The present patent document relates generally to spin-transfer torque magnetic random access memory and, more particularly, to a magnetic tunnel junction stack having improved performance of the free layer in the magnetic tunnel junction structure.
Magnetoresistive random-access memory (“MRAM”) is a non-volatile memory technology that stores data through magnetic storage elements. These elements are two ferromagnetic plates or electrodes that can hold a magnetic field and are separated by a non-magnetic material, such as a non-magnetic metal or insulator. In general, one of the plates has its magnetization pinned (i.e., a “reference layer”), meaning that this layer has a higher coercivity than the other layer and requires a larger magnetic field or spin-polarized current to change the orientation of its magnetization. The second plate is typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.
MRAM devices store information by changing the orientation of the magnetization of the free layer. In particular, based on whether the free layer is in a parallel or anti-parallel alignment relative to the reference layer, either a “1” or a “0” can be stored in each MRAM cell. Due to the spin-polarized electron tunneling effect, the electrical resistance of the cell change due to the orientation of the magnetic fields of the two layers. The cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”. One important feature of MRAM devices is that they are non-volatile memory devices, since they maintain the information even when the power is off. The two plates can be sub-micron in lateral size and the magnetization direction can still be stable with respect to thermal fluctuations.
Spin transfer torque or spin transfer switching, uses spin-aligned (“polarized”) electrons to change the magnetization orientation of the free layer in the magnetic tunnel junction. In general, electrons possess a spin, a quantized number of angular momentum intrinsic to the electron. An electrical current is generally unpolarized, i.e., it consists of 50% spin up and 50% spin down electrons. Passing a current though a magnetic layer polarizes electrons with the spin orientation corresponding to the magnetization direction of the magnetic layer (i.e., polarizer), thus produces a spin-polarized current. If a spin-polarized current is passed to the magnetic region of a free layer in the magnetic tunnel junction device, the electrons will transfer a portion of their spin-angular momentum to the magnetization layer to produce a torque on the magnetization of the free layer. Thus, this spin transfer torque can switch the magnetization of the free layer, which, in effect, writes either a “1” or a “0” based on whether the free layer is in the parallel or anti-parallel states relative to the reference layer.
The first magnetic layer 114 in the SAF layer 120 is disposed over seed layer 110. SAF layer 120 also has a antiferromagnetic coupling layer 116 disposed over the first magnetic layer 114. Furthermore, a nonmagnetic spacer 140 is disposed on top of MTJ 130 and a polarizer 150 is disposed on top of the nonmagnetic spacer 140. Polarizer 150 is a magnetic layer that has a magnetic direction in its plane, but is perpendicular to the magnetic direction of the reference layer 132 and free layer 136. Polarizer 150 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 100. Further, one or more capping layers 160 can be provided on top of polarizer 150 to protect the layers below on MTJ stack 100. Finally, a hard mask 170 is deposited over capping layers 160 and is provided to pattern the underlying layers of the MTJ structure 100, using a reactive ion etch (RIE) process.
Various mechanisms have been proposed to assist the free-layer magnetization switching in magnetic tunnel junction (MTJ) devices. One issue has been that to realize the orthogonal spin transfer effect for in-plane MTJ structures, large spin currents may be required for switching. The need for large switching currents may limit such device's commercial applicability. One way proposed to reduce switching current is to lower the magnetization of the free layer. However, if the effective magnetization of the free layer is lowered significantly, the orthogonal effect has to be limited so that the free-layer does not go into precessional mode that would make the end state of the free-layer magnetization un-deterministic. This defines the operation window for the in-plane OST structures. In an in-plane device, unlike that shown in
For perpendicular MTJ structures such as those shown in
In all prior MTJ devices using a polarizer such as polarizer 150, the magnetization direction of polarizer 150 is fixed, which is shown in
Passing a current through polarizer 150 produces a spin-polarized current, which creates a spin transfer torque 210 in the direction of the polarizer 150 on the magnetization vector 200. This spin transfer torque from the polarizer adds to the main spin transfer torque that causes free layer magnetization direction switching. In devices like those shown in
Thus, in prior devices, because magnetization direction of polarizer 150 is fixed, once the precession holds, it has no positive effect on the switching mechanism for a full one-hundred eighty degree precession. This is because polarized electrons will help the spin transfer torque the most when all vectors are closely aligned.
Thus, there is a need for a spin torque transfer device that reduces the amount of current needed for switching while also switching at high speeds and requiring reduced chip area.
An MRAM device is disclosed that has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure that requires significantly lower switching currents and which significantly reduces switching times for MRAM applications.
