POLYNUCLEOTIDES AND POLYPEPTIDE SEQUENCES INVOLVED IN THE PROCESS OF BONE REMODELLING

Abstract
This invention relates, in part, to unique and newly identified genetic polynucleotides involved in the process of bone remodeling, variants and derivatives of the polynucleotides and corresponding polypeptides, uses of the polynucleotides, polypeptides, variants and derivatives, and methods and compositions for the amelioration of symptoms caused by bone remodeling disorders. Disclosed in particular are the isolation and identification of polynucleotides polypeptides variants and derivatives involved in osteoclast activity, validation of the identified polynucleotides for their potential as therapeutic targets and use of the polynucleotides, polypeptides, variants and derivatives for the amelioration of disease states and research purposes.
Description
FIELD OF THE INVENTION

This invention relates, in part, to unique and newly identified genetic polynucleotides involved in the process of bone remodeling; variants and derivatives of the polynucleotides and corresponding polypeptides; uses of the polynucleotides, polypeptides, variants and derivatives; methods and compositions for the amelioration of symptoms caused by bone remodeling disorders, including but not limited to osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hypothyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Turner syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes.


In particular, this invention relates to polynucleotide expression profiles of active osteoclasts, the isolation and identification of polynucleotides, polypeptides, variants and derivatives involved in osteoclast activity, validation of the identified polynucleotides for their potential as therapeutic targets and use of the polynucleotides, polypeptides, variants and derivatives for the amelioration of disease states and research purposes, as well as in diagnosis of disease states or in the predisposition to develop same.


BACKGROUND OF THE INVENTION

Bone is a dynamic connective tissue comprised of functionally distinct cell populations required to support the structural, mechanical and biochemical integrity of bone and the human body's mineral homeostasis. The principal cell types involved include, osteoblasts responsible for bone formation and maintaining bone mass, and osteoclasts responsible for bone resorption. Osteoblasts and osteoclasts function in a dynamic process termed bone remodeling. The development and proliferation of these cells from their progenitors is governed by networks of growth factors and cytokines produced in the bone microenvironment as well as by systemic hormones. Bone remodeling is ongoing throughout the lifetime of the individual and is necessary for the maintenance of healthy bone tissue and mineral homeostasis. The process remains largely in equilibrium and is governed by a complex interplay of systemic hormones, peptides and downstream signalling pathway proteins, local transcription factors, cytokines, growth factors and matrix remodeling genes.


Any interference or imbalance arising in the bone remodeling process can produce skeletal disease, with the most common skeletal disorders characterized by a net decrease in bone mass. A primary cause of this reduction in bone mass is an increase in osteoclast number and/or activity. The most common of such disease, and perhaps the best known, is osteoporosis occurring particularly in women after the onset of menopause. In fact osteoporosis is the most significant underlying cause of skeletal fractures in late middle-aged and elderly women. While estrogen deficiency has been strongly implicated as a factor in postmenopausal osteoporosis, there is longstanding evidence that remodeling is a locally controlled process being that it takes place in discrete packets throughout the skeleton as first described by Frost over forty years ago (Frost H. M. 1964).


Since bone remodeling takes place in discrete packets, locally produced hormones and enzymes may be more important than systemic hormones for the initiation of bone resorption and the normal remodeling process. Such local control is mediated by osteoblasts and osteoclasts in the microenvironment in which they operate. For example, osteoclasts attach to the bone matrix and form a separate compartment between themselves and the bone surface delimited by a sealing zone formed by a ring of actin surrounding the ruffled border. Multiple small vesicles transport enzymes toward the bone matrix and internalize partially digested bone matrix. The microenvironment within the sealing zone is rich with the presence of lysosomal enzymes and is highly acidic compared to the normal physiological pH of the body. The ruffled border membrane also expresses RANK, the receptor for RANKL, and macrophage-colony stimulating factor (M-CSF) receptor, both of which are responsible for osteoclast differentiation, as well as the calcitonin receptor capable of rapidly inactivating the osteoclast (Baron, R. 2003).


In a complex pattern of inhibition and stimulation not yet fully understood, growth hormone, insulin-like growth factor-1, the sex steroids, thyroid hormone, calciotrophic hormones such as PTH and prostaglandin E2, various cytokines, such as interleukin-1 beta, interleukin-6, and tumour necrosis factor-alpha, and 1,25-dihydroxyvitamin D (calcitriol) act co-ordinately in the bone remodeling process (Jilka et al. 1992; Poli et al. 1994; Srivastava et al. 1998; de Vemejoul 1996).


Thus, it stands to reason that the unique local environments created by these specialized cells is due to the expression of either unique genetic sequences not expressed in other tissues and/or splice variants of polynucleotides and polypeptides expressed in other tissues. The isolation and identification of polynucleotides, polypeptides and their variants and derivatives specific to osteoclast activity will permit a clearer understanding of the remodeling process and offer tissue specific therapeutic targets for the treatment of disease states related to bone remodeling.


Many diseases linked to bone remodeling are poorly understood, generally untreatable or treatable only to a limited extent. For example, osteoarthritis is difficult to treat as there is no cure and treatment focuses on relieving pain and preventing the affected joint from becoming deformed. Non-steroidal anti-inflammatory drugs (NSAIDs) are generally used to relieve pain.


Another example is osteoporosis where the only current medications approved by the FDA for use in the United States are the anti-resorptive agents that prevent bone breakdown. Estrogen replacement therapy is one example of an anti-resorptive agent. Others include alendronate (Fosamax—a biphosphonate anti-resorptive), risedronate (Actonel—a bisphosphonate anti-resorptive), raloxifene (Evista—selective estrogen receptor modulator (SERM)), calcitonin (Calcimar—a hormone), and parathyroid hormone/teriparatide (Forteo—a synthetic version of the human hormone, parathyroid hormone, which helps to regulate calcium metabolism).


Bisphosphonates such as alendronate and risedronate bind permanently to the surface of bone and interfere with osteoclast activity. This allows the osteoblasts to outpace the rate of resorption. The most common side effects are nausea, abdominal pain and loose bowel movements. However, alendronate is reported to also cause irritation and inflammation of the esophagus, and in some cases, ulcers of the esophagus. Risedronate is chemically different from alendronate and has less likelihood of causing esophagus irritation. However, certain foods, calcium, iron supplements, vitamins and minerals, or antacids containing calcium, magnesium, or aluminum can reduce the absorption of risedronate, thereby resulting in loss of effectiveness.


The most common side effect of Raloxifen and other SERMS (such as Tamoxifen) are hot flashes. However, Raloxifene and other hormone replacement therapies have been shown to increase the risk of blood clots, including deep vein thrombosis and pulmonary embolism, cardiovascular disease and cancer.


Calcitonin is not as effective in increasing bone density and strengthening bone as estrogen and the other anti-resorptive agents. Common side effects of either injected or nasal spray calcitonin are nausea and flushing. Patients can develop nasal irritations, a runny nose, or nosebleeds. Injectable calcitonin can cause local skin redness at the site of injection, skin rash, and flushing.


A situation demonstrative of the link between several disorders or disease states involving bone remodeling is that of the use of etidronate (Didronel) first approved by the FDA to treat Paget's disease. Paget's disease is a bone disease characterized by a disorderly and accelerated remodeling of the bone, leading to bone weakness and pain. Didronel has been used ‘off-label’ and in some studies shown to increase bone density in postmenopausal women with established osteoporosis. It has also been found effective in preventing bone loss in patients requiring long-term steroid medications (such as Prednisone or Cortisone). However, high dose or continuous use of Didronel can cause another bone disease called osteomalacia. Like osteoporosis, osteomalacia can lead to weak bones with increased risk of fractures. Because of osteomalacia concerns and lack of enough studies yet regarding reduction in the rate of bone fractures, the United States FDA has not approved Didronel for the treatment of osteoporosis.


Osteoporosis therapy has been largely focused on antiresorptive drugs that reduce the rate of bone loss but emerging therapies show promise in increasing bone mineral density instead of merely maintaining it or slowing its deterioration. The osteoporosis early stage pipeline consists largely of drug candidates in new therapeutic classes, in particular cathepsin K inhibitors, osteoprotegerin and calcilytics as well as novel bisphosphonates. Some of these are examples where novel drugs exploiting genomics programs are being developed based on a deeper understanding of bone biology and have the potential to change the face of treatment of bone disorders in the long term.


There thus remains a need to better understand the bone remodeling process and to provide new compositions that are useful for the diagnosis, prognosis, treatment, prevention and evaluation of therapies for bone remodeling and associated disorders. A method for analysing polynucleotide expression patterns has been developed and applied to identify polynucleotides, polypeptides, variants and derivatives specifically involved in bone remodeling.


The present invention seeks to meet these and other needs.


The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety.


SUMMARY OF THE INVENTION

The present invention relates to polynucleotides comprising sequences involved in the process of bone remodeling, the open reading frame of such sequences, substantially identical sequences (e.g., variants (e.g., allelic variant), non human orthologs), substantially complementary sequences and fragments of any one of the above thereof.


The present invention relates to polypeptide comprising sequences involved in the process of bone remodeling including biologically active analogs and biologically active fragments thereof. The present invention also relates to compositions that are useful for the diagnosis, prognosis, treatment, prevention and/or evaluation of therapies for bone remodeling and associated disorders.


In addition, the present invention relates to a method for analyzing polynucleotide expression patterns, and applied in the identification of polynucleotides, polypeptides, variants and derivatives specifically involved in bone remodeling.


The present invention relates to polynucleotide expression profiles of osteoclasts, the isolation and identification of polynucleotides, their corresponding polypeptides, variants and derivatives involved in osteoclast activity, validation of these identified elements for their potential as therapeutic targets and use of said polynucleotides, polypeptides, variants and derivatives for the amelioration of disease states.


It is an object of the present invention to provide polynucleotides and/or related polypeptides that have been isolated and identified. More specifically, the invention provides (isolated or substantially purified) polynucleotides comprising or consisting of any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 their coding sequence (open reading frame) substantially identical sequence (e.g., variants, orthologs (e.g., SEQ ID NO.:35)), substantially complementary sequences and related polypeptides comprising any one of SEQ ID NO.: 48-80 and polypeptides encoded by SEQ ID NO.:85 or SEQ ID NO.:86 which have been shown to be upregulated in a highly specific fashion in osteoclasts. The present invention also relates to polypeptide analogs, variants (e.g., SEQ ID NO.:81) and fragments thereof.


NSEQ refers generally to polynucleotide sequences of the present invention and includes for example, SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 whereas PSEQ refers generally to polypeptide sequences of the present invention and includes, for example, SEQ ID NO.:48 to 82 and polypeptides encoded by SEQ ID NO.:85 or SEQ ID NO.:86. Of course it will be understood that NSEQ also encompasses polynucleotide sequences which are designed or derived from SEQ. ID. NOs:1 to 33 SEQ ID NO.:85 or SEQ ID NO.:86 for example, their coding sequence, complementary sequences. Non-limiting examples of such sequences are disclosed herein (e.g. SEQ ID Nos 42-45).


As used herein the term “NSEQ” refers generally to polynucleotides sequences comprising or consisting of any one of SEQ. ID. NOs:1 to 33, 85 or 86 (e.g., an isolated form) or comprising or consisting of a fragment of any one of SEQ. ID. NOs:1 to 33, 85 or 86. The term “NSEQ” more particularly refers to a polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s) (i.e., a coding portion of any one of SEQ ID Nos.: 1 to 33, 85 or 86). The term “NSEQ” additionally refers to a sequence substantially identical to any one of the above and more particularly substantially identical to polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. Nos1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s). The term “NSEQ” additionally refers to a polynucleotide sequence region of any one of SEQ. ID. NOs:1 to 33, 85 or 86 which encodes or is able to encode a polypeptide. The term “NSEQ” also refers to a polynucleotide sequence able of encoding any one of the polypeptides described herein or a polypeptide fragment of any one of the above Finally, the term “NSEQ” also comprise a sequence substantially complementary to any one of the above.


The term “inhibitory NSEQ” generally refers to a sequence substantially complementary to any one of SEQ. ID. Nos: 1 to 33, 85 or 86, substantially complementary to a fragment of any one of SEQ. ID. Nos: 1 to 33, 85 or 86, substantially complementary to a sequence substantially identical to SEQ. ID. NOs:1 to 33, 85 or 86 and more particularly, substantially complementary to a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86 (e.g., which may be free of unstranslated or untranslatable portion) and which may have attenuating or even inhibitory action againts the transcription of a mRNA or against expression of a polypeptide encoded by a corresponding SEQ ID NOs.:1 to 33, 85 or 86. Suitable “inhibitory NSEQ” may have for example and without limitation from about 10 to about 30 nucleotides, from about 10 to about 25 nucleotides or from about 15 to about 20 nucleotides. As used herein the term “nucleotide” means deoxyribonucleotide or ribonucleotide. In an exemplary embodiment, the use of nucleotide analogues is also encompassed in the present invention.


The present invention relates in one aspect thereof to an isolated polynucleotide sequence having at least from about 80% to about 100% (e.g., 80%, 90%, 95%, etc.) sequence identity to a polynucleotide sequence selected from the group consisting of polynucleotides comprising (a) any one of a SEQ. ID. NOs:1 to 33 or SEQ ID NO.:85 or SEQ ID NO.:86; (b) an open reading frame of (a); (c) a full complement of (a) or (b), and; (d) a fragment of any one of (a) to (c).


As used herein the term “unstranscribable region” may include for example, a promoter region (or portion thereof), silencer region, enhancer region etc. of a polynucleotide sequence.


As used herein the term “unstranslatable region” may include for example, an initiator portion of a polynucleotide sequence (upstream of an initiator codon, e.g., AUG), intronic regions, stop codon and/or region downstream of a stop codon (including polyA tail, etc.).


Complements of the isolated polynucleotide sequence encompassed by the present invention may be those, for example, which hybridize under high stringency conditions to any of the nucleotide sequences in (a), or (b). The high stringency conditions may comprise, for example, a hybridization reaction at 65° C. in 5×SSC, 5×Denhardt's solution, 1% SDS, and 100 μg/ml denatured salmon sperm DNA


In accordance with the present invention, the polynucleotide sequence may be used, for example, in the treatment of diseases or disorders involving bone remodeling.


Fragments of polynucleotides may be used, for example, as probes for determining the presence of the isolated polynucleotide (or its complement or fragments thereof) in a sample, cell, tissue, etc. for experimental purposes or for the purpose of diagnostic of a diseases or disorders involving bone remodeling.


The present invention also relates to a combination comprising a plurality of polynucleotides (substantially purified and/or isolated). The polynucleotides may be co-expressed with one or more genes known to be involved in bone remodeling. Furthermore, the plurality of polynucleotides may be selected, for example, from the group consisting of a polynucleotide comprising (a) any one of SEQ. ID NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86; (b) an open reading frame (a); (c) a polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s) (d) a complementary sequence of any one of (a) to (c); (e) a sequence that hybridizes under high stringency conditions to any one of the nucleotide sequences of (a) to (d) and; (f) fragments of any one of (a) to (e).


The present invention further relates to a polynucleotide encoding any one of the polypeptides described herein. In accordance with the present invention, the polynucleotide (RNA, DNA, etc.) may encode a polypeptide which may be selected from the group consisting of any one of SEQ ID NO.:48 to 80, polypeptides encoded by SEQ ID NO.:85 or 86, analogs or fragments thereof (e.g., biologically active fragments, immunologically active fragments, etc.).


The present invention also relates to an isolated nucleic acid molecule comprising the polynucleotides of the present invention, operatively linked to a nucleotide sequence encoding a heterologous polypeptide thereby encoding a fusion polypeptide.


The invention further relates to a polypeptide encoded by a polynucleotide of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 or more particularly from the open reading frame of any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, or a portion thereof. The invention also comprise the product of a gene that is co-expressed with one or more genes known to be involved in bone remodeling.


Isolated naturally occurring allelic variant are also encompassed by the present invention as well as synthetic variants (e.g., made by recombinant DNA technology or by chemical synthesis, etc.) such as biologically active variant which may comprise one or more amino acid substitutions (compared to a naturally occurring polypeptide), such as conservative or non conservative amino acid substitution.


The present invention, further provides a vector (mammalian, bacterial, viral, etc.) comprising the polynucleotides described herein or fragments thereof, such as an expression vector. The vector may further comprise a nucleic acid sequence which may help in the regulation of expression of the polynucleotide and/or a nucleotide sequence encoding a tag (e.g., affinity tag; HA, GST, His etc.).


In accordance with the present invention, an expression vector may comprise, for example, the following operatively linked elements:

    • a) a transcription promoter;
    • b) a polynucleotide segment (which may comprise an open reading frame of any one of SEQ ID NOs.:1-33, 85 or 86); and
    • c) a transcription terminator.


The invention also relates to an expression vector comprising a polynucleotide described herein, a host cell transformed with the expression vector and a method for producing a polypeptide of the present invention.


The invention further relates to a vector comprising a polynucleotide or polynucleotide fragment. Vectors which may comprise a sequence substantially complementary to the polynucleotides of the present invention (e.g., siRNA, shRNA) are thus encompassed by the present invention. The vector may comprise sequences enabling transcription of the polynucleotide or polynucleotide fragment.


More particularly, the present invention therefore provides a cell which may be genetically engineered to contain and/or to express the polynucleotide (including complements and fragments) and/or polypeptides of the present invention. The cell may be, for example, a mammalian cell, an insect cell, a bacteria cell, etc.


The present invention, therefore provides a host cell which may comprise a vector as described herein. The cell may be, for example, a mammalian cell, an insect cell, a bacteria, etc. The cell may be able to express or expresses a polypeptide encoded by the polynucleotide described herein.


Methods of producing the polypeptides of the present invention encompassed herewith includes for example, culturing the cell in conditions allowing the transcription of a gene or expression of the polypeptide. The polypeptide may be recovered, for example, from cell lysate or from the cell supernatant.


The invention relates to the use of at least one polynucleotide comprising any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 their coding sequence, substantially identical sequences, substantially complementary sequences or fragments thereof on an array. The array may be used in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample indicates the presence of a bone remodeling disease or disorder. Of course, the use of a polynucleotide of the present invention in a diagnosis method is not dependent exclusively by way of a specific assay. The sequence or sequences may be used in conventionally used diagnosis methods known in the art.


The present invention also relates to a method of ameliorating bone remodeling disease or disorder symptoms, or for inhibiting or delaying bone disease or disorder, the method may comprise: contacting a compound capable of specifically inhibiting activity or expression of a polynucleotide sequence described herein or a polypeptide described herein, in osteoclasts so that symptoms of the bone remodeling disease or disorder may be ameliorated, or the disease or disorder may be prevented, delayed or lowered.


The present invention further relates to a method for ameliorating bone remodeling disease or disorder symptoms, or for inhibiting or delaying bone disease or disorder, the method may comprise: contacting a compound capable of specifically promoting activity or expression of a polynucleotide sequence described herein or a polypeptide described herein, in osteoclasts so that symptoms of the bone remodeling disease or disorder may be ameliorated, or the disease or disorder may be prevented, delayed or lowered.


The present invention also relates to a method of treating a condition in a mammal characterized by a deficiency in, or need for, bone growth or replacement and/or an undesirable level of bone resorption, which method may comprise administering to a mammalian subject in need of such treatment an effective amount of a suitable compound described herein.


The present invention further relates to a method of using a polynucleotide sequence described herein, a polypeptide described herein on an array and for the use of the array in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample may indicate the presence of a bone remodeling disease or disorder.


In accordance with the present invention, the polynucleotide sequence described herein may be used for somatic cell gene therapy or for stem cell gene therapy.


The invention also relates to a pharmaceutical composition comprising a polynucleotide described herein or a polypeptide encoded by the selected polynucleotide or portion thereof and a suitable pharmaceutical carrier.


Additionally, the invention relates to products, compositions, processes and methods that comprises a polynucleotide described herein, a polypeptide encoded by the polynucleotides, a portion thereof, their variants or derivatives, for research, biological, clinical and therapeutic purposes.


The NSEQs and PSEQs may be used in diagnosis, prognosis, treatment, prevention, and selection and evaluation of therapies for diseases and disorders involving bone remodeling including, but not limited to, osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Turner syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes.


Use of NSEQ as a Screening Tool

The polynucleotides obtained by the present invention may be used to detect and isolate expression products, for example, mRNA, complementary DNAs (cDNAs) and proteins derived from or homologous to the NSEQs. In one embodiment, the expression of mRNAs homologous to the NSEQs of the present invention may be detected, for example, by hybridization analysis, reverse transcription and in vitro nucleic acid amplification methods. Such procedures permit detection of mRNAs in a variety of tissue types or at different stages of development. The subject nucleic acids which are expressed in a tissue-specific or a developmental-stage-specific manner are useful as tissue-specific markers or for defining the developmental stage of a sample of cells or tissues that may define a particular disease state. One of skill in the art may readily adapt the NSEQs for these purposes.


Those skilled in the art will also recognize that the NSEQs, and its expression products such as cDNA nucleic acids and genomic DNA may be used to prepare short oligonucleotides sequences. For example, oligonucleotides having ten to twelve nucleotides or more may be prepared which hybridize specifically to the present NSEQs and cDNAs and allow detection, identification and isolation of unique nucleic sequences by hybridization. Sequences of for example, at least 15-20 nucleotides may be used and selected from regions that lack homology to other known sequences. Sequences of 20 or more nucleotides that lack such homology show an increased specificity toward the target sequence. Useful hybridization conditions for probes and primers are readily determinable by those of skill in the art. Stringent hybridization conditions encompassed herewith are those that may allow hybridization of nucleic acids that are greater than 90% homologous but which may prevent hybridization of nucleic acids that are less than 70% homologous. The specificity of a probe may be determined by whether it is made from a unique region, a regulatory region, or from a conserved motif. Both probe specificity and the stringency of diagnostic hybridization or amplification (maximal, high, intermediate, or low) reactions may be determined whether the probe identifies exactly complementary sequences, allelic variants, or related sequences. Probes designed to detect related sequences may have at least 50% sequence identity to any of the selected polynucleotides.


It is to be understood herein that the NSEQs (substantially identical sequences and fragments thereof) may hybridize to a substantially complementary sequence found in a test sample. Additionally, a sequence substantially complementary to NSEQ may bind a NSEQ found in a test sample.


Furthermore, a probe may be labelled by any procedure known in the art, for example by incorporation of nucleotides linked to a “reporter molecule”. A “reporter molecule”, as used herein, may be a molecule that provides an analytically identifiable signal allowing detection of a hybridized probe. Detection may be either qualitative or quantitative. Commonly used reporter molecules include fluorophores, enzymes, biotin, chemiluminescent molecules, bioluminescent molecules, digoxigenin, avidin, streptavidin or radioisotopes. Commonly used enzymes include horseradish peroxidase, alkaline phosphatase, glucose oxidase and β-galactosidase, among others. Enzymes may be conjugated to avidin or streptavidin for use with a biotinylated probe. Similarly, probes may be conjugated to avidin or streptavidin for use with a biotinylated enzyme. Incorporation of a reporter molecule into a DNA probe may be by any method known to the skilled artisan, for example by nick translation, primer extension, random oligo priming, by 3′ or 5′ end labeling or by other means. In addition, hybridization probes include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro. The labelled polynucleotide sequences may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; and in micro arrays utilizing samples from subjects to detect altered expression. Oligonucleotides useful as probes for screening of samples by hybridization assays or as primers for amplification may be packaged into kits. Such kits may contain the probes or primers in a pre-measured or predetermined amount, as well as other suitably packaged reagents and materials needed for the particular hybridization or amplification protocol. In another embodiment, the invention entails a substantially purified polypeptide encoded by the polynucleotides of NSEQs, polypeptide analogs or polypeptide fragments thereof. The polypeptides whether in a premature, mature or fused form, may be isolated from lysed cells, or from the culture medium, and purified to the extent needed for the intended use. One of skill in the art may readily purify these proteins, polypeptides and peptides by any available procedure. For example, purification may be accomplished by salt fractionation, size exclusion chromatography, ion exchange chromatography, reverse phase chromatography, affinity chromatography and the like.


Use of NSEQ for Development of an Expression System

In order to express a biologically active polypeptide, NSEQ, or derivatives thereof, may be inserted into an expression vector, i.e., a vector that contains the elements for transcriptional and translational control of the inserted coding sequence in a particular host. These elements may include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5′ and 3′ un-translated regions. Methods that are well known to those skilled in the art may be used to construct such expression vectors. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.


A variety of expression vector/host cell systems known to those of skill in the art may be utilized to express NSEQ. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with baculovirus vectors; plant cell systems transformed with viral or bacterial expression vectors; or animal cell systems. For long-term production of recombinant proteins in mammalian systems, stable expression in cell lines may be effected. For example, NSEQ may be transformed into cell lines using expression vectors that may contain viral origins of replication and/or endogenous expression elements and a selectable or visible marker gene on the same or on a separate vector. The invention is not to be limited by the vector or host cell employed.


In general, host cells that contain NSEQ and that express a polypeptide encoded by the NSEQ, or a portion thereof, may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques that include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or amino acid sequences. Immunological methods for detecting and measuring the expression of polypeptides using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). Those of skill in the art may readily adapt these methodologies to the present invention.


The present invention additionally relates to a bioassay for evaluating compounds as potential antagonists of the polypeptide described herein, the bioassay may comprise:

    • a) culturing test cells in culture medium containing increasing concentrations of at least one compound whose ability to inhibit the action of a polypeptide described herein is sought to be determined, wherein the test cells may contain a polynucleotide sequence described herein (for example, in a form having improved trans-activation transcription activity, relative to wild-type polynucleotide, and comprising a response element operatively linked to a reporter gene); and thereafter
    • b) monitoring in the cells the level of expression of the product of the reporter gene as a function of the concentration of the potential antagonist compound in the culture medium, thereby indicating the ability of the potential antagonist compound to inhibit activation of the polypeptide encoded by, the polynucleotide sequence described herein.


The present invention further relates to a bioassay for evaluating compounds as potential agonists for a polypeptide encoded by the polynucleotide sequence described herein, the bioassay may comprise:

    • a) culturing test cells in culture medium containing increasing concentrations of at least one compound whose ability to promote the action of the polypeptide encoded by the polynucleotide sequence described herein is sought to be determined, wherein the test cells may contain a polynucleotide sequence described herein (for example, in a form having improved trans-activation transcription activity, relative to wild-type polynucleotide, and comprising a response element operatively linked to a reporter gene); and thereafter
    • b) monitoring in the cells the level of expression of the product of the reporter gene as a function of the concentration of the potential agonist compound in the culture medium, thereby indicating the ability of the potential agonist compound to promote activation of a polypeptide encoded by the polynucleotide sequence described herein.


Host cells transformed with NSEQ may be cultured under conditions for the expression and recovery of the polypeptide from cell culture. The polypeptide produced by a transgenic cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing NSEQ may be designed to contain signal sequences that direct secretion of the polypeptide through a prokaryotic or eukaryotic cell membrane. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express the polypeptide encoded by NSEQ. The nucleotide sequences of the present invention may be engineered using methods generally known in the art in order to alter the nucleotide sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.


In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing, which cleaves a “prepro” form of the polypeptide, may also be used to specify protein targeting, folding, and/or activity. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and W138) are available commercially and from the American Type Culture Collection (ATCC) and may be chosen to ensure the correct modification and processing of the expressed polypeptide.


Those of skill in the art will readily appreciate that natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence resulting in translation of a fusion polypeptide containing heterologous polypeptide moieties in any of the aforementioned host systems. Such heterologous polypeptide moieties may facilitate purification of fusion polypeptides using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein, thioredoxin, calmodulin binding peptide, 6-His (His), FLAG, c-myc, hemaglutinin (HA), and monoclonal antibody epitopes.


In yet a further aspect, the present invention relates to an isolated polynucleotide which may comprise a nucleotide sequence encoding a fusion protein, the fusion protein may comprise a fusion partner fused to a peptide fragment of a protein encoded by, or a naturally occurring allelic variant polypeptide encoded by, the polynucleotide sequence described herein.


Those of skill in the art will also readily recognize that the nucleic acid and polypeptide sequences may be synthesized, in whole or in part, using chemical or enzymatic methods well known in the art. For example, peptide synthesis may be performed using various solid-phase techniques and machines such as the ABI 431A Peptide synthesizer (PE Biosystems) may be used to automate synthesis. If desired, the amino acid sequence may be altered during synthesis and/or combined with sequences from other proteins to produce a variant protein.


Use of NSEQ as a Diagnostic Screening Tool

The skilled artisan will readily recognize that NSEQ may be used for diagnostic purposes to determine the absence, presence, or altered expression (i.e. increased or decreased compared to normal) of the gene. The polynucleotides may be at least 10 nucleotides long or at least 12 nucleotides long, or at least 15 nucleotides long up to any desired length and may comprise complementary RNA and DNA molecules, branched nucleic acids, and/or peptide nucleic acids (PNAs). In one alternative, the polynucleotides may be used to detect and quantify gene expression in samples in which expression of NSEQ is correlated with disease. In another alternative, NSEQ may be used to detect genetic polymorphisms associated with a disease. These polymorphisms may be detected in the transcript cDNA.


The invention provides for the use of at least one polynucleotide comprising NSEQ (e.g., an open reading frame of NSEQ, a substantially complementary sequence, a substantially identical sequence, and fragments thereof) on an array and for the use of that array in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample indicates the presence of a bone remodeling disease or disorder.


In another embodiment, the present invention provides one or more compartmentalized kits for detection of bone resorption disease states. A first kit may have a receptacle containing at least one isolated probe. Such a probe may be a nucleic acid fragment which is present/absent in the genomic DNA of normal cells but which is absent/present in the genomic DNA of affected cells. Such a probe may be specific for a DNA site that is normally active/inactive but which may be inactive/active in certain cell types. Similarly, such a probe may be specific for a DNA site that may be abnormally expressed in certain cell types. Finally, such a probe may identify a specific DNA mutation. By specific for a DNA site is meant that the probe may be capable of hybridizing to the DNA sequence which is mutated, or may be capable of hybridizing to DNA sequences adjacent to the mutated DNA sequences. The probes provided in the present kits may have a covalently attached reporter molecule. Probes and reporter molecules may be readily prepared as described above by those of skill in the art.


Use of NSEQ as a Therapeutic

One of skill in the art will readily appreciate that the expression systems and assays discussed above may also be used to evaluate the efficacy of a particular therapeutic treatment regimen, in animal studies, in clinical trials, or to monitor the treatment of an individual subject. Once the presence of disease is established and a treatment protocol is initiated, hybridization or amplification assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate the level observed in a healthy subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to many years.


In yet another aspect of the invention, an NSEQ, a portion thereof, or its complement, may be used therapeutically for the purpose of expressing mRNA and polypeptide, or conversely to block transcription or translation of the mRNA. Expression vectors may be constructed using elements from retroviruses, adenoviruses, herpes or vaccinia viruses, or bacterial plasmids, and the like. These vectors may be used for delivery of nucleotide sequences to a particular target organ, tissue, or cell population. Methods well known to those skilled in the art may be used to construct vectors to express nucleic acid sequences or their complements.


Alternatively, NSEQ, a portion thereof, or its complement, may be used for somatic cell or stem cell gene therapy. Vectors may be introduced in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors are introduced into stem cells taken from the subject, and the resulting transgenic cells are clonally propagated for autologous transplant back into that same subject. Delivery of NSEQ by transfection, liposome injections, or polycationic amino polymers may be achieved using methods that are well known in the art. Additionally, endogenous NSEQ expression may be inactivated using homologous recombination methods that insert an inactive gene sequence into the coding region or other targeted region of NSEQ.


Depending on the specific goal to be achieved, vectors containing NSEQ may be introduced into a cell or tissue to express a missing polypeptide or to replace a non-functional polypeptide. Of course, when one wishes to express PSEQ in a cell or tissue, one may use a NSEQ able to encode such PSEQ for that purpose or may directly administer PSEQ to that cell or tissue.


On the other hand, when one wishes to attenuate or inhibit the expression of PSEQ, one may use a NSEQ (e.g., an inhibitory NSEQ) which is substantially complementary to at least a portion of a NSEQ able to encode such PSEQ.


The expression of an inhibitory NSEQ may be done by cloning the inhibitory NSEQ into a vector and introducing the vector into a cell to down-regulate the expression of a polypeptide encoded by the target NSEQ.


Vectors containing NSEQ (e.g., including inhibitory NSEQ) may be transformed into a cell or tissue to express a missing polypeptide or to replace a non-functional polypeptide. Similarly a vector constructed to express the complement of NSEQ may be transformed into a cell to down-regulate the over-expression of a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Complementary or anti-sense sequences may consist of an oligonucleotide derived from the transcription initiation site; nucleotides between about positions −10 and +10 from the ATG are preferred. Similarly, inhibition may be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee et al. 1994)


Ribozymes, enzymatic RNA molecules, may also be used to catalyze the cleavage of mRNA and decrease the levels of particular mRNAs, such as those comprising the polynucleotide sequences of the invention. Ribozymes may cleave mRNA at specific cleavage sites. Alternatively, ribozymes may cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The construction and production of ribozymes is well known in the art.


RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends of the molecule, or the use of phosphorothioate or 2′ O-methyl rather than phosphodiester linkages within the backbone of the molecule. Alternatively, nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases, may be included.


In addition to the active ingredients, a pharmaceutical composition may contain pharmaceutically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations that may be used pharmaceutically.


For any compound, the therapeutically effective dose may be estimated initially either in cell culture assays or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the concentration range and route of administration. Such information may then be used to determine useful doses and routes for administration in humans. These techniques are well known to one skilled in the art and a therapeutically effective dose refers to that amount of active ingredient that ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating and contrasting the ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) statistics. Any of the therapeutic compositions described above may be applied to any subject in need of such therapy, including, but not limited to mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.


The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.


The term “Treatment” for purposes of this disclosure refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.


Use of NSEQ in General Research

The invention finally provides products, compositions, processes and methods that utilize an NSEQ, their open reading frame, or a polypeptide encoded by the polynucleotides of NSEQ or their open reading frame, or a portion thereof, their variants, analogs, derivatives and fragments for research, biological, clinical and therapeutic purposes. For example, to identify splice variants, mutations, and polymorphisms


NSEQ may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences such as promoters and other regulatory elements. Additionally, one may use an XL-PCR kit (PE Biosystems, Foster City Calif.), nested primers, and commercially available cDNA libraries (Life Technologies, Rockville Md.) or genomic libraries (Clontech, Palo Alto Calif.) to extend the sequence.


The polynucleotides may also be used as targets in a micro-array. The micro-array may be used to monitor the expression patterns of large numbers of genes simultaneously and to identify splice variants, mutations, and polymorphisms. Information derived from analyses of the expression patterns may be used to determine gene function, to understand the genetic basis of a disease, to diagnose a disease, and to develop and monitor the activities of therapeutic agents used to treat a disease. Microarrays may also be used to detect genetic diversity, single nucleotide polymorphisms which may characterize a particular population, at the genomic level.


In yet another embodiment, polynucleotides may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data.


The present invention more particularly relates in one aspect thereof to a method of representatively identifying an endogeneously differentially expressed sequence involved in osteoclast differentiation. The sequence may be, for example, differentially expressed in a differentiated osteoclast cell compared to an undifferentiated osteoclast precursor cell.


The method of the present invention may comprise;

    • a) separately providing total messenger RNA from (mature or intermediately) differentiated human osteoclast cell and undifferentiated human osteoclast precursor cell, the total messenger RNA may comprise, for example, at least one endogeneously differentially expressed sequence,
    • b) generating single-stranded cDNA from each messenger RNA of differentiated human osteoclast cell and (e.g., randomly) tagging the 3′-end of the single-stranded cDNA with a RNA polymerase promoter sequence and a first sequence tag;
    • c) generating single-stranded cDNA from each messenger RNA of undifferentiated human osteoclast precursor cell and (e.g., randomly) tagging the 3′-end of the single-stranded cDNA with a RNA polymerase promoter sequence and a second sequence tag;
    • d) separately generating partially or completely double-stranded 5′-tagged-DNA from each of b) and c), the double-stranded 5′-tagged-DNA may thus comprise in a 5′ to 3′ direction, a double-stranded RNA polymerase promoter, a first or second sequence tag and an endogenously expressed sequence,
    • e) separately linearly amplifying a first and second tagged sense RNA from each of d) with a RNA polymerase enzyme (which may be selected based on the promoter used for tagging),
    • f) generating single-stranded complementary first or second tagged DNA from one of e),
    • g) hybridizing the single-stranded complementary first or second tagged DNA of f) with the other linearly amplified sense RNA of e),
    • h) recovering unhybridized RNA with the help of the first or second sequence tag (for example by PCR or hybridization), and;
    • i) identifying (determining) the nucleotide sequence of unhybridized RNA.


Steps b) and/or c), may comprise generating a single copy of a single-stranded cDNA.


The method may further comprise the step of comparatively determining the presence of the identified endogeneously and differentially expressed sequence in a differentiated osteoclast cell relative to an undifferentiated osteoclast precursor cell.


A sequence which is substantially absent (e.g., totally absent or present in very low quantity) from one of differentiated osteoclast cell or an undifferentiated osteoclast precursor cell and present in the other of differentiated osteoclast cell or an undifferentiated osteoclast precursor cell may therefore be selected.


The sequence thus selected may be a positive regulator of osteoclast differentiation and therefore may represent an attractive target which may advantageously be used to promote bone resorption or alternatively such target may be inhibited to lower or prevent bone resorption.


Alternatively, the sequence selected using the above method may be a negative regulator of osteoclast differentiation and may therefore represent an attractive target which may advantageously be induced (e.g., at the level of transcription, translation, activity etc.) or provided to a cell to lower or prevent bone resorption. Also such negative regulator may, upon its inhibition, serve as a target to promote bone resorption


In accordance with the present invention, the sequence may be further selected based on a reduced or substantially absent expression in other normal tissue, therefore representing a candidate sequence specifically involved in osteoclast differentiation and bone remodeling.


The method may also further comprise a step of determining the complete sequence of the nucleotide sequence and may also comprise determining the coding sequence of the nucleotide sequence.


The present invention also relates in a further aspect, to the isolated endogeneously and differentially expressed sequence (polynucleotide and polypeptide) identified by the method of the present invention.


More particularly, the present invention encompasses a polynucleotide which may comprise the identified polynucleotide sequence: a polynucleotide which may comprise the open reading frame of the identified polynucleotide sequence, a polynucleotide which may comprise a nucleotide sequence substantially identical to the polynucleotide identified by the method of the present invention, a polynucleotide which may comprise a nucleotide sequence substantially complementary to the polynucleotide identified by the method of the present invention, fragments and splice variant thereof, provided that the sequence does not consist in or comprise SEQ ID NO.:34.


In accordance with the present invention, the isolated endogeneously and differentially expressed sequence of the present invention may be a complete or partial RNA molecule.


Isolated DNA molecule able to be transcribed into the RNA molecule of the present invention are also encompassed herewith as well as vectors (including expression vectors) comprising the such DNA or RNA molecule.


The present invention also relates to libraries comprising at least one isolated endogeneously and differentially expressed sequence identified herein (e.g., partial or complete RNA or DNA, substantially identical sequences or substantially complementary sequences (e.g., probes) and fragments thereof (e.g., oligonucleotides)).


In accordance with the present invention, the isolated endogeneously and differentially expressed sequence may be selected, for example, from the group consisting of a polynucleotide which may consist in or comprise;

    • a) any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • b) the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • c) a polynucleotide which may comprise a nucleotide sequence substantially identical to a) or b), and;


d) a polynucleotide which may comprise a nucleotide sequence substantially complementary to any one of a) to c),

    • c) fragments of any one of a) to d).


In a further aspect the present invention relates to a polypeptide which may be encoded by the isolated endogeneously and differentially expressed sequence of the present invention.


In yet a further aspect the present invention relates to a polynucleotide able to encode a polypeptide of the present invention. Due to the degeneracy of the genetic code, it is to be understood herein that a multiplicity of polynucleotide sequence may encode the same polypeptide sequence and thus are encompassed by the present invention.


Exemplary polypeptides may comprise a sequence selected from the group consisting of any one of SEQ ID NO.: 48 to 80, a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86.


The present invention also relates to an isolated non-human ortholog polynucleotide sequence (involved in bone remodeling), the open reading frame of the non-human ortholog, substantially identical sequences, substantially complementary sequences, fragments and splice variants thereof.


The present invention as well relates to an isolated polypeptide encoded by the non-human ortholog polynucleotide as well as biologically active analogs and biologically active fragments thereof.


Exemplary embodiments of non-human (e.g., mouse) ortholog polynucleotides encompassed herewith include, for example, SEQ ID NO.:35


Exemplary embodiments of isolated polypeptide encoded by some non-human orthologs identified herein include for example, a polypeptide such as SEQ ID NO.:82.


The present invention also more particularly relates, in an additional aspect thereof, to an isolated polynucleotide which may be differentially expressed in differentiated osteoclast cell compared to undifferentiated human osteoclast precursor cell.


The isolated polynucleotide may comprise a member selected from the group consisting of;


a) a polynucleotide which may comprise any one of SEQ ID NO.:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86

    • b) a polynucleotide which may comprise the open reading frame of any one of SEQ ID NO.:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86;


c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);

    • d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
    • e) a polynucleotide which may comprise a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b) c) or d),
    • f) a polynucleotide which may comprise a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d) and;
    • g) a fragment of any one of a) to f)
    • h) including polynucleotides which consist in the above.


Exemplary polynucleotides fragments of those listed above comprises polynucleotides of at least 10 nucleic acids which may be substantially complementary to the nucleic acid sequence of any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, for example, fragments selected from the group consisting of any one of SEQ ID NO.: 42-45.


The present invention also relates to an isolated polynucleotide involved in osteoclast differentiation, the isolated polynucleotide may be selected, for example, from the group consisting of;

    • a) a polynucleotide comprising any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • b) a polynucleotide comprising the open reading frame of any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
    • d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
    • e) a polynucleotide substantially identical to a), b), c) or d), and;
    • f) a sequence of at least 10 nucleic acids which may be substantially complementary to the nucleic acid sequence of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 or more particularly of a), b), c) or d).


In accordance with the present invention the isolated polynucleotide may be able to promote osteoclast differentiation (e.g., in a mammal or mammalian cell thereof), i.e, a positive regulator of osteoclast differenciation.


Further in accordance with the present invention, the isolated polynucleotide may be able to inhibit, prevent or lower osteoclast differentiation (e.g. in a mammal or mammalian cell thereof), i.e, a negative regulator of osteoclast differenciation.


In yet a further aspect, the present invention relates to an isolated polynucleotide which may be able to inhibit osteoclast differentiation (e.g., in a mammal or mammalian cell thereof). The polynucleotide may be selected, for example, from the group consisting of polynucleotides which may comprise a sequence of at least 10 nucleic acids which is complementary to the nucleic acid sequence of any one of NSEQ described herein.


Suitable polynucleotides include, for example, a polynucleotide having or comprising those which are selected from the group consisting of SEQ ID NO. 42 to 45.


Suitable polynucleotides may be those which may be able to inhibit osteoclast differentiation which has been induced by an inducer of osteoclast differentiation such as those listed herein.


In accordance with the present invention, the polynucleotide may be, for example, a RNA molecule, a DNA molecule, including those which are partial or complete, single-stranded or double-stranded, hybrids, etc.


The present invention also relates to a vector (e.g., an expression vector) comprising the polynucleotide of the present invention.


The present invention additionally relates in an aspect thereof to a library of polynucleotide sequences which may be differentially expressed in a differentiated osteoclast cell compared to an undifferentiated osteoclast precursor cell. The library may comprise, for example, at least one member selected from the group consisting of

    • a) a polynucleotide which may comprise any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • b) a polynucleotide which may comprise the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
    • d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
    • e) a polynucleotide which may comprise a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b), c) or d);
    • f) a polynucleotide which may comprise a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d) and;
    • g) a fragment of any one of a) to d).


The present invention also relates to an expression library which may comprise a library of polynucleotides described herein. In accordance with the present invention, each of the polynucleotide may be contained within an expression vector.


Arrays and kits comprising a library of polynucleotide sequences (comprising at least one polynucleotide such as complementary sequences) of the present invention are also encompassed herewith.


The present invention also provides in an additional aspect, a pharmaceutical composition for inhibiting osteoclast differentiation (bone resorption and bone resorption related diseases or disorders), the pharmaceutical composition may comprise, for example;

    • a) an isolated polynucleotide as defined herein (e.g., able to inhibit osteoclast differentiation) and;
    • b) a pharmaceutically acceptable carrier.


The present invention also provides in yet an additional aspect, a method for inhibiting osteoclast differentiation (e.g., for inhibiting bone resorption or for ameliorating bone resorption) in a mammal (individual) in need thereof (or in a mammalian cell), the method may comprise administering an isolated polynucleotide (e.g., able to inhibit osteoclast differentiation) or a suitable pharmaceutical composition comprising such suitable polynucleotide.


In accordance with the present invention, the mammal in need may suffer, for example and without limitation, from a condition selected from the group consisting of osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Turner syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes, etc.


In a further aspect, the present invention relates to the use of an isolated polynucleotide (e.g., able to inhibit osteoclast differentiation) for the preparation of a medicament for the treatment of a bone resorption disease.


The present invention in another aspect thereof, provides a pharmaceutical composition for promoting osteoclast differentiation in a mammal in need thereof. The pharmaceutical composition may comprise, for example;

    • a. an isolated polynucleotide (e.g., able to promote osteoclast differentiation) and;
    • b. a pharmaceutically acceptable carrier.


The present invention also further provides a method for promoting osteoclast differentiation in a mammal in need thereof (or in a mammalian cell), the method may comprise, for example, administering an isolated polynucleotide (e.g., able to promote osteoclast differentiation) or a suitable pharmaceutical composition as described above.


The present invention additionally relates to the use of an isolated polynucleotide (e.g., able to promote osteoclast differentiation) for the preparation of a medicament for the treatment of a disease associated with insufficient bone resorption (e.g. hyperostosis) or excessive bone growth.


The present invention also relates to the use of at least one polynucleotide which may be selected from the group consisting of;

    • a) a polynucleotide comprising any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • b) a polynucleotide comprising the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
    • c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
    • d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
    • e) a polynucleotide comprising a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b), c) or d);
    • f) a polynucleotide comprising a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d);
    • g) a fragment of any one of a) to f) and;
    • h) a library comprising any one of a) to g)


in the diagnosis of a condition related to bone remodeling (a bone disease).


