Probe testing structure

Information

  • Patent Grant
  • 7250626
  • Patent Number
    7,250,626
  • Date Filed
    Friday, March 5, 2004
    21 years ago
  • Date Issued
    Tuesday, July 31, 2007
    17 years ago
Abstract
A calibration structure for probing devices.
Description
BACKGROUND OF THE INVENTION

The present invention relates to calibration structures for probing devices, and more particularly to improved calibration structures for suppressing undesirable electromagnetic modes resulting from the substrate of the calibration structure.


Coplanar transmission structures, such as coplanar waveguides, coplanar striplines, coplanar slotlines, and the like, are used in a wide variety of electronic applications. For example, coplanar waveguides are used in probes suitable to probe semiconductors at multi-gigahertz frequencies, such as described in U.S. Pat. No. 4,697,143. The probe described in the '143 patent has an approximately triangular shaped alumina substrate on which is formed a coplanar waveguide that tapers toward the point of the triangle. Bulk microwave absorbing material containing iron or ferrite and having a high magnetic loss coefficient is secured on both surfaces of the substrate to reduce the effect of unwanted propagation modes. One of these propagation modes includes energy that propagates up the probe substrate and reflects off of the probe mounting block and propagates back down the substrate producing undesired distortions of the measured signals.


Probes allow relatively accurate on-wafer measurements of very small devices, such as transistors, inductors, capacitors, resistors, and the like at frequencies from direct current to hundreds of giga-hertz. Relatively accurate measurements can be made using one or more such probes connected to a vector network analyzer and then calibrating the system using a calibration substrate. The calibration substrate has various types of planar calibration elements formed on it, such as Line-Reflect-Line (LRL) calibration elements, Line-Reflect-Match (LRM) calibration elements, Open-Short-Load-Thru (OSL-T) calibration elements, and the like. Deviations from the ideal response of the probe/calibration substrate combination are stored in the network analyzer and software algorithms are typically used to compensate for these detected deviations as well as the non-ideal response of the network analyzer and the interface to the probe.


The calibration substrate is positioned on a conductive chuck and is typically maintained in position by a vacuum. The conductive chuck acts as a ground plane for the undesired microstrip modes when a signal is applied through the probe. In addition to the undesired microstrip modes, undesirable surface wave modes propagate through the substrate. Quartz spacers have been placed under the calibration substrate to reduce the parasitic modes generated in the calibration substrate. However, even with quartz spacers the parasitic modes still produce resonances, such as in the incident to reflected signal ratio as measured by the network analyzer.


Unsuccessful attempts have been made to reduce the surface wave modes on the calibration substrate by locating a limited amount of lossy material, such as nichrome (nickel chromium alloy), along the opposing edges of the calibration elements. However, the dimension of the nichrome material is much shorter than the wavelength of the signal being coupled into the calibration element. Therefore, it has little effect on surface wave modes which propagate along the bottom surface of the substrate. Additionally, it has little effect on the microstrip modes generated by the conductive chuck acting as a ground plane for the calibration elements.


Referring to FIG. 1, a cross-sectional view of the coplanar transmission structure 10 described in U.S. Pat. No. 5,225,796 is shown. The coplanar transmission structure 10 includes a substrate 12 having a coplanar transmission line 14, shown as a coplanar transmission waveguide, formed on one surface thereof. The substrate 12 is formed from a dielectric material, such as alumina or sapphire. The coplanar transmission line 14 may also be a coplanar stripline, as in FIG. 2. The coplanar transmission waveguide 14 includes a center strip 16 with two ground planes 18 and 20 located parallel to and in the plane of the center strip 16. The coplanar transmission line 14 defines the electromagnetic mode of radiation propagating along the transmission line 14, such as a quasi-TEM mode of propagation. The opposite surface of the substrate 12 has a layer of lossy resistive material 22, such as nichrome, tantalum nitride, or the like formed thereon.


The use of a lossy resistive material tends to attenuate the parasitic evanescent or propagating electromagnetic modes of the coplanar transmission structure. FIG. 2A shows a plan view of a coplanar transmission structure having an asymmetrical coplanar stripline 24 formed on one surface of a sapphire substrate 26. A layer of nichrome 28 is deposited adjacent and connected to the ground of the stripline 27. The cross-sectional view of FIG. 2B shows another approach to adding lossy material, with the layer of nichrome 30 formed on the opposite surface of the substrate 26.


Unfortunately, the structures shown in FIGS. 1 and 2 tend to result in relatively distorted signals over a large range of frequencies. The distortion results from undesirable modes propagating within the substrate. The precise source of the undesirable modes is unknown which results in difficulty in reducing the undesirable modes. The distortion levels are sufficiently large that for very accurate measurements the calibration substrate is simply ineffective.