In one embodiment, a magnetic device includes a synthetic antiferromagnetic structure in a first plane. The synthetic antiferromagnetic structure includes a magnetic reference layer having a magnetization vector that is perpendicular to the first plane and having a fixed magnetization direction. The device also includes a non-magnetic tunnel barrier layer in a second plane that is disposed over the magnetic reference layer. A free magnetic layer is in a third plane and is disposed over the non-magnetic tunnel barrier layer. The free magnetic layer has a magnetization vector that is perpendicular to the third plane and also has a magnetization direction that can precess from a first magnetization direction to a second magnetization direction. The magnetic reference layer, the non-magnetic tunnel barrier layer and the free magnetic layer form a magnetic tunnel junction. The device also includes a non-magnetic spacer in a fourth plane that is disposed over the free magnetic layer. The device includes a precessional spin current magnetic layer in a fifth plane that is physically separated from the free magnetic layer and coupled to the free magnetic layer by the non-magnetic spacer. The precessional spin current magnetic layer has a magnetization vector with a magnetization component in the fifth plane that can freely rotate in any magnetic direction. The device also includes a current source that directs electrical current through the precessional spin current magnetic layer, the non-magnetic spacer, the free magnetic layer, the non-magnetic tunnel barrier layer, and the magnetic reference layer. The electrons of the electrical current are aligned in the magnetic direction of the precessional spin current magnetic layer. The magnetization direction of the precessional spin current magnetic layer follows precession of the magnetization direction of the free magnetic layer, thereby causing spin transfer torque to assist switching of the magnetization vector of the free magnetic layer.
In another embodiment, the precessional spin current magnetic layer of the magnetic device has a circular shape.
In another embodiment, the magnetization direction of the magnetization vector of the precessional spin current magnetic layer is in the fifth plane.
In another embodiment, the magnetization direction of the precessional spin current magnetic layer has a magnetization component in the fifth plane which can freely rotate in the fifth plane.
In another embodiment, the precessional spin current magnetic layer comprises CoFeB
In another embodiment, the precessional spin current magnetic layer is magnetically coupled to the free magnetic layer.
In another embodiment, the precessional spin current magnetic layer is electronically coupled to the free magnetic layer.
In another embodiment, precession of the precessional spin current magnetic layer is synchronized to precession of the free magnetic layer.
In another embodiment, the precessional spin current magnetic layer has a rotation frequency greater than zero.
In another embodiment, a magnetic device includes a precessional spin current magnetic layer in a first plane. The precessional spin current magnetic layer has a magnetization vector with a magnetization component in the first plane which can freely rotate in any magnetic direction. The device includes a non-magnetic spacer layer in a second plane and disposed over the precessional spin current magnetic layer. A free magnetic layer is in a third plane and disposed over the non-magnetic spacer layer. The free magnetic layer has a magnetization vector that is perpendicular to the third plane and also has a magnetization direction that can precess from a first magnetization direction to a second magnetization direction. The device has a non-magnetic tunnel barrier layer in a fourth plane and disposed over the free magnetic layer. A synthetic antiferromagnetic structure is in a fifth plane. The synthetic antiferromagnetic structure includes a magnetic reference layer having a magnetization vector that is perpendicular to the fifth plane. The magnetic reference layer has a fixed magnetization direction. The magnetic reference layer, the non-magnetic tunnel barrier and the free magnetic layer form a magnetic tunnel junction. The device has a current source that directs electrical current through the precessional spin current magnetic layer, the non-magnetic spacer, the free magnetic layer, the non-magnetic tunnel barrier, and the magnetic reference layer. Electrons of the electrical current are aligned in the magnetic direction of the precessional spin current magnetic layer. The magnetization direction of the precessional spin current magnetic layer follows precession of the magnetization direction of the free magnetic layer, thereby causing spin transfer torque to assist switching of the magnetization vector of the free magnetic layer.
In another embodiment, a magnetic device includes a magnetic tunnel junction in a first plane. The magnetic tunnel junction includes a free magnetic layer and a reference magnetic layer. The free magnetic layer and the reference magnetic layer are separated by a non-magnetic tunneling barrier layer. The free magnetic layer has a magnetization vector that is perpendicular to the first plane, and can precess from a first magnetization direction to a second magnetization direction. The device also has a non-magnetic spacer in a second plane coupled to the free magnetic layer. A precessional spin current magnetic layer is in a third plane and is coupled through the non-magnetic spacer to the free magnetic layer. The precessional spin current magnetic layer is separated from the free magnetic layer by the non-magnetic spacer. The precessional spin current magnetic layer has a magnetization vector with a magnetization component in the third plane which can freely rotate in any magnetic direction. The magnetization direction of the precessional spin current magnetic layer follows precession of the magnetization direction of the free magnetic layer upon application of current to the device. This causes spin transfer torque to assist switching of the magnetization vector of the free magnetic layer.
The accompanying drawings, which are included as part of the present specification, illustrate the presently preferred embodiments and, together with the general description given above and the detailed description given below, serve to explain and teach the principles of the MTJ devices described herein.
The figures are not necessarily drawn to scale and the elements of similar structures or functions are generally represented by like reference numerals for illustrative purposes throughout the figures. The figures are only intended to facilitate the description of the various embodiments described herein; the figures do not describe every aspect of the teachings disclosed herein and do not limit the scope of the claims.
The following description is presented to enable any person skilled in the art to create and use a precessional spin current structure for a magnetic semiconductor device such as an MRAM device. Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features to implement the disclosed system and method. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the claims. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense, and are instead taught merely to describe particularly representative examples of the present teachings.
In the following description, for purposes of explanation only, specific nomenclature is set forth to provide a thorough understanding of the present teachings. However, it will be apparent to one skilled in the art that these specific details are not required to practice the present teachings.
This present patent document discloses a MRAM device that does not use a polarization layer having a fixed magnetization direction, and is described with reference to
As seen in on the right-hand side of
In an embodiment, the precessional vector 270 of the PSC magnetic layer 350 follows the precessional rotation of the magnetic vector of the free layer 336 by being in alignment therewith. In other embodiments, precessional vector 270 of the PSC magnetic layer 350 follows the precessional rotation of the magnetic vector of the free layer 336 by trailing the free layer's magnetic vector, as will be discussed below. The magnetization direction of the free layer is switched by the spin torque 310 from the reference layer 132 where the direction of the current defines the final state.
A memory cell with a precessional spin current MTJ structure 300 is shown in
Nonmagnetic spacer 340 has a number of properties. For example, nonmagnetic spacer 340 physically separates the free layer 336 and the PSC layer 350. Nonmagnetic spacer 340 promotes strong magnetic and/or electronic coupling such that the magnetic direction of the PSC magnetic layer 350 follows the precession cycle of the free layer 336. In other words, nonmagnetic spacer 340 couples the magnetic direction of the PSC magnetic layer 350 to the magnetic direction of the free layer 336. Nonmagnetic spacer 340 transmits spin current efficiently from the PSC magnetic layer 350 into the free layer 336 because it preferably has a long spin diffusion length. Nonmagnetic spacer 340 also promotes good microstructure and high tunneling magnetoresistance (TMR) and helps keep the damping constant of the free layer 336 low.
PSC magnetic layer 350 has at least the following properties. First, in one embodiment, the magnetization direction of PSC magnetic layer 350 is in the plane of the layer but is perpendicular to magnetization direction of free layer 336. In other embodiments such as shown in
PSC magnetic layer 350 preferably has very low coercivity and is therefore manufactured with a very soft magnetic material, e.g., less than fifty (50) Oersteds. PSC magnetic layer 350 should have a strong magnetic coupling to free layer 336 so that its magnetization direction follows magnetic direction of free layer 336 as it precesses about its axis. In one embodiment, PSC magnetic layer 350 is free to rotate near the same frequency as the precessional motion of the free layer 336. By having nearly the same frequency of the magnetization rotations (PSC magnetic layer 350 magnetization direction and free layer 336 magnetization precession), the free layer switching time is significantly reduced and also tightens the thermal distribution of switching times. In an embodiment, PSC magnetic layer 350 has a rotation frequency greater than zero. Likewise, in an embodiment, PSC magnetic layer 350 has a circular (or near circular) shape so that its magnetization direction has no shape induced anisotropy in the x-y plane (i.e., in the plane of the magnetic film).
Seed layer 310 in the MTJ structure shown in
PSC magnetic layer 350 is preferably made from CoFeB. It can also be made with Co, Fe, Ni magnetic layers or can be made out of their alloys. The magnetic alloys can also have boron, tantalum, copper or other materials. Finally capping layer 370 can be any material that provides good interface to PSC layer such as Ta, TaN, Ru, MgO, Cu, etc.
The manner in which a bit is written using the precessional spin current MTJ structure 300 will now be described. In particular, an electrical current is supplied, for example, by a current source 375, which passes electrical current through the precessional spin current magnetic layer 350, the non-magnetic spacer 340, the free magnetic layer 336, the non-magnetic tunneling barrier layer 334, and the reference layer 332. The electrons of the electrical current passing through the precessional spin current magnetic layer 350 become spin polarized in the magnetic direction thereof, thus creating a spin polarized current that passes through non-magnetic spacer layer 340, free magnetic layer 336, tunneling barrier layer 334, and reference magnetic layer 332. The spin polarized current exerts a spin transfer torque on free magnetic layer 336, which helps overcome the inherent damping of the magnetic material making up the free layer 336. This causes the free magnetic layer 336 to precess about its axis, which is shown in
Once the magnetic direction of the free magnetic layer 336 begins to precess, the magnetic direction of the PSC magnetic layer 350 begins to rotate, as is also seen in
In particular, the structure described herein utilizing PSC magnetic layer 350 and spacer layer 340 creates precessional magnetization that provides spin current to the free layer 336 of an MTJ throughout the whole precession cycle and therefore significantly enhance the free layer switching process, which will result in faster write times.