Also encompassed by the present invention are kits for the diagnosis of a condition related to bone remodeling. The kit may comprise a polynucleotide as described herein.


The present invention also provides in an additional aspect, an isolated polypeptide (polypeptide sequence) involved in osteoclast differentiation (in a mammal or a mammalian cell thereof). The polypeptide may comprise (or consist in) a sequence selected from the group consisting of;

    • a) any one of SEQ ID NO.: 48 to 80,
    • b) a polypeptide able to be encoded and/or encoded by any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 (their coding portion)
    • c) a biologically active fragment of any one of a) or b),
    • d) a biologically active analog of any one of a) or b).


In accordance with the present invention, the biologically active analog may comprise, for example, at least one amino acid substitution (conservative or non conservative) compared to the original sequence. In accordance with the present invention, the analog may comprise, for example, at least one amino acid substitution, deletion or insertion in its amino acid sequence.


The substitution may be conservative or non-conservative. The polypeptide analog may be a biologically active analog or an immunogenic analog which may comprise, for example, at least one amino acid substitution (conservative or non conservative), for example, 1 to 5, 1 to 10, 1 to 15, 1 to 20, 1 to 50 etc. (including any number there between) compared to the original sequence. An immunogenic analog may comprise, for example, at least one amino acid substitution compared to the original sequence and may still be bound by an antibody specific for the original sequence.


In accordance with the present invention, a polypeptide fragment may comprise, for example, at least 6 consecutive amino acids, at least 8 consecutive amino acids or more of an amino acid sequence described herein.


In yet a further aspect, the present invention provides a pharmaceutical composition which may comprise, for example a polypeptide as described herein and a pharmaceutically acceptable carrier.


Methods for modulating osteoclast differentiation in a mammal in need thereof (or in a mammalian cell) are also provided by the present invention, which methods may comprise administering an isolated polypeptide (e.g., able to promote osteoclast differentiation) or suitable pharmaceutical composition described herein.


In additional aspects, the present invention relates to the use of an isolated polypeptide (e.g., able to promote osteoclast differentiation) for the preparation of a medicament for the treatment of a disease associated with insufficient bone resorption.


Methods for ameliorating bone resorption in an individual in need thereof are also encompassed herewith, which method may comprise, for example, administering an isolated polypeptide (e.g., able to inhibit osteoclast differentiation) or suitable pharmaceutical compositions which may comprise such polypeptide.


In accordance with the present invention, the mammal may suffer, for example, from a condition selected from the group consisting of osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Turner syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes, etc.


In yet a further aspect, the present invention relates to the use of a polypeptide able to inhibit osteoclast differentiation in the preparation of a medicament for the treatment of a bone resorption disease in an individual in need thereof.


The present invention also relates to a compound and the use of a compound able to inhibit (e.g., in an osteoclast precursor cell) the activity or expression of a polypeptide which may be selected, for example, from the group consisting of SEQ ID NO.: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, in the preparation of a medicament for the treatment of a bone disease in an individual in need thereof.


In yet an additional aspect, the present invention relates to a method of diagnosing a condition related to a bone resorption disorder or disease in an individual in need thereof. The method may comprise, for example, quantifying a polynucleotide described herein, such as, for example, polynucleotide selected from the group consisting of those comprising or consisting of (a) SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, (b) a polynucleotide which may comprise the open reading frame of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, (c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86 (d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.33, SEQ ID NO.:85 or SEQ ID NO.:86; (e) substantially identical sequences of any one of (a) to (d); (f) substantially complementary sequences of any one of (a) to (e), or a polypeptide sequence which may be selected, for example, from the group consisting of SEQ ID NO.: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, and analogs thereof in a sample from the individual compared to a standard or normal value.


The present invention also relates to an assay and method for identifying a gene and/or protein involved in bone remodeling. The assay and method may comprise silencing an endogenous gene of an osteoclast cell and providing the cell with a candidate gene (or protein). A candidate gene (or protein) positively involved in bone remodeling may be identified by its ability to complement the silenced endogenous gene. For example, a candidate gene involved in osteoclast differentiation provided to a cell for which an endogenous gene has been silenced, may enable the cell to differentiate in the presence of an inducer such as, for example, RANKL.


The present invention further relates to a cell expressing an exogenous form of any one of the polypeptide (including variants, analogs etc.) or polynucleotide of the present invention (including substantially identical sequences, substantially complementary sequences, fragments, variants, orthologs, etc).


In accordance with the present invention, the cell may be for example, a bone cell. Also in accordance with the present invention, the cell may be an osteoclast (at any level of differentiation).


As used herein the term “exogenous form” is to be understood herein as a form which is not naturally expressed by the cell in question.


In a further aspect, the present invention relates to an antibody (e.g., isolated antibody), or antigen-binding fragment thereof, that may specifically bind to a protein or polypeptide described herein. The antibody may be, for example, a monoclonal antibody, a polyclonal antibody an antibody generated using recombinant DNA technologies. The antibody may originate for example, from a mouse, rat or any other mammal.


The antibody may also be a human antibody which may be obtained, for example, from a transgenic non-human mammal capable of expressing human Ig genes. The antibody may also be a humanised antibody which may comprise, for example, one or more complementarity determining regions of non-human origin. It may also comprise a surface residue of a human antibody and/or framework regions of a human antibody. The antibody may also be a chimeric antibody which may comprise, for example, variable domains of a non-human antibody and constant domains of a human antibody.


Suitable antibodies may also include, for example, an antigen-binding fragment, an Fab fragment; an F(ab′)2 fragment, and Fv fragment; or a single-chain antibody comprising an antigen-binding fragment (e.g., a single chain Fv).


The antibody of the present invention may be mutated and selected based on an increased affinity and/or specificity for one of a polypeptide described herein and/or based on a reduced immunogenicity in a desired host.


The antibody may further comprise a detectable label attached thereto.


The present invention further relates to a method of producing antibodies able to bind to one of a polypeptide, polypeptide fragments, or polypeptide analogs described herein, the method may comprise:

    • a) immunizing a mammal (e.g., mouse, a transgenic mammal capable of producing human Ig, etc.) with a suitable amount of a PSEQ described herein including, for example, a polypeptide fragment comprising at least 6 consecutive amino acids of a PSEQ;
    • b) collecting the serum from the mammal, and
    • c) isolating the polypeptide-specific antibodies from the serum of the mammal.


The method may further comprise the step of administering a second dose to the animal.


The present invention also relates to a method of producing a hybridoma which secretes an antibody that binds to a polypeptide described herein, the method may comprise:

    • a) immunizing a mammal (e.g., mouse, a transgenic mammal capable of producing human Ig, etc.) with a suitable amount of a PSEQ thereof;
    • b) obtaining lymphoid cells from the immunized animal obtained from (a);
    • c) fusing the lymphoid cells with an immortalizing cell to produce hybrid cells; and
    • d) selecting hybrid cells which produce antibody that specifically binds to a PSEQ thereof.


The present invention further relates to a method of producing an antibody that binds to one of the polypeptide described herein, the method may comprise:

    • a) synthesizing a library of antibodies (antigen binding fragment) on phage or ribosomes;
    • b) panning the library against a sample by bringing the phage or ribosomes into contact with a composition comprising a polypeptide or polypeptide fragment described herein;
    • c) isolating phage which binds to the polypeptide or polypeptide fragment, and;
    • d) obtaining an antibody from the phage or ribosomes.


The antibody of the present invention may thus be obtained, for example, from a library (e.g., bacteriophage library) which may be prepared, for example, by

    • a) extracting cells which are responsible for production of antibodies from a host mammal;
    • b) isolating RNA from the cells of (a);
    • c) reverse transcribing mRNA to produce cDNA;
    • d) amplifying the cDNA using a (antibody-specific) primer; and
    • e) inserting the cDNA of (d) into a phage display vector or ribosome display cassette such that antibodies are expressed on the phage or ribosomes.


The host animal may be immunized with polypeptide and/or a polypeptide fragment and/or analog described herein to induce an immune response prior to extracting the cells which are responsible for production of antibodies.


The present invention also relates to a kit for specifically assaying a polypeptide described herein, the kit may comprise, for example, an antibody or antibody fragment capable of binding specifically to the polypeptide described herein.


The present invention further contemplates antibodies that may bind to PSEQ. Suitable antibodies may bind to unique antigenic regions or epitopes in the polypeptides, or a portion thereof. Epitopes and antigenic regions useful for generating antibodies may be found within the proteins, polypeptides or peptides by procedures available to one of skill in the art. For example, short, unique peptide sequences may be identified in the proteins and polypeptides that have little or no homology to known amino acid sequences. Preferably the region of a protein selected to act as a peptide epitope or antigen is not entirely hydrophobic; hydrophilic regions are preferred because those regions likely constitute surface epitopes rather than internal regions of the proteins and polypeptides. These surface epitopes are more readily detected in samples tested for the presence of the proteins and polypeptides. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. The production of antibodies is well known to one of skill in the art.


Peptides may be made by any procedure known to one of skill in the art, for example, by using in vitro translation or chemical synthesis procedures. Short peptides which provide an antigenic epitope but which by themselves are too small to induce an immune response may be conjugated to a suitable carrier. Suitable carriers and methods of linkage are well known in the art. Suitable carriers are typically large macromolecules such as proteins, polysaccharides and polymeric amino acids. Examples include serum albumins, keyhole limpet hemocyanin, ovalbumin, polylysine and the like. One of skill in the art may use available procedures and coupling reagents to link the desired peptide epitope to such a carrier. For example, coupling reagents may be used to form disulfide linkages or thioether linkages from the carrier to the peptide of interest. If the peptide lacks a disulfide group, one may be provided by the addition of a cysteine residue. Alternatively, coupling may be accomplished by activation of carboxyl groups.


The minimum size of peptides useful for obtaining antigen specific antibodies may vary widely. The minimum size must be sufficient to provide an antigenic epitope that is specific to the protein or polypeptide. The maximum size is not critical unless it is desired to obtain antibodies to one particular epitope. For example, a large polypeptide may comprise multiple epitopes, one epitope being particularly useful and a second epitope being immunodominant. Typically, antigenic peptides selected from the present proteins and polypeptides will range from 5 to about 100 amino acids in length. More typically, however, such an antigenic peptide will be a maximum of about 50 amino acids in length, and preferably a maximum of about 30 amino acids. It is usually desirable to select a sequence of about 6, 8, 10, 12 or 15 amino acids, up to about 20 or 25 amino acids.


Amino acid sequences comprising useful epitopes may be identified in a number of ways. For example, preparing a series of short peptides that taken together span the entire protein sequence may be used to screen the entire protein sequence. One of skill in the art may routinely test a few large polypeptides for the presence of an epitope showing a desired reactivity and also test progressively smaller and overlapping fragments to identify a preferred epitope with the desired specificity and reactivity.


Antigenic polypeptides and peptides are useful for the production of monoclonal and polyclonal antibodies. Antibodies to a polypeptide encoded by the polynucleotides of NSEQ, polypeptide analogs or portions thereof, may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, such as those that inhibit dimer formation, are especially preferred for therapeutic use. Monoclonal antibodies may be prepared using any technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma, the human B-cell hybridoma, and the EBV-hybridoma techniques. In addition, techniques developed for the production of chimeric antibodies may be used. Alternatively, techniques described for the production of single chain antibodies may be employed. Fabs that may contain specific binding sites for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, may also be generated. Various immunoassays may be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.


To obtain polyclonal antibodies, a selected animal may be immunized with a protein or polypeptide. Serum from the animal may be collected and treated according to known procedures. Polyclonal antibodies to the protein or polypeptide of interest may then be purified by affinity chromatography. Techniques for producing polyclonal antisera are well known in the art.


Monoclonal antibodies (MAbs) may be made by one of several procedures available to one of skill in the art, for example, by fusing antibody producing cells with immortalized cells and thereby making a hybridoma. The general methodology for fusion of antibody producing B cells to an immortal cell line is well within the province of one skilled in the art. Another example is the generation of MAbs from mRNA extracted from bone marrow and spleen cells of immunized animals using combinatorial antibody library technology.


One drawback of MAbs derived from animals or from derived cell lines is that although they may be administered to a patient for diagnostic or therapeutic purposes, they are often recognized as foreign antigens by the immune system and are unsuitable for continued use. Antibodies that are not recognized as foreign antigens by the human immune system have greater potential for both diagnosis and treatment. Methods for generating human and humanized antibodies are now well known in the art.


Chimeric antibodies may be constructed in which regions of a non-human MAb are replaced by their human counterparts. A preferred chimeric antibody is one that has amino acid sequences that comprise one or more complementarity determining regions (CDRs) of a non-human Mab that binds to a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, grafted to human framework (FW) regions. Methods for producing such antibodies are well known in the art. Amino acid residues corresponding to CDRs and FWs are known to one of average skill in the art.


A variety of methods have been developed to preserve or to enhance affinity for antigen of antibodies comprising grafted CDRs. One way is to include in the chimeric antibody the foreign framework residues that influence the conformation of the CDR regions. A second way is to graft the foreign CDRs onto human variable domains with the closest homology to the foreign variable region. Thus, grafting of one or more non-human CDRs onto a human antibody may also involve the substitution of amino acid residues which are adjacent to a particular CDR sequence or which are not contiguous with the CDR sequence but which are packed against the CDR in the overall antibody variable domain structure and which affect the conformation of the CDR. Humanized antibodies of the invention therefore include human antibodies which comprise one or more non-human CDRs as well as such antibodies in which additional substitutions or replacements have been made to preserve or enhance binding characteristics.


Chimeric antibodies of the invention also include antibodies that have been humanized by replacing surface-exposed residues to make the MAb appear human. Because the internal packing of amino acid residues in the vicinity of the antigen-binding site remains unchanged, affinity is preserved. Substitution of surface-exposed residues of a polypeptide encoded by the polynucleotides of NSEQ (or a portion thereof)-antibody according to the invention for the purpose of humanization does not mean substitution of CDR residues or adjacent residues that influence affinity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof.


Chimeric antibodies may also include antibodies where some or all non-human constant domains have been replaced with human counterparts. This approach has the advantage that the antigen-binding site remains unaffected. However, significant amounts of non-human sequences may be present where variable domains are derived entirely from non-human antibodies.


Antibodies of the invention include human antibodies (e.g., humanized) that are antibodies consisting essentially of human sequences. Human antibodies may be obtained from phage display libraries wherein combinations of human heavy and light chain variable domains are displayed on the surface of filamentous phage. Combinations of variable domains are typically displayed on filamentous phage in the form of Fab's or scFvs. The library may be screened for phage bearing combinations of variable domains having desired antigen-binding characteristics. Preferred variable domain combinations are characterized by high affinity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Preferred variable domain combinations may also be characterized by high specificity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, and little cross-reactivity to other related antigens. By screening from very large repertoires of antibody fragments, (2-10×1010) a good diversity of high affinity Mabs may be isolated, with many expected to have sub-nanomolar affinities for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof.


Alternatively, human antibodies may be obtained from transgenic animals into which un-rearranged human Ig gene segments have been introduced and in which the endogenous mouse Ig genes have been inactivated. Preferred transgenic animals contain very large contiguous Ig gene fragments that are over 1 Mb in size but human polypeptide-specific Mabs of moderate affinity may be raised from transgenic animals containing smaller gene loci. Transgenic animals capable of expressing only human Ig genes may also be used to raise polyclonal antiserum comprising antibodies solely of human origin.


Antibodies of the invention may include those for which binding characteristics have been improved by direct mutation or by methods of affinity maturation. Affinity and specificity may be modified or improved by mutating CDRs and screening for antigen binding sites having the desired characteristics. CDRs may be mutated in a variety of ways. One way is to randomize individual residues or combinations of residues so that in a population of otherwise identical antigen binding sites, all twenty amino acids may be found at particular positions. Alternatively, mutations may be induced over a range of CDR residues by error prone PCR methods. Phage display vectors containing heavy and light chain variable region gene may be propagated in mutator strains of E. coli. These methods of mutagenesis are illustrative of the many methods known to one of skill in the art.


Antibodies of the invention may include complete anti-polypeptide antibodies as well as antibody fragments and derivatives that comprise a binding site for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Derivatives are macromolecules that comprise a binding site linked to a functional domain. Functional domains may include, but are not limited to signalling domains, toxins, enzymes and cytokines.


The antibodies obtained by the means described herein may be useful for detecting proteins, variant and derivative polypeptides in specific tissues or in body fluids. Moreover, detection of aberrantly expressed proteins or protein fragments is probative of a disease state. For example, expression of the present polypeptides encoded by the polynucleotides of NSEQ, or a portion thereof, may indicate that the protein is being expressed at an inappropriate rate or at an inappropriate developmental stage. Hence, the present antibodies may be useful for detecting diseases associated with protein expression from NSEQs disclosed herein.


A variety of protocols for measuring polypeptides, including ELISAs, RIAs, and FACS, are well known in the art and provide a basis for diagnosing altered or abnormal levels of expression. Standard values for polypeptide expression are established by combining samples taken from healthy subjects, preferably human, with antibody to the polypeptide under conditions for complex formation. The amount of complex formation may be quantified by various methods, such as photometric means. Quantities of polypeptide expressed in disease samples may be compared with standard values. Deviation between standard and subject values may establish the parameters for diagnosing or monitoring disease.


Design of immunoassays is subject to a great deal of variation and a variety of these are known in the art. Immunoassays may use a monoclonal or polyclonal antibody reagent that is directed against one epitope of the antigen being assayed. Alternatively, a combination of monoclonal or polyclonal antibodies may be used which are directed against more than one epitope. Protocols may be based, for example, upon competition where one may use competitive drug screening assays in which neutralizing antibodies capable of binding a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, specifically compete with a test compound for binding the polypeptide. Alternatively one may use, direct antigen-antibody reactions or sandwich type assays and protocols may, for example, make use of solid supports or immunoprecipitation. Furthermore, antibodies may be labelled with a reporter molecule for easy detection. Assays that amplify the signal from a bound reagent are also known. Examples include immunoassays that utilize avidin and biotin, or which utilize enzyme-labelled antibody or antigen conjugates, such as ELISA assays.


Kits suitable for immunodiagnosis and containing the appropriate labelled reagents include antibodies directed against the polypeptide protein epitopes or antigenic regions, packaged appropriately with the remaining reagents and materials required for the conduct of the assay, as well as a suitable set of assay instructions.


The present invention therefore provides a kit for specifically assaying a polypeptide described herein, the kit may comprise, for example, an antibody or antibody fragment capable of binding specifically to the polypeptide described herein.


In accordance with the present invention, the kit may be a diagnostic kit, which may comprise:

    • a) one or more antibodies described herein; and
    • b) a detection reagent which may comprise a reporter group.


In accordance with the present invention, the antibodies may be immobilized on a solid support. The detection reagent may comprise, for example, an anti-immunoglobulin, protein G, protein A or lectin etc. The reporter group may be selected, without limitation, from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.


In an additional aspect, the present invention provides a method for identifying an inhibitory compound (inhibitor, antagonist) which may be able to impair the function (activity) or expression of a polypeptide described herein, such as, for example, those which may be selected from the group consisting of SEQ ID NO: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, and analogs thereof. The method may comprise contacting the polypeptide or a cell expressing the polypeptide with a candidate compound and measuring the function (activity) or expression of the polypeptide. A reduction in the function or activity of the polypeptide (compared to the absence of the candidate compound) may positively identify a suitable inhibitory compound.


In accordance with the present invention, the impaired function or activity may be associated with a reduced ability of the polypeptide to promote osteoclast differentiation, such as osteoclast differentiation induced by an inducer described herein or known in the art.


In accordance with the present invention the cell may not naturally (endogenously) express (polypeptide may substantially be unexpressed in a cell) the polypeptide or analog or alternatively, the expression of a naturally expressed polypeptide analog may be repressed.


For example, suitable method of screening for an inhibitor of SEQ ID NO.:1, may comprise repressing the expression of the mouse ortholog SEQ ID NO.:35 in a mouse osteoclast cell and evaluating differentiation of the osteoclast cell comprising SEQ ID NO.:1 in the presence or absence of a candidate inhibitor and for example, an inducer of osteoclast differentiation (e.g., RANKL).


The present invention also provides a method for identifying an inhibitory compound (inhibitor, antagonist) able to impair the function (activity) or expression of a polypeptide such as, for example SEQ ID NO.: 1 or SEQ ID NO.:2. The method may comprise, for example, contacting the (isolated) polypeptide or a cell expressing the polypeptide with a candidate compound and measuring the function (activity) or expression of the polypeptide. A reduction in the function or activity of the polypeptide (compared to the absence of the candidate compound) may thus positively identify a suitable inhibitory compound.


In accordance with the present invention, the impaired function or activity may be associated, for example, with a reduced ability of the polypeptide to inhibit or promote osteoclast differentiation.


The cell used to carry the screening test may not naturally (endogenously) express the polypeptide or analogs, or alternatively the expression of a naturally expressed polypeptide analog may be repressed.


The present invention also relates to a method of identifying a positive or a negative regulator of osteoclast differentiation. The method may comprise, for example, performing a knockdown effect as described herein. The method may more particularly comprise a) providing an osteoclast cell with a compound (e.g., siRNA) able to specifically inhibit a target sequence (e.g., a polynucleotide or polypeptide as described herein), b) inducing differentiation (e.g., with an inducer such as, for example, RANKL) and c) determining the level of differentiation of the osteoclast cell (e.g., measuring the number of differentiated cells, their rate of differentiation, specific marker of differentiation etc).


Upon inhibition of a positive regulator, the levels of osteoclast differentiation will appear lowered. Upon inhibition of a negative regulator, the level of osteoclast differentiation will apear increased.


Another method of identifying a positive or a negative regulator of osteoclast differentiation is to a) provide a cell with one of a target sequence described herein (polypeptide or polynucleotide able to express a polypeptide) b) to induce differentiation (e.g., with an inducer such as, for example, RANKL) and c) to determine the level of differentiation of the osteoclast cell (e.g., measuring the number of differentiated cells, their rate of differentiation, specific marker of differentiation etc).


A cell provided with a positive regulator of osteoclast differentiation may have an increased level of differentiation. A cell provided with a negative regulator of osteoclast differentiation may have a decreased level of differentiation.


The present invention also provides a method of identifying a compound capable of interfering with osteoclast differentiation, the method may comprise contacting a cell including therein a non-endogenous polynucleotide sequence comprising any one of SEQ ID NO.:1 to 33, 85 or 86 (a coding portion) and quantifying (e.g. the number of) differentiated osteoclasts. A reduction in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an antagonist of osteoclast differentiation, while an increase in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an agonist of osteoclast differentiation.


In accordance with the present invention, the cell may also comprise an endogenous form of a polynucleotide.


As used herein the term “endogenous” means a substance that naturally originates from within an organism, tissue or cell. The term “endogenous polynucleotide” refers to a chromosomal form of a polynucleotide or RNA version (hnRNA, mRNA) produced by the chromosal form of the polynucleotide. The term “endogenous polypeptide” refers to the form of the protein encoded by an “endogenous polynucleotide”.


As used herein the term “non-endogenous” or “exogenous” is used in opposition to “endogenous” in that the substance is provided from an external source although it may be introduced within the cell. The term “non-endogenous polynucleotide” refers to a synthetic polynucleotide introduced within the cell and include for example and without limitation, a vector comprising a sequence of interest, a synthetic mRNA, an oligonucleotide comprising a NSEQ etc. The term “non-endogenous polypeptide” refers to the form of the protein encoded by an “non-endogenous polynucleotide”.


The present invention also relate to a method of identifying a compound capable of interfering with osteoclast differentiation, the method may comprise contacting a cell including therein a non-endogenous polypeptide sequence comprising any one of SEQ ID NO.: 48 to 80 and quantifying (e.g. the number of) differentiated osteoclasts. A reduction in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an antagonist of osteoclast differentiation while an increase in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an agonist of osteoclast differentiation.


As used herein the term “sequence identity” relates to (consecutive) nucleotides of a nucleotide sequence which with reference to an original nucleotide sequence. The identity may be compared over a region or over the total sequence of a nucleic acid sequence.


Thus, “identity” may be compared, for example, over a region of 3, 4, 5, 10, 19, 20 nucleotides or more (and any number there between). It is to be understood herein that gaps of non-identical nucleotides may be found between identical nucleic acids. For example, a polynucleotide may have 100% identity with another polynucleotide over a portion thereof. However, when the entire sequence of both polynucleotides is compared, the two polynucleotides may have 50% of their overall (total) sequence identical to one another.


Polynucleotides of the present invention or portion thereof having from about 50 to about 100%, or about 60 to about 100% or about 70 to about 100% or about 80 to about 100% or about 85%, about 90%, about 95% to about 100% sequence identity with an original polynucleotide are encompassed herewith. It is known by those of skill in the art, that a polynucleotide having from about 50% to 100% identity may function (e.g., anneal to a substantially complementary sequence) in a manner similar to an original polynucleotide and therefore may be used in replacement of an original polynucleotide. For example a polynucleotide (a nucleic acid sequence) may comprise or have from about 50% to 100% identity with an original polynucleotide over a defined region and may still work as efficiently or sufficiently to achieve the present invention.


Percent identity may be determined, for example, with an algorithm GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.


As used herein the terms “sequence complementarity” refers to (consecutive) nucleotides of a nucleotide sequence which are complementary to a reference (original) nucleotide sequence. The complementarity may be compared over a region or over the total sequence of a nucleic acid sequence.


Polynucleotides of the present invention or portion thereof having from about 50 to about 100%, or about 60 to about 100% or about 70 to about 100% or about 80 to about 100% or about 85%, about 90%, about 95% to about 100% sequence complementarity with an original polynucleotide are thus encompassed herewith. It is known by those of skill in the art, that an polynucleotide having from about 50% to 100% complementarity with an original sequence may anneal to that sequence in a manner sufficient to carry out the present invention (e.g., inhibit expression of the original polynucleotide).


An “analogue” is to be understood herein as a molecule having a biological activity and chemical structure similar to that of a polypeptide described herein. An “analogue” may have sequence similarity with that of an original sequence or a portion of an original sequence and may also have a modification of its structure as discussed herein. For example, an “analogue” may have at least 90% sequence similarity with an original sequence or a portion of an original sequence. An “analogue” may also have, for example; at least 70% or even 50% sequence similarity (or less, i.e., at least 40%) with an original sequence or a portion of an original sequence.


Also, an “analogue” with reference to a polypeptide may have, for example, at least 50% sequence similarity to an original sequence with a combination of one or more modification in a backbone or side-chain of an amino acid, or an addition of a group or another molecule, etc.


“Polynucleotide” generally refers to any polyribonucleotide or polydeoxyribo-nucleotide, which may be unmodified RNA or DNA, or modified RNA or DNA. “Polynucleotides” include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is a mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, “polynucleotide” refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. “Modified” bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus “polynucleotide” embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. “Polynucleotide” includes but is not limited to linear and end-closed molecules. “Polynucleotide” also embraces relatively short polynucleotides, often referred to as oligonucleotides.


“Polypeptides” refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds (i.e., peptide isosteres). “Polypeptide” refers to both short chains, commonly referred as peptides, oligopeptides or oligomers, and to longer chains generally referred to as proteins. As described above, polypeptides may contain amino acids other than the 20 gene-encoded amino acids.


As used herein the term “polypeptide analog” relates to mutants, variants, chimeras, fusions, deletions, additions and any other type of modifications made relative to a given polypeptide.


As used herein the term “biologically active” refers to a variant or fragment which retains some or all of the biological activity of the natural polypeptide, i.e., to be able to promote or inhibit osteoclast differentiation. Polypeptides or fragments of the present invention may also include “immunologically active” polypeptides or fragments. “Immunologically active polypeptides or fragments may be useful for immunization purposes (e.g. in the generation of antibodies).


Thus, biologically active polypeptides in the form of the original polypeptides, fragments (modified or not), analogues (modified or not), derivatives (modified or not), homologues, (modified or not) of the polypeptides described herein are encompassed by the present invention.


Therefore, any polypeptide having a modification compared to an original polypeptide which does not destroy significantly a desired biological activity is encompassed herein. It is well known in the art, that a number of modifications may be made to the polypeptides of the present invention without deleteriously affecting their biological activity. These modifications may, on the other hand, keep or increase the biological activity of the original polypeptide or may optimize one or more of the particularity (e.g. stability, bioavailability, etc.) of the polypeptides of the present invention which, in some instance might be desirable. Polypeptides of the present invention may comprise for example, those containing amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are known in the art. Modifications may occur anywhere in a polypeptide including the polypeptide backbone, the amino acid side-chains and the amino- or carboxy-terminus. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. It is to be understood herein that more than one modification to the polypeptides described herein are encompassed by the present invention to the extent that the biological activity is similar to the original (parent) polypeptide.


As discussed above, polypeptide modification may comprise, for example, amino acid insertion (i.e., addition), deletion and substitution (i.e., replacement), either conservative or non-conservative (e.g., D-amino acids, desamino acids) in the polypeptide sequence where such changes do not substantially alter the overall biological activity of the polypeptide.


Example of substitutions may be those, which are conservative (i.e., wherein a residue is replaced by another of the same general type or group) or when wanted, non-conservative (i.e., wherein a residue is replaced by an amino acid of another type). In addition, a non-naturally occurring amino acid may substitute for a naturally occurring amino acid (i.e., non-naturally occurring conservative amino acid substitution or a non-naturally occurring non-conservative amino acid substitution).


As is understood, naturally occurring amino acids may be sub-classified as acidic, basic, neutral and polar, or neutral and non-polar. Furthermore, three of the encoded amino acids are aromatic. It may be of use that encoded polypeptides differing from the determined polypeptide of the present invention contain substituted codons for amino acids, which are from the same type or group as that of the amino acid to be replaced. Thus, in some cases, the basic amino acids Lys, Arg and His may be interchangeable; the acidic amino acids Asp and Glu may be interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn may be interchangeable; the non-polar aliphatic amino acids Gly, Ala, Val, Ile, and Leu are interchangeable but because of size Gly and Ala are more closely related and Val, Ile and Leu are more closely related to each other, and the aromatic amino acids Phe, Trp and Tyr may be interchangeable.


It should be further noted that if the polypeptides are made synthetically, substitutions by amino acids, which are not naturally encoded by DNA (non-naturally occurring or unnatural amino acid) may also be made.


A non-naturally occurring amino acid is to be understood herein as an amino acid which is not naturally produced or found in a mammal. A non-naturally occurring amino acid comprises a D-amino acid, an amino acid having an acetylaminomethyl group attached to a sulfur atom of a cysteine, a pegylated amino acid, etc. The inclusion of a non-naturally occurring amino acid in a defined polypeptide sequence will therefore generate a derivative of the original polypeptide. Non-naturally occurring amino acids (residues) include also the omega amino acids of the formula NH2(CH2)nCOOH wherein n is 2-6, neutral nonpolar amino acids, such as sarcosine, t-butyl alanine, t-butyl glycine, N-methyl isoleucine, norleucine, etc. Phenylglycine may substitute for Trp, Tyr or Phe; citrulline and methionine sulfoxide are neutral nonpolar, cysteic acid is acidic, and ornithine is basic. Proline may be substituted with hydroxyproline and retain the conformation conferring properties.


It is known in the art that analogues may be generated by substitutional mutagenesis and retain the biological activity of the polypeptides of the present invention. These analogues have at least one amino acid residue in the protein molecule removed and a different residue inserted in its place. For example, one site of interest for substitutional mutagenesis may include but are not restricted to sites identified as the active site(s), or immunological site(s). Other sites of interest may be those, for example, in which particular residues obtained from various species are identical. These positions may be important for biological activity. Examples of substitutions identified as “conservative substitutions” are shown in Table A. If such substitutions result in a change not desired, then other type of substitutions, denominated “exemplary substitutions” in Table A, or as further described herein in reference to amino acid classes, are introduced and the products screened.


In some cases it may be of interest to modify the biological activity of a polypeptide by amino acid substitution, insertion, or deletion. For example, modification of a polypeptide may result in an increase in the polypeptide's biological activity, may modulate its toxicity, may result in changes in bioavailability or in stability, or may modulate its immunological activity or immunological identity. Substantial modifications in function or immunological identity are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation. (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:

    • (1) hydrophobic: norleucine, methionine (Met), Alanine (Ala), Valine (Val), Leucine (Leu), Isoleucine (Ile)
    • (2) neutral hydrophilic: Cysteine (Cys), Serine (Ser), Threonine (Thr)
    • (3) acidic: Aspartic acid (Asp), Glutamic acid (Glu)
    • (4) basic: Asparagine (Asn), Glutamine (Gln), Histidine (His), Lysine (Lys), Arginine (Arg)
    • (5) residues that influence chain orientation: Glycine (Gly), Proline (Pro); and aromatic: Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe)


Non-conservative substitutions will entail exchanging a member of one of these classes for another.









TABLE A







Examplary amino acid substitution













Conservative



Original residue
Exemplary substitution
substitution







Ala (A)
Val, Leu, Ile
Val



Arg (R)
Lys, Gln, Asn
Lys



Asn (N)
Gln, His, Lys, Arg
Gln



Asp (D)
Glu
Glu



Cys (C)
Ser
Ser



Gln (Q)
Asn
Asn



Glu (E)
Asp
Asp



Gly (G)
Pro
Pro



His (H)
Asn, Gln, Lys, Arg
Arg



Ile (I)
Leu, Val, Met, Ala, Phe,
Leu




norleucine



Leu (L)
Norleucine, Ile, Val, Met,
Ile




Ala, Phe



Lys (K)
Arg, Gln, Asn
Arg



Met (M)
Leu, Phe, Ile
Leu



Phe (F)
Leu, Val, Ile, Ala
Leu



Pro (P)
Gly
Gly



Ser (S)
Thr
Thr



Thr (T)
Ser
Ser



Trp (W)
Tyr
Tyr



Tyr (Y)
Trp, Phe, Thr, Ser
Phe



Val (V)
Ile, Leu, Met, Phe, Ala,
Leu




norleucine










It is to be understood herein, that if a “range” or “group” of substances (e.g. amino acids), substituents” or the like is mentioned or if other types of a particular characteristic (e.g. temperature, pressure, chemical structure, time, etc.) is mentioned, the present invention relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein. Thus, for example, with respect to a percentage (%) of identity of from about 80 to 100%, it is to be understood as specifically incorporating herein each and every individual %, as well as sub-range, such as for example 80%, 81%, 84.78%, 93%, 99% etc.; and similarly with respect to other parameters such as, concentrations, elements, etc.


It is in particular to be understood herein that the methods of the present invention each include each and every individual steps described thereby as well as those defined as positively including particular steps or excluding particular steps or a combination thereof; for example an exclusionary definition for a method of the present invention, may read as follows: “provided that said polynucleotide does not comprise or consist in SEQ ID NO.:34 or the open reading frame of SEQ ID NO.:34” or “provided that said polypeptide does not comprise or consist in SEQ ID NO.:82” or “provided that said polynucleotide fragment or said polypeptide fragment is less than X unit (e.g., nucleotides or amino acids) long or more than X unit (e.g., nucleotides or amino acids) long”.


Other objects, features, advantages, and aspects of the present invention will become apparent to those skilled in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:


For each of FIGS. 1 to 34 and 38-39 macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate (A-F 2-3) and mature osteoclasts for four human donors (A-F 4), and 30 different normal human tissues (adrenal (A5), liver (B5), lung (C5), ovary (D5), skeletal muscle (E5), heart (F5), cervix (G5), thyroid (H5), breast (A6), placenta (B6), adrenal cortex (C6), kidney (D6), vena cava (E6), fallopian tube (F6), pancreas (G6), testicle (H6), jejunum (A7), aorta (B7), esophagus (C7), prostate (D7), stomach (E7), spleen (F7), ileum (G7), trachea (A8), brain (B8), colon (C8), thymus (D8), small intestine (E8), bladder (F8) and duodenum (G8)). The STAR dsDNA clone representing the respective SEQ ID NOs. was labeled with 32P and hybridized to the macroarray. The probe labeling reaction was also spiked with a dsDNA sequence for Arabidopsis, which hybridizes to the same sequence spotted on the macroarray (M) in order to serve as a control for the labeling reaction. Quantitation of the hybridization signal at each spot was performed using a STORM 820 phosphorimager and the ImageQuant TL software (Amersham Biosciences, Piscataway, N.J.). A log2 value representing the average of the signals for the precursors (A-F 1) was used as the baseline and was subtracted from the loge value obtained for each of the remaining samples in order to determine their relative abundancies compared to the precursors and plotted as a bar graph (right panel).



FIG. 1 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 1. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 2 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 2. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 3 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 3. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 4 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 4. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 5 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 5. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 6 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 6. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 7 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 7. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 8 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 8. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 9 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 9. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 10 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 10. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 11 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 11. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 12 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 12. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8.;



FIG. 13 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 13. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 14 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 14. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 15 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 15. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 16 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 16. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 17 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 17. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8.;



FIG. 18 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 18. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 19 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 19. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 20 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 20. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 21 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 21. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 22 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 22. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 23 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 23. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 24 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 24. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 25 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 25. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 26 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 26. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 27 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 27. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 28 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 28. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 29 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 29. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8),



FIG. 30 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 30. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 31 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 31. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 32 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 32. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 33 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 33. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 34 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 34. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);



FIG. 35 is a picture showing the knockdown effects on osteoclastogenesis by attenuating the endogenous expression of SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) using shRNA. A significant decrease in the number of multinucleated osteoclasts was observed from precursor cells infected with the AB0326 shRNA (FIG. 35A; bottom panel) and AB0369 shRNA (FIG. 1B; bottom panel) compared to those with the lacZ shRNA (FIGS. 35A and B; top panels). These results clearly indicated that expression of the gene encoding SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) are required for osteoclast differentiation;



FIG. 36 is a picture showing the knockdown effects on osteoclastogenesis of the mouse orthologue for AB0326 (SEQ. ID. NO. 35) in the RAW 264.7 model using shRNA-0326.2 (SEQ. ID. NO. 45). The RAW-0326.2 cell line produced significantly less osteoclasts (FIG. 36; bottom panel) compared to the cell line containing the scrambled shRNA (FIG. 36; top panel). This result, coupled with that obtained in the human osteoclast precursor cells using the lentiviral shRNA delivery system demonstrate that in both human and mouse, AB0326 gene product is clearly required for osteoclastogenesis;



FIG. 37 is a picture showing the results of a functional complementation assay for SEQ. ID. NO. 1 (AB0326) in RAW-0326.2 cells to screen for inhibitors of osteoclastogenesis. The RAW-0326.2 cells transfected with the empty pd2 vector are unable to form osteoclasts in the presence of RANK ligand (center panel) indicating that the mouse AB0326 shRNA is still capable of silencing the AB0326 gene expression in these cells. Conversely, the cells transfected with the cDNA for the human AB0326 (pd2-hAB0326) are rescued and thus, differentiate more efficiently into osteoclasts in response to RANK ligand (right panel). Wild-type RAW 264.7 cells containing the empty vector (pd2) did not adversly affect the formation of osteoclasts in the presence of RANK ligand (left panel) ruling out an effect due to pd2. Thus, this complementation assay can be used to screen for inhibitors of the human AB0326 polypeptide;



FIG. 38 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential Expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 85. Macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate and mature osteoclasts for four human donors (A-F 2-4), and 30 different normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum (A-H 5-6 and A-G 7-8)). The STAR clone representing SEQ. ID. NO. 85 was labeled with 32P and hybridized to the macroarray. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A1-F1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8), and;



FIG. 39 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential Expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 86. Macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate and mature osteoclasts for four human donors (A-F 2-4), and 30 different normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum (A-H 5-6 and A-G 7-8)). The STAR clone representing SEQ. ID. NO. 86 was labeled with 32P and hybridized to the macroarray. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A1-F1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8).





DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The applicant employed a carefully planned strategy to identify and isolate genetic sequences involved in osteoclastogenesis and bone remodeling. The process involved the following steps: 1) preparation of highly representative cDNA libraries using mRNA isolated from precursors and differentiated intermediate and mature osteoclasts of human origin; 2) isolation of sequences upregulated during osteoclastogenesis; 3) identification and characterization of upregulated sequences; 4) selection of upregulated sequences for tissue specificity; and 5) determination of knock-down effects on osteoclastogenesis. The results discussed in this disclosure demonstrate the advantage of targeting osteoclast genes that are specific to this differentiated cell type and provide a more efficient screening method when studying the genetic basis of diseases and disorders. Genes that are known to have a role in other areas of biology have been shown to play a critical role in osteoclastogenesis and osteoclast function. Genes that are known but have not had a role assigned to them until the present disclosure have also been isolated and shown to have a critical role in osteoclastogenesis and osteoclast function. Finally, novel genes have been identified and play a role, however, applicant reserves their disclosure until further study has been completed.


The present invention is illustrated in further details below in a non-limiting fashion.


A—Material and Methods

Commercially available reagents referred to in the present disclosure were used according to supplier's instructions unless otherwise indicated. Throughout the present disclosure certain starting materials were prepared as follows:


B—Preparation of Osteoclast Differentiated Cells

The RAW 264.7 (RAW) osteoclast precursor cell line and human precursor cells (peripheral blood mononuclear cells or CD34+ progenitors) are well known in the art as murine and human models of osteoclastogenesis. These murine and human osteoclasts are therefore excellent sources of materials for isolating and characterizing genes specialized for osteoclast function.


Human primary osteoclasts were differentiated from G-CSF-mobilized peripheral blood mononuclear cells (Cambrex, East Rutherford, N.J.) as described by the supplier in the presence of 35 ng/ml M-CSF and 100 ng/ml RANK ligand. Multinucleated TRAP-staining osteoclasts were visible by 11-14 days. Osteoclasts were also derived from human osteoclasts precursor cells (CD34+ progenitors) (Cambrex, East Rutherford, N.J.) and cultured as described by the supplier. In the latter case, osteoclasts were obtained after 7 days.


RAW cells were purchased from American Type Culture Collection and maintained in high glucose DMEM containing 10% fetal bovine serum and antibiotics. The cells were sub-cultured bi-weekly to a maximum of 10-12 passages. For osteoclast differentiation experiments, RAW cells were seeded in 96-well plates at a density of 4×103 cells/well and allowed to plate for 24 h. Differentiation was induced in high glucose DMEM, 10% charcoal-treated foetal bovine serum (Hyclone, Logan, Utah), 0.05% BSA, antibiotics, 10 ng/ml macrophage colony stimulating factor (M-CSF), and 100 ng/ml receptor activator of NF-kB (RANK) ligand. The plates were re-fed on day 3 and osteoclasts were clearly visible by day 4. Typically, the cells were stained for tartrate-resistant acid phosphatase (TRAP) on day 4 or 5 unless otherwise indicated. For TRAP staining, the cells were washed with PBS and fixed in 10% formaldehyde for 1 h. After two PBS washes, the cells were rendered lightly permeable in 0.2% Triton X-100 in PBS for 5 min before washing in PBS. Staining was conducted at 37° C. for 20-25 min in 0.01% Naphtol AS-MX phosphate, 0.06% Fast Red Violet, 50 mM sodium tartrate, 100 mM sodium acetate, pH 5.2. Cells were visualized microscopically.


C— Method of Isolating Differentially Expressed mRNA


Key to the discovery of differentially expressed sequences unique to osteoclasts is the use of the applicant's patented STAR technology (Subtractive Transcription-based Amplification of mRNA; U.S. Pat. No. 5,712,127 Malek et al., issued on Jan. 27, 1998). In this procedure, mRNA isolated from intermediate and mature osteoclasts is used to prepare “tester RNA”, which is hybridized to complementary single-stranded “driver DNA” prepared from osteoclast precursor mRNA and only the un-hybridized “tester RNA” is recovered, and used to create cloned cDNA libraries, termed “subtracted libraries”. Thus, the “subtracted libraries” are enriched for differentially expressed sequences inclusive of rare and novel mRNAs often missed by micro-array hybridization analysis. These rare and novel mRNA are thought to be representative of important gene targets for the development of better diagnostic and therapeutic strategies.


The clones contained in the enriched “subtracted libraries” are identified by DNA sequence analysis and their potential function assessed by acquiring information available in public databases (NCBI and GeneCard). The non-redundant clones are then used to prepare DNA micro-arrays, which are used to quantify their relative differential expression patterns by hybridization to fluorescent cDNA probes. Two classes of cDNA probes may be used, those which are generated from either RNA transcripts prepared from the same subtracted libraries (subtracted probes) or from mRNA isolated from different osteoclast samples (standard probes). The use of subtracted probes provides increased sensitivity for detecting the low abundance mRNA sequences that are preserved and enriched by STAR. Furthermore, the specificity of the differentially expressed sequences to osteoclast is measured by hybridizing radio-labeled probes prepared from each selected sequence to macroarrays containing RNA from different osteoclast samples and different normal human tissues. Additionally, Northern blot analysis is performed so as to confirm the presence of one or more specific mRNA species in the osteoclast samples. Following this, the full-length cDNAs representative of the mRNA species and/or spliced variants are cloned in E. coli DH10B.


A major challenge in gene expression profiling is the limited quantities of RNA available for molecular analysis. The amount of RNA isolated from many osteoclast samples or human specimens (needle aspiration, laser capture micro-dissection (LCM) samples and transfected cultured cells) is often insufficient for preparing: 1) conventional tester and driver materials for STAR; 2) standard cDNA probes for DNA micro-array analysis; 3) RNA macroarrays for testing the specificity of expression: 4) Northern blots and; 5) full-length cDNA clones for further biological validation and characterization etc. Thus, the applicant has developed a proprietary technology called RAMP (RNA Amplification Procedure) (U.S. patent application Ser. No. 11/000,958 published under No. US 2005/0153333A1 on Jul. 14, 2005 and entitled “Selective Terminal Tagging of Nucleic Acids”), which linearly amplifies the mRNA contained in total RNA samples yielding microgram quantities of amplified RNA sufficient for the various analytical applications. The RAMP RNA produced is largely full-length mRNA-like sequences as a result of the proprietary method for adding a terminal sequence tag to the 3′-ends of single-stranded cDNA molecules, for use in linear transcription amplification. Greater than 99.5% of the sequences amplified in RAMP reactions show <2-fold variability and thus, RAMP provides unbiased RNA samples in quantities sufficient to enable the discovery of the unique mRNA sequences involved in osteoclastogenesis.