A calibration substrate available from Cascade Microtech of Beaverton, Oreg. includes a set of calibration structures. Referring to FIG. 3, the calibration structures include a set of conductive members 54 supported by the substrate and spatially arranged across the substrate. Similar conductive members are aligned in an array orientation. To effectively increase the frequency response and smooth out the frequency response of the microstrip mode of the conductive members to the base of the substrate, a small portion of resistive material 56 is located adjacent to the end of each of the conductive members. The wider conductive members are approximately 525 microns wide and the thinner conductive members are approximately 100 microns wide, with a spacing of approximately 750 microns between conductive material columns. The resistive material is approximately 150 microns in length and has a width equal to that of the conductive material. The conductive members are approximately 1400 microns in length. The column of conductive members 60 are for open calibration tests, the column of conductive member 62 are for load calibration tests, the column of conductive members 64 are for short calibration tests, the column of conductive members 66 are for through conductive tests, and the column of conductive members 68 are for loop back through conductive tests.


While providing an improved measurement accuracy, the resulting structure includes a resonance at approximately 33 giga-hertz having a magnitude of approximately 0.10-0.15 dB deviation from the ideal (0 dB) when measuring a short calibration structure (S11 measurement), as shown in FIG. 4. The S11 magnitude in dB is calculated as 20*log(x), where x is the magnitude of the return signal with the input normalized to 1. This resonance makes probing of semiconductors more difficult in the general range of 33 giga-hertz because it is difficult to calibrate the system. In the case of a resonant system, Q is a measure of the sharpness of the resonant peak in the frequency response of the system and is inversely proportional to the damping in the system, and may be also considered the reactive portion over the resistive portion of the impedance causing the resonance. For example, Q=(center frequency in hertz)/(bandwidth (0.707 times down (3 dB reduction in magnitude) from the maximum magnitude at the center frequency)). Referring to FIG. 4, the Q factor of the impedance causing the 33 GHz resonance is approximately 22.


What is desired is calibration structures that reduce unwanted spurious modes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a coplanar transmission structure.



FIGS. 2A-B are plan and cross-sectional views of coplanar stripline cases incorporating resistive layers.



FIG. 3 illustrates an existing calibration substrate.



FIG. 4 illustrates S11 response of a short without resistive termination of the microstrip mode.



FIG. 5 illustrates a modified calibration substrate.



FIGS. 6A-6E illustrate calibration regions.



FIG. 7 illustrates a LC circuit.



FIG. 8 illustrates a LCR circuit.



FIG. 9 illustrates S11 response of a short with resistive termination of the microstrip mode.



FIG. 10 illustrates a smith chart of the impedance matches of the probe impedance without resistive material.



FIG. 11 illustrates a smith chart of the impedance matches of the probe impedance with limited resistive material.



FIG. 12 illustrates another calibration structure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 5, a calibration substrate that includes one or more conductive members is illustrated. The structures on the calibration substrate are modeled by the manufacturer with some degree of accuracy so that the probe, network analyzer, and cabling between the probe and network analyzer can be accurately modeled with some degree of precision.


The preferred dimensions include the wider conductive members being approximately 525 microns wide and the thinner conducive members being approximately 100 microns wide. The length of the conductors are preferably 1400 microns. The column of conductive members 160 are for open calibration tests, the column of conductive member 162 are for load calibration tests, the column of conductive members 164 are for short calibration tests, the column of conductive members 166 are for through conductive tests, and the column of conductive members 168 are for loop back through conductive tests. In general, the signal paths are located on the small conductive regions within each larger conductive region. Similarly, in general the ground paths are located on the larger conductive regions. In some cases, the signal and ground conductive portions are tied together. Referring to FIG. 6A, for example, the open conductive test 160 for a dual path test includes a pair of signal conductive regions 200 and 202, and a ground conductive region 204. Referring to FIG. 6B, for example, the load conductive test 162 for a dual path test includes a pair of signal conductive regions 210 and 212, and a ground conductive region 214, where the respective conductive regions 210 and 212 are interconnected by a resistive material 216, such as a 50 ohm/square resistive material. Referring to FIG. 6C, for example, the short conductive test 164 for a dual path test includes a pair of signal conductive regions 220 and 222, and a ground conductive region 224 which is electrically connected to the signal conductive regions 220 and 222. Referring to FIG. 6D, for example, the through conductive test 166 for a dual path test includes a pair of signal conductive regions 230 and 232, and a ground conductive region 234. Referring to FIG. 6E, for example, the loop back conductive test 168 for a dual path test includes a pair of signal conductive regions 240 and 242, and a ground conductive region 244.


The calibration may include any suitable technique, such as for example, line-reflect-match, short-open-load, through-reflect line, line-reflect-reflect-match, short-open-load-through, and short-open-load-reciprocal. Deviations from the ideal response of the probe/calibration substrate combination are stored in the network analyzer and software algorithms may be used to compensate for these detected deviations as well as the non-ideal response of the network analyzer and the interface to the probe.


