The field of this disclosure relates generally to packaging for liquid products and more particularly to a pouch for containing and dispensing aseptically processed low acid concentrated liquid (e.g., human milk fortifier), methods for manufacturing a hermetically sealed pouch, methods for aseptically packaging the human milk fortifier in the pouch, method for testing of seal integrity of the pouch and methods of using the pouch to dispense human milk fortifier.
Human milk is generally recognized as an ideal food source for most infants due to its overall nutritional composition. It is well known and generally accepted that human milk provides infants with unique immunologic and developmental benefits as compared generally to commercially available infant formulas.
For some infants, however, especially preterm infants, human milk does not always meet their complete nutritional needs. Although these infants still generally benefit from human milk, it is often desirable to supplement their human milk feedings with additional nutrients. Initially, preterm infants may grow more rapidly than many of their term counterparts, and accelerated growth often requires additional nutrition, which can be made possible by the use of a human milk fortifier in combination with human milk.
Human milk fortifiers described in literature and commercially available have been formulated as reconstitutable powders rather than liquids in order to minimize the volume displacement of human milk by the fortifier. Powdered human milk fortifiers, however, are not considered commercially sterile therefore microbes can be present in powdered human milk fortifiers and may grow once dispensed from the package into the human milk.
More recently, liquid human milk fortifiers, and specifically highly concentrated human milk fortifier liquids, have received more attention as an alternative to powders. Although these highly concentrated human milk fortifiers do generally displace slightly more volume than powders, the liquids are processed to be commercially sterile, which is not an option for powders.
Hydrolyzed proteins are often desirable to utilize in human milk fortifiers as they are generally more easily digested and absorbed into the gut of a preterm infant as compared to substantially intact proteins. Additionally, the hydrolyzed proteins may be hypoallergenic such that they may not predispose the infant to cow's milk allergies later in life. However, as compared to intact proteins, extensively hydrolyzed proteins (i.e., proteins having a degree of hydrolysis of about 20% or more) tend to have poor ability to form long term stable emulsions. Additionally, the presence of high levels of insoluble minerals such as calcium salts may also cause a number of stability issues when used in combination with extensively hydrolyzed proteins. As such, manufacturing long term stable liquid concentrated human milk fortifiers including extensively hydrolyzed proteins have proven difficult.
To combat this problem, many liquid human milk fortifiers have been manufactured with stabilizers, such as carrageenan. The stabilizers act to hold the nutrients and insolubles in solution over time and thus improve long term stability of the product. Although stabilizers, such as carrageenan, have generally proven to retard precipitation of many ingredients in the liquid human milk fortifier, these types of stabilizers are not permitted in infant formulas and human milk fortifiers in many countries around the world. When stabilizers cannot be used in highly concentrated human milk fortifiers, it can be very difficult to produce a long term stable highly concentrated human milk fortifier.
As such, there is a need for liquid human milk fortifiers that are commercially sterile, do not require refrigeration, and have relatively low acidity. In addition, there is a need for packaging for liquid human milk fortifiers that is sufficiently flexible to allow insitu mixing of the fortifier, and transparent so that a user can visually observe the human milk fortifier to ensure proper mixing has occurred before opening the packaging to dispense the human milk fortifier. Moreover, the packaging should be easy to use and should minimize the amount of residual human milk fortifier remaining in the packaging after dosing.
In one aspect, a single-use pouch for liquid product generally comprises a front panel and a back panel. The front and back panels at least in part cooperatively define an interior space of the pouch. The interior space has a total liquid capacity. A volume of liquid product is contained within the interior space. The volume of liquid product is less than about 50% of the total liquid capacity of the pouch.
In another aspect, a single-use pouch for liquid product generally comprises a front panel and a back panel. The front and back panels at least in part cooperatively define an interior space of the pouch. The interior space has a total liquid capacity. A volume of liquid product and gas is contained within the interior space. The volume of liquid product and gas is less than about 40% of the total liquid capacity of the pouch.
In yet another aspect, a pouch generally comprises a front panel and a back panel. The front and back panels at least in part cooperatively define an interior space of the pouch. At least one of the front panel and the back panel is made at least in part from a flexible, transparent material. An aseptically processed liquid product is contained within the interior space of the pouch and visually observable through the at least one of the front panel and the back panel.
In still another aspect, a method of packaging an aseptic liquid product into a pouch generally comprises sterilizing both sides of a flexible and transparent web of sheet material with a sterilant. The web is drawn across forming shoulders, around filling tubes, to create longitudinal pouch tubes. Two pouches are formed, one from each lane. Each pouch is filled with an aseptically processed liquid product.
In still yet another aspect, a method of dispensing a liquid product from a pouch generally comprises obtaining a pouch having an aseptically processed liquid product contained therein. At least a portion of the pouch is transparent for allowing visual observation of the liquid product contained therein. The pouch is manually kneaded to mix the liquid product within the pouch. The liquid product is visually observed through the transparent portion of the pouch to determine if the liquid product has been sufficiently mixed. The pouch is opened and the liquid product is poured from the pouch.
In still a further aspect, a single-use pouch for product generally comprises a body having a front panel and a back panel. The front and back panels at least in part cooperatively define an interior space of the pouch for containing the product. A spout is in fluid communication with the interior space. Product is dispensed from the pouch through the spout. The spout has a width and the body has a width wherein the ratio of the width of the body and the width of the spout is between about 3:1 and about 5:1.
In yet a further aspect, a secondary container for holding a plurality of pouches generally comprises a base section and a lid hingely attached to the base section for movement between a closed position and an opened position. A pair of hold downs are disposed adjacent opposite ends of the hinge.
In still another aspect, a secondary container for holding a plurality of pouches generally comprises a base section and a lid hingely attached to the base section for movement between a closed position and an opened position. The base section includes a bottom wall, at least one side wall extending up from the bottom wall, a top wall, and an interior floor. The interior floor is tented along its center line.
Corresponding reference characters indicate corresponding parts throughout the drawings.
As seen therein, the illustrated pouch 10 has a front panel 12 and a back panel 14 generally opposed to and sealingly engaged with the front panel to at least in part define an interior space 15 sized and shaped for containing the product. The illustrated pouch 10 comprises two side edges 16, 18, two end edges 20, 22, a longitudinal axis LA, and a transverse axis TA. In the illustrated embodiment, the pouch 10 is formed from a single-piece of sheet material that has been folded about a longitudinal fold line. As seen in
With reference to
With reference still to
The transition portion 64 is a portion of the pouch 10 disposed between the spout 62 and body 60, and includes the diagonal component 25d″ of the inboard seal segment 25d of the seal lines 25. In use, the diagonal component 25d″ of the inboard seal segment 25d acts as a funnel-like surface to funnel the product towards the spout. The transition portion 64 has a height H3. In the illustrated embodiment, the height H3 of the transition portion 64 is approximately 17 mm. The width of the transition portion 64 reduces along its height as it extends from the body 60 to the spout 62. It is understood that the transition portion 64 can have heights and widths less than or greater than the exemplary heights and widths provided herein.
In a sealed (broadly, closed) configuration of the pouch 10, as illustrated in
As illustrated in
In the illustrated embodiment, the lines of weakness 30, 32 comprise score lines. The term “line of weakness” is used herein to mean any defined (e.g., intended) structural feature that weakens the pouch 10 along a predetermined path so that the pouch 10 is more readily ruptured, or torn, upon application of a tearing force along the line of weakness and is not limited to score lines. For example, in other embodiments, the lines of weakness 30, 32 may comprise a plurality of separation points, a score line, a breakaway line or areas, a chain stitch, a thinning of the pouch material, a plurality of aligned perforations (e.g., holes, slits, apertures, voids, or the like) or other suitable line of weakness. The lines of weakness 30, 32 may be formed by partial pressure cutting, partial ultrasonic cutting, partial thermal deformation, mechanical thinning, or other suitable techniques.
