The present disclosure relates to a coordinate measuring machine, and more particularly to a portable articulated arm coordinate measuring machine having an onboard electronic data processing system and user interface.
Portable articulated arm coordinate measuring machines (AACMMs) have found widespread use in the manufacturing or production of parts where there is a need to rapidly and accurately verify the dimensions of the part during various stages of the manufacturing or production (e.g., machining) of the part. Portable AACMMs represent a vast improvement over known stationary or fixed, cost-intensive and relatively difficult to use measurement installations, particularly in the amount of time it takes to perform dimensional measurements of relatively complex parts. Typically, a user of a portable AACMM simply guides a probe along the surface of the part or object to be measured. The measurement data are then recorded and provided to the user. In some cases, the data are provided to the user in visual form, for example, three-dimensional (3-D) form on a computer screen. In other cases, the data are provided to the user in numeric form, for example when measuring the diameter of a hole, the text “Diameter=1.0034” is displayed on a computer screen.
An example of a prior art portable articulated arm CMM is disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582), which is incorporated herein by reference in its entirety. The '582 patent discloses a 3-D measuring system comprised of a manually-operated articulated arm CMM having a support base on one end and a measurement probe at the other end. Commonly assigned U.S. Pat. No. 5,611,147 ('147), which is incorporated herein by reference in its entirety, discloses a similar articulated arm CMM. In the '147 patent, the articulated arm CMM includes a number of features including an additional rotational axis at the probe end, thereby providing for an arm with either a two-two-two or a two-two-three axis configuration (the latter case being a seven axis arm).
Currently, articulated arm CMMs are controlled by an operator that communicates with the CMM to direct the CMM to gather data which is then processed by a computer processor. To enhance functionality, what is needed is an AACMM that includes an integrated electronic data processing system that enables access by multiple users and associated computer devices without interruption of the underlying data acquisition and processing functionality.
An embodiment is a method of implementing a portable articulated arm coordinate measuring machine (AACMM). The method includes receiving a first request to perform a function. The portable AACMM includes a manually positionable articulated arm portion having opposed first and second ends, the arm portion including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal, a measurement device attached to a first end of the AACMM, and an electronic circuit which receives the position signals from the transducers and provides data corresponding to a position of the measurement device. The method also includes identifying a source device from which the first request is received, implementing the function pursuant to the first request, selecting a destination device as the source device of the first request by identifying from which of a first and second port the first request is received, and transmitting information derived from implementing the function to the destination device.
Another embodiment is a portable articulated arm coordinate measuring machine (AACMM). The portable AACMM includes a manually positionable articulated arm portion having opposed first and second ends, the arm portion including a plurality of connected arm segments, each of the arm segments including at least one position transducer for producing a position signal, a measurement device attached to a first end of the AACMM, an electronic circuit for receiving the position signals from the transducers and for providing data corresponding to a position of the measurement device, and logic executable by the electronic circuit. The logic receives a first request to perform a function, identifies a source device from which the first request is received, implements the function pursuant to the first request, selects a destination device as the source device of the first request by identifying from which of a first and second port the first request is received, and transmits information derived from implementing the function to the destination device.
A further embodiment is a computer program product for implementing a portable articulated arm coordinate measuring machine (AACMM). The computer program product includes a computer storage medium having computer-readable program code embodied thereon, which when executed by a computer cause the computer to implement a method. The method includes receiving a first request to perform a function. The portable AACMM includes a manually positionable articulated arm having opposed first and second ends, the arm including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal, a measurement device attached to a first end of the AACMM, and an electronic circuit which receives the position signals from the transducers and provides data corresponding to a position of the measurement device. The method also includes identifying a source device from which the first request is received, implementing the function pursuant to the first request, selecting a destination device as the source device of the first request by identifying from which of a first and second port the first request is received, and transmitting information derived from implementing the function to the destination device.
Referring now to the drawings, exemplary embodiments are shown which should not be construed to be limiting regarding the entire scope of the disclosure, and wherein the elements are numbered alike in several FIGURES:
A portable articulated arm coordinate measuring machine (AACMM) and integrated electronic data processing system are provided in accordance with exemplary embodiments. The electronic data processing system resides onboard, and is integrated with, the AACMM and its components. The electronic data processing system includes a base computer processor and display processor, which perform user-selected functions in response to requests received via the AACMM. In an embodiment the requests may be received at the AACMM via an onboard user interface board and/or an external computer processor that is remotely located from the AACMM. In response to the requests, various components, e.g., encoders, sensors, and electronics collect data responsive to the requests. Information derived by the data is forwarded to a destination device as described further herein.
Each bearing cartridge within each bearing cartridge grouping 110, 112, 114 typically contains an encoder system (e.g., an optical encoder system). The encoder system (i.e., transducer) provides an indication of the position of the respective arm segments 106, 108 and corresponding bearing cartridge groupings 110, 112, 114, that all together provide an indication of the position of the probe 118 with respect to the base 116 (and, thus, the position of the object being measured by the AACMM 100 in a certain frame of reference—for example a local or global frame of reference). The arm segments 106, 108 may be made from a suitably rigid material such as but not limited to a carbon composite material for example. A portable AACMM 100 with six or seven axes of articulated movement (i.e., degrees of freedom) provides advantages in allowing the operator to position the probe 118 in a desired location within a 360° area about the base 116 while providing an arm portion 104 that may be easily handled by the operator. However, it should be appreciated that the illustration of an arm portion 104 having two arm segments 106, 108 is for exemplary purposes, and the claimed invention should not be so limited. An AACMM 100 may have any number of arm segments coupled together by bearing cartridges (and, thus, more or less than six or seven axes of articulated movement or degrees of freedom).
The probe 118 is detachably mounted to the measurement probe housing 102, which is connected to bearing cartridge grouping 112. A handle 126 is removable with respect to the measurement probe housing 102 by way of, for example, a quick-connect interface. The handle 126 may be replaced with another device (e.g., a laser line probe, a bar code reader), thereby providing advantages in allowing the operator to use different measurement devices with the same AACMM 100. In exemplary embodiments, the probe housing 102 houses a removable probe 118, which is a contacting measurement device and may have different tips 118 that physically contact the object to be measured, including, but not limited to: ball, touch-sensitive, curved and extension type probes. In other embodiments, the measurement is performed, for example, by a non-contacting device such as a laser line probe (LLP). In an embodiment, the handle 126 is replaced with the LLP using the quick-connect interface. Other types of measurement devices may replace the removable handle 126 to provide additional functionality. Examples of such measurement devices include, but are not limited to, one or more illumination lights, a temperature sensor, a thermal scanner, a bar code scanner, a projector, a paint sprayer, a camera, or the like.
As shown in
In various embodiments, each grouping of bearing cartridges 110, 112, 114 allows the arm portion 104 of the AACMM 100 to move about multiple axes of rotation. As mentioned, each bearing cartridge grouping 110, 112, 114 includes corresponding encoder systems, such as optical angular encoders for example, that are each arranged coaxially with the corresponding axis of rotation of, e.g., the arm segments 106, 108. The optical encoder system detects rotational (swivel) or transverse (hinge) movement of, e.g., each one of the arm segments 106, 108 about the corresponding axis and transmits a signal to an electronic data processing system within the AACMM 100 as described in more detail herein below. Each individual raw encoder count is sent separately to the electronic data processing system as a signal where it is further processed into measurement data. No position calculator separate from the AACMM 100 itself (e.g., a serial box) is required, as disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582).
The base 116 may include an attachment device or mounting device 120. The mounting device 120 allows the AACMM 100 to be removably mounted to a desired location, such as an inspection table, a machining center, a wall or the floor for example. In one embodiment, the base 116 includes a handle portion 122 that provides a convenient location for the operator to hold the base 116 as the AACMM 100 is being moved. In one embodiment, the base 116 further includes a movable cover portion 124 that folds down to reveal a user interface, such as a display screen.
