Semiconductor device geometries continue to decrease in size, providing more devices per unit area on a fabricated wafer. These devices are typically initially isolated from each other as they are built into the wafer, and they are subsequently interconnected to create desired circuit configurations. Some devices are fabricated with feature dimensions of several tens of nanometers. Spacing between doped-semiconductor devices and conductive lines on a patterned wafer may be separated by spacings similar to feature dimensions, leaving recesses or gaps of a comparable size. A nonconductive layer of dielectric material, such as silicon oxide (SiO2), is typically deposited over features to fill gaps and electrically isolate features from one another in an integrated circuit.
Dielectric layers are used in various applications including shallow trench isolation (STI) dielectric for isolating devices and interlayer dielectric (ILD) formed between metal wiring layers or prior to a metallization process (PMD). A generic patterned substrate 110 is shown in
The silicon oxide in the narrow trench is desirable and the silicon oxide in the open area to the right may or may not be desirable. Chemical mechanical polishing often removes one region at a different rate than another to the spatial pattern variation. In
Therefore, a need exists for methods of depositing silicon oxide in narrow trenches while retaining additional control over the material left in open areas and wide trenches of a patterned substrate.
Aspects of the disclosure pertain to methods of preferentially filling narrow trenches with silicon oxide while not completely filling wider trenches and/or open areas. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively dense first portion of a silicon oxide layer followed by a more porous (and more rapidly etched) second portion of the silicon oxide layer. Narrow trenches are filled with dense material whereas open areas are covered with a layer of dense material and more porous material. Dielectric material in wider trenches may be removed at this point with a wet etch while the dense material in narrow trenches is retained.
Embodiments of the invention include methods of processing a patterned substrate having a narrow trench and an open area. The methods include flowing a silicon-containing precursor and ozone (O3) into a substrate processing region containing the patterned substrate. The methods further include forming a dense portion of silicon oxide, filling the narrow trench and covering an exposed horizontal surface of the open area. The methods further include forming a porous portion of silicon oxide over the dense portion. The porous portion predominantly forms above the narrow trench and not within the narrow trench. The method further includes stripping the porous portion of the silicon oxide using a wet etch.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed embodiments. The features and advantages of the disclosed embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the disclosed embodiments may be realized by reference to the remaining portions of the specification and the drawings.
Aspects of the disclosure pertain to methods of preferentially filling narrow trenches with silicon oxide while not completely filling wider trenches and/or open areas. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively dense first portion of a silicon oxide layer followed by a more porous (and more rapidly etched) second portion of the silicon oxide layer. Narrow trenches are filled with dense material whereas open areas are covered with a layer of dense material and more porous material. Dielectric material in wider trenches may be removed at this point with a wet etch while the dense material in narrow trenches is retained.
Embodiments of the invention are directed to methods of forming silicon oxide preferentially in narrow trenches on a patterned surface of a substrate. Sub-atmospheric CVD (SACVD) and related processes involve flowing a silicon-containing precursor and an oxidizing precursor into a processing chamber to form silicon oxide on the substrate. The silicon-containing precursor may include TEOS and the oxidizing precursor may include ozone (O3), oxygen (O2) and/or oxygen radicals. The inventors have discovered that a transition from high-density to low-density growth during the growth of dielectric layers may be exploited to preferentially fill narrow gaps with high density materials. Open areas and wide trenches behave differently from narrow trenches because they are filled with both high and low density dielectric. This allows dielectric material in open areas and wide trenches to be removed by, e.g., a wet etch while material remains in the narrow trenches.
In order to better understand and appreciate the invention, reference is now made to FIGS. 2 and 3A-3B which are a flow chart of a preferential gapfill process and cross-sections of a patterned substrate during the process according to disclosed embodiments. The process 200 in
After the heterogeneous silicon oxide layer is deposited, the patterned substrate 310 is removed from the substrate processing region in operation 240. The patterned substrate 310 is then treated using a wet etch (operation 250) to remove some of the deposited material. The wet etch may be any of a variety of wet etch solutions designed to remove the deposited dielectric. A typical wet etch solution for silicon oxide films includes a HF buffered oxide etch, in disclosed embodiments, though other solutions may be included or substituted. The wet etch process parameters (including duration) are chosen to remove at least the porous portion of the silicon oxide and typically some of the dense portion as well. During exposure to a buffered oxide etch, the wet etch rate of the porous portion of silicon oxide may exceed that of the dense portion by a multiplicative factor of one of 2, 3, 4, 5, 7 or 10, in different embodiments.