As mentioned, the lines of weakness 30, 32 provide a path of low resistance along which the pouch 10 may be torn. However, the level of resistance to tearing provided by the lines of weakness 30, 32 can be altered. Lowering the tear resistance would make the pouch 10 easier to open. As a result, less force is needed to tear the pouch 10 along the lines of weakness 30, 32. However, lowering the tear resistance may increase the risk that the pouch 10 will unintentionally tear apart or otherwise leak. On the other hand, increasing the resistance of the lines of weakness 30, 32, would require a greater force to tear the pouch 10 along the lines of weakness. In addition, the lines of weakness 30, 32 can have varying tear resistance along their length or a portion of their length. In addition, the tear resistance of the line of weakness 30 in the front panel 12 of the pouch 10 may be equal to or different than the tear resistance of the line of weakness 32 in the back panel 14 of the pouch.
In the illustrated embodiment, the lines of weakness 30, 32 begin at the side edge 18 (e.g., the side edge not defined by the fold line), extend through the side edge segment 25c of the seal lines 25 and generally parallel to but spaced from one of the end edges 20, and terminate within the longitudinal component 25d′ of the inboard seal segment 25d of the seal lines and generally adjacent the spout 62. Accordingly, the product can be accessed by tearing the pouch 10 along the lines of weakness 30, 32 as illustrated in
In the illustrated embodiment, the portion of the pouch 10 above the lines of weakness 30, 32 defines a gripping portion 66 suitable for manually grasping to facilitate opening of the pouch 10 by tearing along the lines of weakness 30, 32. In one suitable embodiment, the gripping portion 66 is removed from the remainder of the pouch 10 when the pouch is opened (i.e., when the pouch is torn along the lines of weakness 30, 32). It is contemplated, however, that the gripping portion 66 can remain connected to the pouch 10 so long as the spout 62 is sufficiently open to allow the product to flow out of the interior space 15 of the pouch.
The pouch 10 may be formed from any suitable material including woven material, non-woven material, films, laminates, or a combination thereof. For example, in one suitable embodiment, the pouch 10 comprises a two layered laminate having an inner layer 50 and an outer layer 52 (
As seen in
In one suitable embodiment, at least a portion of the pouch 10 is generally transparent to permit visual observation of the product contained therein. In the illustrated embodiment, for example, the entire pouch 10 is generally transparent. In one suitable embodiment, the inner surface of the inner layer 50 of either the front panel 12 or the back panel 14 can be covered with a white ink to render the front/back panel generally transparent. It is understood, however, that less then the entire pouch can be transparent. For example, the front panel 12 could be made from a generally transparent material and the back panel 14 formed from a translucent or opaque material, or vise versa. In another example, the pouch 10 could include a longitudinally extending strip of transparent material (e.g., to form a window) on either one of or both the front and back panels 12, 14 of the pouch while the remainder of the pouch is formed from a generally translucent or opaque material. It is understood, that the pouch 10 can be formed from generally opaque material as seen in
The pouch 10 illustrated in
In one suitable embodiment, each of the pouches 10, 110, 210 is filled with a greater quantity of product as compared to its intended target dispensing dosage to account for residual product that remains within the pouch after use, such as, due to viscosity and stickiness of the product. Testing of the pouch 10 illustrated in
Moreover, it is anticipated that each of the pouches 10, 110, 210 will have a distribution ratio within ±4 percent. That is, the actual amount of product distributed from each of the pouches 10, 110, 210 will be within 4 percent of the target dosage for that pouch. Thus, the pouch 110 intended to have a 2 ml dosage (
Each of the pouches 10, 110, 210 is capable (e.g., sufficiently flexible) of being manually kneaded or otherwise manipulated by a user to ready the product within the pouch before opening the pouch. Thus, in one embodiment, the product can be thoroughly mixed within the pouch 10, 110, 210 before the pouch is opened and the product dispensed therefrom. In other embodiments where the product is more gel-like, kneading also, or alternatively, thins the product to render it easier to pour. In one suitable embodiment, the front and back panels 12, 14 of the pouch 10 contact each other during the kneading process under relatively light, manual pressure and the product is able to move freely throughout the interior space 15.
A qualitative kneadability study was performed on pouches designed for a target dispensing dosage of about 5 ml. The pouches had a total (e.g., maximum) liquid capacity of about 20 ml. In Example 1, ten pouches were filled with a various amount of air (broadly, a gas) and manually kneaded. The kneadability of the pouch was rated as being easy, moderate, difficult or extremely difficult. The amount of air and the results of the testing are provided in the following Table. In Example 2, ten pouches were filled with a various amount of liquid and manually kneaded. The kneadability of the pouch was rated as being easy, moderate, difficult or extremely difficult. The amount of liquid and the results of the testing are provided in the following Table. In Example 3, ten pouches were filled with various combinations of liquid and air and manually kneaded. The kneadability of the pouch was rated as being easy, moderate, difficult or extremely difficult. The amount of liquid and air and the results of the testing are provided in the following Table.
The intent of the kneadability study was to determine suitable packaged volumes at which kneading of the product/pouch becomes impractical (i.e., difficult or extremely difficult).
As seen above for Example 2, where no air is present the amount of liquid within the pouch should be less than or equal to about 50% of the total liquid capacity of the pouch. When the amount of liquid in the pouch exceeded 50%, the kneadibility of the pouch was reduced. In one suitable embodiment, the volume of liquid in the pouch is between about 20% and about 50%, more suitably between about 30% and about 40%, and even more suitably about 35% of the total liquid capacity of the pouch.
As seen above for Example 3, the total volume taken up by liquid and gas (e.g., air) within the pouch should be less than or equal to about 50% of the total liquid capacity of the pouch. When the combined volume of liquid and gas exceeds about 50%, the kneadibility of the pouch is reduced. In one suitable embodiment, the combined volume of liquid and gas in the pouch is between about 10% and about 50%, more suitably between about 20% and about 40% of the total liquid capacity of the pouch.
Concentrated Liquid Human Milk Fortifier
In one suitable use, the pouch 10, 110, 210 can contain liquid human milk fortifier capable of being poured directly from the pouch into a container having human milk therein. It is understood, however, that the pouch 10, 110, 210 can contain any suitable product including other products intended for human consumption. One suitable liquid human milk fortifier is a concentrated liquid human milk fortifier comprising protein, fat, carbohydrate OSA-modified starch and low acyl gellan gum. The concentrated liquid human milk fortifier has a solids content of at least about 20%, or even at least about 25%, including from about 25% to about 32%, and further including from about 29% to about 32%. The concentrated liquid human milk fortifier has a caloric density of at least about 1.25 kcal/ml (37 kcal/fl oz), including from about 1.4 kcal/ml (42 kcal/fl oz) to about 5 kcal/ml (149 kcal/fl oz), and also including from about 1.5 kcal/ml (44 kcal/fl oz) to about 2.5 kcal/ml (74 kcal/fl oz), and also including from about 1.9 kcal/ml (56 kcal/fl oz) to about 2.0 kcal/ml (59 kcal/fl oz). The concentrated liquid human milk fortifiers is formulated to provide fortified human milk having an osmolality of less than about 400 mOsm/kg water, preferably from about 300 mOsm/kg water to about 400 mOsm/kg water.