The results of simulating a device having the structure described herein are seen in
Because the ω/ωp ratio for the device shown in
An alternative embodiment is shown in
All of the layers of devices 300 and 400 illustrated in
It should be appreciated to one skilled in the art that a plurality of MTJ structures 300 can be manufactured and provided as respective bit cells of an STT-MRAM device. In other words, each MTJ stack 300 can be implemented as a bit cell for a memory array having a plurality of bit cells.
The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modifications and substitutions to specific process conditions can be made. Accordingly, the embodiments in this patent document are not considered as being limited by the foregoing description and drawings.
This application claims the benefit of Provisional Application No. 62/180,412, filed Jun. 16, 2015. Priority to this provisional application is expressly claimed, and the disclosure of the provisional application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
341801 | Fox | May 1886 | A |
5541868 | Prinz | Jul 1996 | A |
5629549 | Johnson | May 1997 | A |
5640343 | Gallagher et al. | Jun 1997 | A |
5654566 | Johnson | Aug 1997 | A |
5691936 | Sakakima et al. | Nov 1997 | A |
5695846 | Lange et al. | Dec 1997 | A |
5695864 | Slonczewski | Dec 1997 | A |
5732016 | Chen et al. | Mar 1998 | A |
5856897 | Mauri | Jan 1999 | A |
5896252 | Kanai | Apr 1999 | A |
5966323 | Chen et al. | Oct 1999 | A |
6016269 | Peterson et al. | Jan 2000 | A |
6055179 | Koganei et al. | Apr 2000 | A |
6097579 | Gill | Aug 2000 | A |
6124711 | Tanaka et al. | Sep 2000 | A |
6134138 | Lu et al. | Oct 2000 | A |
6140838 | Johnson | Oct 2000 | A |
6154349 | Kanai et al. | Nov 2000 | A |
6172902 | Wegrowe et al. | Jan 2001 | B1 |
6233172 | Chen et al. | May 2001 | B1 |
6243288 | Ishikawa et al. | Jun 2001 | B1 |
6252798 | Satoh et al. | Jun 2001 | B1 |
6256223 | Sun | Jul 2001 | B1 |
6292389 | Chen et al. | Sep 2001 | B1 |
6347049 | Childress et al. | Feb 2002 | B1 |
6376260 | Chen et al. | Apr 2002 | B1 |
6385082 | Abraham et al. | May 2002 | B1 |
6436526 | Odagawa et al. | Aug 2002 | B1 |
6458603 | Kersch et al. | Oct 2002 | B1 |
6493197 | Ito et al. | Dec 2002 | B2 |
6522137 | Sun et al. | Feb 2003 | B1 |
6532164 | Redon et al. | Mar 2003 | B2 |
6538918 | Swanson et al. | Mar 2003 | B2 |
6545906 | Savtchenko et al. | Apr 2003 | B1 |
6563681 | Sasaki et al. | May 2003 | B1 |
6566246 | deFelipe et al. | May 2003 | B1 |
6603677 | Redon et al. | Aug 2003 | B2 |
6653153 | Doan et al. | Nov 2003 | B2 |
6654278 | Engel et al. | Nov 2003 | B1 |
6677165 | Lu et al. | Jan 2004 | B1 |
6710984 | Yuasa et al. | Mar 2004 | B1 |
6713195 | Wang et al. | Mar 2004 | B2 |
6714444 | Huai et al. | Mar 2004 | B2 |
6744086 | Daughton et al. | Jun 2004 | B2 |
6750491 | Sharma et al. | Jun 2004 | B2 |
6765824 | Kishi et al. | Jul 2004 | B2 |
6773515 | Li et al. | Aug 2004 | B2 |
6777730 | Daughton et al. | Aug 2004 | B2 |
6785159 | Tuttle | Aug 2004 | B2 |
6812437 | Levy et al. | Nov 2004 | B2 |
6829161 | Huai et al. | Dec 2004 | B2 |
6835423 | Chen et al. | Dec 2004 | B2 |
6838740 | Huai et al. | Jan 2005 | B2 |
6842317 | Sugita et al. | Jan 2005 | B2 |
6847547 | Albert et al. | Jan 2005 | B2 |
6887719 | Lu et al. | May 2005 | B2 |