The open area is shown in
As indicated, a transition from dense silicon oxide growth to porous silicon oxide growth occurs during the deposition of the heterogeneous silicon oxide layer in operation 230. This transition and the density of the porous silicon oxide portion may depend on a number of process parameters. The inclusion of water (steam) along with TEOS and ozone has been found to increase the porosity of the porous portion of the silicon oxide layer. Depositing the heterogeneous silicon oxide layer at low temperature has also been found to increase this porosity. Therefore, lowering the substrate temperature is desirable not only to help stay within tightening thermal budgets, but also to increase the utility of the techniques presented herein. The temperature of the substrate during the deposition of the heterogeneous silicon oxide layer is below one of 540° C., 500° C., 450° C., 400° C. and 350° C., in different embodiments.
Narrow trenches are filled with dense silicon oxide when the width of the trench is less than or about half the thickness of the dense portion of the heterogeneous silicon oxide film. Depending on process parameters, the thickness of the dense portion may be between 5 and 25 nm or between 10 and 20 nm, in different embodiments. The width of the narrow trench may be less than one of 100 nm, 50 nm, 35 nm, 30 nm, 25 nm or 20 nm, and the height of the narrow trench may be greater than one of 50 nm, 100 nm, 150 nm, 200 nm, 300 nm or 500 nm, in different embodiments. As indicated earlier, the open area may be a wide trench and that wide trench may have a width greater than one of 100 nm, 150 nm, 200 nm, 500 nm, 1000 nm or 2000 nm, and the height may be the same or less than the height of the narrow trench in different embodiments. The open area may also be flush (coplanar) with the top of the trench; in this case the open area is not recessed at all.
During the formation of dense silicon oxide in the narrow trench, methods known in the art for minimizing seams and voids may be used. These precautions ensure the density inside the trench is more uniform which ensures the wet etch process of operation 250 will not penetrate into the gapfill silicon oxide so far as to compromise the electrical isolation provided.
Trenches wider than twice the thickness of the dense portion of the deposited silicon oxide may also be productively filled. By repeating the deposition/wet etch sequence more than once, trenches somewhat wider than twice the thickness may be filled while still allowing the dense silicon oxide deposited in the open area to be removed during the last wet etch. The benefits are possible because of the restricted geometry of the narrow trench which presents a longer path of porous dielectric through which the wet etch must penetrate before beginning to remove the dense silicon oxide lining the narrow trench. Even without the additional path-length of porous dielectric, a wet etch process is typically less effective at removing material from a restricted geometry, in part, because of the reduced ability of a fluid to penetrate narrow passageways and a reduced ability to displace spent etching agent with unspent etching agent.
Additional process parameters are described in the course of outlining exemplary systems and deposition chambers.
Exemplary Substrate Processing System
Deposition chambers that may implement embodiments of the present invention may include sub-atmospheric chemical vapor deposition (SACVD) chambers and more generally, deposition chambers which allow operation at relatively high pressures without necessarily applying plasma excitation. Specific examples of CVD systems that may implement embodiments of the invention include the CENTURA ULTIMA® SACVD chambers/systems, and PRODUCER® HARP, eHARP and SACVD chambers/systems, available from Applied Materials, Inc. of Santa Clara, Calif.
Embodiments of the deposition systems may be incorporated into larger fabrication systems for producing integrated circuit chips.
The processing chambers 408a-f may include one or more system components for depositing, annealing, curing and/or etching a flowable dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber (e.g., 408c-d and 408e-f) may be used to deposit the flowable dielectric material on the substrate, and the third pair of processing chambers (e.g., 408a-b) may be used to anneal the deposited dielectric. In another configuration, the same two pairs of processing chambers (e.g., 408c-d and 408e-f) may be configured to both deposit and anneal a flowable dielectric film on the substrate, while the third pair of chambers (e.g., 408a-b) may be used for UV or E-beam curing of the deposited film. In still another configuration, all three pairs of chambers (e.g., 408a-f) may be configured to deposit and cure a flowable dielectric film on the substrate. In yet another configuration, two pairs of processing chambers (e.g., 408c-d and 408e-f) may be used for both deposition and UV or E-beam curing of the flowable dielectric, while a third pair of processing chambers (e.g. 408a-b) may be used for annealing the dielectric film. Any one or more of the processes described may be carried out on chamber(s) separated from the fabrication system shown in different embodiments.
