Pressure energized pressure vessel opening and closing device and method of providing therefor

Information

  • Patent Grant
  • 7001468
  • Patent Number
    7,001,468
  • Date Filed
    Monday, January 27, 2003
    22 years ago
  • Date Issued
    Tuesday, February 21, 2006
    18 years ago
Abstract
A closure assembly coupled to a vessel including a chamber and an access port in communication with the chamber, the closure assembly comprising: a door assembly coupled to the vessel and configured to move between an open position and a closed position, the door assembly in contact with the access port at a first location thereby sealing the chamber in the closed position, wherein pressure within the chamber applies a force to the door assembly at the first location. An actuator in moveable contact with the door assembly at a second location, the actuator configured to apply a counteracting force to the door assembly at the second location in response to pressure within the chamber to maintain the door assembly in the closed position. The actuator moves between a non-actuated and actuated position within an actuator bore, the actuator in the actuated position when a desired amount of pressure is applied to the actuator bore.
Description
FIELD OF THE INVENTION

The invention relates to a method and apparatus for processing a semiconductor wafer under supercritical conditions in general, and specifically, to a method and apparatus for sealing a pressure vessel by taking advantage of leverage and the internal pressure of the vessel itself.


BACKGROUND OF THE INVENTION

Pressure vessels that are used in processing semiconductor wafers require constant access to the interior of the vessel or chamber. This constant access to the chamber poses quite a challenge in opening and closing technology. In processing a semiconductor wafer, the chamber of the vessel must be accessed for inputting the wafer and then accessed again for removing the wafer. This process may be repeated every few minutes, possibly 24 hours a day, 7 days a week. Therefore, speed as well as normal wear and tear become key concerns in the process.


Many technologies exist for opening and closing the door to the vessel. However, many of these technologies have drawbacks, because they attempt to use brute external force to hold the door mechanism and the vessel together. For instance, the typical multibolted flange configured to seal the chamber of the vessel is not practical from a time standpoint, because the repeated opening and closing of the flange overall takes a significant amount of time. In addition, the multibolted flange is impractical from a wear and tear perspective, because the repeated opening and closing of the flange wears down the bolts and nuts over time. Further, multibolted flanges utilize an external force to secure the flange to the vessel to the seal the vessel. This requires additional equipment and powering means to accomplish the overall task of processing the wafer. Other technologies to open and close the pressurized vessel and provide a seal to the chamber are known in the art and are not discussed here further.


What is needed is a method and apparatus for sealing a pressure vessel, whereby the apparatus takes advantage of the internal pressure of the vessel itself as a means to secure and seal the vessel.


SUMMARY OF THE INVENTION

In one aspect of the invention, a closure assembly is coupled to a vessel which includes a chamber and an access port for receiving a wafer. The access port is in communication with the chamber. The closure assembly comprises a door assembly that is coupled to the vessel and is configured to move between an open position and a closed position. The door assembly is in contact with the access port at a first location, thereby sealing the chamber in the closed position. Pressure within the chamber applies a force to the door assembly at the first location. The closure assembly includes an actuator that is in moveable contact with the door assembly at a second location. The actuator is configured to apply a counteracting force to the door assembly at the second location in response to pressure within the chamber, thereby maintaining the door assembly in the closed position. The door assembly is configured to rotate about a fulcrum point when it is in the closed position, whereby the counteracting force is preferably substantially equivalent to the pressure forces applied to the door assembly. The actuator is configured within an actuator bore, whereby the actuator bore is configured within the vessel and is coupled with the chamber. The actuator is configured to move between a non-actuated position and an actuated position within the actuator bore. The actuator is in the actuated position when a desired amount of pressure is applied to the actuator bore. The actuator is configured to allow the door assembly to move from the closed position to the open position in response to a desired amount of pressure that is released from the chamber. The vessel further comprises a pressure conduit that is coupled to the actuator, wherein the pressure conduit channels the pressure to the chamber and the actuator. The closure assembly further includes a regulator valve that is positioned within the pressure port. The regulator valve collects the desired amount of pressure within the pressure conduit to actuate the actuator before allowing the pressure to enter the chamber. The door assembly further comprises a door member that covers the access port in the first location and an extendable member that is coupled to the door member. The extendable member drives the door member between the open and closed positions. The door assembly further comprises a sealing element that is coupled to the door member and is configured to provide a seal between the door member and the access port. The door assembly further comprises a lever element that is coupled to the vessel, whereby the lever element is rotatable about a fulcrum point between the open position and the closed position. The closure assembly further comprises an arm member that locks the door member into the closed position. The closure assembly alternatively comprises a guiding element that has a first feature that faces the outer surface of the vessel, whereby the guiding element is coupled to the vessel. The door member alternatively includes a second feature that is configured to correspond with the first feature of the guiding element. The first feature and the second feature alternatively form a fulcrum point when they are mated in communication with one another and the door member is covering the access port.


In another aspect of the invention, a pressure energized closure device is coupled to a vessel having a chamber that is configured to be pressurized within. The vessel has an access port which receives a wafer. The access port is configured on an outer surface of the vessel and is in communication with the chamber, whereby the closure device comprises a door assembly that is configured to move between a first position and a second position. The door assembly is configurable to form an airtight condition within the chamber in the second position. A pressure conduit is within the vessel and is coupled to the chamber, whereby the pressure conduit is configured to pressurize the chamber. The device includes an actuator that is in moveable contact with the door assembly and is coupled to the pressure conduit. The actuator is configured to maintain the door assembly in the second position in response to pressure within the pressure conduit. The actuator is configured to allow the door member to move from the second position to the first position in response to a desired amount of pressure that is released from the pressure conduit. The vessel further comprises a pressure port that is coupled to the pressure conduit, wherein the pressure port provides pressure to the pressure conduit. The pressure energized closure device further comprises a regulator valve that is positioned within the pressure port. The regulator valve collects the desired amount of pressure within the pressure conduit to actuate the actuator before allowing the pressure to enter the chamber. The door assembly further comprises a door member which covers the access port and an extendable member that is coupled to the door member, wherein the extendable member drives the door member between the open and closed positions. The door assembly further comprises a sealing element that is coupled to the door member. The sealing element is positionable between the door member and the outer surface of the vessel. The pressure energized closure device further comprises a lever element that is coupled to the vessel. The lever element is rotatable about a fulcrum point between the first position and the second position. The pressure energized closure device further comprises an arm member for locking the door member in the closed position. The pressure energized closure device alternatively comprises a guiding element that is coupled to the vessel. The guiding element has a first feature that faces the outer surface of the vessel. The door member alternatively includes a second feature that is configured to correspond with the first feature of the guiding element. The first feature and the second feature form a fulcrum point about which the door assembly rotates when mated in communication with one another when the door member is covering the access port.


In yet another aspect of the invention, a closure assembly is coupled to a chamber configured to be pressurized. The closure assembly comprises means for sealing the pressurized chamber. The means for sealing is configured to move between a first position and a second position. The pressurized chamber is sealed when the means for sealing is in the second position. In addition, the closure assembly further includes means for maintaining the means for sealing in the second position in response to the pressure generated within the pressurized chamber.


In yet another aspect of the present invention, a method of sealing a pressurized chamber comprises providing a chamber that has a pressure port and is configured to be pressurized within. The method further comprises coupling a door assembly to the chamber, whereby the door assembly is configured to move between a first position and a second position, wherein the chamber is sealed when the door assembly is in the second position. The method further comprises coupling an actuator to the pressure port, whereby the actuator is configured to be in moveable contact with the door assembly such that the pressurized chamber causes the actuator to force the door assembly in the second position.


Other features and advantages of the present invention will become apparent after reviewing the detailed description of the preferred embodiments set forth below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a perspective view of a vessel having the door assembly in an open position in accordance with the preferred embodiment of the present invention.



FIG. 2 illustrates a cross sectional schematic of the vessel with door assembly in the open position in accordance with the preferred embodiment of the present invention.



FIG. 3 illustrates a cross sectional schematic of the vessel with door assembly in the closed position in accordance with the preferred embodiment of the present invention.



FIG. 4 illustrates a perspective view of an alternative embodiment of the vessel with the door assembly in accordance with the present invention.



FIG. 5 illustrates a cross sectional schematic of the vessel having the door assembly in the open position in accordance with the alternative embodiment of the present invention.



FIG. 6 illustrates a cross sectional schematic of the vessel having the door assembly in the closed position in accordance with the alternative embodiment of the present invention.





DETAILED DESCRIPTION OF THE PRESENT INVENTION


FIG. 1 illustrates a perspective view of a vessel having a door assembly in an open position in accordance with the preferred embodiment of the present invention. As shown in FIG. 1, the door assembly 100 is coupled to the vessel 99 and is in an open position. The vessel 99 includes an inner chamber 98 (FIGS. 2 and 3) and an slot 97 for receiving the semiconductor wafer, whereby the slot 97 leads to the iuner chamber 98 (FIGS. 2 and 3) and is in communication with the chamber 98. The slot 97 has dimensions large enough to allow insertion and removal of the semiconductor wafer. However, the slot 97 has small enough dimensions, such that minimum required forces are needed to seal the slot 97 and chamber 98. In addition, the vessel includes a chamber top 94 which closes the vessel 99 and seals the chamber 98 from above. The vessel 99 is configured to be pressurized to a predetermined amount of pressure when processing a semiconductor wafer. Preferably, the vessel 99 is used to house the wafer that undergoes processing under supercritical conditions. Alternatively, the vessel is used to house the wafer that undergoes processing under non-supercritical conditions. The door assembly 100 in the preferred embodiment includes a lever mechanism 102 coupled to the vessel 99, an extendable member 104 coupled to the lever mechanism 102, and a door 106 coupled to the extendable member 104 and the lever mechanism 102. In addition, a spring clip 108 is attached to the outer surface of the vessel 99 and is configured to retain tension between the door assembly 100 and the piston 118 when the door assembly 100 is in the closed position (FIG. 3), as discussed below. Further, as shown in FIG. 1, an arm member 126 is preferably coupled to the lever mechanism 102. The arm member 126 includes an actuating cylinder 105 within, whereby the actuating cylinder 105 actuates a support pin 51 between a retracted and extended position. The support pin 51, when in the extended position, locks the door 106 in position when the door assembly 100 is in the closed position (FIG. 3), by fitting the pin 51 through the corresponding apertures 130 in the lever mechanism 102.



FIG. 2 illustrates a cross sectional schematic of the vessel with the door assembly in the open position in accordance with the preferred embodiment of the present invention. FIG. 3 illustrates a cross sectional schematic of the vessel with the door assembly in the closed position in accordance with the preferred embodiment of the present invention. As shown in FIG. 2, the vessel 99 includes a member 110 extending out from the outer surface 96 which serves as a fulcrum point 95 about which the door assembly 100 rotates, as discussed below. The lever mechanism 102 is coupled to the member 110 preferably with a pin 50, whereby the lever mechanism 102 rotates about the member 110. As shown in FIG. 2, the extendable member 104 is coupled to the lever member 112 of the lever mechanism 102 with a pin 50. The extendable member 104 is also coupled to the door 106 about a receiving member 114, in which a pin 50 secures the cylinder 104 to be in rotatable engagement with the door 106. In addition, as shown in FIG. 2, the spring clip 108 is coupled to the outer surface 96 of the vessel 99 by a pair of bolts 52, whereby the spring clip 108 is configured to come into contact with the lever mechanism 102 near the lever member 112 and retain the door assembly 100 against the piston 118 in the closed position. Further, as shown in FIG. 2, the present invention includes a pressure actuated piston 118 positioned within the pressure bore 120 in the vessel 99, whereby the piston 118 is preferably in contact with the lever mechanism 102 of the door assembly 100 in the closed position. In addition, the piston 118 is preferably in contact with the door assembly 100 in the open position although it is not necessary.