D—Preparation of Human Osteoclasts Subtracted Library

Two human primary precursor cells from two different donors (Cambrex, East Rutherford, N.J.), and the corresponding intermediate (day 3 and day 7) and mature (days 11-14) osteoclasts were prepared as described above. Isolation of cellular RNA followed by mRNA purification from each was performed using standard methods (Qiagen, Mississauga, ON). Following the teachings of Malek et al. (U.S. Pat. No. 5,712,127), 2 μg of poly A+mRNA from each sample were used to prepare highly representative (>2×106 CFU) cDNA libraries in specialized plasmid vectors necessary for preparing tester and driver materials. In each case, first-strand cDNA was synthesized using an oligo dT11 primer with 3′ locking nucleotides (e.g., A, G or C) and containing a Not I recognition site. Next, second-strand cDNA synthesis was performed according to the manufacturer's procedure for double-stranded cDNA synthesis (Invitrogen, Burlington, ON) and the resulting double-stranded cDNA ligated to linkers containing an Asc I recognition site (New England Biolabs, Pickering, ON). The double-stranded cDNAs were then digested with Asc I and Not I restriction enzymes (New England Biolabs, Pickering, ON), purified from the excess linkers using the cDNA fractionation column from Invitrogen (Burlington, ON) as specified by the manufacturer and each ligated into specialized plasmid vectors—p14 (SEQ. ID. NO:36) and p17+(SEQ. ID. NO:37) used for preparing tester and driver materials respectively. Thereafter, the ligated cDNAs were transformed into E. coli DH10B resulting in the desired cDNA libraries (RAW 264.7-precursor-p14, RAW 264.7-precursor-p17+, RAW 264.7-osteoclasts-p14 and RAW 264.7-osteoclasts-p17+). The plasmid DNA pool for each cDNA library was purified and a 2-μg aliquot of each linearized with Not I restriction enzyme. In vitro transcription of the Not I digested p14 and p17+ plasmid libraries was then performed with T7 RNA polymerase and sp6 RNA polymerase respectively (Ambion, Austin, Tex.).


Next, in order to prepare 3′-represented tester and driver libraries, a 10-μg aliquot of each of the in vitro synthesized RNA was converted to double-stranded cDNA by performing first-strand cDNA synthesis as described above followed by primer-directed (primer OGS 77 for p14 (SEQ. ID. NO:40) and primer OGS 302 for p17+(SEQ. ID. NO:41)) second-strand DNA synthesis using Advantage-2 Taq polymerase (BD Biosciences Clontech, Mississauga, ON). The sequences corresponding to OGS 77 and OGS 302 were introduced into the in vitro synthesized RNA by way of the specialized vectors used for preparing the cDNA libraries. Thereafter, 6× 1-μg aliquots of each double-stranded cDNA was digested individually with one of the following 4-base recognition restriction enzymes Rsa I, Sau3A1, Mse I, Msp I, MinPI I and Bsh 12361 (MBI Fermentas, Burlington, ON), yielding up to six possible 3′-fragments for each RNA species contained in the cDNA library. Following digestion, the restriction enzymes were inactivated with phenol and the set of six reactions pooled. The restriction enzymes sites were then blunted with T4 DNA polymerase and ligated to linkers containing an Asc I recognition site. Each linker-adapted pooled DNA sample was digested with Asc I and Not I restriction enzymes, desalted and ligated to specialized plasmid vectors, p14 and p17 (p17 plasmid vector is similar to the p17+ plasmid vector except for the sequence corresponding to SEQ. ID. NO:41), and transformed into E. coli DH10B. The plasmid DNA pool for each p14 and p17 3′-represented library was purified (Qiagen, Mississauga, ON) and a 2-μg aliquot of each digested with Not I restriction enzyme, and transcribed in vitro with either T7 RNA polymerase or sp6 RNA polymerase (Ambion, Austin, Tex.). The resulting p14 3′-represented RNA was used directly as “tester RNA” whereas, the p17 3′-represented RNA was used to synthesize first-strand cDNA as described above, which then served as “driver DNA”. Each “driver DNA” reaction was treated with RNase A and RNase H to remove the RNA, phenol extracted and desalted before use.


The following 3′-represented libraries were prepared:


Tester 1 (donor 1—day 3)—human intermediate osteoclast-3′ in p14


Tester 2 (donor 1—day 7—human intermediate osteoclast)-3′ in p14


Tester 3 (donor 1—day 11—human mature osteoclast)-3′ in p14


Tester 4 (donor 2—day 3—human intermediate osteoclast)-3′ in p14


Tester 5 (donor 2—day 7—human intermediate osteoclast)-3′ in p14


Tester 6 (donor 2—day 13—human mature osteoclast)-3′ in p14


Driver 1 (donor 1—day 3)—human precursor-3′ in p17


Driver 2 (donor 2—day 3)—human precursor-3′ in p17


The tester RNA samples were subtracted following the teachings of U.S. Pat. No. 5,712,127 with the corresponding driver DNA in a ratio of 1:100 for either 1- or g-rounds following the teachings of Malek et al. (U.S. Pat. No. 5,712,127). Additionally, control reactions containing tester RNA and no driver DNA, and tester RNA plus driver DNA but no RNase H were prepared. The tester RNA remaining in each reaction after subtraction was converted to double-stranded DNA, and a volume of 5% removed and amplified in a standard PCR reaction for 30-cycles for analytical purposes. The remaining 95% of only the driver plus RNase H subtracted samples were amplified for 4-cycles in PCR, digested with Asc I and Not I restriction enzymes, and one half ligated into the pCATRMAN (SEQ. ID. NO:38) plasmid vector and the other half, into the p20 (SEQ. ID. NO:39) plasmid vector. The ligated materials were transformed into E. coli DH10B and individual clones contained in the pCATRMAN libraries were picked for further analysis (DNA sequencing and hybridization) whereas, clones contained in each p20 library were pooled for use as subtracted probes. Each 4-cycles amplified cloned subtracted library contained between 25,000 and 40,000 colonies.


The following cloned subtracted libraries were prepared:


SL90-tester 1 (day 3 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN;


SL91-tester 2 (day 7 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN;


SL92-tester 3 (day 11 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN;


SL108-tester 1 (day 3 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN;


SL109-tester 2 (day 7 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN;


SL110-tester 3 (day 11 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN;


SL93-tester 4 (day 3 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN;


SL94-tester 5 (day 7 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN;


SL95-tester 6 (day 13 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN;


SL87-tester 4 (day 3 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN:


SL88-tester 5 (day 7 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN;


SL89-tester 6 (day 11 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN


A 5-μL aliquot of the 30-cycles PCR amplified subtracted materials described above were visualized on a 1.5% agarose gel containing ethidium bromide and then transferred to Hybond N+(Amersham Biosciences, Piscataway, N.J.) nylon membrane for Southern blot analysis. Using radiolabeled probes specific to the CTSK (cathepsin K; NM000396.2) gene, which is known to be upregulated in osteoclasts, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase; M32599.1), which is a non-differentially expressed house-keeping gene, it was evident that there was subtraction of GAPDH but not CTSK. Based on these results, it was anticipated that the subtracted libraries would be enriched for differentially expressed upregulated sequences.


E—Sequence Identification and Annotation of Clones Contained in the Subtracted Libraries:

A total of 6,912 individual colonies contained in the pCATRMAN subtracted libraries (SL87-95 and SL108-110) described above were randomly picked using a Qbot (Genetix Inc., Boston, Mass.) into 60 μL of autoclaved water. Then, 42 μL of each was used in a 100-μL standard PCR reaction containing oligonucleotide primers, OGS 1 and OGS 142 and amplified for 40-cycles (94° C. for 10 minutes, 40× (94° C. for 40 seconds, 55° C. for 30 seconds and 72° C. for 2 minutes) followed by 72° C. for 7 minutes) in 96-wells microtitre plates using HotStart™ Taq polymerase (Qiagen, Mississauga, ON). The completed PCR reactions were desalted using the 96-well filter plates (Corning) and the amplicons recovered in 100 μL 10 mM Tris (pH 8.0). A 5-μL aliquot of each PCR reaction was visualized on a 1.5% agarose gel containing ethidium bromide and only those reactions containing a single amplified product were selected for DNA sequence analysis using standard DNA sequencing performed on an ABI 3100 instrument (Applied Biosystems, Foster City, Calif.). Each DNA sequence obtained was given a Sequence Identification Number and entered into a database for subsequent tracking and annotation.


Each sequence was selected for BLAST analysis of public databases (e.g. NCBI). Absent from these sequences were the standard housekeeping genes (GAPDH, actin, most ribosomal proteins etc.), which was a good indication that the subtracted library was depleted of at least the relatively abundant non-differentially expressed sequences.


Once sequencing and annotation of the selected clones were completed, the next step involved identifying those sequences that were actually upregulated in osteoclasts compared to precursors.


F—Hybridization Analysis for Identifying Upregulated Sequences

The PCR amplicons representing the annotated sequences from the pCATRMAN libraries described above were used to prepare DNA microarrays. The purified PCR amplicons contained in 70 μL of the PCR reactions prepared in the previous section was lyophilized and each reconstituted in 20 μL of spotting solution comprising 3×SSC and 0.1% sarkosyl. DNA micro-arrays of each amplicon in triplicate were then prepared using CMT-GAP2 slides (Corning, Corning, N.Y.) and the GMS 417 spotter (Affymetrix, Santa Clara, Calif.).


The DNA micro-arrays were then hybridized with either standard or subtracted cy3 and cy5 labelled cDNA probes as recommended by the supplier (Amersham Biosciences, Piscataway, N.J.). The standard cDNA probes were synthesized using RAMP amplified RNA prepared from the different human osteoclast samples and the corresponding precursors. It is well known to the skilled artisan that standard cDNA probes only provide limited sensitivity of detection and consequently, low abundance sequences contained in the cDNA probes are usually missed. Thus, the hybridization analysis was also performed using cy3 and cy5 labelled subtracted cDNA probes prepared from subtracted libraries representing the different tester and driver materials. These subtracted libraries may be enriched for low abundance sequences as a result of following the teachings of Malek et al., and therefore, may provide increased detection sensitivity.


All hybridization reactions were performed using the dye-swap procedure as recommended by the supplier (Amersham Biosciences, Piscataway, N.J.) and approximately 500 putatively differentially expressed upregulated (>2-fold) sequences were selected for further analysis.


G—Determining Osteoclast Specificity of the Differentially Expressed Sequences Identified:

The differentially expressed sequences identified in Section F for the different human osteoclast subtracted libraries were tested for osteoclast specificity by hybridization to nylon membrane-based macroarrays. The macroarrays were prepared using RAMP amplified RNA from human precursors and osteoclasts (intermediate and mature) of six independent experiments from 4 different donors (3 males and 1 female), and 30 normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum) purchased commercially (Ambion, Austin, Tex.). Because of the limited quantities of mRNA available for many of these samples, it was necessary to first amplify the mRNA using the RAMP methodology. Each amplified RNA sample was reconstituted to a final concentration of 250 ng/μL in 3×SSC and 0.1% sarkosyl in a 96-well microtitre plate and 1 μL spotted onto Hybond N+ nylon membranes using the specialized MULTI-PRINT™ apparatus (VP Scientific, San Diego, Calif.), air dried and UV-cross linked. A total of 400 different sequences selected from SL87-95 and SL108-110 were individually radiolabeled with α-32P-dCTP using the random priming procedure recommended by the supplier (Amersham, Piscataway, N.J.) and used as probes on the macroarrays. Hybridization and washing steps were performed following standard procedures well known to those skilled in the art.


Of the 500 sequences tested, approximately 85% were found to be upregulated in all of the osteoclast RNA samples that were used to prepare the macroarrays. However, many of these sequences were also readily detected in a majority of the different normal human tissues. Based on these results, those sequences that appeared to be associated with experimental variability and those that were detected in many of the other human tissues at significantly elevated levels were eliminated. Consequently, only 35 sequences, which appeared to be upregulated and highly osteoclast-specific, were selected for biological validation studies. Included in this set of 35 genes were 4 (SEQ. ID. NOs. 30-33) where there was a significant upregulation in mature osteoclasts compared to most normal tissues but because the expression of these genes were overall lower in the precursor cells, they appeared to be elevated in the normal tissues after quantitation FIG. 30-33; bar graph). However, their expression in the normal tissues was still relatively lower than that of the mature osteoclasts. Thus, these genes may still be important regulators in osteoclastogenesis and bone resorption and were therefore selected for biological validation. This subset of 35 sequences does not included genes also identified such as, CTSK, TRAP, MMP9, CST3 and CKB amongst others since these were previously reported in the literature to be upregulated in osteoclasts. The macroarray data for CST3 (SEQ. ID. NO. 34) is included to exemplify the hybridization pattern and specificity of a gene that is already known to be a key regulator of the osteoclast resorption process. One gene (ANKH; SEQ. ID. NO. 17) was included in the subset of 35 genes although it was previously reported in the database (NCBI-Gene) to play a role in bone mineralization. However, the observed bone phenotype resulting from mutations in the ANKH gene was not specifically linked to its upregulation in osteoclasts. Thus our data suggests the important role for ANKH may be associated with osteoclast activity during bone remodeling.



FIGS. 1-33, 38 and 39 show the macroarray patterns and quantitation of the hybridization signals of the osteoclasts and normal human tissues relative to precursor cells for the 35 sequences selected for biological validation. Amongst the 35 selected sequences were 24 genes with functional annotation 9 genes with no functional annotation and 2 novel sequences (genomic hits). The identification of gene products involved in regulating osteoclast differentiation and function has thus led to the discovery of novel targets for the development of new and specific therapies of disease states characterized by abnormal bone remodeling. Representative sequences summarized in Table 1 are presented below and corresponding sequences are illustrated in Table 5.


SEQ. ID. NO:1:

SEQ. ID. NO:1 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC284266 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 1), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:2:

SEQ. ID. NO:2 (Table 5) corresponds to a previously identified gene that encodes a predicted open reading frame, C6orf82 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 2), which have not been previously reported. At least 5 transcript variants of this gene coding for 3 protein isoforms has been identified so far (NCBI). Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:3:

SEQ. ID. NO:3 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC133308 with an unknown function (see Table 1) but may be involved in the process of pH regulation. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 3), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:4:

SEQ. ID. NO:4 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC116211 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 4), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:5

SEQ. ID. NO:5 (Table 5) corresponds to a previously identified gene that encodes a predicted protein, LOC151194 (similar to hepatocellular carcinoma-associated antigen HCA557b), with unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 5), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:6:

SEQ. ID. NO:6 (Table 5) corresponds to a previously identified gene that encodes a protein, chemokine (C-X-C motif) ligand 5 (CXCL5), which is an inflammatory chemokine that belongs to the CXC chemokine family (see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 6), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:7:

SEQ. ID. NO:7 (Table 5) corresponds to a previously identified gene that encodes a protein, ATPase, H+ transporting, lysosomal accessory protein 2 (ATP6AP2), which is associated with adenosine triphosphatases (ATPases). Proton-translocating ATPases have fundamental roles in energy conservation, secondary active transport, acidification of intracellular compartments, and cellular pH homeostasis (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 7), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:8

SEQ. ID. NO:8 (Table 5) corresponds to a previously identified gene that encodes a protein, ubiquitin-specific protease 12-like 1 (USP12), which is associated with ubiquitin-dependent protein catabolism (see Table 1) We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 8), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:9

SEQ. ID. NO:9 (Table 5) corresponds to a previously identified gene that encodes a protein, Ubiquitin-conjugating enzyme E2E 1 (UBC4/5 homolog, yeast) (UBE2E1), which is associated with ubiquitin-dependent protein catabolism (see Table 1). So far, there are 2 transcript variants and protein isoforms reported for this gene. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 9), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:10

SEQ. ID. NO:10 (Table 5) corresponds to a previously identified gene that encodes a protein, Emopamil binding protein-like (EBPL), which may have cholestenol delta-isomerase activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 10), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:11

SEQ. ID. NO:11 (Table 5) corresponds to a previously identified gene that encodes a protein, development and differentiation enhancing factor 1 (DDEF1), which may be involved in cell motility and adhesion (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 11), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:12

SEQ. ID. NO:12 (Table 5) corresponds to a previously identified gene that encodes a protein, member 7 of the SLAM family (SLAM7), which may have receptor activity and involved in cell adhesion but still not fully characterized (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 12), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:13

SEQ. ID. NO:13 (Table 5) corresponds to a previously identified gene that encodes a protein, Ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast) (UBE2E3), which is associated with ubiquitin-dependent protein catabolism (see Table 1). There are 2 transcript variants documented so far, which code for the same protein isofrom. We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 1), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:14

SEQ. ID. NO:14 (Table 5) corresponds to a previously identified gene that encodes a protein, Galanin (GAL), which is associated with neuropeptide hormone activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues except for colon (FIG. 14), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:15

SEQ. ID. NO:15 (Table 5) corresponds to a previously identified gene that encodes a protein, Cytokine-like nuclear factor n-pac (N-PAC), which may have oxireductase activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 15), which have not been previously reported. However, some overexpression of this gene but still way below that of mature osteoclasts were seen in heart, fallopian tube, spleen and cervix. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:16

SEQ. ID. NO:16 (Table 5) corresponds to a previously identified gene that encodes a protein, Integrin alpha X (antigen CD11C (p150), alpha polypeptide) (ITGAX), which is involved in cell adhesion and ion binding (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 16), which have not been previously reported. Minimal expression but much lower than mature osteoclasts is observed for this gene in adrenal, lung and spleen amongst the normal tissues. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:17

SEQ. ID. NO:17 (Table 5) corresponds to a previously identified gene that encodes a protein, Ankylosis, progressive homolog (mouse) (ANKH), which is involved in regulating pyrophosphate levels, suggested as a possible mechanism regulating tissue calcification (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 17), which have not been previously reported. However, this gene has been reported to be involved in bone mineralization but without evidence of its upregulation in osteoclasts (Malkin et al., 2005). Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:18

SEQ. ID. NO:18 (Table 5) corresponds to a previously identified gene that encodes a protein, ATPase, H+ transporting, lysosomal 70 kD, V1 subunit A, which is involved in hydrogen-transporting ATPase activity, rotational mechanism (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 18), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:19

SEQ. ID. NO:19 (Table 5) corresponds to a previously identified gene that encodes a predicted open reading frame coding for protein, FLJ10874 (chromosome 1 open reading frame 75), which has no known function (see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 19), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:20

SEQ. ID. NO:20 (Table 5) corresponds to a previously identified gene that encodes a protein, Integrin beta 1 binding protein 1 (ITGB1BP1), which has an important role during integrin-dependent cell adhesion (see Table 1). Two transcript variants and protein isoforms for this gene has been isolated. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 20), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:21

SEQ. ID. NO:21 (Table 5) corresponds to a previously identified gene that encodes a protein, Thioredoxin-like 5 (TXNL5), which has no known function (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues with the exception of esophagus (FIG. 21), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:22

SEQ. ID. NO:22 (Table 5) corresponds to a previously identified gene that encodes a protein, C-type lectin domain family 4, member E (CLECSF9), which has no known specific function (see Table 1). Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signaling, glycoprotein turnover, and roles in inflammation and immune response. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues with the exception of lung and spleen (FIG. 22), which have not been previously reported. At this point, we cannot rule out cross hybridization to family members in lung and spleen. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:23

SEQ. ID. NO:23 (Table 5) corresponds to a previously identified gene that encodes a protein, RAB33A, member RAS oncogene family (RAB33A), which has GTPase activity (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues with the exception of brain (FIG. 23), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:24

SEQ. ID. NO:24 (Table 5) corresponds to a previously identified gene that encodes a protein, Down syndrome critical region gene 1 (DSCR1), which interacts with calcineurin A and inhibits calcineurin-dependent signaling pathways, possibly affecting central nervous system development (see Table 1). There are 3 transcript variants and protein isofroms isolated so far. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 24), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:25

SEQ. ID. NO:25 (Table 5) corresponds to a previously identified gene that encodes a protein, SNARE protein Ykt6 (YKT6), which is one of the SNARE recognition molecules implicated in vesicular transport between secretory compartments (see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 25), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:26

SEQ. ID. NO:26 (Table 5) corresponds to a previously identified gene that encodes a protein, Actinin, alpha 1 (ACTN1), which is cytoskeletal, and involved in actin binding and adhesion (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 26), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:27

SEQ. ID. NO:27 (Table 5) corresponds to a previously identified gene that encodes a protein, CIpX caseinolytic peptidase X homolog (E. coli) (CLPX), which may be involved in protein turnover (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 27), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:28

SEQ. ID. NO:28 (Table 5) corresponds to a previously identified gene that encodes a protein, Carbonic anhydrase II (CA2), which has carbonate dehydratase activity (see Table 1). Defects in this enzyme are associated with osteopetrosis and renal tubular acidosis (McMahon et al., 2001) and have been shown to be upregulated in mature osteoclasts under induced acidic pH conditions (Biskobing and Fan, 2000). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells independent of induced acidic pH conditions and other normal human tissues (FIG. 28), which have not been previously reported. However, elevated expression of this gene was also observed in colon and stomach but still significantly below the levels of mature osteoclasts. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:29

SEQ. ID. NO:29 (Table 5) corresponds to a previously identified gene that encodes a protein, Sorting nexin 10 (SNX10), whose function has not been determined (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and most normal human tissues (FIG. 29), which have not been previously reported. However, elevated expression of this gene was also observed in liver, brain, lung, adrenal cortex, kidney and spleen but still significantly below the levels of mature osteoclasts. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:30

SEQ. ID. NO:30 (Table 5) corresponds to a previously identified gene that encodes a protein, Tudor domain containing 3 (TDRD3), whose function has not been determined but may be involved in nucleic acid binding (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and most normal human tissues (FIG. 30), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:31

SEQ. ID. NO:31 (Table 5) corresponds to a previously identified gene that encodes a protein, Selenoprotein P, plasma, 1 (SEPP1), which has been implicated as an oxidant defense in the extracellular space and in the transport of selenium (see Table 1). This gene encodes a selenoprotein that contains multiple selenocysteines. Selenocysteine is encoded by the usual stop codon UGA. The unususal amino acids are indicated as ‘U’ in the amino acid sequence in SEQ. ID. NO:78 (Table 5) or by Xaa in the sequence listing. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 31), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:32

SEQ. ID. NO:32 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, KIAA0040, which has no known function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 32), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:33

SEQ. ID. NO:33 (Table 5) corresponds to a previously identified gene that encodes a protein, Dipeptidylpeptidase 4 (CD26, adenosine deaminase complexing protein 2) (DPP4), which is an intrinsic membrane glycoprotein and a serine exopeptidase that cleaves X-proline dipeptides from the N-terminus of polypeptides (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 33), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues except for placenta, lung, ovary, kidney, prostate and small intestine because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:34:

SEQ. ID. NO:34 (Table 5) corresponds to a previously identified gene that encodes a protein, cystatin C precursor, with members of the cystatin family known to be inhibitor of cysteine proteases (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 34), which have not been previously reported. However, it is well documented that cystatin C plays a critical role in inhibiting bone resorption due to osteoclasts (Brage et al., 2005). Thus, the hybridization profile for this gene is an excellent example of highly upregulated and specific sequences related to osteoclasts.


SEQ. ID. NO:85

SEQ. ID. NO:85 (Table 5) encodes an unknown protein found on chromosome 1 (clone RP11-344F13), which contains a novel gene (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 38), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.


SEQ. ID. NO:86

SEQ. ID. NO:86 (Table 5) encodes no known protein. Unknown gene with matching Est sequence in the data base corresponding to B0182670 isolated from an osteoarthritic cartilage sample (see Table 1) We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 39), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.


H— Cloning of Full-Length cDNAs of Selected Sequences from Osteoclast mRNA:


It was necessary to obtain full-length cDNA sequences in order to perform functional studies of the expressed proteins. Spliced variants are increasingly being implicated in tissue specific functions and as such, it is important to work with cDNA clones from the system under study. Applicant also recognizes that spliced variants may not always be involved. Thus, the applicant's approach has been to isolate the relevant full-length cDNA sequences directly from osteoclasts in order to identify variants and their potential role with respect to specificity.


Coding cDNA clones were isolated using both a 5′-RACE strategy (Invitrogen, Burlington, ON) and a standard two-primer gene specific approach in PCR. The 5′-RACE strategy used cDNA prepared from cap-selected osteoclast RNA and/or RAMP amplified osteoclast RNA. For amplification using gene specific primers, either cDNA prepared from RAMP RNA or total RNA was used. All cDNAs were synthesized following standard reverse transcription procedures (Invitrogen, Burlington, ON). The cDNA sequences obtained were cloned in E. coli DH10B and the nucleotide sequences for multiple clones determined. Thereafter, the cDNA sequences for each set were aligned and the open reading frame(s) (ORF) identified using standard software (e.g. ORF Finder-NCBI). Table 2 shows the concensus sequence of the cDNA clones for the coding region for SEQ. ID. NO.1 (SEQ. ID. NO. 83) and SEQ. ID. NO.2 (SEQ. ID. NO. 84) obtained from a human osteoclast sample, which were identical to that of the published sequences corresponding to Accession# NM213602 and NM001014433 (NCBI), respectively.


I—RNA Interference Studies

RNA interference is a recently discovered gene regulation mechanism that involves the sequence-specific decrease in a gene's expression by targeting the mRNA for degradation and although originally described in plants, it has been discovered across many animal kingdoms from protozoans and invertebrates to higher eukaryotes (reviewed in Agrawal et al., 2003). In physiological settings, the mechanism of RNA interference is triggered by the presence of double-stranded RNA molecules that are cleaved by an RNAse III-like protein active in cells, called Dicer, which releases the 21-23 bp siRNAs. The siRNA, in a homology-driven manner, complexes into a RNA-protein amalgamation termed RISC (RNA-induced silencing complex) in the presence of mRNA to cause degradation resulting in attenuation of that mRNA's expression (Agrawal et al., 2003).


Current approaches to studying the function of genes, such as gene knockout mice and dominant negatives, are often inefficient, and generally expensive, and time-consuming. RNA interference is proving to be a method of choice for the analysis of a large number of genes in a quick and relatively inexpensive manner. Although transfection of synthetic siRNAs is an efficient method, the effects are often transient at best (Hannon G. J., 2002). Delivery of plasmids expressing short hairpin RNAs by stable transfection has been successful in allowing for the analysis of RNA interference in longer-term studies (Brummelkamp et al., 2002; Elbashir et al., 2001). In addition, more recent advances have permitted the expression of siRNA molecules, in the form of short hairpin RNAs, in primary human cells using viral delivery methods such as lentivirus (Lee et al., 2004; Rubinson et al., 2003).


J—Determination of Knockdown Effects on Osteoclastogenesis

In order to develop a screening method for the human candidate genes, RNA interference was adapted to deliver shRNAs into human osteoclast precursor cells so that the expression of the candidate genes could be attenuated. This approach would then allow osteoclast differentiation to be carried out in cells containing decreased expression of these genes to determine their requirement, if any, in this process.


To this end, a commercial lentiviral shRNA delivery system (Invitrogen, Burlington, ON) was utilized to introduce specific shRNAs into human osteoclast precursor cells. The techniques used were as described by the manufacturer unless otherwise stated. In this example, the results obtained for two of the candidate genes, SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) tested so far, are presented. The proteins encoded by both of these two genes have no known function. The shRNA sequences used to specifically target SEQ. ID. NO. 1 and SEQ. ID. NO. 2 were 5′-CAGGCCCAGGAGTCCAATT-3′ (SEQ. ID. NO. 42) and 5′-TCCCGTCTTTGGGTCAAAA-3′ (SEQ. ID. NO. 43) respectively. Briefly, a template for the expression of the shRNA was cloned into the lentiviral expression vector and co-transfected in 293FT cells with expression vectors for the viral structural proteins. After two days, supernatants containing the lentivirus were collected and stored at −80° C. Human osteoclast precursors purchased from Cambrex (East Rutherford. N.J.) were seeded in 24-well plates and cultured in complete medium containing macrophage-colony stimulating factor and allowed to adhere for three days. After washing with PBS, the cells were infected with 20 MOIs (multiplicity of infection) of either lentiviral particles containing a shRNA specific for the bacterial lacZ gene as a control (lacZ shRNA) or SEQ. ID. NO. 1 (AB0326 shRNA) or SEQ. ID. NO. 2 (AB0369 shRNA). After 24 h, the infected cells were treated with same medium containing 100 ng/ml RANK ligand for 5-8 days to allow for differentiation of osteoclast from precursor cells. Mature osteoclasts were fixed with formaldehyde and stained for TRAP expression as follows: the cells were washed with PBS and fixed in 10% formaldehyde for 1 h. After two PBS washes, the cells were lightly permeabilized in 0.2% Triton X-100 in PBS for 5 min before washing in PBS. Staining was conducted at 37° C. for 20-25 min in 0.01% Naphtol AS-MX phosphate, 0.06% Fast Red Violet, 50 mM sodium tartrate, 100 mM sodium acetate, pH 5.2. The stained cells were visualized by light microscopy and photographed (magnification: 40×). A significant decrease in the number of multinucleated osteoclasts was observed from precursor cells infected with the AB0326 shRNA (FIG. 35A; bottom panel) and AB0369 shRNA (FIG. 35B; bottom panel) compared to those with the lacZ shRNA (FIGS. 35A and B; top panels). Therefore, in both cases, the respective lentiviral shRNA (SEQ. ID. NOs. 42 and 43, respectively) (Table 4) perturbed osteoclastogenesis. These results clearly indicated that expression of the gene encoding SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) are required for osteoclast differentiation.


Similar experimentations to those described above are carried out for other sequences (SEQ ID NO.3 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO. 86).


K— Biological Validation of the Mouse Orthologue for AB0326 (SEQ. ID. NO. 35) in Osteoclastogenesis Using the RAW 264.7 Model

As a means of developing a drug screening assay for the discovery of therapeutic molecules capable of attenuating human osteoclasts differentation and activity using the targets identified, it was necessary to turn to another osteoclast differentiation model. The RAW 264.7 (RAW) osteoclast precursor cell line is well known in the art as a murine model of osteoclastogenesis. However, due to the difficulty in transiently transfecting RAW cells, stable transfection was used as an approach where shRNA are expressed in the RAW cells constitutively. This permitted long term studies such as osteoclast differentiation to be carried out in the presence of specific shRNAs specific to the mouse orthologues of the human targets identified.


RAW cells were purchased from American Type Culture Collection (Manassass, Va.) and maintained in high glucose DMEM containing 10% fetal bovine serum and antibiotics. The cells were sub-cultured bi-weekly to a maximum of 10-12 passages. For osteoclast differentiation experiments, RAW cells were seeded in 96-well plates at a density of 4×103 cells/well and allowed to plate for 24 h. Differentiation was induced in high glucose DMEM, 10% charcoal-treated foetal bovine serum (obtained from Hyclone, Logan, Utah), 0.05% BSA, antibiotics, 10 ng/ml macrophage colony stimulating factor (M-CSF), and 100 ng/ml RANK ligand. The plates were re-fed on day 3 and osteoclasts were clearly visible by day 4. Typically, the cells were stained for TRAP on day 4 or 5 unless otherwise indicated.


To incorporate the shRNA-expression cassettes into the RAW cell chromosomes, the pSilencer 2.0 plasmid (SEQ. ID. NO. 47) was purchased from Ambion (Austin, Tex.) and sequence-specific oligonucleotides were ligated as recommended by the manufacturer. Two shRNA expression plasmids were designed and the sequences used for attenuating the mouse ortholog of AB0326 (SEQ. ID. NO. 35) gene expression were 5′-GCGCCGCGGATCGTCAACA-3′ (SEQ. ID. NO. 44) and 5′-ACACGTGCACGGCGGCCAA-3′ (SEQ. ID. NO. 45). A plasmid supplied by Ambion containing a scrambled shRNA sequence with no known homology to any mammalian gene was also included as a negative control in these experiments. RAW cells were seeded in 6-well plates at a density of 5×105 cells/well and transfected with 1 μg of each plasmid using Fugene6 (Roche, Laval, QC) as described in the protocol. After selection of stable transfectants in medium containing 2 μg/ml puromycin, the cell lines were expanded and tested in the presence of RANK ligand for osteoclastogenesis.


The stably transfected cell lines were designated RAW-0326.1, RAW-0326.2 and RAW-ctl. In 96-well plates in triplicate, 4 000 cells/well were seeded and treated with 100 ng/ml RANK ligand. After 4 days, osteoclasts were stained for TRAP expression and visualized by light microscopy (magnification was 40× and 100× as depicted in the left and right panels, respectively).


The representative results for the RAW-0326.2 line is shown in FIG. 36. The RAW-0326.2 cell line produced significantly less osteoclasts (FIG. 36; bottom panel) compared to the cell line containing the scrambled shRNA (FIG. 36; top panel). The RAW-0326.1 cell line also showed attenuation of the mouse ortholog of AB0326 but not as pronounced (data not shown). Therefore, as observed for SEQ ID NO.:42 and 43, siRNAs to the mouse orthologue (SEQ. ID. NOs. 44 and 45) (Table 4) appear to phenotypically perturb osteoclast differentiation in the mouse model as well. These results, coupled with that obtained in the human osteoclast precursor cells using the lentiviral shRNA delivery system (section J), demonstrate that in both human and mouse, AB0326 gene product is clearly required for osteoclastogenesis.


L—a Functional Complementation Assay for SEQ. ID. NO. 1 (AB0326) in RAW 264.6 Cells to Screen for Inhibitors of Osteoclastogenesis

To establish a screening assay based on SEQ. ID. NO. 1 (AB0326) to find small molecules capable of attenuating osteoclast differentiation, the cDNA encoding human AB0326 was introduced into the RAW-0326.2 cell line. Thus, if the human AB0326 plays an identical functional role as the mouse orthologue in RAW 264.7 cells, it should restore the osteoclastogenesis capabilities of the RAW-0326.2 cell line.


To accomplish this task, the RAW-0326.2 cell line was transfected with an eukaryotic expression vector encoding the full length cDNA for human AB0326, termed pd2-hAB0326. This expression vector (pd2; SEQ. ID. NO. 47) was modified from a commercial vector, pd2-EGFP-N1 (Clontech, Mountain View, Calif.) where the EGFP gene was replaced by the full length coding sequence of the human AB0326 cDNA. The AB0326 gene expression was driven by a strong CMV promoter. Stable transfectants were selected using the antibiotic, G418. This resulted in a RAW-0326.2 cell line that expressed the human AB0326 gene product in which, the mouse orthologue of AB0326 was silenced. As a control, RAW-0326.2 cells were transfected with the pd2 empty vector, which should not complement the AB0326 shRNA activity. Also, the pd2 empty vector was transfected into RAW 264.7 cells to serve as a further control. After selection of stable pools of cells, 4 000 cells/well were seeded in 96-well plates and treated for 4 days with 100 ng/ml RANK ligand. Following fixation with formaldehyde, the cells were stained for TRAP, an osteoclast-specific marker gene. As shown in FIG. 37, the RAW-0326.2 cells transfected with the empty pd2 vector are still unable to form osteoclasts in the presence of RANK ligand (center panel) indicating that the mouse AB0326 shRNA is still capable of silencing the AB0326 gene expression in these cells. Conversely, the cells transfected with human AB0326 (pd2-hAB0326) are rescued and thus, differentiate into more osteoclasts in response to RANK ligand (right panel). RAW 264.7 cells containing the empty vector (pd2) did not adversly affect the formation of osteoclasts in the presence of RANK ligand (left panel). These results confirm that the mouse and human orthologues of AB0326 are functionally conserved in osteoclast differentiation.


This particular type of cell-based assay can now serve as the basis for screening compounds capable of binding to and inhibiting the function of human AB0326. A compound library could be applied to this ‘rescued’ cell line in order to identify molecules (small molecule drugs, peptides, or antibodies) capable of inhibiting AB0326. Any reduction in osteoclast differentiation measured by a reduction in the expression of TRAP would be indicative of a decrease in human AB0326 activity. This assay is applicable to any gene required for proper osteoclast differentiation in RAW cells. A complementation assay can be developed for any human gene and used as the basis for drug screening.


Similar experimentation to those described above are carried out for other sequences (SEQ ID NO.3 to SEQ ID NO.:33 or SEQ ID NO.:85 or SEQ ID NO.:86). This type of assay may be used to screen for molecules capable of increasing or decreasing (e.g., inhibiting) the activity or expression of NSEQ or PSEQ.


In the NSEQs of the present invention, their methods, compositions, uses, its, assays or else, the polynucleotide may either individually or in group (collectively) more particularly be (or may comprise or consist in) either;


a translatable portion of either SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO:10, of SEQ ID NO.:11, of SEQ ID NO 12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;


sequence substantially identical to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;


a sequence substantially complementary to a translatable portion of SEQ ID NO.:1, a fragment of a transcribable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;


a fragment of a sequence substantially identical to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;


a fragment of a sequence substantially complementary to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;


or a library comprising any of the above.


In the PSEQs of the present invention, their methods, compositions, uses, kits assays, or else, the polypeptide may either individually or in group (collectively) more particularly be (or may comprise or consist in) either;


SEQ ID SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO. 74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80;


a fragment of SEQ ID NO.:48, SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO.:74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80;


or a biologically active analog, variant or a non-human hortologue of SEQ ID NO.:48, SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO.:74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80.


One of skill in the art will readily recognize that orthologues for all mammals maybe identified and verified using well-established techniques in the art, and that this disclosure is in no way limited to one mammal. The term “mammal(s)” for purposes of this disclosure refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.


The sequences in the experiments discussed above are representative of the NSEQ being claimed and in no way limit the scope of the invention. The disclosure of the roles of the NSEQs in osteoclastogenesis and osteoclast function satisfies a need in the art to better understand the bone remodeling process, providing new compositions that are useful for the diagnosis, prognosis, treatment, prevention and evaluation of therapies for bone remodeling and associated disorders.


The art of genetic manipulation, molecular biology and pharmaceutical target development have advanced considerably in the last two decades. It will be readily apparent to those skilled in the art that newly identified functions for genetic sequences and corresponding protein sequences allows those sequences, variants and derivatives to be used directly or indirectly in real world applications for the development of research tools, diagnostic tools, therapies and treatments for disorders or disease states in which the genetic sequences have been implicated.


Although the present invention has been described hereinabove by way of preferred embodiments thereof, it may be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.









TABLE 1







Differentially expressed sequences found in osteoclasts.












NCBI

ORF




Unigene

Nucleotide


Nucleotide
#/Gene

Positions/


Sequence
Symbol/Gene
Accession
Polypeptide


No.
ID
Number
sequence No.
Function





SEQ ID NO. 1
Hs.287692/
NM_213602
150-1136
hypothetical protein



CD33L3/

encoding SEQ
LOC284266;



284266

ID NO.: 48
membrane associated






function unknown


SEQ ID NO. 2
Hs.520070/
NM_001014433
104-700
chromosome 6 open



C6orf82/

encoding SEQ
reading frame 82;



51596

ID NO.: 49
membrane






associated with






unknown function


SEQ ID NO. 3
Hs.546482/
NM_178833
633-2246
hypothetical protein



LOC133308/

encoding SEQ
LOC133308 possibly



133308

ID NO.: 50
involved in regulation






of pH


SEQ ID NO. 4
Hs.135997/
NM_138461
112-741
transmembrane 4 L



LOC116211/

encoding SEQ
six family member 19;



116211

ID NO.: 51
function unknown


SEQ ID NO. 5
Hs.558655/
NM_145280
172-82
hypothetical protein



LOC151194/

encoding SEQ
LOC151194



151194

ID NO.: 52


SEQ ID NO. 6
Hs.89714/
NM_002994
119-463
chemokine (C—X—C



CXCL5/

encoding SEQ
motif) ligand 5



6374

ID NO.: 53
precursor; chemokine






activity


SEQ ID NO. 7
Hs.495960/
NM_005765
103-1155
ATPase, H+



ATP6AP2/

encoding SEQ
transporting,



10159

ID NO.: 54
lysosomal accessory






protein 2; receptor






activity


SEQ ID NO. 8
Hs.42400/
NM_182488
259-1371
ubiquitin-specific



USP12/

encoding SEQ
protease 12-like 1;



219333

ID NO.: 55
cysteine-type






endopeptidase activity


SEQ ID NO. 9
Hs.164853/
NM_003341
175-756
ubiquitin-conjugating



UBE2E1/

encoding SEQ
enzyme E2E 1



7324

ID NO.: 56
isoform 1; ligase






activity


SEQ ID NO.
Hs.433278/
NM_032565
53-673
emopamil binding


10
EBPL/

encoding SEQ
related protein,



84650

ID NO.: 57
delta8-delta7; integral






to membrane


SEQ ID NO.
Hs.106015/
NM_018482
29-3418
development and


11
DDEF1/

encoding SEQ
differentiation



50807

ID NO.: 58
enhancing factor 1;






membrane


SEQ ID NO.
Hs.517265/
NM_021181
16-1023
SLAM family member


12
SLAMF7/

encoding SEQ
7; receptor activity



57823

ID NO.: 59


SEQ ID NO.
Hs.470804/
NM_006357
385-1008
ubiquitin-conjugating


13
UBE2E3/

encoding SEQ
enzyme E2E 3;



10477

ID NO.: 60
ligase activity


SEQ ID NO.
Hs.278959/
NM_015973
177-548
galanin preproprotein;


14
GAL/

encoding SEQ
neuropeptide



51083

ID NO.: 61
hormone activity


SEQ ID NO.
NM_032569/
NM_032569
19-1680
cytokine-like nuclear


15
N-PAC/

encoding SEQ
factor n-pac; 3-



84656

ID NO.: 62
hydroxyisobutyrate






dehydrogenase-like


SEQ ID NO.
Hs.248472/
NM_000887
68-3559
integrin alpha X


16
ITGAX/

encoding SEQ
precursor; cell-matrix



3687

ID NO.: 63
adhesion


SEQ ID NO.
Hs.156727/
NM_054027
321 = 1799
ankylosis, progressive


17
ANKH/

encoding SEQ
homolog; regulation of



1827

ID NO.: 64
bone mineralization


SEQ ID NO.
Hs.477155/
NM_001690
67-1920
ATPase, H+


18
ATP6V1A/

encoding SEQ
transporting,



523

ID NO.: 65
lysosomal 70 kD, V1






subunit A, isoform 1;






proton transport;






hydrolase activity


SEQ ID NO.
Hs.445386/
NM_018252
139-1191
hypothetical protein


19
FLJ10874/

encoding SEQ
LOC55248



55248

ID NO.: 66


SEQ ID NO.
Hs.467662/
NM_004763
170-772
integrin cytoplasmic


20
ITGB1BP1/

encoding SEQ
domain-associated



9270

ID NO.: 67
protein 1;






cell adhesion


SEQ ID NO.
Hs.408236/
NM_032731
77-448
thioredoxin-like 5;


21
TXNL5/

encoding SEQ
function unknown



84817

ID NO.: 68


SEQ ID NO.
Hs.236516/
NM_014358
152-811
C-type lectin,


22
CLECSF9/

encoding SEQ
superfamily member 9;



26253

ID NO.: 69
integral to membrane


SEQ ID NO.
Hs.56294/
NM_004794
265-978
Ras-related protein


23
RAB33A/

encoding SEQ
Rab-33A; small



9363

ID NO.: 70
GTPase mediated






signal transduction


SEQ ID NO.
Hs.282326/
NM_004414
73-831
calcipressin 1 isoform


24
DSCR1/

encoding SEQ
a; interacts with



1827

ID NO.: 71
calcineurin A and






inhibits calcineurin-






dependent signaling






pathways


SEQ ID NO.
Hs.520794/
NM_006555
158-754
SNARE protein Ykt6;


25
YKT6/

encoding SEQ
vesicular transport



10652

ID NO.: 72
between secretory






compartments


SEQ ID NO.
Hs.509765/
NM_001102
184-2862
alpha-actinin 1;


26
ACTN1/

encoding SEQ
structural constituent



87

ID NO.: 73
of cytoskeleton;






calcium ion binding


SEQ ID NO.
Hs.113823/
NM_006660
73-1974
ClpX caseinolytic


27
CLPX/

encoding SEQ
protease X homolog;



10845

ID NO.: 74
energy-dependent






regulator of






proteolysis


SEQ ID NO.
Hs.155097/
NM_000067
66-848
carbonic anhydrase II;


28
CA2/

encoding SEQ
carbonate



760

ID NO.: 75
dehydratase activity


SEQ ID NO.
Hs.520714/
NM_013322
216-821
sorting nexin 10;


29
SNX10/

encoding SEQ
function unknown



29887

ID NO.: 76


SEQ ID NO.
Hs.525061/
NM_030794
258-2213
tudor domain


30
TDRD3/

encoding SEQ
containing 3; nucleic



81550

ID NO.: 77
acid binding


SEQ ID NO.
Hs.275775/
NM_005410
101-1246
selenoprotein P;


31
SEPP1/

encoding SEQ
extracellular space



6414

ID NO.: 78
implicated in defense


SEQ ID NO.
Hs.518138/
NM_014656
921-1382
KIAA0040; novel


32
KIAA0040/

encoding SEQ
protein



9674

ID NO.: 79


SEQ ID NO.
Hs.368912/
NM_001935
562-2862
dipeptidylpeptidase


33
DPP4/

encoding SEQ
IV; aminopeptidase



1803

ID NO.: 80
activity


SEQ ID NO.
Hs.304682/
NM_000099
76-516
cysteine protease


34
CST3/

encoding SEQ
inhibitor activity



1471

ID NO.: 81


SEQ ID NO.
None/
AL357873
Novel
novel


85
none/



none


SEQ ID NO.

AL645465/
novel
novel


86

BQ182670
















TABLE 2







Shows the concensus sequences for SEQ. ID. NO. 1 and SEQ. ID. NO. 2


cloned from a mature human osteoclast sample.












ORF




Sequence
Nucleotide
Polypeptide



Identification
Positions
sequence No.







SEQ ID NO. 83
1-987
SEQ ID NO. 48



SEQ ID NO. 84
1-471
SEQ ID NO. 49

















TABLE 3







List of mouse orthologue for AB0326












NCBI

ORF
Polypeptide


Sequence
Unigene
Accession
Nucleotide
sequence


Identification
Cluster
Number
Positions
No.