The semiconductor processing chamber 510 includes an enclosure assembly 512 housing a chamber interior 515 with a gas reaction area 516. A gas distribution plate 520 is provided above the gas reaction area 516 for dispersing reactive gases and other gases, such as purge gases, through perforated holes in the gas distribution plate 520 to a substrate (not shown) that rests on a vertically movable heater 525 (which may also be referred to as a substrate support pedestal). The heater 525 can be controllably moved between a lower position, where a substrate can be loaded or unloaded, for example, and a processing position closely adjacent to the gas distribution plate 520, indicated by a dashed line 513, or to other positions for other purposes, such as for an etch or cleaning process. A center board (not shown) includes sensors for providing information on the position of the substrate.
Gas distribution plate 520 may be of the variety described in U.S. Pat. No. 6,793,733. These plates improve the uniformity of gas disbursement at the substrate and are particularly advantageous in deposition processes that vary gas concentration ratios. In some examples, the plates work in combination with the vertically movable heater 525 (or movable substrate support pedestal) such that deposition gases are released farther from the substrate when the ratio is heavily skewed in one direction (e.g., when the concentration of a silicon-containing gas is small compared to the concentration of an oxidizer-containing gas) and are released closer to the substrate as the concentration changes (e.g., when the concentration of silicon-containing gas in the mixture is higher). In other examples, the orifices of the gas distribution plate are designed to provide more uniform mixing of the gases.
The heater 525 includes an electrically resistive heating element (not shown) enclosed in a ceramic. The ceramic protects the heating element from potentially corrosive chamber environments and allows the heater to attain temperatures up to about 800° C. In an exemplary embodiment, all surfaces of the heater 525 exposed within the chamber interior 515 are made of a ceramic material, such as aluminum oxide (Al2O3 or alumina) or aluminum nitride.
Reactive and carrier gases are supplied through inlet tube 543 into mixing box 527, where they are preferably mixed together and delivered to the gas distribution plate 520. Mixing box 527 is preferably a dual input mixing block coupled to inlet tube 543 and to a cleaning/etch gas conduit 547. A valve 528 operates to admit or seal gas or plasma from conduit 547 to mixing box 527. Conduit 547 receives gases from an RPS 555, which has an inlet 557 for receiving input gases. During deposition processing, gas supplied to the plate 520 is vented toward the substrate surface (as indicated by arrows 521), where it may be uniformly distributed radially across the substrate surface, typically in a laminar flow.
Purging gas may be delivered into the chamber interior 515 through the plate 520 and/or an inlet port or tube (not shown) through a wall (preferably the bottom) of enclosure assembly 512. The purging gas flows upward from the inlet port past the heater 525 and to an annular pumping channel 540 and may be useful to purge the chamber, for example, between depositions. An exhaust system then exhausts the gas (as indicated by arrow 522) into the annular pumping channel 540 and through an exhaust line 560 to a pumping system 588, which includes one or more vacuum pumps. Exhaust gases and entrained particles are drawn from the annular pumping channel 540 through the exhaust line 560 at a rate controlled by a throttle valve system 563.
The RPS 555 can produce a plasma for selected applications, such as chamber cleaning or etching native oxide or residue from a process substrate. Plasma species produced in the remote plasma system 555 from precursors supplied via the input line 557 are sent via conduit 547 for dispersion through the plate 520 to the gas reaction area 516. Precursor gases for a cleaning application may include fluorine, chlorine, and other reactive elements. The RPS 555 also may be adapted to deposit plasma enhanced CVD films by selecting appropriate deposition precursor gases for use in the RPS 555.
During formation of the heterogeneous silicon oxide layer, the flow of TEOS is generally effected by flowing a carrier gas (e.g. N2) through liquid TEOS such that the delivery rate of TEOS into the substrate processing region is above one of 1 g/min, 2 g/min or 3 g/min, in different embodiments. Both the carrier gas and the TEOS will typically enter the substrate processing region. The flow of ozone is delivered along with more stable molecular oxygen. The flow rate of the ozone portion of that flow is above one of 1 slm, 2 slm, 3 slm, 5 slm or 10 slm, in different embodiments.
The pressure in the substrate processing region are typical of many SACVD and HARP processes (e.g. 600 Ton). The pressure during the formation of the heterogenous silicon oxide film may be greater than one of 350 Torr, 400 Ton, 450 Torr, 500 Ton or 550 Ton, in different embodiments, to ensure desirable growth rates during the incubation period. Despite the name and acronym for the related process, sub-atmospheric chemical vapor deposition (SACVD), it should be noted that the processes described herein may be performed at pressures higher than atmospheric pressure (typically 760 Torr). No plasma is present in the substrate processing region in some embodiments. A small ac and/or dc voltage may be applied to the substrate processing region without detriment to the benefits of the deposition process, according to embodiments. Such an excitation should not be considered to deviate from the scope of “essentially” plasma-free or a process having “essentially” no plasma as may be recited in some claims.