In the preferred embodiment, the door 106 is configured to rotate between a horizontal, open position (FIG. 2) and a vertical, closed position (FIG. 3). In the open position, the slot 97 of the vessel 99 is accessible, whereby a wafer (not shown) is placed within the chamber 98 of the vessel 99 through the slot 97. As stated above, the extendable member 104 is coupled to the door 106. The cylinder 104 extends from the retracted position (FIG. 2) to the extended position (FIG. 3) and thereby rotates the door 106 clockwise about the fulcrum point 95 from the open position (FIG. 2) to the closed position (FIG. 3). Once in the closed position, the door 106 covers the slot 97 and the securing aperture 128 is positioned in communication with the corresponding aperture 130 of the lever mechanism 102. In the closed position, the actuating cylinder 105 within the arm member 126 (FIG. 1) slides the support pin 51 through the securing aperture 128 of the door member 106 and the corresponding aperture 130 (FIG. 1) of the lever mechanism 102. The pin 51 through the securing aperture 128 and the corresponding lever mechanism aperture 130 locks the door 106 in relation to the lever mechanism 102, thereby forming a one rotating unit door assembly 100 which entirely rotates about the fulcrum point 95. The door 106 presses against the outer surface 96 of the vessel 99 and thereby seals the chamber 98 to allow the chamber 98 to be pressurized. It is preferred that the door 106 include an O-ring 132 (FIG. 1) that is coupled thereto, whereby the O-ring 132 provides a sufficient seal between the chamber 98 and the door 106. Alternatively, the O-ring is coupled to the outer wall 96 of the vessel 99 (not shown) and provides a seal between the chamber 98 and door 106 once the door 106 covers the slot 97.


The extendable member 104 is preferably an air cylinder; however any other type of device including, but not limited to a hydraulic cylinder, solenoid, pneumatic cylinder or ball screw, is contemplated. Preferably the extendable member 104 is powered to retract and extend by an external source (not shown). Alternatively, the extendable member 104 is powered to retract and extend by utilizing the pressure supplied from a pressure port 122. Alternatively, a check valve 124 builds up the adequate amount of pressure from the pressure conduit 116 to operate the extendable member 104, as will be discussed below.


The vessel 99, as shown in FIG. 2, preferably includes a pressure conduit 116 configured within, whereby the pressure conduit 116 is in communication with the chamber 97. In addition, the vessel 99 includes a pressure port 122 preferably in communication with the pressure conduit 116 and the chamber 97. Thus, the chamber 97 is pressurized by pressure supplied through the pressure conduit 116 from the pressure port 122. The pressure conduit 116 is also preferably in communication with the piston bore 120 and piston 118, whereby an adequate amount of pressure within the pressure conduit 116 fills the piston bore 120 and energizes the piston 118 to actuate the piston 118 from the inward, non-energized position (FIG. 2) to the outward, energized position (FIG. 3). In particular, the piston 118 is preferably in the inward position within the piston bore 120 when the door assembly 100 is in the open position, as shown in FIGS. 1 and 2. However, the piston 118 preferably actuates outward in the piston bore 120 toward the door assembly 100 when a sufficient amount of pressure in the pressure conduit 116 actuates the piston 118.


The piston 118 is configured to be in contact with the door assembly 100 in the closed position. Alternatively, the piston 118 is not in contact with the door assembly 100 in the open position (FIG. 2). The internal pressure within the vessel 99 moves the piston 118 from the inward position (FIG. 2) to the outward position (FIG. 3) in the piston bore 120, whereby the piston 118 applies a force to the door assembly 100 at the point where the piston 118 is configured to come into contact with the door assembly 100. As stated above, the chamber 98 is pressurized when the wafer is being processed and the chamber 98 is sealed by the door 106 covering the slot 97. Since the slot 97 leads into the chamber 99, the pressure within the pressurized chamber applies pressure forces to the door 106 and the door assembly 100. As stated above, the chamber 98 is preferably pressurized under supercritical conditions. Alternatively, the chamber 98 is pressurized under non-supercritical conditions. In particular, as shown in FIG. 3, the pressure forces applied to the door 106 through the slot 97 cause the door assembly 100 to rotate counterclockwise about the fulcrum point 95, thereby tending to disrupt the seal provided by the door assembly 100. To counteract these forces applied to the door 106, the piston 118 applies a countering force to the door assembly 100 at a predetermined position along the lever mechanism 102 and door assembly 100 as shown by the arrows in FIG. 3. The countering force applied by the piston 118 causes the door assembly 100 to rotate clockwise about the fulcrum point 95 and secures the door assembly 100 against the outer surface 96 of the wafer 98 in the closed position, thereby keeping the chamber 98 sealed. Preferably, the piston 118 applies a force on the one rotating unit door assembly 100 which is substantially equivalent to the pressure in the piston bore 120. Alternatively, the force applied by the piston 118 is larger than the pressure within the chamber 98. In addition, the spring clip 108 retains the door assembly 100 and presses the door assembly 100 against the piston 118 such that the force from the piston 118 keeps the door assembly 100 in the closed position. In effect, the door assembly 100 securely seals the chamber 98 without using any additional external forces.


The predetermined position along the door assembly 100 depends on a variety of factors, such as the amount of pressure in the pressure conduit 116 and piston bore 120 and size of the piston 118 itself. The amount of force applied by the piston 118 to the door assembly 100 depends on several variables including, but not limited to, the size of the piston 118, the distance between the fulcrum point 95 and where the piston 118 touches the door assembly 100 as well as the amount of pressure applied to the piston 118 in the piston bore 120.


