The bottom layer


42


may be made of a felted polyurethane, such as SUBA-IV manufactured by Rodel. The top layer


44


may comprise a blown polyurethane pad, i.e., a pad filled with microspheres, such as the Rodel IC 1000 material. A thin layer of pressure sensitive adhesive


46


holds the top layer


44


and the bottom layer


42


together.




To assemble the polishing pad


40


depicted in

FIG. 3

, an intact bottom layer


42


(i.e. without an aperture formed within the layer


42


) has its top surface coated with the pressure sensitive adhesive


46


. An intact top layer


44


is then pressed against the bottom layer


42


and on the pressure sensitive adhesive


46


. Alternatively, the top layer


44


may already include an aperture


48


prior to the top layer


44


being pressed against the pressure sensitive adhesive


46


.




Following the disposing of the top layer


44


on the bottom layer


42


, the aperture


50


is formed in the bottom layer


42


. Formation of this aperture


50


removes the pressure sensitive adhesive


46


within the aperture


50


so that an open channel exists through the polishing pad


40


. The aperture


48


in the top layer


44


is wider than the aperture


50


in the bottom layer


42


. This creates a shelf


52


covered with pressure sensitive adhesive


46


. A polyurethane window, forming a transparent window block


54


, may be pressed against the pressure sensitive adhesive


46


on the shelf


52


. The transparent window block


54


completely fills the first aperture


48


in the top layer


44


. Laser light from a laser interferometer may be directed through the first aperture


50


through the transparent window block


54


seated in the aperture


48


of the top layer


44


and onto a wafer.




Although the polishing pad depicted in

FIG. 3

may be used with the chemical mechanical polishing apparatus of

FIG. 2

, it can suffer from leakage of slurry into the aperture


50


. This occurs regardless of the use of the adhesive


46


, since the adhesive


46


does not extend across the first aperture


50


. The flow of slurry may follow the path


56


indicated by the arrows in FIG.


3


. The slurry is able to travel down a path


56


between the transparent window block


54


and the top layer


44


which is formed by a blown polyurethane and is therefore not very absorbent. The slurry continues along a path on the shelf


52


and a channel formed between the adhesive


46


and the transparent window block


54


. The slurry may then escape into the aperture


50


and soak the bottom layer


42


, which is made of felted polyurethane and is therefore relatively absorbent. Due to the compressibility of the bottom layer


42


during polishing, downward pressure on the pad is exerted and released, which creates a local pumping action that increases the flow of slurry. As discussed earlier, the presence of liquid in the aperture


50


attenuates the laser light from the laser interferometer as well as scatters the laser light.




The present invention overcomes some of the concerns raised by the use of a polishing pad constructed as in the embodiment of FIG.


3


.

FIG. 4

shows a cross-section of a bottom layer


60


of a polishing pad. The bottom layer


60


has an aperture


62


formed, for example, by cutting an aperture from a previously intact bottom layer


60


. The bottom layer


60


may be a felted polyurethane, such as SUBA-IV, as typically used in the industry.




The cross-section of

FIG. 5

depicts the bottom layer


60


after a transparent sheet


64


has been disposed on the top surface of the bottom layer


60


. Transparent sheet


64


has a pressure-sensitive adhesive on both of its sides, such as Product No. 442 Double-Coated Tape available from 3M of St. Paul, Minn. Preferably, for example, it is preferred that the thickness of the transparent sheet


64


be approximately 0.005 inches or less. The transparent sheet


64


may cover the entire surface of the bottom layer


60


or may merely extend over the entire aperture


62


and some of the surrounding area around the aperture


62


. The transparent sheet


64


is made of a material, such as polyethylene terephthalate (PET) or mylar, which is impermeable to the chemical mechanical polish slurry so that it can create a barrier to the slurry reaching the felted polyurethane of the bottom layer


60


.




As shown in

FIG. 6

, a top layer


66


, comprising a blown polyurethane pad, such as Rodel IC 1000, is pressed on the adhesive on the transparent sheet


64


. The top layer


66


already includes an aperture


67


formed prior to the pressing on of the top layer


66


onto the transparent sheet


64


. Therefore, once the layers


60


,


64


,


66


are pressed together, apertures are not cut into any of the layers. This allows the transparent sheet


64


to remain intact over the aperture


62


and the bottom layer


60


.