Extensively Hydrolyzed Casein Protein
The concentrated liquid human milk fortifier includes hypoallergenic extensively hydrolyzed casein as a protein source. The term “hypoallergenic” as used herein means that the concentrated liquid human milk fortifier has a decreased tendency to provoke an allergic reaction in a preterm or term infant as compared to non-hypoallergenic fortifiers. Generally, the concentrated liquid human milk fortifier includes at least about 35%, including at least about 50%, including at least about 60%, including at least about 75%, including at least about 90% and further including about 100% extensively hydrolyzed casein, by total weight of protein in the concentrated human milk fortifier. In one embodiment, the concentrated liquid human milk fortifier includes 100% extensively hydrolyzed casein, by total weight of the protein in the concentrated human milk fortifier. In this embodiment, the concentrated liquid human milk fortifier is hypoallergenic. In some other embodiments, the concentrated liquid human milk fortifier will include from about 35% to 100%, including from about 50% to 100%, further including from about 75% to 100% extensively hydrolyzed casein, by total weight of protein in the concentrated human milk fortifier. The concentrated liquid human milk fortifier may optionally include other hypoallergenic or non-hypoallergenic proteins in addition to the extensively hydrolyzed casein protein.
Extensively hydrolyzed casein proteins suitable for use in concentrated liquid human milk fortifiers include those having a degree of hydrolysis of from about 20% to about 70%, including from about 30% to about 60%, and further including from about 40% to about 60%. Generally, the extensively hydrolyzed casein has a ratio of total amino nitrogen (AN) to total nitrogen (TN) of from about 0.2 AN to 1.0 TN to about 0.4 AN to about 0.8 TN. Suitable commercially available extensively hydrolyzed caseins will generally have a protein level in the ingredient of from about 50% to about 95%, including from about 70% to about 90%. One suitable commercially available extensively hydrolyzed casein is Dellac CE90, which is a spray dried powder casein hydrolysate (Friesland Campina Domo, Amersfoort, The Netherlands).
Stabilizer System
The concentrated liquid human milk fortifier includes a synergistic two component stabilizer system. The first component is an octenyl succinic anhydride (OSA) modified corn starch. The second component is a low acyl gellan gum. These two components act in a synergistic manner to stabilize the concentrated liquid human milk fortifier emulsion and retard the precipitation of nutrients therefrom.
The OSA-modified corn starch is generally prepared by esterifying a dextrinized, ungelatinized waxy corn starch with 1-octenyl succinic anhydride. Methods of this type are well known in the art. One suitable commercially available OSA-modified corn starch is N-CREAMER™ 46 (National Starch Food Innovation, Bridgewater, N.J.). Without being bound to a particular theory, it is believed that the OSA-modified corn starch adsorbs in the oil and water interface thus preventing the oil droplets from coalescence/aggregation by steric hinderance and charge repulsion. The OSA-modified corn starch is present in the concentrated liquid human milk fortifier in an amount of from about 0.1% to about 3.5%, including from about 0.6% to about 2.0%, including from about 0.8% to about 1.5%, and further including about 1.2% by weight of the concentrated liquid human milk fortifier.
The low acyl gellan gum (also known as and commonly referred to as deacylated gellan gum) may be a water-soluble polysaccharide produced by fermentation of a pure culture of Sphingomonas elodea. As used herein, “low acyl” means that the gellan gum has been treated such that it forms firm, non-elastic, brittle gels, that are heat stable, as compared to “high acyl” which forms soft, very elastic, non-brittle gels. Without being bound to a particular theory, it is believed that the low acyl gellan gum creates a three dimensional gelled network of very small microgels that interact with each other to provide a stable suspension. One suitable commercially available low acyl gellan gum is Kelcogel F (CP Kelco U.S. Inc., Atlanta Ga.).
The low acyl gellan gum is present in the concentrated liquid human milk fortifier in an amount from greater than 125 ppm to about 800 ppm, including from about 150 ppm to about 400 ppm, including from about 200 ppm to about 300 ppm and further including about 200 ppm.
Macronutrients
The concentrated liquid human milk fortifier comprises carbohydrate, fat, and protein macronutrients of sufficient types and amounts, that when used in combination with human milk (or other infant feeding formula), they help meet the nutritional needs of infants and especially premature infants. The concentration of these macronutrients includes the ranges described hereinafter. The term “infant” as used herein, refers generally to individuals less than about 1 year of age, actual or corrected. The term “premature infants” are used herein refers to those infants born at less than 37 weeks gestation, have a birth weight of less than 2500 gm, or both.
Protein
The concentrated liquid human milk fortifier comprises a protein suitable for use with infants, especially preterm infants, at concentrations ranging from about 5% to about 50%, including from about 20% to about 40%, including from about 5% to about 30%, including from about 10% to about 25%, and also including from about 15% to about 25%, on a dry weight basis. In some embodiments, the protein may be at a concentration of less than 10%, on a dry weight basis. The protein concentration may be from about 7 to about 15 grams, including from about 9 to about 12 grams of protein per 100 grams of final liquid product.
As noted above, the protein component of the concentrated liquid human milk fortifier is at least partially comprised of extensively hydrolyzed casein. In one particularly suitable embodiment, the protein component of the concentrated human milk fortifier is entirely comprised of extensively hydrolyzed casein. In embodiments wherein additional proteins sources (i.e., one or more protein sources in addition to the extensively hydrolyzed protein source) are to be used in the concentrated liquid human milk fortifier in addition to the extensively hydrolyzed casein (i.e., the concentrated human milk fortifier protein component is not 100% extensively hydrolyzed casein), the fortifier may still be made hypoallergenic by including additional hypoallergenic proteins such as soy protein hydrolysate, whey protein hydrolysate, rice protein hydrolysate, potato protein hydrolysate, fish protein hydrolysate, egg albumen hydrolysate, gelatin protein hydrolysate, combinations of animal and vegetable protein hydrolysates, and combinations thereof.
In this context, the terms “protein hydrolysates” or “hydrolyzed protein” are used interchangeably herein and include extensively hydrolyzed proteins, wherein the degree of hydrolysis is most often at least about 20%, including from about 20% to about 80%, and also including from about 30% to about 80%, even more preferably from about 40% to about 60%. The degree of hydrolysis is the extent to which peptide bonds are broken by a hydrolysis method. The degree of protein hydrolysis for purposes of characterizing the extensively hydrolyzed protein component of these embodiments is easily determined by one of ordinary skill in the formulation arts by quantifying the amino nitrogen to total nitrogen ratio (AN/TN) of the protein component of the selected formulation. The amino nitrogen component is quantified by USP titration methods for determining amino nitrogen content, while the total nitrogen component is determined by the Tecator Kjeldahl method, all of which are well known methods to one of ordinary skill in the analytical chemistry art.
In other embodiments, the concentrated liquid human milk fortifier, in addition to the extensively hydrolyzed protein, may include an additional non-hypoallergenic protein source including for example, partially hydrolyzed or non-hydrolyzed (intact) protein, and can be derived from any known or otherwise suitable source such as milk (e.g., casein, whey, lactose-free milk protein isolates), animal (e.g., meat, fish), cereal (e.g., rice, corn), vegetable (e.g., soy), or combinations thereof. The protein can include, or be entirely or partially replaced by, free amino acids known or otherwise suitable for use in nutritional products, non-limiting examples of which include free amino acids including L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-carnitine, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-taurine, L-threonine, L-tryptophan, L-tyrosine, L-valine, and combinations thereof.