Flow rates, as used herein, are not necessarily constant during the process. Flow rates of the different precursors may be initiated and terminated in different orders and their magnitudes may be varied. Unless otherwise indicated, mass flow rate magnitudes indicated herein are given for the approximate peak flow rate used during the process. Flow rate magnitudes indicated herein are for deposition on one side of a pair of 300 mm diameter wafers (area approximately 1400 cm2). Appropriate correction based on deposition area is needed for a different number of wafers, larger or smaller wafers, double sided deposition or deposition on alternative geometry substrates (e.g. rectangular substrates).
The system controller 553 controls activities and operating parameters (e.g. pressure and flow rates) of the deposition system. The processor 551 executes system control software, such as a computer program stored in a memory 552 coupled to the processor 551. The memory 552 typically consists of a combination of static random access memories (cache), dynamic random access memories (DRAM) and hard disk drives but of course the memory 552 may also consist of other kinds of memory, such as solid-state memory devices. In addition to these memory means the semiconductor processing chamber 510 in a preferred embodiment includes a removable storage media drive, USB ports and a card rack (not shown).
The processor 551 operates according to system control software programmed to operate the device according to the methods disclosed herein. For example, sets of instructions may dictate the timing, mixture of gases, chamber pressure, chamber temperature, plasma power levels, susceptor position, and other parameters for carrying out one or more incubation period depositions in a sequence. The instructions are conveyed to the appropriate hardware preferably through direct cabling carrying analog or digital signals conveying signals originating from an input-output I/O module 550. Other computer programs such as those stored on other memory including, for example, a USB thumb drive, a floppy disk or another computer program product inserted in a disk drive or other appropriate drive, may also be used to operate the processor 551 to configure the semiconductor processing chamber 510 for varied uses.
The processor 551 may have a card rack (not shown) that contains a single-board computer, analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of the semiconductor processing system 200 conform to the Versa Modular European (VME) standard which defines board, card cage, and connector dimensions and types. The VME standard also defines the bus structure having a 16-bit data bus and 24-bit address bus.
A process for preferentially filling narrow trenches on a patterned substrate or a process for cleaning a chamber can be implemented using a computer program product that is executed by the system controller. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Microsoft Windows® library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller is via a flat-panel touch-sensitive monitor. In the preferred embodiment two monitors are used, one mounted in the clean room wall for the operators and the other behind the wall for the service technicians. The two monitors may simultaneously display the same information, in which case only one accepts input at a time. To select a particular screen or function, the operator touches a designated area of the touch-sensitive monitor. The touched area changes its highlighted color, or a new menu or screen is displayed, confirming communication between the operator and the touch-sensitive monitor. Other devices, such as a keyboard, mouse, or other pointing or communication device, may be used instead of or in addition to the touch-sensitive monitor to allow the user to communicate with the system controller.
The embodiment disclosed herein relies on direct cabling and a single processor 551. Alternative embodiments comprising multi-core processors, multiple processors under distributed control and wireless communication between the system controller and controlled objects are also possible.
The RPS 555 is integrally located and mounted below the processing chamber 510 with conduit 547 coming up alongside the chamber 510 to the gate valve 528 and the mixing box 527, located above the chamber 510. Plasma power generator 511 and ozonator 559 are located remote from the clean room. Supply lines 583 and 585 from the gas supply panel 580 provide reactive gases to inlet tube 543. The gas supply panel 580 includes lines from gas or liquid sources 590 that provide the process gases for the selected application. The gas supply panel 580 has a mixing system 593 that mixes selected gases before flow to the mixing box 527. In some embodiments, gas mixing system 593 includes a liquid injection system for vaporizing one or more reactant liquids such as tetraethylorthosilicate (“TEOS”), triethylborate (“TEB”), and triethylphosphate (“TEPO”). Vapor from the liquids is usually combined with a carrier gas, such as helium. Supply lines for the process gases may include (i) shut-off valves 595 that can be used to automatically or manually shut off the flow of process gas into supply line 585 or line 557, and (ii) liquid flow meters (LFM) 501 or other types of controllers that measure the flow of gas or liquid through the supply lines.