The operation of the present invention will now be discussed. The operation of the preferred embodiment of the present invention includes inserting a wafer to be processed through the slot 97 of the chamber 98. Once the wafer is placed within the chamber 98, the extendable member 104 extends upwards, thereby rotating the door 106 clockwise from the horizontal, open position, as shown in FIG. 2, to the vertical, closed position, as shown in FIG. 3. As stated above, the cylinder 104 is preferably powered by external means. Alternatively, the cylinder 104 extends upwards by applying pressure from the pressure port 122, regulated or unregulated, directly to the cylinder 104. The door 106, once rotated to the closed position, comes into contact with the outer surface 96 of the vessel 99 and covers the slot 97. The actuating cylinder 105 then slides the support pin 51 through the securing aperture 128 in the door 106 and the corresponding locking mechanism aperture 130. The support pin 51 locks the door 160 in the vertical, closed position and effectively causes the door 106, lever mechanism 102 and cylinder 104 to become one rotating unit which then entirely rotates about the fulcrum point 95.


At this point, the chamber 98 is closed, because the door 106 covers the slot 97. The chamber 98 is pressurized by applying pressure though the pressure port 122. The pressure is introduced into the vessel 99 through the pressure port 122 and the pressure conduit 116. The pressure preferably fills up the chamber 98 to the predetermined processing pressure. Once the chamber 98 is pressurized, pressure forces are exerted at the door 106 through the slot 97 causing the door assembly 100 to move counterclockwise and disrupt the seal in the chamber 98. Meanwhile, the pressure within the chamber 98 flows through the pressure conduit 116, whereby the pressure fills the piston bore 120 and causes the piston 118 to move outward toward the lever mechanism 102. The outward movement of the piston 118 pressing against the door assembly 102 causes the entire door assembly 100 to rotate clockwise (FIG. 3) about the fulcrum point 95 and maintain the door 106 against the outer surface 96 of the vessel 99. Alternatively, a check valve 124 is configured within the pressure conduit 116 and placed between the chamber 98 and the piston 118 and piston bore 120. The check valve 124 allows sufficient pressure to build up between the pressure port 122 and the valve 124 before the pressure enters the chamber 98. This allows sufficient amount of pressure to actuate the piston 118 and secure the door assembly 100 in the closed position before the chamber 98 is pressurized and exerts opposing pressure forces on the door 106. In addition, the spring clip 108 retains the door assembly 100 and presses the door assembly 100 against the piston 118 such that the force from the piston 118 keeps the door assembly 100 in the closed position. In effect, the door assembly 100 securely seals the chamber 98 without using any additional external forces.


After the wafer has been processed and is ready to be removed, the pressure port 122 is opened to allow the pressure within the chamber 98 and conduit 116 to exit the vessel 99. Preferably, the pressure exits the chamber 98 out through an additional port in the chamber 98 (not shown). As the pressure exits the chamber 98, the pressure exerted on the door 106 through the slot 97 decreases. In addition, as the pressure is released from the vessel 99, the amount of pressure in the piston bore 120 decreases. This decrease in pressure in the piston bore 120 allows the door assembly 100 to move the piston 118 gradually inward back to the inward position. This movement of the piston 118 and the tension force from the spring clip 108 urges the door assembly 100 to rotate counterclockwise about the fulcrum point 95 back to the open position. Preferably, the pressure is gradually released from the vessel and the actuating cylinder 105 retracts the support pin 51 and unlocks the door 106 from the closed position, thereby allowing the door 106 to freely rotate about the fulcrum point 95. Once the door 106 is unlocked, the door assembly 100 is no longer one rotating unit and the extendable member 104 retracts to allow the door assembly 100 to rotate counter clockwise about the fulcrum 95 back to the open position and allowing access the slot 97.



FIG. 4 illustrates an alternative embodiment of the vessel with door assembly in accordance with the present invention. As shown in FIG. 4, the door assembly 200 is coupled to the vessel 99 and is in an open position. The vessel 99 includes an inner chamber 98 (FIGS. 5 and 6) and a slot 97 for receiving the semiconductor wafer, whereby the slot 97 leads to the inner chamber 98 (FIGS. 5 and 6). In addition, the vessel includes a chamber top 94 which closes the vessel 99 and seals the chamber 98 from above. As shown in FIG. 4, the door assembly 200 includes a door 202, an extendable member 204 coupled to the door 202 and the vessel 99, and a guide member 206 coupled to the vessel 99 and the door 202.



FIG. 5 illustrates a cross sectional schematic of the vessel 99 having the door assembly 200 in the open position in accordance with the alternative embodiment of the present invention. As shown in FIG. 5, a piston 208 is configured within the piston bore 210 and is coupled to the pressure conduit 212 and pressure port 214. The piston 208 operates in regard to pressure filling the piston bore 220 in the same manner as discussed above in the preferred embodiment. The guide member 208 includes a guide slot 222, shown in FIGS. 4–6, on each side which vertically runs along the side walls of the guide member 208. In addition, guide pins 224 in the side of the door 202 to engage the guide slots 222 in the guide member 208 and keep the door 202 in position as the door 202 moves between the open and closed positions (FIG. 6).


As shown in FIG. 5, the guide member 206 extends outward from the outer surface 96 of the vessel 99 and has an inner contoured surface 216. In addition, as shown in FIG. 5, the door 202 has a backside, outer contoured surface 218 which is configured to match and engage with the inner contoured surface 216 of the guide member 206 when the door 202 is in the closed position (FIG. 6). Specifically, the backside surface of the door 202 includes a radiused feature which is configured to match the internal radiused feature in the inner surface 216 of the guide member 208 to form the fulcrum point 216.