Carbohydrate
The concentrated liquid human milk fortifier comprises a carbohydrate suitable for use with infants, especially preterm infants, at concentrations most typically ranging up to about 75% by weight on a dry weight basis, including from about 10% to about 50%, and also including from about 20% to about 40%, by weight on a dry weight basis. Carbohydrates suitable for use in the concentrated liquid human milk fortifier include hydrolyzed or intact, naturally and/or chemically modified, starches sourced from corn, tapioca, rice or potato, in waxy or non-waxy forms. Other non-limiting examples of suitable carbohydrate sources include hydrolyzed cornstarch, maltodextrin (i.e. non-sweet, nutritive polysaccharide having a DE value less than 20), corn maltodextrin, glucose polymers, sucrose, corn syrup, corn syrup solids (i.e., polysaccharide having a DE value greater than 20), glucose, rice syrup, fructose, high fructose corn syrup, indigestible oligosaccharides such as fructooligosaccharides (FOS), galactose, glycerol and combinations thereof. The carbohydrates may comprise lactose or can be substantially free of lactose.
The concentrated liquid human milk fortifier may include a non-reducing carbohydrate component, which may represent from about 10% to 100%, including from about 80% to 100%, and also including 100%, by weight of the total carbohydrate in the concentrated liquid human milk fortifier. The selection of a non-reducing carbohydrate may enhance the product stability and is generally better tolerated by infants, especially premature infants. Non-limiting examples of non-reducing carbohydrates include sucrose or other carbohydrates that do not readily oxidize or react with Tollen's, Benedict's, or Fehling's reagents. The concentrated liquid human milk fortifier may have a carbohydrate component, wherein the carbohydrate component comprises a mono- and/or disaccharide such that at least about 50%, including from about 80% to 100%, and also including 100%, of the mono- and/or disaccharide is a non-reducing carbohydrate.
Fat
The concentrated liquid human milk fortifier comprises a fat component suitable for use with infants, especially preterm infants, at concentrations most typically ranging up to about 40% by weight on a dry weight basis, including from about 10% to about 40%, and also including from about 15% to about 37%, and also including from about 18% to about 30%, by weight on a dry weight basis. Fats suitable for use in the concentrated liquid human milk fortifier include coconut oil, soy oil, corn oil, olive oil, safflower oil, high oleic safflower oil, MCT oil (medium chain triglycerides), sunflower oil, high oleic sunflower oil, structured triglycerides, palm and palm kernel oils, palm olein, canola oil, marine oils, cottonseed oils, and combinations thereof.
Suitable fats for use in the concentrated liquid human milk fortifier include emulsifiers to help the various fortifier components readily disperse when combined with human milk. Non-limiting examples of suitable emulsifiers include soya bean lecithin, or fractions there of, polyoxyethylene stearate, mono and di-glycerides, and combinations there of, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, ammonium phosphatides, polyoxyethylene sorbitan monolaurate, citric acid esters of mono and diglycerides of fatty acids, tartaric acid esters of mono and diglycerides of fatty acids, and combinations thereof. Natural soy lecithin is especially useful in this respect. The fat component of the concentrated liquid human milk fortifier may therefore optionally include any emulsifier suitable for use in infant nutritional products. Emulsifier concentrations in these products may range up to about 10%, including from about 1% to about 10%, even more typically from about 1.5% to about 5%, by weight of the total fat component.
The concentrated liquid human milk fortifier also include embodiments that comprise as part of the fat component one or more of arachidonic acid, docosahexaenoic acid, or combinations thereof, alone or in further combination with linoleic acid, linolenic acid, or both.
The weight ratio of fat to protein in the concentrated liquid human milk fortifier is at least about 0.9, including from about 1 to about 5, and also including from about 2 to about 4. These ratios may be helpful in further stabilizing the concentrated liquid human milk fortifier.
Vitamins and Minerals
The concentrated liquid human milk fortifier may further comprise any of a variety of vitamins, non-limiting examples of which include vitamin A, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, pyridoxine, vitamin B12, niacin, folic acid, pantothenic acid, biotin, vitamin C, choline, inositol, salts and derivatives thereof, and combinations thereof. The concentrated liquid human milk fortifier includes embodiments comprising per 100 kcal of fortifier solids one or more of the following: vitamin A (from about 250 to about 6500 IU), vitamin D (from about 40 to about 1200 IU), vitamin K, vitamin E (at least about 0.3 IU), vitamin C (at least about 8 mg), thiamine, vitamin B12, niacin, folic acid, pantothenic acid, biotin, choline (at least about 7 mg), and inositol (at least about 2 mg).
The concentrated liquid human milk fortifiers may also further comprise any of a variety of minerals known or otherwise suitable for use in infant or other nutritional formulas, non-limiting examples of which include phosphorus, magnesium, calcium as described hereinbefore, zinc, manganese, copper, iodine, sodium, potassium, chloride, selenium, chromium, and combinations thereof. The concentrated liquid human milk fortifier also includes embodiments comprising per 100 kcal of the fortifier solids one or more of the following: calcium (at least about 50 mg), phosphorus (at least about 25 mg), magnesium (at least about 6 mg), iodine, zinc (at least about 0.5 mg), copper, manganese, sodium (from about 20 to about 60 mg), potassium (from about 80 to about 200 mg), chloride (from about 55 to about 150 mg) and selenium (at least about 0.5 mcg).
Other Optional Ingredients
The concentrated liquid human milk fortifier may further optionally comprise other ingredients that may modify the physical, chemical, aesthetic or processing characteristics of the formulas or serve as pharmaceutical or additional nutritional components when used in the targeted population. Many such optional ingredients are known for use in food and nutritional products, including infant formulas, and may also be used in the concentrated liquid human milk fortifiers, provided that such optional materials are compatible with the essential materials described herein, are safe and effective for their intended use, and do not otherwise unduly impair the performance of the concentrated liquid human milk fortifier. Non-limiting examples of such optional ingredients include preservatives, anti-oxidants, various pharmaceuticals, buffers, carotenoids, colorants, flavors, nucleotides and nucleosides, thickening agents, prebiotics, probiotics, sialic acid-containing materials, and other excipients or processing aids.
The ingredients for the concentrated liquid human milk fortifiers of Examples 1-4 are shown in the following table.
M. Alpina Oil (ARA)
C. Cohnii Oil (DHA)
The concentrated liquid human milk fortifier is prepared by solubilizing and combining/mixing ingredients into a homogeneous aqueous mixture which is subjected to a sufficient thermal treatment and aseptic filling to achieve long term physical and microbial shelf stability. The term “shelf stability” as used herein means that the concentrated liquid human milk fortifier is resistant to separation and precipitation for time period after manufacture of at least three months, and preferably at least six months.
To begin the manufacturing process, macronutrients (carbohydrate, protein, fat, and minerals) are combined in several slurries together and with water. This blend is subjected to an initial heat treatment and then tested to verify proper nutrient levels. An intermediate aqueous carbohydrate-mineral (CHO-MIN) slurry is prepared by heating appropriate amount of water to 140-160° F. With agitation, the following soluble ingredients are added: maltodextrin, potassium citrate, magnesium chloride, potassium chloride, sodium chloride, and choline chloride. The carbohydrate-mineral slurry is held at 130-150° F. under agitation until added to the blend.
An intermediate oil slurry is prepared by heating MCT oil and coconut oil to 150 to 170° C. and then adding distilled monoglycerides with agitation for a minimum of 10 minutes in order to the ingredient to dissolve. Soy oil, vitamin A palmitate, vitamin D3, di-alpha-tocopheryl-acetate, phylloquinone, ARA-containing oil, DHA-containing oil, and carotenoid premix are then added with agitation to the oil blend. Insoluble mineral calcium source, and ultra micronized tricalcium phosphate is added to the oil. Gellan gum and OSA-modified starch are then added to the oil blend with proper agitation. The oil blend slurry is maintained at 130-150° F. under agitation until added to the blend.