The present inventor considered the effects of the resonance frequency occurring at approximately 33 GHz for the structure shown in FIG. 3. The present inventor speculated that one potential explanation for the observed effect is that there exists a significant capacitance “Cstructure” between adjacent columns of calibration resistor/conductor/resistor structures. In addition, during the calibration process there exists another significant capacitance “Cprobe” between the probe itself and the adjacent calibration structure to the one being tested. Further, during the calibration process the ground path of the probe tip has a significant inductance Ltip. As illustrated in FIG. 7, the resulting pair of capacitances Cstructure and Cprobe together with the inductance Ltip result in a inductor-capacitor (LC) resonance structure.


This LC resonance structure varies by including additional probe tip inductance and additional mutual inductance between the probe tips when the substrate is used for calibration of a dual (or more) signal path probe. For example, the probe may include a ground/signal/ground/signal/ground structure where the pair of signal paths may be located on different conductive members during calibration. The substrate may likewise be used for single port calibrations between a pair of probes or for a single probe or one to multiple ports. Further, in most cases the signal lines may be used for input or output or both.


The recognition of the existence of the capacitance between different conductive portions of the substrate provides insight into one potential source of the undesirable distortion. To modify the distortion, one technique may be to space the conductive members at locations further distant from one another. This results in a decrease in the capacitance between the conductive members. As the capacitance between the conductive members is decreased the resonance frequency of the effective LC circuit is increased. With sufficient increase in the resonance frequency, the resonance may occur at a frequency that is not of interest during measurement, such as above 200 giga-hertz. Unfortunately, increasing the spacing between the conductive members results in fewer calibration structures on the substrate, which become worn after repeated use.


Another resonance can occur from the length and width of the ground conductor approaching a half-wavelength at the frequencies of interest. In this case, Cprobe and Cstructure additionally couple to such resonators, which can further distort the desired signals.


To provide a more suitable calibration substrate while reducing the resonances identified, the present inventor came to the realization that a resistive element 170 should be included in the LC circuit to effectively provide an LCR circuit, as illustrated in FIG. 8. The additional resistive element Rstructure is sufficient to dampen the resonance aspects of the structure to a sufficiently small level. In the preferred structure, the resistive element interconnects the two adjacent conductive elements. Measurements resulting from the modified structure show a deviation from ideal of less than 0.02 dB in a measurement of the short structure (S11 measurement). In contrast, the previously existing structures that included resistive material did not have a sufficiently wide resistor area to reduce the resonance(s), whatever their origin. The present inventor speculates that the narrow resistors of existing structures provide insufficient capacitance between the resistor material to the ground plane such that little current flows in the resistor material, thus resulting in a relatively high Q. Accordingly, the present inventor speculates that with additional resistor material or additional resistance sufficient capacitance exists between the resistive material and the ground plane so that sufficient current flows in the resistive material thus lowering the Q of the resonator structure created by the ground conductor.


The modified structure has a characteristic that was previously unobtainable with a loss of less than 0.05 dB between 5 GHz and 100 GHz, and more preferably between 10 GHz and 70 GHz, more preferably between 20 and 60 GHz, more preferably between 30 GHz and 50 GHz, or and more preferably a loss of less than 0.025 dB between these ranges (S11 measurement). This measurement may be characterized as the vector difference between the structure's S11 and the S11 of a relatively trusted short or open. Further, the modified structure permits the Q of the resonance to be substantially reduced, such as to a value less than 5, more preferably less than 3, more preferably less than 2, and more preferably less than approximately 1. While the resistive material is preferably connected to both of the conductive materials and extends the entire distance between the conductive materials, less resistive material may likewise be used, if desired. For example, the resistive material may extend at least 50% of the distance between the conductive members, more preferably at least 75% of the distance between the conductive members, more preferably at least 90% of the distance between the conductive members, and more preferably at least 95% of the distance between the conductive members. Furthermore, resistive material may be included between the columns of conductive materials and extend the entire distance between the conductive materials. Also, less resistive material may be included between the columns of conductive materials, if desired, and more preferably between the conductive materials. For example, the resistive material may extend at least 50% of the distance between the conductive members, more preferably at least 75% of the distance between the conductive members, more preferably at least 90% of the distance between the conductive members, and more preferably at least 95% of the distance between the conductive members.


By way of illustration, a test was performed without additional resistive material and an indication of the conductive member resonance seems to occur when the impedance matches the probe and system impedance around 22 GHz and 52 GHz, as illustrated in FIG. 10. In addition, at 33 GHz, the resonance is observed while probing the short on a conductive member. With adjacent resistors having a resistance of approximately 60 ohms the reactive part of the impedance of 60-j60 at approximately 33 GHz is generally matched, as illustrated in FIG. 11. The present inventor speculated that another potential source of this effect is that the additional resistive material, as shown in FIG. 5, in effect substantially matches the imaginary part (within 10%) of the mode conversion at that frequency to reduce or otherwise eliminate the resonance.