SEQ ID
None/
XM_884636
122-1102/
SEQ ID


NO. 35
LOC620235/

similar to
NO.: 82



620235

neural cell





adhesion





molecule 2/





unknown





function
















TABLE 4







list of additional sequences identification of plasmids and shRNA


oligonucleotides











Sequence





Identification
name
Description







SEQ. ID. NO. 36
p14
Vector for STAR



SEQ. ID. NO. 37
p17+
Vector for STAR



SEQ. ID. NO. 38
pCATRMAN
Vector for STAR



SEQ. ID. NO. 39
p20
Vector for STAR



SEQ. ID. NO. 40
OGS 77
Primer used for STAR





p14 vector



SEQ. ID. NO. 41
OGS 302
Primer used for STAR





p17+ vector



SEQ. ID. NO: 42
human 0326.1
siRNA sequence for





SEQ. ID. NO. 1



SEQ. ID. NO: 43
Human 0369.1
shRNA sequence for





SEQ. ID. NO. 2



SEQ. ID. NO: 44
mouse 0326.1
shRNA sequence for





SEQ. ID. NO. 35



SEQ. ID. NO: 45
mouse 0326.2
shRNA sequence for





SEQ ID NO. 35



SEQ. ID. NO: 46

pSilencer2.0 vector



SEQ. ID. NO: 47

pd2 vector


















TABLE 5





Nucleotide Sequence



(5′-3′)
ORFs







SEQ ID NO.: 1
SEQ ID NO.: 48


TCCGGCTCCCGCAGAGCCCACAGGGACCTGCAGATCTGAGTGCCCTGCCCACCCCCGCCCGCCTTCCTTCCCCCACCACGCCTGGGA
MEKSIWLLACLAWV


GGGCCCTCACTGGGGAGGTGGCCGAGAACGGGTCTGGCCTGGGGTGTTCAGATGCTCACAGCATGGAAAAGTCCATCTGGCTGCTGG
LPTGSFVRTKIDTT


CCTGCTTGGCGTGGGTTCTCCCGACAGGCTCATTTGTGAGAACTAAAATAGATACTACGGAGAACTTGCTCAACACAGAGGTGCACA
ENLLNTEVHSSPAQ


GCTCGCCAGCGCAGCGCTGGTCCATGCAGGTGCCACCCGAGGTGAGCGCGGAGGCAGGCGACGCGGCAGTGCTGCCCTGCACCTTCA
RWSMQVPPEVSAEA


CGCACCCGCACCGCCACTACGACGGGCCGCTGACGGCCATCTGGCGCGCGGGCGAGCCCTATGCGGGCCCGCAGGTGTTCCGCTGCG
GDAAVLPCTFTHPH


CTGCGGCGCGGGGCAGCGAGCTCTGCCAGACGGCGCTGAGCCTGCACGGCCGCTTCCGGCTGCTGGGCAACCCGCGCCGCAACGACC
RHYDGPLTAIWRAG


TCTCGCTGCGCGTCGAGCGCCTCGCCCTGGCTGACGACCGCCGCTACTTCTGCCGCGTCGAGTTCGCCGGCGACGTCCATGACCGCT
EPYAGPQVFRCAAA


ACGAGAGCCGCCACGGCGTCCGGCTGCACGTGACAGCCGCGCCGCGGATCGTCAACATCTCGGTGCTGCCCAGTCCGGCTCACGCCT
RGSELCQTALSLHG


TCCGCGCGCTCTGCACTGCCGAAGGGGAGCCGCCGCCCGCCCTCGCCTGGTCCGGCCCGGCCCTGGGCAACAGCTTGGCAGCCGTGC
RFRLLGNPRRNDLS


GGAGCCCGCGTGAGGGTCACGGCCACCTAGTGACCGCCGAACTGCCCGCACTGACCCATGACGGCCGCTACACGTGTACGGCCGCCA
LRVERLALADDRRY


ACAGCCTGGGCCGCTCCGAGGCCAGCGTCTACCTGTTCCGCTTCCATGGCGCCAGCGGGGCCTCGACGGTCGCCCTCCTGCTCGGCG
FCRVEFAGDVHDRY


CTCTCGGCTTCAAGGCGCTGCTGCTGCTCGGGGTCCTGGCCGCCCGCGCTGCCCGCCGCCGCCCAGAGCATCTGGACACCCCGGACA
ESRHGVRLHVTAAP


CCCCACCACGGTCCCAGGCCCAGGAGTCCAATTATGAAAATTTGAGCCAGATGAACCCCCGGAGCCCACCAGCCACCATGTGCTCAC
RIVNISVLPSPAHA


CGTGAGGAGTCCCTCAGCCACCAACATCCATTTCAGCACTGTAAAGAACAAAGGCCAGTGCGAGGCTTGGCTGGCACAGCCAGTCCT
FRALCTAEGEPPPA


GGTTCTCGGGCACCTTGGCAGCCCCCAGCTGGGTGGCTCCTCCCCTGCTCAAGGTCAAGACCCTGCTCAAGGAGGCTCATCTGGCCT
LAWSGPALGNSLAA


CCTATGTGGACAACCATTTCGGAGCTCCCTGATATTTTTGCCAGCATTTCGTAAATGTGCATACGTCTGTGTGTGTGTGTGTGTGTG
VRSPREGHGHLVTA


AGAGAGAGAGAGAGAGAGTACACGCATTAGCTTGAGCGTGAAACTTCCAGAAATGTTCCCTTGCCCTTTCTTACCTAGAACACCTGC
ELPALTHDGRYTCT


TATAGTAAAGCAGACAGGAAACTGTTAAAAAAAAAAAAAAAAAA
AANSLGRSEASVYL



FRFHGASGASTVAL



LLGALGFKALLLLG



VLAARAARRRPEHL



DTPDTPPRSQAQES



NYENLSQMNPRSPP



ATMCSP





SEQ ID NO.: 2
SEQ ID NO.: 49


ACGGAAACGGGCGTGCCATTTCCGCGCACGTCTGCAGATGCGGTAGTCGATTGGTCAAGTCTCCCATGGCTCCTCCTTCATCAGGAG
MIGSGLAGSGGAGG


GTGGGCAAACCGCGCCATGATAGGGTCGGGATTGGCTGGCTCTGGAGGCGCAGGTGGTCCTTCTTCTACTGTCACATGGTGCGCGCT
PSSTVTWCALFSNH


GTTTTCTAATCACGTGGCTGCCACCCAGGCCTCTCTGCTCCTGTCTTTTGTTTGGATGCCGGCGCTGCTGCCTGTGGCCTCCCGCCT
VAATQASLLLSFVW


TTTGTTGCTACCCCGAGTCTTGCTGACCATGGCCTCTGGAAGCCCTCCGACCCAGCCCTCGCCGGCCTCGGATTCCGGCTCTGGCTA
MPALLPVASRLLLL


CGTTCCGGGCTCGGTCTCTGCAGCCTTTGTTACTTGCCCCAACGAGAAGGTCGCCAAGGAGATCGCCAGGGCCGTGGTGGAGAAGCG
PRVLLTMASGSPPT


CCTAGCAGCCTGCGTCAACCTCATCCCTCAGATTACATCCATCTATGAGTGGAAAGGGAAGATCGAGGAAGACAGTGAGGTGCTGAT
QPSPASDSGSGYVP


GATGATTAAAACCCAAAGTTCCTTGGTCCCAGCTTTGACAGATTTTGTTCGTTCTGTGCACCCTTACGAAGTGGCCGAGGTAATTGC
GSVSAAFVTCPNEK


ATTGCCTGTGGAACAGGGGAACTTTCCGTACCTGCAGTGGGTGCGCCAGGTCACAGAGTCAGTTTCTGACTCTATCACAGTCCTGCC
VAKEIARAVVEKRL


ATGATGAGCCCTGTTCCTGCTCATCATGAAGATCCCCGCGATACTTCAACGCCTTCTGACTTCCAGGTGATGACTGGGCCCCCAATA
AACVNLIPQITSIY


AATCCCGTCTTTGGGTCTCTCTGCCAAAAAAAAAAAAAAA
EWKGKIEEDSEVLM



MIKTQSSLVPALTD



FVRSVHPYEVAEVI



ALPVEQGNFPYLQW



VRQVTESVSDSITV



LP





SEQ ID NO.: 3
SEQ ID NO.: 50


CGGTGTCTCGTCATCTCCGGGAAGACTCGGCGCCTGGGTCCGCGCTCTCTGGGTAAGCTTTCCGGGAAGCTTTCCCGGGAGCTCGCT
MGDEDKRITYEDSE


GGTCCTGGCCCCAGAAGCCTGCGGACCCGCCCAGGGAGGATAAGCAGCTGAAAGACCGCGCGGTGCCGCTCCGAGGCCCCGGGACGT
PSTGMNYTPSMHQE


GGGCCCATGGTCGGCCTGGCGCCACCTTTCCGGGGGAAGCCACGCGCACCAGGCATCGCACGCGGCTCTGCACCCGCGCCGCCGGAC
AQEETVMKLKGIDA


CTGAAACCCGGCGGAGGGCACACGGGGCTGCCGCTGCGGGCCCCGGACCAACCCATGCTTACTCCGGAGCCTGTACCGGCGCCGACG
NEPTEGSILLKSSE


GGTCGGACCTCCCTGCGCGGTGTCGCCCAGCGGGTTCGTGCGAAAGGCGGGGCCGACTACACGCGGTGCCGCGCCCTGAGACCGTTT
KKLQETPTEANHVQ


ATCTGCAGTCAACGCAGCCTCCCGGCTCAGCCTGGGAAGATGCGCGAATCGGGAACCCCAGAGCGCGGTGGCTAGACCGGGCTCCGC
RLRQMLACPPHGLL


CGCCTCCCCCACAGCCCCTTTCCTAATCGTTCAGACGGAGCCTGGTCGACTTCGCCGGAGACTGCCAGATCTCGTTCCTCTTCCCTG
DRVITNVTIIVLLW


TGTCATCTTCTTAATTATAAATAATGGGGGATGAAGATAAAAGAATTACATATGAAGATTCAGAACCATCCACAGGAATGAATTACA
AVVWSITGSECLPG


CGCCCTCCATGCATCAAGAAGCACAGGAGGAGACAGTTATGAAGCTCAAAGGTATAGATGCAAATGAACCAACAGAAGGAAGTATTC
GNLFGIIILFYCAI


TTTTGAAAAGCAGTGAAAAAAAGCTACAAGAAACACCAACTGAAGCAAATCACGTACAAAGACTGAGACAAATGCTGGCTTGCCCTC
IGGKLLGLIKLPTL


CACATGGTTTACTGGACAGGGTCATAACAAATGTTACCATCATTGTTCTTCTGTGGGCTGTAGTTTGGTCAATTACTGGCAGTGAAT
PPLPSLLGMLLAGF


GTCTTCCTGGAGGAAACCTATTTGGAATTATAATCCTATTCTATTGTGCCATCATTGGTGGTAAACTTTTGGGGCTTATTAAGTTAC
LIRNIPVINDNVQI


CTACATTGCCTCCACTGCCTTCTCTTCTTGGCATGCTGCTTGCAGGGTTTCTCATCAGAAATATCCCAGTCATCAACGATAATGTGC
KHKWSSSLRSIALS


AGATCAAGCACAAGTGGTCTTCCTCTTTGAGAAGCATAGCCCTGTCTATCATTCTGGTTCGTGCTGGCCTTGGTCTGGATTCAAAGG
IILVRAGLGLDSKA


CCCTGAAGAAGTTAAAGGGCGTTTGTGTAAGACTGTCCATGGGTCCCTGTATTGTGGAGGCGTGCACATCTGCTCTTCTTGCCCATT
LKLLKGVCVRLSMG


ACCTGCTGGGTTTACCATGGCAATGGGGATTTATACTGGGTTTTGTTTTAGGTGCTGTATCTCCAGCTGTTGTGGTGCCTTCAATGC
PCIVEACTSALIAH


TCCTTTTGCAGGGAGGAGGCTATGGTGTTGAGAAGGGTGTCCCAACCTTGCTCATGGCAGCTGGCAGCTTCGATGACATTCTGGCCA
YLLGLPWQWGFILG


TCACTGGCTTCAACACATGCTTGGGCATAGCCTTTTCCACAGGCTCTACTGTCTTTAATGTCCTCAGAGGAGTTTTGGAGGTGGTAA
FVLGAVSPAVVVPS


TTGGTGTGGCAACTGGATCTGTTCTTGGATTTTTCATTCAGTACTTTCCAAGCCGTGACCAGGACAAACTTGTGTGTAAGAGAACAT
MLLLQGGGYGVEKG


TCCTTGTGTTGGGGTTGTCTGTGCTAGCTGTGTTCAGCAGTGTGCATTTTGGTTTCCCTGGATCAGGAGGACTGTGCACGTTGGTCA
VPTLLMAAGSFDDI


TGGCTTTCCTTGCAGGCATGGGATGGACCAGCGAAAAGGCAGAGGTTGAAAAGATAATTGCAGTTGCCTGGGACATTTTTCAGCCCC
LAITGFNTCLGIAF


TTCTTTTTGGACTAATTGGAGCAGAGGTATCTATTGCATCTCTCAGACCAGAAACTGTAGGCCTTTGTGTTGCCACCGTAGGCATTG
STGSTVFNVLRGVL


CAGTATTGATACGAATTTTGACTACATTTCTGATGGTGTGTTTTGCTGGTTTTAACTTAAAAGAAAAGATATTTATTTCTTTTGCAT
EVVIGVATGSVLGF


GGCTTCCAAAGGCCACAGTTCAGGCTGCAATAGGATCTGTGGCTTTGGACACAGCAAGGTCACATGGAGAGAAACAATTAGAGGACT
FIQYFPSRDQDKLV


ATGGAATGGATGTGTTGACAGTGGCATTTTTGTCCATCCTCATCACAGCCCCAATTGGAAGTCTGCTTATTGGTTTACTGGGCCCCA
CKRTFLVLGLSVLA


GGCTTCTGCAGAAAGTTGAACATCAAAATAAAGATGAAGAAGTTCAAGGAGAGACTTCTGTGCAAGTTTAGAGGTGAAAAGAGAGAG
VFSSVHFGFPGSGG


TGCTGAACATAATGTTTAGAAAGCTGCTACTTTTTTCAAGATGCATATTGAAATATGTAATGTTTAAGCTTAAAATGTAATAGAACC
LCTLVMAFLAGMGW


AAAAGTGTAGCTGTTTCTTTAAACAGCATTTTTAGCCCTTGCTCTTTCCATGTGGGTGGTAATGATTCTATATCCCCAAAAAAAAAA
TSEKAEVEKIIAVA


AAAAAAAAAAA
WDIFQPLLFGLIGA



EVSIASLRPETVGL



CVATVGIAVLIRIL



TTFLMVCFAGFNLK



EKIFISFAWLPKAT



VQAAIGSVALDTAR



SHGEKQLEDYGMDV



LTVAFLSILITAPI



GSLLIGLLGPRLLQ



KVEHQNKDEEVQGE



TSVQV





SEQ ID NO.: 4
SEQ ID NO.: 51


GACAACCTTCAGGTCCAGCCCTGGAGCTGGAGGAGTGGAGCCCCACTCTGAAGACGCAGCCTTTCTCCAGGTTCTGTCTCTCCCATT
MVSSPCTPASSRTC


CTGATTCTTGACACCAGATGCAGGATGGTGTCCTCTCCCTGCACGCCGGCAAGCTCACGGACTTGCTCCCGTATCCTGGGACTGAGC
SRILGLSLGTAALF


CTTGGGACTGCAGCCCTGTTTGCTGCTGGGGCCAACGTGGCACTCCTCCTTCCTAACTGGGATGTCACCTACCTGTTGAGGGGCCTC
AAGANVALLLPNWD


CTTGGCAGGCATGCCATGCTGGGAACTGGGCTCTGGGGAGGAGGCCTCATGGTACTCACTGCAGCTATCCTCATCTCCTTGATGGGC
VTYLLRGLLGRHAM


TGGAGATACGGCTGCTTCAGTAAGAGTGGGCTCTGTCGAAGCGTGCTTACTGCTCTGTTGTCAGGTGGCCTGGCTTTACTTGGAGCC
LGTGLKGGGLMVLT


CTGATTTGCTTTGTCACTTCTGGAGTTGCTCTGAAAGATGGTCCTTTTTGCATGTTTGATGTTTCATCCTTCAATCAGACACAAGCT
AAILISLMGWRYGC


TGGAAATATGGTTACCCATTCAAAGACCTGCATAGTAGGAATTATCTGTATGACCGTTCGCTCTGGAACTCCGTCTGCCTGGAGCCC
FSKSGLCRSVLTAL


TCTGCAGCTGTTGTCTGGCACGTGTCCCTCTTCTCCGCCCTTCTGTGCATCAGCCTGCTCCAGCTTCTCCTGGTGGTCGTTCATGTC
LSGGLALLGALICF


ATCAACAGCCTCCTGGGCCTTTTCTGCAGCCTCTGCGAGAAGTGACAGGCAGAACCTTCACTTGCAAGCATGGGTGTTTTCATCATC
VTSGVALKDGPFCM


GGCTGTCTTGAATCCTTTCTACAAGGAGTGGGTTCAGGCCCTCTGTGGTTAAAGACTGTATCCATGCTGTGCTCAAGGAGGAACTGG
FDVSSFNQTQAWKY


CAAATGCTGAATATTCTCCAGAAGAAATGCCTCAGCTTACAAAACATTTATCAGAAAACATTAAAGATAAATTAAAAGGTAATCATG
GYPFKDLHSRNYLY


GTGAAAAAAAAAAAAAAA
DRSLWNSVCLEPSA



AVVWHVSLFSALLC



ISLLQLLLVVVKVI



NSLLGLFCSLCEK





SEQ ID NO.: 5
SEQ IN NO.: 52


CCACGCGTCCGCACTTCCAGGGTCGGGGAGACGGAACTGCGGCGACCATGTATTTCTGGTTTATCAAACCGCTAACACCCAGTCTAA
MALVPYEETTEFGL


GGGCAGGTTCTGTCCCATTGTTATCACTATCGAAGCAGCCGATGGAGGAGGGGAGGTCTGAGCAGAGGGCGGGGTGCAGGCGGAATG
QKFHKPLATFSFAN


GCCCTCGTGCCCTATGAGGAGACCACGGAATTTGGGTTGCAGAAATTCCACAAGCCTCTTGCAACTTTTTCCTTTGCAAACCACACG
HTIQIRQDWRHLGV


ATCCAGATCCGGCAGGACTGGAGACACCTGGGAGTCGCAGCGGTGGTTTGGGATGCGGCCATCGTTCTTTCCACATACCTGGAGATG
AAVVWDAAIVLSTY


GGAGCTGTGGAGCTCAGGGGCCGCTCTGCCGTGGAGCTGGGTGCTGGCACGGGGCTGGTGGGCATAGTGGCTGCCCTGCTGGGTGCT
LEMGAVELRGRSAV


CATGTGACTATCACGGATCGAAAAGTAGCATTAGAATTTCTTAAATCAAACGTTCAAGCCAACTTACCTCCTCATATCCAAACTAAA
ELGAGTGLVGIVAA


ACTGTTGTTAAGGAGCTGACTTGGGGACAAAATTTGGGGAGTTTTTCTCCTGGAGAATTTGACCTGATACTTGGTGCTGATATCATA
LLGAHVTITDRKVA


TATTTAGAAGAAACATTCACAGATCTTCTTCAAACACTGGAACATCTCTGTAGCAATCACTCTGTGATTCTTTTAGCATGCCGAATT
LEFLKSNVQANLPP


CGCTATGAACGGGATAACAACTTCTTAGCAATGCTGGAGAGGCAATTTATTGTGAGAAAGGTTCACTACGATCCTGAAAAAGATGTA
HIQTKTVVKELTWG


CATATTTACGAAGCACAGAAGAGAAACCAGAAGGAGGACTTATAATTGGCTATAATTTATAAGAATGTTGTCATTGAGTGTGTCACT
QNLGSFSPGEFDLI


TAAGGTCTTAGACTGCAAATCTAACCATATTTAATGAAATGTCTTACTGTACAAAAAGTCTAAGCCAAAGGTTCTCAGGGGAGAAAG
LGADIIYLEETFTD


CACATGTGCAGTTTTAAAACAAAGCAGTGCTTTGTCCCATTGCTGTGATTTTTAGTCAGACTTTACTCAGTCTGAAATGCAATTAAC
LLQTLEHLCSKHSV


ATTAAAGGATTAAGTGTGAGATTTCGATTTATGCTATTTGTGTATCCCATACTCCTCCCTTTTAATAAACAGTTTCCACTGATGATA
ILLACRIRYERDNN


TGAAGGGCCGGTATAAAGAAGTCTTTAAATGAGTAAGCTTTCTTGGTAAGATTAAATCTTACAAATTATTTTTAAAACCTTGTGATA
FLAMLERQFIVRKV


TATACAATGTTTAGCTGAGTTTTCTAATTTTCTGGATGTAAAACAAAAGGTTTAACCTATACATTCCTTGAGCTGTTAGTGCTATTT
HYDPEKDVHIYEAQ


AAATCTTTTGCCCTGTTTAGGTCCTAAACACTTTTAGTTGAGTAGGATATGAGCTTTTTTGGGTCTCATATCATGCTTTTTGCCTTA
KRNQKEDL


ATTTCAGGTATATATATATATAAGTAAAGGAATTAAGTAAAAATAAAATTTCAGTTACTTTTTAAAAGCACCTGAAATCTGGCCGGA



TGCGGTGGCTCATGCCTGTAATCCCACCACTTTGGGAGGCCGAGGCGGGCAGATCACCTGAGGTCGGGAGTTCAAGACCAGCCTGGC



CAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGTCGGGCGCCTGTAGTCCCAGCTGCTCGGGAGG



CTGAGGCAGGGGAATCGCTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCTGAGATTGCGCCATTGTACTCCAGCCTGGGGGACAGGA



GCGAGACTCCATCTCAAAAAAAAAAAAAAA






<SEQ ID NO.: 6
SEQ ID NO.: 53


GTGCAGAAGGCACGAGGAAGCCACAGTGCTCCGGATCCTCCAATCTTCGCTCCTCCAATCTCCGCTCCTCCACCCAGTTCAGGAACC
MSLLSSRAARVPGP


GGCGACCGCTCGCAGCGCTCTCTTGACCACTATGAGCCTCCTGTCCAGCCGCGCGGCCCGTGTCCCCGGTCCTTCGAGCTCCTTGTG
SSSLCALLVLLLLL


CGCGCTGTTGGTGCTGCTGCTGCTGCTGACGCAGCCAGGGCCCATCGCCAGCGCTGGTCCTGCCGCTGCTGTGTTGAGAGAGCTGCG
TQPGPIASAGPAAA


TTGCGTTTGTTTACAGACCACGCAAGGAGTTCATCCCAAAATGATCAGTAATCTGCAAGTGTTCGCCATAGGCCCACAGTGCTCCAA
VLRELRCVCLQTTQ


GGTGGAAGTGGTAGCCTCCCTGAAGAACGGGAAGGAAATTTGTCTTGATCCAGAAGCCCCTTTTCTAAAGAAAGTCATCCAGAAAAT
GVHPKMISNLQVFA


TTTGGACGGTGGAAACAAGGAAAACTGATTAAGAGAAATGAGCACGCATGGAAAAGTTTCCCAGTCTTCAGCAGAGAAGTTTTCTGG
IGPQCSKVEVVASL


AGGTCTCTGAACCCAGGGAAGACAAGAAGGAAAGATTTTGTTGTTGTTTGTTTATTTGTTTTTCCAGTAGTTAGCTTTCTTCCTGGA
KNGKEICLDPEAPF


TTCCTCACTTTGAAGAGTGTGAGGAAAACCTATGTTTGCCGCTTAAGCTTTCAGCTCAGCTAATGAAGTGTTTAGCATAGTACCTCT
LKKVIQKILDGGNK


GCTATTTGCTGTTATTTTATCTGCTATGCTATTGAAGTTTTGGCAATTGACTATAGTGTGAGCCAGGAATCACTGGCTGTTAATCTT
EN


TCAAAGTGTCTTGAATTGTAGGTGACTATTATATTTCCAAGAAATATTCCTTAAGATATTAACTGAGAAGGCTGTGGATTTAATGTG



GAAATGATGTTTCATAAGAATTCTGTTGATGGAAATACACTGTTATCTTCACTTTTATAAGAAATAGGAAATATTTTAATGTTTCTT



GGGGAATATGTTAGAGAATTTCCTTACTCTTGATTGTGGGATACTATTTAATTATTTCACTTTAGAAAGCTGAGTGTTTCACACCTT



ATCTATGTAGAATATATTTCCTTATTCAGAATTTCTAAAAGTTTAAGTTCTATGAGGGCTAATATCTTATCTTCCTATAATTTTAGA



CATTCTTTATCTTTTTAGTATGGCAAACTGCCATCATTTACTTTTAAACTTTGATTTTATATGCTATTTATTAAGTATTTTATTAGG



AGTACCATAATTCTGGTAGCTAAATATATATTTTAGATAGATGAAGAAGCTAGAAAACAGGCAAATTCCTGACTGCTAGTTTATATA



GAAATGTATTCTTTTAGTTTTTAAAGTAAAGGCAAACTTAACAATGACTTGTACTCTGAAAGTTTTGGAAACGTATTCAAACAATTT



GAATATAAATTTATCATTTAGTTATAAAAATATATAGCGACATCCTCGAGGCCCTAGCATTTCTCCTTGGATAGGGGACCAGAGAGA



GCTTGGAATGTTAAAAACAAAACAAAACAAAAAAAAACAAGGAGAAGTTGTCCAAGGGATGTCAATTTTTTATCCCTCTGTATGGGT



TAGATTTTCCAAAATCATAATTTGAAGAAGGCCAGCATTTATGGTAGAATATATAATTATATATAAGGTGGCCACGCTGGGGCAAGT



TCCCTCCCCACTCACAGCTTTGGCCCCTTTCACAGAGTAGAACCTGGGTTAGAGGATTGCAGAAGACGAGCGGCAGCGGGGAGGGCA



GGGAAGATGCCTGTCGGGTTTTTAGCACAGTTCATTTCACTGGGATTTTGAAGCATTTCTGTCTGAATGTAAAGCCTGTTCTAGTCC



TGGTGGGACACACTGGGGTTGGGGGTGGGGGAAGATGCGGTAATGAAACCGGTTAGTCAGTGTTGTCTTAATATCCTTGATAATGCT



GTAAAGTTTATTTTTACAAATATTTCTGTTTAAGCTATTTCACCTTTGTTTGGAAATCCTTCCCTTTTAAAGAGAAAATGTGACACT



TGTGAAAAGGCTTGTAGGAAAGCTCCTCCCTTTTTTTCTTTAAACCTTTAAATGACAAACCTAGGTAATTAATGGTTGTGAATTTCT



ATTTTTGCTTTGTTTTTAATGAACATTTGTCTTTCAGAATAGGATTCTGTGATAATATTTAAATGGCAAAAACAAAACATAATTTTG



TGCAATTAACAAAGCTACTGCAAGAAAAATAAAACATTTCTTGGTAAAAACGTATGTATTTATATATTATATATTTATATATAATAT



ATATTATATATTTAGCATTGCTGAGCTTTTTAGATGCCTATTGTGTATCTTTTAAAGGTTTTGACCATTTTGTTATGAGTAATTACA



TATATATTACATTCACTATATTAAAATTGTACTTTTTTACTATGTGTCTCATTGGTTCATAGTCTTTATTTTGTCCTTTGAATAAAC



ATTAAAAGATTTCTAAACTTCAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 7
SEQ ID NO.: 54