The blend is prepared by combining the ingredient water, casein hydrolysate, all of the CHO-MIN slurry and whole oil blend slurry. The blend is maintained at 120° F. for a period of time not to exceed two hours before further processing.
The blend is then homogenized using one or more in-line homogenizers at pressures from 1000-4000 psig with or without a second stage homogenization from 100-500 psig followed by heat treatment using a UHTST (ultra-high temperature short time, 292-297° F. for 5-15 seconds) process. After the appropriate heat treatment, the batch is cooled in a plate cooler to 33-45° F. and then transferred to a refrigerated holding tank, where it is subjected to analytical testing.
The next step in the manufacturing process involves adding vitamins, trace minerals, other ingredients, and water in order to reach the final target total solids and vitamin/mineral contents. The final batch is filled into a suitable container under aseptic conditions or treated with a terminal sterilization process so the product will be stable at room temperature for an extended shelf-life. Additional detail on this process is provided in the following paragraphs.
A trace mineral/vitamin/nutrient solution (STD1) is prepared by heating water to 80-100° F. and adding the following ingredients with agitation: potassium citrate, ferrous sulfate, zinc sulfate, copper sulfate, manganese sulfate, sodium selenate, pyridoxine hydrochloride, riboflavin, thiamine hydrochloride, cyanocobalamin, folic acid, calcium pantothenate, niacinamide, biotin, m-inositol, nucleotide/choline premix, L-carnitine, L-Leucine, and L-tyrosine.
A vitamin C solution (STD2) is prepared by adding ascorbic acid to a water solution with agitation.
All STD1 and STD2 solutions are then added to the refrigerated batch, with agitation. The appropriate amount of ingredient dilution water is then added to the batch to achieve a target total solids level of 29.0-32.0%. The final batch is then subjected to appropriate thermal treatment and filled into a suitable container (e.g., pouches 10, 110, 120) under aseptic packaging conditions and processes. The term “aseptic packaging” as used herein, unless otherwise specified, refers to the manufacture of a packaged product without reliance upon “retort packaging”, wherein the nutritional liquid and package are sterilized separately prior to filling, and then are combined under sterilized or aseptic processing conditions to form a sterilized, aseptically packaged, nutritional liquid product. The term “retort packaging” as used herein, and unless otherwise specified, refers to the common practice of filling a container, most typically a metal can or other similar package, with a nutritional liquid and then subjecting the liquid-filled package to the necessary heat sterilization step, to form a sterilized, retort packaged, nutritional liquid product.
In Example 5, four separate concentrated liquid human milk fortifiers were prepared and the overall stability in terms of amount of phase separation (emulsion stability), sediment at the bottom of the container, and creaming at the top of the liquid, of each was evaluated at 24 hours after manufacture. Each of the four tested concentrated liquid human milk fortifiers was based on the concentrated liquid human milk fortifier of Example 2 above.
The first concentrated liquid human milk fortifier was identical to that of Example 2 except that it did not contain any OSA-modified corn starch and did not contain any low acyl gellan gum. The second fortifier was identical to that of Example 2 except that it did not contain any low acyl gellan gum. The third fortifier was identical to that of Example 2 except that it did not contain any OSA-modified corn starch. The fourth fortifier was identical to that of Example 2. Each of the four fortifiers was prepared in accordance with the manufacturing process of Examples 1-4.
Upon evaluation, the first fortifier (no OSA-modified corn starch and no low acyl gellan gum) showed nearly complete phase separation of the oil and water phases, and showed both heavy creaming at the top of the liquid and heavy sediment at the bottom of the container. See
Upon evaluation, the second fortifier (no low acyl gellan gum) showed both heavy creaming at the top of the liquid and heavy sediment at the bottom of the container. See
Upon evaluation, the third fortifier (no OSA-modified corn starch) showed nearly complete phase separation of the oil phase and the water phase. See
Upon evaluation, the fourth fortifier (containing both OSA-modified corn starch and low acyl gellan gum) showed no phase separation, no creaming, and no sediment. See
Gelled Human Milk Fortifier
Another suitable human milk fortifier suitable for packaging in the pouches 10, 110, 210 is a gelled human milk fortifier. The gelled human milk fortifier generally comprises protein, fat, and carbohydrate in a stable, concentrated gel that is shear thinning and stabilizer-free. The term “gelled human milk fortifier” as used herein means a human milk fortifier that is in the form of a colloid in which the dispersed phase has combined with the dispersion medium to produce a semisolid material, such as a jelly, pudding or yogurt. A “gelled human milk fortifier” has a viscosity at room temperature of greater than 800, 900 or even 1000 cps as measured using a Brookfield Viscometer (spindle 61, 60 rpm, after 10 seconds of rotation). The term “shear thinning” as used herein means an effect where viscosity decreases with increasing rate of shear stress.
Various embodiments of the gelled human milk fortifiers can be substantially free of any optional or selected essential ingredient or feature described herein, provided that the remaining gelled human milk fortifier still contains all of the required ingredients or features as described herein. In this context, and unless otherwise specified, the term “substantially free” means that the selected gelled human milk fortifier contains less than a functional amount of the optional ingredient, typically less than 0.1% by weight, and also including zero percent by weight of such optional or selected essential ingredient. The gelled human milk fortifiers can comprise, consist of, or consist essentially of the essential elements, as well as any additional or optional ingredients, components, or limitations described herein or otherwise useful in the gelled human milk fortifier.
Product Form
The gelled human milk fortifier is shear thinning such that they can easily be converted from the gelled form to a liquid form by shaking and/or kneading prior to being poured from the pouch 10, 110, 210. Generally, the gelled human milk fortifier has a viscosity of greater than 1000 cps at room temperature as measured using a Brookfield Viscometer Model DVII (spindle 61, 60 rpm, after 10 seconds rotation). The gelled human milk fortifier has a shaken viscosity, as defined herein, of from about 20 cps to about 200 cps, or even from about 20 cps to about 150 cps, or even from about 20 cps to about 100 cps, or even from about 20 cps to about 80 cps, or even from about 50 cps to about 95 cps. Generally, as the gelled human milk fortifier ages, the shaken viscosity will increase slightly.
The gelled human milk fortifier has a gel strength, as defined herein, of from about 25 grams to about 200 grams, or even from about 50 grams to about 200 grams, or even from about 75 grams to about 150 grams. The gelled human milk fortifier has a shaken gel strength of less than 10, or even less than 5 or even zero. In one suitable embodiment, the shaken gel strength is zero.
The gelled human milk fortifiers can be stabilizer free. That is, they may be formulated to not include any stabilization agent for keeping precipitation and/or settling from occurring in the fortifier. By formulating the gelled human milk fortifier to be stabilizer free, it becomes more acceptable worldwide. Specifically, the gelled human milk fortifier can be formulated to be carrageenan-free.
The gelled human milk fortifier is generally formulated to have a caloric density of at least about 1.25 kcal/ml (37 kcal/fl oz), including from about 1.4 kcal/ml (42 kcal/fl oz) to about 5 kcal/ml (149 kcal/fl oz), and also including from about 1.5 kcal/ml (44 kcal/fl oz) to about 2.5 kcal/ml (74 kcal/fl oz), and also including from about 1.9 kcal/ml (56 kcal/fl oz) to about 2.0 kcal/ml (59 kcal/fl oz). The gelled human milk fortifier is preferably formulated to provide fortified human milk having an osmolality of less than about 400 mOsm/kg water, preferably from about 300 mOsm/kg water to about 400 mOsm/kg water.