6888742 | Nguyen et al. | May 2005 | B1 |
6902807 | Argoitia et al. | Jun 2005 | B1 |
6906369 | Ross et al. | Jun 2005 | B2 |
6920063 | Huai et al. | Jul 2005 | B2 |
6772036 | Eryurek et al. | Aug 2005 | B2 |
6933155 | Albert et al. | Aug 2005 | B2 |
6958927 | Nguyen et al. | Oct 2005 | B1 |
6967863 | Huai | Nov 2005 | B2 |
6980469 | Kent et al. | Dec 2005 | B2 |
6985385 | Nguyen et al. | Jan 2006 | B2 |
6992359 | Nguyen et al. | Jan 2006 | B2 |
6995962 | Saito et al. | Feb 2006 | B2 |
7002839 | Kawabata et al. | Feb 2006 | B2 |
7005958 | Wan | Feb 2006 | B2 |
7006375 | Covington | Feb 2006 | B2 |
7009877 | Huai et al. | Mar 2006 | B1 |
7041598 | Sharma | May 2006 | B2 |
7045368 | Hong et al. | May 2006 | B2 |
7170778 | Kent et al. | Jan 2007 | B2 |
7190611 | Nguyen et al. | Mar 2007 | B2 |
7203129 | Lin et al. | Apr 2007 | B2 |
7227773 | Nguyen et al. | Jun 2007 | B1 |
7262941 | Li et al. | Aug 2007 | B2 |
7307876 | Kent et al. | Dec 2007 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335960 | Han et al. | Feb 2008 | B2 |
7351594 | Bae et al. | Apr 2008 | B2 |
7352021 | Bae et al. | Apr 2008 | B2 |
7376006 | Bednorz et al. | May 2008 | B2 |
7449345 | Horng et al. | Nov 2008 | B2 |
7476919 | Hong et al. | Jan 2009 | B2 |
7502249 | Ding | Mar 2009 | B1 |
7573737 | Kent et al. | Aug 2009 | B2 |
7598555 | Papworth-Parkin | Oct 2009 | B1 |
7619431 | DeWilde et al. | Nov 2009 | B2 |
7911832 | Kent et al. | Mar 2011 | B2 |
7936595 | Han et al. | May 2011 | B2 |
7986544 | Kent et al. | Jul 2011 | B2 |
8014193 | Nakayama et al. | Sep 2011 | B2 |
8279663 | Nakayama et al. | Oct 2012 | B2 |
8279666 | Dieny et al. | Oct 2012 | B2 |
8334213 | Mao | Dec 2012 | B2 |
8357982 | Kajiyama | Jan 2013 | B2 |
8363465 | Kent et al. | Jan 2013 | B2 |
8456883 | Liu | Jun 2013 | B1 |
8488375 | Saida et al. | Jul 2013 | B2 |
8492881 | Kuroiwa et al. | Jul 2013 | B2 |
8508979 | Saida et al. | Aug 2013 | B2 |
8535952 | Ranjan et al. | Sep 2013 | B2 |
8574928 | Satoh et al. | Nov 2013 | B2 |
8576616 | Saida et al. | Nov 2013 | B2 |
8582355 | Saida et al. | Nov 2013 | B2 |
8617408 | Balamane | Dec 2013 | B2 |
8716817 | Saisa | May 2014 | B2 |
8737122 | Saida et al. | May 2014 | B2 |
8737137 | Choy et al. | May 2014 | B1 |
8852760 | Wang et al. | Oct 2014 | B2 |
8878317 | Daibou et al. | Nov 2014 | B2 |
9025368 | Saida et al. | May 2015 | B2 |
9082888 | Kent et al. | Jul 2015 | B2 |
9117995 | Daibou et al. | Aug 2015 | B2 |
9159342 | Kudo et al. | Oct 2015 | B2 |
9245608 | Chen et al. | Jan 2016 | B2 |
9263667 | Pinarbasi | Feb 2016 | B1 |
9299918 | Daibou et al. | Mar 2016 | B2 |
9337412 | Pinarbasi | Mar 2016 | B2 |
9362486 | Kim et al. | Jun 2016 | B2 |
9406876 | Pinarbasi | Aug 2016 | B2 |
9472748 | Kuo et al. | Oct 2016 | B2 |
9484527 | Han et al. | Nov 2016 | B2 |
9548445 | Lee et al. | Jan 2017 | B2 |
20020090533 | Zhang et al. | Jul 2002 | A1 |
20020105823 | Redon et al. | Aug 2002 | A1 |
20020132140 | Igarashi et al. | Sep 2002 | A1 |
20030117840 | Sharma et al. | Jun 2003 | A1 |
20030151944 | Saito | Aug 2003 | A1 |
20030197984 | Inomata et al. | Oct 2003 | A1 |
20030218903 | Luo | Nov 2003 | A1 |
20040012994 | Slaughter et al. | Jan 2004 | A1 |
20040061154 | Huai et al. | Apr 2004 | A1 |
20040094785 | Zhu et al. | May 2004 | A1 |
20040130936 | Nguyen et al. | Jul 2004 | A1 |