The present inventor, based upon the aforementioned observation, considered that during the calibration process the probe maintains a signal primarily in a single mode, such as CPW mode (coplanar waveguide). The signal propagating in the CPW mode is imposed on the calibration substrate. The majority of the signal is maintained in the CPW mode by the calibration substrate. However, a portion of the signal in the CPW mode is converted by the calibration structures into other modes, such as a microstrip mode between the conductive members and the bottom of the substrate. At particular frequencies for particular configurations, this mode conversion from CPW to microstrip is substantial, such as 33 GHz as previously discussed. Accordingly, one explanation of the beneficial effects of the resistor material is that it is terminating the microstrip mode in a resistance substantially equal to its characteristic impedance. If not connected to other conductors, the resistor area should be wide enough to create sufficient capacitance to the ground plane to cause the ground conductor to see an impedance substantially equal to the characteristic impedance of the undesired mode (within +/−25 percent, more preferably within +/−10 percent). The resistive material preferably has a resistance that is within +/−25 percent, more preferably within +/−10 percent, of the characteristic impedance of the microstrip mode. Also, the length of the resistive material is preferably sufficient to provide an impedance substantially equal to the characteristic impedance of the undesired mode, preferably within +/−10 percent, and preferably within +/−25 percent. Also, the area of the resistive material is preferably sufficient to provide an impedance substantially equal to the characteristic impedance of the undesired mode, preferably within +/−10 percent, and preferably within +/−25 percent. The thickness of the substrate and/or its dielectric constant is preferably sufficient such that the conductive region (ground conductor and/or signal conductor(s)) and/or resistive material has an impedance substantially equal to the characteristic impedance of the undesired mode, preferably within +/−10 percent, and preferably within +/−25 percent.


In many cases the characteristic impedance of the microstrip mode to the ground plane is related to the ratio of the width of the microstrip (resistor and/or conductive region (ground conductor and/or signal conductor(s)) to the substrate thickness. Therefore, the resistive material may be considered as a very lossy microstrip line of similar impedance which preferably has a length substantially the same as the length of the ground conductor, within +/−10 percent, within +/−25 percent, within +/−50 percent, within +/−75 percent. If the resistive element is considered as a series of lumped elements, a longer resistive structure has more capacitance to the ground plane, thus providing a termination resistor.


In other embodiments, the resistive material may be of a length greater than 300 microns, more preferably greater than 500 microns, and more preferably greater than 750 microns. The resistive material may likewise have the same width as the conductive region, or within 75% of the same width. Also, the resistive material may be characterized as having a total resistance (per side) of more than 40 ohms, more preferably more than 45 ohms, more preferably more than 50 ohms, and more preferably more than 55 ohms. Furthermore, the S11 characteristics, Q value characteristics, resistive material characteristics, and reactive characteristics may be related to a single combination of a conductive member and resistive material without relation to other conductive members or other resistive members.


The relationships described herein may be considered as is without regard to the type of resistive material used. Also, the relationships described herein are preferably for a resistive material of approximately 50 ohms/square (within +/−5 percent, within +/−10 percent, within +/−25 percent). However, if the resistance of the resistive material is other than 50 ohms/square then the width of the conductive region (ground conductors and/or signal conductors) and/or resistive material, thickness of the substrate, dielectric constant of the substrate, length of the conductive region (ground conductors and/or signal conductors) and/or resistive material, may be modified to maintain the same ratios and/or the same characteristic impedance matching.


The substrate may include microwave absorbing material between the substrate and the chuck, if desired. Further, microwave absorbing material may be located on the sides and/or the top surface of the substrate, if desired. Also, the chuck may be, for example, conductive, non-conductive, lossy, supporting an upper dielectric layer, supporting an upper microwave absorbing material. In addition, the characteristics of the resistive material may likewise be included with conductive regions on a calibration substrates for a single channel, such as merely a ground region and a signal region.


The resistive material may have different sheet resistances to match different application needs depending on the characteristic impedance of the device under test. Additionally patterning of the lossy material in various shapes may be chosen to meet specific application needs.


Another calibration structure is shown in FIG. 12 suitable for membrane type probes available from Cascade Microtech, Inc. of Beaverton, Oreg. The structure includes conductive regions, such as elongate ground conductors with a signal conductor between a pair of ground conductors separated by a gap or dielectric material. The conductive regions are preferably spaced apart by gaps or dielectric material. Between different conductive regions may be dielectric or resistive material. The central region includes a large conductive region and individual pads for the probing contacts which may be electrically isolated form the large conductive region.


The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims
  • 1. A calibration substrate for calibrating a probe comprising: (a) a first conductive member associated with a first calibration test site and supported by said substrate suitable to be electrically interconnected with a first signal path of said probe;(b) a second conductive member associated with said first calibration test site and supported by said substrate suitable to be electrically interconnected with a second signal path of said probe, said second conductive member electrically isolated from said first conductive member;(c) a third conductive member associated with said first calibration test site and supported by said substrate suitable to be electrically interconnected with a ground path of said probe, said third conductive member electrically isolated from each of said first and second conductive members;(d) a fourth conductive member associated with a second calibration test site, spaced apart from said first calibration test site, and supported by said substrate suitable to be electrically interconnected with a first signal path of another probe;(e) a fifth conductive member associated with said second calibration test site supported by said substrate suitable to be electrically interconnected with a second signal path of said another probe, said fifth conductive member electrically isolated from said fourth conductive member;(f) a sixth conductive member associated with said second calibration test site supported by said substrate suitable to be electrically interconnected with a ground path of said another probe, said sixth conductive member electrically isolated from each of said fourth and fifth conductive members; and(g) a resistive member supported by said substrate and positioned between said third conductive member and said sixth conductive member and extending 100% of the distance between said third conductive member and said sixth conductive member and having a width substantially equal to that of said third and sixth conductive members.
  • 2. The substrate of claim 1 wherein the S11 characteristic from said first, second, and third conductive members has a loss of less than 0.05 dB between 30 GHz and 50.
  • 3. The substrate of claim 1 wherein the S11 characteristic from said first, second, and third conductive members has a Q factor of less than 5 between 30 GHz and 50.
  • 4. The substrate of claim 1 wherein said resistive material matches within 10 percent the imaginary part of the primary mode conversion between 30 GHz and 50.
  • 5. The substrate of claim 1 wherein said resistive material that includes a member has a resistance that reduces a resonance effect between 10 GHz and 100 GHz that would have otherwise occurred if the resistive material was not included to a level less than 50% of what would have otherwise occurred.
CROSS REFERENCE TO RELATED DOCUMENTS

This application claims the benefit of U.S. Provisional Application No. 60/513,663, filed Oct. 22, 2003.

US Referenced Citations (524)
Number Name Date Kind
1337866 Whitaker Apr 1920 A
2142625 Zoethoul Jan 1939 A
2197081 Piron Apr 1940 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
2471897 Rappl May 1949 A
2812502 Doherty Nov 1957 A
3176091 Hanson et al. Mar 1965 A
3185927 Margulis et al. May 1965 A
3192844 Szasz et al. Jul 1965 A
3193712 Harris Jul 1965 A
3201721 Voelcker Aug 1965 A
3230299 Radziejowski Jan 1966 A
3256484 Terry Jun 1966 A
3265969 Catu Aug 1966 A
3289046 Carr Nov 1966 A
3333274 Forcier Jul 1967 A
3405361 Kattner et al. Oct 1968 A
3408565 Frick et al. Oct 1968 A
3435185 Gerard Mar 1969 A
3484679 Hodgson et al. Dec 1969 A
3596228 Reed, Jr. Jul 1971 A
3602845 Agrios et al. Aug 1971 A
3609539 Gunthert Sep 1971 A
3648169 Wiesler Mar 1972 A
3654573 Graham Apr 1972 A
3662318 Decuyper May 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3775644 Cotner et al. Nov 1973 A
3777260 Davies et al. Dec 1973 A
3810017 Wiesler et al. May 1974 A
3814888 Bowers et al. Jun 1974 A
3829076 Sofy Aug 1974 A
3863181 Glance et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3970934 Aksu Jul 1976 A
3996517 Fergason et al. Dec 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027253 Chiron et al. May 1977 A
4035723 Kvaternik Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4042119 Hassan et al. Aug 1977 A
4049252 Bell Sep 1977 A
4066943 Roch Jan 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4115736 Tracy Sep 1978 A
4116523 Coberly et al. Sep 1978 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4172993 Leach Oct 1979 A
4186338 Fichtenbaum Jan 1980 A
4275446 Blaess Jun 1981 A
4280112 Eisenhart Jul 1981 A
4284033 delRio Aug 1981 A
4284682 Frosch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4342958 Russell Aug 1982 A
4346355 Tsukii Aug 1982 A
4352061 Matrone Sep 1982 A
4357575 Uren et al. Nov 1982 A
4365109 O'Loughlin Dec 1982 A
4365195 Stegens Dec 1982 A
4371742 Manly Feb 1983 A
4376920 Smith Mar 1983 A
4383178 Shibata et al. May 1983 A
4414638 Talambrias Nov 1983 A
4419626 Cedrone et al. Dec 1983 A
4425395 Negishi et al. Jan 1984 A
4426619 Demand Jan 1984 A
4473798 Cedrone et al. Sep 1984 A
4479690 Inouye et al. Oct 1984 A
4480223 Aigo Oct 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4491173 Demand Jan 1985 A
4503335 Takahashi Mar 1985 A
4507602 Aguirre Mar 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4532423 Tojo et al. Jul 1985 A
4557599 Zimring Dec 1985 A
4566184 Higgins et al. Jan 1986 A
4567321 Harayama Jan 1986 A
4567908 Bolsterli Feb 1986 A
4575676 Palkuti Mar 1986 A
4588970 Donecker et al. May 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4665360 Phillips May 1987 A
4673839 Veenendaal Jun 1987 A
4675600 Gergin Jun 1987 A
4680538 Dalman et al. Jul 1987 A
4684883 Ackerman et al. Aug 1987 A
4691831 Suzuki et al. Sep 1987 A
4694245 Frommes Sep 1987 A
4695794 Bargett et al. Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4703433 Sharrit Oct 1987 A
4711563 Lass Dec 1987 A
4712370 MacGee Dec 1987 A
4727637 Buckwitz et al. Mar 1988 A
4730158 Kasai et al. Mar 1988 A
4731577 Logan Mar 1988 A
4734872 Eager et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4744041 Strunk et al. May 1988 A
4755746 Mallory et al. Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4758785 Rath Jul 1988 A
4759712 Demand Jul 1988 A
4771234 Cook et al. Sep 1988 A
4772846 Reeds Sep 1988 A
4777434 Miller et al. Oct 1988 A
4783625 Harry et al. Nov 1988 A
4784213 Eager et al. Nov 1988 A
4786867 Yamatsu Nov 1988 A
4787752 Fraser et al. Nov 1988 A
4791363 Logan Dec 1988 A
4810981 Herstein Mar 1989 A
4812754 Tracy et al. Mar 1989 A
4816767 Cannon et al. Mar 1989 A
4818169 Schram et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4838802 Soar Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4845426 Nolan et al. Jul 1989 A
4849689 Gleason Jul 1989 A
4853613 Sequeira et al. Aug 1989 A
4856426 Wirz Aug 1989 A
4856904 Akagawa Aug 1989 A
4858160 Strid et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4871883 Guiol Oct 1989 A
4871965 Elbert et al. Oct 1989 A
4884026 Hayakawa et al. Nov 1989 A
4884206 Mate Nov 1989 A
4888550 Reid Dec 1989 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4896109 Rauscher Jan 1990 A
4899998 Teramachi Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4916398 Rath Apr 1990 A
4918279 Babel et al. Apr 1990 A
4918374 Stewart et al. Apr 1990 A
4923407 Rice et al. May 1990 A
4926118 O'Connor et al. May 1990 A
4933634 Cuzin et al. Jun 1990 A
4968931 Littlebury et al. Nov 1990 A
4978907 Smith Dec 1990 A
4978914 Akimoto et al. Dec 1990 A
4982153 Collins et al. Jan 1991 A
4994737 Carlton et al. Feb 1991 A
5001423 Abrami et al. Mar 1991 A
5006796 Burton et al. Apr 1991 A
5010296 Okada et al. Apr 1991 A
5019692 Nbedi et al. May 1991 A
5030907 Yih et al. Jul 1991 A
5034688 Moulene et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5061823 Carroll Oct 1991 A
5065089 Rich Nov 1991 A
5065092 Sigler Nov 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5070297 Kwon et al. Dec 1991 A