Macronutrients
The gelled human milk fortifiers of the present disclosure comprise carbohydrate, fat, and protein macronutrients of sufficient types and amounts, that when used in combination with human milk or other infant feeding formula, they help meet the nutritional needs of the infant, especially the premature infant. The concentration of these macronutrients in the various embodiments of the present disclosure includes the ranges described hereinafter.
Protein
The gelled human milk fortifier comprises a protein suitable for use with infants, especially preterm infants, at concentrations ranging from about 10% to about 30%, including from about 10% to about 25%, and also including from about 15% to about 25%, on a dry weight basis. In some embodiments, the protein may be at a concentration of less than 10%.
In one suitable embodiment, the gelled human milk fortifier is prepared by aseptic processing, which comprise the requisite protein concentrations with a specific blend of casein and whey protein. The blend includes from about 40% to about 80% by weight of whey protein, including from about 50% to about 70% by weight whey protein, including from about 55% to about 70% by weight whey protein, and including from about 60% to about 70% by weight whey protein, in combination with from about 20% to about 60% by weight of casein protein, including from about 30% to about 50% by weight of casein protein, including from about 20% to about 50% by weight casein protein, including from about 20% to about 45% by weight casein protein, including from about 20% to about 40% by weight casein protein, including from about 20% to about 30% casein protein. It has been found that these particular blends of whey protein and casein protein provide for a suitable gelled human milk fortifier that can be prepared by aseptic processing.
In some embodiments, in addition to the whey protein and casein protein outlined above, the gelled human milk fortifier may contain additional protein. Suitable additional protein may include soy protein hydrolysate, casein protein hydrolysate, whey protein hydrolysate, rice protein hydrolysate, potato protein hydrolysate, fish protein hydrolysate, egg albumen hydrolysate, gelatin protein hydrolysate, combinations of animal and vegetable protein hydrolysates, and combinations thereof.
Proteins suitable for use in the gelled human milk fortifier may include intact or hydrolyzed proteins, free amino acids, or combinations thereof. Non-limiting examples of suitable proteins include hydrolyzed, partially hydrolyzed or non-hydrolyzed protein, and can be derived from any known or otherwise suitable source such as milk (e.g., casein, whey, lactose-free milk protein isolates), animal (e.g., meat, fish), cereal (e.g., rice, corn), vegetable (e.g., soy), or combinations thereof. The protein can include, or be entirely or partially replaced by, free amino acids known or otherwise suitable for use in nutritional products, non-limiting examples include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-carnitine, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-taurine, L-threonine, L-tryptophan, L-tyrosine, L-valine, and combinations thereof.
Carbohydrate
The gelled human milk fortifiers comprises a carbohydrate suitable for use with infants, especially preterm infants, at concentrations most typically ranging up to about 75% by weight on a dry weight basis, including from about 10% to about 50%, and also including from about 20% to about 40%, by weight on a dry weight basis. Carbohydrates suitable for use in the gelled human milk fortifiers include hydrolyzed or intact, naturally and/or chemically modified, starches sourced from corn, tapioca, rice or potato, in waxy or non-waxy forms. Other non-limiting examples of suitable carbohydrate sources include hydrolyzed cornstarch, maltodextrin (i.e. non-sweet, nutritive polysaccharide having a DE value less than 20), corn maltodextrin, glucose polymers, sucrose, corn syrup, corn syrup solids (i.e., polysaccharide having a DE value greater than 20), glucose, rice syrup, fructose, high fructose corn syrup, indigestible oligosaccharides such as fructooligosaccharides (FOS), and combinations thereof. The carbohydrates may comprise lactose or can be substantially free of lactose.
One embodiment of the gelled human milk fortifier includes a non-reducing carbohydrate component, which may represent from about 10% to 100%, including from about 80% to 100%, and also including 100%, by weight of the total carbohydrate. The selection of a non-reducing carbohydrate may enhance the product stability and is generally better tolerated by infants, especially premature infants. Non-limiting examples of non-reducing carbohydrates include sucrose or other carbohydrates that do not readily oxidize or react with Tollen's, Benedict's, or Fehling's reagents. The gelled human milk fortifier therefore includes embodiments comprising a carbohydrate component, wherein the carbohydrate component comprises a mono- and/or disaccharide such that at least about 50%, including from about 80% to 100%, and also including 100%, of the mono- and/or disaccharide is a non-reducing carbohydrate.
Fat
The gelled human milk fortifiers also comprises a fat component suitable for use with infants, especially preterm infants, at concentrations most typically ranging up to about 40% by weight on a dry weight basis, including from about 10% to about 40%, and also including from about 15% to about 37%, and also including from about 18% to about 30%, by weight on a dry weight basis. Fats suitable for use in the gelled human milk fortifier may include coconut oil, soy oil, corn oil, olive oil, safflower oil, high oleic safflower oil, MCT oil (medium chain triglycerides), sunflower oil, high oleic sunflower oil, structured triglycerides, palm and palm kernel oils, palm olein, canola oil, marine oils, cottonseed oils, and combinations thereof.
Suitable fats for use in the gelled human milk fortifier include emulsifiers to help the various fortifier components readily disperse when combined with human milk. Non-limiting examples of suitable emulsifiers include soya bean lecithin, polyoxythylene stearate, polyoxyethylene sorbitan mono-oleate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, ammonium phosphatides, polyoxyethylene sorbitan monolaurate, citric acid esters of mono and diglycerides of fatty acids, tartaric acid esters of mono and diglycerides of fatty acids, and combinations thereof. Natural soy lecithin is especially useful in this respect. The fat component of the gelled human milk fortifier may therefore optionally include any emulsifier suitable for use in infant nutritional products. Emulsifier concentrations in these products may range up to about 10%, including from about 1% to about 10%, even more typically from about 1.5% to about 5%, by weight of the total fat component. The weight ratio of fat to protein (fat:protein, by weight) in the human milk fortifier is at least about 0.9, including from about 1 to about 5, and also including from about 2 to about 4. These ratios may be helpful in further stabilizing the gelled human milk fortifier.
The gelled human milk fortifier also include embodiments that comprise, as part of the fat component, one or more of arachidonic acid, docosahexaenoic acid, or combinations thereof, alone or in further combination with linoleic acid, linolenic acid, or both.
Vitamins and Minerals
The gelled human milk fortifier may further comprise any of a variety of vitamins, non-limiting examples of which include vitamin A, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, pyridoxine, vitamin B12, niacin, folic acid, pantothenic acid, biotin, vitamin C, choline, inositol, salts and derivatives thereof, and combinations thereof. The gelled human milk fortifier includes embodiments comprising per 100 kcal of fortifier solids one or more of the following: vitamin A (from about 250 to about 750 IU), vitamin D (from about 40 to about 100 IU), vitamin K, vitamin E (at least about 0.3 IU), vitamin C (at least about 8 mg), thiamine, vitamin B12, niacin, folic acid, pantothenic acid, biotin, choline (at least about 7 mg), and inositol (at least about 2 mg).