CTGGACGAGTCCGAGCGCGTCACCTCCTCACGCTGCGGCTGTCGCCCGTGTCCCGCCGGCCCGTTCCGTGTCGCCCCGCAGTGCTGC
MAVFVVLLALVAGV


GGCCGCCGCGGCACCATGGCTGTGTTTGTCGTGCTCCTGGCGTTGGTGGCGGGTGTTTTGGGGAACGAGTTTAGTATATTAAAATCA
LGNEFSILKSPGSV


CCAGGGTCTGTTGTTTTCCGAAATGGAAATTGGCCTATACCAGGAGAGCGGATCCCAGACGTGGCTGCATTGTCCATGGGCTTCTCT
VFRNGNWPIPGERI


GTCAAAGAAGACCTTTCTTGGCCAGGACTCGCAGTGGGTAACCTGTTTCATCGTCCTCGGGCTACCGTCATGGTGATGGTGAAGGGA
PDVAALSMGFSVKE


GTGAACAAACTGGCTCTACCCCCAGGCAGTGTCATTTCGTACCCTTTGGAGAATGCAGTTCCTTTTAGTCTTGACAGTGTTGCAAAT
DLSWPGLAVGNLFH


TCCATTCACTCCTTATTTTCTGAGGAAACTCCTGTTGTTTTGCAGTTGGCTCCCAGTGAGGAAAGAGTGTATATGGTAGGGAAGGCA
RPRATVMVMVKGVN


AACTCAGTGTTTGAAGACCTTTCAGTCACCTTGCGCCAGCTCCGTAATCGCCTGTTTCAAGAAAACTCTGTTCTCAGTTCACTCCCC
KLALPPGSVISYPL


CTCAATTCTCTGAGTAGGAACAATGAAGTTGACCTGCTCTTTCTTTCTGAACTGCAAGTGCTACATGATATTTCAAGCTTGCTGTCT
ENAVPFSLDSVANS


CGTCATAAGCATCTAGCCAAGGATCATTCTCCTGATTTATATTCACTGGAGCTGGCAGGTTTGGATGAAATTGGGAAGCGTTATGGG
IHSLFSEETPVVLQ


GAAGACTCTGAACAATTCAGAGATGCTTCTAAGATCCTTGTTGACGCTCTGCAAAAGTTTGCAGATGACATGTACAGTCTTTATGGT
LAPSEERVYMVGKA


GGGAATGCAGTGGTAGAGTTAGTCACTGTCAAGTCATTTGACACCTCCCTCATTAGGAAGACAAGGACTATCCTTGAGGCAAAACAA
NSVFEDLSVTLRQL


GCGAAGAACCCAGCAAGTCCCTATAACCTTGCATATAAGTATAATTTTGAATATTCCGTGGTTTTCAACATGGTACTTTGGATAATG
RNRLFQENSVLSSL


ATCGCCTTGGCCTTGGCTGTGATTATCACCTCTTACAATATTTGGAACATGGATCCTGGATATGATAGCATCATTTATAGGATGACA
PLNSLSRNNEVDLL


AACCAGAAGATTCGAATGGATTGAATGTTACCTGTGCCAGAATTAGAAAAGGGGGTTGGAAATTGGCTGTTTTGTTAAAATATATCT
FLSELQVLHDISSL


TTTAGTGTGCTTTAAAGTAGATAGTATACTTTACATTTATAAAAAAAAATCAAATTTTGTTCTTTATTTTGTGTGTGCCTGTGATGT
LSRHKHLAKDHSPD


TTTTCTAGAGTGAATTATAGTATTGACGTGAATCCCACTGTGGTATAGATTCCATAATATGCTTGAATATTATGATATAGCCATTTA
LYSLELAGLDEIGK


ATAACATTGATTTCATTCTGTTTAATGAATTTGGAAATATGCACTGAAAGAAATGTAAAACATTTAGAATAGCTCGTGTTATGGAAA
RYGEDSEQFRDASK


AAAGTGCACTGAATTTATTAGACAAACTTACGAATGCTTAACTTCTTTACACAGCATAGGTGAAAATCATATTTGGGCTATTGTATA
ILVDALQKFADDMY


CTATGAACAATTTGTAAATGTCTTAATTTGATGTAAATAACTCTGAAACAAGAGAAAAGGTTTTTAACTTAGAGTAGCCCTAAAATA
SLYGGNAVVELVTV


TGGATGTGCTTATATAATCGCTTAGTTTTGGAACTGTATCTGAGTAACAGAGGACAGCTGTTTTTTAACCCTCTTCTGCAAGTTTGT
KSFDTSLIRKTRTI


TGACCTACATGGGCTAATATGGATACTAAAAATACTACATTGATCTAAGAAGAAACTAGCCTTGTGGAGTATATAGATGCTTTTCAT
LEAKQAKNPASPYN


TATACACACAAAAATCCCTGAGGGACATTTTGAGGCATGAATATAAAACATTTTTATTTCAGTAACTTTTCCCCCTGTGTAAGTTAC
LAYKYNFEYSVVFN


TATGGTTTGTGGTACAACTTCATTCTATAGAATATTAAGTGGAAGTGGGTGAATTCTACTTTTTATGTTGGAGTGGACCAATGTCTA
MVLWIMIALALAVI


TCAAGAGTGACAAATAAAGTTAATGATGATTCCAAAAAAAAAA
ITSYNIWNMDPGYD



SIIYRMTNQKIRMD





SEQ ID NO.: 8
SEQ ID NO.: 55


AGCGGGGCAGCGGCTGCGCCCTGCGCCGGGGCGGAGCCGGGGGCGGGCCGGCGGCCCGGCGGCGGGGGCTGGGGCCCGAGGCCGGGA
MEILMTVSKFASIC


GTGCCTGAGCGCCGGCGGCGACGACGGCAGCGGCGGCCCAGCGGGCTCGGTGGTTGGGTCCGCGGCGGCTCGGGGTCCGCCCGCGGG
TMGANASALEKEIG


CTGCGGTGCGAGCGGGCGGCCCGGCTCCCCTCCTCCCCCGCCCGCCGCCGCCGCTGTGATTGGGTGGAAGATGGCGCTGGCCGGATG
PEQFPVNEHYFGLV


GAAATCCTAATGACAGTCTCCAAATTCGCCTCCATCTGTACCATGGGCGCCAATGCTTCGGCATTAGAGAAAGAGATTGGTCCAGAA
NFGNTCYCNSVLQA


CAGTTTCCGGTCAATGAGCACTATTTTGGATTAGTCAATTTTGGGAATACCTGCTACTGCAATTCAGTTCTTCAAGCACTTTATTTT
LYFCRPFREKVLAY


TGTCGTCCATTTCGGGAAAAAGTTCTTGCGTATAAGAGTCAACCTAGGAAAAAGGAGAGCCTTCTTACATGCTTAGCAGATCTCTTC
KSQPRKKESLLTCL


CATAGCATAGCCACTCAGAAGAAAAAGGTTGGAGTAATACCCCCTAAGAAGTTCATCACAAGATTACGGAAAGAAAATGAGCTTTTT
ADLFHSIATQKKKV


GACAACTACATGCAACAAGATGCCCATGAATTCTTAAATTACCTACTAAATACAATTGCTGATATTTTACAAGAAGAGAGAAAGCAG
GVIPPKKFITRLRK


GAAAAACAAAATGGTCGTTTACCTAATGGTAATATTGATAATGAAAATAATAACAGCACACCAGACCCAACGTGGGTTGATGAGATT
ENELFDNYMQQDAH


TTTCAGGGAACATTAACTAATGAAACCAGATGTCTTACTTGTGAAACTATAAGCAGCAAAGATGAAGATTTTTTAGACCTTTCTGTT
EFLNYLLNTIADIL


GACGTGGAACAAAATACATCAATTACTCACTGCTTAAGGGGTTTCAGCAACACAGAAACTCTGTGCAGTGAATACAAGTATTACTGT
QEERKQEKQNGRLP


GAAGAGTGTCGCAGCAAACAGGAAGCACACAAACGGATGAAAGTTAAAAAACTGCCCATGATTCTAGCTCTACACCTGAAGAGATTT
NGNIDNENNNSTPD


AAATATATGGATCAACTTCATCGATATACAAAACTCTCTTACCGGGTAGTTTTTCCTTTAGAACTTCGTCTGTTTAACACTTCAGGT
PTWVDEIPQGTLTN


GATGCCACCAATCCAGACAGAATGTACGACCTTGTTGCTGTTGTGGTTCACTGTGGAAGTGGTCCCAATCGAGGCCATTATATTGCA
ETRCLTCETISSKD


ATAGTTAAGAGTCATGATTTTTGGTTGTTGTTTGATGACGACATTGTAGAAAAAATAGATGCACAAGCTATTGAAGAATTCTACGGG
EDFLDLSVDVEQNT


TTGACATCAGATATCTCAAAGAACTCTGAGTCTGGTTACATCCTTTTCTATCAGTCTCGGGACTGAGAGGGAACCGTGATGAAGAGA
SITHCLRGFSNTET


CACTTTCTGCCTCATTTCTTCTCTGGTTATTTTGGAAAGGATCAAGCACTGATTTTTCAAGAAAAGAGAAATGCAGGAAGCTCAGGG
LCSEYKYYCEECRS


GGCAGTAGCACACTTTGCACACGATAAAGCAAAGACGATGGATTGACAAGCCCTTCCGATCATGGTAGTTGATTTATTTGCTCAGGT
KQEAHKRMKVKKLP


ATCATGCTGTCTGTACAGTTCCATACAACAAGGAGGTGAAATCAGAGATACCAGCTCCTCTTTTAAAACAGCCTTCCAGTCATTGGC
MILALHLKRFKYMD


ACGCATTTTCTCTTTATTAATTGCACCAATAATGCTTTGAATTCCTTGGGGGTGCAGTAGAAAGAATCGGAATCTGTGCCGTATTGA
QLHRYTKLSYRVVF


TAAGGAGATGATGTTGAACACACTGCATAAATTTGCCTGGTTCAGTATGTATAGAAGCATATTCAGTGGTCTTTTCAAGAGTAAACC
PLELRLFNTSGDAT


AGAAATACTTTTGGGCCCAACACTTGCAGTTGCCTTCCTGATGTAAAAACTAACATGCTAGATAATCCAGTGTCGGGAAGACAAAGA
NPDRMYDLVAVVVH


TGTTTTGCTTCTCTGAAGAAGCTTATAATAATATACAGTATATGTATATGTAGGGAGCAATTGGTCAAAAGTGGCTTTTTGTTTCCC
CGSGPNRGHYIAIV


CAAGGGGAAAGACTGGCTTTGTAATTATAATTTTTTCCTTATTTATTTTACTTAAAACTGGTAGAGTCTAAGTATTATATGAAGTGC
KSKDFWLLFDDDIV


CCATGATTCTGTCAGTAAATTTGAACATATTTTTATTAGTTAATGTCAGTTTAAGTTGTCCTTTTGTTTGTTTCTATTTTTAAGGTG
EKIDAQAIEEFYGL


AATTTTAATTTCTATCTGAAATCAGTTAAGATACCTTGAGAAAAACTGCAGTGAGAGGAGATAAATATCCTTTTTCAGGAGGAACTG
TSDISKNSESGYIL


ATATCTCTGGCTAAATATTTGTCCTTTTATTATGGTTTCTAAATCAGTTATTTTCTTCAGCTTTAATTTCATAAAATTAAAAAACTA
FYQSRD


TTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 9
SEQ ID NO.: 56


GGAAGCCATTGCCTGTTTAATAGTTGCTGTTGCTGCACTTCCGCTTCTCTCCCAGCGAGAGAGAGACACGAGTGGCCAGGCCCAGCC
MSDDDSRASTSSSS


GCAGCCGCAGCAGCAGCCGCCGCGGCGGCACGGAGGAGCCAGACACAAAGAGAGGGGCTGTTTGCGGGGTGGGGTGGGGGGTTCGCT
SSSSNQQTEKETNT


ATGTCGGATGACGATTCGAGGGCCAGCACCAGCTCCTCCTCATCTTCGTCTTCCAACCAGCAAACCGAGAAAGAAACAAACACCCCC
PKKKESKVSMSKNS


AAGAAGAAGGAGAGTAAAGTCAGCATGAGCAAAAACTCCAAACTCCTCTCCACCAGCGCCAAGAGAATTCAGAAGGAGCTGGCGGAC
KLLSTSAKRIQKEL


ATCACTTTAGACCCTCCACCTAATTGCAGTGCTGGTCCCAAAGGCGATAACATCTATGAATGGAGATCAACCATTCTAGGGCCTCCA
ADITLDPPPNCSAG


GGATCCGTGTATGAGGGTGGTGTATTCTTTCTGGATATCACTTTTACACCAGAATATCCCTTCAAGCCTCCAAAGGTTACATTTCGG
PKGDNIYEWRSTIL


ACAAGAATCTATCATTGTAATATTAACAGTCAAGGTGTTATTTGCTTGGACATATTGAAAGATAATTGGAGTCCAGCACTAACCATT
GPPGSVYEGGVFFL


TCTAAAGTCCTCCTTTCTATCTGCTCACTTCTTACAGACTGTAATCCTGCCGACCCCTTGGTGGGAAGTATTGCCACTCAGTATATG
DITFTPEYPFKPPK


ACCAACAGAGCAGAACATGACAGAATGGCCAGACAGTGGACCAAGAGATACGCTACATAAATTGGGGTTTCACAATTCTTACATTAT
VTFRTRIYHCNINS


TTGTCTGTCACAGAAGAGAGCTGCTTATGATTTTGAAGGGGTCAGGGAGGGTGGGAGTTGGTAAAGAGTAGGGTATTTCTATAACAG
QGVICLDILKDNWS


ATATTATTCAGTCTTATTTCCTAAGATTTTGTTGTAACTTAAGGTATCTTGCTACAGTAGACAGAATTGGTAATAGCAACTTTTAAA
PALTISKVLLSICS


ATTGTCATTAGTTCTGCAATATTAGCTGAAATGTAGTACAGAAAAGAATGTACATTTAGACATTTGGGTTCAGTTGCTTGTAGTCTG
LLTDCNPADPLVGS


TAAATTTAAAACAGCTTAATTTGGTACAGGTTACACATATGGCCATTTATGTAAAGTCCCTCTAAGACTACATACTTTTTGTTTAAA
IATQYMTNRAEHDR


ACAAAATTGGAATTTGTTTTCCCTTCTTGGAAGGGAACATTGATATTTAACAGAGTTTTTAGAGATTGTCATCTCATATATATAAAA
MARQWTKRYAT


TGGACACGTGGCTATAAAACACCATATAAGAGATGAGTAGTGCGTTTTATTTTATATGCCAATCTACTTTGTTTAAAAAAGGTCTGA



ATCAGGACTTGTGAAAACCTGTAGTGAAATACCTTAAGCTGTTAACTAACTGTAAGGCGTGGAATAGGAGTTGCTCAGTGGATTGGT



TCTATGTTGTGGACTACTTAAGTCTGCATTTGTTACTGTGCTAATAAACAATATTAAAAACCACCTAATAAACAAAAAAAAAAAAAA






SEQ ID NO.: 10
SEQ ID NO.: 57


TTGCTTTCCTCTGCCGCATGGTCCTGGGCCGTTGGCGTCGGAAGCCTGAAGCATGGGCGCTGAGTGGGAGCTGGGGGCCGAGGCTGG
MGAEWELGAEAGGS


CGGTTCGCTGCTGCTGTGCGCCGCGCTGCTGGCGGCGGGCTGCGCCCTGGGCCTGCGCCTGGGCCGCGGGCAGGGGGCGGCGGACCG
LLLCAALLAAGCAL


CGGGGCGCTCATCTGGCTCTGCTACGACGCGCTGGTGCACTTCGCGCTGGAAGGCCCTTTTGTCTACTTGTCTTTAGTAGGAAACGT
GLRLGRGQGAADRG


TGCAAATTCCGATGGCTTGATTGCTTCTTTATGGAAAGAATATGGCAAAGCTGATGCAAGATGGGTTTATTTTGATCCAACCATTGT
ALIWLCYDALVHFA


GTCTGTGGAAATTCTGACCGTCGCCCTGGATGGGTCTCTGGCATTGTTCCTCATTTATGCCATAGTCAAAGAAAAATATTACCGGCA
LEGPPVYLSLVGNV


TTTCCTGCAGATCACCCTGTGCGTGTGCGAGCTGTATGGCTGCTGGATGACCTTCCTCCCAGAGTGGCTCACCAGAAGCCCCAACCT
ANSDGLIASLWKEY


CAACACCAGCAACTGGCTGTACTGTTGGCTTTACCTGTTTTTTTTTAACGGTGTGTGGGTTCTGATCCCAGGACTGCTACTGTGGCA
GKADARWVYFDPTI


GTCATGGCTAGAACTCAAGAAAATGCATCAGAAAGAAACCAGTTCAGTGAAGAAGTTTCAGTGAACTTTCAAAACCATAAACACCAT
VSVEILTVALDGSL


TATCTAACTTCATGAACCAGAATGAATCAAATCTTTTTGTTTGGCCAAAATGTAATACATTCCAGTCTACACTTTGTTTTTGTATTG
ALFLIYAIVKEKYY


TTGCTCCTGAACAACCTGTTTCAAATTGGTTTTAAGGCGACCAGTTTTCGTTGTATTGTTGTTCAATTAAATGGTGATATAGGGAAA
RHFLQITLCVCELY


AGAGAACAAATTTGAATTTGTAATAATAAAATGTTTAATTATACAAAAAAAAAAAAAAAAA
GCWMTFLPEWLTRS



PNLNTSNWLYCWLY



LFFFNGVWVLIPGL



LLWQSWLELKKMHQ



KETSSVKKFQ





SEQ ID NO.: 11
SEQ ID NO.: 58


GGTCGTTTTCTGATGTGACGGCTGAGACATGAGATCTTCAGCCTCCAGGCTCTCCAGTTTTTCGTCGAGAGATTCACTATGGAATCG
MRSSASRLSSFSSR


GATGCCGGACCAGATCTCTGTCTCGGAGTTCATCGCCGAGACCACCGAGGACTACAACTCGCCCACCACGTCCAGCTTCACCACGCG
DSLWNRMPDQISVS


GCTGCACAACTGCAGGAACACCGTCACGCTGCTGGAGGAGGCTCTAGACCAAGATAGAACAGCCCTTCAGAAAGTGAAGAAGTCTGT
EFIAETTEDYNSPT


AAAAGCAATATATAATTCTGGTCAAGATCATGTACAAAATGAAGAAAACTATGCACAAGTTCTTGATAAGTTTGGGAGTAATTTTTT
TSSFTTRLHNCRNT


AAGTCGAGACAACCCCGACCTTGGCACCGCGTTTGTCAAGTTTTCTACTCTTACAAAGGAACTGTCCACACTGCTGAAAAATCTGCT
VTLLEEALDQDRTA


CCAGGGTTTGAGCCACAATGTGATCTTCACCTTGGATTCTTTGTTAAAAGGAGACCTAAAGGGAGTCAAAGGAGATCTCAAGAAGCC
LQKVKKSVKAIYNS


ATTTGACAAAGCCTGGAAAGATTATGAGACAAAGTTTACAAAAATTGAGAAAGAGAAAAGAGAGCACGCAAAACAACATGGGATGAT
GQDHVQNEENYAQV


CCGCACAGAGATAACAGGAGCTGAGATTGCGGAAGAAATGGAGAAGGAAAGGCGCCTCTTTCAGCTCCAAATGTGTGAATATCTCAT
LDKFGSNFLSRDNP


TAAAGTTAATGAAATCAAGACCAAAAAGGGTGTGGATCTGCTGCAGAATCTTATAAAGTATTACCATGCACAGTGCAATTTCTTTCA
DLGTAFVKFSTLTK


AGATGGCTTGAAAACAGCTGATAAGTTGAAACAGTACATTGAAAAACTGGCTGCTGATTTATATAATATAAAACAGACCCAGGATGA
ELSTLLKNLLQGLS


AGAAAAGAAACAGCTAACTGCACTCCGAGACTTAATAAAATCCTCTCTTCAACTGGATCAGAAAGAAGATTCTCAGAGCCGGCAAGG
HNVIFTLDSLLKGD


AGGATACAGCATGCATCAGCTCCAGGGCAATAAGGAATATGGCAGTGAAAAGAAGGGGTACCTGCTAAAGAAAAGTGACGGGATCCG
LKGVKGDLKKPFDK


GAAAGTATGGCAGAGGAGGAAGTGTTCAGTCAAGAATGGGATTCTGACCATCTCACATGCCACATCTAACAGGCAACCAGCCAAGTT
AWKDYETKFTKIEK


GAACCTTCTCACCTGCCAAGTAAAACCTAATGCCGAAGACAAAAAATCTTTTGACCTGATATCACATAATAGAACATATCACTTTCA
EKREHAKQHGMIRT


GGCAGAAGATGAGCAGGATTATGTAGCATGGATATCAGTATTGACAAATAGCAAAGAAGAGGCCCTAACCATGGCCTTCCGTGGAGA
EITGAEIAEEMEKE


GCAGAGTGCGGGAGAGAACAGCCTGGAAGACCTGACAAAAGCCATTATTGAGGATGTCCAGCGGCTCCCAGGGAATGACATTTGCTG
RRLFQLQMCEYLIK


CGATTGTGGCTCATCAGAACCCACCTGGCTTTCAACCAACTTGGGTATTTTGACCTGTATAGAATGTTCTGGCATCCATAGGGAAAT
VNEIKTKKGVDLLQ


GGGGGTTCATATTTCTCGCATTCAGTCTTTGGAACTAGACAAATTAGGAACTTCTGAACTCTTGCTGGCCAAGAATGTAGGAAACAA
NLIKYYHAQCNFFQ


TAGTTTTAATGATATTATGGAAGCAAATTTACCCAGCCCCTCACCAAAACCCACCCCTTCAAGTGATATGACTGTACGAAAAGAATA
DGLKTADKLKQYIE


TATCACTGCAAAGTATGTAGATCATAGGTTTTCAAGGAAGACCTGTTCAACTTCATCAGCTAAACTAAATGAATTGCTTGAGGCCAT
KLAADLYNIKQTQD


CAAATCCAGGGATTTACTTGCACTAATTCAAGTCTATGCAGAAGGGGTAGAGCTAATGGAACCACTGCTGGAACCTGGGCAGGAGCT
EEKKQLTALRDLIK


TGGGGAGACAGCCCTTCACCTTGCCGTCCGAACTGCAGATCAGACATCTCTCCATTTGGTTGACTTCCTTGTACAAAACTGTGGGAA
SSLQLDQKEDSQSR


CCTGGATAAGCAGACGGCCCTGGGAAACACAGTTCTACACTACTGTAGTATGTACAGTAAACCTGAGTGTTTGAAGCTTTTGCTCAG
QGGYSMHQLQGNKE


GAGCAAGCCCACTGTGGATATAGTTAACCAGGCTGGAGAAACTGCCCTAGACATAGCAAAGAGACTAAAAGCTACCCAGTGTGAAGA
YGSEKKGYLLKKSD


TCTGCTTTCCCAGGCTAAATCTGGAAAGTTCAATCCACACGTCCACGTAGAATATGAGTGGAATCTTCGACAGGAGGAGATAGATGA
GIRKVWQRRKCSVK


GAGCGATGATGATCTGGATGACAAACCAAGCCCTATCAAGAAAGAGCGCTCACCCAGACCTCAGAGCTTCTGCCACTCCTCCAGCAT
NGILTISHATSNRQ


CTCCCCCCAGGACAAGCTGGCACTGCCAGGATTCAGCACTCCAAGGGACAAACAGCGGCTCTCCTATGGAGCCTTCACCAACCAGAT
PAKLNLLTCQVKPN


CTTCGTTTCCACAAGCACAGACTCGCCCACATCACCAACCACGGAGGCTCCCCCTCTGCCTCCTAGGAACGCCGGGAAAGGTCCAAC
AEDKKSFDLISHNR


TGGCCCACCTTCAACACTCCCTCTAAGCACCCAGACCTCTAGTGGCAGCTCCACCCTATCCAAGAAGAGGCCTCCTCCCCCACCACC
TYHFQAEDEQDYVA


CGGACACAAGAGAACCCTATCCGACCCTCCCAGCCCACTACCTCATGGGCCCCCAAACAAAGGCGCAGTTCCTTGGGGTAACGATGG
WISVLTNSKEEALT


GGGTCCATCCTCTTCAAGTAAGACTACAAACAAGTTTGAGGGACTATCCCAGCAGTCGAGCACCAGTTCTGCAAAGACTGCCCTTGG
MAFRGEQSAGENSL


CCCAAGAGTTCTTCCTAAACTACCTCAGAAAGTGGCACTAAGGAAAACAGATCATCTCTCCCTAGACAAAGCCACCATCCCGCCCGA
EDLTKAIIEDVQRL


AATCTTTCAGAAATCATCACAGTTGGCAGAGTTGCCACAAAAGCCACCACCTGGAGACCTGCCCCCAAAGCCCACAGAACTGGCCCC
PGNDICCDCGSSEP


CAAGCCCCAAATTGGAGATTTGCCGCCTAAGCCAGGAGAACTGCCCCCCAAACCACAGCTGGGGGACCTGCCACCCAAACCCCAACT
TWLSTNLGILTCIE


CTCAGACTTACCTCCCAAACCACAGATGAAGGACCTGCCCCCCAAACCACAGCTGGGAGACCTGCTAGCAAAATCCCAGACTGGAGA
CSGIHREMGVHISR


TGTCTCACCCAAGGCTCAGCAACCCTCTGAGGTCACACTGAAGTCACACCCATTGGATCTATCCCCAAATGTGCAGTCCAGAGACGC
IQSLELDKLGTSEL


CATCCAAAAGCAAGCATCTGAAGACTCCAACGACCTCACGCCTACTCTGCCAGAGACGCCCGTACCACTGCCCAGAAAAATCAATAC
LLAKNVGNNSFNDI


GGGGAAAAATAAAGTGAGGCGAGTGAAGACCATTTATGACTGCCAGGCAGACAACGATGACGAGCTCACATTCATCGAGGGAGAAGT
MEANLPSPSPKPTP


GATTATCGTCACAGGGGAAGAGGACCAGGAGTGGTGGATTGGCCACATCGAAGGACAGCCTGAAAGGAAGGGGGTCTTTCCAGTGTC
SSDMTVRKEYITAK


CTTTGTTCATATCCTGTCTGACTAGCAAAACGCAGAACCTTAAGATTGTCCACATCCTTCATGCAAGACTGCTGCCTTCATGTAACC
YVDHRFSRKTCSTS


CTGGGCACAGTGTGTATATAGCTGCTGTTACAGAGTAAGAAACTCATGGAAGGGCCACCTCAGGAGGGGGATATAATGTGTGTTGTA
SAKLNELLEAIKSR


AATATCCTGTGGTTTTCTGCCTTCACCAGTATGAGGGTAGCCTCGGACCCGGCGCGCCTTACTGGTTTGCCAAAGCCATCCTTGGCA
DLLALIQVYAEGVE


TCTAGCACTTACATCTCTCTATGCTGTTCTACAAGCAAACAAACAAAAATAGGAGTATAGGAACTGCTGGCTTTGCAAATAGAAGTG
LMEPLLEPGQELGE


GTCTCCAGCAACCGTTGAAAGGCATAGAATTGACTCTGTTCCTAACAATGCAGTATTCTCAATTGTGTTACTGAAAATGCAACATTA
TALHLAVRTADQTS


GCAAAGAGGTGGGTTCTGTTTTCCAGGTGAAACTTTTAGCTCCATGACAGACCAGCCTGTAGTTATCTGTGTACACAGTTTACAGCT
LHLVDFLVQNCGNL


ACAAAAACCTACTTTGGTATTTATTACAGAAAAGTGCTCAGTTAATGTAAGTGTTATTCCTTCAGCAAAATATTCACTGACCCAAAA
DKQTALGNTVLHYC


CTCTTTATGGCATTTTACAATGCACACAGCCTCATGCAAGTTTAGACAAGTGGATTTATACTGTCTTATGAGTGCCCGCCCCTGATA
SMYSKPECLKLLLR


TATTACCTCATTATGCAAAAATAACATATCTTTCATGACTATTTTGACAAAAGTTTAAAACACATATGAAGTTCAAATTTCAGGAAC
SKPTVDIVNQAGET


CAAGGACTGCCAGAAAATATTAGCCTCTACATTACGCATGCATTTAGAAGCTTACCTGAAATCTGCCTTTTATAAAGGAATAGTATG
ALDIAKRLKATQCE


GATAAGTGGAATTGTACATTTTTTAAACTTGATTGCCATTAAAGCAGAAATTATAAGGTTGCAACAATATTTGTTTCTAATCACTGG
DLLSQAKSGKFNPH


CTTTCTCAAGAGTATGGATTGACATATTGTGTTATGAATGCACATCTCTCAGATGTGTTGAAGCATCCATTGCATCCATTTTTTATT
VHVEYEWNLRQEEI


ATTTTCTTAGTTTTGTTCTTGGACAAATTTAAACTTTTAAAAGATTATTCAAGATGAATTTAAAAGTCAACCCTTCACACAGTTTCC
DESDDDLDDKPSPI


CTACTGTATGTAGAATCCAGGTGCTGAAACCAAGTGTTTCTTTTCCCATGCTCTTTGTTAAACCCCAATTATAGATAATTTTTCCAG
KKERSPRPQSFCHS


TCTTAAGCTCTGTCCACCTTCAAGTCAATTCATAACCAAGTTTTTGAACGCTGCTATGAATTGCACTGTGAAAAGCACTCTTCCCTC
SSISPQDKLALPGF


TCAGTTTTCTTTTCATCCCAGCCATGTTTATCAGATCCTTAAGAACATTGTATTTCAGTCTTTTACATCAGTCTGAATTTTGGAAAA
STPRDKQRLSYGAF


GAATGCAATAGTTGTACTCCACAGTCAGTGGAACTGTTCCCTGAGTCCGAGGCTCATGTGTCATTCTGGCACTACATTTGCTTAAAT
TNQIFVSTSTDSPT


TGCTATTTTGGCAACAGCACAGAAAACTAATATTTTTAAGCAGAGAATCTTGGCAATGAGTGAGAGATGTTAATTTCACAGAAGCAC
SPTTEAPPLPPRNA


AACTCCCAACCCAACCCTTAGGAAAAGCCCTCTTCCATCGTTACAGTGCTCAGTGAATATTAATTTAGTTCTGCTTAAGTGGTTGCT
GKGPTGPPSTLPLS


ATACAAACTTTGAATAGCCACCTAATAAATAAACCTTGCATGACAAACCTGCAAAATATTTTATCAGCTGTTATTGGAAAGTGATTT
TQTSSGSSTLSKKR


TAAGCAATTGCTTCCTCAGTGTCAGGGCACATGTGAATTTCCACACCAAACAGAGCATGAGGAACCAGTTGACATGCTGGGTTGTGA
PPPPPPGHKRTLSD


CTGGCAGCTTTAGCAGCCTCGGTACTGAAGCCACACCAGTGTCCGGATGGAAGTCTGCATCTGAGGTTGCTCAGTGTCCCGGTCATT
PPSPLPHGPPNKGA


CATTTACACATTTTAACTTGCATTAAAGAGCTGTTCTTTTCTGTGGCCTAGACTCTTTTCACTGATCTCAAAATAAACTGGTTTTTT
VPWGNDGGPSSSSK


TCAAAAAAAAAAAAAAAACAAAAACAAAAAAAAAACACAAAAGCTGCATGTCTAAAATTACATGGAGTTAGTGTCTATTCTTTTTCC
TTNKFEGLSQQSST


CCTTTTGCAGCAACTTACACAGCATTTTTAACACCTTTTTTTTCTAGTTTTTTTGTTCGGTTTTGTTTTCCATCAGGAATTTGAGTT
SSAKTALGPRVLPK


CTCTCTAACCCAGCTTACTGTGGGACATAGGAAAACTCAGTAGAAATACCTTTGGTGATCTTGTTGAGTTTAAGTCTGATCTTGATC
LPQKVALRKTDHLS


TTAAACTCAGTAAGCCACTATCTGCAATTTTGTACATTATATAGTATTTTGAAGATATGGAACCTTATGAAAAAAAAATAGCAAATT
LDKATIPPEIFQKS


AGTTCTTTTTCCCCCAGAGGGGAAAGTTATGTTCTGCAAATAGTGTGTGTCTTATTTTACTGTTGAACAGCAATTGCTATTTATTTT
SQLAELPQKPPPGD


TTTATTGCCTAGAACTTCAACATGTTGTATAGGAATCCTGTAGTGCCACTAGTTAAATGCCGAATTCTCATCTGGATGTTACCATCA
LPPKPTELAPKPQI


AACATCAGTACACTTGTCATTTCACATGTGTTTAATGTGACAGTTTTTCAGTACTGTATGTGTTAATTTCTACTTTTTTTAATATTT
GDLPPKPGELPPKP


AAAATTGCTTTTAAATAAACATATTCTCAGTTGATCCC
QLGDLPPKPQLSDL



PPKPQMKDLPPKPQ



LGDLLAKSQTGDVS



PKAQQPSEVTLKSH



PLDLSPNVQSRDAI



QKQASEDSNDLTPT



LPETPVPLPRKINT



GKWKVRRVKTIYDC



QADNDDELTFIEGE



VIIVTGEEDQEWWI



GHIEGQPERKGVFP



VSFVHILSD





SEQ ID NO.: 12
SEQ ID NO.: 59


CTTCCAGAGAGCAATATGGCTGGTTCCCCAACATGCCTCACCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGA
MAGSPTCLTLIYIL


CCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTGG
WQLTGSAASGPVKE


ACCTTCAACACAACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGAC
LVGSVGGAVTFPLK


TTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCA
SKVKQVDSIVWTFN


CTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAAT
TTPLVTIQPEGGTI


AAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCTGGGGCAA
IVTQNRNRERVDFP


GCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCTGCGTTGCCAGG
DGGYSLKLSKLKKN


AACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTC
DSGIYYVGIYSSSL


CTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTCTGAAGAGAGAGAGACAAGAA
QQPSTQEYVLHVYE


GAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGAC
HLSKPKVTMGLQSN


ACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAA
KNGTCVTNLTCCME


AATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATCTAGACAGCAGTGCACTCCCCTAAG
HGEEDVIYTWKALG


TCTCTGCTCAAAAAAAAAACAATTCTCGGCCCAAAGAAAACAATCAGAAGAATTCACTGATTTGACTAGAAACATCAAGGAAGAATG
QAANESHNGSILPI


AAGAACGTTGACTTTTTTCCAGGATAAATTATCTCTGATGCTTCTTTAGATTTAAGAGTTCATAATTCCATCCACTGCTGAGAAATC
SWRWGESDMTFICV


TCCTCAAACCCAGAAGGTTTAATCACTTCATCCCAAAAATGGGATTGTGAATGTCAGCAAACCATAAAAAAAGTGCTTAGAAGTATT
ARNPVSRNFSSPIL


CCTATAGAAATGTAAATGCAAGGTCACACATATTAATGACAGCCTGTTGTATTAATGATGGCTCCAGGTCAGTGTCTGGAGTTTCAT
ARKLCEGAADDPDS


TCCATCCCAGGGCTTGGATGTAAGGATTATACCAAGAGTCTTGCTACCAGGAGGGCAAGAAGACCAAAACAGACAGACAAGTCCAGC
SMVLLCLLLVPLLL


AGAAGCAGATGCACCTGACAAAAATGGATGTATTAATTGGCTCTATAAACTATGTGCCCAGCACTATGCTGAGCTTACACTAATTGG
SLFVLGLFLWFLKR


TCAGACGTGCTGTCTGCCCTCATGAAATTGGCTCCAAATGAATGAACTACTTTCATGAGCAGTTGTAGCAGGCCTGACCACAGATTC
ERQEEYIEEKKRVD


CCAGAGGGCCAGGTGTGGATCCACAGGACTTGAAGGTCAAAGTTCACAAAGATGAAGAATCAGGGTAGCTGACCATGTTTGGCAGAT
ICRSTPNICPHSGE


ACTATAATGGAGACACAGAAGTGTGCATGGCCCAAGGACAAGGACCTCCAGCCAGGCTTCATTTATGCACTTGTGCTGCAAAAGAAA
NTEYDTIPHTNRTI


AGTCTAGGTTTTAAGGCTGTGCCAGAACCCATCCCAATAAAGAGACCGAGTCTGAAGTCACATTGTAAATCTAGTGTAGGAGACTTG
LKEDPANTVYSTVE


GAGTCAGGCAGTGAGACTGGTGGGGCACGGGGGGCAGTGGGTACTTGTAAACCTTTAAAGATGGTTAATTCATTCAATAGATATTTA
IPKKMENPHSLLTM


TTAAGAACCTATGCGGCCCGGCATGGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGTGGGTCATCTGAGGTCA
PDTPRLFAYENVI


GGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTTGCTGAGCGTGGTGGTGTGCACCTG



TAATCCCAGCTACTCGAGAGGCCAAGGCATGAGAATCGCTTGAACCTGGGAGGTGGAGGTTGCAGTGAGCTGAGATGGCACCACTGC



ACTCCCGCCTAGGCAACGAGAGCAAAACTCCAATACAAACAAACAAACAAACACCTGTGCTAGGTCAGTCTGGCACGTAAGATGAAC



ATCCC ACCAACACAGAGCTCACCATCTCTTATACTTAAGTGAAAAACATGGGGAAGGGGAAAGGGGAATGGCTGCTTTTGATATGT



TCCCTGACACATATCTTGAATGGAGACCTCCCTACCAAGTGATGAAAGTGTTGAAAAACTTAATAACAAATGCTTGTTGGGCAAGAA



TGGGATTGAGGATTATCTTCTCTCAGAAAGGCATTGTGAAGGAATTGAGCCAGATCTCTCTCCCTACTGCAAAACCCTATTGTAGTA



AAAAAGTCTTCTTTACTATCTTAATAAAACAGATATTGTGAGATTCAAAAAAAAAAAAAAAA






SEQ ID NO.: 13
SEQ ID NO.: 60


GACTGCGCGGCCGGGAGGAGCCGAGCCGGGCGGCGGCGGCGGGAGGCTACAGCGCGCGGGGGTCTCCCGCGTCCCCTCCGCCTCGCC
MSSDRCRSCDESPS


GGGAGCTCGCGCCCTCGCCCAGCCGAGCTCCCACCCCCGCTTTTTTCCGAAGGCGCTGGGCGGCGCCACCCTCCGGCCGGAGCCCGG
TSSGSSDADQRDPA


CACTGCACAACCCCCTCCGACTTTCAATGTTCCACACTCCCCGGCCAGAGCCTCCTCGGCTTCTTTTTTTCCCTCCCCCCCCTTCCC
APEPEEQEERKPSA


CCCCCCACAGCTGCCTCCATTTCCTTAAGGAAGGGTTTTTTTCTCTCTCCCTCCCCCACACCGTAGCGGCGCGCGAGCGGGCCGGGC
TQQKKNTKLSSKTT


GGGCGGCCGAGTTTTCCAAGAGATAACTTCACCAAGATGTCCAGTGATAGGCAAAGGTCCGATGATGAGAGCCCCAGCACCAGCAGT
AKLSTSAKRIQKEL


GGCAGTTCAGATGCGGACCAGCGAGACCCAGCCGCTCCAGAGCCTGAAGAACAAGAGGAAAGAAAACCTTCTGCCACCCAGCAGAAG
AEITLDPPPNCSAG


AAAAACACCAAACTCTCTAGCAAAACCACTGCTAAGTTATCCACTAGTGCTAAAAGAATTCAGAAGGAGCTAGCTGAAATAACCCTT
PKGDNIYEWRSTIL


GATCCTCCTCCTAATTGCAGTGCTGGGCCTAAAGGAGATAACATTTATGAATGGAGATCAACTATACTTGGTCCACCGGGTTCTGTA
GPPGSVYEGGVFFL


TATGAAGGTGGTGTGTTTTTTCTGGATATCACATTTTCATCAGATTATCCATTTAAGCCACCAAAGGTTACTTTCCGCACCAGAATC
DITFSSDYPFKPPK


TATCACTGCAACATCAACAGTCAGGGAGTCATCTGTCTGGACATCCTTAAAGACAACTGGAGTCCCGCTTTGACTATTTCAAAGGTT
VTFRTRIYHCNINS


TTGCTGTCTATTTGTTCCCTTTTGACAGACTGCAACCCTGCGGATCCTCTGGTTGGAAGCATAGCCACTCAGTATTTGACCAACAGA
CGVICLDILKDNWS


GCAGAACACGACAGGATAGCCAGACAGTGGACCAAGAGATACGCAACATAATTCACATAATTTGTATGCAGTGTGAAGGAGCAGAAG
PALTISKVLLSICS


GCATCTTCTCACTGTGCTGCAAATCTTTATAGCCTTTACAATACGGACTTCTGTGTATATGTTATACTGATTCTACTCTGCTTTTAT
LLTDCNPADPLVGS


CCTTTGGAGCCTGGGAGACTCCCCAAAAAGGTAAATGCTATCAAGAGTAGAACTTTGTAGCTGTAGATTAGTTATGTTTAAAACGCC
IATQYLTNRAEHDR


TACTTGCAAGTCTTGCTTCTTTGGGATATCAAAATGTATTTTGTGATGTACTAAGGATACTGGTCCTGAAGTCTACCAAATATTATA
IARQWTKRYAT


GTGCATTTTAGCCTAATTCATTATCTGTATGAAGTTATAAAAGTAGCTGTAGATGGCTAGGAATTATGTCATTTGTATTAAACCCAG



ATCTATTTCTGAGTATGTGGTTCATGCTGTTGTGAAAAATGTTTTACCTTTTACCTTTGTCAGTTTGTAATGAGAGGATTTCCTTTT



ACCCTTTGTAGCTCAGAGAGCACCTGATGTATCATCTCAAACACAATAAACATGCTCCTGAAGGAAAAAAAAAAAAAAAA






SEQ ID NO.: 14
SEQ ID NO.: 61


CCACGCGTCCGGGACCCGGCCCGCGCCTTCTGCCCCTGCTGCCGGCCGCGCCATGCGGTGAGCGCCCCAGGCCGCCAGAGCCCACCC
MARGSALLLASLLL


GACCCGGCCCGACGCCCGGACCTGCCGCCCAGACCCGCCACCGCACCCGGACCCCGACGCTCCGAACCCGGGCGCAGCCGCAGCTCA
AAALSASAGLWSPA


AGATGGCCCGAGGCAGCGCCCTCCTTCTCGCCTCCCTCCTCCTCGCCGCGGCCCTTTCTGCCTCTGCGGGGCTCTGGTCGCCGGCCA
KEKRGWTLNSAGYL


AGGAAAAACGAGGCTGGACCCTGAACAGCGCGGGCTACCTGCTGGGCCCACATGCCGTTGGCAACCACAGGTCATTCAGCGACAAGA
LGPHAVGNHRSFSD


ATGGCCTCACCAGCAAGCGGGAGCTGCGGCCCGAAGATGACATGAAACCAGGAAGCTTTGACAGGTCCATACCTGAAAACAATATCA
KNGLTSKRELRPSD


TGCGCACAATCATTGAGTTTCTGTCTTTCTTGCATCTCAAAGAGGCCGGTGCCCTCGACCGCCTCCTGGATCTCCCCGCCGCAGCCT
DMKPGSFDRSIPEN


CCTCAGAAGACATCGAGCGGTCCTGAGAGCCTCCTGGGCATGTTTGTCTGTGTGCTGTAACCTGAAGTCAAACCTTAAGATAATGGA
NIMRTIIEFLSFLH


TAATCTTCGGCCAATTTATGCAGAGTCAGCCATTCCTGTTCTCTTTGCCTTGATGTTGTGTTGTTATCATTTAAGATTTTTTTTTTT
LKEAGALDRLLDLP


TGGTAATTATTTTGAGTGGCAAAATAAAGAATAGCAATTAAAAAAAAAAAAACAAAAAAAAAAAAAAAA
AAASSSEDIERS





SEQ ID NO.: 15
SEQ ID NO.: 62


CGGTGGTTGGGTGGTAAGATGGCGGCTGTGAGTCTGCGGCTCGGCGACTTGGTGTGGGGGAAACTCGGCCGATATCCTCCTTGGCCA
MAAVSLRLGDLVWG


GGAAAGATTGTTAATCCACCAAAGGACTTGAAGAAACCTCGCGGAAAGAAATGCTTCTTTGTGAAATTTTTTGGAACAGAAGATCAT
KLGRYPPWPGKIVN


GCCTGGATCAAAGTGGAACAGCTGAAGCCATATCATGCTCATAAAGAGGAAATGATAAAAATTAACAAGGGTAAACGATTCCAGCAA
PPKDLKKPRGKKCF


GCGGTAGATGCTGTCGAAGAGTTCCTCAGGAGAGCCAAAGGGAAAGACCAGACGTCATCCCACAATTCTTCTGATGACAAGAATCGA
FVKFFGTEDHAWIK


CGTAATTCCAGTGAGGAGAGAAGTAGGCCAAACTCAGGTGATGAGAAGCGCAAACTTAGCCTGTCTGAAGGGAAGGTGAAGAAGAAC
VEQLKPYHAHKEEM


ATGGGAGAAGGAAAGAAGAGGGTGTCTTCAGGCTCTTCAGAGAGAGGCTCCAAATCCCCTCTGAAAAGAGCCCAAGAGCAAAGTCCC
IKINKGKRFQQAVD


CGGAAGCGGGGTCGGCCCCCAAAGGATGAGAAGGATCTCACCATCCCGGAGTCTAGTACCGTGAAGGGGATGATGGCCGGACCGATG
AVEEFLRRAKGKDQ


GCCGCGTTTAAATGGCAGCCAACCGCAAGCGAGCCTGTTAAAGATGCAGATCCTCATTTCCATCATTTCCTGCTAAGCCAAACAGAG
TSSHNSSDDKNRRN


AAGCCAGCTGTCTGTTACCAGGCAATCACGAAGAAGTTGAAAATATGTGAAGAGGAAACTGGCTCCACCTCCATCCAGGCAGCTGAC
SSEERSRPNSGDEK


AGCACAGCCGTGAATGGCAGCATCACACCCACAGACAAAAAGATAGGATTTTTGGGCCTTGGTCTCATGGGAAGTGGAATCGTCTCC
RKLSLSEGKVKKNM


AACTTGCTAAAAATGGGTCACACAGTGACTGTCTGGAACCGCACTGCAGAGAAATGTGATTTGTTCATCCAGGAGGGGGCCCGTCTG
GEGKKRVSSGSSER


GGAAGAACCCCCGCTGAAGTCGTCTCAACCTGCGACATCACTTTCGCCTGCGTGTCGGATCCCAAGGCGGCCAAGGACCTGGTGCTG
GSKSPLKRAQEQSP


GGCCCCAGTGGTGTGCTGCAAGGGATCCGCCCTGGGAAGTGCTACGTGGACATGTCAACAGTGGACGCTGACACCGTCACTGAGCTG
RKRGRPPKDEKDLT


GCCCAGGTGATTGTGTCCAGGGGGGGGCGCTTTCTGGAAGCCCCCGTCTCAGGGAATCAGCAGCTGTCTAATGACGGGATGTTGGTG
IPESSTVKGMMAGP


ATCTTAGCGGCTGGAGACAGGGGCTTATATGAGGACTGCAGCAGCTGCTTCCAGGCGATGGGGAAGACCTCCTTCTTCCTAGGTGAA
MAAFKWQPTASEPV


GTGGGCAATGCAGCCAAGATGATGCTGATCGTGAACATGGTCCAAGGGAGCTTCATGGCCACTATTGCCGAGGGGCTGACCCTGGCC
KDADPHFHHFLLSQ


CAGGTGACAGGCCAGTCCCAGCAGACACTCTTGGACATCCTCAATCAGGGACAGTTGGCCAGCATCTTCCTGGACCAGAAGTGCCAA
TEKPAVCYQAITKK


AATATCCTGCAAGGAAACTTTAAGCCTGATTTCTACCTGAAATACATTCAGAAGGATCTCCGCTTAGCCATTGCGCTGGGTGATGCG
LKICEEETGSTSIQ


GTCAACCATCCGACTCCCATGGCAGCTGCAGCAAATGAGGTGTACAAAAGAGCCAAGGCGCTGGACCAGTCCGACAACGATATGTCC
AADSTAVNGSITPT


GCCGTGTACCGAGCCTACATACACTAAGCTGTCGACACCCCGCCCTCACCCCTCCAATCCCCCCTCTGACCCCCTCTTCCTCACATG
DKKIGFLGLGLMGS


GGGTCGGGGGCCTGGGAGTTCATTCTGGACCAGCCCACCTATCTCCATTTCCTTTTATACAGACTTTGAGACTTGCCATCAGCACAG
GIVSNLLKMGHTVT


CACACAGCAGCACCCTTCCCCTGAGGCCGGTGGGGAGGGGACAAGTGTCAGCAGGATTGGCGTGTGGGAAAGCTCTTGAGCTGGGCA
VWNRTAEKCDLFIQ


CTGGCCCCCCGGACGAGGTGGCTGTGTGTTCACACACACACACACACACACACACACACACACACACAGGCTCTCGCCCCAGGATAG
EGARLGRTPAEVVS


AAGCTGCCCAGAAACTGCTGCCTGGCTTTTTTTCTTCCGAGCTTGTCTTATCTCAAACCCCTTCCAGTCAAGGAACTAGAATCAGCA
TCDITFACVSDPKA


ACGAGAGTTGGAAGCCTTCCCACAGCTTCCCCCAGAGCGAAGAGGCTGTAGTCATGTCCCCATCCCCCACTGGATTCCCTACAAGGA
AKDLVLGPSGVLQG


GAGGCCTTGGGCCCAGATGAGCCAGTACAGACTCCAGACAGAGGGGCCCTTGGGGCCCTCCAACCTCAGGTGATGAGCTGAGAAAGA
IRPGKCYVDMSTVD


TGTTCACGTCTAAGCGTCCAGTGTGCACCCAGCGCTCCATAGACGCCTTTGTGAACTGAAAAGAGACTGGCAGAGTCCCGAGAAGAT
ADTVTELAQVIVSR


GGGGCCCTGGCTTTCCAGGGAGTGCAGCAAGCAGCCGGCCTGCAGGTGAGCATGGAGGCCCGGCCCTCACCGCCTCGAAGCCATGCC
GGRFLEAPVSGNQQ


CCAGATGCCACTGCCACAGCGGGCGCTCGCTCCTCCCTAGGCTGTTTTAGTATTTGGATTTGCATTCCATCCCTTGGGAGGGAGTCC
LSNDGMLVILAAGD


TCAGGGCCACTAGTGATGAGCCAAGAGGAGTGGGGGTTGGGGGCGCTCCTTTCTGTTTCCGTTAGGCCACAGACTCTTCACCTGGCT
RGLYEDCSSCFQAM


CTGAAGAGCCACTCTTACCTCGGTCCCCTCCCAGTGGTCCCACCTTCTCCACCCTGCCCTGCCAAGTCCCCTGCATGCCCACCGCTC
GKTSFFLGEVGNAA


TCCATCCTCCCTCCTCTCCCTCTTCCTCCCGTGGAGQCAGTATTTCTTTCTGTCTGTCCCTTTGGCCCAGACCCAGCCTGACCAACG
KMMLIVNMVQGSFM


ATGAGCATTTCTTAGGCTCAGCTCTTGATACGGAAACGAGTGTCTTCACTCCAGCCAGCATCATGGTCTTCGGTGCTTCCCGGGCCC
ATIAEGLTLAQVTG


GGGGTCTGTCGGGAGGGAAGAGAACTGGGCCTGACCTACCTGAACTGACTGGCCCTCCGAGGTGGGTCTGGGACATCCTAGAGGCCC
QSQQTLLDILNQGQ


TACATTTGTCCTTGGATAGGGGACCGGGGGGGGCTTGGAATGTTGCAAAAAAAAAGTTACCCAAGGGATGTCAGTTTTTTATCCCTC
LASIFLDQKCQNIL


TGCATGGGTTGGATTTTCCAAAATCATAATTTGCAGAAGGAAGGCCAGCATTTACGATGCAATATGTAATTATATATAGGGTGGCCA
QGNFKPDFYLKYIQ


CACTAGGGCGGGGTCCTTCCCCCCTACACAGCTTTGGCCCCTTTCAGAGATTAGAAACTGGGTTAGAGGATTGCAGAAGACGAGTGG
KDLRLAIALGDAVN


GGGGAGGGCAGGGAAGATGCCTGTCGGGTTTTTAGCACAGTTCATTTCACTGGGATTTTGAAGCATTTCTGTCTGAACACAAGCCTG
HPTPMAAAANEVYK


TTCTAGTCCTGGCGGAACACACTGGGGGTGGGGGCGGGGGAAGATGCGGTAATGAAACCGGTTAGTCAATTTTGTCTTAATATTGTT
RAKALDQSDNDMSA


GACAATTCTGTAAAGTTCCTTTTTATGAATATTTCTGTTTAAGCTATTTCACCTTTCTTTTGAAATCCTTCCCTTTTAAGGAGAAAA
VYRAYIH


TGTGACACTTGTGAAAAAGCTTGTAAGAAAGCCCCTCCCTTTTTTTCTTTAAACCTTTAAATGACAAATCTAGGTAATTAAGGTTGT



GAATTTTTATTTTTGCTTTGTTTTTAATGAACATTTGTCTTTCAGAATAGGATTGTGTGATAATGTTTAAATGGCAAAAACAAAACA



TGATTTTGTGCAATTAACAAAGCTACTGCAAGAAAAATAAAACACTTCTTGGTAACACAAAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 16
SEQ ID NO.: 63


AGTACCTTGGTCCAGCTCTTCCTGCACGGCCCAGGAGCTCAGAGCTCCACATCTGACCTTCTAGTCATGACCQAGGACCAGGGCAGC
MTRTRAALLLFTAL


ACTCCTCCTGTTCACAGCCTTAGCAACTTCTCTAGGTTTCAACTTGGACACAGAGGAGCTGACAGCCTTCCGTGTGGACAGCGCTGG
ATSLGFNLDTEELT


GTTTGGAGACAGCGTGGTCCAGTATGCCAACTCCTGGGTGGTGGTTGGAGCCCCCCAAAAGATAACAGCTGCCAACCAAACGGGTGG
AFRVDSAGFGDSVV


CCTCTACCAGTGTGGCTACAGCACTGGTGCCTGTGAGCCCATCGGCCTGCAGGTGCCCCCGGAGGCCGTGAACATGTCCCTGGGCCT
QYANSWVVVGAPQK


GTCCCTGGCGTCTACCACCAGCCCTTCCCAGCTGCTGGCCTGCGGCCCCACCGTGCACCACGAGTGCGGGAGGAACATGTACCTCAC
ITAANQTGGLYQCG


CGGACTCTGCTTCCTCCTGGGCCCCACCCAGCTCACCCAGAGGCTCCCGGTGTCCAGGCAGGAGTGCCCAAGACAGGAGCAGGACAT
YSTGACSPIGLQVP


TGTGTTCCTGATCGATGGCTCAGGCAGCATCTCCTCCCGCAACTTTGCCACGATGATGAACTTCGTGAGAGCTGTGATAAGCCAGTT
PEAVNMSLGLSLAS


CCAGAGACCCAGCACCCAGTTTTCCCTGATGCAGTTCTCCAACAAATTCCAAACACACTTCACTTTCGAGGAATTCAGGCGCAGCTC
TTSPSQLLACGPTV


AAACCCCCTCAGCCTGTTGGCTTCTGTTCACCAGCTGCAAGGGTTTACATACACGGCCACCGCCATCCAAAATGTCGTGCACCGATT
HHECGRNMYLTGLC


GTTCCATGCCTCATATGGGGCCCGTAGGGATGCCGCCAAAATTCTCATTGTCATCACTGATGGGAAGAAAGAAGGCGACAGCCTGGA
FLLGPTQLTQRLPV


TTATAAGGATGTCATCCCCATGGCTGATGCAGCAGGCATCATCCGCTATGCAATTGGGGTTGGATTAGCTTTTCAAAACAGAAATTC
SRQECPRQEQDIVG


TTGGAAAGAATTAAATGACATTGCATCGAAGCCCTCCCAGGAACACATATTTAAAGTGGAGGACTTTGATGCTCTGAAAGATATTCA
LIDGSGSISSRNFA


AAACCAACTGAAGGAGAAGATCTTTGCCATTGAGGGTACGGAGACCACAAGCAGTAGCTCCTTCGAATTGGAGATGGCACAGGAGGG
TMMNFVRAVISQFQ


CTTCAGCGCTGTGTTCACACCTGATGGCCCCGTTCTGGGGGCTGTGGGGAGCTTCACCTGGTCTGGAGGTGCCTTCCTGTACCCCCC
RPSTQFSLMQFSNK


AAATATGAGCCCTACCTTCATCAACATGTCTCAGGAGAATGTGGACATGAGGGACTCTTACCTGGGTTACTCCACCGAGCTGGCCCT
FQTHFTFEEFRRSS


CTGGAAAGGGGTGCAGAGCCTGGTCCTGGGGGCCCCCCGCTACCAGCACACCGGGAAGGCTGTCATCTTCACCCAGGTGTCCAGGCA
NPLSLLASVHQLQG


ATGGAGGATGAAGGCCGAAGTCACGGGGACTCAGATCGGCTCCTACTTCGGGGCCTCCCTCTGCTCCGTGGACGTAGACAGCGACGG
FTYTATAIQNVVHR


CAGCACCGACCTGGTCCTCATCGGGGCCCCCCATTACTACGAGCAGACCCGAGGGGGCCAGGTGTCTGTGTGTCCCTTGCCCAGGGG
LFHASYGARRDAAK


GTGGAGAAGGTGGTGGTGTGATGCTGTTCTCTACGGGGAGCAGGGCCACCCCTGGGGTCGCTTTGGGGCGGCTCTGACAGTGCTGGG
ILIVITDGKKEGPS


GGATGTGAATGGGGACAAGCTGACAGACGTGGTCATCGGGGCCCCAGGAGAGGAGGAGAACCGGGGTGCTGTCTACCTGTTTCACGG
LDYKDVIPMADAAG


AGTCTTGGGACCCAGCATCAGCCCCTCCCACAGCCAGCGGATCGCGGGCTCCCAGCTCTCCTCCAGGCTGCAGTATTTTGGGCAGGC
IIRYAIGVGLAFQN


ACTGAGCGGGGGTCAAGACCTCACCCAGGATGGACTGGTGGACCTGGCTGTGGGGGCCCGGGGCCAGGTGCTCCTGCTCAGGACCAG
RNSWKELNDIASKP


ACCTGTGCTCTGGGTGGGGGTGAGCATGCAGTTCATACCTGCCGAGATCCCCAGGTCTGCGTTTGAGTGTCGGGAGCAGGTGGTCTC
SQEHIFKVEDFDAL


TGAGCAGACCCTGGTACAGTCCAACATCTGCCTTTACATTGACAAACGTTCTAAGAACCTGCTTGGGAGCCGTGACCTCCAAAGCTC
KDIQNQLKEKIFAI


TGTGACCTTGGACCTGGCCCTCGACCCTGGCCGCCTGAGTCCCCGTGCCACCTTCCAGGAAACAAAGAACCGGAGTCTGAGCCGAGT
EGTETTSSSSFELE


CCGAGTCCTCGGGCTGAAGGCACACTGTGAAAACTTCAACCTGCTGCTCCCGAGCTGCGTGGAGGACTCTGTGACCCCCATTACCTT
MAQEGFSAVFTPDG


GCGTCTGAACTTCACGCTGGTGGGCAAGCCCCTCCTTGCCTTCAGAAACCTGCGGCCTATGCTGGCCGCCGATGCTCAGAGATACTT
PVLGAVGSFTWSGG


CACGGCCTCCCTACCCTTTGAGAAGAACTGTGGAGCCGACCATATCTGCCAGGACAATCTCGGCATCTCCTTCAGCTTCCCAGGCTT
AFLYPPNMSPTFIN


GAAGTCCCTGCTGGTGGGGAGTAACCTGGAGCTGAACGCAGAAGTGATGGTGTGGAATGACGGGGAAGACTCCTACGGAACCACCAT
MSQENVDMRDSYLG


CACCTTCTCCCACCCCGCAGGACTGTCCTACCGCTACGTGGCAGAGGGCCAGAAACAAGGGCAGCTGCGTTCCCTGCACCTGACATG
YSTELALWKGVQSL


TGACAGCGCCCCAGTTGGGAGCCAGGGCACCTGGAGCACCAGCTGCAGAATCAACCACCTCATCTTCCGTGGCGGCGCCCAGATCAC
VLGAPRYQHTGKAV


CTTCTTGGCTACCTTTGACGTCTCCCCCAAGGCTGTCCTGGGAGACCGGCTGCTTCTGACAGCCAATGTGAGCAGTGAGAACAACAC
IFTQVSRQWRMKAE


TCCCAGGACCAGCAAGACCACCTTCCAGCTGGAGCTCCCGGTGAAGTATGCTGTCTACACTGTGGTTAGCAGCCACGAACAATTCAC
VTGTQIGSYFGASL


CAAATACCTCAACTTCTCAGAGTCTGAGGAGAAGGAAAGCCATGTGGCCATGCACAGATACCAGGTCAATAACCTGGGACAGAGGGA
CSVDVDSDGSTDLV


CCTGCCTGTCAGCATCAACTTCTGGGTGCCTGTGGAGCTGAACCAGGAGGCTGTGTGGATGGATGTGGAGGTCTCCCACCCCCAGAA
LIGAPHYYEQTRGG


CCCATCCCTTCGGTGCTCCTCAGAGAAAATCGCACCCCCAGCATCTGACTTCCTGGCGCACATTCAGAAGAATCCCGTGCTGGACTG
QVSVCPLPRGWRRW


CTCCATTGCTGGCTGCCTGCGGTTCCGCTGTGACGTCCCCTCCTTCAGCGTCCAGGAGGAGCTGGATTTCACCCTGAAGGGCAACCT
WCDAVLYGEQGHPW


CAGCTTTGGCTGGGTCCGCCAGATATTGCAGAAGAAGGTGTCGGTCGTGAGTGTGGCTGAAATTACGTTCGACACATCCGTGTACTC
GRGGAALTVLGDVN


CCAGCTTCCAGGACAGGAGGCATTTATGAGAGCTCAGACGACAACGGTGCTGGAGAAGTACAAGGTCCACAACCCCACCCCCCTCAT
GDKLTDVVIGAPGE


CGTAGGCAGCTCCATTGGGGGTCTGTTGCTGCTGGCACTCATCACAGCGGTACTGTACAAAGTTGGCTTCTTCAAGCGTCAGTACAA
EENRGAVYLFHGVL


GGAAATGATGGAGGAGGCAAATGGACAAATTGCCCCAGAAAACGGGACACAGACCCCCAGCCCGCCCAGTGAGAAATGATCCCCTCT
GPSISPSHSQRIAG


TTGCCTTGGACTTCTTCTCCCCCGCGAGTTTTCCCCACTTACTTACCCTCACCTGTCAGGCCTGACGGGGAGGAACCACTGCACCAC
SQLSSRLQYFGQAL


CGAGAGAGGCTGGGATGGGCCTGCTTCCTGTCTTTGGGAGAAAACGTCTTGCTTGGGAAGGGGCCTTTGTCTTGTCAAGGTTCCAAC
SGGQDLTQDGLVDL


TGGAAACCCTTAGGACAGGGTCCCTGCTGTGTTCCCCAAAGGACTTGACTTGCAATTTCTACCTAGAAATACATGGACAATACCCCC
AVGARGQVLLLRTR


AGGCCTCAGTCTCCCTTCTCCCATGAGGCACGAATGATCTTTCTTTCCTTTCTTTTTTTTTTTTTTTCTTTTCTTTTTTTTTTTTTT
PVLWVGVSMQFIPA


GAGACGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAATGGCGTGATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCAAGTAA
EIPRSAFECREQVV