FIG. 7

depicts a cross-section of the polishing pad after a transparent window block


68


has been pressed into the aperture


67


of the top layer


66


. The transparent window block


68


may be made of material similar to that of top layer


66


and match the parameters of top layer


66


, e.g., a clear cast polyurethane, and is held in place by the adhesive on the transparent sheet


64


.




The transparent sheet


64


acts as a shield against penetration of the slurry to the bottom layer


60


. The path


70


taken by the slurry is only at the interface between the transparent window block


68


and the top layer


66


. The slurry may travel between the first interior surface


72


of the polishing pad and the transparent sheet


64


. An insignificant amount of slurry may thus be present between the transparent window block


68


and the transparent sheet


64


. However, the amount of slurry that is able to enter between the transparent window block


68


and the transparent sheet


64


will not have an appreciable effect on the attenuation or scattering of the laser light from a laser interferometer. The transparent sheet


64


prevents the slurry from reaching the second interior surface


74


of the polishing pad, formed by the top surface of the bottom layer


60


.




One of the concerns in forming the structure of

FIG. 7

is the registration of the aperture


62


in the bottom layer


60


with the apertures


67


in the top layer


66


. Because of this concern, the polishing pad depicted in

FIG. 3

has its apertures


48


,


50


cut out only after the bottom layer


42


and top layer


44


are pressed together. The cutting out of the apertures after the top and bottom layers


42


,


44


are pressed together prevents a contiguous sheet of a barrier material, such as a transparent sheet of PET or mylar, from remaining intact within the aperture. One of the reasons for cutting the apertures after the top and bottom layers


42


,


44


are pressed together is a concern with registering the top aperture


48


and the bottom aperture


50


if these apertures were cut out prior to the pressing together of the top and bottom layers


42


,


44


. In order to overcome this concern and allow the apertures to be cut out in the individual layers prior to pressing together the layers, thereby permitting the use of a contiguous sheet of a barrier material, the present invention provides registration indicators on the top and bottom layers


60


,


66


.





FIGS. 8



a


-


8




c


depict the polishing pad of the present invention during various stages of assembly. In

FIG. 8



a,


a top view of the bottom layer


60


is provided. The aperture


62


is already cut into the bottom layer


60


. Registration notches


80


, or some other registration mark, such as a line on the circumference of the bottom layer


60


, are provided in the bottom layer


60


. Registration notches


80


can be a small size (½″ dice or less so as not to adversely affect polishing performance.





FIG. 8



b


depicts a top view of the polishing pad after the transparent sheet


64


, such as PET or mylar, has been disposed on the top surface of the bottom layer


60


. The notches


80


, the window


62


and the bottom layer


60


are depicted in phantom since they lie underneath the transparent sheet


64


in

FIG. 8



b.







FIG. 8



c


depicts the top view of the polishing pad after the top layer


66


has been positioned and pressed against the adhesive on the transparent sheet


64


. Top layer


66


has also had its aperture


67


cut out prior to the top layer


66


being pressed against the transparent sheet


64


. The top layer


66


also includes registration notches


82


or other registration marks that are aligned with the registration marks


80


of the bottom layer


60


. During assembly, the registration marks


80


,


82


of the layers


60


,


66


are aligned prior to the pressing down of the top layer


66


against the transparent sheet


64


. When the alignment marks


80


,


82


are perfectly aligned, the apertures


62


,


67


and layers


60


,


66


will be properly registered. In the above manner, by providing for registration of the apertures during assembly of the top and bottom layers


66


,


60


, a contiguous barrier such as a transparent sheet of PET or mylar can be maintained in a contiguous state within the aperture and serve to prevent fluid from entering the aperture of the bottom layer


60


.




The present invention provides an effective solution to the prevention of leakage in a polishing pad that is used in a chemical mechanical polishing apparatus that employs a laser interferometer to detect the conditions of the surface of a semiconductor wafer on a polishing pad. The arrangement is relatively inexpensive and improves the performance of the laser interferometric or measuring process by reducing the amount of slurry that may diffract and attenuate the laser light.




Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the scope of the present invention being limited only by the terms of the appended claims.



Claims
  • 1. A polishing pad for a chemical mechanical polishing apparatus, comprising:a polishing surface; a bottom surface; an aperture formed in the polishing surface and extending through the polishing pad from the polishing surface to the bottom surface; and a transparent sheet positioned below the polishing surface to seal the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad.
  • 2. The polishing pad of claim 1, wherein the transparent sheet is positioned within the polishing pad between the polishing surface and the bottom surface, and extends across the entire aperture.
  • 3. The polishing pad of claim 2, wherein the polishing surface and the bottom surface are substantially planar and parallel to one another, and the transparent sheet lies in a plane parallel to the polishing surface and the bottom surface.
  • 4. The polishing pad of claim 3, wherein the polishing pad comprises two pad layers, with a bottom pad layer and a top pad layer disposed over the bottom pad layer, each of the pad layers having an aperture portion registrable with the aperture portion of the other pad layer, the transparent sheet disposed between the pad layers to cover the aperture portion of the bottom pad layer and the aperture portion of the top pad layer.
  • 5. The polishing pad of claim 4, wherein the transparent sheet comprises polyethylene terephthalate (PET) or mylar.
  • 6. The polishing pad of claim 1, wherein the polishing surface and the bottom surface are substantially planar and parallel to one another, and the transparent sheet lies in a plane parallel to the polishing surface and the bottom surface.
  • 7. The polishing pad of claim 6, wherein the transparent sheet is made of a material substantially non-reactive to chemical mechanical polish slurry.
  • 8. The polishing pad of claim 7, wherein the material comprises PET or mylar.
  • 9. A method of forming a polishing pad, comprising the steps of:forming an aperture in a polishing pad that extends from a polishing surface of the polishing pad to a bottom surface of the polishing pad; and fixing a transparent sheet below the polishing surface of the polishing pad in a position that seals the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad.
  • 10. The method of claim 9, wherein the step of fixing a transparent sheet includes positioning the transparent sheet in the aperture between the top surface and the bottom surface.
  • 11. The method of claim 10, wherein the transparent sheet comprises PET or mylar.
  • 12. The method of claim 11, wherein the polishing pad includes a top layer with a first planar surface that forms the polishing surface of the polishing pad and a second planar surface that forms a first interior surface of the polishing pad, and a bottom layer with a first planar surface that forms the bottom surface of the polishing pad and a second planar surface that forms a second interior surface of the polishing pad.
  • 13. A polishing pad, comprising:an opaque polishing material having a polishing surface and a bottom surface; a transparent window formed in the opaque polishing material from the polishing surface to the bottom surface; and a transparent sheet positioned below the bottom surface and covering the transparent window.
  • 14. The polishing pad of claim 13, further comprising a backing layer positioned below the transparent sheet.
  • 15. The polishing pad of claim 14, further comprising an aperture formed in the backing layer and aligned with the transparent window in the polishing layer.
  • 16. A polishing pad for a chemical mechanical polishing apparatus, comprising:a polishing surface; a bottom surface; an aperture formed in the polishing surface and extending through the polishing pad from the polishing surface to the bottom surface; a transparent sheet positioned below the polishing surface to seal the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad; and a window block disposed in the aperture above the transparent sheet extending from the transparent sheet toward the polishing surface, and composed of a transparent material.
  • 17. A polishing pad for a chemical mechanical polishing apparatus, comprising:a polishing surface; a bottom surface and the bottom surface are substantially planar and parallel to the polishing surface; an aperture formed in the polishing surface and extending through the polishing pad from the polishing surface to the bottom surface; two pad layers, with a bottom pad layer and a top pad layer disposed over the bottom pad layer, each of the pad layers having an aperture portion registrable with the aperture portion of the other pad layer and a registration notch for registering their respective apertures with each other; and a transparent sheet positioned within the polishing pad between the polishing surface and the bottom surface, disposed between the two pad layers, lying in a plane parallel to the polishing surface and the bottom surface, and extending across the entire aperture to cover the aperture portion of the top pad layer and the aperture portion of the bottom pad layer, and to seal the aperture from leakage of fluid from the polishing surface out the bottom surface of the polishing pad.
  • 18. A method of forming a polishing pad having a top layer with a first planar surface that forms a polishing surface of the polishing pad and a second planar surface that forms a first interior surface of the polishing pad, and a bottom layer with a first planar surface that forms a bottom surface of the polishing pad and a second planar surface that forms a second interior surface of the polishing pad, comprising:forming an aperture in the polishing pad that extends from the polishing surface of the polishing pad to the bottom surface of the polishing pad; positioning a transparent sheet composed of polyethylene terephthalate or mylar in the aperture between the polishing surface and the bottom surface of the polishing pad; affixing the transparent sheet onto the second surface of the bottom layer to seal the aperture from leakage of fluid from the polishing surface.
  • 19. The method of claim 18, wherein forming an aperture in the polishing pad further comprises:forming an aperture in the bottom layer; and forming an aperture in the top layer.
  • 20. The method of claim 19, further comprises:positioning the top layer onto the transparent sheet; and registering the aperture portions of the top and bottom layers to form an optically transparent pathway through the polishing pad.
  • 21. The method of claim 20, wherein positioning of the top layer onto the transparent sheet further comprises registering alignment marks on the top and bottom layers.
  • 22. The method of claim 21, wherein the transparent sheet extends over substantially the entire second interior surface of the polishing pad.
  • 23. The method of claim 22, further comprising affixing a transparent window block within the aperture portion of the top layer.
  • 24. The method of claim 23, wherein the aperture portion of the top layer is larger than the aperture portion of the bottom layer, and the surface of the transparent sheet contacting the first interior surface of the polishing pad is coated with pressure sensitive adhesive, and affixing the transparent window block includes pressing the block against the pressure sensitive adhesive on the transparent sheet within the aperture portion of the top layer.
  • 25. The method of claim 24, wherein the transparent window block comprises transparent polyurethane, the top layer of the polishing pad comprises blown polyurethane, and the bottom layer comprises felted polyurethane.
RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application Ser. No. 60/153,665, filed on Sep. 14, 1999, which is incorporated herein by reference. This application is related to U.S. Provisional Patent Application Ser. No. 60/153,668.