The gelled human milk fortifier may also further comprise any of a variety of minerals known or otherwise suitable for use in infant or other nutritional formulas, non-limiting examples of which include phosphorus, magnesium, calcium as described hereinbefore, zinc, manganese, copper, iodine, sodium, potassium, chloride, selenium, and combinations thereof. The gelled human milk fortifier also include embodiments comprising per 100 kcal of the fortifier solids one or more of the following: calcium (at least about 50 mg), phosphorus (at least about 25 mg), magnesium (at least about 6 mg), iodine, zinc (at least about 0.5 mg), copper, manganese, sodium (from about 20 to about 60 mg), potassium (from about 80 to about 200 mg), chloride (from about 55 to about 150 mg) and selenium (at least about 0.5 mcg).
Other Optional Ingredients
The gelled human milk fortifier may further optionally comprise other ingredients that may modify the physical, chemical, aesthetic or processing characteristics of the formulas or serve as pharmaceutical or additional nutritional components when used in the targeted population. Many such optional ingredients are known for use in food and nutritional products, including infant formulas, and may also be used in the gelled human milk fortifiers of the present disclosure, provided that such optional materials are compatible with the essential materials described herein, are safe and effective for their intended use, and do not otherwise unduly impair product performance. Non-limiting examples of such optional ingredients include preservatives, anti-oxidants, various pharmaceuticals, buffers, carotenoids, colorants, flavors, nucleotides and nucleosides, thickening agents, prebiotics, probiotics, sialic acid-containing materials, and other excipients or processing aids.
The following examples illustrate specific embodiments and/or features of the gelled human milk fortifier. The examples are given solely for the purpose of illustration as many variations thereof are possible. All exemplified amounts are weight percentages based upon the total weight of the formulation, unless otherwise specified.
In this Example, a gelled human milk fortifier is prepared with the ingredients shown in the following table.
M. Alpina Oil
C. Cohnii Oil
The gelled human milk fortifier is prepared by solubilizing and combining ingredients into a homogeneous aqueous mixture which is subjected to an adequate heat treatment to achieve long term shelf stability. To begin the manufacturing process, the ingredients that supply the macronutrients (carbohydrate, protein, fat and minerals) are combined in multiple slurries together and with water. This blend is subjected to an initial heat treatment and then tested to verify proper nutrient levels. Additional detail on this process is provided in the following paragraphs.
An intermediate aqueous carbohydrate-mineral slurry is prepared by heating water to 60-66° C. With agitation, the following soluble minerals are added: magnesium chloride, potassium citrate, sodium chloride, monopotassium phosphate and magnesium phosphate. Once fully dissolved, corn maltodextrin and corn syrup solids are added to the mineral solution. The carbohydrate-mineral slurry is held at 54° C. under low agitation until added to the blend.
An intermediate oil and protein slurry is prepared by heating MCT oil to 32-43° C. and then adding DHA oil and AA oil, with agitation. A soy lecithin emulsifier (8.84 kg) is added with agitation to the heated oils and allowed to dissolve. Vitamin A, vitamin D, and vitamin K, and natural vitamin E are then added with agitation to the oil blend. Whey protein concentrate and tricalcium phosphate are added to the oil. The oil and protein slurry is maintained at 38° C. under low agitation until added to the blend.
An intermediate aqueous protein slurry is prepared by heating ingredient water to 49-54° C., and then adding whey protein concentrate with moderate agitation. The aqueous protein slurry is held at 52° C. under low agitation until added to the blend.
The blend is prepared by combining the carbohydrate-mineral slurry with condensed skim milk and non-fat milk solids and then adding the oil and protein slurry and the aqueous protein slurry. After no less than five minutes, the blend pH is adjusted to 6.8-7.0 using a 1N KOH solution, and thereafter maintained at 52-60° C., for a period of time not to exceed two hours before further processing.
The pH adjusted blend is then homogenized using one or more in-line homogenizers at pressures from 1000-4000 psig with or without a second stage homogenization from 100-500 psig followed by heat treatment using a HTST (high temperature short time, 74° C. for 16 seconds). After the appropriate heat treatment, the batch is cooled in a plate cooler to 1.0-5.0° C. and then transferred to a refrigerated holding tank, where it is subjected to analytical testing.
The next step in the manufacturing process involves adding vitamins, trace minerals and water to the target total solids. The final batch is sterilized and filled into a suitable container under aseptic conditions or treated with a terminal sterilization process so the product will be stable at room temperature for an extended shelf life. Additional detail on this process is provided in the following paragraphs.
A trace mineral solution is prepared by heating water to 27-38° C. and adding the following minerals with agitation: potassium citrate, ferrous sulfate, zinc sulfate, cupric sulfate, manganese sulfate, sodium selenate.
A water-soluble vitamin solution is prepared by heating water to 27-38° C. The following vitamins are added to the water with agitation: choline chloride, niacinamide, riboflavin, calcium pantothenate, pyridoxine hydrochloride, thiamine hydrochloride, m-inositol, biotin, folic acid, and cyanocobalamin.
A vitamin C solution is prepared by adding ascorbic acid to 1N KOH solution with agitation.
All three vitamin or mineral solutions are then added to the refrigerated batch, with agitation. The appropriate amount of ingredient dilution water is then added to the batch to achieve a target total solids level of 32%, and the pH is adjusted to 7.0 with a 1N KOH solution.
In this Example, the unshaken viscosity, shaken viscosity, unshaken get strength and shaken gel strength of the human milk fortifier prepared in Example 1 is tested at a sample aged three months and a sample aged six months.
The viscosities were measured using a Brookfield Viscometer Model DV11+ (spindle 61, 60 rpm, after 10 second of rotation). The gel strengths were measure using a Stable Micro Systems TA.XT plus Texture Analyzer (1 inch ball probe, 20 mm depth). For the shaken samples, each sample was shaken vigorously by hand for five seconds prior to testing.
The results of the viscosity measurements and gel strengths are shown in the following Table.
As can be seen from the data in the Table, the unshaken viscosities for both samples are greater than 1000 cps, while the viscosities of both shaken samples are substantially less (56 cps for 3 months and 95 cps for 6 months). This indicates that in unshaken form, a gel is present whereas after shear is applied (by shaking) the gel easily breaks for forms a liquid of relatively low viscosity that could easily be poured from one of the pouches 10, 110, 210.
Additionally as can be seen from the data in the Table, the unshaken gel strength for both samples is relatively high (78 grams at 3 months and 133 grams at 6 months), while the gel strengths after shaking for both samples is zero grams. This indicates that after shaking, the gel has transformed into a liquid that could easily be poured from one of the pouches 10, 110, 210.
The concentrated liquid human milk fortifier and the gel human milk fortifier can be packaged in suitable unit dose pouches (e.g., pouches 10, 110, 210). The term “unit dose” as used herein refers to individual, single-use, pouches of concentrated human milk fortifier containing a predetermined amount of human milk fortifier that can be used in a preparation of a predetermined amount of human milk. The unit dose pouches 10, 110, 210 are single use containers that alone, or in combination with other unit dose pouches, provide sufficient human milk fortifier to supplement human milk for immediate use, e.g., preferably within 8-24 hours, more preferably within 0-3 hours, of mixing with human milk.
The amount or volume of concentrated liquid human milk fortifier or gel human milk fortifier in each unit dose pouch 10, 110, 210 includes those embodiments in which the package contains an amount suitable to prepare an infant's feeding. In one suitable embodiment, the unit dose pouches 10, 110, 210 typically contain sufficient fortifier to provide from about 0.5 g to about 10 g of fortifier solids, more typically from about 0.8 g to about 5.0 g of fortifier solids, and even more typically from about 0.85 g to about 2.0 g, of fortifier solids. The terms “fortifier solids” or “total solids”, unless otherwise specified, are used interchangeably herein and refer to all material components of the compositions of the present disclosure, less water.
