This invention relates generally to printed wiring board (PWB) manufacturing and, more specifically, relates to PWB manufacturing without traces on surface layers enabling PWBs to be fabricated without solder resist.
The trend in electronic equipment is towards greater compactness of design and lighter weight, combined with higher speed and digitization, leading to more advanced functions. The semiconductors and PWBs that make up this type of electronic equipment are therefore required to support ever-higher speeds and mounting densities.
The PWB is the foundation for virtually all electronics. The PWB is the platform upon which electronic components such as integrated circuit chips and discrete passive components are mounted. The PWB, also referred to as a printed circuit board (PCB), provides the physical structure for mounting and holding electronic components as well as the electrical interconnection between components. A PWB includes a non-conducting substrate (typically fiberglass with epoxy resin) upon which a conductive pattern or circuitry is formed. Copper is the most prevalent conductor, although nickel, silver, tin, tin-lead, and gold may also be used as etch-resists or top-level metal. There are three types of PWBs: single-sided, double-sided, and multilayer. Single-sided PWBs have a conductive pattern on one side only, double-sided boards have conductive patterns on both sides (top and bottom), and multilayer boards contain two or more double-sided PWBs that are bonded together. The conductive pathways or traces and other features are connected by plated through-holes, which are also used to mount and electrically connect components. PWBs may be rigid, flexible or flex-rigid.
A variety of processes have been used for forming the conductive pathways on the non-conductive substrate of PWBs. For example, a metal film such as copper can be applied to a non-conductive substrate such as one made of fiberglass, epoxy, and/or polyamide. In a common process, a sheet of the conductive metal is laminated to the non-conductive substrate and a photoresist is then coated on the metal sheet. The resulting PWB is then exposed to a pattern of light employing a light mask to reproduce the metal pathway pattern desired. This exposure is followed by photoresist development and then metal etching in the areas unprotected by the photoresist, in order to produce the desired circuit pattern. In the alternative, an etch resist can be directly printed such as by silk screen on the metal laminate sheet followed by curing and then metal etching. This multi-step process is time-consuming and relatively expensive.
Solder resist or solder mask is a permanent coating of a resin formulation, generally green in color, which encapsulates and protects all of the surface features of a PWB except the specific areas where it is required to form solder joints. The solder resist is applied to prevent wetting by molten solder of only desired areas during assembly, and also provides electrical insulation and protection against oxidation and corrosion.
As electronics packages continue to become smaller, the input/output pitch of these packages becomes denser. This causes challenges for applying solder resist during PWB manufacturing. As migration to finer-pitch chip-scale packages increases, such as 0.5 mm or finer, the application of PWB solder resist plays a larger role in the reliability of the assemblies. The process tolerances for applying solder resist to PWBs during manufacturing are not sufficient to meet the challenge caused by high density input/output electronic packages.
Currently this challenge is solved by modifying line widths on PWBs between the input/output pads, or by modifying the input/output pad shapes. However, these solutions cause reliability problems. There is therefore a need for a more accurate process for PWB manufacturing.
The foregoing and other problems are overcome, and other advantages are realized, in accordance with the presently preferred embodiments of these teachings.
An embodiment of the present invention is the simplification of PWB manufacturing. This approach is enabled by the implementation of vertical high-density interconnection (VHDI) technology.
In the presently preferred non-limiting embodiment of this invention there are no signal lines on the surface layers of a PWB. Additionally, no solder resist printing is required on the PWB during manufacture. This results in a PWB without solder resist and without any signal lines on the surface layers. The surface layers contain only component solder lands.
A non-limiting embodiment of this invention provides a method for fabricating a PWB. The method for fabricating the PWB includes providing a dielectric substrate which includes multiple dielectric layers, the dielectric substrate having first and second surface layers, and forming on at least one of the surfaces a plurality of circuit attachment pads, where all interconnections of the PWB are located within the dielectric substrate, beneath the surface layers, to electrically interconnect the circuit attachment pads.
A further non-limiting embodiment of this invention relates to a PWB that is manufactured in accordance with the method for fabricating the PWB and a device having a PWB manufactured in accordance with the method for fabricating the PWB.
Advantages of this approach include a simplified PWB manufacturing process which results in decreased manufacturing costs, shorter delivery times, improved reliability and better yield due to a simplified manufacturing process and ensured quality control.
Additional advantages to this approach include higher packaging density on applications which results in the ability to miniaturize applications, improved electrical performance due to shorter signal lines in miniaturized products, as well as improved electrical performance and the possibility to employ higher clock frequencies.
The foregoing and other aspects of these teachings are made more evident in the following Detailed Description of the Preferred Embodiments, when read in conjunction with the attached Drawing Figures, wherein:
The purpose of solder resist 105 in conventional PWBs is to keep solder paste on a solder joint area during the soldering process of the various components. Solder paste is spread equally among visible metal areas. If any solder resist 105 is missing from the PWB, solder paste tends to spread among traces located on the surface layers causing unreliable interconnections.
The interconnections between solder joint pads 210 are accommodated instead on the inner layers of the PWB 200. Connections to the inner layers are preferably made with vias, such as micro vias. Micro vias are generally defined as a formed blind and buried via that measure less than or equal to 0.15 mm, having pad diameters that measure less than or equal to 0.35 mm. Laser drilling is the most common technique used to form micro vias. Laser drilling employs a focused laser beam to form the hole. Conductive ink may also be used in micro via formation. Micro vias can also be formed mechanically, using piercing, punching, abrasive blasting, or simple drilling. Each process produces different micro via hole shapes.
A method according to a non-limiting embodiment of this invention preferably uses vertical high density interconnection technology. High density interconnects (HDI) are substrates or PWBs with a greater wiring density per unit area than conventional substrates or PWBs. HDI involves the sequential addition of a dielectric layer to form micro vias by metallizing one or both sides of a traditional PWB, which acts as a core. These micro vias are blind and traverse one or more layers in the stack, allowing for coincident placement of components. HDI uses blind and buried micro vias; which occupy only the layers that they traverse. HDI is also referred to as a “build-up” board, a “sequential build-up (SBU)” or “micro via technology.”
Other attributes of HDI include finer lines and spaces (<75 micron) and smaller vias (15 micron) and capture pads (400 micron) than employed in conventional technology, which are used to reduce size and weight and to enhance electrical performance.
Vertical high-density interconnection technology provides thru PWB vertical interconnects between any layers of a substrate. The end result is somewhat analogous to the thru-holes in conventional PWBs.
In accordance with preferred embodiments of this invention, the PWBs 250 are fabricated such that the top surface 200A, and also preferably the bottom surface 200B, are free of interconnecting traces 115, and instead contain only the solder joint pads 210. It thus becomes possible to not form the conventional solder resist layer 105 on the surface 200A, and 200B, and to thereby eliminate the problems inherent in the use of the solder resist layer(s) 105.
A PWB 200 in accordance with the preferred embodiments of this invention may be used for portable products such as: wireless communication devices, including cellular phones; image capture devices, including camcorders, digital cameras and film cameras equipped with electronic circuit boards; music storage and playback devices, including MP3 players and the like; personal digital assistants (PDAs); internet appliances; computers; and in products that combine the functionality of two or more such devices (e.g. a cellular phone containing a digital camera). This PWB 200 is well suited for use with fine-pitch IC packages. In general, a PWB 200 in accordance with the preferred embodiments of this invention can be used in any circuit boards, including those with high density requirements.
The foregoing description has provided by way of exemplary and non-limiting examples a full and informative description of the best method and apparatus presently contemplated by the inventors for carrying out the invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention.