Power factor correction capacitors

Information

  • Patent Grant
  • 11189425
  • Patent Number
    11,189,425
  • Date Filed
    Monday, December 3, 2018
    5 years ago
  • Date Issued
    Tuesday, November 30, 2021
    2 years ago
Abstract
An apparatus includes a case capable of receiving a plurality of capacitive elements, each capacitor element having at least two capacitors, and each capacitor having a capacitive value. The apparatus also includes a cover assembly with a peripheral edge secured to the case. The cover assembly includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly. Each cover terminal is connected to one of the at least two capacitors of the respective one of the plurality of capacitive elements. The cover assembly also includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly.
Description
BACKGROUND

This description relates to a single device capable of providing selectively connectable capacitive elements for power factor correction.


In general, power factor can be considered a measure of efficiency as represented by the ratio of the average power available and the actual amount of power being used. For alternating current (AC) electrical systems such as electrical power systems, the power factor can be defined as the ratio of the real power flowing to a load, to the apparent power in the load. Real power is generally considered the capacity of the circuit for performing work in a particular time, and, apparent power is the product of the current and voltage of a circuit such as a load. This ratio is a dimensionless number and can be scaled over a particular numerical range (e.g., between −1 and 1). Due to energy stored in the load and returned to the source, due to a non-linear load, etc., the apparent power is typically greater than the real power.


In such electrical systems such as electrical power systems, a load with a low power factor draws more current than a load with a high power factor for the same amount of power being transferred. Correspondingly, higher currents associated with lower power factors can result in an increase is wasteful energy lost and a higher cost to industrial and commercial customers operating with low power factors.


SUMMARY

The apparatus and techniques described here relate to providing selectable amounts of capacitance for providing different levels of reactive power from a single device to achieve more functionality and flexibility from the single device, reduce inventory and converse storage space.


In one aspect, an apparatus includes a case capable of receiving a plurality of capacitive elements, each capacitor element having at least two capacitors, and each capacitor having a capacitive value. The apparatus also includes a cover assembly with a peripheral edge secured to the case. The cover assembly includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly. Each cover terminal is connected to one of the at least two capacitors of the respective one of the plurality of capacitive elements. The cover assembly also includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly. Each cover terminal at the spaced apart position is connected to another of the at least two capacitors for the respective one of the plurality of elements. The cover assembly also includes a common insulation barrier mounted to the cover assembly. One cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly extends through the common insulation barrier. The common insulation barrier includes barrier fins extending radially outwards. The cover assembly also includes a separate insulation barrier mounted to the cover assembly. One cover terminal that extends upwardly from the cover assembly at the spaced apart position extends through the separate insulation barrier.


Implementations may include any or all of the following features. Two or more of the at least two capacitors may have equivalent capacitance values. Two or more of the at least two capacitors for each of the plurality of capacitive elements may have equivalent capacitance values. The capacitive elements may include a cylindrically wound capacitive element. The apparatus may further include an insulating fluid in the case at least partially surrounding the plurality of capacitive elements. The cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly may have a first size and the cover terminal that extends upwardly from the cover assembly at the spaced apart position may have a second size, different from the first size. The first size may be a first diameter and the second size is a second diameter. The plurality of capacitive elements may be connected in a delta configuration. The at least two capacitors may be connected in parallel by connecting the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly and the cover terminal that extends upwardly from the cover assembly at the spaced apart position. The apparatus may have a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position. The apparatus may have a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position, and, the apparatus may have a second KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being connected to the cover terminal that extends upwardly from the cover assembly at the spaced apart position.


In another aspect, an apparatus includes a case capable of receiving a plurality of capacitive elements, each capacitor element having at least two capacitors, and each capacitor having a capacitive value. The apparatus also includes a cover assembly with a peripheral edge secured to the case. The cover assembly includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly. Each cover terminal is connected to one of the at least two capacitors of the respective one of the plurality of capacitive elements. The cover assembly also includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly. Each cover terminal at the spaced apart position is connected to another of the at least two capacitors for the respective one of the plurality of elements. The cover assembly also includes a common insulation barrier mounted to the cover assembly. One cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly extends through the common insulation barrier. The common insulation barrier includes barrier fins extending radially outwards. The cover assembly also includes a separate insulation barrier mounted to the cover assembly. One cover terminal that extends upwardly from the cover assembly at the spaced apart position extends through the separate insulation barrier. The apparatus has a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position, and, the apparatus has a second KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being connected to the cover terminal that extends upwardly from the cover assembly at the spaced apart position.


Implementations may include any or all of the following features. Two or more of the at least two capacitors may have equivalent capacitance values. Two or more of the at least two capacitors for each of the plurality of capacitive elements may have equivalent capacitance values. The capacitive elements may include a cylindrically wound capacitive element. The apparatus may further include an insulating fluid in the case at least partially surrounding the plurality of capacitive elements.


These and other aspects and features and various combinations of them may be expressed as methods, apparatus, systems, means for performing functions, program products, and in other ways.


Other features and advantages will be apparent from the description and the claims. Other and more specific objects and features will, in part, be understood by those skilled in the art and will, in part, appear in the following description of the preferred embodiments, and claims, taken together with the drawings





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of an adjustable power factor correction capacitor capable of providing selectable reactive power.



FIG. 2 is an exploded view of the adjustable power factor correction capacitor of FIG. 1.



FIG. 3 is a perspective view of one capacitive element included in the adjustable power factor correction capacitor of FIG. 1.



FIG. 4 is an electrical schematic of one capacitive element included in the adjustable power factor correction capacitor of FIG. 1.



FIG. 5 is a partial cross section of one capacitive element included in the adjustable power factor correction capacitor of FIG. 1.



FIG. 6 is a cover assembly for the adjustable power factor correction capacitor of FIG. 1.



FIG. 7 is a schematic diagram of the three capacitive elements included in the adjustable power factor correction capacitor of FIG. 1.



FIGS. 8 and 9 are schematic diagrams illustrating selectable adjustments to the connections of the capacitive elements included in the adjustable power factor correction capacitor of FIG. 1.



FIG. 10 is a top view of the cover assembly of FIG. 6.



FIG. 11 is a top view of the cover assembly of FIG. 6, including conductive connectors.





DETAILED DESCRIPTION

Given the inefficient effects of operating under a lower power factor condition, a high power factor is generally desirable in electrical systems (e.g., an electric transmission system) to reduce transmission losses and improve voltage regulation at a load. For such operations, it is often desirable to adjust the power factor of a system to a value as close to 1.0 as possible. In one example of adjusting power factor, reactive elements may be used to supply or absorb reactive power near the load, and thereby reduce the apparent power. By taking such corrective steps to adjust the power factor, improvements in stability and efficiency of the electrical system may be achieved.


To implement such a power factor correction, one or more techniques may be utilized. For example, a network of one or more capacitors, inductors, etc., may be used to correct low power factors of various types of loads. For example, a linear load generally presents a constant load to a supply. Power factor correction for such a linear load can be provided by presenting a reactive load of equal and opposite sign. For example, linear load power factor correction can be applied by adding capacitors for an inductive load, and/or, adding inductors for a capacitive load. In one scenario, one or more motors may present an inductive load to a supply, and capacitors may be added to neutralize the effect of the load inductance and adjust the power factor to a value closer to a unity. Typically devices used for correcting the power factor are deployed near the load (e.g., at a power panel, etc.), however in some arrangements the devices may be installed at a relatively remote location (e.g., at a central substation, etc.). Along with being installed at a single location, such devices may also be installed in a distributed manner over multiple locations. In some arrangements, such power factor correction devices may be able to compensate for sudden changes of power factor, for example, due to large fluctuating industrial loads.


In general, the reactive power provided by a capacitor can be represented as a measure of volt-ampere reactive (VAR). In many instances this measure is scaled (e.g., by a factor of one thousand) to be represented as a kilovar (KVAR) of the reactive power supplied by the capacitor. In general, the KVAR of a capacitor can be determined from its capacitive reactance, Xc, which can be defined as:










X
c

=

1

(

2





π





fC

)






(
1
)








where f is frequency and C is the capacitance of the capacitor. From this quantity, the KVAR rating of the capacitor can be calculated from:









KVAR
=



(

V
n

)

2


(

1000






X
c


)






(
2
)








where Vn is the voltage applied to the terminals of the capacitor. As provided by equations (1) and (2), the KVAR rating of a capacitor is directly proportional to the capacitance value of the capacitor and thereby the KVAR rating increases with capacitance. As such, to adjust the KVAR for appropriately supplying a load, different and selectable values of capacitances may need to be installed near the load.


To efficiently provide different KVARs, capacitances, and other parameters associated with power factor correction (e.g., for different applications), an adjustable power factor correction capacitor 10 is shown in FIGS. 1-2. In general, the adjustable power factor correction capacitor 10 allows one of multiple (e.g., two) KVARs to be selected prior to installation. As such, a technician can easily carry a single device and be able to select a KVAR value for applying to a particular load. By incorporating the functionality of multiple devices into a single device, the total number of power factor correction capacitors needed in stock can be reduced along with the number of different variations of capacitors to install for different load conditions. Similarly, less power factor correction capacitors need to be carried to the site, e.g., for service calls.