In accordance with an embodiment, the base 116 of the portable AACMM 100 contains or houses an electronic data processing system that includes two primary components: a base processing system that processes the data from the various encoder systems within the AACMM 100 as well as data representing other arm parameters to support three-dimensional (3-D) positional calculations; and a user interface processing system that includes an on-board operating system, a touch screen display, and resident application software that allows for relatively complete metrology functions to be implemented within the AACMM 100 without the need for connection to an external computer.
The electronic data processing system in the base 116 may communicate with the encoder systems, sensors, and other peripheral hardware located away from the base 116 (e.g., a LLP that can be mounted to the removable handle 126 on the AACMM 100). The electronics that support these peripheral hardware devices or features may be located in each of the bearing cartridge groupings 110, 112, 114 located within the portable AACMM 100.
As shown in
Also shown in
In an embodiment shown in
The base processor board 204 also manages all the wired and wireless data communication with external (host computer) and internal (display processor 202) devices. The base processor board 204 has the capability of communicating with an Ethernet network via an Ethernet function 320 (e.g., using a clock synchronization standard such as Institute of Electrical and Electronics Engineers (IEEE) 1588), with a wireless local area network (WLAN) via a LAN function 322, and with Bluetooth module 232 via a parallel to serial communications (PSC) function 314. The base processor board 204 also includes a connection to a universal serial bus (USB) device 312.
The base processor board 204 transmits and collects raw measurement data (e.g., encoder system counts, temperature readings) for processing into measurement data without the need for any preprocessing, such as disclosed in the serial box of the aforementioned '582 patent. The base processor 204 sends the processed data to the display processor 328 on the user interface board 202 via an RS485 interface (IF) 326. In an embodiment, the base processor 204 also sends the raw measurement data to an external computer.
Turning now to the user interface board 202 in
The electronic data processing system 210 shown in
Though shown as separate components, in other embodiments all or a subset of the components may be physically located in different locations and/or functions combined in different manners than that shown in
In an embodiment, the AACMM 100 includes the integrated electronic data processing system 210 described above. The electronic data processing system 210 resides onboard, and is integrated with, the AACMM 100 and its components. The base processor board 204 includes a base computer processor, which may be implemented by the processor function 302 illustrated in
Referring to
In one embodiment, the housing 400 includes an opening 410 sized to receive a battery 412 for providing electrical power for the AACMM 100 when the AACMM 100 is not connected to an external power source (e.g. a wall outlet). In an embodiment, the battery 412 includes circuitry that communicates with the electronic data processing system 210 and transmits signals that may include but are not limited to: battery charge level; battery type; model number; manufacturer; characteristics; discharge rate; predicted remaining capacity; temperature; voltage; and an almost-discharged alarm so that the AACMM can shut down in a controlled manner.
The movable cover portion 124 includes a housing 404 that is mounted to the base 116, e.g., by hinges. During operation of the AACM 100, the movable cover portion 124 may be opened to allow viewing of a display screen 406.
Arranged within the movable cover portion 124 is a display 408 having the display screen 406 (e.g., color LCD 338 of
The user interface board 202 (
In one embodiment, the housing 404 of the cover portion 124 further includes a pair of computer interfaces 414, 416 that allow the operator to connect the user interface board 202 to an external device such as but not limited to: a computer; a computer network; a laptop; a barcode scanner; a digital camera; a digital video camera; a keyboard; a mouse; a printer; a personal digital assistant (PDA); or a smart phone for example. In one embodiment, the computer interface 414 is the USB host interface 334, and the computer interface 416 is the secure digital card interface 330. As discussed above, the user interface board 202 includes a processor 328 that is arranged in bi-directional communication to accept and transmit signals from the display screen 406 and the electronic data processing system 210.
Turning now to
At step 502, the electronic data processing system 210 receives a request from one or more source devices to perform a function. Functions available for implementation may include acquisition of dimensional measurements (such as measurement of point coordinates) of an object through a probe device of the AACMM 100 (e.g., probe 118), monitoring various temperature values (e.g., through one or more temperature sensors 212), performing calibration of one or more components of the AACMM 100, performing diagnostics on one or more of the components of the AACMM 100, and training guidance, to name a few. If the function includes the measurement of point coordinates of an object, components used in the data capture include one or more encoder systems (e.g., encoder systems 214, 216, 234) disposed on a bearing cartridge grouping 110, 112, 114 of the AACMM 100 and the base computer processor, which receives raw measurement data captured from the encoder(s). Other functions available may be implemented in response to a request from a removable accessory or peripheral device, such as a camera, LLP 242, radio frequency identification device (RFID) scanner, thermal scanning device, etc. Source devices may include an external computer processor, an onboard user interface component (e.g., onboard user interface board 202 and display 338 of
The electronic data processing system 210 identifies the source device from which the request is sent (e.g., identifying a port from which the request is received via the logic). If the source device is the external computer processor, the port identified may be the USB port, an Ethernet port, or a wireless communications port (e.g., a wireless port 232 supporting Bluetooth™ protocols or port 322 supporting 802.11 protocols), as shown in
In one embodiment, the request is received at the base computer processor (e.g., processor 302 of
If the request is received from the user interface component (e.g., via the user interface board 202) disposed onboard the AACMM 100, the request may be input by an operator of the AACMM 100 via the user interface display 338 (also shown as display screen 406 of
Returning to step 502, in response to the request to perform a function, the electronic data processing system 210 issues a data capture signal via the logic at step 504. For example, if the function requested is a request for probe 118 measurements, the base computer processor issues a data capture signal to the encoder DSPs 216 and probe end DSP 228 via the arm bus 218. If the AACMM 100 employs a touch probe, the data capture signal may be initiated by the touch probe in response to positioning the touch probe in contact with an object to be measured. The encoder DSPs 216 and the probe end DSP 228 capture (or latch) data (e.g., encoder counts and temperature) in response to receiving the capture signal. If the function requested is a request for data from a peripheral component that is communicatively coupled to the AACMM 100 (e.g., a removably attached peripheral component), the base computer processor issues a data capture signal either across the arm bus 218 to the peripheral component, or it may issue a data capture signal wirelessly to the peripheral component if the peripheral component is equipped with wireless communication components. In an embodiment, the data from a peripheral component is latched and sent over the arm buses 218 to the base computer processor. For example, the peripheral component (e.g., LLP 242) may include a controller and DSP. The data is latched by the DSP in the LLP 242 and then is put onto the arm bus 218 for transport to the base computer processor.
At step 506, the base computer processor receives the data resulting from the data capture signal. For example, if the requested function is for probe measurement data, the base computer processor polls the encoder DSPs 216 and probe end DSP 228 in sequence for the latched data (e.g., sends packets with encoder addresses requesting the position data). If the requested function is for peripheral component data, the data captured may include, e.g., image data (where the peripheral component is a camera), multimedia data (where the accessory is a video recorder), RFID data (where the peripheral component is an RFID scanner), and two-dimensional center of gravity (COG) data (where the accessory is an LLP). In one embodiment, the peripheral component data may also include identifying information that identifies the peripheral component data type (e.g., JPEG, MPEG, AVI, etc.). The data may be received at the base computer processor via the arm bus 218 or the data may be transmitted wirelessly between the peripheral component and the base computer processor.
In an embodiment, steps 502 through 506 are performed continuously while the AACMM 100 is in operation. In addition, if a touch probe is connected to the AACMM, the touch probe can initiate the issuance of a trigger signal (e.g., when the probe tip comes in contact or near contact with an object). When a touch probe initiates the signal, it interrupts the current cycle of steps 502 through 506 and causes processing to resume at step 502
At step 508, the captured data is optionally converted to a different format. For example, if the captured data is raw measurement data, the captured data may be converted to three-dimensional coordinate data.