As an example, a mixture including TEOS as a silicon source may be used with gas mixing system 593 in a deposition process for forming a silicon oxide film during an incubation period. Sources of dopants such as phosphorous and boron may include TEPO and TEB which may also be introduced to gas mixing system 593. Precursors delivered to gas mixing system 593 may be liquid at room temperature and pressure and may be vaporized by conventional boiler-type or bubbler-type hot boxes. Alternatively, a liquid injection system may be used and offers greater control of the volume of reactant liquid introduced into the gas mixing system. The liquid is typically injected as a fine spray or mist into the carrier gas flow before being delivered to a heated gas delivery line 385 to the gas mixing block and chamber. Oxygen (O2) and ozone (O3) flow to the chamber through another supply line 583, to be combined with the reactant gases from supply line 585 near or in the chamber. Of course, it is recognized that other sources of dopants, silicon, oxygen and additive precursors may also be used. Though shown as an individual gas distribution line, supply line 585 may actually comprise multiple lines separated to discourage inter-precursor reactions before the precursors are flowed into chamber interior 515.
As used herein “substrate” may be a support substrate with or without layers formed thereon. The support substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. A layer of “silicon oxide” may include minority concentrations of other elemental constituents such as nitrogen, hydrogen, carbon and the like. A gas may be a combination of two or more gases. The terms trench and gap are used interchangeably throughout with no implication that the etched geometry necessarily has a large horizontal aspect ratio. Viewed from above the surface, gaps may appear circular, oval, polygonal, rectangular, or a variety of other shapes. Gaps may also be a region between two pillars in which case the gaps are not physical separate from other gaps. As used herein, a conformal layer refers to a generally uniform layer of material on a surface in the same shape as the surface, i.e., the surface of the layer and the surface being covered are generally parallel. A person having ordinary skill in the art will recognize that the deposited material likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application claims the benefit of U.S. Provisional Application No. 61/322,958 by Kweskin et al, filed Apr. 12, 2010 and titled “PREFERENTIAL DIELECTRIC GAPFILL” which is incorporated herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4147571 | Stringfellow et al. | Apr 1979 | A |
4816098 | Davis et al. | Mar 1989 | A |
4818326 | Liu et al. | Apr 1989 | A |
4931354 | Wakino et al. | Jun 1990 | A |
5016332 | Reichelderfer et al. | May 1991 | A |
5110407 | Ono et al. | May 1992 | A |
5302551 | Iranmanesh et al. | Apr 1994 | A |
5393708 | Hsia et al. | Feb 1995 | A |
5426076 | Moghadam | Jun 1995 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5587014 | Leychika et al. | Dec 1996 | A |
5622784 | Okaue et al. | Apr 1997 | A |
5635409 | Moslehi | Jun 1997 | A |
5691009 | Sandhu | Nov 1997 | A |
5707888 | Aronowitz et al. | Jan 1998 | A |
5786263 | Perera | Jul 1998 | A |
5853607 | Zhao et al. | Dec 1998 | A |
5883011 | Lin et al. | Mar 1999 | A |
5930646 | Gerung et al. | Jul 1999 | A |
5937308 | Gardner et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
6008515 | Hsia et al. | Dec 1999 | A |
6009830 | Li et al. | Jan 2000 | A |
6024044 | Law et al. | Feb 2000 | A |
6087243 | Wang | Jul 2000 | A |
6090714 | Jang et al. | Jul 2000 | A |
6090723 | Thakur et al. | Jul 2000 | A |
6140242 | Oh et al. | Oct 2000 | A |
6146970 | Witek et al. | Nov 2000 | A |
6156581 | Vaudo et al. | Dec 2000 | A |
6165834 | Agarwal et al. | Dec 2000 | A |