In this arrangement, the adjustable power correction capacitor 10 includes a number of capacitive elements (e.g., capacitive element 12, 14, 16), as presented in the exploded view in FIG. 2. Each of the capacitive elements 12, 14, 16 includes multiple capacitor sections and each individual section provides a capacitance value. In the illustrated example, each of the capacitive elements 12, 14, 16 includes two separate capacitor sections with corresponding capacitance values that may or may not be equivalent (e.g., both may have equivalent or different capacitance values represented in micro-farads). To provide such capacitive elements with dual capacitance values, one or more production techniques may be implemented, for example, each element may be produced as a wound cylindrical element. In one arrangement, capacitor sections of the capacitive element 12 can be wound on a winding machine onto a rotating spindle. In particular, to form the element, one metallized dielectric film can fed from a first supply roll, and a second metallized dielectric film can fed from a second supply roll. In general, both films carry near their respective surfaces a thin metallic layer that extends to one edge (e.g., the right or left edge) of the film but terminates short of the opposing edge (e.g., the left or right edge) leaving a non-metallized strip therealong.


Referring to FIGS. 3 and 4, an illustration of a wound capacitive element 30 (e.g., the capacitive element 12) and a corresponding schematic diagram 40 are presented. As illustrated in the schematic diagram 40, the capacitive element 30 includes a pair of capacitors that share a common single plate 20. To produce this capacitive element 30, the two films can be wound on the spindle of a winding machine for a preselected number of revolutions. The number of revolutions generally depends upon the capacitance value desired. If the capacitance values of the dual capacitors are to be equal, one-half of the total length of the film is first wound. Once this portion is wound, the winding machine is stopped and voltage is applied to the metal layer of the film (e.g., by an electrode). The winding process is then continued, for example at a slower speed, and the metallic layer is vaporized, leaving a non-metallized intermediate region. The length of the non-metallized region is generally sufficient to encircle the capacitive element 30 at least once. During the interval of winding the region around the capacitive element 30, there is inserted into the section a non-conductive sheet 36 of a material, such as a plastic. The sheet 36 is generally not centered along the length of the cylindrical section of the element. As illustrated in FIG. 4, accordingly, upon continued winding the sheet 36 forms a circular barrier which extends outwardly from that end of the capacitive element 30 having the metallized edge of film. Winding is continued and terminated for the first and second films and the completed element may be wrapped, for example, by a suitable tape 38.


As illustrated in FIG. 3, the capacitive element 30 is metal plated in a manner employed for attaching leads, e.g. the ends are sprayed with molten copper to which a layer of solder is applied. Thereafter, the barrier formed by sheet 36 is trimmed as shown in FIG. 5. The completed element, as shown in FIGS. 3 and 5 includes on one end, for example, a copper-solder layer 50 which electrically engages the metallized layer 20 of the first film (for the common single plate). The opposite end of the capacitive element 30 includes a similar layer 42 which, however, is interrupted by the barrier formed by sheet 36 so that the inner layer engages that portion of metallized layer 24 of the second film (for one capacitor plate) while the outer portion engages the metallized layer 24 which succeeded the formation of the non-metallic region (for another capacitor plate). Thereafter, conductors 44, 46 may be soldered to these regions as indicated. A conductor 48 may be similarly soldered to the opposite end. Generally, the capacitive element 30 formed from metallized film is generally compact in size and simultaneously provides for the attachment of leads and maintaining the separate electrical integrity of the multiple capacitors included in the element. One or more techniques may be employed for producing such capacitive elements, such as techniques described in U.S. Pat. No. 3,921,041, 4,028,595, 4,263,638, 4,312,027, 4,352,145, 4,558,394 and 5,313,360, each of which is incorporated by reference herein.


Referring back to FIG. 2, similar to the capacitive element 12, in this arrangement each of the other capacitive elements 14 and 16 can be produced in a similar manner. For example, each element is produced on a central spool or mandrel, which has a central opening. First and second dielectric films, each having a metalized layer on one side thereof, are wound in cylindrical form on the mandrel with the nonmetalized side of one film being in contact with the metalized side of the other. Selected portions of one or both of the metalized layers are removed in order to provide a capacitor. Also similar to capacitive element 12, to form the two capacitors, an element insulation barrier is inserted into the winding to separate the capacitors, the element insulation barrier also assuming a cylindrical configuration. In some arrangements, the element insulation barrier may be a material such as an insulating polymer sheet material. A variety of thicknesses may be used, for example the thickness may range from 0.0025 to 0.007 inch. Other materials may also be employed, and generally the material or materials employed for the barrier is substantially able to withstand heat from adjacent soldering without losing integrity of electrical insulation, such that adjacent sections can become bridged. In this arrangement, conductors in the form of insulated wires are used to electrically connect the capacitive elements 12, 14, 16 (as shown in FIG. 2). To assist with the connections and assembly of the power factor correction capacitor 10, the insulation of the wires may be color-coded to facilitate identifying which wire is connected to which capacitive element. In some arrangements other types of conductors may be used in place of or in combination with insulated wires, for example, foil strip conductors may be implemented.


Each of the capacitive elements 12, 14, 16 may provide a variety of capacitance levels. For example, in this arrangement the two capacitors of each capacitive element may provide equivalent capacitances. In one arrangement, both capacitors may have a value of 38.0 microfarads, or, in another arrangement both of the capacitors may have a lesser values such as 19.0 microfarads or larger values such as 76.0 microfarads. Different ranges of capacitance may also be produced for the capacitive elements (e.g., values larger than 76.0 microfarads, values less than 19.0 microfarads, values between 76.0 microfarads and 19.0 microfarads, etc.). Other parameters of the power factor correction capacitor 10 may also be identified for developing and producing the capacitive elements. For example, the capacitive elements 12, 14 and 16 may be designed for larger or smaller KVAR ratings, voltage ratings, etc. as needed. While equivalent capacitance values may be provided by each of the capacitive elements, one or more of the elements may be produced to provide different capacitance values. Similarly, each of the elements may provide one or more capacitance values that are different from the capacitance values provided by other elements. Regarding the methodology described above for producing the capacitive elements, the capacitance value generally increases with the amount of metallic film included in each capacitor; however, one or more other techniques may be implemented for providing capacitors of the sections of the capacitive elements. Further, while each capacitive element may provide two capacitors, more or less capacitors may be provided by a capacitive element.


As illustrated in FIGS. 1 and 2, the power correction capacitor 10 includes a case 60, having a generally cylindrical side wall and a bottom wall 62 (not visual in the figure). In one example, the case 60 is formed of aluminum and the cylindrical side wall has an outside diameter of approximately 3.50 inches. Such a diameter for power correction capacitors of this type can be considered as being readily receivable in a mounting space. Other diameters may, however, be used, and the case may be produced from other suitable materials such as plastic or a combination of materials.


In some arrangements, one or more insulating fluids (not shown) is provided within the case 60, at least partly and preferably substantially surrounding all or a portion of the capacitive elements 12, 14, 16. A variety of fluids may be implemented such as a polyurethane oil. The insulating fluid may have a viscosity in the range of about 500 to 3000 poise at 25° C., and preferably, a viscosity is in the range of about 1900 to 2500 poise at 25° C. The insulating fluid may be produced by reacting a primary polyol, such as castor oil, a ricinoleic acid derivative thereof or a combination of both, with an organic polyisocyanate. The reaction may be carried out in the presence of a secondary polyol which acts as a chain extender for the urethane polymerization. Organic polyisocyanates that can be utilized to produce the insulating fluid include: aliphatic polyisocyanates, cycloliphatic polyisocyanates, aromatic polyisocyanates, polymethyleneisocyanates, polyphenylisocyanates, methylenediisocyanates and any organic polyisocyanates that are prepolymers prepared by reacting a polyisocyanate with any polyol in quantities such that the NCO/OH ratio is greater than 1 to 1. A preferred secondary polyol is hydroxy-terminated polybutadiene diol because it demonstrates outstanding electrical and thermal expansion properties as well as provides structural support to the resulting polymeric matrix.


Generally, the overall NCO/OH ratio (OH groups of both primary and secondary polyols if present) to produce the high viscosity polyurethane oil may range from about 0.1 to 1 to about 0.6 to 1. The desired NCO/OH ratio and the particular polyisocyanate, primary and secondary polyol starting materials chosen for the reaction can dictate the final viscosity of the resulting polyurethane oil insulating fluid. Typically, any reaction done with an NCO/OH ratio higher than about 0.6 to 1 will generally produce a solid elastomeric material which is unsuitable for use as an insulating oil in metallized film capacitors.


In general, a polyurethane oil insulating fluid used is not expected to provide any substantial dielectric properties to the power factor correction capacitor 10 as it is not intended to impregnate or otherwise penetrate into the capacitive elements 12, 14, 16. However, because the capacitive elements are not a hermetically sealed unit, under certain conditions of time, temperature and production techniques, it is possible that some insulating fluid could migrate into the capacitive elements such that the insulating fluid contacts the marginal edges, and in some instances, the few outer layers of the tightly wound metallized polymer films. To the extent that some polyurethane oil insulating fluid has made contact with the materials forming one or more of the capacitive elements, operation of the power factor correction capacitor should be generally unaffected.