FIG. 6 illustrates a cross sectional schematic of the vessel 99 having the door assembly 200 in the closed position in accordance with the alternative embodiment of the present invention. As shown in FIG. 6, the outer surface 218 of the door 202 has a radius contour and slides along the vertical section 215 of the guide member's 208 inner surface when moving between the open and closed positions. The guide pins 224 are engaged within the guide slot 222 and ensure that the door 202 appropriately moves vertically up the outer surface 96 of the vessel 99. Once the radius portion of the outer surface 218 reaches the radius portion of the inner surface 216, the two surfaces mate with each other and form the fulcrum point 220 therebetween. At the point where the two surfaces mate, the door 202 is positioned to cover the slot 97 and thereby seal the chamber 98. It is about the fulcrum point 220 that the door assembly 200 rotates when the pressure from the chamber 98 is exerted through the slot 97 upon the door 202. Similarly, it is about the fulcrum point 220 which the door assembly 200 rotates when the piston 208 applies the counteracting force to the door assembly 200. The guide member 206 as well as the extendable member 204 retain the door assembly 200 and presses the door assembly 200 against the piston 208 such that the force from the piston 208 keeps the door assembly 200 in the closed position. In effect, the door assembly 200 securely seals the chamber 98 without using any additional external forces. It should be noted that the inner surface 216 and the outer contoured surface 218 alternatively has any other shape as long as both surfaces together form one or more fulcrum points about which the door assembly 200 rotates.


The operation of the alternative embodiment of the present invention will now be discussed. The operation of the alternative embodiment of the present invention includes inserting a wafer to be processed into the chamber 98 through the slot 97. Once the wafer is placed within the chamber 98, the extendable member 204 extends upwards, thereby moving the door 202 vertically from the open position, as shown ill FIG. 5, to the closed position, as shown in FIG. 6. As stated above, the extendable member 204 extends upwards by externally powering the cylinder 204. Alternatively, the extendable member 204 extends upwards by applying regulated or unregulated pressure from the pressure port 214 directly to the cylinder 204. As stated above and shown in the figures, the outer surface 218 of the door 202 has a radius contour and slides along the vertical section 215 of the guide member's 208 inner surface. Thus, the guide pins 224 engaged within the slot 222 guide the door 202 vertically upward along the inner vertical surface 215 of the guide member 206. Once the radius portion of the outer surface 218 reaches the radius portion 216 of the inner surface 216, the outer surface 218 engages the receiving portion 216 of the inner surface and the two surfaces mate with each other and form the fulcrum point 220, as shown in FIG. 6.


Once the inner surface 216 and the outer surface 218 are engaged, the chamber 98 is sealed and the door 202 covers the slot 97. The chamber 98 is configured to be pressurized by applying pressure though the pressure port 122, whereby pressure fills up the chamber 98 to the predetermined processing pressure. As stated above the pressure is under supercritical conditions. Alternatively, the pressure is under non-supercritical conditions. Once the chamber 98 is pressurized, pressure forces are exerted on the door through the slot 97 and cause the door 202 to move counterclockwise about the fulcrum point 220 (FIG. 6). Meanwhile, the pressure within the chamber 98 flows through the pressure conduit 212, whereby the pressure fills the piston bore 210 and causes the piston 208 to move outward toward the door 202. The outward movement of the piston 208 pressing against the door assembly 200 causes the entire door assembly 200 to rotate clockwise (FIGS. 5 and 6) about the fulcrum point 220 and counteract the forces applied through the slot 97. It is preferred that the counteracting force is substantially equivalent to the pressure forces applied through the slot 97. Alternatively, the counteracting force is substantially larger than the pressure forces applied through the slot 97. The counteracting force from the piston secures the door 202 against the outer surface 96 of the vessel 99 and maintains the seal in the chamber 98. Alternatively, a check valve 226 is configured within the pressure conduit 212 and placed between the chamber 98 and the piston 208 and piston bore 210. The check valve 226 allows sufficient pressure to build up between the pressure port 214 and the valve 226 before the pressure enters the chamber 98. This allows a sufficient amount of pressure to actuate the piston 208 and secure the door assembly 200 in the closed position before the chamber 98 is pressurized and exerts pressure forces through the slot 97 on the door 202. The guide member 206 as well as the extendable member 204 retain the door assembly 200 and presses the door assembly 200 against the piston 208 such that the force from the piston 208 keeps the door assembly 200 in the closed position. In effect, the door assembly 200 securely seals the chamber 98 without using any additional external forces.


After the wafer has been processed and is ready to be removed, a pressure port (not shown) is opened to allow the pressure within the chamber 98 and conduit 212 to exit the vessel 99. In addition, as pressure is released from the vessel 99, the amount of pressure in the piston bore 210 decreases and causes the piston 208 to gradually move back to the retracted position in the bore 210. This movement of the piston 208 and the restraining force from the guide member 206 and cylinder 206 urges the door assembly 200 to rotate counterclockwise about the fulcrum point 220 back to the open position. The counterclockwise rotation of the door assembly 200 and the slight offset between the inner surface 216 and the outer surface 218 causes makes the door 200 move partially rearward such that the radius features of the inner surface 216 and outer surface 218 disengage each other. In addition, the angle and position of slot 222 is configured such that pins 224 are predisposed to rotate the door 202 slightly rearward, thereby creating a gap between the sealing face of the door 202 and the chamber 99. The retraction of the extendable member 204 aids in disengagement and causes the door 202 to be drawn vertically downward back to the open position (FIG. 5).


Individual designs of the door assembly discussed herein are for exemplary purposes. It should be noted that other designs of the door assembly and other components for sealing the door to the vessel and moving the door between the open and closed positions are contemplated within the present invention. It should be noted that any variations of the door assembly is contemplated within the present invention so long as the design includes an actuator utilizing the pressure within the vessel to secure the door and door assembly to the vessel and seal the chamber about one or more fulcrum points. The plumbing of port 122 (FIG. 2), 214 (FIG. 5) to the piston 118 (FIG. 2), 208 (FIG. 5), chamber 98 and regulator device 124 (FIG. 2), 226 (FIG. 5) is preferably accomplished individually and externally to the pressure vessel 99. Alternatively, the plumbing of the port is accomplished internally. It should be noted that although fluid may be commonly shared between the piston 118 and the chamber area 98, commonality of fluid is not required. Also, the present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the present invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modification s may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.

