Goldblatt et al., “Unique and Practical IC Timing Analysis Tool Utilizing Intrinsic Photon Emission,” Microelectronics Reliability Conference, 2001, 41(9-10):1507-1512. |
Knebel et al., “Diagnosis and Characterization of Timing-Related Defects by Time-Dependent Light Emission,” IEEE International Test Conference, 1998, pp. 733-739. |
Lundquist et al., “Ultra-Thinning of C4 Integrated Circuits for Backside Analysis during First Silicon Debug,” Microelectronics Reliability Conference, 2001, 41(9-10):1545-1549. |
Lundquist amd McManus, “Characterize Gate-Level Transistor Performance with PICA,” Semiconductor International, 2001, 4 pgs. |
Makarov et al., “Practical FIB Chemistry for Etching Copper,”Present at AVS Third International Conference on Microelectronics and Interfaces (ICMI), Feb. 12, 2002, 3 pgs. |
Musil et al., “Focused Ion Beam Microsurgery for Electronics,” IEEE Electron Device Letters, 1986, EDL-7(5):285-287. |
Edinger, “Gas assisted etching of copper with focused ion beams,” J. Vac. Sci. Technol. B, 1999, 17(6):3058-3062. |
Igarashi et al., “Dry Etching Technique or Subquarter-Micron Copper Interconnects,” J. Electrochem. Soc., 1995, 142(3):L36-L37. |
R. Bender et al., “Focused Ion Beam Analysis of Organic Low-k Dielectrics,” Proceeding from the 26th International Symposium for Testing and Failure Analysis, Nov. 12-16, 2000, pp. 397-405. |
K. Edinger, et al., “Study of precursor gases for focused ion beam insulator deposition,” J.Vac.Sci.Technol.B 19(6), Nov./Dec. 1998, pp. 3311-3314. |
J. Gonzalez et al., “Chemically enhanced focused ion beam micromachining of copper,” J.Vac.Sci.Technol.B 19(6), Nov./Dec. 2001, pp. 2539-2542. |
J. Gonzalez et al., “Improvements in focused ion beam micromachining of interconnect materials,” J.Vac.Sci.Technol.B 20(6), Nov./Dec. 2002, pp. 2700-2704. |
S. Herschbein et al., “The Challenges of FIB Chip Repair & Debug Assistance in the 0.25um Copper Interconnect Millenium,” Proceedings from the 24th International Symposium for Testing and Failure Analysis, Nov. 15-19, 1998, four pages. |
P.Ho et al., Low Dielectric Constant Materials for IC Applications, Springer Verlag, 2003, Chapter 1, pp. 1-21. |
V. Makarov et al., “Dry Etching Considerations fro Copper Metallizations,” Proceedings of the 4th AVS International Conference on Microelectronics and Interfaces, Mar. 3-6, 2003, p. 198 (3 pages). |
J.Phillips et al., “Channeling effects during focused-ion-beam micromachining of copper,” J.Vac.Sci.Technol.B 18(4), Jul./Aug. 2000, pp. 1061-1065. |
J.Phillips et al., “H2O enhanced focused ion beam micromachining,” J.Vac.Sci.Technol.B 13(6), Nov./Dec. 1995, pp. 2565-2569. |
S.Pauthner, “Devicce modification and gas assisted etching on CU-samples,” 3rd European FIB Users Group Metting (EFUG99) Programme and Abstracts, Oct. 4, 1999 (1 page). |
H. Ximen et al., Halogen-Based Selective FIB Milling for IC Probe-Point Creation and Repair, Proceedings from 20th International Symposium for Testing and Failure Analysis, 1994, pp. 141-145. |
H. Bender et al., Investigation on the Corrosion og Cu Metallization in the Focused Ion Beam System due to a low 12 Background, Proceedings from the 25th International Symposium for Testing and Failure Analysis, 1999, pp. 135-140. |
L. Harriott, Digital scan model for focused ion beam induced gas etching, J.Vac. Sci. Technol. B 11(6), Nov./Dec. 1993, pp. 2012-2015. |
R. Lee et al., Low Resisitivity FIB Depositions Within High Aspect Ratio Holes, Proceedings of the 22nd International Symposium for Testing and Failure Analysis, Nov. 8-22, 1996, Los Angeles, California, pp. 85-88. |
V. Makarov et al., Copper Etch Milling Technique for Device Edits with the ISDS P3X and IDS P3Xa, Application Note # rev. 1.5, Jun. 19, 2001, pp. 1-5. |
IDS P3X brochure, Schlumberger, printed Oct./1999, two pages. |