The power factor correction capacitor 10 also has a cover assembly 80 as illustrated in in FIG. 6. Along with providing the ability to form electrical connections with the capacitive elements contained in the case 60, the cover assembly 80 may provide other functionality. For example, the cover assembly 80 may include a pressure interrupter. In this arrangement, the cover assembly 80 includes a circular cover 82, which may be deformable, having an upstanding cylindrical skirt 84 and a peripheral rim. The skirt 84 generally fits into the open top formed from by the cylindrical side wall of the case 60, and the peripheral rim may be crimped into position to seal the interior of the capacitor 10 and any fluid contained therein.


In this arrangement, the cover assembly 80 includes six cover terminals mounted on the circular cover 82. For this example, each of the cover terminals take the form of a treaded portion of a bolt, however, other types of electrically conductive connections and devices may be utilized. Three of the cover terminals 86, 88, 90, each corresponding to one of the capacitors of the three capacitive elements, are mounted generally centrally on the circular cover 82. For each companion capacitor (of the capacitive elements 12, 14, 16) a corresponding cover terminal (e.g., cover terminals 92, 94 and 96) is mounted at a spaced apart location. In this particular arrangement, the cover terminals 86, 88 and 90 emerge from a common insulation barrier 98 while the cover terminals 92, 94, and 96 emerge from separate insulation barriers 100, 102 and 104. Due to their respective separations and insulation barriers, each of the cover terminals are substantially insulated from each another and the circular cover 82.


To assist with insulating the cover terminals 86, 88, 90 that share the common insulation barrier 98, three barrier fins 106 extend respectively radially outwardly from a central point of the common insulation barrier to corresponding edges such that they are deployed between adjacent pairs of the cover terminals 86, 88 and 90. This provides additional protection against any arcing or bridging contact between adjacent cover terminals 86, 88 and 90. In some arrangements the three fins may further extend vertically for additional isolation of the cover terminals 86, 88 and 90.


In this arrangement, the cover assembly 80 also includes a disconnect plate 108, which may be constructed of one or more rigid insulating materials such as a phenolic. The disconnect plate 108 is spaced below the circular cover 82, e.g., by one or more spacers. The disconnect plate 108 is provided with openings accommodating the distal ends of terminal posts (not shown) that are respectively connected to a corresponding one of the cover terminals 86-96. As such, the openings allow for electrical connections to be established between the cover terminals 86-96 and the capacitors of the capacitive elements 12, 14, 16 included in the power factor correction capacitor 10. To assist with providing access to the terminal posts, the disconnect plate 108 may be provided with mechanical guides (e.g., raised linear guides, dimple guides 142, etc.) generally adjacent the openings to accommodate the distal ends of the terminal posts.


To connect the capacitors of the capacitive elements to the corresponding cover terminals of the cover assembly 80, one or more techniques may be implemented. For example, wires, foil strips, etc. may be electrically connected to the distal ends of terminal posts as provided through openings in the disconnect plate 108. In general, wires are desirable in place of foil strips because they are better accommodated in the case 60 and have good insulating properties, resist nicking and are readily available with colored insulations. In order to make the necessary connection of the wires to their respective cover terminal posts, foil tabs may be welded to each of the distal ends of the terminal posts of the cover terminals 86-96, and the guides may be helpful in positioning the foil tabs for the welding procedure. The attachment may be accomplished by welding the distal end of a foil strip to the terminal post, and then cutting the foil strip to leave a foil tab. Thereafter, a wire conductor may be soldered to the tab. Other wires may be similarly connected to their respective cover terminals using this technique or one or more other conductive attachment techniques may be employed.


Accordingly, one of the two capacitors for each of the capacitive elements 12, 14, 16 is connected to a corresponding cover terminal 86, 88, 90 that emerges from the common insulation barrier 98 and the companion capacitor for each of the capacitive elements 12, 14, 16 is connection to a corresponding cover terminal 92, 94, 96 that emerges from one of the separate insulation barriers 100, 102, 104. In some arrangements the cover terminals and/or insulation barriers may be color coded to assist a technician with identifying the capacitors (and corresponding capacitance values) of the capacitive elements included in the power factor correction capacitor 10. Similarly, wire conductors connecting the capacitors (of the capacitive elements) and terminal posts may be color-coded to facilitate assembly, in that each capacitor and its wire conductor are readily associated with the correct corresponding section cover terminal, and that the correct capacitor and/or capacitive element can be identified on the cover of the cover assembly 80 to make the desired connections for establishing a selected capacitance value.


Referring to FIG. 7, an electrical schematic of the three capacitive elements 12, 14, 16 as stacked in the adjustable power factor correction capacitor 10 is presented. As described above, each capacitive element includes two capacitors that share a common plate. As illustrated in the figure, each capacitor is represented with a capacitor symbol that shares a common electrode with a companion capacitor also formed in the corresponding capacitive element. In particular, capacitive element 12 includes capacitors 110 and 112, capacitive element 14 includes capacitors 114 and 116, and capacitive element 16 includes capacitors 118 and 120. While this particular arrangement provides two capacitor sections in each capacitive element, as indicated with the two capacitor symbols overlaying each of the three capacitive elements, each of the capacitive elements may be produced with more or less capacitors.


As schematically provided by the figure, in combination, one capacitor (e.g., capacitors 110, 114, 118) from each of the capacitive elements 12, 14, 16 is connected to form a delta configuration while the corresponding companion capacitor (e.g., capacitors 112, 116, 120) is not connected into the delta configuration. By allowing these companion capacitors to be selectively connected into the delta configuration, one or more parameters (e.g., capacitance value, KVAR, etc.) of the power factor correction can be adjusted, thereby providing additional functionality to the power factor correction capacitor 10 (e.g., the KVAR provided by the single device can be changed). Along with illustrating the delta configuration formed by the connected capacitors from each capacitive element, the figure provides a correspondence between the connections between the capacitors (of the capacitive elements) and the cover terminals of the power factor correction capacitor 10. In particular, and with reference to FIG. 6, the capacitors 110 and 112 of capacitive element 12 are respectively connected to cover terminal 86 and cover terminal 94. Capacitors 114 and 116 are respectively connected to cover terminal 88 and 96, and, capacitors 118 and 120 are respectively connected to cover terminals 90 and 92. Also with reference to FIG. 6, for each of the capacitive elements 12, 14, 16, each has one capacitor that is connected to one cover terminal that emerges from the common insulation barrier 98 (e.g., cover terminals 86, 88 and 90) and one capacitor that is connected to a cover terminal that emerges from one of the separate insulation barriers (e.g., cover terminal 94 emerges from insulation barrier 104, cover terminal 96 emerges from insulation barrier 102, and cover terminal 92 emerges from insulation barrier 100). As such, in adjust the capacitance being provided by one of the capacitive elements, e.g., by connecting the corresponding two capacitors of the element in parallel, an electrical connection needs to be established between one cover terminal that emerges from the common insulation barrier 98 (e.g., cover terminal 86 for capacitor 110) and the corresponding cover terminal that emerges from a separate insulation barrier (e.g., cover terminal 94 that emerges from insulation barrier 104 for capacitor 112).


By connecting the capacitive elements into a delta configuration, the power factor correction capacitor 10 is able to provide reactive power to a three-phase electrical system such as a three-phase electrical power system. In general, by connecting the capacitive elements into a delta configuration, three-phase power with a single voltage magnitude can be delivered to a load. In some arrangements, other configurations may be used for connecting the capacitive elements of the power factor correction capacitor 10. For example, the capacitive elements may be connected in a wye, star or other type of configuration that may allow the use of two voltages for the three phases.


Referring to FIG. 8, a schematic diagram 300 is presented that represents the capacitors of the three capacitive elements 12, 14, and 16 (shown in FIG. 7). Along with the individual capacitors 110, 112, 114, 116, 118, 120 the diagram 300 also schematically represents the cover terminals 86, 88, 90, 92, 94, 96 and the corresponding connections to the capacitors. With reference to FIG. 7, capacitors 112, 114 and 118 are connected in a delta configuration while one electrode of each of the companion capacitors 110, 116 and 120 are simply connected to cover terminals and do not connect to the circuit. As such, the delta configuration only includes the capacitances of the connected capacitors 112, 114 and 118, which alone factor into defining the operating parameters of the power factor correction capacitor 10 (i.e., not connected into the delta configuration, the capacitances of capacitors 110, 116 and 120 do not factor into defining the parameters of the power factor correction capacitor).


In the illustrated example, each of the capacitors 112, 114 and 118 connected into the delta configuration have equivalent capacitance values. For example, and for demonstrative purposes, each capacitance value may be 38 microfarads for each of the capacitors 112, 114, 118. Based upon this capacitance value and other demonstrative parameters (e.g., a voltage of 480 volts, an operating frequency of 60 Hz), a 10 KVAR reactive power is provided by the power factor correction capacitor 10. With reference to equations (1) and (2), by increasing the capacitance value, the reactive power proportionally increases. As such, by increasing the capacitance values of the capacitors connected to form the delta configuration, the KVAR value provided by the power factor correction capacitor 10 correspondingly increases. For one technique to increase the capacitance values, additional capacitance may be connected in parallel with each capacitor that forms the delta configuration. For example, in this arrangement, the corresponding companion capacitor may be connected in parallel to the capacitor that is connected to form the delta configuration.