Claims
  • 1. A closure assembly coupled to a vessel including a chamber and an access port for receiving a wafer, the access port in communication with the chamber, the closure assembly comprising: a. a door assembly coupled to the vessel and configured to move between an open position and a closed position, wherein the door assembly further comprises a lever element coupled to the vessel, the lever element rotatable about a fulcrum point between the open position and the closed position, the door assembly in contact with the access port at a first location, thereby sealing the chamber in the closed position, wherein pressure within the chamber applies a force to the door assembly at the first location; andb. an actuator in moveable contact with the door assembly at a second location, the actuator configured to apply a counteracting force to the door assembly at the second location in response to pressure within the chamber and thereby maintaining the door assembly in the closed position.
  • 2. The closure assembly according to claim 1 wherein the door assembly is configured to rotate about a fulcrum point when in the closed position, the counteracting force is substantially equivalent to the force applied to the door assembly.
  • 3. The closure assembly according to claim 1 wherein the actuator is configured to allow the door assembly to move from the closed position to the open position in response to a desired amount of pressure released from the chamber.
  • 4. The closure assembly according to claim 3 wherein the vessel further comprises a pressure conduit coupled to the actuator, wherein the pressure conduit channels the pressure to the chamber and the actuator.
  • 5. The closure assembly according to claim 4 further comprising a regulator valve positioned within the pressure conduit, wherein the regulator valve collects the desired amount of pressure within the pressure conduit to actuate the actuator before allowing the pressure to enter the chamber.
  • 6. The closure assembly according to claim 1 wherein the door assembly further comprises: a. a door member for covering the access port in the first location; andb. an extendable member coupled to the door member, wherein the extendable member drives the door member between the open and closed positions.
  • 7. The closure assembly according to claim 6 wherein the door assembly further comprises a sealing element coupled to the door member and configured to provide a seal between the door member and the access port.
  • 8. The closure assembly according to claim 6 further comprising an arm member for locking the door member into the closed position.
  • 9. The closure assembly according to claim 6 further comprising a guiding element having a first feature facing the outer surface of the vessel, the guiding element coupled to the vessel.
  • 10. The closure assembly according to claim 9 wherein the door member includes a second feature configured to correspond with the first feature of the guiding element, wherein the first feature and the second feature form a fulcrum point when mated in communication with one another and the door member is covering the access port.
  • 11. A pressure energized closure device coupled to a vessel having a chamber configured to be pressurized within, the vessel having an access port to receive a wafer, the access port configured on an outer surface of the vessel and in communication with the chamber, the closure device comprising: a. a door assembly configured to move between a first position and a second position, the door assembly configurable to form an airtight condition within the chamber in the second position;b. a pressure conduit within the vessel and coupled to the chamber, the pressure conduit configured to pressurize the chamber;c. an actuator in moveable contact with the door assembly and coupled to the pressure conduit, the actuator configured to maintain the door assembly in the second position in response to pressure within the pressure conduit; and,d. a lever element coupled to the vessel, the lever element rotatably about a fulcrum point between the first position and the second position.
  • 12. The pressure energized closure device according to claim 11 wherein the actuator is configured to allow the door member to move from the second position to the first position in response to a desired amount of pressure being released from the pressure conduit.
  • 13. The pressure energized closure device according to claim 12 wherein the vessel further comprises a pressure port coupled to the pressure conduit, wherein the pressure port provides pressure to the pressure conduit.
  • 14. The pressure energized closure device according to claim 13 further comprising a regulator valve positioned within the pressure conduit, wherein the regulator valve collects the desired amount of pressure within the pressure conduit to actuate the actuator before allowing the pressure to enter the chamber.
  • 15. The pressure energized closure device according to claim 11 wherein the door assembly further comprises: a. a door member for covering the access port; andb. an extendable member coupled to the door member, wherein the extendable member drives the door member between the open and closed positions.
  • 16. The pressure energized closure device according to claim 15 wherein the door assembly further comprises a sealing element coupled to the door member, the sealing element positionable between the door member and the outer surface of the vessel.
  • 17. The pressure energized closure device according to claim 15 further comprising an arm member for locking the door member in the closed position.
  • 18. The pressure energized closure device according to claim 15 further comprising a guiding element coupled to the vessel, the guiding element having a first feature facing the outer surface of the vessel.
  • 19. The pressure energized closure device according to claim 18 wherein the door member includes a second feature configured correspond with the first feature of the guiding element, wherein the first feature and the second feature form a fulcrum point when mated in communication with one another and the door member is covering the access port.
  • 20. A closure assembly coupled to a vessel including a chamber and an access port for receiving a wafer, the access port in communication with the chamber, the closure assembly comprising: a. a door assembly coupled to the vessel and configured to move between an open position and a closed position, the door assembly in contact with the access port at a first location, thereby sealing the chamber in the closed position, wherein pressure within the chamber applies a force to the door assembly at the first location; andb. an actuator in moveable contact with the door assembly at a second location, the actuator configured to apply a counteracting force to the door assembly at the second location in response to pressure within the chamber and thereby maintaining the door assembly in the closed position, wherein the actuator is configured within an actuator bore, the actuator bore configured within the vessel and coupled with the chamber, the actuator configured to move between a non-actuated position and an actuated position within the actuator bore, the actuator in the actuated position when a desired amount of pressure is applied to the actuator bore.
  • 21. The closure assembly according to claim 20, wherein the actuator is configured to allow the door assembly to move from the closed position to the open position in response to a desired amount of pressure released from the chamber.
  • 22. The closure assembly according to claim 21, wherein the vessel further comprises a pressure conduit coupled to the actuator, wherein the pressure conduit channels the pressure to the chamber and the actuator.
  • 23. The closure assembly according to claim 22, further comprising a regulator valve positioned within the pressure conduit, wherein the regulator valve collects the desired amount of pressure within the pressure conduit to actuate the actuator before allowing the pressure to enter the chamber.
  • 24. The closure assembly according to claim 20, wherein the door assembly further comprises: a. a door member for covering the access port in the first location; andb. an extendable member coupled to the door member, wherein the extendable member drives the door member between the open and closed positions.
RELATED APPLICATION

This patent application claims priority under 35 U.S.C. 119 (e) of the co-pending U.S. Provisional patent application Ser. No. 60/357,763 filed Feb. 15, 2002, and entitled “PRESSURE ENERGIZED PRESSURE VESSEL CLOSURE”. The Provisional patent application Ser. No. 60/357,763 filed Feb. 15, 2002, and entitled “PRESSURE ENERGIZED PRESSURE VESSEL CLOSURE” is also hereby incorporated by reference.