6180490 | Vassiliev et al. | Jan 2001 | B1 |
6207587 | Li et al. | Mar 2001 | B1 |
6287962 | Lin | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6318384 | Khan et al. | Nov 2001 | B1 |
6383954 | Wang et al. | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6406677 | Carter et al. | Jun 2002 | B1 |
6448187 | Yau et al. | Sep 2002 | B2 |
6503557 | Joret | Jan 2003 | B1 |
6506253 | Sakuma | Jan 2003 | B2 |
6508879 | Hashimoto | Jan 2003 | B1 |
6509283 | Thomas | Jan 2003 | B1 |
6524931 | Perera | Feb 2003 | B1 |
6528332 | Mahanpour et al. | Mar 2003 | B2 |
6531412 | Conti et al. | Mar 2003 | B2 |
6544900 | Raaijmakers et al. | Apr 2003 | B2 |
6548416 | Han et al. | Apr 2003 | B2 |
6548899 | Ross | Apr 2003 | B2 |
6559026 | Rossman et al. | May 2003 | B1 |
6566278 | Harvey et al. | May 2003 | B1 |
6569736 | Hsu et al. | May 2003 | B1 |
6583048 | Vincent et al. | Jun 2003 | B1 |
6589868 | Rossman | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6614181 | Harvey et al. | Sep 2003 | B1 |
6624064 | Sahin et al. | Sep 2003 | B1 |
6630413 | Todd | Oct 2003 | B2 |
6645303 | Frankel et al. | Nov 2003 | B2 |
6660391 | Rose et al. | Dec 2003 | B1 |
6676751 | Solomon et al. | Jan 2004 | B2 |
6683364 | Oh et al. | Jan 2004 | B2 |
6716770 | O'Neill et al. | Apr 2004 | B2 |
6727190 | Srinivasan et al. | Apr 2004 | B2 |
6756085 | Waldfried et al. | Jun 2004 | B2 |
6787191 | Hanahata et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6818517 | Maes | Nov 2004 | B1 |
6819886 | Runkowske et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6833052 | Li et al. | Dec 2004 | B2 |
6833322 | Anderson et al. | Dec 2004 | B2 |
6835278 | Selbrede et al. | Dec 2004 | B2 |
6858523 | Deboer et al. | Feb 2005 | B2 |
6867086 | Chen et al. | Mar 2005 | B1 |
6867152 | Hausmann et al. | Mar 2005 | B1 |
6872323 | Entley et al. | Mar 2005 | B1 |
6890403 | Cheung | May 2005 | B2 |
6900067 | Kobayashi et al. | May 2005 | B2 |
6905940 | Ingle et al. | Jun 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6958112 | Karim et al. | Oct 2005 | B2 |
7018902 | Visokay et al. | Mar 2006 | B2 |
7084076 | Park et al. | Aug 2006 | B2 |
7087536 | Nemani et al. | Aug 2006 | B2 |
7109114 | Chen et al. | Sep 2006 | B2 |
7115419 | Suzuki | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129185 | Aoyama et al. | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7192626 | Dussarrat et al. | Mar 2007 | B2 |
7205248 | Li et al. | Apr 2007 | B2 |
7220461 | Hasebe et al. | May 2007 | B2 |
7297608 | Papasouliotis et al. | Nov 2007 | B1 |
7335609 | Ingle et al. | Feb 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7419903 | Haukka et al. | Sep 2008 | B2 |
7435661 | Miller et al. | Oct 2008 | B2 |
7456116 | Ingle et al. | Nov 2008 | B2 |
7498273 | Mallick et al. | Mar 2009 | B2 |
7524735 | Gauri et al. | Apr 2009 | B1 |
7524750 | Nemani et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7745352 | Mallick et al. | Jun 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7803722 | Liang | Sep 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825044 | Mallick et al. | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7902080 | Chen et al. | Mar 2011 | B2 |
7935643 | Liang et al. | May 2011 | B2 |
7943531 | Nemani et al. | May 2011 | B2 |
7994019 | Kweskin et al. | Aug 2011 | B1 |
20010021595 | Jang et al. | Sep 2001 | A1 |
20010029114 | Vulpio et al. | Oct 2001 | A1 |
20010038919 | Berry, III et al. | Nov 2001 | A1 |
20010054387 | Frankel et al. | Dec 2001 | A1 |
20020017641 | Lu et al. | Feb 2002 | A1 |
20020048969 | Suzuki et al. | Apr 2002 | A1 |
20020081817 | Bhakta et al. | Jun 2002 | A1 |
20020090834 | Lee et al. | Jul 2002 | A1 |
20020127350 | Ishikawa et al. | Sep 2002 | A1 |
20020142585 | Mandal | Oct 2002 | A1 |
20020146879 | Fu et al. | Oct 2002 | A1 |
20020164891 | Gates et al. | Nov 2002 | A1 |
20030040199 | Agarwal | Feb 2003 | A1 |