US Referenced Citations (23)
Number Name Date Kind
5081796 Schultz Jan 1992 A
5196353 Sandhu et al. Mar 1993 A
5257478 Hyde et al. Nov 1993 A
5265378 Rostoker Nov 1993 A
5413941 Koos et al. May 1995 A
5433651 Lustig et al. Jul 1995 A
5489233 Cook et al. Feb 1996 A
5605760 Roberts Feb 1997 A
5609511 Moriyama et al. Mar 1997 A
5672091 Takahasi et al. Sep 1997 A
5838447 Hiyama et al. Nov 1998 A
5872633 Holzapfel et al. Feb 1999 A
5893796 Birang et al. Apr 1999 A
5949927 Tang Sep 1999 A
5964643 Birang et al. Oct 1999 A
6045439 Birang et al. Apr 2000 A
6146248 Jairath et al. Nov 2000 A
6171181 Roberts et al. Jan 2001 B1
6254459 Bajaj et al. Jul 2001 B1
6280289 Wiswesser et al. Aug 2001 B1
6280290 Birang et al. Aug 2001 B1
6358130 Freeman et al. Mar 2002 B1
20010036805 Birang et al. Nov 2001 A1
Foreign Referenced Citations (16)
Number Date Country
468 897 Jan 1992 EP
0663265 Jul 1995 EP
0738561 Oct 1996 EP
0881040 Feb 1998 EP
0881484 Feb 1998 EP
1075634 Oct 1954 FR
5-309558 Jan 1978 JP
58-4353 Jan 1983 JP
62-211927 Sep 1987 JP
2-222533 Sep 1990 JP
3-234467 Oct 1991 JP
7-052032 Feb 1995 JP
9-36072 Jan 1997 JP
WO 9320976 Oct 1993 WO
WO 9706921 Feb 1997 WO
WO 0112387 Feb 2001 WO
Provisional Applications (1)
Number Date Country
60/153665 Sep 1999 US