At step 510, the electronic data processing system 210 selects a destination device to transmit the data (optionally, the converted data). In an embodiment, the electronic data processing system 210 selects the destination device via the logic by identifying the port from which the request is received. As indicated above, if the destination device is the external computer processor, the port identified may be the USB port, an Ethernet port, or a wireless communications port (e.g., a wireless port 232 supporting Bluetooth™ protocols), as shown in
At step 512, the data is transmitted to one or more selected destination devices, such as the external computer and the onboard display 406. In other embodiments, the destination device may be a smart phone, PDA, or other communication device.
As described above in
In an exemplary embodiment, the AACMM 100 may be configured to provide multiple, simultaneous access to the coordinate measuring machine features. For example, a remote user of the AACMM 100 (e.g., via a computer device) may initiate acquisition of data or measurements from the AACMM 100 through the base computer processor and logic. The AACMM 100 may begin collecting data in response to commands provided by the base computer processor. If an operator of the AACMM 100 desires to acquire, e.g., measurements of another aspect of the object being measured, the operator may activate the user interface board 202 and display by selecting from menu options available by the GUI described above. In an exemplary embodiment, the AACMM 100 is configured to receive, through the base computer processor and logic, commands from both the user interface board 202 as well as from external sources, such as the remote computer device. The AACMM 100 may be instructed through the base processor board 204 to pause acquisition of data collection from the remote computer device in order to gather data pursuant to the instructions received via the user interface board 202 and GUI. The data gathered in response to the request from the remote computer device may be stored or temporarily buffered in order to begin collecting data for the operator at the AACMM 100. Once the operator has completed the requested measurements, the AACMM 100 is configured to resume measurements in response to the instructions earlier received from the remote computer device. In this embodiment, the gathered data may be transmitted to the corresponding device that requested the data, or the logic may be configured to transmit all gathered data to any device that is in communication with the AACMM 100. Thus, e.g., the external computer may receive gathered data requested by an operator through the onboard user interface.
In one embodiment, two requests for measurements may be processed by the electronic data processing system 210 at the same time. For example, a request from the external computer for probe 118 measurements may be implemented simultaneous with a request from the onboard user interface for LLP device 242 measurement data. The AACMM 100 arm buses 218 may be configured such that data acquired through operation of one device (e.g., the probe 118) may be transmitted on one bus, while data acquired through operation of another device (e.g., the LLP 242) may be transmitted along another bus. The data from one device may be temporarily buffered while the logic processes the data from the other device.
Technical effects and benefits include integrated functionality of an AACMM 100 and the electronic data processing system 210, which resides onboard, and is integrated with, the AACMM and its components. Because the functions of the electronic data processing system are integrated into the base of the AACMM, no external computer is needed to operate or control the AACMM. If an external computer is desired in the operation of the AACMM, the AACMM integrates base computer processing functionality that enables communication between the AACMM and the external computer as well as communication through an onboard user interface for communicating with an operator of the AACMM separately from the communications conducted with the external computer processor. The data streams to each of the external computer processor and the user interface are separately buffered so one stream can be interrupted without affecting the other. The base computer processor identifies source devices of requests for functions to be performed by the AACMM and transmits captured data resulting from these requests to the identified devices, referred as destination devices. Thus, the AACMM enables access by multiple users and associated computer devices without interruption of the underlying data acquisition and processing functionality.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method, or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, Flash or Phase-change memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++, C# or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer program instructions may also be stored in a computer readable medium that may direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While the invention has been described with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present application claims the benefit of provisional application No. 61/296,555 filed Jan. 20, 2010, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1535312 | Hosking | Apr 1925 | A |
1918813 | Kinzy | Jul 1933 | A |
2316573 | Egy | Apr 1943 | A |
2333243 | Glab | Nov 1943 | A |
2702683 | Green et al. | Feb 1955 | A |
2748926 | Leahy | Jun 1956 | A |
2924495 | Haines | Feb 1960 | A |
2966257 | Littlejohn | Dec 1960 | A |
2983367 | Paramater et al. | May 1961 | A |
3066790 | Armbruster | Dec 1962 | A |
3458167 | Cooley, Jr. | Jul 1969 | A |
4138045 | Baker | Feb 1979 | A |
4178515 | Tarasevich | Dec 1979 | A |
4340008 | Mendelson | Jul 1982 | A |
4379461 | Nilsson et al. | Apr 1983 | A |
4424899 | Rosenberg | Jan 1984 | A |
4430796 | Nakagawa | Feb 1984 | A |
4457625 | Greenleaf et al. | Jul 1984 | A |
4506448 | Topping et al. | Mar 1985 | A |
4537233 | Vroonland et al. | Aug 1985 | A |
4561776 | Pryor | Dec 1985 | A |
4606696 | Slocum | Aug 1986 | A |
4659280 | Akeel | Apr 1987 | A |
4663852 | Guarini | May 1987 | A |
4664588 | Newell et al. | May 1987 | A |
4676002 | Slocum | Jun 1987 | A |
4714339 | Lau et al. | Dec 1987 | A |
4751950 | Bock | Jun 1988 | A |
4767257 | Kato | Aug 1988 | A |
4790651 | Brown et al. | Dec 1988 | A |
4816822 | Vache et al. | Mar 1989 | A |
4882806 | Davis | Nov 1989 | A |
4954952 | Ubhayakar et al. | Sep 1990 | A |