TTCTGCTGTCTCAGCCTCCTGAGTAGCTGGGACTACAGGCACACGCCACCTCGCCCGGCCCGATCTTTCTAAAATACAGTTCTGAAT
SEQTLVQSNICLYI


ATGCTGCTCATCCCCACCTGTCTTCAACAGCTCCCCATTACCCTCAGGACAATGTCTGAACTCTCCAGCTTCGCGTGAGAAGTCCCC
DKRSKNLLGSRDLQ


TTCCATCCCAGAGGGTGGGCTTCAGGGCGCACAGCATGAGAGGCTCTGTGCCCCCATCACCCTCGTTTCCAGTGAATTAGTGTCATG
SSVTLDLALDPGRL


TCAGCATCAGCTCAGGGCTTCATCGTGGGGCTCTCAGTTCCGATTTCCCAGGCTGAATTGGGAGTGAGATGCCTGCATGCTGGGTTC
SPRATFQETKNRSL


TGCACAGCTGGCCTCCCGCGTTGGGCAACATTGCTGGCTGGAAGGGAGGAGCGCCCTCTAGGGAGGGACATGGCCCCGGTGCGGCTG
SRVRVLGLKAHCEN


CAGCTCACCCAGCCCCAGGGGCAGAAGAGACCCAACCACTTCTATTTTTTGAGGCTATGAATATAGTACCTGAAAAAATGCCAAGAC
FNLLLPSCVEDSVT


ATGATTATTTTTTTAAAAAGCGTACTTTAAATGTTTGTGTTAATAAATTAAAACATGCACAAAAAGATGCATCTACCGCTCTTGGGA
PITLRLNFTLVGKP


AATATGTCAAAGGTCTAAAAATAAAAAAGCCTTCTGTGAAAAAAAAAAAAAAAAA
LLAFRNLRPMLAAD



AQRYFTASLPFEKN



CGADHICQDNLGIS



FSFPGLKSLLVGSN



LELNAEVMVWNDGE



DSYGTTITFSHPAG



LSYRYVAEGQKQGQ



LRSLHLTCDSAPVG



SQGTWSTSCRINHL



IFRGGAQITFLATF



DVSPKAVLGDRLLL



TANVSSENNTPRTS



KTTFQLELPVKYAV



YTVVSSHEQFTKYL



NFSESEEKESHVAM



HRYQVNNLGQRDLP



VSINFWVPVELNQE



AVWMDVEVSHPQNP



SLRCSSEKIAPPAS



DFLAHIQKNPVLDC



SIAGCLRFRCDVPS



FSVQEELDFTLKGN



LSFGWVRQILQKKV



SVVSVAEITFDTSV



YSQLPGQEAFMRAQ



TTTVLEKYKVHNPT



PLIVGSSIGGLLLL



ALITAVLYKVGFFK



RQYKEMMEEANGQI



APENGTQTPSPPSE



K





SEQ ID NO.: 17
SEQ ID NO.: 64


AATGGAGCCGCTGTCAGCAGAACCTTCTGCCGCCGCCGCCGCCGCCGCCGTCCCTCCTCTTTTTTTTCCCGGCAGATCTTTGTTGTG
MVKFPALTHYWPLI


TGGGAGGGCAGCAGGGATGGACTTGAGCTTGCGGATCCCCTGCTAGAGCAGCCGCGCTCGGAGAAGGCGCCGCAGCCGCGAGGAGGA
RFLVPLGITNIAID


GCCGCCGCCGCCGCGCCCGAGGCCCCGCCGCCCGCGGCCTCTGTCGGCCCGCGCCCCGCTCGCCCCGTCGCCCCGTCGCCCCTCGCC
FGEQALNRGIAAVK


TCCCCGCAGAGTCCCCTCGCGGCAGCAGATGTGTGTGGGGTCAGCCCACGGCGGGGACTATGGTGAAATTCCCGGCGCTCACGCACT
EDAVEMLASYGLAY


ACTGGCCCCTGATCCGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAACCGGGGCATTG
SLMKFFTGPMSDFK


CTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGTACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTG
NVGLVFVNSKRDRT


ACTTCAAAAATGTGGGCCTGGTGTTTGTGAACAGCAAGAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCG
KAVLCMVVAGAIAA


CTGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGCACCATGTGGACGAGTCGGTGGGGA
VFHTLIAYSDLGYY


GCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTTCCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAAC
IINKLHHVDKSVGS


ACAAATACAGTTTCCTGGTGGGATGTGCCTCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGCTTCACAGTCACC
KTRRAFLYIAAFPF


TGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGCGCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACT
MDAMAWTHAGILLK


ACAAGAACATTCACGACATCATCCCTGACAGAAGTGGCCCGGAGCTGGGGGGAGATGCAACAATAAGAAAGATGCTGAGCTTCTGGT
HKYSFLVGCASISD


GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTTTCCCGGGACCTTGGTGGCAGTTCTG
VIAQVVFVAILLHS


CAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATACCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGT
HLECREPLLIPILS


ATCCTGCTTTCGACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATCAAGAAGTTCACCT
LYMGALVRCTTLCL


TCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGACACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCG
GYYKNIHDIIPDRS


GAGTGGACTTTGCCTTTGCAGAACTCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCCAGTCACAGTGAGGGCGCATC
GPELGGDATIRKML


TCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCGGATCATCGTCCTCATCGCCAGCCTCG
SFWWPLALILATQR


TGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCCTGGGCGTGGGCTCCCTCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCG
ISRPIVNLFVSRDL


CCATCGCTGCGTGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGACTCTGCCATGACAG
GGSSAATEAVAILT


ACATGCCTCCGACAGAGGAGGTGACAGACATCGTGGAAATGAGAGAGGAGAATGAATAAGGCACGGGACGCCATGGGCACTGCAGGG
ATYPVGHMPYGWLT


ACAGTCAGTCAGGATGACACTTCGGCATCATCTCTTCCCTCTCCCATCGTATTTTGTTCCCTTTTTTTTGTTTTGTTTTGGTAATGA
EIRAVYPAFDKNNP


AAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACTGACGGGGGGACCTAGTGAATGGTCTTT
SNKLVSTSNTVTAA


ACTGTTGCTATGTAAAAACAAACGAAACAACTGACTTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGA
HIKKFTFVCMALSL


CGTTGTGTCCTCCTCCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGTCACCCTGCACAGCAG
TLCFVMFWTPNVSE


GCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGGTTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATG
KILIDIIGVDFAFA


GCCGTACAAAGAGATGGAGCCCCGGTGGCCTCTTAAATTTCCCTTCCGCCACGGAGTTCGAAACCATCTACTCCACACATGCAGGAG
ELCVVPLRIFSFFP


GCGGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGACCACAGCAGGCTGACAGATGGACAGAATC
VPVTVRAHLTGWLM


TCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGGGGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGA
TLKKTFVLAPSSVL


TCTGAGCAAGCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAAGCGCATCTCCAGATTC
RIIVLIASLVVLPY


CAGACCCTGCCGCATGACTTTTCCTGAAGGCTTGCTTTTCCCTCGCCTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATC
LGVHGATLGVGSLL


CTAACTTTGCATTTTAGTTTTTACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAACTTTT
AGFVGESTMVAIAA


GAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAATTGAGAATGTACTACGGTACTTCCCTCCC
CYVYRKQKKKMENE


ACACCATACGATAAAGCAAGACATTTTATAACGATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCA
SATEGEDSAMTDMP


GTGCAGTATATTTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACTAAATTGATTTAGTCAGA
PTEEVTDIVEMREE


ATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATATAAATATATGCTGTATATGTTATGTAATTTATTTTAGGCTAT
NE


AATACATTTCCTATTTTCGCATTTTCAATAAAATGTCTCTAATACAATACGGTGATTGCTTGTGTGCTCAACATACCTGCAGTTGAA



ACGTATTGTATCAATGAACATTGTACCTTATTGGCAGCAGTTTTATAAAGTCCGTCATTTGCATTTGAATGTAAGGCTCAGTAAATG



ACAGAACTATTTTTCATTATGGGTAACTGGGGAATAAATGGGTCACTGGAGTAGGAATAGAAGTGCAAGCTGGAAAGGCAAAAATGA



GAAAGAAAAAGGCAGGCCCTTTGTGTCTACCGTTTTCAGTGCTGTGTGATCATATTGTTCCTCACAGCAAAAAAGAATGCAAGGGCA



TAATGTTAGCTGTGAACATGCCAGGGTTGCATTCACATTCCTGGGTACCCAGTGCTGATGGGGTGTGCCCACGTGGGGACATGTCCT



TGGCGTGCTTCCTCAGAGTGGCTTTTCCTCCATTAATACATATATGAGTACTGAAAAATTAAGTTGCATAGCTGCTTTGCAGTGGTT



TCAGAGGCAGATCTGAGAAGATTAAAAAAAAATCTCAATGTATCAGCTTTTTTTAAAGGACATTACTAGAAAATTAAACAGTATTTT



TTAACATGTGTGACTTTCATGCTTCTGGGGTTGGAGCTTAAAGATCCAAACTGAGAAAGCAGGCCGGGCATGGTGGCTCATGCCTGT



AATCCCAACACTTTGGGAGGCCAAGGAGGGTGGATCACTTAAGGTCAGGAGTTTGAGACCAGCCTGGCCAACATGGCAAAACCCTGT



CTCTACTAAAAACATAAAAATTAGCTGGGGGTGGTAGCACATACCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATTTGC



TTGATCCTGGGAGGCAGAGGTTGTAGTGAGCCGAGATCGCGCCATCGCACTCCAGCCTGGGTGACAAGAGCAAAACTCCATCTC






SEQ ID NO.: 18
SEQ ID NO.: 65


GACAGCCTCTGGGTCCTCGGTCGGTACAGTCTCTGCACCTCGCGCCCCAGCAGGTAAACTAACATTATGGATTTTTCCAAGCTACCC
MDFSKLPKILDEDK


AAAATACTCGATGAAGATAAAGAAAGCACATTTGGTTATGTGCATGGGGTCTCAGGACCTGTGGTTACAGCCTGTGACATGGCGGGT
ESTFGYVHGVSGPV


GCAGCCATGTATGAGCTGGTGAGAGTGGGCCACAGCGAATTGGTTGGAGAGATTATTCGATTGGAGGGTGACATGGCTACTATTCAG
VTACDMAGAAMYEL


GTGTATGAAGAAACTTCTGGTGTGTCTGTTGGAGATCCTGTACTTCGCACTGGTAAACCCCTCTCTGTAGAGCTTGGTCCTGGCATT
VRVGHSELVGEIIR


ATGGGAGCCATTTTTGATGGTATTCAAAGACCTTTGTCGGATATCAGCGTCAGACCCAAAGCATCTACATCCCCAGAGGGAGTAAAC
LEGDMATIQVYEET


GTGTCTGCTCTTAGCAGAGATATCAAATGGGACTTTACACCTTGCAAAAACCTACGGGTTGGTAGTCATATCACTGGCGGAGACATT
SGVSVGDPVLRTGK


TATGGAATTGTCAGTGAGAACTCGCTTATCAAACACAAAATCATGTTACCCCCACGAAACAGAGGAACTGTAACTTACATTGCTCCA
PLSVELGPGIMGAI


CCTGGGAATTATGATACCTCTGATGTTGTCTTGGAGCTTGAATTTGAAGGTGTAAAGGAGAAGTTCACCATGGTGCAAGTATGGCCT
FDGIQRPLSDISSQ


GTACGTCAAGTTCGACCTGTCACTGAGAAGCTGCCAGCCAATCATCCTCTGTTGACTGGCCAGAGAGTCCTTGATGCCCTTTTTCCG
TQSIYIPRGVNVSA


TGTGTCCAGGGAGGAACTACTGCTATCCCTGGAGCCTTTGGCTGTGGAAAGACAGTGATATCACAGTCTCTATCCAAGTATTCTAAC
LSRDIKWDFTPCKN


AGTGATGTAATCATCTATGTAGGATGTGGTGAAAGAGGAAATGAGATGTCTGAAGTCCTCCGGGACTTCCCAGAGCTCACAATGGAG
LRVGSHITGGDIYG


GTTGATGGTAAGGTAGAGTCAATTATGAAGAGGACAGCTTTGGTAGCCAATACCTCCAATATGCCTGTTGCTGCTAGAGAAGCCTCT
IVSENSLIKHKIML


ATTTATACTGGAATCACACTGTCAGAGTACTTCCGTGACATGGGCTATCATGTCAGTATGATGGCTGACTCTACCTCTAGATGGGCT
PPRNRGTVTYIAPP


GAGGCCCTTAGAGAAATCTCTGGTCGTTTAGCTGAAATGCCTGCAGATAGTGGATATCCAGCCTATCTTGGTGCCCGTCTGGCCTCG
GNYDTSDVVLELEF


TTTTATGAACGAGCAGGCAGGGTGAAATGTCTTGGAAATCCTGAAAGAGAAGGGAGTGTCAGCATTGTAGGAGCAGTTTCTCCACCT
EGVKEKFTMVQVWP


GGTGGTGATTTTTCTGATCCAGTTACATCTGCCACTCTTGGTATCGTTCAGGTGTTCTGGGGCTTAGATAAGAAACTAGCTCAACGT
VRQVRPVTEKLPAN


AAGCATTTCCCCTCTGTCAATTGGCTCATCAGCTACAGCAAGTATATGCGTGCCTTGGATGAATACTATGACAAACACTTCACAGAG
HPLLTGQRVLDALF


TTCGTTCCTCTGAGGACGAAAGCTAAGGAAATTCTGCAGGAAGAAGAAGACCTGGCAGAAATTGTACAGCTTGTGGGAAAGGCTTCT
PCVQGGTTAIPGAF


TTGGCAGAAACAGATAAAATCACTCTGGAGGTAGCAAAACTTATCAAAGATGATTTCCTACAACAAAATGGATATACTCCTTATGAC
GCGKTVISQSLSKY


AGGTTCTGCCCATTCTACAAGACAGTAGGGATGCTGTCCAACATGATTGCATTTTATGATATGGCTCGTAGAGCTGTTGAAACCACT
SNSDVIIYVGCGER


GCCCAGAGTGACAATAAAATCACATGGTCCATTATTCGTGAGCACATGGGAGACATCCTCTATAAACTTTCCTCCATGAAATTCAAG
GNEMSEVLRDFPEL


GATCCACTGAAAGATGGTGAGGCAAAGATCAAAAGCGACTATGCACAACTTCTTGAAGACATGCAGAATGCATTCCGTAGCCTTGAA
TMEVDGKVESIMKR


GATTAGAAGCCTTGAAGATTACAACTGTGATTTCCTTTTCCTCAGCAAGCTCCTATGTGTATATTTTCCTGAATTTCTCATCTCAAA
TALVANTSNMPVAA


CCCTTTGCTTCTTTATTGTGCAGCTTTGAGACTAGTGCCTATGTGTGTTATTTGTTTCCCTGTTTTTTTGGTAGGTCTTATATAAAA
REASIYTGITLSEY


CAAACATTCCTTTGTTCTAGTGTTGTGAAGGGCCTCCCTCTTCCTTTATCTGAAGTGGTGAATATAGTAAATATACATTCTGGTTAC
FRDMGYHVSMMADS


ACTACTGTAAACTTGTATGTAGGGTGATGACCCTCTTTGTCCTAGGTGTACCCTTTCCTCATCTCTATTAAATTGTAAACAGGACTA
TSRWAEALREISGR


CTGCATGTACTCTCTTTGCAGTGAATTTGGAATGGAAGGCCAGGTTTCTATAACTTTTGAACAGGTACTTTGTGAAATGACTCAATT
LAEMPADSGYPAYL


TCTATTGTGGTAAGCTCATTGGCAGCTTAGCATTTTGCAAAGGAATTGCTTTGCAGGAAATATTTAATTTTCAAAAACATAATGATT
GARLASFYERAGRV


AATGTTCCAATTATGCATCACTTCCCCCAGTATAAATCAGGAATGTTTGTGAGAAACCATTGGGAACTATACTCTTTTTATTTTTAT
KCLGNPEREGSVSI


TTTTTATTTTTTTTATTATTTTTTTTTTGGGGACGGAGTGTCCCTCTTGTTGCCCAGGCTGGAGTGCAATGGCGTGATCTTGGCTCA
VGAVSPPGGDFSDP


CTGCAGCCTTCGCCTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCATGCTCCACCATGCCCA
VTSATLGIVQVFWG


GCTAATTTTGTATTTTTAGTAGAAACGGGGTTTCACCATATTGGTCAGGCTGGTCTCGAACTCCAGACCTCAGGTGATCCGCCCACC
LDKKLAQRKHFPSV


TCGGCCTCCCAAACTGCTGGGATTACAGGCGTGAGCCACCGCGCCTGGCCAGGGACTATACTCTTTTTAAAATAGACATTTGTGGGG
NWLISYSKYMRALD


CTCACACAATATATGAAATAGTACCCTCTAAAAAAGAGAAAAAAAAAATCAGGCGGTCAAACTTAGAGCAACATTGTCTTATTAAAG
EYYDKHFTEFVPLR


CATAGTTTATTTCACTAGAAAAAATTTAATATCAAGGACTATTACATACTTCATTACTAGGAAGTTCTTTTTAAAATGACACTTAAA
TKAKEILQEEEDLA


ACAATCACTGAAAACTTGATCCACATCACACCCTGTTTATTTTCCTTAAACATCTTGGAAGCCTAAGCTTCTGAGAATCATGTGGCA
EIVQLVGKASLAET


AGTGTGATGGGCAGTAAAATACCAGAGAAGATGTTTAGTAGCAATTAAAGGCTGTTTGCACCTTTAAGGACCAGCTGGGCTGTAGTG
DKITLEVAKLIKDD


ATTCCTGGGGCCAGAGTGGCATTATGTTTTTACAAAATAATGACATATGTCACATGTTTGCATGTTTGTTTGCTTGTTGAATTTTTG
FLQQNGYTPYDRFC


AACAGCCAGTTGACCAATCATAGAAAGTATTACTTTCTTTCATATGGTTTTTGGTTCACTGGCTTAAGAGGTTTCTCAGAATATCTA
PFYKTVGMLSNMIA


TGGCCACAGCAGCATACCAGTTTCCATCCTAATAGGAATGAAATTAATTTTGTATCTACTGATAACAGAATCTGGGTCACATGAAAA
FYDMARRAVETTAQ


AAAATCATTTTATCCGTCTTTTAAGTATATGTTTAAAATAATAATTTATGTGTCTGCATATTGCAGAACAGCTCTGAGAGCAACAGT
SDNKITWSIIREHM


TTCCCATTAACTCTTTCTGACCAATAGTGCTGGCACCGTTGCTTCCTCTTTGGGAAGAGGAAAGGGTGTGTGAACATGGCTAACAAT
GDILYKLSSMKFKD


CTTCAAATACCCAAATTGTGATAGCATAAATAAAGTATTTATTTTATGCCTCAGTATATTATTATTTAATTTTTTAGGTAATGCCTA
PLKDGEAKIKSDYA


TCTCTTGGTCTATTAAGGAAAGAAGCAATCAGTAGAGAATTCAGGATAGTTTTGTTTAAATTCTTGCAGATTACATGTTTTTACAGT
QLLEDMQNAFRSLE


GGCCTGCTATTGAGGAAAGGTATTCTTCTATACAACTTGTTTTAACCTTTGAGAACATTGACAGAAATTATGCAATGGTTTGTTGAG
D


ATACGGACTTGATGGTGCTGTTTAATCAGTTTGCTTCCAAAGTGGCCTACTCAAGAGGCCCTAAGACTGGTAGAAATTAAAAGGATT



TCAAAAACTTTCTATTCCTTTCTTAAACCTACCAGCAAACTAGGATTGTGATAGCAATGAATGGTATGATGAAGAAAGTTTGACCAA



ATTTGTTTTTTTGTTGTTGTTGTTGTTTTGAATTTGAAATCATTCTTATTCCCTTTAAGAATGTTTATGTATGAGTGTGAAGATGCT



AGCGAACCTATGCTCAGATATTCATCGTAAGTCTCCCTTCACCTGTTACAGAGTTTCAGATCGGTCACTGATAGTATGTATTTCTTT



AGTAAGAATGTGTTAAAATTACAATGATCTTTTAAAAAGATGATGCAGTTCTGTATTTATTGTGCTGTGTCTGGTCCTAAGTGGAGC



CAATTAAACAAGTTTCATATGTATTTTTCCAGTGTTGAATCTCACACACTGTACTTTGAAAATTTCCTTCCATCCTGAATAACGAAT



AGAAGAGGCCATATATATTGCCTCCTTATCCTTGAGATTTCACTACCTTTATGTTAAAAGTTGTGTATAATTGTTAAAATCTGTGAA



AGAATAAAAAGTGGATTTAAATTAAAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 19
SEQ ID NO.: 66