20030059535 | Luo et al. | Mar 2003 | A1 |
20030064154 | Laxman et al. | Apr 2003 | A1 |
20030118748 | Kumagai et al. | Jun 2003 | A1 |
20030124873 | Xing et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030159656 | Tan et al. | Aug 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030199151 | Ho et al. | Oct 2003 | A1 |
20030232495 | Moghadam et al. | Dec 2003 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040020601 | Zhao et al. | Feb 2004 | A1 |
20040048492 | Ishikawa et al. | Mar 2004 | A1 |
20040065253 | Pois et al. | Apr 2004 | A1 |
20040079118 | M'Saad et al. | Apr 2004 | A1 |
20040146661 | Kapoor et al. | Jul 2004 | A1 |
20040152342 | Li et al. | Aug 2004 | A1 |
20040161899 | Luo et al. | Aug 2004 | A1 |
20040175501 | Lukas et al. | Sep 2004 | A1 |
20040180557 | Park et al. | Sep 2004 | A1 |
20040185641 | Tanabe et al. | Sep 2004 | A1 |
20040219780 | Ohuchi | Nov 2004 | A1 |
20040241342 | Karim et al. | Dec 2004 | A1 |
20050001556 | Hoffman et al. | Jan 2005 | A1 |
20050019494 | Moghadam et al. | Jan 2005 | A1 |
20050026443 | Goo et al. | Feb 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050087140 | Yuda et al. | Apr 2005 | A1 |
20050142895 | Ingle et al. | Jun 2005 | A1 |
20050153574 | Mandal | Jul 2005 | A1 |
20050181555 | Haukka et al. | Aug 2005 | A1 |
20050186731 | Derderian et al. | Aug 2005 | A1 |
20050186789 | Agarwal | Aug 2005 | A1 |
20050196533 | Hasebe et al. | Sep 2005 | A1 |
20050227499 | Park et al. | Oct 2005 | A1 |
20050250340 | Chen et al. | Nov 2005 | A1 |
20050282404 | Nguyen et al. | Dec 2005 | A1 |
20060011984 | Curie | Jan 2006 | A1 |
20060014399 | Joe | Jan 2006 | A1 |
20060030165 | Ingle et al. | Feb 2006 | A1 |
20060055004 | Gates et al. | Mar 2006 | A1 |
20060068599 | Baek et al. | Mar 2006 | A1 |
20060075966 | Chen et al. | Apr 2006 | A1 |
20060096540 | Choi | May 2006 | A1 |
20060110943 | Swerts et al. | May 2006 | A1 |
20060121394 | Chi | Jun 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060178018 | Olsen | Aug 2006 | A1 |
20060223315 | Yokota et al. | Oct 2006 | A1 |
20060228903 | McSwiney et al. | Oct 2006 | A1 |
20060281496 | Cedraeus | Dec 2006 | A1 |
20060286776 | Ranish et al. | Dec 2006 | A1 |
20070020392 | Kobrin et al. | Jan 2007 | A1 |
20070026689 | Nakata et al. | Feb 2007 | A1 |
20070049044 | Marsh | Mar 2007 | A1 |
20070077777 | Gumpher | Apr 2007 | A1 |
20070092661 | Ryuzaki et al. | Apr 2007 | A1 |
20070128864 | Ma et al. | Jun 2007 | A1 |
20070132054 | Arghavani et al. | Jun 2007 | A1 |
20070173073 | Weber | Jul 2007 | A1 |
20070181966 | Watatani et al. | Aug 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232082 | Balseanu et al. | Oct 2007 | A1 |
20070275569 | Moghadam et al. | Nov 2007 | A1 |
20070281495 | Mallick et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20080000423 | Fukiage | Jan 2008 | A1 |
20080085607 | Yu et al. | Apr 2008 | A1 |
20080102223 | Wagner et al. | May 2008 | A1 |
20080102650 | Adams et al. | May 2008 | A1 |
20080188087 | Chen et al. | Aug 2008 | A1 |
20080311754 | Chandrasekaran et al. | Dec 2008 | A1 |
20080318429 | Ozawa et al. | Dec 2008 | A1 |
20090029523 | Seo et al. | Jan 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090104755 | Mallick et al. | Apr 2009 | A1 |
20090104790 | Liang | Apr 2009 | A1 |
20090325391 | De Vusser et al. | Dec 2009 | A1 |
20100159711 | Venkataraman et al. | Jun 2010 | A1 |
20100221925 | Lee et al. | Sep 2010 | A1 |
20110014798 | Mallick et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110045676 | Park et al. | Feb 2011 | A1 |
20110111137 | Liang et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
19654737 | Jul 1997 | DE |
0892083 | Jan 1999 | EP |
1213759 | Jun 2002 | EP |
1717848 | Nov 2006 | EP |
01241826 | Sep 1989 | JP |
2007-134420 | May 2007 | JP |
10-2004-0091978 | Nov 2004 | KR |
10-2005-0003758 | Jan 2005 | KR |
10-2005-0094183 | Sep 2005 | KR |
10-2007-0063821 | Jun 2007 | KR |