4982841 | Goedecke | Jan 1991 | A |
4996909 | Vache et al. | Mar 1991 | A |
5025966 | Potter | Jun 1991 | A |
5027951 | Johnson | Jul 1991 | A |
5068971 | Simon | Dec 1991 | A |
5069524 | Watanabe et al. | Dec 1991 | A |
5189797 | Granger | Mar 1993 | A |
5205111 | Johnson | Apr 1993 | A |
5211476 | Coudroy | May 1993 | A |
5213240 | Dietz et al. | May 1993 | A |
5219423 | Kamaya | Jun 1993 | A |
5239855 | Schleifer et al. | Aug 1993 | A |
5289264 | Steinbichler | Feb 1994 | A |
5319445 | Fitts | Jun 1994 | A |
5332315 | Baker et al. | Jul 1994 | A |
5372250 | Johnson | Dec 1994 | A |
5373346 | Hocker | Dec 1994 | A |
5402582 | Raab | Apr 1995 | A |
5412880 | Raab | May 1995 | A |
5430384 | Hocker | Jul 1995 | A |
5455670 | Payne et al. | Oct 1995 | A |
5455993 | Link et al. | Oct 1995 | A |
5510977 | Raab | Apr 1996 | A |
5528505 | Granger et al. | Jun 1996 | A |
5535524 | Carrier et al. | Jul 1996 | A |
5611147 | Raab | Mar 1997 | A |
5623416 | Hocker, III | Apr 1997 | A |
5682508 | Hocker, III | Oct 1997 | A |
5724264 | Rosenberg et al. | Mar 1998 | A |
5752112 | Paddock et al. | May 1998 | A |
5754449 | Hoshal et al. | May 1998 | A |
5768792 | Raab | Jun 1998 | A |
5825666 | Freifeld | Oct 1998 | A |
5829148 | Eaton | Nov 1998 | A |
5832416 | Anderson | Nov 1998 | A |
5856874 | Tachibana et al. | Jan 1999 | A |
5887122 | Terawaki et al. | Mar 1999 | A |
5926782 | Raab | Jul 1999 | A |
5956857 | Raab | Sep 1999 | A |
5973788 | Pettersen et al. | Oct 1999 | A |
5978748 | Raab | Nov 1999 | A |
5983936 | Schwieterman et al. | Nov 1999 | A |
5996790 | Yamada et al. | Dec 1999 | A |
5997779 | Potter | Dec 1999 | A |
D423534 | Raab et al. | Apr 2000 | S |
6050615 | Weinhold | Apr 2000 | A |
6060889 | Hocker | May 2000 | A |
6067116 | Yamano et al. | May 2000 | A |
6125337 | Rosenberg et al. | Sep 2000 | A |
6131299 | Raab et al. | Oct 2000 | A |
6134507 | Markey, Jr. et al. | Oct 2000 | A |
6151789 | Raab et al. | Nov 2000 | A |
6163294 | Talbot | Dec 2000 | A |
6166504 | Iida et al. | Dec 2000 | A |
6166809 | Pettersen et al. | Dec 2000 | A |
6166811 | Long et al. | Dec 2000 | A |
6219928 | Raab et al. | Apr 2001 | B1 |
D441632 | Raab et al. | May 2001 | S |
6240651 | Schroeder et al. | Jun 2001 | B1 |
6253458 | Raab et al. | Jul 2001 | B1 |
6282195 | Miller et al. | Aug 2001 | B1 |
6298569 | Raab et al. | Oct 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6366831 | Raab | Apr 2002 | B1 |
6408252 | De Smet | Jun 2002 | B1 |
6418774 | Brogaardh et al. | Jul 2002 | B1 |
6438856 | Kaczynski | Aug 2002 | B1 |
6442419 | Chu et al. | Aug 2002 | B1 |
6460004 | Greer et al. | Oct 2002 | B2 |
6470584 | Stoodley | Oct 2002 | B1 |
6477784 | Schroeder et al. | Nov 2002 | B2 |
6519860 | Bieg et al. | Feb 2003 | B1 |
D472824 | Raab et al. | Apr 2003 | S |
6547397 | Kaufman et al. | Apr 2003 | B1 |
6598306 | Eaton | Jul 2003 | B2 |
6611346 | Granger | Aug 2003 | B2 |
6611617 | Crampton | Aug 2003 | B1 |
6612044 | Raab et al. | Sep 2003 | B2 |
6621065 | Fukumoto et al. | Sep 2003 | B1 |
6626339 | Gates et al. | Sep 2003 | B2 |
6633051 | Holloway et al. | Oct 2003 | B1 |
6668466 | Bieg et al. | Dec 2003 | B1 |
D491210 | Raab et al. | Jun 2004 | S |
6764185 | Beardsley et al. | Jul 2004 | B1 |
6789327 | Roth et al. | Sep 2004 | B2 |
6820346 | Raab et al. | Nov 2004 | B2 |
6822749 | Christoph | Nov 2004 | B1 |
6826664 | Hocker, III et al. | Nov 2004 | B2 |
6868359 | Raab | Mar 2005 | B2 |
6879933 | Steffey et al. | Apr 2005 | B2 |
6892465 | Raab et al. | May 2005 | B2 |
6895347 | Dorny et al. | May 2005 | B2 |
6901673 | Cobb et al. | Jun 2005 | B1 |
6904691 | Raab et al. | Jun 2005 | B2 |
6920697 | Raab et al. | Jul 2005 | B2 |
6925722 | Raab et al. | Aug 2005 | B2 |
6931745 | Granger | Aug 2005 | B2 |
6935036 | Raab et al. | Aug 2005 | B2 |
6935748 | Kaufman et al. | Aug 2005 | B2 |
6948255 | Russell | Sep 2005 | B2 |
6965843 | Raab et al. | Nov 2005 | B2 |
7003892 | Eaton et al. | Feb 2006 | B2 |
7006084 | Buss et al. | Feb 2006 | B1 |
7024032 | Kidd et al. | Apr 2006 | B2 |
7032321 | Raab et al. | Apr 2006 | B2 |
7040136 | Forss et al. | May 2006 | B2 |
7051447 | Kikuchi et al. | May 2006 | B2 |
7106421 | Matsuura et al. | Sep 2006 | B2 |
7117107 | Dorny et al. | Oct 2006 | B2 |
7120092 | del Prado Pavon et al. | Oct 2006 | B2 |
7152456 | Eaton | Dec 2006 | B2 |
7174651 | Raab et al. | Feb 2007 | B2 |
7184047 | Crampton | Feb 2007 | B1 |
7191541 | Weekers et al. | Mar 2007 | B1 |
7193690 | Ossig et al. | Mar 2007 | B2 |
7196509 | Teng | Mar 2007 | B2 |
7199872 | Van Cranenbroeck | Apr 2007 | B2 |
7230689 | Lau | Jun 2007 | B2 |
7242590 | Yeap et al. | Jul 2007 | B1 |
7249421 | MacManus et al. | Jul 2007 | B2 |
7269910 | Raab et al. | Sep 2007 | B2 |
7285793 | Husted | Oct 2007 | B2 |
7296979 | Raab et al. | Nov 2007 | B2 |
7306339 | Kaufman et al. | Dec 2007 | B2 |
7312862 | Zumbrunn et al. | Dec 2007 | B2 |
7313264 | Crampton | Dec 2007 | B2 |
7319512 | Ohtomo et al. | Jan 2008 | B2 |
7337344 | Barman et al. | Feb 2008 | B2 |
7348822 | Baer | Mar 2008 | B2 |
7352446 | Bridges et al. | Apr 2008 | B2 |
7360648 | Blaschke | Apr 2008 | B1 |
7372558 | Kaufman et al. | May 2008 | B2 |
7372581 | Raab et al. | May 2008 | B2 |
7383638 | Granger | Jun 2008 | B2 |
7388654 | Raab et al. | Jun 2008 | B2 |
7389870 | Slappay | Jun 2008 | B2 |
7395606 | Crampton | Jul 2008 | B2 |
7430068 | Becker et al. | Sep 2008 | B2 |
7441341 | Eaton | Oct 2008 | B2 |
7447931 | Rischar et al. | Nov 2008 | B1 |
7449876 | Pleasant et al. | Nov 2008 | B2 |
7454265 | Marsh | Nov 2008 | B2 |
7463368 | Morden et al. | Dec 2008 | B2 |
7508971 | Vaccaro et al. | Mar 2009 | B2 |
7525276 | Eaton | Apr 2009 | B2 |
7545517 | Rueb et al. | Jun 2009 | B2 |
7546689 | Ferrari et al. | Jun 2009 | B2 |
7552644 | Haase et al. | Jun 2009 | B2 |
7561598 | Stratton et al. | Jul 2009 | B2 |
7564250 | Hocker | Jul 2009 | B2 |
7578069 | Eaton | Aug 2009 | B2 |
D599226 | Gerent et al. | Sep 2009 | S |
7589595 | Cutler | Sep 2009 | B2 |
7591077 | Pettersson | Sep 2009 | B2 |
7591078 | Crampton | Sep 2009 | B2 |
7602873 | Eidson | Oct 2009 | B2 |
7604207 | Hasloecher et al. | Oct 2009 | B2 |
7610175 | Eidson | Oct 2009 | B2 |
7614157 | Granger | Nov 2009 | B2 |
7624510 | Ferrari | Dec 2009 | B2 |
D607350 | Cooduvalli et al. | Jan 2010 | S |
7656751 | Rischar et al. | Feb 2010 | B2 |
7693325 | Pulla et al. | Apr 2010 | B2 |
7701592 | Saint Clair et al. | Apr 2010 | B2 |
7712224 | Hicks | May 2010 | B2 |
7721396 | Fleischman | May 2010 | B2 |
7735234 | Briggs et al. | Jun 2010 | B2 |
7743524 | Eaton et al. | Jun 2010 | B2 |
7752003 | MacManus | Jul 2010 | B2 |