20040257717 | Sharma et al. | Dec 2004 | A1 |
20050041342 | Huai et al. | Feb 2005 | A1 |
20050051820 | Stojakovic et al. | Mar 2005 | A1 |
20050063222 | Huai et al. | Mar 2005 | A1 |
20050104101 | Sun et al. | May 2005 | A1 |
20050128842 | Wei | Jun 2005 | A1 |
20050136600 | Huai | Jun 2005 | A1 |
20050158881 | Sharma | Jul 2005 | A1 |
20050174702 | Gill | Aug 2005 | A1 |
20050180202 | Huai et al. | Aug 2005 | A1 |
20050184839 | Nguyen et al. | Aug 2005 | A1 |
20050201023 | Huai et al. | Sep 2005 | A1 |
20050237787 | Huai et al. | Oct 2005 | A1 |
20050280058 | Pakala et al. | Dec 2005 | A1 |
20060018057 | Huai | Jan 2006 | A1 |
20060049472 | Diao et al. | Mar 2006 | A1 |
20060087880 | Mancoff et al. | Apr 2006 | A1 |
20060092696 | Bessho | May 2006 | A1 |
20060132990 | Morise et al. | Jun 2006 | A1 |
20060227465 | Inokuchi et al. | Oct 2006 | A1 |
20070019337 | Apalkov et al. | Jan 2007 | A1 |
20070242501 | Hung et al. | Oct 2007 | A1 |
20080049488 | Rizzo | Feb 2008 | A1 |
20080112094 | Kent et al. | May 2008 | A1 |
20080151614 | Guo | Jun 2008 | A1 |
20080259508 | Kent et al. | Oct 2008 | A2 |
20080297292 | Viala et al. | Dec 2008 | A1 |
20090046501 | Ranjan et al. | Feb 2009 | A1 |
20090072185 | Raksha et al. | Mar 2009 | A1 |
20090091037 | Assefa et al. | Apr 2009 | A1 |
20090098413 | Kanegae | Apr 2009 | A1 |
20090161421 | Cho et al. | Jun 2009 | A1 |
20090209102 | Zhong et al. | Aug 2009 | A1 |
20090231909 | Dieny et al. | Sep 2009 | A1 |
20100124091 | Cowburn | May 2010 | A1 |
20100193891 | Wang et al. | Aug 2010 | A1 |
20100232206 | Li | Sep 2010 | A1 |
20100246254 | Prejbeanu et al. | Sep 2010 | A1 |
20100271870 | Zheng et al. | Oct 2010 | A1 |
20100290275 | Park et al. | Nov 2010 | A1 |
20110001108 | Greene et al. | Jan 2011 | A1 |
20110032645 | Noel et al. | Feb 2011 | A1 |
20110058412 | Zheng et al. | Mar 2011 | A1 |
20110089511 | Keshtbod et al. | Apr 2011 | A1 |
20110133298 | Chen et al. | Jun 2011 | A1 |
20110216436 | Igarashi | Sep 2011 | A1 |
20120052258 | Op DeBeeck et al. | Mar 2012 | A1 |
20120069649 | Ranjan et al. | Mar 2012 | A1 |
20120155156 | Watts et al. | Jun 2012 | A1 |
20120181642 | Prejbeanu et al. | Jul 2012 | A1 |
20120188818 | Ranjan et al. | Jul 2012 | A1 |
20120228728 | Ueki et al. | Sep 2012 | A1 |
20120280336 | Jan | Nov 2012 | A1 |
20120280339 | Zhang et al. | Nov 2012 | A1 |
20120294078 | Kent et al. | Nov 2012 | A1 |
20120299133 | Son et al. | Nov 2012 | A1 |
20130001506 | Sato et al. | Jan 2013 | A1 |
20130001652 | Yoshikawa et al. | Jan 2013 | A1 |
20130021841 | Zhou et al. | Jan 2013 | A1 |
20130075845 | Chen et al. | Mar 2013 | A1 |
20130244344 | Malmhall et al. | Sep 2013 | A1 |
20130267042 | Satoh et al. | Oct 2013 | A1 |
20130270523 | Wang et al. | Oct 2013 | A1 |
20130270661 | Yi et al. | Oct 2013 | A1 |
20130307097 | Yi et al. | Nov 2013 | A1 |
20130341801 | Satoh et al. | Dec 2013 | A1 |
20140009994 | Parkin et al. | Jan 2014 | A1 |
20140036573 | Ishihara et al. | Feb 2014 | A1 |
20140042571 | Gan et al. | Feb 2014 | A1 |
20140048896 | Huang et al. | Feb 2014 | A1 |
20140070341 | Beach et al. | Mar 2014 | A1 |
20140103472 | Kent et al. | Apr 2014 | A1 |
20140169085 | Wang et al. | Jun 2014 | A1 |
20140177316 | Otsuka et al. | Jun 2014 | A1 |
20140217531 | Jan | Aug 2014 | A1 |
20140252439 | Guo | Sep 2014 | A1 |