WO 02077320 | Oct 2002 | WO |
WO 03066933 | Aug 2003 | WO |
WO 2005078784 | Aug 2005 | WO |
WO 2007040856 | Apr 2007 | WO |
WO 2007140376 | Dec 2007 | WO |
WO 2007140424 | Dec 2007 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT/US2011/029428 mailed Nov. 23, 2011, 8 pages. |
International Search Report and Written Opinion of PCT/US2008/065973 mailed on Aug. 26, 2008, 10 pages. |
International Search Report and Written Opinion of PCT/US2009/065181 mailed on Jun. 29, 2010., 6 pages. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part V. Diphenylamino-derivatives of Silane,” J. Chem. Soc. (A), 1969, pp. 636-638. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part VI.1 The Preparation and Properties of Disilazane,” J. Chem. Soc. (A), 1969, pp. 639-642. |
Aylett, B. J. et al., “The Preparation and Some Properties of Disilylamine-Correspondence,” Inorganic Chemistry, 1966, p. 167. |
Beach, David B., “Infrared and Mass Spectroscopic Study of the Reaction of Silyl Iodide and Ammonia. Infrared Spectrum to Silylamine,” Inorganic Chemistry, 1992, pp. 4174-4177, vol. 31 No. 20. |
Burg, Anton B. et al., “Silyl-Amino Boron Compounds,” J. Amer. Chem. Soc., Jul. 1950, pp. 3103-3107, vol. 72. |
Coltrin, M.E., et al., “Chemistry of AIGaN Particulate Formation,” National Nuclear Security Administration, Physical, Chemical, & Nano Sciences Center, Research Briefs, 2005, pp. 42-43. |
Davison, A et al., “The Raman Spectra of Manganese and Rhenium Carbonyl Hydrides and Some Related Species,” Inorganic Chemistry, Apr. 1967, pp. 845-847, vol. 6 No. 4. |
Dussarrat, C. et al., “Low Pressure Chemical Vapor Deposition of Silicon Nitride Using Mono- and Disilyiamine,” Chemical Vapor Deposition XVI and EUROCVD 14 vol. 2 Proceedings of the International Symposium, Part of the 203rd Electrochemical Society Meeting in Paris France, Apr. 27-May 2, 2003, 11 pages. |
French, P.J. et al., “Low-temperature BPSG Reflow Compatible with Surface Micromachining,” J. Micromech, Microeng. 5 (1995) 125-127. |
Gulleri, G. et al., “Deposition Temperature Determination of HDPCVD Silicon Dioxide Films,” 2005, Microelectronic Engineering, vol. 82, pp. 236-241. |
Kang, Hun, “A Study of the Nucleation and Formation of Multi-functional Nanostructures using GaN-Based Materials for Device Applications,” Georgia Institute of Technology, Doctor of Philosophy in the School of Electrical & Computer Engineering Dissertation, Dec. 2006, p. 14. |
Lee, Eun Gu, et al., “Effects of Wet Oxidation on the Electrical Properties of sub-10 nm thick silicon nitride films”, Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH. vol. 205, No. 2, Dec. 1, 1991, pp. 246-251. |
Lucovsky, G,. et al., “Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology, vol. 4, No. 3, May-Jun. 1986, pp. 681-688. |
Norman, Arlan D. et al., “Reaction of Silylphosphine with Ammonia,” Inoragnic Chemistry, 1979, pp. 1594-1597, vol. 18 No. 6. |
Sujishi, Sei et al., “Effect of Replacement of Carbon by Silicon in Trimethylamine on the Stabilities of the Trimethylboron Addition Compounds. Estimation of the Resonance Energy for Silicon-Nitrogen Partial Double Bond,” Amer. Chem. Soc., Sep. 20, 1954, pp. 4631-4636, vol. 76. |
Tsu, D. V. et al., “Silicon Nitride and Silicon Diimide Grown By Remote Plasma Enhanced Chemical Vapor Deposition”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY.; US, vol. 4, No. 3, Part 01, May 1, 1986, pp. 480-485. |
Ward, L. G. L. et al., “The Preparation and Properties of Bis-Disilanyl Sulphide and Tris-Disilanylamine,” J. Inorg. Nucl. Chem., 1961, pp. 287-293, vol. 21, Pergamon Press Ltd., Northern Ireland. |
Ward, Laird G. L., “Bromosilane, Iodosilane, and Trisilyamine,” Inorganic Syntheses, 1968, pp. 159-170, vol. 11. |
Number | Date | Country | |
---|---|---|---|
20110250731 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61322958 | Apr 2010 | US |