Referring to FIG. 9, a schematic diagram 400 is presented that represents connecting the respective companion capacitors in parallel to increase the capacitance values included in the delta configuration and correspondingly increase the KVAR value provided by the power factor correction capacitor 10. As represented by three dashed lines 402, 404 and 406, each of the capacitors 112, 114, 118 are connected in parallel with their corresponding companion capacitor 110, 116 or 118 of the respective capacitive elements 12, 14 and 16. In particular, dashed line 402 represents capacitor 110 being connected in parallel with capacitor 112; dashed line 404 represents capacitor 114 being connected in parallel with capacitor 116; and dashed line 406 represents capacitor 118 being connected in parallel with capacitor 120. The companion capacitors may or may not have capacitance values that are equivalent to capacitors already connected into the delta configuration. In this arrangement and for demonstrative purposes, each of the companion capacitor sections 110, 116 and 120 have equivalent capacitance values (e.g., 38 microfarads) that are also equivalent to the capacitance values (e.g., 38 microfarads) of the capacitors 112, 114, 118 connected in the delta configuration. Based on these parallel connections, each capacitive element 12, 14, 16 now provides a capacitance value of 76 microfarads (i.e., 38 microfarads plus 38 microfarads in parallel) to the delta configuration. Correspondingly, for a voltage of 480 volts AC and an operating frequency of 60 Hz, the reactive power rating of the power factor correction capacitor 10 increases to 20 KVAR. In the figure, the dashed lines 402, 404 and 406 represent the electrical connections needed to connect the respective capacitors in parallel. One or more techniques may be implemented for forming such connections. For example, such connections may be formed by using the cover terminals located on the assembly cover 80 of the power factor correction capacitor 10.


Referring to FIGS. 10 and 11, top views of the cover assembly 80 (shown in FIG. 6) and the cover terminals are presented. In general, these two figures demonstrate how the cover terminals 86, 88, 90, 92, 94 and 96 can be used to form electrical connections to change capacitance values of three capacitive elements 12, 14 and 16 included in the power factor correction capacitor 10. For example, with reference to FIG. 10, none of the six cover terminals are illustrated as being electrically connected, as such, the delta configuration (as shown in schematic diagram of 300 of FIG. 8) is formed by only one capacitor (e.g., capacitors 112, 114 and 118) from each of the three capacitive elements 12, 14 and 16. Correspondingly, terminal cover terminals 86, 88 and 90 are connected into the delta configuration and using the example provided, the power factor correction capacitor 10 provides 10 KVAR by using three capacitance values each of 38 microfarads with a voltage of 480 volts AC at an operating frequency of 60 Hz.


Referring to FIG. 11, electrical connections are formed between pairs of cover terminals to adjust the KVAR provided by the power factor correction capacitor 10. By connecting these cover terminal pairs, corresponding pairs of capacitors (of the capacitive elements 12, 14 and 16) are connected in parallel to increase the capacitance values and thereby increase the KVAR of the power factor correction capacitor 10. As illustrated in the figure, one conductor (e.g., conductive plate 500) forms an electrical connection between cover terminal 86 and cover terminal 94. Similarly, a second conductor (e.g., conductive plate 502) forms an electrical connection between cover terminal 88 and cover terminal 96, and a third conductor (e.g., conductive plate 504) forms an electrical connection between the cover terminal 90 and 92. With reference to FIG. 9, by using these three conductors to establish connections, each pair of capacitors (e.g., capacitors 110 and 112; capacitors 114 and 116; capacitors 118 and 120) of the three capacitive elements 12, 14, 16 are connected. Through these connections, and as shown in the schematic diagram 400 of FIG. 9, each corresponding pair of capacitors is connected in parallel to combine the individual capacitance values. For example, the 38 microfarad capacitance of capacitor 110 is connected in parallel with the 38 microfarad capacitance of capacitor 112 to form a capacitance value of 76 microfarads. Through this increase in capacitance value for each of the capacitive elements 12, 14, and 16 connected to form the delta configuration, the reactive power provided by the power factor correction capacitor 10 increases from 10 KVAR to 20 KVAR for an applied voltage of 480 volts AC with an operating frequency of 60 Hz. Similar to these capacitance values being provided for demonstrative purposes, which may be changed for other applications, other parameters associated with the power factor correction capacitor 10 may be changed. For example, larger or smaller KVAR ratings may be provided by similar power factor correction capacitors that implement these techniques. Differentials between the KVAR ratings provided by the power factor correction capacitor 10 may also vary. For example, rather than doubling the KVAR values (e.g., from 10 KVAR to 20 KVAR), larger or smaller differentials may be designed (e.g., a power factor correction capacitor provides 10 KVAR or 15 KVAR). Different voltages (e.g., 240 volts AC), voltage ranges (e.g., 240-525 volts AC), operating frequencies (e.g., 50 Hz, 120 Hz, etc.), frequency ranges, etc. may be used by similar power factor correction capacitors that are capable of adjusting their parameters such as KVAR values. Further, in this particular example, three capacitive elements 12, 14 and 16 are included in the power factor correction capacitor 10; however in some arrangements more or less capacitive elements may be included. Similarly, each capacitive element includes two capacitors in the demonstrated example. However, in some arrangements more or less capacitors may be included in each of the capacitive elements. Also, along with implementing substantially similar capacitive elements (e.g., such as capacitive elements 12, 14 and 16), in some arrangement different elements may be implemented. For example, some of the capacitive elements may include one number of capacitors (e.g., two capacitors) while other capacitive elements may include another number of capacitors (e.g., four, six, eight capacitors). Further the techniques implemented to produce the capacitive elements and components thereof may vary for different types of power factor correction capacitors. Such variations to the capacitive elements may correspondingly call for adjustments to the number of cover terminals present on the cover assembly of a power factor correction capacitor.


Referring again to FIG. 11, one or more type of devices and construction techniques may be implemented connecting the cover terminals. In the illustrated example, the connections are provided by metallic plates that have through-holes located at their ends for being bolted onto the cover terminals (e.g., with one or nuts, washers, etc.). With reference to FIG. 6, in some arrangements the cover terminals may be provided by threaded bolts, screws, etc. capable of being inserted through one of the holes of the metallic plates. To assist a technician with properly connecting the appropriate cover terminals, different sized holes in may be drilled into the end of the metallic plates. For example, threaded bolts that emerge from the common isolation barrier 98 may each have one diameter (e.g., ¼ inch) while the threaded bolts that emerge from each of the separate isolation barriers 100, 102, 104 may have a second diameter (e.g., 5/16 inch). Correspondingly, each metallic plate may have one hole size (e.g., ¼ inch diameter) at one end of the plate and the other hole size (e.g., 5/16 inch) at the opposing end of the plate. By implementing such a mechanical key (e.g., by using two different hole sizes), the probability is reduced for a technician to improperly connect two of the cover terminals (e.g., two cover terminals that both emerge from the common isolation barrier 98). Along with using other types of mechanical keying techniques to reduce improperly connecting capacitors, capacitive elements, etc., other guidance techniques may be implemented. For example, color coding of the metallic plates (or other types of connectors), the cover terminals, etc. may be utilized to reduce improper connections and wiring by a technician.


In some arrangements other functionality may be incorporated into the power factor correction capacitor 10. For example, as is known in the art, there are occasional failures of capacitive elements made of wound metalized polymer film. If the capacitive element fails, it may do so in a sudden and violent manner, producing heat and outgassing such that high internal pressures are developed within the housing. Pressure responsive interrupter systems allow the connection between the capacitive element and the cover terminals to break in response to the high internal pressure, thereby removing the capacitive element from a circuit and stopping the high heat and overpressure condition within the housing before the housing ruptures. Such pressure interrupter systems may be incorporated in to the power factor correction capacitor 10.


In general, a pressure interrupter cover assembly can provide such protection for the capacitor 10 and its capacitive elements 12, 14, 16. During a failure event, outgassing may cause the circular cover to deform upwardly into a generally domed shape. When the cover deforms in the manner shown, the terminal posts are also displaced upwardly from the disconnect plate, and the electrical connection (e.g., formed by foil leads, foil tabs, etc.) with one of the capacitive elements can break.


It should be noted that although it is desirable that the connections of the capacitive elements and all cover terminals break, it is not necessary that they all do so in order to disconnect the capacitive elements from a circuit. For all instances in which the power factor correction capacitor 10 is used with its capacitors connected individually or in parallel, only a sufficient number of the terminal posts may need to be disconnected in order to remove the capacitive elements from the circuit. Locating the cover terminals that emerge from the common insulation barrier 98 generally in the center of the cover 82, where the deformation of the cover 82 may be the greatest, may ensures that these connections break first and with certainty in the event of a failure of any of the capacitive elements.


Other aspects of the design may be pertinent to the performance of the pressure interrupter system. For example, the structural aspects of connections to the cover terminals and terminal posts (e.g., welded foil tabs being soldered to connect to wires) corresponding to the various capacitors may make a pressure interrupter cover assembly more responsive to failure of one or more of the capacitive elements. In particular, the solder and wire greatly enhance the rigidity of foil tabs wherein upon deformation of the cover, the terminal posts may break cleanly from the foil tabs instead of pulling the foil tabs partially before breaking the connection. Thus, the power factor correction capacitor 10, despite having cover terminals, is able to satisfy safety requirements for fluid-filled metalized film capacitors, which may be considered a substantial advance.


The power factor correction capacitors and the features thereof described above are believed to admirably achieve the objects of the invention and to provide a practical and valuable advance in the art by facilitating efficient replacement of failed capacitors. Those skilled in the art will appreciate that the foregoing description is illustrative and that various modifications may be made without departing from the spirit and scope of the invention, which is defined in the following claims.