ACGCCTGGTCTCTGGGACGCCCCTCCGGACCCGTTTCGCCTCGCGGAGCCGGTAGGTCCAGGTGCAGCGGCCGCAGTGCTGCGTCCG
MIRQERSTSYQELS


TGCGCCGCGGGCTGGGGCGGTCTCAGGTGTGCCGAAGCTCTGGTCAGTGCCATGATCCGGCAGGAGCGCTCCACATCCTACCAGGAG
EELVQVVESSELAD


CTGAGTGAGGAGTTGGTCCAGGTGGTTGAGAGCTCAGAGCTGGCAGACGAGCAGGACAAGGAGACGGTCAGAGTCCAAGGTCCGGGT
EQDKETVRVQGPGI


ATCTTACCAGGCCTGGACAGCGAGTCCGCCTCCAGCAGCATCCGCTTCAGCAAGGCCTGCCTGAAGAACGTCTTCTCGGTCCTACTC
LPGLDSESASSSIR


ATCTTCATCTACCTGCTGCTCATGGCTGTGGCCGTCTTCCTGGTCTACCGGACCATCACAGACTTTCGTGAGAAACTCAAGCACCCT
FSKACLKNVFSVLL


GTCATGTCTGTGTCTTACAAGGAAGTGGATCGCTATGATGCCCCAGGTATTGCCTTGTACCCCGGTCAGGCCCAGTTGCTCAGCTGT
IFIYLLLMAVAVFL


AAGCACCATTACGAGGTCATTCCTCCTCTGACAAGCCCTGGCCAGCCGGGTGACATGAATTGCACCACCCAGAGGATCAACTACACG
VYRTITDFREKLKH


GACCCCTTCTCCAATCAGACTGTGAAATCTGCCCTGATTGTCCAGGGGCCCCGGGAAGTGAAAAAGCGGGAGCTGGTCTTCCTCCAG
PVMSVSYKEVDRYD


TTCCGCCTGAACAAGAGTAGTGAGGACTTCAGCGCCATTGATTACCTCCTCTTCTCTTCTTTCCAGGAGTTCCTGCAAAGCCCAAAC
APGIALYPGQAQLL


AGGGTAGGCTTCATGCAGGCCTGTGAGAGTGCCTGTTCCAGCTGGAAGTTCTCTGGGGGCTTCCGCACCTGGGTCAAGATGTCACTG
SCKHHYEVIPPLTS


GTAAAGACCAAGGAGGAGGATGGGCGGGAAGCAGTGGAGTTCCGGCAGGAGACAAGTGTGGTTAACTACATTGACCAGAGGCCAGCT
PGQPGDMNCTTQRI


GCCAAAAAAAGTGCTCAATTGTTTTTTGTGGTCTTTGAATGGAAAGATCCTTTCATCCAGAAAGTCCAAGATATAGTCACTGCCAAT
NYTDPFSNQTVKSA


CCTTGGAACACAATTGCTCTTCTCTGTGGCGCCTTCTTGGCATTATTTAAAGCAGCAGAGTTTGCCAAACTGAGTATAAAATGGATG
LIVQGPREVKKREL


ATCAAAATTAGAAAGAGATACCTTAAAAGAAGAGGTCAGGCAACGAGCCACATAAGCTGAAGTCACCTCGCGTTGTTTAGAGAACTG
VFLQFRLNKSSEDF


TCCACATCAATGGGAGCTGTCATCACTTCCACTTTGTAAACGGAGCTATCAACAATCCTGTACTCACTTGAAGAAATGGGGCCTTGC
SAIDYLLFSSFQEF


TGGGAGGAACAGCATGTAAAACTGGAACTTCTAACCCCGTCCCAAAAGAGGCGGTGTAGAGCCTAATAGAAGAGACTAATGGATAAA
LQSPNRVGFMQACE


CCTACAAGTTATTTAAATATTTAAATTATTAATAAACTTTTTAAAGAGCTGGCCAATGACTTTTGAATAGGGTTTGTAGAAGATGCC
SACSSWKFSGGFRT


TTTCTTCCTGTTTGGTTCATTGTATTGTATTAGGTTAAGCTCTACTAGGGTAATGAAGGCTCTACTTTTCACTTTTTAAAAGTGGAC
WVKMSLVKTKEEDG


AAAAGAGTGTGATTTTCTTTTTCCAAAAATTCCTGAGTATCAAGACGTGCAGGTCATGCTTTGGAGCCTATGCACTGTACACAATGG
REAVEFRQETSVVN


CAAAACCCTATGACTTTGGCATCATCTGCCATTGATGTCCAGCCTCTGACATGCTCTTTGATTTGTTAAATGTTAAATGAGACTTTA
YIDQRPAAKKSAQL


AGGCTACTAGAAACTAGTAATTAAGTTTCTTAATGGACTGAGTAGCCACCTACTTGTCCGGCTAGAATGTTTGTTGATGTATGAGTT
FFVVFEWKDPFIQK


TAGATTAACACTCAAAAGCACTAGGACAGATGTACATAGAAGGTGCCTACTCATTGTATTTTGATGATTTCATTAACAGGTAAATAA
VQDIVTANPWNTIA


AAGTTAATACAAAAGGAACGAGTGTGACAATATGAATATCTGCTCAATCATCGGGCACAATTACTTTCATTTGGTGACTTCCAAGGA
LLCGAFLALFKAAE


CAAAAAGGTAGTATGAGTCTGGACTCCCAAGATGGATCTAACTCTCAAGGTATGTTCTAACTGCTTCCAGGGAAGGGTTTGTTAGGC
FAKLSIKWMIKIRK


ATGGCAACTGATGGCAGGTGTCCAGAAAGAGTGACCTGGTGTCCCCGAGGAAGCTGGGTTAACTCTTTACTGTGTCCACAAAACTAC
RYLKRRGQATSHIS


CCATCATATGAGGAAGGGGTATACGCAGTGTGACCCTCAAAAAGCTTTTAGCCTAGCCTTTGACAGAAATGAGTATGCATTAAAAAA



AAGTCTATTTTTCACATTAAGGTTCTAAAAATTGTTTCCAGAGTTTTAAATTATTTATGTGCCTGTTGCTTCAAAGAGGACTTGGTA



GCATTTCCTAAATTTTGTAATCTGGCTTCCGATAATCCAAAGGGAATAACTCAAATGTATGAATAGGCATTTTAAATGGGAAGAAAC



TGTTTTTTGGATGAATGATTAAAAGTGAACTGTATAAAG






SEQ ID NO.: 20
SEQ ID NO.: 67


GCGGACGTGGGCAGGAGGGCTGGAAAAGCCGGCGCTGGAGCGGGAACGGGAGTAGCTGCCTGGGCGCCAAAGGCCGCGGCACTCCCA
MFRKGKKRHSSSSS


CGCGGACCCCGAAGTCCGCAACCCGGGGATGGGCCCGCGGCTGCGAGGGGATCTTCTCTGGATCAAGCAATGGTGGTGAAAAATGTT
QSSEISTKSKSVDS


TCGCAAGGGCAAAAAACGACACAGTAGTAGCAGTTCCCAAAGTAGCGAAATCAGTACTAAGAGCAAGTCTGTGGATTCTAGCCTTGG
SLGGLSRSSTVASL


GGGTCTTTCACGATCCAGCACTGTGGCCAGCCTCGACACAGATTCCACCAAAAGCTCAGGACAAAGCAACAATAATTCAGATACCTG
DTDSTKSSGQSNNN


TGCAGAATTTCGAATAAAATATGTTGGTGCCATTGAGAAACTGAAACTCTCCGAGGGAAAAGGCCTTGAAGGGCCATTAGACCTGAT
SDTCAEFRIKYVGA


AAATTATATAGACGTTGCCCAGCAAGATGGAAAGTTGCCTTTTGTTCCTCCGGAGGAAGAATTTATTATGGGAGTTTCCAAGTATGG
IEKLKLSEGKGLEG


CATAAAAGTATCAACATCAGATCAATATGATGTTTTGCACAGGCATGCTCTCTACTTAATAATCCGGATGGTGTGTTACGATGACGG
PLDLINYIDVAQQD


TCTGGGGGCGGGAAAAAGCTTACTGGCTCTGAAGACCACAGATGCAAGCAATGAGGAATACAGCCTGTGGGTTTATCAGTGCAACAG
GKLPFVPPEEEFIM


CCTGGAACAAGCACAAGCCATTTGCAAGGTTTTATCCACCGCTTTTGACTCTGTATTAACATCTGAGAAACCCTGAATCCTGCAATC
GVSKVGIKVSTSDQ


AAGTAGAAGTCAACTTCATCTGAAAGTTCAGCTGTTTTCAAACTGCAATGCTGAAATGTTATGCAAATAATGAAGTTATCCCTTGCT
YDVLHRHALYLIIR


CTAGATTTTCTGAAGAAAATGGATTGTGTAAAATGCTGATCATTTGTTTATTAAAATGTGTCCTATTACACAGTGAGTTAACTCTCA
MVCYDDGLGAGKSL


ATGAAGTCATCTATTTTCTGGGCTAAAAAACTTCATTTGTCTTTTTCAACTTCTAATAAGCTTAACCTAAGTGTCACGAAGACGAGA
LALKTTDASNEEYS


TGTCACAGAGGTCCACTCAGTGACAAACACACACTGAAGGCCTGAGGGAAGACTGAGGACATGGGCTCAGTGGTGGCTTCCCAGTCA
LWVYQCNSLEQAQA


TGGTATCACTGGCATGGACCTCTGTCCGGCAGAGGTGTGGACTGGAGACCAGGATTCATGCTGGTCTGGAACAATGACATTGCCAAC
ICKVLSTAFDSVLT


TTAAGACACACAAAGCAGATTTTCAGAAGTGTCTGGTCAAGATAACATGCTGGCCAACCACAATTCCTAGAGTTAAGAGAACCTTAA
SEKP


AAGATTACCGCTCATGCTAAAAGTATGTAAAGATCCCATGTACAGTATGATAGTGTACTTTTTTTAAAGGACTGTCAATATACAAAA



CTTTAAAGATTAAAAACATTAAAAATAAAAAAA






SEQ ID NO.: 21
SEQ ID NO.: 68


CCTCGCCCCGCCTACGCGGGAACCCAACCGCGGCGACCGGACGTGCACTCCTCCAGTAGCGGCTGCACGTCGTGCAATGGCCCGCTA
MARYEEVSVSGFEE


TGAGGAGGTGAGCGTGTCCGGCTTCGAGGAGTTCCACCGGGCCGTGGAACAGCACAATGGCAAGACCATTTTCGCCTACTTTACGGG
FHRAVEQHNGKTIF


TTCTAAGGACGCCGGGGGGAAAAGCTGGTGCCCCGACTGCGTGCAGGCTGAACCAGTCGTACGAGAGGGGCTGAAGCACATTAGTGA
AYFTGSKDAGGKSW


AGGATGTGTGTTCATCTACTGCCAAGTAGGAGAAAAGCCTTATTGGAAAGATCCAAATAATGACTTCAGAAAAAACTTGAAAGTAAC
CPDCVQAEPVVREG


AGCAGTGCCTACACTACTTAAGTATGGAACACCTCAAAAACTGGTAGAATCTGAGTGTCTTCAGGCCAACCTGGTGGAAATGTTGTT
LKHISEGCVFIYCQ


CTCTGAAGATTAAGATTTTAGGATGGCAATCATGTCTTGATGTCCTGATTTGTTCTAGTATCAATAAACTGTATACTTGCTTTGAAT
VGEKPYWKDPNNDF


TCATGTTAGCAATAAATGATGTTAAAAAAACTGGCATGTGTCTAAACAATAGAGTGCTATTAAAATGCCCATGAACCTTTAGTTTGC
RKNLKVTAVPTLLK


CTGTAATACATGGATATTTTTAAGATATAAAGAAGTCTTCAGAAATAGCAGTAAAGGCTCAAAGGAACGTGATTCTTGAAGGTGACG
YGTPQKLVESECLQ


GTAATACCTAAAAACTCCTAAAGGTGCAGAGC
ANLVEMLFSED





SEQ ID NO.: 22
SEQ ID NO.: 69


TCGGAGCTGAACTTCCTAAAAGACAAAGTGTTTATCTTTCAAGATTCATTCTCCCTGAATCTTACCAACAAAACACTCCTGAGGAGA
MNSSKSSETQCTER


AAGAAAGAGAGGGAGGGAGAGAAAAAGAGAGAGAGAGAAACAAAAAACCAAAGAGAGAGAAAAAATGAATTCATCTAAATCATCTGA
GCFSSQMFLWTVAG


AACACAATGCACAGAGAGAGGATGCTTCTCTTCCCAAATGTTCTTATGGACTGTTGCTGGGATCCCCATCCTATTTCTCAGTGCCTG
IPILFLSACFITRC


TTTCATCACCAGATGTGTTGTGACATTTCGCATCTTTCAAACCTGTGATGAGAAAAAGTTTCAGCTACCTGAGAATTTCACAGAGCT
VVTFRIFQTCDEKK


CTCCTGCTACAATTATGGATGAGGTTCAGTCAAGAATTGTTGTCCATTGAACTGGGAATATTTTCAATCCAGCTGCTACTTCTTTTC
FQLPENFTELSCYN


TACTGACACCATTTCCTGGGCGTTAAGTTTAAAGAACTGCTCAGCCATGGGGGCTCACCTGGTGGTTATCAACTCACAGGAGGAGCA
YGSGSVKNCCPLNW


GGAATTCCTTTCCTACAAGAAACCTAAAATGAGAGAGTTTTTTATTGGACTGTCAGACCAGGTTGTCGAGGGTCAGTGGCAATGGGT
EYFQSSCYFFSTDT


GGACGGCACACCTTTGACAAAGTCTCTGAGCTTCTGGGATGTAGGGGAGCCCAACAACATAGCTACCCTGGAGGACTGTGCCACCAT
ISWALSLKNCSAMG


GAGAGACTCTTCAAACCCAAGGCAAAATTGGAATGATGTAACCTGTTTCCTCAATTATTTTCGGATTTGTGAAATGGTAGGAATAAA
AHLVVINSQEEQEF


TCCTTTGAACAAAGGAAAATCTCTTTAAGAACAGAAGGCACAACTCAAATGTGTAAAGAAGGAAGAGCAAGAACATGGCCACACCCA
LSYKKPKMREFFIG


CCGCCCCACACGAGAAATTTGTGCGCTGAACTTCAAAGGACTTCATAAGTATTTGTTACTCTGATATAAATAAAAATAAGTAGTTTT
LSDQVVEGQWQWVD


AAATGTTATAATTCATGTTACTGGCTGAAGTGCATTTTCTCTCTACGTTAGTCTCAGGTCCTCTTCCCAGAATTTACAAAGCAATTC
GTPLTKSLSFWDVG


ATACCTTTTGCTACATTTGCCTCATTTTTTAGTGTTCGTATGAAAGTACAGGGACACGGAGCCAAGACAGAGTCTAGCAAAGAAGGG
EPNNIATLEDCATM


GATTTTGGAAGGTGCCTTCCAAAAATCTCCTGAATCCGGGCTCTGTAGCAGGTCCTCTTCTTTCTAGCTTCTGACAAGTCTGTCTTC
RDSSNPRQNWNDVT


TCTTCTTGGTTTCATACCGTTCTTATCTCCTGCCCAAGCATATATCGTCTCTTTACTCCCCTGTATAATGAGTAAGAAGCTTCTTCA
CFLNYFRICEMVGI


AGTCATGAAACTTATTCCTGCTCAGAATACCGGTGTGGCCTTTCTGGCTACAGGCCTCCACTGCACCTTCTTAGGGAAGGGCATGCC
NPLNKGKSL


AGCCATCAGCTCCAAACAGGCTGTAACCAAGTCCACCCATCCCTGGGGCTTCCTTTGCTCTGCCTTATTTTCAATTGACTGAATGGA



TCTCACCAGATTTTGTATCTATTGCTCAGCTAGGACCCGAGTCCAATAGTCAATTTATTCTAAGCGAACATTCATCTCCACACTTTC



CTGTCTCAAGCCCATCCATTATTTCTTAACTTTTATTTTAGCTTTCGGGGGTACATGTTAAAGGCTTTTTATATAGGTAAACTCATG



TCGTGGAGGTTTGTTGTACAGATTATTTCATCACCCAGGTATTAAGCCCAGTGCCTAATATTGTTTTTTTCGGCTCCTCTCCCTCCT



CCTACCTTCCGCCCTCAAGTAGACTCCAGTGTCTGTTATTCCCTTCTTTGTGTTTATGAATTCTCATCATTTAGCTCCCACTTATAA



GTGAGGACATGCAGTATTTGGTTTTCTGTTCCCATGTTTGCTAAGGATAATGGTTTCCAGTTCTACCGATGTTCCCACAAAAGACAT



AATTTTCTTTTTTAAGGCTGCTTAGTATTCCATGGTATCTATGTATCACATTTTCTCTATCCAATCTATTGTTGACTCACATTTAGA



TTGATTCCATGTTTTTGCTATTGTGAATAGTGCTGCAATGAACATTCGTGTGCATGTGTCTTTATGGTAGAAAGATTTATATTTCTC



TGAGTATGTATCCAGTAATAGCCCATTCATTTATTGCATAAAATTCTACCAATAC






SEQ ID NO.: 23
SEQ ID NO.: 70


CCTCCTCTCCCTGGCTTTTGTGTTGGTGCCTCCGAGCTGCAAGGAGGGTGCGCTGGAGGAGGAGGAGGGGGGCCCGGAGTGAGAGGC
MAQPILGHGSLQPA


ACCCCCTTCACGCGCGCGCGCGCACACGGTGCCGGCGCACGCACACACGGGCGGACACACACACACGCGCGCACACACACACGCACA
SAAGLASLELDSSL


GAGCTCGCTCGCCTCGAGCGCACGAACGTGGACGTTCTCTTTGTGTGGAGCCCTCAAGGGGGGTTGGGGCCCCGGTTCGGTCCGGGG
DQYVQIRIFKIIVI


GAGATGGCGCAGCCCATCCTGGGCCATGGGAGCCTGCAGCCCGCCTCGGCCGCTGGCCTGGCGTCCCTGGAGCTCGACTCGTCGCTG
GDSNVGKTCLTFRF


GACCAGTACGTGCAGATTCGCATCTTCAAAATAATCGTGATTGGGGACTCCAACGTGGGCAAGACCTGCCTGACCTTCCGCTTCTGC
CGGTFPDKTEATIG


GGGGGTACCTTCCCAGACAAGACTGAAGCCACCATCGGCGTGGACTTCAGGGAGAAGACCGTGGAAATCGAGGGCGAGAAGATCAAG
VDFREKTVEIEGEK


GTTCAGGTGTGGGACACAGCAGGTCAGGAACGTTTCCGCAAAAGCATGGTCGAGCATTACTACCGCAACGTACATGCCGTGGTCTTC
IKVQVWDTAGQERF


GTCTATGACGTCACCAAGATGACATCTTTCACCAACCTCAAAATGTGGATCCAAGAATGCAATGGGCATGCTGTGCCCCCACTAGTC
RKSMVEHYYRNVHA


CCCAAAGTGCTTGTGGGCAACAAGTGTGACTTGAGGGAACAGATCCAGGTGCCCTCCAACTTAGCCCTGAAATTTGCTGATGCCCAC
VVFVYDVTKMTSFT


AACATGCTCTTGTTTGAGACATCGGCCAAGGACCCCAAAGAGAGCCAGAACGTGGAGTCGATTTTCATGTGCTTGGCTTGCCGATTG
NLKMWIQECNGHAV


AAGGCCCAGAAATCCCTGCTGTATCGTGATGCTGAGAGGCAGCAGGGGAAGGTGCAGAAACTGGAGTTCCCACAGGAAGCTAACAGT
PPLVPKVLVGNKCD


AAAACTTCCTGTCCTTGTTGAAACCAAACGATATAAATACAAGATAAATTATCACTGGAGTTTTTTCTTTCCCTTTTTTCTGTGCCT
LREQIQVPSNLALK


GCATAATGCTGACACCTGCTTGTTTCCATACAAATTGATATCAAAATAAAATTTGTATAGATTAAAAAAAAAAAAAAAAAAAAA
FADAHNMLLFETSA



KDPKESQNVESIFM



CLACRLKAQKSLLY



RDAERQQGKVQKLE



FPQEANSKTSCPC





SEQ ID NO.: 24
SEQ ID NO.: 71


GGAGCGCGTGAGGCTCCGGCGCGCAAGCCCGGAGCAGCCCGCTGGGGCGCACAGGGTCGCGCGGGCGCGGGGATGGAGGACGGCGTG
MEDGVAGPQLGAAA


GCCGGTCCCCAGCTCGGGGCCGCGGCGGAGGCGGCGGAGGCGGCCGAGGCGCGAGCGCGGCCCGGGGTGACGCTGCGGCCCTTCGCG
EAAEAAEARARPGV


CCCCTCTCGGGGGCGGCCGAGGCGGACGAGGGCGGCGGCGACTGGAGCTTCATTGACTGCGAGATGGAGGAGGTGGACCTGCAGGAC
TLRPFAPLSGAAEA


CTGCCCAGCGCCACCATCGCCTGTCACCTGGACCCGCGCGTGTTCGTGGACGGCCTGTGCCGGGCCAAATTTGAGTCCCTCTTTAGG
DEGGGDWSFIDCEM


ACGTATGACAAGGACATCACCTTTCAGTATTTTAAGAGCTTCAAACGAGTCAGAATAAACTTCAGCAACCCCTTCTCCGCAGCAGAT
EEVDLQDLPSATIA


GCCAGGCTCCAGCTGCATAAGACTGAGTTTCTGGGAAAGGAAATGAAGTTATATTTTGCTCAGACCTTACACATAGGAAGCTCACAC
CHLDPRVFVDGLCR


CTGGCTCCGCCAAATCCAGACAAGCAGTTTCTGATCTCCCCTCCCGCCTCTCCGCCAGTGGGATGGAAACAAGTGGAAGATGCGACC
AKFESLFRTYDKDI


CCAGTCATAAACTATGATCTCTTATATGCCATCTCCAAGCTGGGGCCAGGGGAAAAGTATGAATTGCACGCAGCGACTGACACCACT
TFQYFKSFKRVRIN


CCCAGCGTGGTGGTCCATGTATGTGAGAGTGATCAAGAGAAGGAGGAAGAAGAGGAAATGGAAAGAATGAGGAGACCTAAGCCAAAA
FSNPFSAADARLQL


ATTATCCAGACCAGGAGGCCGGAGTACACGCCGATCCACCTCAGCTGAACTGGCACGCGACGAGGACGCATTCCAAATCATACTCAC
HKTEFLGKEMKLYF


GGGAGGAATCTTTTACTGTGGAGGTGGCTGGTCACGACTTCTTCGGAGGTGGCAGCCGAGATCGGGGTGGCAGAAATCCCAGTTCAT
AQTLHIGSSHLAPP


GTTGCTCAGAAGAGAATCAAGGCCGTGTCCCCTTGTTCTAATGCTGCACACCAGTTACTGTTCATGGCACCCGGGAATGACTTGGGC
NPDKQFLISPPASP


CAATCACTGAGTTTGTGGTGATCGCACAAGGACATTTGGGACTGTCTTGAGAAAACAGATAATGATAGTGTTTTGTACTTGTTCTTT
PVGWKQVEDATPVI


TCTGGTAGGTTCTGTCTGTGCCAAGGGCAGGTTGATCAGTGAGCTCAGGAGAGAGCTTCCTGTTTCTAAGTGGCCTGCAGGGGCCAC
NYDLLYAISKLGPG


TCTCTACTGGTAGGAAGAGGTACCACAGGAAGCCGCCTAGTGCAGAGAGGTTGTGAAAACAGCAGCAATGCAATGTGGAAATTGTAG
EKYELHAATDTTPS


CGTTTCCTTTCTTCCCTCATGTTCTCATGTTTGTGCATGTATATTACTGATTTACAAGACTAACCTTTGTTCGTATATAAAGTTACA
VVVHVCESDQEKEE


CCGTTGTTGTTTTACATCTTTTGGGAAGCCAGGAAAGCGTTTGGAAAACGTATCACCTTTCCCAGATTCTCGGATTCTCGACTCTTT
EEEMERMRRPKPKI


GCAACAGCACTTGCTTGCGGAACTCTTCCTGGAATGCATTCACTCAGCATCCCCAACCGTGCAACGTGTAACTTGTGCTTTTGCAAA
IQTRRPEYTPIHLS


AGAAGTTGATCTGAAATTCCTCTGTAGAATTTAGCTTATACAATTCAGAGAATAGCAGTTTCACTGCCAACTTTTAGTGGGTGAGAA



ATTTTAGTTTAGGTGTTTGGGATCGGACCTCAGTTTCTGTTGTTTCTTTTATGTGGTGGTTTCTATACATGAATCATAGCCAAAAAC



TTTTTTGGAAACTGTTGGTTGAGATAGTTGGTTCTTTTACCCCACGAAGACATCAAGATACACTTGTAAATAAAGCTGATAGCATAT



ATTCATACCTGTTGTACACTTGGGTGAAAAGTATGGCAGTGGGAGACTAAGATGTATTAACCTACCTGTGAATCATATGTTGTAGGA



AAAGCTGTTCCCATGTCTAACAGGACTTGAATTCAAAGCATGTCAAGTGGATAGTAGATCTGTGGCGATATGAGAGGGATGCAGTGC



CTTTCCCCATTCATTCCTGATGGAATTGTTATACTAGGTTAACATTTGTAATTTTTTTGTAGTTGTAATGTGTATGTCTGGTAAATA



GGTATTATATTTTGGCCTTACAATACCGTAACAATGTTTGTCATTTTGAAATACTTAATGCCAAGTAACAATGCATGCTTTGGAAAT



TTGGAAGATGGTTTTATTCTTTGAGAAGCAAATATGTTTGCATTAAATGCTTTGATTGTTCATATCAAGAAATTGATTGAACGTTCT



CAAACCCTGTTTACGGTACTTGGTAAGAGGGAGCCGGTTTGGGAGAGACCATTGCATCGCTGTCCAAGTGTTTCTTGTTAAGTGCTT



TTAAACTGGAGAGGCTAACCTCAAAATATTTTTTTTAACTGCATTCTATAATAAATGGGCACAGTATGCTCCTTACAGAAAAAAAAA



AAAAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 25
SEQ ID NO.: 72


GATTGCGAGCCAGGAGGAGGAAGCCGGCGGTGGCCCCGTCAGCAGCCGGCTGCTGAGAGGCCGGTAGGCGGCGGCGGTCCCGAGGGG
MKLYSLSVLYKGEA


CGGCGGCCGCGCTGCTCCCTGAGAACGGGTCCCGCAGCTGGGCAGGCGGGCGGCCTGAGGGCGCGGAGCCATGAAGCTGTACAGCCT
KVVLLKAAYDVSSF


CAGCGTCCTCTACAAAGGCGAGGCCAAGGTGGTGCTGCTCAAAGCCGCATACGATGTGTCTTCCTTCAGCTTTTTCCAGAGATCCAG
SFFQRSSVQEFMTF


CGTTCAGGAATTCATGACCTTCACGAGTCAACTGATTGTGGAGCGCTCATCGAAAGGCACTAGAGCTTCTGTCAAAGAACAAGACTA
TSQLIVERSSKGTR


TCTGTGCCACGTCTACGTCCGGAATGATAGTCTTGCAGGTGTGGTCATTGCTGACAATGAATACCCATCCCGGGTGGCCTTTACCTT
ASVKEQDYLCHVYV


GCTGGAGAAGGTACTAGATGAATTCTCCAAGCAAGTCGACAGGATAGACTGGCCAGTAGGATCCCCTGCTACAATCCATTACCCAGC
RNDSLAGVVIADNE


CCTGGATGGTCACCTCAGTAGATACCAGAACCCACGAGAAGCTGATCCCATGACTAAAGTGCAGGCCGAACTAGATGAGACCAAAAT
YPSRVAFTLLEKVL


CATTCTGCACAACACCATGGAGTCTCTGTTAGAGCGAGGTGAGAAGCTAGATGACTTGGTGTCCAAATCCGAGGTGCTGGGAACACA
DEFSKQVDRIDWPV


GTCTAAAGCCTTCTATAAAACTGCCCGGAAACAAAACTCATGCTGTGCCATCATGTGATGCAGCCTGCCAGAGGCCCAATGCTGGAA
GSPATIKYPALDGK


TGGCACCATCATTCACATCAGAACTGCAGCCCCTGGAAAAGAAGAGACAGCCATAGACGAGGAGCCAGAGTGGGGGCAGACTGGCCA
LSRYQNPREADPMT


TTTTTATTTTGAAGTTCCTGCGAGAAATGGATGGTGGAAGGGTGGCGAATGTTCAAATTCATATGTGTGGTAGTGATTCTTGGAAAG
KVQAELDETKIILH


AATTTGAGGTCCCCAAAGGTGTATTTTTGGGCAAATGAAACCATAAACTCCGACTGGCTTCTGTAGATGCCAAAGGGCTCTTTTTCA
NTMESLLERGEKLD


GCTAACCCTGGGAAGGCTCTGTGGGAGGGAGGTCGGAGCCAGCTGTTTCTCGATCTTTGGTATATCTTTGGATCTTATTTGTACATT
DLVSKSEVLGTQSK


AATGATATTAACACTCCAGTGGGGGGTGGGGAGTCCCTGATGCTAGGGCTGGGGTGGGTGGAGTTTGAAGACTCTTGGGAAAGCCTC
AFYKTARKQNSCCA


TCCTGGGGCCACTGTTGGGGGTGGGAGTGAGCCCACCACAGAGGCCACAGGCAGGCCCCCACTTCAGGCCCAAGGCCTGGGGCGGGG
IM


GGAACAGTCACTGGGTCTCAGATTCTGAGACTGTTGTTTAGCTTACCTTTCTGCTAGGATTGGCTTCCCGCAGAGGGCAGGGCCCAT



CCTAAGCAGCTTCCAAGTCCCACAAAGGTGGCTTGTGGGAGGATTTGGAAGGAGCTGCATTGTGGGCGGGGAGTGTGTGGGTTGGGT



TCGTACCAGCAAGTAGACTAGGAACTGAGCCCAGGAAAGGGGGATGTTTTCCTGGTGTTTGGATGGTCAGCTGGGAGTGTCCATCAT



CAGGGGAAGATCAAACACAGGTGCACTCAGCTGCCCAGGGCCTCTGGGACACTTGCCTTGACTTGCAACTTGCCTTGAACATCACGA



TCAAAGCAGCAGGTGCTGTGGTCTCTCAAAATTGATTTTTATTTGACTCTGTGGCTCTAAGACTGCCTTGAACCGCCTGAGGCCTAT



GCATCTGAACAAGTGGGTCTCTCCCTTGAGCACCAGGAGTGGGTGCCAGCCGGCCCCGAGGATTCCCAGCACCCCACCTATGGTCTT



GCCAGCATAGGCTTGCTAGTTCCTTCTTGGTCAGAGGTAGCTGCAGAGGGGGGAGGCCAAGGGTTTGGTCTAAGCTGTGCCCTGCCA



CCTGGCAGGAGGCCCACTCACTGCCCAAGTCATGGCAACAGGCTGGAGCAGCCCAGGAGATGGGCCTAAAATGTTCTGGATCCCTTG



GGTCCTAGTGTTATGTTCCAGTCTGCCCACCTGTGCTCAGGATGCAGCCCTGGGATCCAGCACCCATGGAAGCTTCTGCTGGGATGG



TGTCACCTATGGGTTTTGAACCAGTGTGGTATGGTCCTTGGGAGCTCTGCTCTGAGCTTGCCACACTGCTGAGAGCACCCACTGTCC



TGACCAGAGTCTCAGTGGTCCTGACCCCCAATGTGGGCAGGGGCTGGGCAGGAGGGTGGGGTCTGCTGTGGGTTCAGAGGACTCCAC



CTCCTGGCTGGTTTACCTGCTGCTGCCCATTTTCTCTGGGTACTGCTGGCCAGAGGACTTTAGCCTACCCCTGAAGAGCCTGTCCAT



GTCATTTTCCTACTGCCATAGATACCCTAAGCCCAGGGCCCCTTGAGGCCCAGACTCAGCCTGCCCACTGGTGCCGGAGACGGAGTG



GAGTGGGCCTGGATCCGAGGGATGCTACCTCTCCCTTTCCCACTTGAGGACCCTGGGGAGAGATGGGGGCGGGGAAAATGGAGGTAT



GAATTTGGGGTAAGAGGAAGTGAGATCTCCGCTTGCAGGTCAGCCCCTGCCTTGCAGGGCGGGCTGGCTTGACTCAGGCCCTGTGAG



ATAGAGGGCCCAGCCCAGCCCCACCCACAGATCCCCTGCTCCTGTTGTGTTCTGTTGTAAATCATTTGGCGAGACTGTATTTTAGTA



ACTGCTGCCTAACTTCCCTGTGTTCTATTTGAGAGGCGCCTGTCTGGATAAAGTTGTCTTGAAATTTCAAAAAAAAAAAAAAAAAA






SEQ ID NO.: 26
SEQ ID NO.: 73


CGCTGTCGCCGCCAGTAGCAGCCTTCGCCAGCAGCGCCGCGGCGGAACCGGGCGCAGGGGAGCGAGCCCGGCCCCGCCAGCCCAGCC
MDHYDSQQTNDYMQ


CAGCCCAGCCCTACTCCCTCCCCACGCCAGGGCAGCAGCCGTTGCTCAGAGAGAAGGTGGAGGAAGAAATCCAGACCCTAGCACGCG
PEEDWDRDLLLDPA


CGCACCATCATGGACCATTATGATTCTCAGCAAACCAACGATTACATGCAGCCAGAAGAGGACTGGGACCGGGACCTGCTCCTGGAC
WEKQQRKTFTAWCN


CCGGCCTGGGAGAAGCAGCAGAGAAAGACATTCACGGCATGGTGTAACTCCCACCTCCGGAAGGCGGGGACACAGATCGAGAACATC
SHLRKAGTQIENIE


GAAGAGGACTTCCGGGATGGCCTGAAGCTCATGCTGCTGCTGGAGGTCATCTCAGGTGAACGCTTGGCCAAGCCAGAGCGAGGCAAG
EDFRDGLKLMLLLE


ATGAGAGTGCACAAGATCTCCAACGTCAACAAGGCCCTGGATTTCATAGCCAGCAAAGGCGTCAAACTGGTGTCCATCGGAGCCGAA
VISGERLAKPERGK


GAAATCGTGGATGGGAATGTGAAGATGACCCTGGGCATGATCTGGACCATCATCCTGCGCTTTGCCATCCAGGACATCTCCGTGGAA
MRVHKISNVNKALD


GAGACTTCAGCCAAGGAAGGGCTGCTCCTGTGGTGTCAGAGAAAGACAGCCCCTTACAAAAATGTCAACATCCAGAACTTCCACATA
FIASKGVKLVSIGA


AGCTGGAAGGATGGCCTCGGCTTCTGTGCTTTGATCCACCGACACCGGCCCGAGCTGATTGACTACGGGAAGCTGCGGAAGGATGAT
EEIVDGNVKMTLGM


CCACTCACAAATCTGAATACGGCTTTTGACGTGGCAGAGAAGTACCTGGACATCCCCAAGATGCTGGATGCCGAAGACATCGTTGGA
IWTIILRFAIQDIS


ACTGCCCGACCGGATGAGAAAGCCATCATGACTTACGTGTCTAGCTTCTACCACGCCTTCTCTGGAGCCCAGAAGGCGGAGACAGCA
VEETSAKEGLLLWC


GCCAATCGCATCTGCAAGGTGTTGGCCGTCAACCAGGAGAACGAGCAGCTTATGGAAGACTACGAGAAGCTGGCCAGTGATCTGTTG
QRKTAPYKNVNIQN


GAGTGGATCCGCCGCACAATCCCGTGGCTGGAGAACCGGGTGCCCGAGAACACCATGCATGCCATGCAACAGAAGCTGGAGGACTTC
FHISWKDGLGFCAL


CGGGACTACCGGCGCCTGCACAAGCCGCCCAAGGTGCAGGAGAAGTGCCAGCTGGAGATCAACTTCAACACGCTGCAGACCAAGCTG
IHRHRPELIDYGKL


CGGCTCAGCAACCGGCCTGCCTTCATGCCCTCTGAGGGCAGGATGGTCTCGGACATCAACAATGCCTGGGGCTGCCTGGAGCAGGTG
RKDDPLTNLNTAFD


GAGAAGGGCTATGAGGAGTGGTTGCTGAATGAGATCCGGAGGCTGGAGCGACTGGACCACCTGGCAGAGAAGTTCCGGCAGAAGGCC
VAEKYLDIPKMLDA


TCCATCCACGAGGCCTGGACTGACGGCAAAGAGGCCATGCTGCGACAGAAGGACTATGAGACCGCCACCCTCTCGGAGATCAAGGCC
EDIVGTARPDEKAI


CTGCTCAAGAAGCATGAGGCCTTCGAGAGTGACCTGGCTGCCCACCAGGACCGTGTGGAGCAGATTGCCGCCATCGCACAGGAGCTC
MTYVSSFYHAFSGA


AATGAGCTGGACTATTATGACTCACCCAGTGTCAACGCCCGTTGCCAAAAGATCTGTGACCAGTGGGACAATCTGGGGGCCCTAACT
QKAETAANRICKVL


CAGAAGCGAAGGGAAGCTCTGGAGCGGACCGAGAAACTGCTGGAGACCATTGACCAGCTGTACTTGGAGTATGCCAAGCGGGCTGCA
AVNQENEQLMEDYE


CCCTTCAACAACTGGATGGAGGGGGCCATGGAGGACCTGCAGGACACCTTCATTGTGCACACCATTGAGGAGATCCAGGGACTGACC
KLASDLLEWIRRTI


ACAGCCCATGAGCAGTTCAAGGCCACCCTCCCTGATGCCGACAAGGAGCGCCTGGCCATCCTGGGCATCCACAATGAGGTGTCCAAG
PWLENRVPENTMHA


ATTGTCCAGACCTACCACGTCAATATGGCGGGCACCAACCCCTACACAACCATCACGCCTCAGGAGATCAATGGCAAATGGGACCAC
MQQKLEDFRDYRRL


GTGCGGCAGCTGGTGCCTCGGAGGGACCAAGCTCTGACGGAGGAGCATGCCCGACAGCAGCACAATGAGAGGCTACGCAAGCAGTTT
HKPPKVQEKCQLEI


GGAGCCCAGGCCAATGTCATCGGGCCCTGGATCCAGACCAAGATGGAGGAGATCGGGAGGATCTCCATTGAGATGCATGGGACCCTG
NFNTLQTKLRLSNR


GAGGACCAGCTCAGCCACCTGCGGCAGTATGAGAAGAGCATCGTCAACTACAAGCCAAAGATTGATCAGCTGGAGGGCGACCACCAG
PAFMPSEGRMVSDI


CTCATCCAGGAGGCGCTCATCTTCGACAACAAGCACACCAACTACACCATGGAGCACATCCGTGTGGGCTGGGAGCAGCTGCTCACC
NNAWGCLEQVEKGY


ACCATCGCCAGGACCATCAATGAGGTAGAGAACCAGATCCTGACCCGGGATGCCAAGGGCATCAGCCAGGAGCAGATGAATGAGTTC
EEWLLNEIRRLERL


CGGGCCTCCTTCAACCACTTTGACCGGGATCACTCCGGCACACTGGGTCCCGAGGAGTTCAAAGCCTGCCTCATCAGCTTGGGTTAT
DHLAEKFRQKASIH


GATATTGGCAACGACCCCCAGGGAGAAGCAGAATTTGCCCGCATCATGAGCATTGTGGACCCCAACCGCCTGGGGGTAGTGACATTC
EAWTDGKEAMLRQK


CAGGCCTTCATTGACTTCATGTCCCGCGAGACAGCCGACACAGATACAGCAGACCAAGTCATGGCTTCCTTCAAGATCCTGGCTGGG
DYETATLSEIKALL


GACAAGAACTACATTACCATGGACGAGCTGCGCCGCGAGCTGCCACCCGACCAGGCTGAGTACTGCATCGCGCGGATGGCCCCCTAC
KKHEAFESDLAAHQ


ACCGGCCCCGACTCCGTGCCAGGTGCTCTGGACTACATGTCCTTCTCCACGGCGCTGTACGGCGAGAGTGACCTCTAATCCACCCCG
DRVEQIAAIAQELN


CCCGGCCGCCCTCGTCTTGTGCGCCGTGCCCTGCCTTGCACCTCCGCCGTCGCCCATCTCCTGCCTGGGTTCGGTTTCAGCTCCCAG
ELDYYDSPSVNARC


CCTCCACCCGGGTGAGCTGGGGCCCACGTGGCATCGATCCTCCCTGCCCGCGAAGTGACAGTTTACAAAATTATTTTCTGCAAAAAA
QKICDQWDNLGALT


GAAAAAAAAGTTACGTTAAAAACCAAAAAACTACATATTTTATTATAGAAAAAGTATTTTTTCTCCACCAGACAAATGGAAAAAAAG
QKRREALERTEKLL


AGGAAAGATTAACTATTTGCACCGAAATGTCTTGTTTTGTTGCGACATAGGAAAATAACCAAGCACAAAGTTATATTCCATCCTTTT
ETIDQLYLEYAKRA


TACTGATTTTTTTTTCTTCTATCTGTTCCATCTGCTGTATTCATTTCTCCAATCTCATGTCCATTTTGGTGTGGGAGTCGGGGTAGG
APFNNWMEGAMEDL


GGGTACTCTTGTCAAAAGGCACATTGGTGCGTGTGTGTTTGCTAGCTCACTTGTCCATGAAAATATTTTATGATATTAAAGAAAATC
QDTFIVHTIEEIQG


TTTTG
LTTAHEQFKATLPD



ADKERLAILGIHNE



VSKIVQTYHVNMAG



TNPYTTITPQEING



KWDHVRQLVPRRDQ



ALTEEHARQQHNER



LRKQFGAQANVIGP



WIQTKMEEIGRISI



EMHGTLEDQLSHLR



QYEKSIVNYKPKID



QLEGDHQLIQEALI



FDNKHTNYTMEHIR



VGWEQLLTTIARTI



NEVENQILTRDAKG



ISQEQMNEFRASFK



KFDRDHSGTLGPEE



FKACLISLGYDIGN



DPQGEAEFARIMSI



VDPNRLGVVTFQAF



IDFMSRETADTDTA



DQVMASFKILAGDK



NYITMDELRRELPP



DQAEYCIARMAPYT



GPDSVPGALDYMSF



STALYGESDL





SEQ ID NO.: 27
SEQ ID NO.: 74


TGCGGGCAGGATTCACGCCGCTGTGACCCGGAGGTCCTCAGGGGGCGAAGCCCCGGCCTAGGCCTCGCGGAGATGCCCAGCTGCGGT
MPSCGACTCGAAAV


GCTTGTACTTGCGGCGCGGCGGCCGTCCGGCTCATCACCTCCTCACTCGCCTCCGCGCAGAGAGGTATTTCTGGTGGTCGCATTCAT
RLITSSLASAQRGI


ATGTCAGTTTTAGGAAGGCTTGGGACATTTGAAACTCAGATTCTGCAAAGAGCTCCTCTTAGATCCTTTACAGAAACACCAGCATAC
SGGRIHMSVLGRLG


TTTGCCTCAAAAGATGGGATAAGTAAAGATGGTTCTGGAGATGGAAATAAGAAATCAGCAAGTGAGGGAAGTAGTAAGAAATCAGGC
TFETQILQRAPLRS


TCTGGGAATTCTGGGAAAGGTGGAAACCAGCTGCGCTGTCCTAAATGTGGCGACTTGTGCACACATGTAGAGACCTTTGTATCATCC
FTETPAYFASKDGI


ACCCGTTTTGTCAAGTGTGAAAAGTGTCATCATTTTTTTGTTGTGCTATCTGAAGCAGACTCAAAGAAAAGCATAATTAAAGAACCT
SKDGSGDGNKKSAS


GAATCAGCAGCAGAAGCTGTAAAATTGGCATTCCAACAGAAACCACCACCTCCCCCTAAGAAGATTTATAACTACCTCGACAAGTAT
EGSSKKSGSGNSGK


GTTGTTGGCCAGTCATTTGCTAAGAAGGTGCTTTCAGTTGCTGTGTACAATCATTATAAGAGAATATATAATAATATCCCAGCTAAT
GGNQLRCPKCGDLC


CTGAGACAGCAAGCAGAGGTTGAGAAGCAGACATCATTAACACCAAGAGAGTTAGAAATAAGAAGACGGGAGGATGAGTACAGATTT
THVETFVSSTRFVK


ACAAAATTGCTTCAGATTGCTGGAATTAGCCCACATGGTAATGCTTTAGGAGCATCAATGCAGCAACAGGTAAATCAACAAATACCT
CEKCHHFFVVLSEA


CAGGAAAAACGAGGAGGTGAAGTATTGGATTCTTCTCATGATGACATAAAACTTGAAAAAAGTAATATTTTGCTGCTTGGACCAACT
DSKKSIIKEPESAA


GGTCAGGTAAAACTCTGCTGGCACAAACCCTAGCTAAATGCCTTGATGTCCCTTTTTGCTATCTGTGACTGTACAACTTTGACTCAG
EAVKLAFQQKPPPP


GCTGGATATGTAGGCGAAGATATTGAATCTGTGATTGCAAAACTACTCCAAGATGCCAATTATAATGTGGAAAAAGCACAACAAGGA
PKKIYNYLDKYVVG


ATTGTCTTTCTGGATGAAGTAGATAAGATTGGCAGTGTGCCAGGCATTCATCAATTACGGGATGTAGGTGGAGAAGGCGTTCAGCAA
QSFAKKVLSVAVYN


GGCTTATTAAAACTACTAGAAGGCACAATAGTCAATGTTCCAGAAAAGAATTCCCGAAAGCTCCGTGGAGAAACAGTTCAAGTTGAT
HYKRIYNNIPANLR


ACAACAAACATCCTGTTTGTGGCATCTGGTGCTTTCAATGGTTTAGACAGAATCATCAGCAGGAGGAAAAATGAAAAGTATCTTGGA
QQAEVEKQTSLTPR


TTTGGAACACCATCTAATCTGGGAAAAGGCAGAAGGGCTGCAGCTGCTGCAGACCTTGCTAATCGAAGTGGGGAATCGAATACTCAC
ELEIRRREDEYRFT


CAAGACATTGAAGAAAAAGATCGGTTATTGCGTCATGTGGAAGCCAGAGATCTGATTGAGTTTGGCATGATTCCTGAGTTTGTGGGA
KLLQIAGISPHGNA


CGGTTGCCTGTGGTGGTTCCATTGCATAGCCTAGATGAGAAAACACTTGTACAAATATTAACTGAGCCACGAAATGCTGTTATTCCT
LGASMQQQVNQQIP


CAGTACCAGGCCTTATTCAGCATGGATAAGTGTGAACTGAATGTTACTGAGGATGCTTTGAAAGCTATAGCCAGATTGGCACTAGAA
QEKRGGEVLDSSHD


CGAAAAACAGGTGCACGAGGCCTTCGGTCCATAATGGAAAAGCTGTTACTAGAACCAATGTTTGAAGTCCCTAATTCTGATATCGTA
DIKLEKSNILLLGP


TGTGTGGAGGTTGACAAAGAAGTAGTAGAAGGAAAAAAGGAACCAGGATACATCCGGGCTCCAACAAAAGAATCCTCTGAAGAGGAG
TGSGKTLLAQTLAK


TATGACTCTGGAGTTGAAGAAGAAGGATGGCCCCGCCAAGCAGATGCTGCAAACAGCTAAACTGTCATATTGCTGTCTTGTATATAC
CLDVPFAICDCTTL


AGCTTTTCCTTCTTTTGTTTAGGATCATAATTGTCTCTACAGTCTGATATTAAAGGCATTGGATCTATCTTGGATATCATACATGGT
TQAGYVGEDIESVI


CAGAGAAGCCTTTAGGAGAAGAATCAGATCATGTATATAATTGTAACATCACATTGATTTTACGGAAGATGTTATATGGACTTTAAT
AKLLQDANYNVEKA


GACACAATGTTTAGAGATAAAATGTACATTATTTTGGTTCAGTTTTTTAAAAAAAATATGCTTTAACAAAATTCTTAGGAATTCTTT
QQGIVFLDEVDKIG


TAAGCAATGCAGGTATTGCGATAACTGTAGATTTTACAATAATGTTACTCTACAAATGGGAAAATAAATTCTTTAAAATTGAATATT
SVPGIHQLRDVGGE


GA
GVQQGLLKLLEGTI



VNVPEKNSRKLRGE



TVQVDTTNILFVAS



GAFNGLDRIISRRK



NEKYLGFGTPSNLG



KGRRAAAAADLANR



SGESNTHQDIEEKD



RLLRHVEARDLIEF



GMIPSFVGRLPVVV



PLHSLDEKTLVQIL



TEPRNAVIPQYQAL



FSMDKCELNVTEDA



LKAIARLALERKTG



ARGLRSIMEKLLLE



PMFEVPNSDIVCVE



VDKEVVEGKKEPGY



IRAPTKESSEEEYD



SGVEEEGWPRQADA



ANS





SEQ ID NO.: 28
SEQ ID NO.: 75


GGCGCCCAAGCCGCCGCCGCCAGATCGGTGCCGATTCCTGCCCTGCCCCGACCGCCAGCGCGACCATGTCCCATCACTGGGGGTACG
MSHHWGYGKHNGPE


GCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCATTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATA
HWHKDFPIAKGERQ


CAGCCAAGTATGACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCCTCAACAATGGTCATGCTT
SPVDIDTHTAKYDP


TCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCTCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACT
SLKPLSVSYDQATS


TTCACTGGGGTTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGAACTTCACTTGGTTCACTGGA
LRILNNGHAFNVEF


ACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCAACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTA
DDSQDKAVLKGGPL


AACCGGGCCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGACTTCACTAACTTCGATCCTCGTG
DGTYRLIQFHFHWG


GCCTCCTTCCTGAATCCCTGGATTACTGGACCTACCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGC
SLDGQGSEHTVDKK


TCAAGGAACCCATCAGCGTCAGCAGCGAGCAGGTGTTGAAATTCCGTAAACTTAACTTCAATGGGGAGGGTGAACCCGAAGAACTGA
KYAAELHLVHWNTK


TGGTGGACAACTGGCGCCCAGCTCAGCCACTGAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCCATAGTCTGTATCC
YGDFGKAVQQPDGL


AAATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCTACCTTGGTGATTTGGACCCTGGTTGCTTTGTGTCTAGTTTTC
AVLGIFLKVGSAKP


TAGACCCTTCATCTCTTACTTGATAGACTTACTAATAAAATGTGAAGACTAGACCAATTGTCATGCTTGACACAACTGCTGTGGCTG
GLQKVVDVLDSIKT


GTTGGTGCTTTGTTTATGGTAGTAGTTTTTCTGTAACACAGAATATAGGATAAGAAATAAGAATAAAGTACCTTGACTTTGTTCACA
KGKSADFTNFDPRG


GCATGTAGGGTGATGAGCACTCACAATTGTTGACTAAAATGCTGCTTTTAAAACATAGGAAAGTAGAATGGTTGAGTGCAAATCCAT
LLPESLDYWTYPGS


AGCACAAGATAAATTGAGCTAGTTAAGGCAAATCAGGTAAAATAGTCATGATTCTATGTAATGTAAACCAGAAAAAATAAATGTTCA
LTTPPLLECVTWIV


TGATTTCAAGATGTTATATTAAAGAAAAACTTTAAAAATTATTATATATTTATAGCAAAGTTATCTTAAATATGAATTCTGTTGTAA
LKEPISVSSEQVLK


TTTAATGACTTTTGAATTACAGAGATATAAATGAAGTATTATCTGTAAAAATTGTTATAATTAGAGTTGTGATACAGAGTATATTTC
FRKLNFNGEGEPEE


CATTCAGACAATATATCATAACTTAATAAATATTGTATTTTAGATATATTCTCTAATAAAATTCAGAATTCT
LMVDNWRPAQPLKN



RQIKASFK





SEQ ID NO.: 29
SEQ ID NO.: 76


GCTGAGCGCGGGCGCGGGGCCGCTACGTGCGCGGGGAGCGCGGGGAGCGCGGGGAGCGCGGGGCTGCGCTCGTGTGCGCTCCTGGGC
MFPEQQKEEFVSVW


GCTCGCCGCCGCCGCTGCCGCCGCGCGCCTTTGAGTCAGCAAACTCCGCGGCCCGCAAGCCCGGCTCGGCCCGGCCCTGCTCTGTTC
VRDPRIQKEDFWHS


TGCCCGGAGGAGCCGCCCATTGATCGTGTCCTGTGCTGAAGATGTTTCCGGAACAACAGAAAGAGGAATTTGTAAGTGTCTGGGTTC
YIDYEICIHTNSMC


GAGATCCTAGGATTCAGAAGGAGGACTTCTGGCATTCTTACATTGACTATGAGATATGTATTCATACTAATAGCATGTGTTTTACAA
FTMKTSCVRRRYRE


TGAAAACATCCTGTGTACGAAGAAGATATAGAGAATTCGTGTGGCTGAGGCAGAGACTCCAAAGTAATGCGTTGCTGGTACAACTGC
FVWLRQRLQSNALL


CAGAACTTCCATCTAAAAACCTGTTTTTCAACATGAACAATCGCCAGCACGTGGATCAGCGTCGCCAGGGTCTGGAAGATTTCCTCA
VQLPELPSKNLFFN


GAAAAGTCCTACAGAATGCACTTTTGCTTTCAGATAGCAGCCTTCACCTCTTCTTACAGAGCCATCTGAATTCAGAAGACATTGAGG
MNNRQHVDQRRQGL


CGTGTGTTTCTGGGCAGACTAAGTACTCTGTGGAAGAAGCAATTCACAAGTTTGCCTTAATGAATAGACGTTTCCCTGAAGAAGATG
EDFLRKVLQNALLL


AAGAAGGAAAAAAAGAAAATGATATAGATTATGATTCAGAAAGTTCATCCTCTGGGCTTGGACACAGTAGTGATGACAGCAGTTCAC
SDSSLHLFLQSHLN


ATGGATGTAAAGTAAATACAGCTCCGCAGGAATCCTGAAAAATAATTCTAATGTTACTATCTTAGGAATAGCAAATTATGTCCAGTC
SEDIEACVSGQTKY


ATAGAGAAGAAAGCTTCATAATAATACATTCTTACCTAAAGCTCACTGTCATGATGTTAGGTATTTAAATTCTTAAAGATGTTGGGT
SVEEAIHKFALMNR


TGTTTATTAGTGGTATTTTTATGTTGTCTTATTTTAGGTAAGCTTCTGTGTAAAGCTAAAAATCCTGTGAATACAATACTATCCTTT
RFPEEDEEGKKEND


ACAGGCAGACATTATTGGTAAACAAGATCTTGCCCTCCAATGAAATGACTTACATGTTTTAAAAAACCGAGTTGGTTTTATTGAATT
IDYDSESSSSGLGH


TAAAAAGATAGGTAACTAAGTAGCATTTAAAATCAAGATAGAGCATTCCTTCTTGTATCAGTGGGGCAGTGTTACCATAAACACGGT
SSDDSSSHGCKVNT


GTATATGTTGTTAAACCCTATGAAGAGTAACAGTGTAGACCAGACTGCCTCTCTCAGATATGTGCCTGATATTTTGTGGATACCTCC
APQES


CCTGCACTGGCAAAACACTATGCTTTTGGGTGTTAGACTGAAATATTTTAAGAGTATTTAACCTTTCCAGTATTCTGTTTCACGCTT



AGATGGAAATGTATCTTATGAATAGAGACATATTAAAATAATGTTTACATCTTAGAAAAAACATAGATAGTGCTAGTAATATTACTT



ATAACTGTAATATATAGATTCAGAAATACATTTTCATTATCCAAAATCAGCTTCAACAAATGGTTTCTGGAGACAAATAATTTGTTT



TCATTATCATTGTATAATCAGGTTAATGATTTATTTTTTGACTAAATGTGCAATTTCTTATCACTAGATAACTTTCAGTATCAGTGG



TGGTTACTTATTACTTAAATCAGAGGAAGGATTTTATAAAGATTAATAAATTTAATTTTACCAATAAATATTCCCATAATTTAGAAA



AGGATGTCGACTTGCTAATTTCAGAAATAATTATTCATTTTTAAAAAGCCCCTTTTAAAGCATCTACTTGAAGATTGGTATAATTTT



CATAAAATGTCTTTTTTTTTAGTGTCCCAAAGATATCTTAGATAAACTATTTTGAAGTTCAGATTTCAGATGAGGCAACATTTTCTT



GAGATAATTACCCAAGTTTCATCCATGTTGAATGGTACAAAATATTTCTGTGAAACTAACAGGAAGATATTTTCAGATAACTAGGAT



AACTTGTTGCTTTGTTACCCAGCCTAATTGAAGAGTGGCAGAGGCTACTACAAAAAGCAACCTTTTCATTTTCACTAAGAGTTTAAA



AGCTATTGTATTATTAAAAAGTCTTTACAATGCTTGTTTCAAAGAACCAACAGAAAAAAAAGCTAAGAAAACTGAGAACTAACATTA



AAAAAATTAAATTTAGAATAAGAATGATTTCTTTAATTTGTCCTTTTTTTCTTTGGTCTAAAACATTATTAAATTTTTGTAAATATT



TTGATTTAATGTGTCTTAGATCCTCATTATTTTAATACAGGAAAAGAAAAGATTTAGTAATTTCTTACCATGCTAATATGTAAAGTT



CATGCCATCCAGGCATTTAAGAGCGATCCTCATCCCTTCAGCAATATGTATTTGAGTTCACACTATTTCTGTTTTACAGCAGTTTTG



AAAAACACATACTATGCCACCAATTGTCATATTATTTTTAGATGATGTAACATAGCCATCAAAATTAATATTATGTAATGCCTAATA



CTTAGTATGTAAATGTCACGAGATCATTTTTACATTAAACGTGAAAAAAAATCAAAAAAAAAAAAAAA






SEQ ID NO.: 30
SEQ ID NO.: 77


GAACCTCCTCGCGACTTTCCAAGGTATCTTTCAGATGAAGGCATTGAAGCTTGCACAAGCTCTCCAGACAAAGTCAATGTAAATGAC
MLRLQMTDGHISCT


ATCATCCTGATTGCTCTCAATATCTGAGAACAATTGGCAAGAAATTCCTCCCCAGTGACATCAATAGTGGAAAGGTAGAAAAGCTCG
AVEFSYMSKISLNT


AAGGTCCATGTGTTTTGCAAATTCAAAAAATTCGCAATGTTGCTGCACCAAAGGATAATGAAGAATCTCAGGCTGCACCAAGGATGC
PPGTKVKLSGIVDI


TGCGATTACAGATGACTGATGGTCATATAAGTTGCACAGCAGTAGAATTTAGTTATATGTCAAAAATAAGCCTGAACACACCACCTG
KNGFLLLNDSNTTV


GAACTAAAGTTAAGCTCTCAGGCATTGTTGACATAAAAAATGGATTCCTGCTCTTGAATGACTCTAACACCACAGTTCTTGGTGGTG
LGGEVEHLIEKWEL


AAGTGGAACACCTTATTGAGAAATGGGAGTTACAGAGAAGCTTATCAAAACACAATAGAAGCAATATTGGAACTGAAGGTGGACCAC
QRSLSKHNRSNIGT


CGCCTTTTGTGCCTTTTGGACAGAAGTGTGTATCTCATGTCCAAGTGGATAGCAGAGAACTTGATCGAAGAAAAACATTGCAAGTTA
SGGFPPFVPFGQKC


CAATGCCTGTCAAACCTACAAATGATAATGATGAATTTGAAAAGCAAAGGACGGCTGCTATTGCTGAAGTTGCAAAGAGCAAGGAAA
VSHVQVDSRELDRR


CCAAGACATTTGGAGGAGGTGGTGGTGGTGCTAGAAGTAATCTCAATATGAATGCTGCTGGTAACCGAAATAGGGAAGTTTTACAGA
KTLQVTMPVKPTND


AAGAAAAGTCAACCAAATCAGAGGGAAAACATGAAGGTGTCTATAGAGAACTGGTTGATGAGAAAGCTCTGAAGCACATAACGGAAA
NDEFEKQRTAAIAE


TGGGCTTCAGTAAGGAAGCATCGAGGCAAGCTCTTATGGATAATGGCAACAACTTAGAAGCAGCACTGAACGTACTTCTTACAAGCA
VAKSKETKTFGGGG


ATAAACAGAAACCTGTTATGGGTCCTCCTCTGAGAGGTAGAGGAAAAGGCAGGGGGCGAATAAGATCTGAAGATGAAGAGGACCTGG
GGARSNLNMNAAGN


GAAATGCAAGGCCATCAGCACCAAGCACATTATTTGATTTCTTGGAATCTAAAATGGGAACTTTGAATGTGGAAGAACCTAAATCAC
RNREVLQKEKSTKS


AGCCACAGCAGCTTCATCAGGGACAATACAGATCATCAAATACTGAGCAAAATGGAGTAAAAGATAATAATCATCTGAGACATCCTC
EGKHEGVYRELVDE


CTCGAAATGATACCAGGCAGCCAAGAAATGAAAAACCGCCTCGTTTTCAAAGAGACTCCCAAAATTCAAAGTCAGTTTTAGAAGGCA
KALKHITEMGFSKE


GTGGATTACCTAGAAATAGAGGTTCTGAAAGACCAAGTACTTCTTCAGTATCTGAAGTATGGGCTGAAGACAGAATCAAATGTGATA
ASRQALMDNGNNLE


GACCGTATTCTAGATATGACAGAACTAAAGATACTTCATATCCTTTAGGTTCTCAGCATAGTGATGGTGCTTTTAAAAAAAGAGATA
AALNVLLTSNKQKP


ACTCTATGCAAAGCAGATCAGGAAAAGGTCCCTCCTTTGCAGAGGCAAAAGAAAATCCACTTCCTCAAGGATCTGTAGATTATAATA
VMGPPLRGRGKGRG


ATCAAAAACGTGGAAAAAGAGAAAGCCAAACATCTATTCCTGACTATTTTTATGACAGGAAATCACAAACAATAAATAATGAAGCTT
RIRSEDEEDLGNAR


TCAGTGGTATAAAAATTGAAAAACATTTTAATGTAAATACTGATTATCAGAATCCAGTTCGAAGTAATAGTTTCATTGGTGTTCCAA
PSAPSTLFDFLESK


ATGGAGAAGTAGAAATGCCACTGAAAGGAAGACGAATAGGACCTATTAAGCCAGCAGGACCTGTCACAGCTGTACCCTGTGATGATA
MGTLNVEEPKSQPQ


AAATATTTTACAATAGTGGGCCCAAACGAAGATCTGGGCCAATTAAGCCAGAAAAAATACTAGAATCATCTATTCCTATGGAGTATG
QLHQGQYRSSNTEQ


CAAAAATGTGGAAACCTGGAGATGAATGTTTTGCACTTTATTGGGAAGACAACAAGTTTTACCGGGCAGAAGTTGAAGCCCTCCATT
NGVKDNNHLRHPPR


CTTCGGGTATGACAGCAGTTGTTAAATTCATTGACTACGGAAACTATGAAGAGGTGCTACTGAGCAATATCAAGCCCATTCAAACAG
NDTRQPRNEKPPRF


AGGCATGGGAGGAAGAAGGCACCTACGATCAAACTCTGGAGTTCCGTAGGGGAGGTGATGGCCAGCCAAGACGATCCACTCGGCCAA
QRDSQNSKSVLEGS


CCCAACAGTTTTACCAACCACCCCGGGCTCGGAACTAATAGGAAAAGACTCTTTGTGAAGAAACGAGCCAGTGACTGAAACACCCTG
GLPRNRGSERPSTS


GTGGAAACCTGTTGACAGACCTTCCACTTTCTCTTCAGAATAAGTAGCTGTGGTGGATATTATTATTTGAAGAAAGAAAAAACAGAT
SVSEVWAEDRIKCD


TTTAGGGTGGAAAAAACAGTCAACTCACACAAAGAATGGAAAAAAATACTGAGTTAAATTAAGCAAATACCTTTTACAAGTGAAAGG
RPYSRYDRTKDTSY


AAGAATTTTTCTTCTGCCGTCAATAAAACCATTGTGCTATTATTGTTTAAAAAAAAAAAAAAAAA
PLGSQHSDGAFKKR



DNSMQSRSGKGPSF



AEAKENPLPQGSVD



YNNQKRGKRESQTS



IPDYFYDRKSQTIN



NEAFSGIKIEKHFN



VNTDYQNPVRSNSF



IGVPNGEVEMPLKG



RRIGPIKPAGPVTA



VPCDDKIFYNSGPK



RRSGPIKPEKILES



SIPMEYAKMWKPGD



ECFALYWEDNKFYR



AEVEALHSSGMTAV



VKFIDYGNYEEVLL



SNIKPIQTEAWEEE



GTYDQTLEFRRGGD



GQPRRSTRPTQQFY



QPPRARN





SEQ ID NO.: 31
SEQ ID NO.: 78


ATAAATATCAGAGTGTGCTGCTGTGGCTTTGTGGAGCTGCCAGAGTAAAGCAAAGAGAAAGGAAGCAGGCCCGTTGGAAGTGGTTGT
MWRSLGLALALCLL


GACAACCCCAGCAATGTGGAGAAGCCTGGGGCTTGCCCTGGCTCTCTGTCTCCTCCCATCGGGAGGAACAGAGAGCCAGGACCAAAG
PSGGTESQDQSSLC


CTCCTTATGTAAGCAACCCCCAGCCTGGAGCATAAGAGATCAAGATCCAATGCTAAACTCCAATGGTTCAGTGACTGTGGTTGCTCT
KQPPAWSIRDQDPM


TCTTCAAGCCAGCTGATACCTGTGCATACTGCAGGCATCTAAATTAGAAGACCTGCGAGTAAAACTGAAGAAAGAAGGATATTCTAA
LNSNGSVTVVALLQ


TATTTCTTATATTGTTGTTAATCATCAAGGAATCTCTTCTCGATTAAAATACACACATCTTAAGAATAAGGTTTCAGAGCATATTCC
ASUYLCILQASKLE


TGTTTATCAACAAGAAGAAAACCAAACAGATGTCTGGACTCTTTTAAATGGAAGCAAAGATGACTTCCTCATATATGATAGATGTGG
DLRVKLKKEGYSNI


CCGTCTTGTATATCATCTTGGTTTGCCTTTTTCCTTCCTAACTTTCCCATATGTAGAAGAAGCCATTAAGATTGCTTACTGTGAAAA
SYIVVNHQGISSRL


GAAATGTGGAAACTGCTCTCTCACGACTCTCAAAGATGAAGACTTTTGTAAACGTGTATCTTTGGCTACTGTGGATAAAACAGTTGA
KYTHLKNKVSEHIP


AACTCCATCGCCTCATTACCATCATGAGCATCATCACAATCATGGACATCAGCACCTTGGCAGCAGTGAGCTTTCAGAGAATCAGCA
VYQQEENQTDVWTL


ACCAGGAGCACCAAATGCTCCTACTCATCCTGCTCCTCCAGGCCTTCATCACCACCATAAGCACAAGGGTCAGCATAGGCAGGGTCA
LNGSKDDFLIYDRC


CCCAGAGAACCGAGATATGCCAGCAAGTGAAGATTTACAAGATTTACAAAAGAAGCTCTGTCGAAAGAGATGTATAAATCAATTACT
GRLVYHLGLPFSFL


CTGTAAATTGCCCACAGATTCAGAGTTGGCTCCTAGGAGCTGATGCTGCCATTGTCGACATCTGATATTTGAAAAAACAGGGTCTGC
TFPYVEEAIKIAYC


AATCACCTGACAGTGTAAAGAAAACCTCCCATCTTTATGTAGCTGACAGGGACTTCGGGCAGAGGAGAACATAACTGAATCTTGTCA
EKKCGNCSLTTLKD


GTGACGTTTGCCTCCAGCTGCCTGACAAATAAGTCAGCAGCTTATACCCACAGAAGCCAGTGCCAGTTGACGCTGAAAGAATCAGGC
EDFCKRVSLATVDK


AAAAAAGTGAGAATGACCTTCAAACTAAATATTTAAAATAGGACATACTCCCCAATTTAGTCTAGACACAATTTCATTTCCAGCATT
TVETPSPHYHHEHH


TTTATAAACTACCAAATTAGTGAACCAAAAATAGAAATTAGATTTGTGCAAACATGGAGAAATCTACTGAATTGGCTTCCAGATTTT
HNHGHQHLGSSELS


AAATTTTATGTCATAGAAAATATTGACTCAAACCATATTTTTTATGATGGAGCAACTGAAAGGTGATTGCAGCTTTTGTTAATATGT
ENQQPGAPNAPTHP


CTTTTTTTTTCTTTTTCCAGTGTTCTATTTGCTTTAATGAGAATAGAAACGTAAACTATGACCTAGGGGTTTCTGTTGGATAATTAG
APPGLHHHHKHKGQ


CAGTTTAGAATGGAGGAAGAACAACAAAGACATGCTTTCCATTTTTTTCTTTACTTATCTCTCAAAACAATATTACTTTGTCTTTTC
HRQGHPENRDMPAS


AATCTTCTACTTTTAACTAATAAAATAAGTGGATTTTGTATTTTAAGATCCAGAAATACTTAACACGTGAATATTTTGCTAAAAAAG
EDLQDLQKKLCRKR


CATATATAACTATTTTAAATATCCATTTATCTTTTGTATATCTAAGACTCATCCTGATTTTTACTATCACACATGAATAAAGCCTTT
CINQLLCKLPTDSE


GTATCTTTCTTTCTCTAATGTTGTATCATACTCTTCTAAAACTTGAGTGGCTGTCTTAAAAGATATAAGGGGAAAGATAATATTGTC
LAPRSUCCHCRHLI


TGTCTCTATATTGCTTAGTAAGTATTTCCATAGTCAATGATGGTTTAATAGGTAAACCAAACCCTATAAACCTGACCTCCTTTATGG
FEKTGSAITUQCKE


TTAATACTATTAAGCAAGAATGCAGTACAGAATTGGATACAGTACGGATTTGTCCAAATAAATTCAATAAAAACCTTAAAGCTGAAA
NLPSLCSUQGLRAE


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ENITESCQURLPPA



AUQISQQLIPTEAS



ASURUKNQAKKUEU



PSN





SEQ ID NO.: 32
SEQ ID NO.: 79


CCGGGGCCCTACACGCCAGACCTGGCTCGGGGTGGGAGTGCAGAGGCAACCAAAAAGGAACCCACACCTCCCTCCAGGGCCCGGGGC
MHYVHVHRVTTQPR


GCTGTCAGACGGGGCAGCAACCAGGAGATTCCCTGGGCCTGCAGGAAGCCCTTCCGCGGACCGAAAGATTGTTCCCCATTTTGGAGA
NKPQTKCPSGGQSQ


TGAAGAAACTGAGACTCAAAGCAGCTGAGTGACCTTCCCAAGGACACACACTGAACTGGGCGGTGATCAGGATCTGAATGCACAGGG
GPRGQFLDTVLAAM


CGGGTGTTCAGCGATTGTTTACTACGTTGAACGTGACCTCCAGGAAAGCAGTTCTGGCCGAGATCCCCTGACAACGCAAAGCAAGAA
CPIAMLLTADPGMP


GTAACGTGGAAGGAGGCTCCCCAAGCTGGCTGGCCATTTTGCTGCTGTGTGTGGAGGTGCTGCCAGTGGCATGCCCAAACCCAAAGC
PTCLWHTPHAKHKE


TGGAAGAGGAATAAATTACAAGTGGTCAAGGTTGCATCCTTTTGAGCCCAGGACCTGCTTGTAAGCCGAGAGGGTTCTCTGGCCCTA
HLSIHLNMVPKCVH


ATCTAGCCAAGCACCATGGAGAGAATCAGTGCCTTCTTCAGCTCTATCTGGGACACCATCTTGACCAAACACCAAGAAGGCATCTAC
MHVTHTHTNSGSRY


AACACCATCTGCCTGGGAGTCCTCCTGGGCCTGCCACTCTTGGTGATCATCACACTCCTCTTCATCTGTTGCCATTGCTGCTGGAGC
VGKYILLIKWSLAM


CCACCAGGCAAGAGGGGCCAGCAGCCAGAGAAGAACAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGGATGAAGAAGACCTCTGGATC
YFVQGSTLSTVTKM