7765707 | Tomelleri | Aug 2010 | B2 |
7769559 | Reichert | Aug 2010 | B2 |
7774949 | Ferrari | Aug 2010 | B2 |
7779548 | Ferrari | Aug 2010 | B2 |
7779553 | Jordil et al. | Aug 2010 | B2 |
7800758 | Bridges et al. | Sep 2010 | B1 |
7804602 | Raab | Sep 2010 | B2 |
7805851 | Pettersson | Oct 2010 | B2 |
7805854 | Eaton | Oct 2010 | B2 |
7809518 | Zhu et al. | Oct 2010 | B2 |
RE42055 | Raab et al. | Jan 2011 | E |
RE42082 | Raab et al. | Feb 2011 | E |
7881896 | Atwell et al. | Feb 2011 | B2 |
7903261 | Saint Clair et al. | Mar 2011 | B2 |
7908757 | Ferrari | Mar 2011 | B2 |
8052857 | Townsend | Nov 2011 | B2 |
8065861 | Caputo | Nov 2011 | B2 |
8082673 | Desforges et al. | Dec 2011 | B2 |
8099877 | Champ | Jan 2012 | B2 |
8123350 | Cannell et al. | Feb 2012 | B2 |
8171650 | York et al. | May 2012 | B2 |
8276286 | Bailey et al. | Oct 2012 | B2 |
8284407 | Briggs et al. | Oct 2012 | B2 |
8352212 | Fetter et al. | Jan 2013 | B2 |
8533967 | Bailey et al. | Sep 2013 | B2 |
8537374 | Briggs et al. | Sep 2013 | B2 |
8619265 | Steffey et al. | Dec 2013 | B2 |
8677643 | Bridges et al. | Mar 2014 | B2 |
8683709 | York | Apr 2014 | B2 |
20010004269 | Shibata et al. | Jun 2001 | A1 |
20020032541 | Raab et al. | Mar 2002 | A1 |
20020087233 | Raab | Jul 2002 | A1 |
20020128790 | Woodmansee | Sep 2002 | A1 |
20020170192 | Steffey et al. | Nov 2002 | A1 |
20030002055 | Kilthau et al. | Jan 2003 | A1 |
20030033104 | Gooche | Feb 2003 | A1 |
20030053037 | Blaesing-Bangert et al. | Mar 2003 | A1 |
20030125901 | Steffey et al. | Jul 2003 | A1 |
20030142631 | Silvester | Jul 2003 | A1 |
20030167647 | Raab et al. | Sep 2003 | A1 |
20030172536 | Raab et al. | Sep 2003 | A1 |
20030172537 | Raab et al. | Sep 2003 | A1 |
20030208919 | Raab et al. | Nov 2003 | A1 |
20030221326 | Raab et al. | Dec 2003 | A1 |
20040022416 | Lemelson et al. | Feb 2004 | A1 |
20040040166 | Raab et al. | Mar 2004 | A1 |
20040103547 | Raab et al. | Jun 2004 | A1 |
20040111908 | Raab et al. | Jun 2004 | A1 |
20040139265 | Hocker, III et al. | Jul 2004 | A1 |
20040162700 | Rosenberg et al. | Aug 2004 | A1 |
20040259533 | Nixon et al. | Dec 2004 | A1 |
20050016008 | Raab et al. | Jan 2005 | A1 |
20050028393 | Raab et al. | Feb 2005 | A1 |
20050082262 | Rueb et al. | Apr 2005 | A1 |
20050085940 | Griggs et al. | Apr 2005 | A1 |
20050115092 | Raab et al. | Jun 2005 | A1 |
20050144799 | Raab et al. | Jul 2005 | A1 |
20050151963 | Pulla et al. | Jul 2005 | A1 |
20050166413 | Crampton | Aug 2005 | A1 |
20050188557 | Raab et al. | Sep 2005 | A1 |
20050259271 | Christoph | Nov 2005 | A1 |
20050276466 | Vaccaro et al. | Dec 2005 | A1 |
20050283989 | Pettersson | Dec 2005 | A1 |
20060016086 | Raab et al. | Jan 2006 | A1 |
20060017720 | Li | Jan 2006 | A1 |
20060026851 | Raab et al. | Feb 2006 | A1 |
20060028203 | Kawashima et al. | Feb 2006 | A1 |
20060053647 | Raab et al. | Mar 2006 | A1 |
20060056459 | Stratton et al. | Mar 2006 | A1 |
20060056559 | Pleasant et al. | Mar 2006 | A1 |
20060059270 | Pleasant et al. | Mar 2006 | A1 |
20060096108 | Raab et al. | May 2006 | A1 |
20060123649 | Muller | Jun 2006 | A1 |
20060129349 | Raab et al. | Jun 2006 | A1 |
20060169050 | Kobayashi et al. | Aug 2006 | A1 |
20060169608 | Carnevali | Aug 2006 | A1 |
20060282574 | Zotov et al. | Dec 2006 | A1 |
20060287769 | Yanagita et al. | Dec 2006 | A1 |
20060291970 | Granger | Dec 2006 | A1 |
20070030841 | Lee et al. | Feb 2007 | A1 |
20070043526 | De Jonge et al. | Feb 2007 | A1 |
20070050774 | Eldson et al. | Mar 2007 | A1 |
20070055806 | Stratton et al. | Mar 2007 | A1 |
20070058162 | Granger | Mar 2007 | A1 |
20070097382 | Granger | May 2007 | A1 |
20070105238 | Mandl et al. | May 2007 | A1 |
20070142970 | Burbank et al. | Jun 2007 | A1 |
20070147265 | Eidson | Jun 2007 | A1 |
20070147435 | Hamilton et al. | Jun 2007 | A1 |
20070147562 | Eidson | Jun 2007 | A1 |
20070151390 | Blumenkranz et al. | Jul 2007 | A1 |
20070153297 | Lau | Jul 2007 | A1 |
20070163134 | Eaton | Jul 2007 | A1 |
20070163136 | Eaton | Jul 2007 | A1 |
20070176648 | Baer | Aug 2007 | A1 |
20070177016 | Wu | Aug 2007 | A1 |
20070183459 | Eidson | Aug 2007 | A1 |
20070185682 | Eidson | Aug 2007 | A1 |
20070217169 | Yeap et al. | Sep 2007 | A1 |
20070217170 | Yeap et al. | Sep 2007 | A1 |
20070221522 | Yamada et al. | Sep 2007 | A1 |
20070223477 | Eidson | Sep 2007 | A1 |
20070248122 | Hamilton | Oct 2007 | A1 |
20070256311 | Ferrari | Nov 2007 | A1 |
20070257660 | Pleasant et al. | Nov 2007 | A1 |
20070258378 | Hamilton | Nov 2007 | A1 |
20070282564 | Sprague et al. | Dec 2007 | A1 |
20070294045 | Atwell et al. | Dec 2007 | A1 |
20080046221 | Stathis | Feb 2008 | A1 |
20080052936 | Briggs et al. | Mar 2008 | A1 |
20080066583 | Lott | Mar 2008 | A1 |
20080068103 | Cutler | Mar 2008 | A1 |
20080080562 | Burch et al. | Apr 2008 | A1 |
20080096108 | Sumiyama et al. | Apr 2008 | A1 |
20080098272 | Fairbanks et al. | Apr 2008 | A1 |
20080148585 | Raab et al. | Jun 2008 | A1 |
20080154538 | Stathis | Jun 2008 | A1 |
20080179206 | Feinstein et al. | Jul 2008 | A1 |
20080183065 | Goldbach | Jul 2008 | A1 |
20080196260 | Petterson | Aug 2008 | A1 |
20080204699 | Benz et al. | Aug 2008 | A1 |
20080216552 | Ibach et al. | Sep 2008 | A1 |
20080228331 | McNerney et al. | Sep 2008 | A1 |
20080232269 | Tatman et al. | Sep 2008 | A1 |
20080235969 | Jordil et al. | Oct 2008 | A1 |
20080235970 | Crampton | Oct 2008 | A1 |
20080240321 | Narus et al. | Oct 2008 | A1 |
20080245452 | Law et al. | Oct 2008 | A1 |
20080246943 | Kaufman et al. | Oct 2008 | A1 |
20080252671 | Cannell et al. | Oct 2008 | A1 |
20080256814 | Pettersson | Oct 2008 | A1 |
20080257023 | Jordil et al. | Oct 2008 | A1 |
20080263411 | Baney et al. | Oct 2008 | A1 |
20080271332 | Jordil et al. | Nov 2008 | A1 |
20080282564 | Pettersson | Nov 2008 | A1 |
20080295349 | Uhl et al. | Dec 2008 | A1 |
20080298254 | Eidson | Dec 2008 | A1 |
20080302200 | Tobey | Dec 2008 | A1 |
20080309460 | Jefferson et al. | Dec 2008 | A1 |
20090000136 | Crampton | Jan 2009 | A1 |
20090016475 | Rischar et al. | Jan 2009 | A1 |
20090031575 | Tomelleri | Feb 2009 | A1 |
20090046140 | Lashmet et al. | Feb 2009 | A1 |
20090046895 | Pettersson et al. | Feb 2009 | A1 |
20090049704 | Styles et al. | Feb 2009 | A1 |
20090083985 | Ferrari | Apr 2009 | A1 |
20090089004 | Vook et al. | Apr 2009 | A1 |
20090089078 | Byrsey | Apr 2009 | A1 |
20090089233 | Gach et al. | Apr 2009 | A1 |
20090089623 | Neering et al. | Apr 2009 | A1 |
20090109797 | Eidson | Apr 2009 | A1 |
20090113183 | Barford et al. | Apr 2009 | A1 |
20090113229 | Cataldo et al. | Apr 2009 | A1 |