US Referenced Citations (202)
Number Name Date Kind
2617719 Stewart Nov 1952 A
2625886 Browne Jan 1953 A
2873597 V. T. Fahringer Feb 1959 A
3521765 R. D. Kauffman Jul 1970 A
3623627 Bolton Nov 1971 A
3689025 Kiser Sep 1972 A
3744660 Gaines et al. Jul 1973 A
3968885 Hassan et al. Jul 1976 A
4029517 Rand Jun 1977 A
4091643 Zucchini May 1978 A
4245154 Uehara et al. Jan 1981 A
4341592 Shortes et al. Jul 1982 A
4355937 Mack et al. Oct 1982 A
4367140 Wilson Jan 1983 A
4391511 Akiyama et al. Jul 1983 A
4406596 Budde Sep 1983 A
4422651 Platts Dec 1983 A
4426358 Johansson Jan 1984 A
4474199 Blaudszun Oct 1984 A
4522788 Sitek et al. Jun 1985 A
4549467 Wilden et al. Oct 1985 A
4574184 Wolf et al. Mar 1986 A
4592306 Gallego Jun 1986 A
4601181 Privat Jul 1986 A
4626509 Lyman Dec 1986 A
4670126 Messer et al. Jun 1987 A
4682937 Credle, Jr. Jul 1987 A
4693777 Hazano et al. Sep 1987 A
4749440 Blackwood et al. Jun 1988 A
4778356 Hicks Oct 1988 A
4788043 Kagiyama et al. Nov 1988 A
4789077 Noe Dec 1988 A
4823976 White, III et al. Apr 1989 A
4825808 Takahashi et al. May 1989 A
4827867 Takei et al. May 1989 A
4838476 Rahn Jun 1989 A
4865061 Fowler et al. Sep 1989 A
4879431 Bertoncini Nov 1989 A
4917556 Stark et al. Apr 1990 A
4924892 Kiba et al. May 1990 A
4951601 Maydan et al. Aug 1990 A
4960140 Ishijima et al. Oct 1990 A
4983223 Gessner Jan 1991 A
5011542 Weil Apr 1991 A
5044871 Davis et al. Sep 1991 A
5062770 Story et al. Nov 1991 A
5071485 Matthews et al. Dec 1991 A
5105556 Kurokawa et al. Apr 1992 A
5143103 Basso et al. Sep 1992 A
5167716 Boitnott et al. Dec 1992 A
5169296 Wilden Dec 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5185296 Morita et al. Feb 1993 A
5186594 Toshima et al. Feb 1993 A
5186718 Tepman et al. Feb 1993 A
5188515 Horn Feb 1993 A
5190373 Dickson et al. Mar 1993 A
5191993 Wanger et al. Mar 1993 A
5193560 Tanaka et al. Mar 1993 A
5195878 Sahiavo et al. Mar 1993 A
5213485 Wilden May 1993 A
5217043 Novakovi Jun 1993 A
5221019 Pechacek Jun 1993 A
5222876 Budde Jun 1993 A
5224504 Thompson et al. Jul 1993 A
5236669 Simmons et al. Aug 1993 A
5237824 Pawliszyn Aug 1993 A
5240390 Kvinge et al. Aug 1993 A
5243821 Schuck et al. Sep 1993 A
5246500 Samata et al. Sep 1993 A
5251776 Morgan, Jr. et al. Oct 1993 A
5267455 Dewees et al. Dec 1993 A
5280693 Heudecker Jan 1994 A
5285352 Pastore et al. Feb 1994 A
5288333 Tanaka et al. Feb 1994 A
5313965 Palen May 1994 A
5314574 Takahashi May 1994 A
5328722 Ghanayem et al. Jul 1994 A
5337446 Smith et al. Aug 1994 A
5339844 Stanford, Jr. et al. Aug 1994 A
5355901 Mielnik et al. Oct 1994 A
5368171 Jackson Nov 1994 A
5370741 Bergman Dec 1994 A
5374829 Sakamoto et al. Dec 1994 A
5377705 Smith, Jr. et al. Jan 1995 A
5401322 Marshall Mar 1995 A
5404894 Shiraiwa Apr 1995 A
5412958 Iliff et al. May 1995 A
5417768 Smith, Jr. et al. May 1995 A
5433334 Reneau Jul 1995 A
5447294 Sakata et al. Sep 1995 A
5474410 Ozawa et al. Dec 1995 A
5503176 Dunmire et al. Apr 1996 A
5505219 Lansberry et al. Apr 1996 A
5509431 Smith, Jr. et al. Apr 1996 A
5526834 Mielnik et al. Jun 1996 A
5533538 Marshall Jul 1996 A
5571330 Kyogoku Nov 1996 A
5589224 Tepman et al. Dec 1996 A
5621982 Yamashita et al. Apr 1997 A
5629918 Ho et al. May 1997 A
5644855 McDermott et al. Jul 1997 A
5649809 Stapelfeldt Jul 1997 A
5656097 Olesen et al. Aug 1997 A
5669251 Townsend et al. Sep 1997 A
5672204 Habuka Sep 1997 A
5679169 Gonzales et al. Oct 1997 A
5702228 Tamai et al. Dec 1997 A
5706319 Holtz Jan 1998 A
5746008 Yamashita et al. May 1998 A
5769588 Toshima et al. Jun 1998 A
5797719 James et al. Aug 1998 A
5798126 Fijikawa et al. Aug 1998 A
5817178 Mita et al. Oct 1998 A
5879459 Gadgil et al. Mar 1999 A
5881577 Sauer et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5888050 Fitzgerald et al. Mar 1999 A
5898727 Fujikawa et al. Apr 1999 A