5077523 Blanz Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091691 Kamieniecki et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097207 Blanz Mar 1992 A
5101149 Adams et al. Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5103169 Heaton et al. Apr 1992 A
5105148 Lee Apr 1992 A
5105181 Ross Apr 1992 A
5107076 Bullock et al. Apr 1992 A
5142224 Smith et al. Aug 1992 A
5144228 Sorna et al. Sep 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164661 Jones Nov 1992 A
5166606 Blanz Nov 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5198758 Iknaian et al. Mar 1993 A
5202558 Barker Apr 1993 A
5209088 Vaks May 1993 A
5210485 Kreiger et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5218185 Gross Jun 1993 A
5220277 Reitinger Jun 1993 A
5221905 Bhangu et al. Jun 1993 A
5225037 Elder et al. Jul 1993 A
5225796 Williams et al. Jul 1993 A
5237267 Harwood et al. Aug 1993 A
5266889 Harwood et al. Nov 1993 A
5278494 Obigane Jan 1994 A
5280156 Niori et al. Jan 1994 A
5303938 Miller et al. Apr 1994 A
5315237 Iwakura et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5325052 Yamashita Jun 1994 A
5334931 Clarke et al. Aug 1994 A
5336989 Hofer Aug 1994 A
5345170 Schwindt et al. Sep 1994 A
5369370 Stratmann et al. Nov 1994 A
5371457 Lipp Dec 1994 A
5373231 Boll et al. Dec 1994 A
5382898 Subramanian Jan 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408189 Swart et al. Apr 1995 A
5410259 Fujihara et al. Apr 1995 A
5422574 Kister Jun 1995 A
5434512 Schwindt et al. Jul 1995 A
5451884 Sauerland Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5461328 Devereaux et al. Oct 1995 A
5469324 Henderson et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5477011 Singles et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481936 Yanagisawa Jan 1996 A
5486975 Shamouilian et al. Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5491426 Small Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5506515 Godshalk et al. Apr 1996 A
5508631 Manku et al. Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5515167 Ledger et al. May 1996 A
5517111 Shelor May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5530371 Perry et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5532609 Harwood et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5546012 Perry et al. Aug 1996 A
5550480 Nelson et al. Aug 1996 A
5550482 Sano Aug 1996 A
5552716 Takahashi et al. Sep 1996 A
5561377 Strid et al. Oct 1996 A
5561585 Barnes et al. Oct 1996 A
5565788 Burr et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5572398 Federlin et al. Nov 1996 A
5583445 Mullen Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5604444 Harwood et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611946 Leong et al. Mar 1997 A
5617035 Swapp Apr 1997 A
5629631 Perry et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5640101 Kuji et al. Jun 1997 A
5646538 Lide et al. Jul 1997 A
5657394 Schwartz et al. Aug 1997 A
5659255 Strid et al. Aug 1997 A
5663653 Schwindt et al. Sep 1997 A
5666063 Abercrombie et al. Sep 1997 A
5668470 Shelor Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5680039 Mochizuki et al. Oct 1997 A
5682337 El-Fishawy et al. Oct 1997 A
5685232 Inoue Nov 1997 A
5712571 O'Donoghue Jan 1998 A
5729150 Schwindt Mar 1998 A
5731708 Sobhami Mar 1998 A
5773951 Markowski et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5798652 Taraci Aug 1998 A
5802856 Schaper et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5811751 Leong et al. Sep 1998 A
5828225 Obikane et al. Oct 1998 A
5831442 Heigl Nov 1998 A
5835997 Yassine Nov 1998 A
5838161 Akram et al. Nov 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5857667 Lee Jan 1999 A
5861743 Pye et al. Jan 1999 A
5869975 Strid et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5879289 Yarush et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5900737 Graham et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5910727 Fujihara et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5923177 Wardwell Jul 1999 A
5942907 Chiang Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949579 Baker Sep 1999 A
5952842 Fujimoto Sep 1999 A
5959461 Brown et al. Sep 1999 A
5960411 Hartman et al. Sep 1999 A
5963027 Peters Oct 1999 A
5963364 Leong et al. Oct 1999 A
5973505 Strid et al. Oct 1999 A
5982166 Mautz Nov 1999 A
5995914 Cabot Nov 1999 A
5998768 Hunter et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002263 Peters et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6023209 Faulkner et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6037793 Miyazawa et al. Mar 2000 A
6043667 Cadwallader et al. Mar 2000 A
6049216 Yang et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6060888 Blackham et al. May 2000 A
6060891 Hembree et al. May 2000 A
6078183 Cole, Jr. Jun 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6096567 Kaplan et al. Aug 2000 A
6104203 Costello et al. Aug 2000 A
6111419 Lefever et al. Aug 2000 A
6114865 Lagowski et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6121783 Horner et al. Sep 2000 A