20090122805 | Epps et al. | May 2009 | A1 |
20090125196 | Velazquez et al. | May 2009 | A1 |
20090139105 | Granger | Jun 2009 | A1 |
20090157419 | Bursey | Jun 2009 | A1 |
20090165317 | Little | Jul 2009 | A1 |
20090177435 | Heininen | Jul 2009 | A1 |
20090177438 | Raab | Jul 2009 | A1 |
20090187373 | Atwell et al. | Jul 2009 | A1 |
20090241360 | Tait et al. | Oct 2009 | A1 |
20090249634 | Pettersson | Oct 2009 | A1 |
20090265946 | Jordil et al. | Oct 2009 | A1 |
20090299689 | Stubben | Dec 2009 | A1 |
20100040742 | Dijkhuis et al. | Feb 2010 | A1 |
20100057392 | York | Mar 2010 | A1 |
20100078866 | Pettersson | Apr 2010 | A1 |
20100095542 | Ferrari | Apr 2010 | A1 |
20100122920 | Butter et al. | May 2010 | A1 |
20100123892 | Miller et al. | May 2010 | A1 |
20100128259 | Bridges et al. | May 2010 | A1 |
20100134596 | Becker | Jun 2010 | A1 |
20100148013 | Bhotika et al. | Jun 2010 | A1 |
20100208062 | Pettersson | Aug 2010 | A1 |
20100277747 | Rueb et al. | Nov 2010 | A1 |
20100281705 | Verdi et al. | Nov 2010 | A1 |
20100286941 | Merlot | Nov 2010 | A1 |
20100312524 | Siercks et al. | Dec 2010 | A1 |
20100318319 | Maierhofer | Dec 2010 | A1 |
20100325907 | Tait | Dec 2010 | A1 |
20110007305 | Bridges et al. | Jan 2011 | A1 |
20110007326 | Daxauer et al. | Jan 2011 | A1 |
20110013199 | Siercks et al. | Jan 2011 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110023578 | Grasser | Feb 2011 | A1 |
20110043515 | Stathis | Feb 2011 | A1 |
20110094908 | Trieu | Apr 2011 | A1 |
20110107611 | Desforges et al. | May 2011 | A1 |
20110107612 | Ferrari et al. | May 2011 | A1 |
20110107613 | Tait | May 2011 | A1 |
20110107614 | Champ | May 2011 | A1 |
20110111849 | Sprague et al. | May 2011 | A1 |
20110112786 | Desforges et al. | May 2011 | A1 |
20110119025 | Fetter et al. | May 2011 | A1 |
20110123097 | Van Coppenolle | May 2011 | A1 |
20110164114 | Kobayashi et al. | Jul 2011 | A1 |
20110173827 | Bailey et al. | Jul 2011 | A1 |
20110173828 | York | Jul 2011 | A1 |
20110178755 | York | Jul 2011 | A1 |
20110178758 | Atwell et al. | Jul 2011 | A1 |
20110178762 | York | Jul 2011 | A1 |
20110178764 | York | Jul 2011 | A1 |
20110178765 | Atwell et al. | Jul 2011 | A1 |
20110192043 | Ferrari | Aug 2011 | A1 |
20110273568 | Lagassey | Nov 2011 | A1 |
20120181194 | McEwan et al. | Jul 2012 | A1 |
20120210678 | Alcouloumre et al. | Aug 2012 | A1 |
20120260512 | Kretschmer et al. | Oct 2012 | A1 |
20120260611 | Jones | Oct 2012 | A1 |
20130025143 | Bailey et al. | Jan 2013 | A1 |
20130025144 | Briggs et al. | Jan 2013 | A1 |
20130062243 | Chang et al. | Mar 2013 | A1 |
20130097882 | Bridges et al. | Apr 2013 | A1 |
20130125408 | Atwell et al. | May 2013 | A1 |
20130205606 | Briggs et al. | Aug 2013 | A1 |
20130212889 | Bridges et al. | Aug 2013 | A9 |
20130222816 | Briggs et al. | Aug 2013 | A1 |
20140002608 | Atwell et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2236119 | Sep 1996 | CN |
2508896 | Sep 2002 | CN |
2665668 | Dec 2004 | CN |
1630804 | Jun 2005 | CN |
1818537 | Aug 2006 | CN |
101024286 | Aug 2007 | CN |
201266071 | Jul 2009 | CN |
3245060 | Jul 1983 | DE |
4410775 | Oct 1995 | DE |
29622033 | Feb 1997 | DE |
19543763 | May 1997 | DE |
19820307 | Nov 1999 | DE |
10026357 | Jan 2002 | DE |
202005000983 | Apr 2005 | DE |
102004015668 | Sep 2005 | DE |
19720049 | Jan 2006 | DE |
10114126 | Aug 2006 | DE |
102004010083 | Nov 2006 | DE |
102005060967 | Jun 2007 | DE |
102006023902 | Nov 2007 | DE |
102006035292 | Jan 2008 | DE |
102008039838 | Mar 2010 | DE |
102005036929 | Jun 2010 | DE |
102008062763 | Jul 2010 | DE |
102009001894 | Sep 2010 | DE |
0546784 | Jun 1993 | EP |
0730210 | Sep 1996 | EP |
0730210 | Sep 1996 | EP |
0614517 | Mar 1997 | EP |
1160539 | Dec 2001 | EP |
1189124 | Mar 2002 | EP |
0767357 | May 2002 | EP |
1361414 | Nov 2003 | EP |
1452279 | Sep 2004 | EP |
1468791 | Oct 2004 | EP |
1669713 | Jun 2006 | EP |
1734425 | Dec 2006 | EP |
1429109 | Apr 2007 | EP |
1764579 | Dec 2007 | EP |
1878543 | Jan 2008 | EP |
1967930 | Sep 2008 | EP |
2023077 | Feb 2009 | EP |
2060530 | May 2009 | EP |
2068067 | Jun 2009 | EP |
2108917 | Oct 2009 | EP |
2400261 | Dec 2011 | EP |
2935043 | Feb 2010 | FR |
894320 | Apr 1962 | GB |
2255648 | Nov 1992 | GB |
2341203 | Mar 2000 | GB |
2420241 | May 2006 | GB |
2452033 | Feb 2009 | GB |
5581525 | Jun 1955 | JP |
5827264 | Feb 1983 | JP |
6313710 | Nov 1994 | JP |
7210586 | Aug 1995 | JP |
2003194526 | Jul 2003 | JP |
2004257927 | Sep 2004 | JP |
2005517908 | Jun 2005 | JP |
2006203404 | Aug 2006 | JP |
2006241833 | Sep 2006 | JP |
2006301991 | Nov 2006 | JP |
2009524057 | Jun 2009 | JP |
9208568 | May 1992 | WO |
9808050 | Feb 1998 | WO |
9910706 | Mar 1999 | WO |
0014474 | Mar 2000 | WO |
0034733 | Jun 2000 | WO |
0033149 | Jun 2000 | WO |
02101323 | Dec 2002 | WO |
2004096502 | Nov 2004 | WO |
2005072917 | Aug 2005 | WO |
2005075875 | Aug 2005 | WO |
2005100908 | Oct 2005 | WO |
2006051264 | May 2006 | WO |
2007002319 | Jan 2007 | WO |
2007028941 | Mar 2007 | WO |
2007125081 | Nov 2007 | WO |
2007144906 | Dec 2007 | WO |
2008027588 | Mar 2008 | WO |
2008047171 | Apr 2008 | WO |
2008064276 | May 2008 | WO |
2008066896 | Jun 2008 | WO |
2008075170 | Jun 2008 | WO |
2008157061 | Dec 2008 | WO |
2009001165 | Dec 2008 | WO |
2009016185 | Feb 2009 | WO |
2009083452 | Jul 2009 | WO |
2009127526 | Oct 2009 | WO |
2009130169 | Oct 2009 | WO |
2009149740 | Dec 2009 | WO |
2010040742 | Apr 2010 | WO |
2010092131 | Aug 2010 | WO |
2010108089 | Sep 2010 | WO |
2010148525 | Dec 2010 | WO |
2011000435 | Jan 2011 | WO |
2011000955 | Jan 2011 | WO |
2011057130 | May 2011 | WO |
2012038446 | Mar 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability for International Patent Serial No. PCT/US2011/021253; Date of Completion May 9, 2012. |
German Patent Application No. 11 2011 100 291.2 dated Dec. 20, 2012. All art cited within. |
Japanese Office Action and English Language summary for JP2012-550042 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021249 filed Jan. 14, 2011. |
Japanese Office Action and English Language summary for JP2012-550044 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021252 filed Jan. 14, 2011. |
Japanese Office Action and English Language summary for JP2012-550043 filed Jul. 20, 2012; based on International Application No. PCT/US2011/021250 filed Jan. 14, 2011. |
Examination Report for German Application No. 11 2011 100 193.2 Report dated Dec. 20, 2012; based on PCT/US2011/021249. |
FARO Product Catalog; Faro Arm; 68 pages; Faro Technologies Inc. 2009; printed Aug. 3, 2009. |
Romer Measuring Arms; Portable CMMs for the shop floor; 20 pages; Hexagon Metrology, Inc. (2009) http//us.ROMER.com. |
Dylan, Craig R., “Suspended in MidAir” High Precision Makes the Massive Bay Bridge Project Work—Cover Story—Point of Beginning, Jan. 1, 2010, [online] http://www.pobonline.com/Articles/Cover—Story/BNP—GUID—9-5-2006—A—10000000000 . . . [Retreived Jan. 25, 2010]. |
Franklin, Paul F., “What IEEE 1588 Means for Your Next T&M System Design”, Keithley Instruments, Inc., [on-line] Oct. 19, 2010, http://www.eetimes.com/General/DisplayPrintViewContent?contentltemld=4209746, [Retrieved Oct. 21, 2010]. |
HYDROpro Navigation, Hydropgraphic Survey Software, Trimble, www.trimble.com, © 1997-2003. |
International Preliminary Report on Patentability for PCT/US2011/021274; Date of Completion Apr. 12, 2012. |
Trimble—Trimble SPS630, SPS730 and SPS930 Universal Total Stations, [on-line] http://www.trimble.com/sps630—730—930.shtml (1 of 4), [Retrieved Jan. 26, 2010 8:50:29AM] . |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021253 mailed Mar. 22, 2012. |
Information on Electro-Optical Information Systems; EOIS 3D Mini-Moire C.M.M. Sensor for Non-Contact Measuring & Surface Mapping; Direct Dimensions, Jun. 1995. |
International Search Report for International Application No. PCT/US2011/021259 mailed May 25, 2011. |
International Search Report for International Application No. PCT/US2011/021262 mailed May 11, 2011. |
International Search Report for International Application No. PCT/US2011/021278 mailed May 25, 2011. |
International Search Report for International Application No. PCT/US2011/021263 mailed May 4, 2011. |
International Search Report for International Application No. PCT/US2011/021264 mailed May 31, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021259 mailed May 25, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021262 mailed May 11, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021278 mailed May 25, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021263 mailed May 4, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021264 mailed May 31, 2011. |
Anonymous: “So wird's gemacht: Mit T-DSL und Windows XP Home Edition gemeinsam ins Internet (Teil 3)”, Internet Citation, Jul. 2003, XP002364586, Retrieved from the Internet: URL:http://support.microsoft.com/kb/814538/DE/ [retrieved on Jan. 26, 2006] the whole document (English translation not available). |
International Search Report for International Application No. PCT/US2013/040309 mailed Jul. 15, 2013. |
Written Opinion for International Application No. PCT/US2013/040309 mailed Jul. 15, 2013. |
Examination Report for German Application No. 11 2011 100 290.4 Report dated Jul. 16, 2013; based on PCT/US2011/021247. |
Romer “Romer Measuring Arms Portable CMMs for R&D and shop floor” (Mar. 2009) Hexagon Metrology (16 pages). |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021246 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021249 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021250 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021252 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021247 International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021259. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021262. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021263. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021264. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021270. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021272. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021273. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021276. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021278. International filing date Jan. 14, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for International Application Serial No. PCT/US2011/021794. International filing date Jan. 20, 2011. Date of Issuance Jul. 24, 2012. |
International Preliminary Report on Patentability for PCT/US2011/020625; Date of Issuance Jul. 17, 2012. |
International Search Report for International Application No. PCT/US2011/021247 mailed Aug. 26, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021247 mailed Aug. 26, 2011. |
International Search Report of the International Searching Authority for Application No. PCT/US2013/022186; Date of Mailing: May 29, 2013, 4 pages. |
Written Opinion of the International Searching Authority for Application No. PCT/US2013/022186; Date of Mailing: May 29, 2013, 4 pages. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021252 mailed Apr. 27, 2011. |
International Search Report for International Application No. PCT/US2011/021246 mailed Apr. 12, 2011. |
International Search Report for International Application No. PCT/US2011/021249 mailed Apr. 21, 2011. |
Internation Search Report for International Application No. PCT/US2011/021250 mailed Apr. 18, 2011. |
International Search Report for International Application No. PCT/US2011/021252 mailed Apr. 27, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021246 mailed Apr. 12, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021249 mailed Apr. 21, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021250 mailed Apr. 18, 2011. |
Cho et al., Implementation of a Precision Time Protocol over Low Rate Wireless Personal Area Networks, IEEE, 2008. |
Cooklev et al., An Implementation of IEEE 1588 Over IEEE 802.11b for Synchronization of Wireless Local Area Network Nodes, IEEE Transactions on Instrumentation and Measurement, vol. 56, No. 5, Oct. 2007. |
International Search Report for International Application No. PCT/2011/020625 mailed Feb. 25, 2011. |
International Search Report for International Application No. PCT/US2011/021270 mailed May 2, 2011. |
International Search Report for International Application No. PCT2011/021276 filed Jan. 14, 2011. |
International Search Report for International Application No. PCT/US2011/021273 filed Jan. 14, 2011. |
Jasperneite et al., Enhancements to the Time Synchronization Standard IEEE-1588 for a System of Cascaded Bridges, IEEE, 2004. |
Sauter et al., Towards New Hybrid Networks for Industrial Automation, IEEE, 2009. |
Spada et al., IEEE 1588 Lowers Integration Costs in Continuous Flow Automated Production Lines, XP-002498255, ARC Insights, Insight # 2003-33MD&H, Aug. 20, 2003. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021273 mailed Jan. 14, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/020625 mailed Feb. 25, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021270 mailed May 2, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021276 filed Jan. 14, 2011. |