The amount of fortified human milk prepared for a premature infant, for example, typically ranges from 25 ml to 150 ml a day. Consequently, in one suitable embodiment, a single unit dose is the appropriate amount of fortifier solids to fortify a 25 ml preparation. Multiple pouches 10, 110, 210 can be used to prepare larger feeding volumes, especially for term infants.
Aseptic Packaging
The concentrated liquid human milk fortifier and the gel human milk fortifier can be sterilized and aseptically packaged into the pouches 10, 110, 210. The aseptic packaging can be accomplished using any of a variety of techniques well known to those of ordinary skill in the formulation art, so long as the technique is sufficient to achieve long term shelf stability of the fortifier.
In this embodiment, a web of plastic sheeting (e.g., the two layered laminate illustrated in
The web next enters a sterilization station 88 wherein the web passes through a peroxide bath, thereby sterilizing the entire web, as both sides of the web are brought into direct contact with a peroxide solution. It is contemplated that other sterilants (e.g., oxonia) or forms of sterilization (e.g., UV light, electron beam) can be used. Once the web has passed through the peroxide bath, the web is dried by blowing sterile air thereon at a drying station 90. While still in a sterile environment, the web is directed to a web separation station 92 and a web folding station 94. More specifically, the web is separated into four lanes at the web separation station 92 as it is pulled across respective forming collars. Each of the four lanes is defined by segments of the web. Each of the web segments are folded by the respective forming collar. Thus, in the described embodiment, the four forming collars both separate the web into segments and fold the segments. In other words, the four forming collars collectively define both the web separation station 92 and the web folding station 94. It is understood, however, that the web separation station 92 and the web folding station 94 can be separate, discrete stations. It is also understood that the forming collars can be any suitable device(s) capable of dividing the web into a plurality of web segments and folding each of the web segments.
As illustrated in
Next, each of the web segments is perforated along a longitudinal perforation line located between the tubes of each of the web segments at a longitudinal perforation station 97 (
After the pouches 10 are filled with product and sealed, they are transferred to weight and leak inspection stations 304 wherein each of the pouches 10 are weighed and checked for leakage. Pouches 10 that pass inspection are incubated at an incubation station 305 and tested for spoilage at a spoilage inspection station 306. Then, pouches are packaged in pluralities into suitable secondary packaging, e.g., opaque cardboard box 500, 500′ as illustrated in
When the product is a liquid human milk fortifier (e.g., the concentrated liquid human milk fortifier or the gelled human milk fortifier described above), the product can be sterilized by heat treatment via a high temperature short time (HTST) process or an ultra high temperature (UHT) process to sufficiently reduce the bioburden before the pouches 10 are filled. The above described packaging process of a sterile product, allows some products (e.g., some embodiments of the concentrated liquid human milk fortifier and the gelled human milk fortifier described above) to maintain commercially sterility over an extended shelf-life without the need for refrigeration even if the product is low acid (i.e., has a pH greater than 4.6) and has water activity greater than 0.85.
In one embodiment, the liquid human milk fortifier is photosensitive. That is, the vitamins in liquid human milk fortifier will degrade more slowly when not exposed to light, and conversely, will degrade more rapidly when exposed to light. When the liquid human milk fortifier is photosensitive, the opaque cardboard box 500 inhibits the pouches 10 container therein from being exposed to light and thereby extends the shelf life of the liquid human milk fortifier.
In one suitable inspection station 304, each of the pouches 10 are transferred through an in-line checkweigher were it is weighed. Any pouch 10 having a weight outside an acceptable weight range is rejected. The pouches 10 that pass the inline checkweigher are aligned and conveyed into a high voltage leak detection (HVLD) inspection system. In this system, the seal integrity of each of the pouches 10 is non-destructively inspected by applying high voltage to the sealed liquid-filled pouch. The system is designed to conduct electric current through the pouch 10 and measure the amount of current that passes through the pouch. A pouch 10 with a leak (i.e., a faulty seal) will transfer more current to a ground electric than a pouch having a seal with good integrity. The seals of the pouch 10 act as an insulator to the liquid inside. Any pouch 10 that does not pass inspection (i.e., has a current above an acceptable range) is automatically rejected.
More specifically, once the pouches 10 enter the high voltage leak detection inspection system, they pass to a press that applies a compression force to each of the pouches. The compression force pushes liquid into any weak areas of the pouch body and/or pouch seal. While compressed, each of the pouches 10 is conveyed past a series of rollers and metal electrode brushes in the inspection station wherein high voltage power is applied the pouches. In one suitable configuration, the voltage is transferred from an upper electrode positioned above the pouch through the pouch 10 to ground electrode positioned beneath the pouch. In other words, the pouch 10 completes the circuit between the upper electrode and the ground electrode, which provides a measurable volume of electric current through the pouch.
A pouch 10 with good seal integrity will provide a lower voltage output as compared to a pouch with poor seal integrity, which provides a higher voltage output. Thus, the high voltage leak detection inspection machine determined if each of the pouches 10 is “good” or “bad” based on the measured voltage relative to a voltage threshold, which is a pre-determined set point. If the measured voltage is below the threshold, the pouch will be transferred to an outfeed conveyor for subsequent secondary packaging. If the measured voltage is above the threshold, the pouch 10 will be transferred to a reject bin.
In one suitable embodiment, the cardboard box 500 (broadly, the secondary container) includes a generally rectangular base section 502 and a lid 501 hingely attached to the base (FIGS. 12 and 17-21). The base section 502 and lid 501 are indicated generally by their respective reference numbers. The base section 502 includes a bottom wall 504, four side walls 506 extending up from the bottom wall, and a top wall 508. As seen in
The lid 501, which is formed integrally with the base section 502, has an upper wall 510 and a pair of tapered sidewalls 503 extending downward from the upper wall. An end wall 505 extends downward from the upper wall 510 and between the sidewalls 503. The lid 501 is pivotally about a living hinge 507 between a closed position (
A pair of hold-downs 509 are located adjacent the ends of the living hinge 507 to provide rigidity and support to the box 500 about the living hinge. In the illustrated embodiment, each of the hold-downs 509 are flaps that extend outward from the top wall of the base section 502. Each of the flaps are folded about a pair of fold-lines and inserted into an associated slot in one of the sidewalls of the base section (
As seen in
In use, a user removes a pair of the joined pouches 10 from the cardboard box 500 of
The product can be poured or squeezed from the pouch 10. In one embodiment, the product is a consumable product that can be consumed directly from the pouch 10. In another embodiment, the product is a consumable product intended to be mixed with another product. For example, if the product is a human milk fortifier (e.g., the concentrated liquid human milk fortifier or the gelled human milk fortifier described above), the human milk fortifier can be dispensed directly into a container (e.g., infant bottle B) containing human milk M (or other suitable infant formula) as illustrated in FIG. 13. In such an embodiment, the resulting fortified human milk or fortified infant formula is suitable for oral feeding to an infant, including a premature infant.
All percentages, parts and ratios as used herein, are by weight of the total composition, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include solvents or by-products that may be included in commercially available materials, unless otherwise specified.
Numerical ranges as used herein are intended to include every number and subset of numbers within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
All references to singular characteristics or limitations of the present disclosure shall include the corresponding plural characteristic or limitation, and vice versa, unless otherwise specified or clearly implied to the contrary by the context in which the reference is made.
All combinations of method or process steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application claims priority to U.S. Provisional Application No. 61/427,526, filed Dec. 28, 2010, the disclosure of which is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/64247 | 12/9/2011 | WO | 00 | 10/23/2013 |
Number | Date | Country | |
---|---|---|---|
61427526 | Dec 2010 | US |