20140264671 | Chepulskyy et al. | Sep 2014 | A1 |
20150056368 | Wang et al. | Feb 2015 | A1 |
20150171316 | Park et al. | Jun 2015 | A1 |
20160027999 | Pinarbasi | Jan 2016 | A1 |
20160087193 | Pinarbasi | Mar 2016 | A1 |
20160093798 | Kim et al. | Mar 2016 | A1 |
20160111634 | Lee et al. | Apr 2016 | A1 |
20160126452 | Kuo et al. | May 2016 | A1 |
20160126453 | Chen et al. | May 2016 | A1 |
20160163965 | Han et al. | Jun 2016 | A1 |
20160163973 | Pinarbasi | Jun 2016 | A1 |
20160181508 | Lee et al. | Jun 2016 | A1 |
20160218278 | Pinarbasi et al. | Jul 2016 | A1 |
20160284762 | Wang et al. | Sep 2016 | A1 |
20160315118 | Kardasz et al. | Oct 2016 | A1 |
20160315259 | Kardasz et al. | Oct 2016 | A1 |
20170025472 | Kim et al. | Jan 2017 | A1 |
20170033156 | Gan et al. | Feb 2017 | A1 |
20170033283 | Pinarbasi et al. | Feb 2017 | A1 |
20170047107 | Berger et al. | Feb 2017 | A1 |
20170084826 | Zhou et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2766141 | Jan 2011 | CA |
105706259 | Jun 2016 | CN |
1345277 | Sep 2003 | EP |
2817998 | Jun 2002 | FR |
2832542 | May 2003 | FR |
2910716 | Jun 2008 | FR |
H10-4012 | Jan 1998 | JP |
H11-120758 | Apr 1999 | JP |
H11-352867 | Dec 1999 | JP |
2001-195878 | Jul 2001 | JP |
2002-261352 | Sep 2002 | JP |
2002-357489 | Dec 2002 | JP |
2003-318461 | Nov 2003 | JP |
2005-150482 | Jun 2005 | JP |
2005-535111 | Nov 2005 | JP |
2006-128579 | May 2006 | JP |
2008-524830 | Jul 2008 | JP |
2009-027177 | Feb 2009 | JP |
2013-012546 | Jan 2013 | JP |
2014-039061 | Feb 2014 | JP |
5635666 | Dec 2014 | JP |
2015-002352 | Jan 2015 | JP |
2005-0044848 | Feb 2015 | JP |
2017-510989 | Apr 2017 | JP |
2017-510989 | Apr 2017 | JP |
10-2014-0115246 | Sep 2014 | KR |
10-2015-0016162 | Feb 2015 | KR |
WO 2009-080636 | Jul 2009 | WO |
WO 2011-005484 | Jan 2011 | WO |
2014-062681 | Apr 2014 | WO |
2015153142 | Oct 2015 | WO |
2016-014326 | Jan 2016 | WO |
2016-048603 | Mar 2016 | WO |
2016171800 | Oct 2016 | WO |
2016171920 | Oct 2016 | WO |
2016204835 | Dec 2016 | WO |
2017019134 | Feb 2017 | WO |
2017030647 | Feb 2017 | WO |
Entry |
---|
US 7,026,672, 04/2006, Grandis Inc (withdrawn) |
“Magnetic Technology Sprintronics, Media and Interface”; Data Storage Institute, R&D Highlights; Sep. 2010; 3 pages. |
R.H. Koch, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”; Physical Review Letters; The American Physical Society; vol. 84, No. 23; Jun. 5, 2000, pp. 5419-5422 (4 pages). |
K.J. Lee, et al., “Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer”; Applied Physics Letters; American Institute of Physics; vol. 86, (2005); pp. 022505-1 to 022505-3 (3 pages). |
Kirsten Martens, et al., “Magnetic Reversal in Nanoscopic Ferromagnetic Rings”; NSF grants PHY-0351964 (DLS); 2006; 23 pages. |
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”; NSF grants PHY-0351964 (DLS); 2005; 11 pages. |
Andrew Kent, et al.; U.S. Appl. No. 61/715,111, filed Oct. 17, 2012, entitled “Inverted Orthogonal Spin Transfer Layer Stack”. |
Mustafa Pinarbasi, et al.; U.S. Appl. No. 14/242,419, filed Apr. 1, 2014, entitled “Magnetic Tunnel Junction for MRAM Device”. |
Mustafa Pinarbasi, et al.; U.S. Appl. No. 14/341,185, filed Jul. 25, 2014, entitled “Method for Manufacturing MTJ Memory Device”. |
Mustafa Pinarbasi, et al.; U.S. Appl. No. 14/492,943, filed Sep. 22, 2014, entitled “Magnetic Tunnel Junction Structure for MRAM Device”. |
International Search Report and Written Opinion dated Jul. 10, 2015 in PCT/US2015/021580; 12 pages. |
Kardasz, et al.; U.S. Appl. No. 14/866,359, filed Sep. 25, 2015 entitled “Spin Transfer Torque Structure for MRAM Devices Having a Spin Current Injection Capping Layer”. |
International Search Report and Written Opinion dated Oct. 30, 2015 in PCT/US2015/040700; 11 pages. |
International Search Report and Written Opinion dated Dec. 14, 2015 in PCT/US2015/047875; 13 pages. |
Pinarbasi, et al.; U.S. Appl. No. 15/041,325, filed Feb. 11, 2016, entitled “Method for Manufacturing MTJ Memory Device”. |
Kardasz, et al.; U.S. Appl. No. 15/091,853, filed Apr. 6, 2016, entitled “High Annealing Temperature Perpendicular Magnetic Anisotropy Structure for Magnetic Random Access Memory”. |
Pinarbasi, et al.; U.S. Appl. No. A73, filed Apr. 7, 2016, entitled “Magnetic Tunnel Junction Structure for MRAM Device”. |
Pinarbasi, et al.; U.S. Appl. No. 15/097,576, filed Apr. 13, 2016, entitled “Polishing Stop Layer(s) for Processing Arrays of Semiconductor Elements”. |
Pinarbasi, et al.; U.S. Appl. No. 15/157,783, filed May 18, 2016, entitled “Memory Cell Having Magnetic Tunnel Junction and Thermal Stability Enhancement Layer”. |
Berger, et al.; U.S. Appl. No. 15/174,482, filed Jun. 6, 2016, entitled “Method and Apparatus for Bipolar Memory Write-Verify”. |
International Search Report and Written Opinion dated Jun. 17, 2016 in PCT/US2016/021324; 9 pages. |
International Search Report and Written Opinion dated Jun. 17, 2016 in PCT/US2016/021691; 9 pages. |
International Search Report and Written Opinion dated Jul. 15, 2016 in PCT/US2016/026473; 9 pages. |
International Search Report and Written Opinion dated Jul. 21, 2016 in PCT/US2016/027445; 10 pages. |
International Search Report and Written Opinion dated Sep. 26, 2016 in PCT/US2016/037843; 10 pages. |
International Search Report and Written Opinion dated Apr. 7, 2017 in PCT/US2016/067444; 13 pages. |
Notice of Allowance dated Apr. 21, 2017 in U.S. Appl. No. 15/157,783; 36 pages. |
S. Ikeda, et al.; “A perpendicular-anisotropy CoFeB—MgO magnetic tunnel junction”; Nature Materials, vol. 9, Sep. 2010; pp. 721-724 (4 pages). |
Pinarbasi, et al.; U.S. Appl. No. 15/445,260, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”. |
Pinarbasi, et al.; U.S. Appl. No. 15/445,362, filed Feb. 28, 2017, entitled “Precessional Spin Current Structure for MRAM”. |
NonFinal Office Action dated Jan. 20, 2016 in U.S. Appl. No. 14/242,419; 17 pages. |
Final Office Action dated Jul. 9, 2015 in U.S. Appl. No. 14/242,419; 19 pages. |
NonFinal Office Action dated Mar. 20, 2015 in U.S. Appl. No. 14/242,419; 18 pages. |
NonFinal Office Action dated Sep. 11, 2015 in U.S. Appl. No. 14/492,943; 13 pages. |
NonFinal Office Action dated Jan. 25, 2017 in U.S. Appl. No. 15/097,576; 17 pages. |
NonFinal Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/093,367; 13 pages. |
NonFinal Office Action dated Feb. 8, 2017 in U.S. Appl. No. 15/174,482; 10 pages. |
Manfred Ernst Schabes, et al.; U.S. Appl. No. 15/634,629, filed Jun. 27, 2017, entitled “MRAM with Reduced Stray Magnetic Fields”. |
Number | Date | Country | |
---|---|---|---|
20160372656 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62180412 | Jun 2015 | US |