Claims
  • 1. An apparatus comprising: a case capable of receiving a plurality of capacitive devices, each capacitive device having at least two capacitors, each capacitor having a capacitive value; anda cover assembly comprising: for each of the plurality of capacitive devices, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly, wherein each cover terminal is connected to one of the plurality of capacitive devices;for each of the plurality of capacitive devices, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly, wherein each cover terminal at the spaced apart position is connected to one of the plurality of capacitive devices;a common insulation barrier mounted to the cover assembly, wherein one cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly extends through the common insulation barrier, the common insulation barrier including barrier fins extending radially outwards; anda separate insulation barrier mounted to the cover assembly, wherein one cover terminal that extends upwardly from the cover assembly at the spaced apart position extends through the separate insulation barrier.
  • 2. The apparatus of claim 1, wherein each capacitive device has at least two capacitors, and the at least two capacitors have equivalent capacitance values.
  • 3. The apparatus of claim 2, wherein the at least two capacitors for each of the plurality of capacitive devices have equivalent capacitance values.
  • 4. The apparatus of claim 1, wherein each of the capacitive devices comprises a cylindrically wound capacitive element.
  • 5. The apparatus of claim 1, further comprising an insulating fluid in the case at least partially surrounding the plurality of capacitive devices.
  • 6. The apparatus of claim 1, wherein at least one of the cover terminals that extends upwardly from the cover assembly generally at the central region of the cover assembly has a first size and at least one of the cover terminals that extends upwardly from the cover assembly at the spaced apart position has a second size different from the first size.
  • 7. The apparatus of claim 6, wherein the first size is a first diameter and the second size is a second diameter.
  • 8. The apparatus of claim 1, wherein the plurality of capacitive devices are connected in a delta configuration.
  • 9. The apparatus of claim 1, wherein each capacitive device has at least two capacitors, and the at least two capacitors are connected in parallel by connecting the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly and the cover terminal that extends upwardly from the cover assembly at the spaced apart position to each other.
  • 10. The apparatus of claim 1, wherein the apparatus has a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position.
  • 11. The apparatus of claim 1, wherein the apparatus has a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position, and a second KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being connected to the cover terminal that extends upwardly from the cover assembly at the spaced apart position.
  • 12. The apparatus of claim 1, wherein each of the plurality of capacitive devices is provided as a separate section of a cylindrically wound capacitive element.
  • 13. An apparatus comprising: a case capable of receiving a plurality of capacitive devices, each capacitive device having at least two capacitors, each capacitor having a capacitive value; anda cover assembly comprising: for each of the plurality of capacitive devices, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly, wherein each cover terminal is connected to one of the at least two capacitors of the respective one of the plurality of capacitive devices;for each of the plurality of capacitive devices, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly, wherein each cover terminal at the spaced apart position is connected to another of the at least two capacitors of the respective one of the plurality of capacitive devices;a common insulation barrier mounted to the cover assembly, wherein one cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly extends through the common insulation barrier, the common insulation barrier including barrier fins extending radially outwards; anda separate insulation barrier mounted to the cover assembly, wherein one cover terminal that extends upwardly from the cover assembly at the spaced apart position extends through the separate insulation barrier,wherein for each of the plurality of capacitive devices, the apparatus has a first KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being disconnected from the cover terminal that extends upwardly from the cover assembly at the spaced apart position, and a second KVAR value for the cover terminal that extends upwardly from the cover assembly generally at the central region of the cover assembly being connected to the cover terminal that extends upwardly from the cover assembly at the spaced apart position.
  • 14. The apparatus of claim 13, wherein the at least two capacitors for one of the plurality of capacitive devices have equivalent capacitance values.
  • 15. The apparatus of claim 13, wherein the at least two capacitors for each of the plurality of capacitive devices have equivalent capacitance values.
  • 16. The apparatus of claim 13, wherein each of the plurality of capacitive devices comprises a cylindrically wound capacitive element.
  • 17. The apparatus of claim 13, further comprising an insulating fluid in the case at least partially surrounding the plurality of capacitive devices.
  • 18. The apparatus of claim 13, wherein the plurality of capacitive elements are connected in a delta configuration.
  • 19. The apparatus of claim 13, wherein at least one of the cover terminals that extends upwardly from the cover assembly generally at the central region of the cover assembly has a first size and at least one of the cover terminals that extends upwardly from the cover assembly at the spaced apart position has a second size different from the first size.
  • 20. The apparatus of claim 13, wherein each capacitor is provided as a separate section of a cylindrically wound capacitive element.
CLAIM OF PRIORITY

This application is a continuation of and claims priority under 35 USC § 120 to U.S. patent application Ser. No. 15/705,787, filed Sep. 15, 2017, now U.S. Pat. No. 10,147,549, which is a continuation of U.S. patent application Ser. No. 15/276,129, filed Sep. 26, 2016, which is a continuation of U.S. patent application Ser. No. 14/663,620, filed Mar. 20, 2015, now U.S. Pat. No. 9,496,086, issued on Nov. 15, 2016, which is a continuation of U.S. patent application Ser. No. 14/283,960, filed on May 21, 2014, now U.S. Pat. No. 9,318,261, issued on Apr. 19, 2016, which claims benefit of priority under 35 USC § 119(e) to U.S. Patent Application Ser. No. 61/825,850, filed on May 21, 2013, the entire contents of each of which are hereby incorporated by reference.