MG Lee; “Compact 3D LIDAR based on optically coupled horizontal and vertical Scanning mechanism for the autonomous navigation of robots” (13 pages) vol. 8037; downloaded from http://proceedings.spiedigitallibrary.org/ on Jul. 2, 2013. |
P Ben-Tzvi, et al. “Extraction of 3D Images Using Pitch-Actuated 2D Laser Range Finder for Robotic Vision” (6 pages) BNSDOCID <XP 31840390A—1—>. |
International Search Report for International Application No. PCT/US2013/040321 mailed Jul. 15, 2013. |
YK Cho, et al. “Light-weight 3D LADAR System for Construction Robotic Operations” (pp. 237-244); 26th International Symposium on Automation and Robotics in Construction (ISARC 2009). |
Written Opinion for International Application No. PCT/US2013/040321 mailed Jul. 15, 2013. |
J. Geng “DLP-Based Structured Light 3D Imaging Technologies and Applications” (15 pages) Emerging Digital Micromirror Device Based Systems and Application III; edited by Michael R. Douglass, Patrick I. Oden, Proc. of SPIE, vol. 7932, 79320B; (2011) SPIE; 15 pages. |
International Search Report for International Application No. PCT/US/2013/041826 filed May 20, 2013; mailed Jul. 29, 2013; 5 pages. |
Written Opinion for International Application No. PCT/US/2013/041826 filed May 20, 2013; mailed Jul. 29, 2013; 7 pages. |
A. Hart, et al.; “Kinematic Coupling Interchangeability” Precision Engineering; vol. 28, No. 1; Jan. 1, 2004 pp. 1-15. |
ABB Flexible Automation AB: “Product Manual IRB 6400R 3HAC 6264-1 M99, On-line Manual”; Sep. 13, 2006; XP00002657684; Retrieved from the Internet: URL:http://pergatory.mit.edu/kinematiccouplings/case—studies/ABB—Robotics/general/6400R%20Product%20Manual.pdf (retrieved Aug. 26, 2011). |
International Search Report for International Application No. PCT/US2011/021248 mailed Sep. 19, 2011. |
International Search Report for International Application No. PCT/US2011/021253 mailed Sep. 26, 2011. |
International Search Report for International Application No. PCT/US2011/021794 mailed Sep. 23, 2011. |
P. Willoughby; “Elastically Averaged Precision Alignment”; In: “Doctoral Thesis” ; Jun. 1, 2005; Massachusetts Institute of Technology; XP55005620; Abstract 1.1 Motivation; Chapter 3, Chapter 6. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021248 mailed Sep. 19, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021253 mailed Sep. 26, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021794 mailed Sep. 23, 2011. |
International Search Report for International Patent Application PCT/US2011/050787; mailing date Nov. 3, 2011. |
International Search Report for International Application No. PCT/US2011/021274; Date of Mailing May 6, 2011. |
Romer “Romer Absolute Arm Product Brochure” (2010); Hexagon Metrology; www.hexagonmetrology.com; Hexagon AB 2010. |
Romer “Romer Absolute Arm Maximum Performance Portable Measurement” (Printed Oct. 2010); Hexagon Metrology, Inc. http://us:ROMER.com; Hexagon Metrology, Inc 2010. |
Written Opinion of the International Searching Authority for International Patent Application PCT/US2011/050787; mailing date Nov. 3, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021274 mailed May 6, 2011. |
Examination Report under Section 18(3); Report dated Oct. 31, 2012; Application No. GB1210309.5. |
Examination Report under Section 18(3); Report dated Nov. 1, 2012; Application No. GB1210311.5. |
Examination Report under Section 18(3); Report dated Nov. 6, 2012; Application No. GB1210306.5. |
GoMeasure3D—Your source for all things measurement, Baces 3D 100 Series Portable CMM from GoMeasure3D, [online], [retrieved Nov. 29, 2011], http://www.gomeasure3d.com/baces100.html. |
It is Alive in the Lab, Autodesk University, Fun with the Immersion MicroScribe Laser Scanner, [online], [retrieved Nov. 29, 2011], http://labs.blogs.com/its—alive—in—the—lab/2007/11/fun-with-the-im.html. |
GHOST 3D Systems, Authorized MicroScribe Solutions, FAQs—MicroScribe 3D Laser, MicroScan Tools, & related info, [online], [retrieved Nov. 29, 2011], http://microscribe.ghost3d.com/gt—microscan-3d—faqs.htm. |
Electro-Optical Information Systems, “The Handy Handheld Digitizer” [online], [retrieved on Nov. 29, 2011], http://vidibotics.com/htm/handy.htm. |
Kreon Laser Scanners, Getting the Best in Cutting Edge 3D Digitizing Technology, B3-D MCAD Consulting/Sales [online], [retrieved Nov. 29, 2011], http://www.b3-d.com/Kreon.html. |
MicroScan 3D User Guide, RSI GmbH, 3D Systems & Software, Oberursel, Germany, email: info@rsi-gmbh.de, © RSI Roland Seifert Imaging GmbH 2008. |
Laser Reverse Engineering with Microscribe, [online], [retrieved Nov. 29, 2011], http://www.youtube.com/watch?v=8VRz—2aEJ4E&feature=PlayList&p=F63ABF74F30DC81B&playnext=1&playnext—from=PL&index=1. |
German Office Action and English Language summary for DE 112011100292.0 filed Jul. 3, 2012, based on PCT Application US2011/021252 filed Jan. 14, 2011. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2011/021272 mailed Apr. 7, 2011. |
International Search Report for International Application No. PCT/US2011/021272 mailed Apr. 7, 2011. |
GB Office Action dated Jan. 15, 2014 for SJB/PX210785GB; UK Patent Application No. 1214426.7. |
International Search report of the International Application No. PCT/US2013/049562 mailed Nov. 28, 2013. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2013/049562 mailed Nov. 28, 2013. |
U.S. Appl. No. 13/006,524; Final Office Action; filed Jan. 14, 2011; Date Mailed: Jul. 31, 2014; 29 pages. |
U.S. Appl. No. 13/006,455; Non Final Office Action; filed Jan. 14, 2011; Date Mailed: Jun. 19, 2014; 23 pages. |
Chinese Office Action for Chinese Application Serial No. 201180004747.9, Mailed Jul. 1, 2014; 9 pages. |
Japanese Office Action for Japanese Serial No. 2012-550055 mailed Jul. 15, 2014, 9 pages. |
CN Office Action Dated Apr. 30, 2014 RE CN Patent Appln No. 2011800064084; 4 pages. |
Chinese First Office Action and Search Report for Application No. 2011800005129.6; Issued Nov. 18, 2013. |
Moog Components Group; “Fiber Optic Rotary Joints; Product Guide” (4 pages) Dec. 2010; Moog, Inc. 2010. |
Moog Components Group “Technical Brief; Fiber Optic Rotary Joints” Document No. 303 (6 pages) Mar. 2008; Moog, Inc. 2008 Canada; Focal Technologies. |
International Search Report dated Nov. 28, 2013 for International Application No. PCT/13/049562 filed Jul. 8, 2013 (7 pages). |
Written Opinion of the International Search Authority dated Nov. 28, 2013 for International Application No. PCT/13/049562 filed Jul. 8, 2013 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20110178755 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61296555 | Jan 2010 | US |