TCTGCTCAACCCAAGCTTCTCCAGATGGAGAAGAGACCATCACTGCCTGTTTAGTTAGGCAGGAAGCAGAGGTGTTTCCTTTCTGGG
SHGKALPDSDTYIQ


GCTAAGCCTCCTTCTGACCACACACAGACATTTCAGGAACCCCTGAAATAATGCACTATGTCCATGTCCACAGAGTAACTACTCAAC
FPNQQGPHTPSIP


CAAGGAACAAACCTCAGACTAAGTGTCCCAGTGGAGGGCAGTCCCAGGGACCACGTGGACAATTCTTGGATACTGTCTTGGCAGCTA



TGTGTCCAATAGCAATGCTCCTTACTGCAGACCCAGGCATGCCTCCCACCTGTCTCTGGCATACCCCACATGCAAAGCACAAAGAAC



ATTTATCCATACATCTCAATATGGTTCCCAAGTGTGTGCACATGCACGTAACACACACACACACAAATTCAGGTAGCAGGTACGTGG



GCAAGTATATTCTGCTCATCAAATGGTCATTGGCTATGTACTTTGTGCAGGGAAGTACATTATCTACAGTCACAAAAATGTCTCATG



GGAAAGCCTTGCCAGATTCAGACACATATATACAATTTCCTAACCAGCAAGGCCCCCATACACCATCTATTCCATAAACCACTCAGG



TTACAGATGCATGCTTTCCTATTTCTAACTCTACACATAAACTTTTACTGGAAGTACTCATAATTGGACATTCCAGCAACCTGCTAC



AGTCCCCACCCTTGTGTGTCTTGATACAGACACACCAAGTTTCTGTGCCTCTGACCCCTCACCTGTGCCAAGATGTTTAAAGTGTGA



TGGTTCAAAATTCATTGAAAGCTCTTTTCTTGTAACTCATGACAAAGTCCGTCCTCATTGCCACTGAGAGGTGTTTAATGTGATCCA



AGACCTCTCTGTGAAACATTACCCCCGCAAACCACTCAGCAAAGTGCCTTTCTCCAAGCAAGAACAAAGAGCTCTTGGTGGTGACTG



CTAGAAAATTATGGAAGCCCACTCATTTATGTCAGTGGACTGCAACTGTGTACCTGTGCAATGTTTACAGATGGAAAGGGTGAGGAG



ATGCTACACCTGAGCTAGGTATCTCCTATATAACCAAAGTTTCCAGCAGGGAAGGAACTAGACAATCATCAGTGCAGTCTCACAGAA



GGCAACACTGGAAGTGATGTCATAAGGTTGTGATGTGTGCACGGTATGGCACAGGTGGGATGCAGAGGTAACAGAGTTTAAATGAAA



GTAGGATGAAGCTATAAAGAGGTTTATTTATATTTATATTGAAGCTCAGGCAAGTGCCTTGCACACAGTAGGTACTTATAACTAACT



GTGGTTACTGTTGGATATGTGATGTTGTTAAGGGTAAGCTTGTAATACCTCACCAGTTCTCCCCGAGTGATCTTCTCTTCTAAGTGA



GCCCACTAATTGCTGCAATGGATGAAATTGGGTGTTTAATGCTGGAGAGCACATGTAGGTGACACATGTGCCTTGAGGTATGTGAGG



ACATGTAAATTAGATCCACAGTGAGCTGAGGAGGGCTTTCCCCGCCAGAGTGAGGTTGGGAAGCAGAGTTAATCCACTTATAGGATG



AACTGCTTGGTATTTTTATTGTATTGTGACTGTATTACAAAGATGGACAATTCACTCCTTGGGAGCAAGTTATGCTCTAGAAGTTTA



TTTACAAATATGCTGGGCAGCTCTCTTGAAATATTTTCCCAAGGAAGCTATTCTACACAGTGGCAAAATTGCTATCTAATTAATAAT



GTAGCTAAACTATGATATTTATAGTAGCAAAAAACTAAATTCTATAAGATTGCATTAAAGGAAAGATATATTCTATTTGCTCACTTG



GGCTGCTTGGTACTCACCTGCCCTCCAGGTGTACTTTAGGCCTGTGGAGGGTGGGCATTTAGTGGTGACCCTTGCACCAGGGTTTTC



TAACAGATGACCCTGTGAATCATAATTTAAACCTGCATATATTTTATAGCCAGTCACATTTGCCCTCTCACCCTATATGGCCATAAA



CTGCCTAAGCACTCAGGCCTCCCACTCATCAACCCCTTTGACCAGAGAAAGAAGCACTCTGGTTCTCTATCCCCTTGTCACATAGAG



AGTTTGTCATGGGGCCTCTGGCTGTGCCCTTCACATAACAGAATGACTTGCCATCTGCCTGCACCAAACCCAGGGATGTGGAAGACA



TCTCCCCACAACTGCCACTGCTCACCAGGACAAGCTGCCCTTCCTGTCTCCACCTCTCAGTCCCCCTAGAATGGATGGCTGGGGAGA



GGTGGAGGCTGACAGCTGAGACGTAGTGTCAGATATGATCTAGGAGGGCGGATCACCGGGATCCGGGACCATACAAGTAACATGGTT



TCCATGGCAACTGCTTGCTCCTTTGAATTAAGACAGCAGTCAGTTGTCATTGCCATGACAAGGCCTCTATCTCCAGGCACAATGTCC



CTGCTGTCTCCTAATCCAATGGACTTGCTCTCACCCCAGGGATGAAACACCCAGAAACTCACTTCTCAGTCACTTCCACAGCCGATG



ACTCAGAAGAGCCAAACCCAGAATGGGGCCTCTCTTTTCCCCATCACAGACTCCCCTGACAACCTTTCCTGGCGTAACTAGAGGAGT



CCCAGTGCAGGATAGGCCCTAAACGTTTTGTTAAATAAACAGGTGCATGAAAGGAGCCTAAGGCCATTGTTGATATCCACTCTCTTC



TTTCCACTTCCTTCTCATCTTTTTCTCCATGTTTTATGCTTCTCTGATTCCCTCTTCTGCCTGCACCAGACCAGCCCCAGCCCTTTA



TTCCTCTCCATTTTCACTCCTTCCAGCCTCTGTCCCTGAACTGCCACTGGCAACCCATGGGACCTCAGGQCCAGAGACTGCTTGACT



CATCTGGGGAGGGTAAGTTCACGGGGGACAAAAAAATGATTCCTAAAGAAGAGGCTTCCTAGACCAGCACAGGCTCGAGAAAGACAT



CCCCTAGGCCTGGACTTCTGAGCAGCTTTAGCCAGGCTCCGGACGGCAGCCAGAGGAGGCCTTTCCCCATTGCTCCTTTCCCCATTG



CTCAATGGATTCCATGTTTCTTTTTCTTGGGGGGAGCAGGGAGGGAGAAAGGTAGAAAAATGGCAGCCACCTTTCCAAGAAAAATAT



AAAGGGTCCAAGCTGTATAGTATTTGTCAGTATTTTTTTCTGTAAAATTCAAACACACACAAAAGAAAAATTTATTTAAATAAAATA



CTTTGAAAATGAAAAGTCTTGATGTAGTCAGATGGTTACTCTCTTAACATTAGGTATTACCCCCACTCAGACATCACTCAGAAATGA



TCAATGCAGGGACTCTTTCTGTGACACAAATGTCCCAGCCCTCCCTGGTCACCGCCTTCGCCATGGTAGAGTCATAGGTCTGAGGAT



GAGGAATGTGGCTGTCTCACCCTTGCTTGCAAAACAGATGGCCTTGGAGACCAGACTCCCTCAAAGGTGCCAGCTACAGGAAAAATA



TACTGATGTTCCTTGGCAACACTTACAGAACTTTCCATCAATGAGGTCCATCAATGGCTTCTTAAAGGAAAAGGGGGGAAATAGCAA



AAACCTAAGGAAGAATGGACCTTTGAGTTAAATCCAGTGTTTGTTGGGAAAGGAGGGATCAAAAACCTCTATAGTAGCCACTAGGGC



AAAAACTGTGTGTATGTGTGTGTGTAAGTGTGTGTACACTGTTCAATATGGTTCAATATGGTACCAATAGCCACATGTGACTATTTA



AATTCATTGCAATGAAATAAAATTAAAGGTATACTAGCTC






SEQ ID NO.: 33
SEQ ID NO.: 80


CTTTCACTGGCAAGAGACGGAGTCCTGGGTTTCAGTTCCAGTTGCCTGCGGTGGGCTGTGTGAGTTTGCCAAAGTCCCCTGCCCTCT
MKTPWKVLLGLLGA


CTGGGTCTCGGTTCCCTCGCCTGTCCACGTGAGGTTGGAGGAGCTGAACGCCGACGTCATTTTTAGCTAAGAGGGAGCAGGGTCCCC
AALVTIITVPVVLL


GAGTCGCCGGCCCAGGGTCTGCGCATCCGAGGCCGCGCGCCCTTTCCCCTCCCCCACGGCTCCTCCGGGCCCCGCACTCTGCGCCCC
NKGTDDATADSRKT


GGCTGCCGCCCAGCGCCCTACACCGCCCTCAGGGGGCCCTCGCGGGCTCCCCCCGGCCGGGATGCCAGTGCCCCGCGCCACGCGCGC
YTLTDYLKNTYRLK


CTGCTCCCGCGCCGCCTGCCCTGCAGCCTGCCCGCGGCGCCTTTATACCCAGCGGGCTCGGCGCTCACTAATGTTTAACTCGGGGCC
LYSLRWISDHEYLY


GAAACTTGCCAGCGGCGAGTGACTCCACCGCCCGGAGCAGCGGTGCAGGACGCGCGTCTCCGCCGCCCGCGGTGACTTCTGCCTGCG
KQENNILVFNAEYG


CTCCTTCTCTGAACGCTCACTTCCGAGGAGACGCCGACGATGAAGACACCGTGGAAGGTTCTTCTGGGACTGCTGGGTGCTGCTGCG
NSSVFLENSTFDEF


CTTGTCACCATCATCACCGTGCCCGTGGTTCTGCTGAACAAAGGCACAGATGATGCTACAGCTGACAGTCGCAAAACTTACACTCTA
GHSINDYSISPDGQ


ACTGATTACTTAAAAAATACTTATAGACTGAAGTTATACTCCTTAAGATGGATTTCAGATCATGAATATCTCTACAAACAAGAAAAT
FILLEYNYVKQWRH


AATATCTTGGTATTCAATGCTGAATATGGAAACAGCTCAGTTTTCTTGGAGAACAGTACATTTGATGAGTTTGGACATTCTATCAAT
SYTASYDIYDLNKR


GATTATTCAATATCTCCTGATGGGCAGTTTATTCTCTTAGAATACAACTACGTGAAGCAATGGAGGCATTCCTACACAGCTTCATAT
QLITEERIPNNTQW


GACATTTATGATTTAAATAAAAGGCAGCTGATTACAGAAGAGAGGATTCCAAACAACACACAGTGGGTCACATGGTCACCAGTGGGT
VTWSPVGHKLAYVW


CATAAATTGGCATATGTTTGGAACAATGACATTTATGTTAAAATTGAACCAAATTTACCAAGTTACAGAATCACATGGACGGGGAAA
NNDIYVKIEPNLPS


GAAGATATAATATATAATGGAATAACTGACTGGGTTTATGAAGAGGAAGTCTTCAGTGCCTACTCTGCTCTGTGGTGGTCTCCAAAC
YRITWTGKEDIIYN


GGCACTTTTTTAGCATATGCCCAATTTAACGACACAGAAGTCCCACTTATTGAATACTCCTTCTACTCTGATGAGTCACTGCAGTAC
GITDWVYEEEVFSA


CCAAAGACTGTACGGGTTCCATATCCAAAGGCAGGAGCTGTGAATCCAACTGTAAAGTTCTTTGTTGTAAATACAGACTCTCTCAGC
YSALWWSPNGTFLA


TCAGTCACCAATGCAACTTCCATACAAATCACTGCTCCTGCTTCTATGTTGATAGGGGATCACTACTTGTGTGATGTGACATGGGCA
YAQFNDTEVPLIEY


ACACAAGAAAGAATTTCTTTGCAGTGGCTCAGGAGGATTCAGAACTATTCGGTCATGGATATTTGTGACTATGATGAATCCAGTGGA
SFYSDESLQYPKTV


AGATGGAACTGCTTAGTGGCACGGCAACACATTGAAATGAGTACTACTGGCTGGGTTGGAAGATTTAGGCCTTCAGAACCTCATTTT
RVPYPKAGAVNPTV


ACCCTTGATGGTAATAGCTTCTACAAGATCATCAGCAATGAAGAAGGTTACAGACACATTTGCTATTTCCAAATAGATAAAAAAGAC
KFFVVNTDSLSSVT


TGCACATTTATTACAAAAGGCACCTGGGAAGTCATCGGGATAGAAGCTCTAACCAGTGATTATCTATACTACATTAGTAATGAATAT
NATSIQITAPASML


AAAGGAATGCCAGGAGGAAGGAATCTTTATAAAATCCAACTTAGTGACTATACAAAAGTGACATGCCTCAGTTGTGAGCTGAATCCG
IGDHYLCDVTWATQ


GAAAGGTGTCAGTACTATTCTGTGTCATTCAGTAAAGAGGCGAAGTATTATCAGCTGAGATGTTCCGGTCCTGGTCTGCCCCTCTAT
ERISLQWLRRIQNY


ACTCTACACAGCAGCGTGAATGATAAAGGGCTGAGAGTCCTGGAAGACAATTCAGCTTTGGATAAAATGCTGCAGAATGTCCAGATG
SVMDICDYDESSGR


CCCTCCAAAAAACTGGACTTCATTATTTTGAATGAAACAAAATTTTGGTATCAGATGATCTTGCCTCCTCATTTTGATAAATCCAAG
WNCLVARQHIEMST


AAATATCCTCTACTATTAGATGTGTATGCAGGCCCATGTAGTCAAAAAGCAGACACTGTCTTCAGACTGAACTGGGCCACTTACCTT
TGWVGRFRPSEPHF


GCAAGCACAGAAAACATTATAGTAGCTAGCTTTGATGGCAGAGGAAGTGGTTACCAAGGAGATAAGATCATGCATGCAATCAACAGA
TLDGNSFYKIISNE


AGACTGGGAACATTTGAAGTTGAAGATCAAATTGAAGCAGCCAGACAATTTTCAAAAATGGGATTTGTGGACAACAAACGAATTGCA
EGYRHICYFQIDKK


ATTTGGGGCTGGTCATATGGAGGGTACGTAACCTCAATGGTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGAATAGCCGTGGCG
DCTFITKGTWEVIG


CCTGTATCCCGGTGGGAGTACTATGACTCAGTGTACACAGAACGTTACATGGGTCTCCCAACTCCAGAAGACAACCTTGACCATTAC
IEALTSDYLYYISN


AGAAATTCAACAGTCATGAGCAGAGCTGAAAATTTTAAACAAGTTGAGTACCTCCTTATTCATGGAACAGCAGATGATAACGTTCAC
EYKGMPGGRNLYKI


TTTCAGCAGTCAGCTCAGATCTCCAAAGCCCTGGTCGATGTTGGAGTGGATTTCCAGGCAATGTGGTATACTGATGAAGACCATGGA
QLSDYTKVTCLSCE


ATAGCTAGCAGCACAGCACACCAACATATATATACCCACATGAGCCACTTCATAAAACAATGTTTCTCTTTACCTTAGCACCTCAAA
LNPERCQYYSVSFS


ATACCATGCCATTTAAAGCTTATTAAAACTCATTTTTGTTTTCATTATCTCAAAACTGCACTGTCAAGATGATGATGATCTTTAAAA
KEAKYYQLRCSGPG


TACACACTCAAATCAAGAAACTTAAGGTTACCTTTGTTCCCAAATTTCATACCTATCATCTTAAGTAGGGACTTCTGTCTTCACAAC
LPLYTLHSSVNDKG


AGATTATTACCTTACAGAAGTTTGAATTATCCGGTCGGGTTTTATTGTTTAAAATCATTTCTGCATCAGCTGCTGAAACAACAAATA
LRVLEDNSALDKML


GGAATTGTTTTTATGGAGGCTTTGCATAGATTCCCTGAGCAGGATTTTAATCTTTTTCTAACTGGACTGGTTCAAATGTTGTTCTCT
QNVQMPSKKLDFII


TCTTTAAAGGGATGGCAAGATGTGGGCAGTGATGTCACTAGGGCAGGGACAGGATAAGAGGGATTAGGGAGAGAAGATAGCAGGGCA
LNETKFWYQMILPP


TGGCTGGGAACCCAAGTCCAAGCATACCAACACGAGCAGGCTACTGTCAGCTCCCCTCGGAGAAGAGCTGTTCACAGCCAGACTGGC
HFDKSKKYPLLLDV


ACAGTTTTCTGAGAAAGACTATTCAAACAGTGTCAGGAAATCAAATATGCAAAGCACTGACTTCTAAGTAAAACCACAGCAGTTGAA
YAGPCSQKADTVFR


AAGACTCCAAAGAAATGTAAGGGAAACTGCCAGCAACGCAGGCCCCCAGGTGCCAGTTATGGCTATAGGTGCTACAAAAACACAGCA
LNWATYLASTENII


AGGGTGATGGGAAAGCATTGTAAATGTGCTTTTAAAAAAAAATACTGATGTTCCTAGTGAAAGAGGCAGCTTGAAACTGAGATGTGA
VASFDGRGSGYQGD


ACACATCAGCTTGCCCTGTTAAAAGATGAAAATATTTGTATCACAAATCTTAACTTGAAGGAGTCCTTGCATCAATTTTTCTTATTT
KIMHAINRRLGTFE


CATTTCTTTGAGTGTCTTAATTAAAAGAATATTTTAACTTCCTTGGACTCATTTTAAAAAATGGAACATAAAATACAATGTTATGTA
VEDQIEAARQFSKM


TTATTATTCCCATTCTACATACTATGGAATTTCTCCCAGTCATTTAATAAATGTGCCTTCATTTTTTCAGAAAAAAAAAAAAAAA
GFVDNKRIAIWGWS



YGGYVTSMVLGSGS



GVFKCGIAVAPVSR



WEYYDSVYTERYMG



LPTPEDNLDHYRNS



TVMSRAENFKQVEY



LLIHGTADDNVHFQ



QSAQISKALVDVGV



DFQAMWYTDEDHGI



ASSTAHQHIYTHMS



HFIKQCFSLP





SEQ ID NO.: 34
SEQ ID NO.: 81


CGCAGCGGGTCCTCTCTATCTAGCTCCAGCCTCTCGCCTGCGCCCCACTCCCCGCGTCCCGCGTCCTAGCCGACCATGGCCGGGCCC
MAGPLRAPLLLLAI


CTGCGCGCCCCGCTGCTCCTGCTGGCCATCCTGGCCGTGGCCCTGGCCGTGAGCCCCGCGGCCGGCTCCAGTCCCGGCAAGCCGCCG
LAVALAVSPAAGSS


CGCCTGGTGGGAGGCCCCATGGACGCCAGCGTGGAGGAGGAGGGTGTGCGGCGTGCACTGGACTTTGCCGTCGGCGAGTACAACAAA
PGKPPRLVGGPMDA


GCCAGCAACGACATGTACCACAGCCGCGCGCTGCAGGTGGTGCGCGCCCGCAAGCAGATCGTAGCTGGGGTGAACTACTTCTTGGAC
SVEEEGVRRALDFA


GTGGAGCTGGGCCGAACCACGTGTACCAAGACCCAGCCCAACTTGGACAACTGCCCCTTCCATGACCAGCCACATCTGAAAAGGAAA
VGEYNKASNDMYHS


GCATTCTGCTCTTTCCAGATCTACGCTGTGCCTTGGCAGGGCACAATGACCTTGTCGAAATCCACCTGTCAGGACGCCTAGGGGTCT
RALQVVRARKQIVA


GTACCGGGCTGGCCTGTGCCTATCACCTCTTATGCACACCTCCCACCCCCTGTATTCCCACCCCTGGACTGGTGGCCCCTGCCTTGG
GVNYFLDVELGRTT


GGAAGGTCTCCCCATGTGCCTGCACCAGGAGACAGACAGAGAAGGCAGCAGGCGGCCTTTGTTGCTCAGCAAGGGGCTCTGCCCTCC
CTKTQPNLDNCPFH


CTCCTTCCTTCTTGCTTCTCATAGCCCCGGTGTGCGGTGCATACACCCCCACCTCCTGCAATAAAATAGTAGCATCGGCAAAAAAAA
DQPHLKRKAFCSPQ


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
IYAVPWQGTMTLSK



STCQDA





SEQ ID NO.: 35
SEQ ID NO.: 82


CCCAGCGGCCCTGCAGACTTGGCACAGAGCACACCCACCTGCCTTTGTCACAGCACACTAAGAAGGTTCTCTGTGGTGACCAGGCTG
MEGSLQLLACLACV


GGTAGAGGGCTGCTGGGTCTGCAGGCGTCAGAGCATGGAGGGGTCCCTCCAACTCCTGGCCTGCTTGGCCTGTGTGCTCCAGATGGG
LQMGSLVKTRRDAS


ATCCCTTGTGAAAACTAGAAGAGACGCTTCGGGGGATCTGCTCAACACAGAGGCGCACAGTGCCCCGGCGCAGCGCTGGTCCATGCA
GDLLNTEAHSAPAQ


GGTGCCCGCGGAGGTGAACGCGGAGGCTGGCGACGCGGCGGTGCTGCCCTGCACCTTCACGCACCCGCACCGCCACTACGACGGGCC
RWSMQVPAEVNAEA


GCTGACGGCCATCTGGCGCTCGGGCGAGCCGTACGCGGGCCCGCAGGTGTTCCGCTGCACCGCGGCGCCGGGCAGCGAGCTGTGCCA
GDAAVLPCTFTHPH


GACGGCGCTGAGCCTGCACGGCCGCTTCCGCCTGCTGGGCAACCCGCGCCGCAACGACCTGTCCCTGCGCGTCGAGCGCCTCGCCCT
RHYDGPLTAIWRSG


GGCGGACAGCGGCCGCTACTTCTGCCGCGTGGAGTTCACCGGCGACGCCCACGATCGCTATGAGAGTCGCCATGGGGTCCGTCTGCG
EPYAGPQVFRCTAA


CGTGACTGCTGCGCCGCGGATCGTCAACATCTCGGTGCTGCCGGGCCCCGCGCACGCCTTCCGCGCGCTCTGCACCGCCGAGGGGGA
PGSELCQTALSLHG


GCCCCCGCCCGCCCTCGCCTGGTCGGGTCCCGCCCCAGGCAACAGCTCCGCTGCCCTGCAGGGCCAGGGTCACGGCTACCAGGTGAC
RFRLLGNPRRNDLS


CGCCGAGTTGCCCGCGCTGACCCGCGACGGCCGCTACACGTGCACGGCGGCCAATAGCCTGGGCCGCGCCGAGGCCAGCGTCTACCT
LRVERLALADSGRY


GTTCCGCTTCCACGGCGCCCCCGGAACCTCGACCCTAGCGCTCCTGCTGGGCGCGCTGGGCCTCAAGGCCTTGCTGCTGCTTGGCAT
FCRVEFTGDAHDRY


TCTGGGAGCGCGTGCCACCCGACGCCGACTAGATCACCTGGTCCCCCAGGACACCCCTCCACGTGCGGACCAGGACACTTCACCTAT
ESRHGVRLRVTAAP


CTGGGGCTCAGCTGAAGAAATAGAAGATCTGAAAGACCTGCATAAACTCCAACGCTAG
RIVNISVLPGPAHA



FRALCTAEGEPPPA



LAWSGPAPGNSSAA



LQGQGHGYQVTAEL



PALTRDGRYTCTAA



NSLGRAEASVYLFR



FHGAPGTSTLALLL



GALGLKALLLLGIL



GARATRRRLDHLVP



QDTPPRADQDTSPI



WGSAEEIEDLKDLH



KLQR





SEQ ID NO.: 36



TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCTAATACGACTCACTATAGGGAGACGAGAGCACCTGGATAGGTTCG



CGTGGCGCGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGC



AAAGAATTCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGAT



CTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATT



GCAAAAAAAAAAAGCGGCCGCTAACTGTTGGTGCAGGCGCTCGGACCGCTAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGT



GAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAAC



TCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGG



GGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTAT



CAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGG



CCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTC



AGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGC



CGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGT



AGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGT



CCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAG



AGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAA



AAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAA



AAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA



TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTT



GGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCG



TCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAG



ATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATT



GTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCT



CGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTA



GCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTA



CTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTT



GCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGC



GAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTT



TCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCA



TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATA



AACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAA



ATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCA



CAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACT



ATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTSTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCA



GGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGG



GATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG






SEQ ID NO.: 37



TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCACATACGATTTAGGTGACACTATAGGCCTGCACCAACAG



TTAACACGGCGCGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTT



TGGCAAAGAATTCACTCCTCAGGTGCAGGGTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAAATACCACTG



AGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGCTTCTGGCTAATAAAGGAAATTTTATTTT



CATTGCAAAAAAAAAAAGCGGCCGCTAGAGTCGGCCGCAGCGGCCGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAA



TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC



ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAG



AGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC



TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAG



GAACCGTAAAAAGGCCGCGTTGTCTGGCGTTTTTCCATAGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAG



GTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCTGTCGCTCTCCTGTTCCGACCCTGCCGCT



TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAAAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGT



CGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAA



CCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTT



CTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG



AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAA



AGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAG



ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTC



TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGT



GTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTT



ATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTG



CCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTC



GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTC



CTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGT



CATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTC



TTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATGGAAAACGTTCTTCGGGGCGAAAA



ACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATGTTTTACTTTCAC



CAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACT



CTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACA



AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAG



GCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGC



TTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGC



GGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCG



CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATG



TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG






SEQ ID NO.: 38



TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCTAATACGACTCACTATAGGGAGATGGAGAAAAAAATCACTGGACG



CGTGGCGCGCCATTAATTAATGCGGCCGCTAGCTCGAGTGATAATAAGCGGATGAATGGCTGCAGGCATGCAAGCTTGGCGTAATCA



TGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGG



GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCAT



TAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTC



GTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG



TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT



CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG



CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGC



TGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTA



TCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCG



AGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTG



CTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGC



AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAAC



TCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATC



TAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCA



TCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGA



GACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCC



GCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCT



ACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCC



ATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATG



GCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAA



TAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATC



ATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAAC



TGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCG



ACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATA



TTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATT



ATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACAC



ATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGC



GGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGC



GTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTA



TTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG






SEQ ID NO.: 39



TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCAATTAACCCTCACTAAAGGGAGACTTGTTCCAAATGTGTTAGGcg



CGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAAT



TCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCTTTTTC



CCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAAAAA



AAAAAAGCGGCCGCTCTTCTATAGTGTCACCTAAATGGCCCAGCGGCCGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTG



AAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACT



CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGG



GAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATC



AGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGC



CAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCA



GAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC



GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAAAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA



GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTC



CAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGA



GTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAA



AAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA



AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCAT



GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG



GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGT



CGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGA



TTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTG



TTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTC



GTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAG



CTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTAC



TGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTG



CTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCG



AAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTT



CACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT



ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAA



ACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAA



TAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCAC



AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTA



TGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAG



GCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGG



ATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG






SEQ ID NO.: 40



AATTCTAATACGACTCACTATAGGGAGACGAGAGCACCTGGATAGGTT






SEQ ID NO.: 41



GCCTGCACCAACAGTTAACA






SEQ ID NO.: 42



CAGGCCCAGGAGTCCAATT






SEQ ID NO.: 43



TCCCGTCTTTGGGTCAAAA






SEQ ID NO.: 44



GCGCCGCGGATCGTCAACA






SEQ ID NO.: 45



ACACGTGCACGGCGGCCAA






SEQ ID NO.: 46



TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGA



GCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGA



GAGTGCACCATATGCGGTGTGAAATACCGCGCAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCA



ACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGG



TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTTTCCAAAAAACTACCGTTGTTATAGGTGTCT



CTTGAACACCTATAACAACGGTAGTGGATCCCGCGTCCTTTCCACAAGATATATAAACCCAAGAAATCGAAATACTTTCAAGTTACG



GTAAGCATATGATAGTCCATTTTAAAACATAATTTTAAAACTGCAAACTACCCAAGAAATTATTACTTTCTACGTCACGTATTTTGT



ACTAATATCTTTGTGTTTACAGTCAAATTAATTCTAATTATCTCTCTAACAGCCTTGTATCGTATATGCAAATATGAAGGAATCATG



GGAAATAGGCCCTCTTCCTGCCCGACCTTGGCGCGCGCTCGGCGCGCGGTCACGCTCCGTCACGTGGTGCGTTTTGCCTGCGCGTCT



TTCCACTGGGGAATTCATGCTTCTCCTCCCTTTAGTGAGGGTAATTCTCTCTCTCTCCCTATAGTGAGTCGTATTAATTCCTTCTCT



TCTATAGTGTCACCTAAATCGTTGCAATTCGTAATCATGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAC



AACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCC



GCTTTCCAGTCGGGAAACCTGTCGTTCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCT



TCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA



TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTG



GCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA



AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTC



CCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTG



CACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCA



CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC



TACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA



AAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATC



TTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAG



ATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGT



GAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGC



TTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGA



AGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG



CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCC



GGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGA



AGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCT



GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAAT



ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTG



AGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACA



GGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGC



ATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCC



CGAAAAGTGCCACCTATTGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAA



CGAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCC



TAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGG



CCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAGCTTGCA



TGCCTGCAGGTCGGCCGCCACGACCGGTGCCGCCACCATCCCCTGACCCACGCCCCTGACCCCTCACAAGGAGACGACCTTCCATGA



CCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCCGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACC



CCGCCACGCGCCACACCGTCGACCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCG



ACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCG



CCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGC



CCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCGTGCTCCCCG



GAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCT



TCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAGCCCGGTGCCTGACGCCCGCCCCACG



ACCCGCAGCGCCCGACCGAAAGGAGCGCACGACCCCATGGCTCCGACCGAAGCCACCCGGGGCGGCCCCGCCGACCCCGCACCCGCC



CCCGAGGCCCACCGACTCTAGAGGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTC



CCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGC



ATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCAATCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTA



TCACGAGGCCCTTTCGTC






SEQ ID NO.: 47



TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCC



GCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTG



ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGT



CAATGACGGTAAATGGCCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGCAGTACATCTACGTATTAGT



CATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCA



CCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCA



AATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCA



GATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCACCGGGGCCGCGACTCTAGATCATAATCAGC



CATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTT



GTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTG



CATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAA



TTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTT



GAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGA



TGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCC



CCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGC



AAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGG



AAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCT



TCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGC



TCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGA



AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCC



GCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAG



TGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGG



ATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGC



CGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGC



AGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCT



ATTGGGCGAAGTGCCGGGGCAGGATCTCCGTCASTCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCG



GCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG



TCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGA



CGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTG



TGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGA



CCGTCTTCCTCGTGCTTTACGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGG



ACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTG



GGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAGGGGG



AGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGTGTT



GGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCC



CGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCC



ATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGAT



AATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGAT



CCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCA



ACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC



AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACC



GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGA



ACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCG



GTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGC



CACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGG



TTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT






SEQ ID NO.: 83
Identical to


ATGGAAAAGTCCATCTGGCTGCTGGCCTGCTTGGCGTGGGTTCTCCCGACAGGCTCATTTGTGAGAACTAAAATAGATACTACGGAG
SEQ ID NO.: 48


AACTTGCTCAACACAGAGGTGCACAGCTCGCCAGCGCAGCGCTGGTCCATGCAGGTGCCACCCGAGGTGAGCGCGGAGGCAGGCGAC
MEKSIWLLACLAWV


GCGGCAGTGCTGCCCTGCACCTTCACGCACCCGCACCGCCACTACGACGGGCCGCTGACGGCCATCTGGCGCGCGGGCGAGCCCTAT
LPTGSFVRTKIDTT


GCGGGCCCGCAGGTGTTCCGCTGCGCTGCGGCGCGGGGCAGCGAGCTCTGCCAGACGGCGCTGAGCCTGCACGGCCGCTTCCGGCTG
ENLLNTEVHSSPAQ


CTGGGCAACCCGCGCCGCAACGACCTCTCGCTGCGCGTCGAGCGCCTCGCCCTGGCTGACGACCGCCGCTACTTCTGCCGCGTCGAG
RWSMQVPPSVSAEA


TTCGCCGGCGACGTCCATGACCGCTACGAGAGCCGCCACGGCGTCCGGCTGCACGTGACAGCCGCGCCGCGGATCGTCAACATCTCG
GDAAVLPCTFTHPH


GTGCTGCCCAGTCCGGCTCACGCCTTCCGCGCGCTCTGCACTGCCGAAGGGGAGCCGCCGCCCGCCCTCGCCTGGTCCGGCCCGGCC
RHYDGPLTAIWRAG


CTGGGCAACAGCTTGGCAGCCGTGCGGAGCCCGCGTGAGGGTCACGGCCACCTAGTGACCGCCGAACTGCCCGCACTGACCCATGAC
EPYAGPQVFRCAAA


GGCCGCTACACGTGTACGGCCGCCAACAGCCTGGGCCGCTCCGAGGCCAGCGTCTACCTGTTCCGCTTCCATGGCGCCAGCGGGGCC
RGSELCQTALSLHG


TCGACGGTCGCCCTCCTGCTCGGCGCTCTCGGCTTCAAGGCGCTGCTGCTGCTCGGGGTCCTGGCCGCCCGCGCTGCCCGCCGCCGC
RFRLLGNPRRNDLS


CCAGAGCATCTGGACACCCCGGACACCCCACCACGGTCCCAGGCCCAGGAGTCCAATTATGAAAATTTGAGCCAGATGAACCCCCGG
LRVERLALADDRRY


AGCCCACCAGCCACCATGTGCTCACCGTGA
FCRVEFAGDVHDRY



ESRHGVRLHVTAAP



RIVNISVLPSPAHA



FRALCTAEGEPPPA



LAWSGPALGNSLAA



VRSPREGHGHLVTA



ELPALTHDGRYTCT



AANSLGRSEASVYL



FRFHGASGASTVAL



LLGALGFKALLLLG



VLAARAARRRPEHL



DTPDTPPRSQAQES



NYENLSQMNPRSPP



ATMCSP





SEQ ID NO.: 84
Identical to


ATGCCGGCGCTGCTGCCTGTGGCCTCCCGCCTTTTGTTGCTACCCCGAGTCTTGCTGACCATGGCCTCTGGAAGCCCTCCGACCCAG
SEQ ID NO.: 49


CCCTCGCCGGCCTCGGATTCCGGCTCTGGCTACGTTCCGGGCTCGGTCTCTGCAGCCTTTGTTACTTGCCCCAACGAGAAGGTCGCC
MIGSGLAGSGGAGG


AAGGAGATCGCCAGGGCCGTGGTGGAGAAGCGCCTAGCAGCCTGCGTCAACCTCATCCCTCAGATTACATCCATCTATGAGTGGAAA
PSSTVTWCALFSNH


GGGAAGATCGAGGAAGACAGTGAGGTGCTGATGATGATTAAAACCCAAAGTTCCTTGGTCCCAGCTTTGACAGATTTTGTTCGTTCT
VAATQASLLLSFVW


GTGCACCCTTACGAAGTGGCCGAGGTAATTGCATTGCCTGTGGAACAGGGGAACTTTCCGTACCTGCAGTGGGTGCGCCAGGTCACA
MPALLPVASRLLLL


GAGTCAGTTTCTGACTCTATCACAGTCCTGCCATGA
PRVLLTMASGSPPT



QPSPASDSGSGYVP



GSVSAAFVTCPNEK



VAKEIARAVVEKRL



AACVNLIPQITSIY



EWKGKIEEDSEVLM



MIKTQSSLVPALTD



FVRSVHPYEVAEVI



ALPVEQGNFPYLQW



VRQVTESVSDSITV



LP





SEQ ID NO. 85:



CATGTGCCAACATGCAGGTTTGCTCATATNTATACTTTTGCCATGTTGGTGTGCTGCACCCATTAACTCGTCATTTAGCATTAGGTA



TATTTCTTAATGCTATCCCTCCCCCCTCCCTCCACCCCACAACAGTCCCCGCTGGTGTGTGATGTTCCCAAATTTTTTTTTTCTCAT



CANCATTATCNCTAAACAACATTGAATGAAACAACATTGAGGATCTGCTATATTTGAAAATAAAAATATAACTAAAAATAATACAAA



TTTTAAAAATACAGTGTAACAACTATTTACATAGAATTTACATTGTATTAGGTATTGNANGTAATCTAGAGTTGATTTAAAGGAGGG



GNGTCCAAACTTTTGGCTTCCCTGGGCCACACTGGAANAANAATTGTCTTGGGCTACCCATAAAATACACTAACAATAGCTGATAAC



GA






SEQ ID NO. 86



GCTGATTTACAGAGTTTCCTCCTTATAATATTCAAATGTCCATTTTCAATAACAGCAACAAACTACAAAGAAACAGGAAAGTATGGT



CTACTCACAGA









REFERENCES
Patents:



  • U.S. Pat. No. 5,712,127 Malek et al., Jan. 27, 1998

  • U.S. Pat. No. 6,498,024, Malek et al., Dec. 24, 2002

  • U.S. patent application Ser. No. 11/000,958 field on Dec. 2, 2003 published under No. US 2005/0153333A1 on Jul. 14, 2005 and entitled “Selective Terminal Tagging of Nucleic Acids”

  • U.S. Pat. No. 6,617,434 Duffy, Sep. 9, 2003

  • U.S. Pat. No. 6,451,555 Duffy, Sep. 17, 2002



OTHER REFERENCES



  • 1. Frost H. M., 1964 Dymanics of Bone Remodeling. In: Bone Biodynamics, Little and Brown, Boston, Mass., USA pp. 315;

  • 2. Baron, R., Anatomy and Biology of Bone Matrix and Cellular Elements, In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Fifth Edition 2003, American Society for Bone and Mineral Research, Washington D.C., pp. 1-8;

  • 3. Jilka, R. L. et al., “Increased Osteoclast Development After Esgtrogen Loss: Mediation by Interleukin-6”, Science 257: 88-91 (1992)

  • 4. Poli, V. et al., “Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion”, EMBO J 13: 1189-1196 (1994).

  • 5. Srivastava, S. et al., “Estrogen Blocks M-CSF Gene Expression and Osteoclast Formation by Regulating Phosphorylation of Egr-1 and Its Interaction with Sp-1”, J Clin Invest 102: 1850-1859 (1998).

  • 6. de Vernejoul, M. C., “Dynamics of Bone Remodeling: Biochemical and Pathophysiological Basis”, Eur J Clin Chem Clin Biochem 34: 729-734 (1996).

  • 7. Netzel-Arnett, S., J. D. Hooper, et al. (2003). “Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer.” Cancer Metastasis Rev 22(2-3): 237-58.

  • 8. Shan, J., L. Yuan, et al. (2002). “TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells.” CancerRes 62(1): 290-4.

  • Yuan, L., J. Shan, et al. (1999). “Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer.” Cancer Res 59(13): 3215-21.

  • 10. Nishi, T. and M. Forgac (2002). “The vacuolar (H+)-ATPases-nature's most versatile proton pumps.” Nat Rev Mol Cell Biol 3(2): 94-103.

  • 11. Nishi, T., S. Kawasaki-Nishi, et al. (2003). “Expression and function of the mouse V-ATPase d subunit isoforms.” J Biol Chem 278(47): 46396-402.

  • 12. Morello, R., L. Tonachini, et al. (1999). “cDNA cloning, characterization and chromosome mapping of Crtap encoding the mouse cartilage associated protein.” Matrix Biol 18(3): 319-24.

  • 13. Tonachini, L., R. Morello, et al. (1999). “cDNA cloning, characterization and chromosome mapping of the gene encoding human cartilage associated protein (CRTAP).” Cytogenet Cell Genet 87(3-4): 191-4.

  • 14. Kawai, J., A. Shinagawa, et al. (2001). “Functional annotation of a full-length mouse cDNA collection.” Nature 409(6821): 685-90.

  • 15. Strausberg, R. L., E. A. Feingold, et al. (2002). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.” Proc Natl Acad Sci USA 99(26): 16899-903

  • 16. Janssen, E., M. Zhu, et al. (2003). “LAB: a new membrane-associated adaptor molecule in B cell activation.” Nat Immunol 4(2): 117-23.

  • 17. Kawaida, R., T. Ohtsuka, et al. (2003). “Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL.” J Exp Med 197(8): 1029-35.

  • 18. Agrawal, N., P. V. Dasaradhi, et al. (2003). “RNA interference: biology, mechanism, and applications.” Microbiol Mol Biol Rev 67(4): 657-85.

  • 19. Hannon, G. J. (2002). “RNA interference.” Nature 418(6894): 244-51.

  • 20. Brummelkamp, T. R., R. Bernards, et al. (2002). “A system for stable expression of short interfering RNAs in mammalian cells.” Science 296(5567): 550-3.

  • 21. Elbashir, et al. (2001). “Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.” Nature 411(6836): 494-8.

  • 22. Lee, J. S., Z. Hmama, et al. (2004). “Stable gene silencing in human monocytic cell lines using lentiviral-delivered small interference RNA. Silencing of the p110alpha isoform of phosphoinositide 3-kinase reveals differential regulation of adherence induced by 1alpha,25-dihydroxycholecalciferol and bacterial lipopolysaccharide.” J Biol Chem 279(10): 9379-88.

  • 23. Rubinson, D. A., C. P. Dillon, et al. (2003). “A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference.” Nat Genet 33(3): 401-6.

  • 24. Boyle, W. J., W. S. Simonet, et al. (2003). “Osteoclast differentiation and activation.” Nature 423(6937): 337-42.

  • 25. Gee et al. In: Huber and Can (1994) Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco N.Y., pp. 163-177.

  • 26. Smith, A. N., F. Jouret, et al. (2005). “Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone.” J Am Soc Nephrol 16(5): 1245-56

  • 27. Smith, A. N., J. Skaug, et al. (2000). “Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing.” Nat Genet 26(1): 71-5.

  • 28. Stehberger, P. A., N. Schulz, et al. (2003). “Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis.” J Am Soc Nephrol 14(12): 3027-38.

  • 29. Malkin I, Dahm S, Suk A, Kobyliansky E, Toliat M, Ruf N. Livshits G, Nurnberg P Association of ANKH gene polymorphisms with radiographic hand bone size and geometry in a Chuvasha population. Bone. 2005 February; 36(2):365-73.

  • 30. McMahon C, Will A, Hu P, Shah G N, Sly W S, Smith O P. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase II deficiency syndrome. Blood. 2001 Apr. 1; 97(7):1947-50.

  • 31. Biskobing D M, Fan D. Acid pH increases carbonic anhydrase II and calcitonin receptor mRNA expression in mature osteoclasts. Calcif Tissue Int. 2000 August; 67(2):178-83.

  • 32. Brage M, Abrahamson M, Lindstrom V, Grubb A, Lerner U H. Different cysteine proteinases involved in bone resorption and osteoclast formation. Calcif Tissue Int. 2005 June; 76(6):439-47. Epub 2005 May 19.


Claims
  • 1-24. (canceled)
  • 25. A method for treating a bone disease in an individual in need thereof, the method comprising administering a compound capable of interfering with the activity or expression of a polypeptide selected from the group consisting of SEQ ID NO.:48 to 80 or a polypeptide encoded by any one of SEQ ID NO.:1 to 33, SEQ ID NO.:35, SEQ ID NO.: 85 or 86.
  • 26. The method of claim 25, wherein said mammal suffers from a condition selected from the group consisting of osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Tumer syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets, fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes.
  • 27-41. (canceled)
  • 42. The method of claim 25, wherein the compound comprises a nucleic acid sequence having a portion substantially complementary to any one of SEQ ID NO.:1 to 33, SEQ ID NO.:35, SEQ ID NO.: 85 or 86.
  • 43. The method of claim 42, wherein the nucleic acid sequence comprises deoxyribonucleotides.
  • 44. The method of claim 42, wherein the nucleic acid sequence comprises ribonucleotides.
  • 45. The method of claim 42, wherein the compound is an antisense, a siRNA, a shRNA or a ribozyme.
  • 46. A method for detecting a level of differentiation of an osteoclast cell population, the method comprising measuring expression of one or more of SEQ ID NO.:48 to 80 or 82.
  • 47. The method of claim 46, wherein the expression is measured by contacting a cell or a cell sample with a compound capable of specifically binding to SEQ ID NO.:48 to 80 or 82.
  • 48. The method of claim 47, wherein the compound is an antibody or an antigen binding fragment thereof.
  • 49. The method of claim 46, wherein the expression is measured by contacting a cell or a cell sample with a compound capable of specifically binding to SEQ ID NO.:1 to 33, SEQ ID NO.:35, SEQ ID NO.: 85 or 86.
  • 50. The method of claim 49, wherein the compound comprises a nucleic acid sequence having a portion substantially complementary to any one of SEQ ID NO.:1 to SEQ ID NO.:33, SEQ ID NO.:35, SEQ ID NO.:85 or SEQ ID NO.:86.
Provisional Applications (2)
Number Date Country
60772585 Feb 2006 US
60816858 Jun 2006 US
Divisions (2)
Number Date Country
Parent 13152205 Jun 2011 US
Child 13950490 US
Parent 12279054 Jan 2009 US
Child 13152205 US
Continuations (1)
Number Date Country
Parent 13950490 Jul 2013 US
Child 14690535 US