US Referenced Citations (274)
Number Name Date Kind
1665499 Hoch Apr 1928 A
1707959 Fried Apr 1929 A
1943714 Bailey Jan 1934 A
2050062 Mershon Aug 1936 A
2202166 Peck Nov 1937 A
D122825 Peck Oct 1940 S
D124726 Shimer Jan 1941 S
D130952 Miller Dec 1941 S
2296123 Stimson Sep 1942 A
2569925 Deeley Dec 1948 A
2607833 Schomaker Aug 1952 A
2896008 Putz Dec 1953 A
2779813 Collins Jan 1957 A
3015687 Ruscito Nov 1959 A
2968752 Rubinstein Jan 1961 A
3010056 Kurland Nov 1961 A
3041477 Lucien et al. Jun 1962 A
3210457 Hancock Oct 1965 A
3246205 Miller Apr 1966 A
3302081 Grahame Jan 1967 A
3304473 Netherwood et al. Feb 1967 A
D209054 Braiman et al. Oct 1967 S
D210210 Braiman et al. Feb 1968 S
3377510 Rayno Apr 1968 A
3454858 Robinson Jul 1969 A
3473088 Ernst Oct 1969 A
3524614 Sorth Aug 1970 A
3553542 Stonemetz Jan 1971 A
3555370 Bowling Jan 1971 A
3593066 Norman Jul 1971 A
3771321 Maksy Nov 1973 A
3803457 Yamamoto Apr 1974 A
3921041 Stockman Nov 1975 A
3988650 Fritze Oct 1976 A
4009425 Muranaka Feb 1977 A
4028595 Stockman Jun 1977 A
4095902 Florer et al. Jun 1978 A
4106068 Flanagan Aug 1978 A
4107758 Shirn et al. Aug 1978 A
4112424 Lapeyre Sep 1978 A
4209815 Rollins et al. Jun 1980 A
4240126 Sanvito Dec 1980 A
4263638 Stockman et al. Apr 1981 A
4312027 Stockman Jan 1982 A
4326237 Markarian et al. Apr 1982 A
4352145 Stockman Sep 1982 A
4363078 Dwyer Dec 1982 A
4398782 Markarian Aug 1983 A
4408818 Markarian Oct 1983 A
4420791 Shedigian Dec 1983 A
4447854 Markarian May 1984 A
4459637 Shedigian Jul 1984 A
4486809 Deak et al. Dec 1984 A
4546300 Shaikh Oct 1985 A
4558394 Stockman Dec 1985 A
4586107 Price Apr 1986 A
4609967 Shedigian Sep 1986 A
4621301 Shedigian Nov 1986 A
4631631 Hodges et al. Dec 1986 A
4633365 Stockman Dec 1986 A
4633367 Strange et al. Dec 1986 A
4633369 Lapp et al. Dec 1986 A
4639828 Strange et al. Jan 1987 A
4642731 Shedigian Feb 1987 A
4698725 MacDougall et al. Oct 1987 A
4737785 Zottnik Apr 1988 A
4754361 Venturini Jun 1988 A
4768129 Sasaki Aug 1988 A
4811161 Sasaki Mar 1989 A
4812941 Rice et al. Mar 1989 A
4897760 Bourbeau Jan 1990 A
D307000 Sasaki Apr 1990 S
5006726 Okumura Apr 1991 A
5019934 Bentley et al. May 1991 A
5032948 Sakai Jul 1991 A
5138519 Stockman Aug 1992 A
5148347 Cox et al. Sep 1992 A
5196818 Anderson Mar 1993 A
5247236 Schroeder Sep 1993 A
5280219 Ghanbari Jan 1994 A
5313360 Stockman May 1994 A
5381301 Hudis Jan 1995 A
5412532 Nishimori May 1995 A
5528120 Brodetsky Jun 1996 A
5561357 Schroeder Oct 1996 A
5673168 Efford et al. Sep 1997 A
5691845 Iwatsuka et al. Nov 1997 A
5817975 Heilmann et al. Oct 1998 A
5917975 Bloom Jun 1999 A
5921820 Dijkstra Jul 1999 A
5940263 Jakoubovitch Aug 1999 A
6009348 Rorvick et al. Dec 1999 A
6014308 Stockman Jan 2000 A
6031713 Takeisha et al. Feb 2000 A
6084764 Anderson Jul 2000 A
6141205 Nutzman Oct 2000 A
6147856 Karidis Nov 2000 A
6157531 Breyen et al. Dec 2000 A
6160465 Yamaguchi et al. Dec 2000 A
6212058 Huber Apr 2001 B1
6222270 Lee Apr 2001 B1
6229236 Fisher May 2001 B1
6233133 Weng May 2001 B1
6282078 Tsai Aug 2001 B1
6282081 Takabayashi et al. Aug 2001 B1
6310756 Miura et al. Oct 2001 B1
6313978 Stockman et al. Nov 2001 B1
6373720 Fechtig et al. Apr 2002 B1
6385490 O'Phelan May 2002 B1
6404618 Beard et al. Jun 2002 B1
6410184 Horiuchi Jun 2002 B1
6490158 Ellyson et al. Dec 2002 B1
6538544 Hardy Mar 2003 B1
6552893 Tanaka Apr 2003 B2
6697249 Maletin et al. Feb 2004 B2
6798677 Jakob et al. Sep 2004 B2
6807048 Nielsen Oct 2004 B1
6816541 Hong Nov 2004 B1
6819545 Lobo et al. Nov 2004 B1
6842328 Schott Jan 2005 B2
6847517 Iwaida et al. Jan 2005 B2
6888266 Burke et al. May 2005 B2
6922330 Nielson et al. Jul 2005 B2
6930874 Lobot et al. Aug 2005 B2
6982539 Ward Jan 2006 B1
6995971 Norton Feb 2006 B2
7031139 Fayram Apr 2006 B1
7046498 Huang May 2006 B1
D522456 Matsumoto Jun 2006 S
7110240 Breyen Sep 2006 B2
7184256 Sato Feb 2007 B1
7203053 Stockman Apr 2007 B2
7206186 Knight Apr 2007 B1
7251123 O'Phelan Jul 2007 B2
D551943 Hodjat Oct 2007 S
D562237 Tu Feb 2008 S
7365959 Ward Apr 2008 B1
7423861 Stockman Sep 2008 B2
7474519 Stockman Jan 2009 B2
7474520 Kashihara Jan 2009 B2
7492574 Fresard et al. Feb 2009 B2
7511941 Gallay Mar 2009 B1
7547233 Inoue et al. Jun 2009 B2
7619420 Stockman Nov 2009 B2
7667954 Lessner Feb 2010 B2
7710713 Restorff May 2010 B2
D621789 Wang et al. Aug 2010 S
D623500 Langner Sep 2010 S
7835133 Stockman Nov 2010 B2
7848079 Gordin et al. Dec 2010 B1
7867290 Nielsen Jan 2011 B2
7881043 Hirose et al. Feb 2011 B2
7911762 Stockman Mar 2011 B2
7911766 Caumont et al. Mar 2011 B2
7952854 Stockman May 2011 B2
7987593 Gorst Aug 2011 B1
8029290 Johnson Oct 2011 B2
8170662 Bocek May 2012 B2
8174817 Georgopoulos et al. May 2012 B2
8270143 Stockman Sep 2012 B2
8274778 Yoshinaga et al. Sep 2012 B2
8310802 Fujii et al. Nov 2012 B2
8331076 Tuncer Dec 2012 B2
8456795 Stockman Jun 2013 B2
8465555 Sherwood Jun 2013 B2
8514547 Galvagni Aug 2013 B2
8514548 Miller et al. Aug 2013 B2
8531815 Stockman Sep 2013 B2
8537522 Stockman Sep 2013 B2
8559161 Takeoka et al. Oct 2013 B2
8761875 Sherwood Jun 2014 B2
8842411 Zhang Sep 2014 B2
8853318 Tielemans Oct 2014 B2
8861178 Terashima et al. Oct 2014 B2
8861184 Schmidt Oct 2014 B2
8871850 Koh et al. Oct 2014 B2
8885318 Stockman Nov 2014 B2
8891224 Stockman Nov 2014 B2
D729164 Chen May 2015 S
9105401 Dreissig Aug 2015 B2
9318261 Stockman Apr 2016 B2
9324501 Stockman Apr 2016 B2
9343238 Stockman May 2016 B2
9378893 Stockman Jun 2016 B2
9412521 Stockman Aug 2016 B2
9424995 Stockman Aug 2016 B2
9466429 Casanova Oct 2016 B1
D771567 Flohe et al. Nov 2016 S
9496086 Stockman Nov 2016 B2
9536670 Stockman Jan 2017 B2
9859060 Stockman et al. Jan 2018 B1
9916934 Casanova et al. Mar 2018 B1
D818437 Stockman May 2018 S
D818959 Stockman May 2018 S
10056194 Stockman Aug 2018 B2
10056195 Stockman Aug 2018 B2
D829173 Stockman Sep 2018 S
10134528 Stockman Nov 2018 B2
10147549 Stockman Dec 2018 B2
10147550 Stockman Dec 2018 B1
10163571 Stockman Dec 2018 B2
10209751 Zikes Feb 2019 B2
10249439 Stockman Apr 2019 B2
10256195 Yamamoto Apr 2019 B2
10366840 Stockman Jul 2019 B1
10475588 Stockman Nov 2019 B2
10497518 Stockman Dec 2019 B1
10586655 Stockman Mar 2020 B1
D892741 Biere Aug 2020 S
D893441 Rao Aug 2020 S
1789949 Gerorgiev Jan 2021 A1
20010025618 Kelling Oct 2001 A1
20020030548 Dejima Mar 2002 A1
20050272012 Logan Dec 2005 A1
20060007387 Xiao Jan 2006 A1
20060067031 Crane Mar 2006 A1
20060201971 Wegman Sep 2006 A1
20060227495 Stockman Oct 2006 A1
20070025051 Stockman Feb 2007 A1
20070221278 Sartorius Sep 2007 A1
20070236860 Stockman Oct 2007 A1
20070279015 Livingston et al. Dec 2007 A1
20070283707 Hatano Dec 2007 A1
20070295877 Gaydos Dec 2007 A1
20080158780 Stockman Jul 2008 A1
20080217053 Vojtila Sep 2008 A1
20090001921 Mills Jan 2009 A1
20090052109 Stockman et al. Feb 2009 A1
20090059463 Ward Mar 2009 A1
20090115557 Minowa May 2009 A1
20090219665 Stockman Sep 2009 A1
20090261762 Tsuchiya Oct 2009 A1
20110063775 Stockman Mar 2011 A1
20110075342 Gotham et al. Mar 2011 A1
20110134584 Stockman Jun 2011 A1
20110157764 Stockman Jun 2011 A1
20110228446 Stockman Sep 2011 A1
20110317333 Chun Dec 2011 A1
20120026046 Bit-Babik Feb 2012 A1
20130003252 Stockman Jan 2013 A1
20130214720 Stockman Aug 2013 A1
20130329342 Stockman Dec 2013 A1
20130343029 Stockman Dec 2013 A1
20140049205 Curiel Feb 2014 A1
20140126107 Yoda May 2014 A1
20140138009 Lim May 2014 A1
20140201018 Chassin Jul 2014 A1
20140232485 Bultitude Aug 2014 A1
20140285949 Stockman Sep 2014 A1
20140347784 Stockman et al. Nov 2014 A1
20150016012 Stockman Jan 2015 A1
20150022991 Stockman et al. Jan 2015 A1
20150138690 Stockman May 2015 A1
20150255218 Stockman et al. Sep 2015 A1
20150287308 Shuttleworth Oct 2015 A1
20160028230 Elfman Jan 2016 A1
20160203916 Stockman Jul 2016 A1
20160233030 Stockman Aug 2016 A1
20170011855 Stockman Jan 2017 A1
20170032898 Stockman Feb 2017 A1
20170110252 Stockman Apr 2017 A1
20170186554 Stockman Jun 2017 A1
20170229242 Goodson et al. Aug 2017 A1
20170236646 Stockman Aug 2017 A1