5900107 Murphy et al. May 1999 A
5904737 Preston et al. May 1999 A
5906866 Webb May 1999 A
5928389 Jevtic Jul 1999 A
5932100 Yager et al. Aug 1999 A
5934856 Asakawa et al. Aug 1999 A
5934991 Rush Aug 1999 A
5975492 Brenes Nov 1999 A
5979306 Fujikawa et al. Nov 1999 A
5980648 Adler Nov 1999 A
5981399 Kawamura et al. Nov 1999 A
5989342 Ikeda et al. Nov 1999 A
6005226 Aschner et al. Dec 1999 A
6017820 Ting et al. Jan 2000 A
6021791 Dryer et al. Feb 2000 A
6029371 Kamikawa et al. Feb 2000 A
6035871 Eui-Yeol Mar 2000 A
6037277 Masakara et al. Mar 2000 A
6048494 Annapragada Apr 2000 A
6053348 Morch Apr 2000 A
6056008 Adams et al. May 2000 A
6062853 Shimazu et al. May 2000 A
6067728 Farmer et al. May 2000 A
6077053 Fujikawa et al. Jun 2000 A
6077321 Adachi et al. Jun 2000 A
6082150 Stucker Jul 2000 A
6085935 Malchow et al. Jul 2000 A
6089377 Shimazu Jul 2000 A
6097015 McCullough et al. Aug 2000 A
6109296 Austin Aug 2000 A
6122566 Nguyen et al. Sep 2000 A
6128830 Bettcher et al. Oct 2000 A
6145519 Konishi et al. Nov 2000 A
6159295 Maskara et al. Dec 2000 A
6164297 Kamikawa Dec 2000 A
6186722 Shirai Feb 2001 B1
6203582 Berner et al. Mar 2001 B1
6216364 Tanaka et al. Apr 2001 B1
6228563 Starov et al. May 2001 B1
6235634 White et al. May 2001 B1
6239038 Wen May 2001 B1
6241825 Wytman Jun 2001 B1
6244121 Hunter Jun 2001 B1
6251250 Keigler Jun 2001 B1
6277753 Mullee et al. Aug 2001 B1
6286231 Bergman et al. Sep 2001 B1
6305677 Lenz Oct 2001 B1
6334266 Moritz et al. Jan 2002 B1
6344174 Miller et al. Feb 2002 B1
6355072 Racette et al. Mar 2002 B1
6388317 Reese May 2002 B1
6389677 Lenz May 2002 B1
6406782 Johnson et al. Jun 2002 B1
6418956 Bloom Jul 2002 B1
6436824 Chooi et al. Aug 2002 B1
6454519 Toshima et al. Sep 2002 B1
6454945 Weigl et al. Sep 2002 B1
6464790 Shertinsky et al. Oct 2002 B1
6465403 Skee Oct 2002 B1
6508259 Tseronis et al. Jan 2003 B1
6509141 Mullee Jan 2003 B1
6521466 Castrucci Feb 2003 B1
6541278 Morita et al. Apr 2003 B1
6546946 Dunmire Apr 2003 B1
6550484 Gopinath et al. Apr 2003 B1
6558475 Jur et al. May 2003 B1
6561213 Wang et al. May 2003 B1
6561220 McCullough et al. May 2003 B1
6561481 Filonczuk May 2003 B1
6561767 Berger et al. May 2003 B1
6564826 Shen May 2003 B1
6635565 Wu et al. Oct 2003 B1
6641678 DeYoung et al. Nov 2003 B1
6722642 Sutton et al. Apr 2004 B1
6921456 Biberger et al. Jul 2005 B1
20010050096 Costantini et al. Dec 2001 A1
20020001929 Biberger et al. Jan 2002 A1
20020046707 Biberger et al. Apr 2002 A1
20020189543 Biberger et al. Dec 2002 A1
20030205510 Jackson Nov 2003 A1
20040020518 DeYoung et al. Feb 2004 A1
20040157463 Jones Aug 2004 A1
20050014370 Jones Jan 2005 A1
Foreign Referenced Citations (47)
Number Date Country
SE 251213 Aug 1948 CH
1399790 Feb 2003 CN
36 08 783 Sep 1987 DE
198 60 084 Jul 2000 DE
0 244 951 Nov 1987 EP
0 272 141 Jun 1988 EP
0 453 867 Oct 1991 EP
0 572 913 Dec 1993 EP
0 587 168 Mar 1994 EP
0 679 753 Nov 1995 EP
0 903 775 Mar 1999 EP
1.499.491 Sep 1967 FR
2 003 975 Mar 1979 GB
2 193 482 Feb 1988 GB
56-142629 Nov 1981 JP
60-238479 Nov 1985 JP
60-246635 Dec 1985 JP
61-231166 Oct 1986 JP
62-111442 May 1987 JP
62-125619 Jun 1987 JP
63-256326 Oct 1988 JP
63-303059 Dec 1988 JP
2-148841 Jun 1990 JP
2-209729 Aug 1990 JP
4-2484648- Oct 1992 JP
40 5283511 Oct 1993 JP
8-186140 Jul 1996 JP
8-206485 Aug 1996 JP
10-144757 May 1998 JP
10-335408 Dec 1998 JP
11-200035 Jul 1999 JP
2000106358 Apr 2000 JP
2001-77074 Mar 2001 JP
WO 8707309 Dec 1987 WO
WO 9112629 Aug 1991 WO
WO 9918603 Apr 1999 WO
WO 0036635 Jun 2000 WO
WO 0110733 Feb 2001 WO
WO 0133615 May 2001 WO
WO 0155628 Aug 2001 WO
WO 0168279 Sep 2001 WO
WO 0174538 Oct 2001 WO
WO 0178911 Oct 2001 WO
WO 0185391 Nov 2001 WO
WO 0194782 Dec 2001 WO
WO 0216051 Feb 2002 WO
WO 03030219 Oct 2003 WO
Provisional Applications (1)
Number Date Country
60357763 Feb 2002 US