6124723 Costello Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130544 Strid et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6137303 Deckert et al. Oct 2000 A
6144212 Mizuta Nov 2000 A
6147851 Anderson Nov 2000 A
6160407 Nikawa Dec 2000 A
6194907 Kanao et al. Feb 2001 B1
6198299 Hollman Mar 2001 B1
6211663 Moulthrop et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6232789 Schwindt May 2001 B1
6232790 Bryan et al. May 2001 B1
6236975 Boe et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6245692 Pearce et al. Jun 2001 B1
6252392 Peters Jun 2001 B1
6257319 Kainuma et al. Jul 2001 B1
6259261 Engelking et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6284971 Atalar et al. Sep 2001 B1
6288557 Peters et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6300775 Peach et al. Oct 2001 B1
6310755 Kholodenko et al. Oct 2001 B1
6313649 Harwood et al. Nov 2001 B2
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6335628 Schwindt et al. Jan 2002 B2
6362636 Peters et al. Mar 2002 B1
6380751 Harwood et al. Apr 2002 B2
6396296 Tarter et al. May 2002 B1
6407560 Walraven et al. Jun 2002 B1
6424141 Hollman et al. Jul 2002 B1
6445202 Cowan et al. Sep 2002 B1
6480013 Nayler et al. Nov 2002 B1
6483327 Bruce et al. Nov 2002 B1
6483336 Harris et al. Nov 2002 B1
6486687 Harwood et al. Nov 2002 B2
6488405 Eppes et al. Dec 2002 B1
6489789 Peters et al. Dec 2002 B2
6492822 Schwindt et al. Dec 2002 B2
6501289 Takekoshi Dec 2002 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549026 Dibattista et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6573702 Marcuse et al. Jun 2003 B2
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6608494 Bruce et al. Aug 2003 B1
6608496 Strid et al. Aug 2003 B1
6617862 Bruce Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6624891 Marcus et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636059 Harwood et al. Oct 2003 B2
6639415 Peters et al. Oct 2003 B2
6642732 Cowan et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6686753 Kitahata Feb 2004 B1
6701265 Hill et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6720782 Schwindt et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6734687 Ishitani et al. May 2004 B1
6744268 Hollman Jun 2004 B2
6771090 Harris et al. Aug 2004 B2
6771806 Satya et al. Aug 2004 B1
6774651 Hembree Aug 2004 B1
6777964 Navratil et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6791344 Cook et al. Sep 2004 B2
6801047 Harwood et al. Oct 2004 B2
6806724 Hayden et al. Oct 2004 B2
6836135 Harris et al. Dec 2004 B2
6838885 Kamitani Jan 2005 B2
6842024 Peters et al. Jan 2005 B2
6843024 Nozaki et al. Jan 2005 B2
6847219 Lesher et al. Jan 2005 B1
6856129 Thomas et al. Feb 2005 B2
6861856 Dunklee et al. Mar 2005 B2
6873167 Goto et al. Mar 2005 B2
6885197 Harris et al. Apr 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6927079 Fyfield Aug 2005 B1
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023229 Maesaki et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030599 Douglas Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7101797 Yuasa Sep 2006 B2
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20020075027 Hollman et al. Jun 2002 A1
20020118009 Hollman et al. Aug 2002 A1
20030062915 Arnold et al. Apr 2003 A1
20030071631 Alexander Apr 2003 A1
20030141861 Navratil et al. Jul 2003 A1
20040061514 Schwindt et al. Apr 2004 A1
20040095145 Boudial et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040113639 Dunklee et al. Jun 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050099192 Dunklee et al. May 2005 A1
20050227503 Reitinger Oct 2005 A1
20060114012 Reitinger Jun 2006 A1
20060158207 Reitinger Jul 2006 A1
Foreign Referenced Citations (56)
Number Date Country
29 12 826 Mar 1979 DE
31 14 466 Mar 1982 DE
31 25 552 Nov 1982 DE
288 234 Sep 1989 DE
41 09 908 Oct 1992 DE
94 06 227 Apr 1994 DE
43 16 111 Nov 1994 DE
195 41 334 Sep 1996 DE
196 16 212 Oct 1996 DE
196 18 717 Jan 1998 DE
693 22 206 Apr 1999 DE
0 087 497 Sep 1983 EP
0 201 205 Dec 1986 EP
0 314 481 May 1989 EP
0 333 521 Sep 1989 EP
0 460 911 Dec 1991 EP
0 505 981 Sep 1992 EP
0 574 149 Dec 1993 EP
0 706 210 Apr 1996 EP
0 573 183 Jan 1999 EP
2 197 081 May 1988 GB
53-052354 May 1978 JP
56-007439 Jan 1981 JP
62-011243 Jan 1987 JP
63-143814 Jun 1988 JP
63-160355 Jul 1988 JP
1-165968 Jun 1989 JP
1-178872 Jul 1989 JP
1-209380 Aug 1989 JP
1-214038 Aug 1989 JP
1-219575 Sep 1989 JP
1-296167 Nov 1989 JP
2-22837 Jan 1990 JP
2-22873 Jan 1990 JP
2-220453 Sep 1990 JP
3-67187 Mar 1991 JP
3-175367 Jul 1991 JP
4-732 Jan 1992 JP
5-157790 Jun 1993 JP
5-166893 Jul 1993 JP
60-71425 Mar 1994 JP
7-5197 Jan 1995 JP
7005078 Jan 1995 JP
7-273509 Oct 1995 JP
10-116866 May 1998 JP
10-339743 Dec 1998 JP
11-031724 Feb 1999 JP
2001-189285 Jul 2001 JP
2001-189378 Jul 2001 JP
2002033374 Jan 2002 JP
2002-164396 Jun 2002 JP
WO 8000101 Jan 1980 WO
WO 8607493 Dec 1986 WO
WO 8904001 May 1989 WO
WO 0169656 Sep 2001 WO
WO 2004049395 Jun 2004 WO
Related Publications (1)
Number Date Country
20050088191 A1 Apr 2005 US
Provisional Applications (1)
Number Date Country
60513663 Oct 2003 US