20170372838 Casanova et al. Dec 2017 A1
20180061600 Ito Mar 2018 A1
20180090278 Stockman et al. Mar 2018 A1
20180254150 Stockman et al. Sep 2018 A1
20180261391 Stockman Sep 2018 A1
20190057815 Stockman Feb 2019 A1
20190057817 Stockman Feb 2019 A1
20200066470 Mitchell Feb 2020 A1
20200143994 Stockman May 2020 A1
20200161507 Stockman et al. May 2020 A1
Foreign Referenced Citations (23)
Number Date Country
2285721 Apr 2000 CA
3607691 Feb 2007 CN
101991323 Mar 2011 CN
204351550 May 2015 CN
304806073 Sep 2018 CN
305610350 Feb 2020 CN
305625370 Feb 2020 CN
305780976 May 2020 CN
1115128 Jul 2001 EP
2587503 May 2013 EP
2343221 Sep 1977 FR
517718 Feb 1940 GB
2070861 Sep 1981 GB
2169747 Jul 1986 GB
S498747 Jan 1974 JP
S498748 Feb 1974 JP
07211596 Aug 1995 JP
2007059477 Mar 2007 JP
2015130259 Jul 2015 JP
WO 2010031594 Mar 2010 WO
WO 2010037186 Apr 2010 WO
WO 2014190072 Nov 2014 WO
WO 2020123834 Jun 2020 WO
Non-Patent Literature Citations (92)
Entry
“American Radionics—Home of the Turbo200 MultiUse Capacitor,” online archive of website captured at http://web.archive.org/web/20050309191805fw_/http://www.americanradionic.com/home, Mar. 9, 2015. (16 pages), (accessed May 29, 2014).
“AC Capacitors,” brochure by AmRad Engineering, Inc., undated (4 pages).
“American Radionic Co., Inc. Introduces a New Circuit Component the Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., (poster undated, 1980 year date appears below one image), (one page).
“American Radionic Co., Inc. Introduces a New Circuit Component, The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., which is reprint from Electronic News dated Feb. 11, 1980, (one page).
“American Radionic Co., Inc. Introduces . . . The World's First Multiple Metallized Film Dielectric Capacitor Capacitor Produced from a Single Winding! The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc. (undated) (one page).
“American Radionic Company's Chronology of Patents, New Products and Technology Transfer Programs—From the Present, to the Past, a Thirty-Five Year Review,” online website having URL: http:/www.americanradionic.com/content/blogcategory/13/29/8/16 , accessed May 19, 2014 (undated) (3 pages).
“American Radionic Introduces Capacitors Without Compromise”, color brochure, 1989, (1 page).
“AmRad Engineering: Universal Capacitor,” The Air Conditioning|Heating|Refrigeration News, Jan. 29, 2005, Printout of website having URL: “http://www.archrnews.com/articles/print/amrad-engineering-universal-capacitor” (accessed Jun. 2, 2014) (1 page).
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Online archive of website captured at http://webarchive.org/web/20041214091042/http://americanradionic.com, Dec. 14, 2004, (13 pages) (accessed May 29, 2014).
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Online archive of website captured at http:/webarchive.org/web/20011126195819/http://www.americanradionic.com, Nov. 26, 2001, (13 pages) (accessed May 29, 2014).
“Capacitors—Motor Run, Oil Filled Capacitors, AC Rated. AmRad.” Printout of website having URL: http://amradcapacitors.com/index.htm, Jan. 3, 2003(20 pages).
“Industrial Power Factor Correction Capacitors,” Cornell Dubilier, Undated (1 page).
“Product of the Year Awards,” Electronic Products Magazine, Jan. 1981, pp. 39-45.
“Super-Sized Show,” ASHRae Journal Show Daily, 2005 International Air-Conditioning, Heating, Refrigerating Exposition, Tuesday, Feb. 8, 2005 (24 pages).
“The Patented Ultramet™ Capacitor,” poster by American Radionic Co., Inc., (undated) (three pages).
“The Patented Ultramet™ Capacitor. A product of years of American Radionic research & development,” poster by American Radionic Co., Inc. (undated) (one page).
Amazon. <URL: https://www.amazon.com/AmRad-Turbo-200-Mini-Oval/dp/BOOKQSKDOY/ref=pd_sbs_60_4?_encoding=UTF8&pd_rd_i=BOOKQSKDOY&pd_rd_r=A6′)/0E2′)/080′)/0A6.> May 5, 2015. AmRad Turbo 200 Mini Oval Capacitor with label and color trim, 5 pages.
Amazon. <URL: https://www.amazon.com/Amrad-Turbo-Universal-Motor-Capacitor/dp/B00B610TOM/ref=pd_rhf_dp_s_cp_0_7?_encoding=UTF8&pd_rd_i=BOOB610TOM&pd_rd_r=N5WYCAD5Y36C86DFWDEG&pd_rd_w=6tW7I&pd_rd_wg=DWEJcApsc=1&refRID=N5WYCAD5Y36C86DFWDEG.> Jan. 27, 2013. Amrad Turbo 200X Universal Motor Run Capacitor.
Amazon. <URL: https://www.amazon.com/AmRad-USA2227-MFD-370-Volt/dp/BOOGSU3YV8/ref=pd_day0_328_6?_encoding=UTF8&pd_rd_i=BOOGSU3YV8&pd_rd_r%E2′)/080′)/0A6.> Jun. 29, 2014. AmRad Dual Run Capacitor, 6 pages.
Amazon. <URL: https://www.amazon.com/CPT00656-Trane-Round-Capacitor-Upgrade/dp/BOOPEVTIOMC/ref=cm_cr_arp_d_product_top?ie=UTF8.> May 11, 2016. Replacement Trane Round Dual Run Capacitor, 6 pages.
Amazon. <URL: https://www.amazon.com/gp/product/B01HPK5ANO/ref=s9_dcacsd_dcoop_bw_c_x_6_w.> Aug. 21, 2016. Titan TRCFD405 Dual Rated Motor Run Capacitor, 6 pages.
Amazon. <URL: https://www.amazon.com/Labels-Protective-Backed-Clean-Remove-Adhesive/dp/BOOVIDW1C1/ref=sr_1_18?ie=UTF8&clid=1522957818&sr=8-18&keycY0E2′)/080′)/0A6.> Apr. 1, 2015. Labels, 7 pages.
Amazon. <URL: https://www.amazon.com/MARS-Motors-Armatures-12788-Capacitor/dp/BOOCOYS2CM/ref=pd_sim_328_6?_encoding=UTF8&pd_rd_i=BOOCOYS2CM&pd_rd_r=KEFT1DXGOAWQ1KCZDJFJ&pd_rd_w=LNF6S&pd_rd_wg=5eFTh&psc=1&refRID=KEFT1DXGOAWQ1KCZDJFJ.> Jan. 25, 2012. MARS Dual Run Capacitor, 7 pages.
Amazon. <URL: https://www.amazon.com/Packard-TRCFD405-5MFD-370VACCapacitor/dp/B009558E9U/ref=pd_sim328_4?_encoding=UTF8&pd_rd_i=B009558E9U&pd_rd_r=SX1DRWZQZ8SH12JWHYH2&pd_rd_w=yljQe&pd_rd_wg=mH0nl&psc=1&refRID=SX1DRWZQZ8SH12JWHYH2&dp1D=31IxzeyCr/0252B7L&preST=_QL70_&dpSrc=detail.> May 1, 2015. Packard Capacitor, 5 pages.
Amazon. <URL: https://www.amazon.com/Universal-Capacitor-Trane-Replacement -USA2031/dp/BOOGSU4OKW/ref=pd_sim_328_3?_encoding=UTF8&pd_rd_i=BOOGSU4OKW&pd_rd_r=YX6P84XR7NY113X4DWJG&pd_rd_w=gejaD&pd_rd_wg=NLVIY&psc=1&refRID=YX6P84XR7NY113X4DWJG.> Nov. 26, 2014. Am Rad Oval Universal Capacitor with label and color trim, 6 pages.
Amazon. <URL:https://www.amazon.com/dp/B01F7P8GJO/ref=sspa_dk_detail_4?psc=1.> Aug. 1, 2016. TradePro PowerWell Dual Run Round Capacitor, 6 pages.
Amazon. <URL:https://www.amazon.com/dp/B00FL70C0U/ref=cm_sw_r_cp_ep_dp_qIIZBbFD278ZE> Dec. 4, 2013. Amrad Engineering USA2215 Round Motor Run Capacitor, 40 MFD, 370_440 Vac—Pipe Fittings, 6 pages.
Amazon. <https://www.amazon.com/TEMCo-Capacitor-RC0120-50-Electric-Motor/dp/B01H0S87X6/ref+pd_sim_328_5> Aug. 29, 2014. TEMCo Dual Run Capacitor RC0120-50/5 nnfd 370 V 440 V VAC volt 50+5 uf AC Electric Motor HVAC, 6 pages.
Answer and affirmative defenses to Complaint by Cornell-Dubliner Electronics, Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015).
Answer and affirmative defenses to Complaint by Packard Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015).
Case Management and Scheduling Order: Amended Pleadings and Joinder of Parties due by Apr. 9, 2015. Discovery due by Feb. 16, 2016. Dispositive motions due by Apr. 7, 2016. Pretrial statement due by Aug. 11, 2016. All other motions due by Jul. 28, 2016. Plaintiff disclosure of expert report due by Dec. 10, 2015. Defendant disclosure of expert report due by Jan. 14, 2016. Final Pretrial Conference set for Aug. 18, 2016 at 01:15 PM in Orlando Courtroom 4 A before Judge Roy B. Dalton, Jr., Jury Trial Set for the trial team commencing Sep. 6, 2016 at 09:00 AM in Orlando Courtroom 4 A before Judge Roy B. Dalton Jr., Conduct mediation hearing by Mar. 29, 2016. Lead counsel to coordinate dates. Signed by Judge Roy B. Dalton, Jr. on Feb. 10, 2015. (VMF). (Entered: Feb. 10, 2015).
Complaint for Patent Infringement against Cornell-Dubliner Electronics, Inc., Packard Inc. with Jury Demand (Filing fee $400 receipt No. ORL-38930) filed by American Radionic Company, Inc. (Attachments: #1 Civil Cover sheet, #2 Exhibit A)(LMM) Modified on Nov. 19, 2014 (LMM). (Entered: Nov. 19, 2014).
Declaration of Noah C. Graubart in Support of Plaintiff's Claim Construction Brief by American Radionic Company, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2, #3 Exhibit 3, #4 Exhibit 4, #5 Exhibit 5, #6 Exhibit 6) (Graubart, Noah) (Entered: Jun. 18, 2015).
Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions American Radionic, Inc., v. Packard, Inc., and Cornell-Dubilier Electronics, Inc., No. 6:14-cv-01881-RBD-KRS.
Document from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions that purported to be Standard for Safety UL 810 Capacitors, Underwriters Laboratories Inc. having multiple dates ranging from 1976 to 1988 (22 pages).
First Amended Answer and affirmative defenses to 1 Complaint by Cornell-Dubliner Electronics, Inc. (Allaman, Melissa) (Entered: Feb. 4, 2015).
First Amended Answer and affirmative defenses to 1 Complaint by Packard Inc. (Allaman, Melissa) (Entered: Jan. 9, 2015).
Grainger, “Round Motor Dual Run Capacitor, 40/5 Microfarad Rating, 370VAC Voltage,” Retrieved from the Internet: URL<https://www.grainger.com/product/5CMW3&AL!2966!3!166587674359!!!g!82128730437!?cm_mmc=PPC:+Google+PLA+48 campaignid=719691765&s_kwcid=AL!2966!3!166587674359!!!!82128730437!&ef_id=WRSnxQAAAILWhRlb:20170824174108:s>. Visited Aug. 24, 2017, Capacitor.
Hudis, Martin et al., “Motor-Run Capacitors,” Motors & Motor Control, undated (reprinted from Appliance Manufacturer, Oct. 1994) (3 pages).
Hudis, Martin, “Plastic Case Self-Protected Liquid Filled AC Capacitors for 70° Applications,” Presented at CAPTECH '97, Mar. 1997, 7 pages.
Hudis, Martin, “Technology Evolution in Metallized Polymeric Film Capacitors over the Past 10 Years,” Presented at CARTS Symposium in Nice, France, Oct. 1996, 9 pages.
International Search Report and Written Opinion, PCT/US2014/39003, dated Oct. 2, 2014, 12 pages.
Joint Pre-Hearing Statement re: Claim Construction by American Radionic Company, Inc., Packard Inc., Cornell-Dubliner Electronics, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2) (Graubart, Noah) Modified on Jul. 24, 2015.
Macomber, Laird L., et al., “New Solid Polymer Aluminum Capacitors Improve Reliability,” Electro Power Electronics, Oct. 1, 2001, 5 pages.
Macomber, Laird L., et al., “Solid Polymer Aluminum Capacitor Chips in DC-DC Converter Modules Reduce Cost and Size and Improve High-Frequency Performance,” PCIM Power Electronics 2001 Proceeding for the PowerSystems World Conference, Sep. 2001, 8 pages.
Mallory Distributor Products Co., 1967 Precision Electronic Components Catalog, 52 pages.
Minute Entry, Proceedings of Claim Construction Hearing held before Judge Roy B. Dalton, Jr. on Aug. 24, 2015. Court Report: Arnie First (VMF) (FMV). (Entered: Aug. 24, 2015).
Notice of Filing of Claim Construction Evidence by American Radionic Company, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2, #3 Exhibit 3) (Graubart, Noah) Modified on Aug. 25, 2015 (EJS). (Entered: Aug. 25, 2015).
Order granting 69 Motion for Consent Judgment and Injunction, Signed by Judge Roy B. Dalton, Jr. on Nov. 5, 2015. (CAC) (Entered Nov. 5, 2015).
Parente, Audrey, “Can-sized device the right fit,” The Daytona Beach News-Journal, Jan. 3, 2005 (2 pages).
Photograph 1 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 10, undated (1 page).
Photograph 11, undated (1 page).
Photograph 12, undated (1 page).
Photograph 13, undated (1 page).
Photograph 14, undated (1 page).
Photograph 15, undated (1 page).
Photograph 16, undated (1 page).
Photograph 17, undated (1 page).
Photograph 18, undated (1 page).
Photograph 19, undated (1 page).
Photograph 2 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 20, undated (1 page).
Photograph 3 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 4 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 5 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 6 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 7 from Defendants' First Supplemental Disclosure of Non-Infringement and Invalidity Contentions, undated (1 page).
Photograph 8, undated (1 page).
Photograph 9, undated (1 page).
Plaintiff's Brief re 59 Declaration Plaintiff's Claim Construction Brief filed by American Radionic Company, Inc. (Graubart, Noah) (Entered May 18, 2015).
Response to Plaintiff's Claim Construction Brief re 60 Brief—Plaintiff filed by Cornell-Dubliner Electronics, Inc., Packard Inc. (Killen, Craig) Modified on Jul. 17, 2015 (EJS). (Entered Jul. 16, 2015).
Status report Joint Claim Construction Statement by American Radionic Company, Inc., Packard Inc., and Cornell-Dubliner Electronics, Inc. (Attachments: #1 Exhibit 1, #2 Exhibit 2) (Graubart, Noah) Modified on May 29, 2015 (SWT). (Entered: May 28, 2015).
Transcript of Markman Hearing held on Aug. 24, 2015 before Judge Roy B. Dalton, Jr., Court Reporter Arnie R. First, DRD, CRR< ArnieFirst.CourtReporter@gmail.com. Transcript may be viewed at the court public terminal or purchased through the Court Reporter before the deadline for Release of Transcript Restriction. After that date it may be obtained through PACER or purchased through the court Reporter, Redaction Request due Oct. 22, 2015. Redacted Transcript Deadline set for Nov. 2, 2015. Release of Transcript Restriction set for Dec. 30, 2015. (ARF) (Entered: Oct. 1, 2015).
YouTube. <URL: https://www.youtube.com/watch?v=19A9IvQ611A&t=3s.> Oct. 1, 2015. GE Dual Run Capacitor, 5 pages.
YouTube. <URL: https://www.youtube.com/watch?v=R5B189BWrz0.> Jul. 29, 2011. HVAC Service : Install New Turbo 200 Capacitor.
YouTube. <URL: https://www.youtube.com/watch?v=U7h7pg12t6M.> Jul. 15, 2011. How to Install the Turbo 200 Capacitor.
YouTube. <URL: https://www.youtube.com/watch?v=Xiw_xHXJHUg.> Sep. 4, 2011. AmRad Dual Run Capacitor, 4 pages.
Amazon Link: https://www.amazon.conn/Round-Universal-Capacitor-Replacement-USA2235/dpBOOGSU4401/ref=cnn_cr_arp_d_product_top?ie=UTF8. Jun. 20, 2014. Round Dual Universal Capacitor. (Year: 2014), 6 pages.
Edisontechcenter. Link: http://edisontechcenter.org/batteries.html#drycell. 2014. Bright Star 1.5 V Columbia dry cell. (Year: 2014), 10 pages.
Eveready. Link: http://www.eveready.com/about-us/battery-history. Visited Nov. 30, 2018. 1950s Eveready Battery. (Year: 2018), 2 pages.
Wikimedia Commons. Link: https://commons.wikimedia.org/wiki/File:PP4-PP3-batteries.jpg. Oct. 22, 2016. Eveready PP4 battery. (Year: 2016), 17 pages.
Ruby Lane, SuzansTreasures.shop, Link: https://www.rubylane.com/item/34499-CCKx20-x20205/Mazon-Cobalt-Glass-Jar-Medicine-Bottle. Visited Jul. 22. 2019. 1940s Mazon Cobalt Glass Jar Medicine Bottle.
YouTube video “AmRad's Turbo Installation” published on Apr. 22, 2012 by AmRad Engineering {link: https://www.youtube.com/watch?v=axo86NCbuNs&lc=UgguTwZgduBg5HgCoAEC.
YouTube video “HVAC 1 AC Repairs 1 Turbo 200 Capacitor Install 1 Crest Hill, IL 1 2” published on Jul. 15, 2011 by NLB Heating & Cooling hereafter referred to as NLB {link to video : https://www.youtube.com/watch?v=U7h7pgl2t6M}.
MGH NMR Center, “Strategies to Repair or Replace Old Electrolytic Capacitors,” Retrieved from: Link: https://www.nmr.mgh.harvard.edu/-reese/electrolytics/, Nov. 30, 2001, visited on Aug. 26, 2020, 6 pages.
Ebay, “25 + 3 nF MFD x 370 / 440 VAC Motor Run Capacitator AmRad USA2224BA—Made in USA,” ebay.com, 2020 retrieved from URL: https://www.ebay.com/itm/25-3-uF-MFD-x-370-440-VAC-Motor-Run-Capacitor-AmRad-USA2224BA-Made-in-USA-/164162793031; retrieved on Oct. 28, 2020, 15 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2019/068738, dated Mar. 10, 2020 13 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2019/068738, dated Jul. 8, 2021, 11 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2007/89034, dated Apr. 18, 2008, 9 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2007/89034, dated Jul. 9, 2009, 6 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2014/039003, dated Dec. 3, 2015, 7 pages.
Provisional Applications (1)
Number Date Country
61825850 May 2013 US
Continuations (4)
Number Date Country
Parent 15705787 Sep 2017 US
Child 16207930 US
Parent 15276129 Sep 2016 US
Child 15705787 US
Parent 14663620 Mar 2015 US
Child 15276129 US
Parent 14283960 May 2014 US
Child 14663620 US